WO2011115208A1 - Wraparound canceller and relay device - Google Patents

Wraparound canceller and relay device Download PDF

Info

Publication number
WO2011115208A1
WO2011115208A1 PCT/JP2011/056383 JP2011056383W WO2011115208A1 WO 2011115208 A1 WO2011115208 A1 WO 2011115208A1 JP 2011056383 W JP2011056383 W JP 2011056383W WO 2011115208 A1 WO2011115208 A1 WO 2011115208A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
wraparound
ofdm
unit
Prior art date
Application number
PCT/JP2011/056383
Other languages
French (fr)
Japanese (ja)
Inventor
謙次 日比
拓見 山口
倫也 林
Original Assignee
マスプロ電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マスプロ電工株式会社 filed Critical マスプロ電工株式会社
Publication of WO2011115208A1 publication Critical patent/WO2011115208A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15585Relay station antennae loop interference reduction by interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements

Definitions

  • the present invention relates to a wraparound canceller used in a relay device that relays an OFDM signal used in terrestrial digital television broadcasting or the like. Specifically, the present invention relates to a sneak canceller for removing a sneak signal superimposed on a received signal when a transmission radio wave from a transmission antenna sneaks around to a reception antenna. The present invention also relates to a relay device provided with this wraparound canceller.
  • the SFN relay device is provided with a wraparound canceller.
  • the sneak canceller prevents the transmission radio wave from the transmission antenna from sneaking to the reception antenna and retransmitting the sneak signal.
  • the SFN relay device is a device that relays OFDM signals used in digital terrestrial television broadcasting or the like without frequency conversion (in other words, channel conversion).
  • This sneak canceller measures the delay profile (complex impulse response) of the sneak signal and removes the sneak signal component from the received signal according to the measured delay profile.
  • a method for measuring a delay profile for example, various methods such as the following (a) to (c) are known (see, for example, Patent Document 1).
  • a transfer function of a transmission path is estimated using a reference signal such as an SP signal (Scattered Pilot Signal) inserted as an amplitude phase reference at the time of synchronous demodulation in an OFDM signal, and the reciprocal of the estimated transfer function of the transmission path
  • a method for measuring a delay profile by performing inverse discrete Fourier transform A method of extracting a spectrum within a reception band by performing a discrete Fourier transform on the received OFDM signal, averaging each spectrum in terms of time, and performing an inverse discrete Fourier transform on the reciprocal thereof (for details, refer to Patent Document 2).
  • each spectrum on the frequency axis of the OFDM signal is averaged over time, the amplitude characteristic of each spectrum is obtained from the time average value, and the transmission path of the transmission line is determined using the minimum phase condition or the like.
  • a device configured not to retransmit an OFDM signal for one channel but to retransmit all multi-channel OFDM signals received by a receiving antenna. is there.
  • Method 1 is a method in which a delay profile is measured for each OFDM signal of each channel, and a wraparound signal component is removed for each channel.
  • Method 2 is a method in which the delay profile is collectively measured within the frequency band of all channels, and the sneak signal component is removed collectively for all channels.
  • the frequency band to be calculated is calculated. Increases with the number of channels. Therefore, in order to measure a delay profile with the same accuracy as one wave of an OFDM signal, it is necessary to increase the sampling frequency of the received signal and execute arithmetic processing at high speed.
  • the present inventors have proposed a method for removing a sneak signal from a multi-channel OFDM signal.
  • the method consists of the following steps.
  • a preset one-channel OFDM signal is extracted from a plurality of channels of OFDM signals received by the receiving antenna.
  • a delay profile of the extracted OFDM signal is calculated. From the delay profile, a wraparound removal signal is generated for the OFDM signals of all channels received by the receiving antenna.
  • the SFN relay device Since the SFN relay device is normally used as a fixed station, it is considered that frequency errors are hardly generated in transmission / reception signals, and the delay profiles of OFDM signals of each channel are considered to be substantially the same.
  • the OFDM signal of a specific channel is extracted from the received OFDM signals of all channels. Then, the delay profile of the OFDM signal is measured. Next, based on the delay profile, a wraparound removal signal is generated for the received OFDM signals of all channels, and the wraparound signal is removed from the OFDM signals of each channel.
  • the amplification factor of the OFDM signal by the amplifier with the AGC circuit is larger than the amplification factor of the specific channel. For this reason, the signal level of the sneak removal signal added to the OFDM signal for sneak signal removal becomes larger than an appropriate value, resulting in overcompensation.
  • the amplification factor of the OFDM signal by the amplifier with the AGC circuit is smaller than the amplification factor of the specific channel. For this reason, the signal level of the sneak removal signal added to the OFDM signal for sneak signal removal becomes smaller than an appropriate value, resulting in insufficient compensation.
  • a sneak canceller used in an SFN-type repeater that relays multi-channel OFDM signals without frequency conversion, using a common delay profile measurement means for each channel, and appropriate for each channel. It is desirable to provide a sneak canceller that can generate a sneak removal signal. Further, it is desirable that the sneak signal is appropriately removed without increasing the cost of the sneak canceller.
  • the invention of the first aspect of the present application made in order to achieve such an object,
  • a relay apparatus that receives a multi-channel OFDM signal at a receiving antenna and retransmits the received signal from a transmitting antenna, a wraparound that is superimposed on the received signal when a transmission radio wave from the transmitting antenna wraps around the receiving antenna
  • a wraparound canceller that removes the signal,
  • a plurality of signal extraction means for frequency-converting the OFDM signal of each channel received by the receiving antenna to a specific frequency common to all channels, and extracting the OFDM signal of the specific frequency after the frequency conversion;
  • One delay profile that sequentially captures OFDM signals of each channel extracted by the plurality of signal extraction means in a time division manner and calculates a delay profile of the OFDM signal transmitted from the transmission antenna for each of the captured channels.
  • a calculation means A plurality of removal signal generation means each for generating a wraparound removal signal for the OFDM signal of each channel received by the reception antenna based on the delay profile calculated for each channel by the delay profile calculation means; A plurality of wraparound removal means for removing a wraparound signal from the OFDM signals of each channel extracted by the plurality of signal extraction means, using the wraparound removal signals of each channel generated by the plurality of removal signal generation means; , A plurality of frequency conversion means for frequency-converting the OFDM signal from which the sneak signal has been removed by the plurality of wraparound removal means to the original frequency before being frequency-converted by the signal extraction means; Mixing means for mixing the OFDM signals of the respective channels frequency-converted by the plurality of frequency converting means and outputting them to the transmitting antenna side; The signal levels of the OFDM signal from which the sneak signal has been removed by the plurality of sneak removal means or the OFDM signal that has been frequency-converted by the plurality of frequency conversion means and input to the mixing means are respectively transmitted in a predetermined manner.
  • the delay profile calculation means includes: A discrete Fourier transform unit for extracting a spectrum on the frequency axis of the OFDM signal by performing a discrete Fourier transform on the OFDM signal extracted by each of the signal extraction units; A transfer function calculating unit that calculates a transfer function of a transmission path from the transmitting antenna to the receiving antenna based on the spectrum extracted by the discrete Fourier transform unit; An inverse calculation unit for calculating the inverse of the transfer function calculated by the transfer function calculation unit; An inverse discrete Fourier transform unit that derives the delay profile by performing an inverse discrete Fourier transform on an output from the inverse number calculation unit; It is provided with.
  • the invention described in the third aspect of the present application is the wraparound canceller described in the first aspect or the second aspect.
  • the signal extraction means, the removal signal generation means, the wraparound removal means, the frequency conversion means, and the level adjustment means are designated via the input means among a plurality of signal processing means configured for each channel.
  • the signal processing unit corresponding to the target channel is selectively operated, the operation of the signal processing unit corresponding to the channel other than the target channel is stopped, and the delay profile calculation unit sequentially captures the delay profile in time division.
  • the invention described in the fourth aspect of the present application is a relay apparatus that receives a multi-channel OFDM signal at a receiving antenna and retransmits the received signal from the transmitting antenna.
  • a sneak canceller according to any one of the first to third aspects is provided as a sneak canceller that removes a sneak signal superimposed on the received signal by sneaking around an antenna.
  • the OFDM signal of each channel received by the receiving antenna is frequency-converted to a specific frequency common to all channels, and the OFDM of the specific frequency after the frequency conversion is performed.
  • a plurality of signal extraction means for extracting a signal are provided.
  • one delay profile calculation unit common to all channels sequentially captures the OFDM signal of each channel extracted by each signal extraction unit in a time division manner, and the OFDM signal transmitted from the transmission antenna for each of the captured channels.
  • the delay profile is calculated.
  • the OFDM signal of each channel is converted by the plurality of signal extraction means so that the delay profile of the OFDM signal of each channel can be calculated by time division by one delay profile calculation means. Frequency conversion to a specific frequency common to all channels. Then, the delay profile calculating means calculates the delay profile of each channel from the frequency-converted OFDM signal of each channel.
  • the delay profile calculated for each channel by the delay profile calculation unit is input to a plurality of removal signal generation units.
  • the plurality of removal signal generation means are means for generating a wraparound removal signal for the OFDM signal of the channel corresponding to the delay profile, using the delay profile of one channel calculated by the delay profile calculation means.
  • At least one removal signal generating means is provided for each channel received by the receiving antenna, like the signal extracting means.
  • the sneak removal signal of each channel generated by each of these removal signal generation means is input to the sneak removal means of the corresponding channel, respectively, and from the OFDM signal of each channel extracted by the plurality of signal extraction means. Used to remove sneak signals.
  • the OFDM signal of each channel from which the sneak signal is removed by each sneak removal unit is the original frequency before being frequency-converted by each signal extraction unit by a plurality of frequency conversion units provided for each channel. After the frequency conversion, the signal is mixed by the mixing means and output to the transmitting antenna side.
  • the OFDM signal from which the sneak signal is removed by each sneak removal unit, or the OFDM signal that is frequency-converted by each frequency conversion unit and input to the mixing unit has a signal level of a predetermined transmission level.
  • the level is adjusted by level adjusting means provided for each channel.
  • a delay profile is calculated by extracting an OFDM signal of a specific channel from OFDM signals of a plurality of channels received by a receiving antenna, and all received signals are obtained from the delay profile.
  • a wraparound removal signal for the OFDM signal of the channel a delay profile is calculated for each channel using the OFDM signal of each channel, and a wraparound removal signal for the OFDM signal of each channel is generated.
  • the wraparound removal is performed when the wrap signal is removed from the OFDM signal of each channel.
  • the signal will not deviate from the proper value and will not be overcompensated or undercompensated. Therefore, the sneak signal can be satisfactorily removed from the OFDM signal of each channel.
  • the wraparound canceller of the present invention includes one delay profile calculation means common to all channels.
  • the OFDM signal of each channel is input to this delay profile calculation means in a time division manner, and the frequency of the input OFDM signal is set to a specific frequency common to all channels.
  • the present invention in the conventional apparatus for calculating the delay profile for each channel, only one delay profile calculation means similar to the delay profile calculation means provided for each channel may be provided. Therefore, the cost can be sufficiently reduced as compared with the conventional apparatus.
  • a delay profile is calculated using various conventionally known calculation methods such as the methods (a) to (c) mentioned in the section of “Background Art”. Can be configured. On the other hand, for example, if configured as follows, a delay profile to be measured can be accurately calculated.
  • the delay profile calculation unit first extracts a spectrum on the frequency axis of the OFDM signal by performing a discrete Fourier transform on the OFDM signal extracted by the signal extraction unit in the discrete Fourier transform unit. . Then, the transfer function calculation unit calculates the transfer function of the transmission path from the transmission antenna to the reception antenna based on the spectrum extracted by the discrete Fourier transform unit. Then, the reciprocal number calculation unit calculates the reciprocal number of the transfer function calculated by the transfer function calculation unit. Further, the inverse discrete Fourier transform unit performs an inverse discrete Fourier transform on the output from the reciprocal number calculation unit. Thereby, the delay profile calculating means derives the delay profile.
  • the delay profile calculating means is configured in this way, the delay profile of the OFDM signal can be derived based on the transfer function of the transmission path, so that the delay profile can be calculated with high accuracy, and thus each channel. It is possible to satisfactorily remove the sneak signal from the OFDM signal.
  • the signal extraction unit, the removal signal generation unit, the sneak removal unit, the frequency conversion unit, and the level adjustment unit are provided for each channel received by the reception antenna.
  • the number of OFDM signal channels that should be removed from the sneak signal may vary depending on the installation location of the relay device in which the sneak canceller is installed, the broadcast situation from the broadcast station, and the like.
  • the signal processing means constituted by the signal extraction means, the removal signal generation means, the sneak removal means, the frequency conversion means, and the level adjustment means is operated for all channels provided in the sneak canceller.
  • the signal processing means corresponding to the channel that does not need to remove the sneak signal (in other words, the channel of the OFDM signal that does not actually exist) generates a sneak removal signal that is unnecessary for the removal of the sneak signal. become. Then, there is a possibility that the unnecessary wraparound removal signal becomes noise and adversely affects the OFDM signals of other channels.
  • the sneak canceller of the present invention may further include an input unit for externally specifying a target channel from which a sneak signal is to be removed, and a control unit.
  • the control means includes a signal extraction means, a removal signal generation means, a sneak removal means, a frequency conversion means, and a plurality of signal processing means configured for each channel by the level adjustment means.
  • the signal processing means corresponding to the target channel designated via the input means is selectively operated, the operation of the signal processing means corresponding to the channel other than the target channel is stopped, and the delay profile calculation means is time-divisionally divided.
  • the OFDM signal for calculating the sequential capture delay profile is limited to the OFDM signal of the target channel designated via the input means.
  • the signal extraction unit, the removal signal generation unit, the sneak removal unit, the frequency conversion unit, and the level adjustment unit, among the plurality of signal processing units configured for each channel are input. Only the signal processing means corresponding to the target channel designated via the means operates, and the signal processing means corresponding to a channel other than the target channel designated via the input means stops operating.
  • the sneak canceller of the present invention only the signal processing unit corresponding to the target channel from which the sneak signal should be removed is selectively operated among the plurality of signal processing units, and the signal processing unit does not correspond to the target channel. By stopping the operation, power consumption by the wraparound canceller can be reduced.
  • control means is not only to selectively operate the signal processing means corresponding to the target channel, but also to the OFDM signal that the delay profile calculation means sequentially takes in time division.
  • the OFDM signal for which the delay profile is calculated is limited to the OFDM signal of the target channel designated via the input means. According to this, the calculation cycle of the delay profile corresponding to the target channel, that is, the calculation cycle of the wraparound removal signal can be shortened to the minimum necessary.
  • the sneak canceller of the present invention it is possible to increase the update frequency of the sneak removal signal and improve the sneak signal removal accuracy. Further, according to the relay device of the present invention, since the wraparound canceler of the present invention described above is provided, even if the transmission radio wave from the transmission antenna wraps around the reception antenna and the wraparound signal is superimposed on the reception signal, The sneak canceller can remove the sneak signal from the received signal.
  • the sneak canceller of the present invention can not only effectively remove the sneak signal, but also can reduce the manufacturing cost as compared with the conventional one. For this reason, according to the relay apparatus of the present invention, a relay apparatus that can suppress the occurrence of problems such as oscillation due to the sneak signal can be realized at low cost.
  • FIG. 2 is an explanatory diagram of received signals in the respective units (a) to (e) shown in FIG. It is a block diagram showing the structure of the relay apparatus of the modification of embodiment.
  • FIG. 1 is a block diagram showing the configuration of the entire relay apparatus to which the present invention is applied.
  • the relay apparatus according to the present embodiment is an apparatus that receives a broadcast wave of terrestrial digital television broadcasting with a reception antenna 2 and retransmits the received signal from the transmission antenna 4 toward an area where the broadcast wave does not reach directly.
  • the relay apparatus includes an A / D conversion unit 6, a reception frequency conversion unit 7, a channel signal processing unit 10, a mixing unit 40, a D / A conversion unit 8, and a transmission frequency conversion unit 9 as a wraparound canceller.
  • An input selection unit 42, an output selection unit 44, a timing control unit 46, and a calculation unit 50 are provided.
  • the wraparound canceller is provided in the relay apparatus in order to remove the wraparound signal superimposed on the reception signal when the transmission radio wave from the transmission antenna 4 wraps around the reception antenna 2 in the relay apparatus.
  • the channel signal processing unit 10 determines the number of channels (n) of the broadcast signal (OFDM signal) to be retransmitted, as is clear from the reference numerals 10-1, 10-2,. A corresponding number is provided.
  • the reception frequency conversion unit 7 determines that the OFDM signal to be relayed among the reception signals from the reception antenna 2 is a fixed interval for each channel near the baseband (in this embodiment, as shown in FIG. 3A).
  • the received signals are frequency-converted for each channel (all four channels in FIG. 3A) so that they are arranged at intervals of 6 MHz.
  • the A / D conversion unit 6 converts the reception signals of all channels arranged by the reception frequency conversion unit 7 into digital data.
  • 3A and 3B represent image components generated by sampling the received signal at the sampling frequency Fs by the A / D conversion unit 6.
  • baseband OFDM signals (see FIG. 3A) converted into digital data by the A / D conversion unit 6 are respectively supplied to n channel signal processing units 10 (10-1, 10-2,. ⁇ ⁇ 10-n)
  • Each channel signal processing unit 10 (10-1, 10-2,... 10-n) removes a wraparound signal for each OFDM signal of a channel to be processed assigned to each channel signal processing unit 10.
  • a sneak removal signal (hereinafter referred to as a cancel signal) necessary for the above is generated, and the generated cancel signal is added to the OFDM signal to remove the sneak signal from the OFDM signal.
  • the OFDM signal of each channel from which the sneak signal is removed by each channel signal processing unit 10 (10-1, 10-2,... 10-n) is mixed (added) by the mixing unit 40. Thereafter, the data is output to the D / A converter 8.
  • the D / A converter 8 converts the input signal (multi-channel OFMD signal) from the mixing unit 40 into an analog signal.
  • the analog signal converted by the D / A converter 8 is input to the transmission frequency converter 9.
  • the analog signal is frequency-converted by the transmission frequency conversion unit 9 to the original frequency before being frequency-converted by the reception frequency conversion unit 7 for each channel, and then transmitted to the transmission antenna 4 as a transmission signal for retransmission. Is output.
  • Each channel signal processing unit 10 is also composed of an ASIC composed of various digital circuits (logic gates and the like). In FIG. 1, the configuration of each channel signal processing unit 10 is represented by functional blocks in order to easily explain the function of each channel signal processing unit 10.
  • each channel signal processing unit 10 is provided with a frequency conversion unit (input-side frequency conversion unit).
  • the frequency conversion unit mixes the reception signal input via the A / D conversion unit 6 and the local oscillation signal generated by the local oscillation unit 12 in the mixer unit 14, so that the specific channel to be processed is mixed.
  • the received signal is frequency-converted so that the center frequency of the OFDM signal becomes a reference frequency (for example, 0 MHz).
  • Each channel signal processing unit 10 (10-1, 10-2,... 10-n) is a processing target as illustrated in FIG. 3B, although the channel of the OFDM signal to be processed is different.
  • the received signal is frequency-converted so that the center frequency of the OFDM signal is a reference frequency common to each channel (for example, 0 MHz).
  • the frequency of the local oscillation signal generated by the local oscillation unit 12 is a processing target of the received signal.
  • the frequency is set to be a frequency corresponding to the center frequency of the OFDM signal (6 MHz, 12 MHz, 18 MHz, 24 MHz when the OFDM signal of each channel is the frequency array shown in FIG. 3).
  • the frequency-converted reception signal is passed through a low-pass filter (LPF: digital filter) 16 that selectively passes only the OFDM signal (frequency band: reference frequency ⁇ 2.8 MHz) to be processed. Input to the downsampling unit 18.
  • LPF low-pass filter
  • the downsampling unit 18 downsamples the OFDM signal output from the LPF 16 so that the number of data of the OFDM signal is a predetermined number (m). Then, the downsampled OFDM signal (see FIG. 3C) is input to the adder 22, and is added to the wraparound removal signal generated by the FIR filter 20 in the adder 22. As a result, the sneak signal is removed from the OFDM signal.
  • the OFDM signal (see FIG. 3D) after the wraparound signal removal is passed to a low-pass filter (LPF: digital filter) 24 that selectively passes only the OFDM signal (frequency band: reference frequency ⁇ 2.8 MHz) to be processed.
  • LPF digital filter
  • noise components outside the band are removed (see FIG. 3E), and then input to the amplifying unit 28.
  • the amplifying unit 28 is an amplifying unit with a so-called AGC circuit.
  • the OFDM signal is amplified so that its output level becomes a constant level, and then input to the upsampling unit 30.
  • the number of data of the OFDM signal is upsampled by a predetermined number (m) times so that the number of data of the OFDM signal becomes the number of data before being downsampled by the downsampling unit 18. .
  • the OFDM signal up-sampled by the up-sampling unit 30 performs a filter process similar to that of the LPF 16 to selectively pass only the OFDM signal (frequency band: reference frequency ⁇ 2.8 MHz) (
  • the signal is input to the mixer unit 34 via an LPF (digital filter) 32.
  • the upsampled OFDM signal is mixed with the local oscillation signal generated by the local oscillation unit 12 in the mixer unit 34, so that the original frequency band before being frequency-converted by the frequency conversion unit on the input side is mixed. After being converted to an OFDM signal, it is output to the mixing unit 40.
  • the FIR filter 20 takes in the OFDM signal filtered by the LPF 24 through the delay element unit 26 and filters the taken-in OFDM signal based on the filter coefficient input through the output selection unit 44. By processing, a cancel signal for removing the sneak signal from the OFDM signal input via the downsampling unit 18 is generated.
  • the delay element unit 26 is input to the FIR filter 20 in order to match the phase of the OFDM signal input to the adder unit 22 via the downsampling unit 18 and the cancel signal generated by the FIR filter 20.
  • the delay amount Z- X is set in advance.
  • the filter coefficient of the FIR filter 20 is calculated by the calculation unit 50.
  • the calculation unit 50 includes a discrete Fourier transform unit 52, a transfer function calculation unit 54, an inverse number calculation unit 56, an inverse discrete Fourier transform unit 58, and a coefficient calculation unit 60.
  • the arithmetic unit 50 In the arithmetic unit 50, one of the OFDM signals respectively filtered by the LPF 24 in the plurality (n) of channel signal processing units 10 (10-1, 10-2,... 10-n) is stored. Are selectively input via the input selection unit 42. The arithmetic unit 50 performs arithmetic processing on the input OFDM signal.
  • the discrete Fourier transform unit 52 extracts a spectrum on the frequency axis of the OFDM signal by performing a discrete Fourier transform on the OFDM signal input via the input selection unit 42. Then, the extracted spectrum is input to the transfer function calculation unit 54.
  • the transfer function calculation unit 54 calculates the transfer function of the transmission path of the wraparound signal from the transmission antenna 4 to the reception antenna 2.
  • the reciprocal calculator 56 calculates the reciprocal of the transfer function calculated by the transfer function calculator 54.
  • the inverse discrete Fourier transform unit 58 performs an inverse discrete Fourier transform on the output from the inverse number calculation unit 56. Thereby, a delay profile is derived.
  • the delay profile calculated by the inverse discrete Fourier transform unit 58 is input to the coefficient calculation unit 60.
  • the coefficient calculation unit 60 calculates a filter coefficient required to generate a cancel signal for removing the sneak signal in the FIR filter 20 based on the delay profile of the input OFDM signal, and the calculated filter coefficient is The data is output to the output selection unit 44.
  • the output selection unit 44 outputs the filter coefficient output from the calculation unit 50 to the channel signal processing unit 10 corresponding to the OFDM signal selected by the input selection unit 42. As a result, the output selection unit 44 updates the filter coefficient of the FIR filter 20 in the channel signal processing unit 10 to the filter coefficient calculated by the calculation unit 50. More specifically, the output selection unit 44 performs selection of the filter signal update target channel signal processing unit 10 and update of the filter coefficient in synchronization with the switching timing signal output from the timing control unit 46. .
  • the input selection unit 42 selects the channel signal processing unit 10 that inputs the OFDM signal to the calculation unit 50 in synchronization with the switching timing signal output from the timing control unit 46.
  • the arithmetic unit 50 also starts a series of processes from the discrete Fourier transform unit 52 to the coefficient calculation unit 60 in synchronization with the switching timing signal output from the timing control unit 46.
  • the timing control unit 46 is configured to periodically output the switching timing signal at a constant interval that is slightly longer than the time required for the calculation unit 50 to execute a series of calculation processes. Yes.
  • the input selection unit 42 sequentially switches the channel signal processing unit 10 that inputs the OFDM signal to the calculation unit between the channel signal processing units 10-1 to 10-n in synchronization with the switching timing signal.
  • the calculation unit 50 sequentially calculates filter coefficients corresponding to each channel signal processing unit 10 based on the switched OFDM signal from the channel signal processing unit 10.
  • the output selection unit 44 outputs the calculated filter coefficient to the channel signal processing unit 10 corresponding to the filter coefficient, thereby updating the filter coefficient of the FIR filter 20 in the channel signal processing unit 10. .
  • the channel signal processing unit 10 generates a cancellation signal for wraparound signal removal for each OFDM signal of the channel to be relayed.
  • the sneak signal is removed from the OFDM signal.
  • a cancel signal for removing the sneak signal is generated by the FIR filter 20 dedicated to each channel provided in each channel signal processing unit 10, and the filter coefficient of the FIR filter 20 is sent to the calculation unit 50. And calculated based on the OFDM signal of the corresponding channel.
  • the wraparound canceller even if the signal level of the OFDM signal of each channel received by the receiving antenna 2 varies, the cancel signal is transmitted in a certain channel. Does not deviate from the proper value and the quality compensation for the OFDM signal of that channel is not overcompensated or undercompensated, and the wraparound signal can be satisfactorily removed from the OFDM signal of each channel.
  • the wraparound canceller an appropriate cancel signal can be generated for each channel, but the filter coefficient (in other words, the delay profile) used for the generation is common to all channels. Therefore, it is not necessary to provide the calculation unit 50 for each channel, and the cost of the wraparound canceller can be reduced.
  • the local oscillating unit 12, the mixer unit 14, and the LPF 16 in each channel signal processing unit 10 correspond to an example of a signal extraction unit
  • the delay element unit 26 and the FIR filter 20 correspond to an example of a removal signal generation unit
  • the unit 22 and the LPF 24 correspond to an example of a sneak removal unit
  • the local oscillation unit 12 and the mixer unit 34 correspond to an example of a frequency conversion unit
  • the amplification unit 28 corresponds to an example of a level adjustment unit.
  • the channel signal processing means 10-1, 10-2,..., 10-n configured in the above correspond to an example of the signal processing means.
  • the mixing unit 40 corresponds to an example of a mixing unit
  • the calculation unit 50 corresponds to an example of a delay profile calculation unit.
  • the downsampling unit 18 downsamples the number of data of the OFDM signal that has passed through the LPF 16 to be a predetermined number (m), and the amplification unit 28 further reduces the data to a certain level.
  • the upsampling unit 30 multiplies the number of data of the amplified OFDM signal by a predetermined number (m), thereby returning the number of data to the original number of data. The reason is as follows.
  • the “basic sampling number” per wave necessary to accurately perform the sampling is at least “2 13 ”. It is necessary to.
  • the total sampling number M required to accurately sample the multi-wave received signal is given by the following formula (1 )
  • the number of samplings M ′ per wave is obtained by multiplying by a predetermined value j consisting of “power value of 2” determined according to the wave number to be received.
  • Total sampling number M sampling number per wave M ′ ⁇ j (1)
  • the sampling number M ′ per wave is expressed by the following equation (2).
  • k is a correction value for determining the sampling number M ′ per wave, and is used when the sampling number per wave is increased from the basic sampling number: 2 13 in order to increase the sampling accuracy.
  • the number of samplings M ′ per wave may be increased by multiplying by.
  • the sampling number M ' 2 13 ⁇ 2 0 per one wave, as 8-wave maximum wavenumber of the received signal, the received signal by the A / D converter 6 (8 waves of the OFDM signal ) Is A / D-converted, the sampling number M is 65536 as shown in the following equation (3).
  • the LPF 12 extracts one OFDM signal from the OFDM signal (multi-wave) A / D converted (sampled) by the A / D converter 6, and the extracted OFDM signal Based on the above, a delay profile (and hence a cancel signal) is calculated.
  • a downsampling unit 18 is provided between the LPF 16 and the adding unit 22 to downsample the data for one channel of the received signal output from the LPF 16, thereby delay profile (and thus canceling).
  • the number of data of the OFDM signal used for the calculation of the signal) is reduced to a predetermined number (m) of the sampling number in the A / D converter 6 to reduce the calculation load on the channel signal processing unit 10 and the calculation unit 50.
  • the upsampling unit 30 upsamples the number of samplings of the OFDM signal by a predetermined number (m), so that the mixer unit 34 restores the OFDM signal having the same number of data as the original OFDM signal. I am doing so.
  • the total sampling number M (2 13 ⁇ 2 k ) ⁇ 2 2 , and during downsampling
  • the predetermined number (m) for determining the size of downsampling may be any one of “power-of-two values” within the following range. 1 ⁇ predetermined number (m) Predetermined number (m) ⁇ total sampling number M / "basic sampling number"
  • the upsampling unit 30 multiplies the OFDM signal (sampling number: 8192) output from the amplifying unit 28 by 8 so that the OFDM signal becomes the number of data before being down-pulled.
  • the total sampling number M, the sampling number M ′ per wave, the downsampling size, the upsampling size, etc. are all “power-of-two values”.
  • a predetermined value j consisting of “a power of 2” corresponding to the received wave number is determined.
  • the total sampling number M for receiving a plurality of channels is equal to the sampling number M ′ (2 13 ⁇ 2 k ) per wave obtained from the “basic sampling number” (for example, 2 13 ). It is determined by multiplying a predetermined value j determined accordingly.
  • the predetermined number (m) for determining the size of downsampling is the "number of samplings M" after downsampling obtained by dividing the calculated total sampling number M by the predetermined number (m). 2 is determined to be “a power of 2” that is equal to 13 or does not exceed the total sampling number M.
  • Upsampling is expanded with the same size as a predetermined number (m) of downsampling.
  • the “basic sampling number” does not necessarily need to be “2 13 ” or more, and may be set as appropriate according to a relay signal (OFDM signal) by the relay apparatus to which the present invention is applied.
  • the channel signal processing units 10-1, 10-2,... 10-n as signal processing means always operate, and the input selection unit 42 periodically outputs from the timing control unit 46.
  • the input source of the OFDM signal to the calculation unit 50 is sequentially switched to one of the channel signal processing units 10-1 to 10-n.
  • the output selection unit 44 switches the channel signal processing units 10-1 to 10-n that update the filter coefficients of the FIR filter 20 to the filter coefficients calculated by the calculation unit 50.
  • the number of OFDM signal channels to be retransmitted is smaller than the number of channels from which the sneak signal can be removed by the channel signal processing units 10-1 to 10-n, and the sneak signal removal operation is unnecessary.
  • the unnecessary channel signal processing unit 10 generates a sneak removal signal that is unnecessary for the removal of the sneak signal.
  • the wraparound canceller of the above embodiment may further include a target channel selection switch 62 and a target channel setting unit 64.
  • the target channel selection switch 62 is a switch for manually specifying a target channel from which a wraparound signal is to be removed by an external operation.
  • the target channel setting unit 64 sets the operations of the channel signal processing units 10-1 to 10-n, the input selection unit 42, and the output selection unit 44 according to the target channel designated by the target channel selection switch 62. .
  • the target channel setting unit 64 corresponds to an example of a control unit.
  • the target channel setting unit 64 selectively operates the channel signal processing unit 10 corresponding to the target channel according to the target channel specified via the target channel selection switch 62 as an example of the input unit, Then, the operation of the channel signal processing unit 10 corresponding to a channel other than the target channel is stopped.
  • the target channel setting unit 64 sets the channel signal processing unit 10 that is the source from which the input selection unit 42 receives the OFDM signal and the output selection unit 44 outputs the filter coefficient to the channel corresponding to the target channel.
  • the signal processing unit 10 is limited.
  • the wraparound canceller shown in FIG. 4 only the channel signal processing unit 10 corresponding to the target channel specified via the target channel selection switch 62 operates. In this case, the operation of the channel signal processing unit 10 that does not correspond to the target channel is stopped and the power consumption is reduced. As a result, the wraparound canceller can save energy.
  • the channel signal processing unit 10 that does not correspond to the target channel
  • generation of unnecessary noise from the channel signal processing unit 10 that has stopped the operation is suppressed, and transmission transmitted from the transmission antenna 4 is performed.
  • the signal quality of the signal can be improved.
  • the target channel setting unit 70 not only selectively operates the channel signal processing unit 10 corresponding to the target channel, but also applies the OFDM signal input to the calculation unit 50 via the input selection unit 42 as a target. Restrict to channel OFDM signal. Therefore, the calculation cycle of the delay profile corresponding to the target channel by the calculation unit 50, that is, the calculation cycle of the wraparound removal signal in the channel signal processing unit 10 in operation can be shortened to the minimum necessary.
  • the update frequency of the sneak removal signal can be increased to improve the sneak signal removal accuracy.
  • the target channel setting unit 64 has a function of switching each channel signal processing unit 10 to an operating state or a stopped state. For example, whether or not to supply an operation clock to each channel signal processing unit 10 You may make it carry out by switching. Alternatively, conduction / cutoff of the power supply line to each channel signal processing unit 10 may be switched. Further, for example, the gain (gain) of the amplifier 28 constituting each channel signal processing unit 10 may be switched between a normal gain adjusted gain and zero.
  • the downsampling unit 18 and the upsampling unit 30 are provided in order to reduce the calculation load in each channel signal processing unit 10 and the calculation unit 50.
  • the upsampling unit 30 is not necessarily provided.
  • each calculation unit 50 in order to calculate the delay profile from the OFDM signal of each channel by the calculation unit 50 common to each channel, each calculation unit 50 includes a discrete Fourier transform unit 52, a transfer function calculation unit. 54, the reciprocal number calculation unit 56 and the inverse discrete Fourier transform unit 58 have been described.
  • the delay profile calculation unit uses those methods. You may select suitably and may comprise.
  • each channel signal processing unit 10 has been described as including an amplification unit 28 that amplifies the OFDM signal after removal of the sneak signal that has passed through the LPF 24 to a certain level. It may be provided between the mixer unit 34 and the mixing unit 40 so as to amplify the OFDM signal frequency-converted by the unit 34.
  • the cancellation signal is generated and the delay profile and the filter coefficient are calculated by inputting the OFDM signal after removal of the sneak signal that has passed through the LPF 24 to the FIR filter 20 and the calculation unit 50.
  • the OFDM signal that has passed through the LPF 16 and is down-sampled by the down-sampling unit 18 is input to the FIR filter 20 and the calculation unit 50, the generation of the cancellation signal, the delay profile, and the filter Coefficients can be calculated.

Abstract

Disclosed is a wraparound canceller that—in a relay device that receives the OFDM signals of multiple channels using a reception antenna and retransmits said received signal from a transmission antenna—eliminates a wraparound signal that is superimposed on the aforementioned received signal by means of the radio waves transmitted from the aforementioned transmission antenna wrapping around the aforementioned reception antenna. Said wraparound canceller is provided with a signal extraction means, a single lag profile calculation means, an elimination signal generating means, a wraparound elimination means, a frequency conversion means, a mixing means, and a level adjustment means.

Description

回り込みキャンセラ及び中継装置Wraparound canceller and relay device 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2010年3月17日に日本国特許庁に出願された日本国特許出願第2010-60740号及び2010年10月29日に日本国特許庁に出願された日本国特許出願第2010-244448号に基づく優先権を主張するものであり、日本国特許出願第2010-60740号及び日本国特許出願第2010-244448号の全内容を本国際出願に援用する。 This international application includes Japanese Patent Application No. 2010-60740 filed with the Japan Patent Office on March 17, 2010 and Japanese Patent Application No. 2010-60740 filed with the Japan Patent Office on October 29, 2010. The contents of Japanese Patent Application No. 2010-60740 and Japanese Patent Application No. 2010-244448 are incorporated herein by reference in their entirety.
 本発明は、地上デジタルテレビ放送等で利用されているOFDM信号を中継する中継装置に用いられる回り込みキャンセラに関する。具体的には、送信アンテナからの送信電波が受信アンテナに回り込むことにより受信信号に重畳される回り込み信号を除去するための回り込みキャンセラに関する。また、この回り込みキャンセラを備えた中継装置に関する。 The present invention relates to a wraparound canceller used in a relay device that relays an OFDM signal used in terrestrial digital television broadcasting or the like. Specifically, the present invention relates to a sneak canceller for removing a sneak signal superimposed on a received signal when a transmission radio wave from a transmission antenna sneaks around to a reception antenna. The present invention also relates to a relay device provided with this wraparound canceller.
 SFN方式の中継装置には、回り込みキャンセラが設けられている。回り込みキャンセラにより、送信アンテナからの送信電波が受信アンテナに回り込でしまってその回り込み信号が再送信されてしまうことが抑制される。なお、SFN方式の中継装置は、地上デジタルテレビ放送等で利用されているOFDM信号を周波数変換(換言すればチャンネル変換)することなく中継する装置である。 The SFN relay device is provided with a wraparound canceller. The sneak canceller prevents the transmission radio wave from the transmission antenna from sneaking to the reception antenna and retransmitting the sneak signal. The SFN relay device is a device that relays OFDM signals used in digital terrestrial television broadcasting or the like without frequency conversion (in other words, channel conversion).
 この回り込みキャンセラは、回り込み信号の遅延プロファイル(複素インパルス応答)を測定し、その測定した遅延プロファイルに従い、受信信号から回り込み信号成分を除去する。 This sneak canceller measures the delay profile (complex impulse response) of the sneak signal and removes the sneak signal component from the received signal according to the measured delay profile.
 遅延プロファイルの測定方法としては、例えば、下記(a)~(c)のような各種方法が知られている(例えば、特許文献1等参照)。
(a)OFDM信号に同期復調時の振幅位相基準として挿入されるSP信号(Scattered Pilot Signal)等の基準信号を用いて伝送路の伝達関数を推定し、その推定した伝送路の伝達関数の逆数を逆離散フーリエ変換することで遅延プロファイルを測定する方法。
(b)受信したOFDM信号を離散フーリエ変換することで、受信帯域内のスペクトルを抽出し、各スペクトルを時間的に平均化して、その逆数を逆離散フーリエ変換する方法(詳しくは、特許文献2参照)。
(c)上記(b)と同様にOFDM信号の周波数軸上の各スペクトルを時間的に平均化し、その時間平均値から各スペクトルの振幅特性を求めて、最小位相条件等を用いて伝送路の伝達関数を推定し、その推定した伝送路の伝達関数の逆数を逆離散フーリエ変換することで遅延プロファイルを測定する方法。
As a method for measuring a delay profile, for example, various methods such as the following (a) to (c) are known (see, for example, Patent Document 1).
(A) A transfer function of a transmission path is estimated using a reference signal such as an SP signal (Scattered Pilot Signal) inserted as an amplitude phase reference at the time of synchronous demodulation in an OFDM signal, and the reciprocal of the estimated transfer function of the transmission path A method for measuring a delay profile by performing inverse discrete Fourier transform.
(B) A method of extracting a spectrum within a reception band by performing a discrete Fourier transform on the received OFDM signal, averaging each spectrum in terms of time, and performing an inverse discrete Fourier transform on the reciprocal thereof (for details, refer to Patent Document 2). reference).
(C) Similar to (b) above, each spectrum on the frequency axis of the OFDM signal is averaged over time, the amplitude characteristic of each spectrum is obtained from the time average value, and the transmission path of the transmission line is determined using the minimum phase condition or the like A method of measuring a delay profile by estimating a transfer function and performing an inverse discrete Fourier transform on an inverse of the estimated transfer function of the transmission path.
 また、地上デジタルテレビ放送等の中継装置には、OFDM信号を1チャンネル分だけ再送信するのではなく、受信アンテナにて受信した多チャンネルのOFDM信号を全て再送信するように構成された装置がある。 In addition, in a relay device for terrestrial digital television broadcasting or the like, there is a device configured not to retransmit an OFDM signal for one channel but to retransmit all multi-channel OFDM signals received by a receiving antenna. is there.
 そして、この種の中継装置において、各チャンネルのOFDM信号から回り込み信号成分を除去する方法としては、次の方法1,2が知られている(例えば特許文献2,3参照)。方法1は、各チャンネルのOFDM信号毎に遅延プロファイルを測定して、チャンネル毎に回り込み信号成分を除去する方法である。方法2は、全チャンネルの周波数帯域内で一括して遅延プロファイルを測定し、全チャンネル一括して回り込み信号成分を除去する方法である。 In this type of relay apparatus, the following methods 1 and 2 are known as methods for removing the sneak signal component from the OFDM signal of each channel (see, for example, Patent Documents 2 and 3). Method 1 is a method in which a delay profile is measured for each OFDM signal of each channel, and a wraparound signal component is removed for each channel. Method 2 is a method in which the delay profile is collectively measured within the frequency band of all channels, and the sneak signal component is removed collectively for all channels.
特開2004-080668号公報JP 2004-080668 A 特開2008-017236号公報JP 2008-017236 A 特開2009-100067号公報JP 2009-100067 A
 しかし、方法1のように、多チャンネルのOFDM信号から回り込み信号を除去するために、チャンネル毎に遅延プロファイルを測定するようにすると、OFDM信号1波分の演算処理を並列して複数チャンネル分実行しなければならない。従って、この場合には、チャンネル数に応じて演算処理回路の数を増加させる必要があり、回り込みキャンセラのコストアップを招くという問題がある。 However, if the delay profile is measured for each channel in order to remove the sneak signal from the multi-channel OFDM signal as in method 1, the calculation processing for one OFDM signal wave is executed in parallel for a plurality of channels. Must. Therefore, in this case, it is necessary to increase the number of arithmetic processing circuits in accordance with the number of channels, which causes a problem of increasing the cost of the wraparound canceller.
 また、方法2のように、多チャンネルのOFDM信号から回り込み信号を除去するために、全チャンネルの周波数帯域内で一括して遅延プロファイルを測定するようにした場合には、演算対象となる周波数帯域がチャンネル数に応じて増加する。よって、OFDM信号1波分と同精度で遅延プロファイルを測定するには、受信信号のサンプリング周波数を高くして演算処理を高速に実行しなければならない。 Further, when the delay profile is measured collectively in the frequency band of all channels in order to remove the sneak signal from the multi-channel OFDM signal as in the method 2, the frequency band to be calculated is calculated. Increases with the number of channels. Therefore, in order to measure a delay profile with the same accuracy as one wave of an OFDM signal, it is necessary to increase the sampling frequency of the received signal and execute arithmetic processing at high speed.
 このため、多チャンネルのOFMD信号の遅延プロファイルを全チャンネル分一括して演算するようにしても、チャンネル毎に演算する場合と同様、回り込みキャンセラのコストアップを招くという問題がある。 For this reason, even if the delay profile of the multi-channel OFMD signal is calculated for all channels at the same time, there is a problem that the cost of the wraparound canceller is increased as in the case of calculating for each channel.
 一方、こうした問題に鑑み、本発明者らは、多チャンネルのOFDM信号から回り込み信号を除去する方法を提案した。その方法は、次のステップから構成される。
 受信アンテナにて受信された複数チャンネルのOFDM信号の中から予め設定された1チャンネル分のOFDM信号を抽出する。
On the other hand, in view of such problems, the present inventors have proposed a method for removing a sneak signal from a multi-channel OFDM signal. The method consists of the following steps.
A preset one-channel OFDM signal is extracted from a plurality of channels of OFDM signals received by the receiving antenna.
 その抽出されたOFDM信号の遅延プロファイルを算出する。
 その遅延プロファイルから受信アンテナにて受信された全チャンネルのOFDM信号に対する回り込み除去信号を生成する。
A delay profile of the extracted OFDM signal is calculated.
From the delay profile, a wraparound removal signal is generated for the OFDM signals of all channels received by the receiving antenna.
 SFN方式の中継装置は、通常、固定局として用いられることから、送・受信信号に周波数誤差が生じ難く、各チャンネルのOFDM信号の遅延プロファイルが略同一になると考えられる。 Since the SFN relay device is normally used as a fixed station, it is considered that frequency errors are hardly generated in transmission / reception signals, and the delay profiles of OFDM signals of each channel are considered to be substantially the same.
 本発明者らによって提案された上記の技術では、受信された全チャンネルのOFDM信号の中から特定チャンネルのOFDM信号が抽出される。そして、そのOFDM信号の遅延プロファイルが測定される。次に、その遅延プロファイルに基づき、受信された全チャンネルのOFDM信号に対する回り込み除去信号が生成され、各チャンネルのOFDM信号から回り込み信号が除去される。 In the above technique proposed by the present inventors, the OFDM signal of a specific channel is extracted from the received OFDM signals of all channels. Then, the delay profile of the OFDM signal is measured. Next, based on the delay profile, a wraparound removal signal is generated for the received OFDM signals of all channels, and the wraparound signal is removed from the OFDM signals of each channel.
 従って、本発明者らによって提案されたこの技術によれば、従来のように、各チャンネルのOFDM毎に遅延プロファイルを算出したり、全チャンネル分の遅延プロファイルを一括して算出したりする必要がない。そして、OFDM信号1チャンネル分の遅延プロファイルを用いて各チャンネルの回り込み信号を除去することができるので、多チャンネル用の回り込みキャンセラを低コストで実現できる。 Therefore, according to this technique proposed by the present inventors, it is necessary to calculate a delay profile for each OFDM of each channel or to calculate a delay profile for all channels at once as in the prior art. Absent. Since the sneak signal of each channel can be removed using the delay profile for one OFDM signal channel, a multi-channel sneak canceller can be realized at low cost.
 しかしながら、本発明者らによって提案された上記の技術では、受信アンテナにて受信されるチャンネル毎のOFDM信号にレベル差があり、問題が生じていた。具体的には、複数のチャンネル毎にAGC回路付きの増幅器にて信号レベルを揃えて信号を再送信しようとすると、遅延プロファイルが測定された特定チャンネルのOFDM信号との間でレベル差があるOFDM信号では、そのレベル差により過補償となったり補償不足となったりするという問題があった。つまり、全チャンネルのOFDM信号から回り込み信号を良好に低減することができなくなる、という問題があった。 However, in the above technique proposed by the present inventors, there is a level difference in the OFDM signal for each channel received by the receiving antenna, causing a problem. Specifically, when a signal is re-transmitted after aligning the signal level with an amplifier with an AGC circuit for each of a plurality of channels, there is an OFDM level difference between the OFDM signal of a specific channel whose delay profile is measured. There was a problem that the signal was overcompensated or undercompensated due to the level difference. That is, there is a problem that the sneak signal cannot be satisfactorily reduced from the OFDM signals of all channels.
 具体的には、特定チャンネルのOFDM信号よりも受信レベルが低いチャンネルでは、AGC回路付き増幅器によるOFDM信号の増幅率が特定チャンネルでの増幅率よりも大きくなる。このため、回り込み信号除去のためにOFDM信号に加算された回り込み除去信号の信号レベルが適正値よりも大きくなってしまい、過補償となる。 Specifically, in a channel whose reception level is lower than the OFDM signal of the specific channel, the amplification factor of the OFDM signal by the amplifier with the AGC circuit is larger than the amplification factor of the specific channel. For this reason, the signal level of the sneak removal signal added to the OFDM signal for sneak signal removal becomes larger than an appropriate value, resulting in overcompensation.
 逆に、特定チャンネルのOFDM信号よりも受信レベルが高いチャンネルでは、AGC回路付き増幅器によるOFDM信号の増幅率が特定チャンネルでの増幅率よりも小さくなる。このため、回り込み信号除去のためにOFDM信号に加算された回り込み除去信号の信号レベルが適正値よりも小さくなってしまい、補償不足となる。 Conversely, in a channel having a higher reception level than the OFDM signal of the specific channel, the amplification factor of the OFDM signal by the amplifier with the AGC circuit is smaller than the amplification factor of the specific channel. For this reason, the signal level of the sneak removal signal added to the OFDM signal for sneak signal removal becomes smaller than an appropriate value, resulting in insufficient compensation.
 また、本発明者らによって提案された上記の技術では、送信した各チャンネルのOFDM信号の回り込み特性が、各チャンネルで略同一になることを前提としていることから、各チャンネルの回り込み特性が異なるような場合には、回り込み信号を良好に低減することができないという問題もある。 In the above technique proposed by the present inventors, it is assumed that the wraparound characteristic of the transmitted OFDM signal of each channel is substantially the same in each channel, so that the wraparound characteristic of each channel is different. In such a case, there is also a problem that the sneak signal cannot be reduced satisfactorily.
 本発明によれば、多チャンネルのOFDM信号を周波数変換することなく中継するSFN方式の中継装置において用いられる回り込みキャンセラであって、各チャンネル共通の遅延プロファイル測定手段が用いられて、チャンネル毎に適正に回り込み除去信号が生成され得る回り込みキャンセラが提供されることが望ましい。また、回り込みキャンセラのコストアップを招くことなく、回り込み信号が適正に除去されるようにすることが望ましい。 According to the present invention, a sneak canceller used in an SFN-type repeater that relays multi-channel OFDM signals without frequency conversion, using a common delay profile measurement means for each channel, and appropriate for each channel. It is desirable to provide a sneak canceller that can generate a sneak removal signal. Further, it is desirable that the sneak signal is appropriately removed without increasing the cost of the sneak canceller.
 かかる目的を達成するためになされた本願の第1局面の発明は、
 多チャンネルのOFDM信号を受信アンテナにて受信し、該受信信号を送信アンテナから再送信する中継装置において、前記送信アンテナからの送信電波が前記受信アンテナに回り込むことにより前記受信信号に重畳された回り込み信号を除去する回り込みキャンセラであって、
 前記受信アンテナにて受信された各チャンネルのOFDM信号を、それぞれ、全チャンネル共通の特定周波数に周波数変換すると共に、該周波数変換後の特定周波数のOFDM信号を抽出する複数の信号抽出手段と、
 前記複数の信号抽出手段にて抽出された各チャンネルのOFDM信号を時分割で順次取り込み、その取り込んだチャンネル毎に、前記送信アンテナから送信されたOFDM信号の遅延プロファイルを算出する、一つの遅延プロファイル算出手段と、
 該遅延プロファイル算出手段にてチャンネル毎に算出された遅延プロファイルに基づき、前記受信アンテナにて受信された各チャンネルのOFDM信号に対する回り込み除去信号を各々生成する複数の除去信号生成手段と、
 前記複数の除去信号生成手段にて生成された各チャンネルの回り込み除去信号を用いて、前記複数の信号抽出手段にて抽出された各チャンネルのOFDM信号から回り込み信号を除去する複数の回り込み除去手段と、
 前記複数の回り込み除去手段にて回り込み信号が除去されたOFDM信号を、前記各信号抽出手段にて周波数変換される前の元の周波数に周波数変換する複数の周波数変換手段と、
 該複数の周波数変換手段にて周波数変換された各チャンネルのOFDM信号を混合して前記送信アンテナ側に出力する混合手段と、
 前記複数の回り込み除去手段にて回り込み信号が除去されたOFDM信号、若しくは、前記複数の周波数変換手段にて周波数変換され前記混合手段に入力されるOFDM信号、の信号レベルを、それぞれ、所定の送信レベルに調整する複数のレベル調整手段と、
 を備えたことを特徴とする。
The invention of the first aspect of the present application made in order to achieve such an object,
In a relay apparatus that receives a multi-channel OFDM signal at a receiving antenna and retransmits the received signal from a transmitting antenna, a wraparound that is superimposed on the received signal when a transmission radio wave from the transmitting antenna wraps around the receiving antenna A wraparound canceller that removes the signal,
A plurality of signal extraction means for frequency-converting the OFDM signal of each channel received by the receiving antenna to a specific frequency common to all channels, and extracting the OFDM signal of the specific frequency after the frequency conversion;
One delay profile that sequentially captures OFDM signals of each channel extracted by the plurality of signal extraction means in a time division manner and calculates a delay profile of the OFDM signal transmitted from the transmission antenna for each of the captured channels. A calculation means;
A plurality of removal signal generation means each for generating a wraparound removal signal for the OFDM signal of each channel received by the reception antenna based on the delay profile calculated for each channel by the delay profile calculation means;
A plurality of wraparound removal means for removing a wraparound signal from the OFDM signals of each channel extracted by the plurality of signal extraction means, using the wraparound removal signals of each channel generated by the plurality of removal signal generation means; ,
A plurality of frequency conversion means for frequency-converting the OFDM signal from which the sneak signal has been removed by the plurality of wraparound removal means to the original frequency before being frequency-converted by the signal extraction means;
Mixing means for mixing the OFDM signals of the respective channels frequency-converted by the plurality of frequency converting means and outputting them to the transmitting antenna side;
The signal levels of the OFDM signal from which the sneak signal has been removed by the plurality of sneak removal means or the OFDM signal that has been frequency-converted by the plurality of frequency conversion means and input to the mixing means are respectively transmitted in a predetermined manner. A plurality of level adjusting means for adjusting to the level;
It is provided with.
 また、本願の第2局面に記載の発明は、第1局面に記載の回り込みキャンセラにおいて、
 前記遅延プロファイル算出手段は、
 前記各信号抽出手段にて抽出されたOFDM信号を離散フーリエ変換することで当該OFDM信号の周波数軸上のスペクトルを抽出する離散フーリエ変換部と、
 該離散フーリエ変換部にて抽出されたスペクトルに基づき前記送信アンテナから前記受信アンテナに至る伝送路の伝達関数を算出する伝達関数算出部と、
 該伝達関数算出部にて算出された伝達関数の逆数を算出する逆数算出部と、
 該逆数算出部からの出力を逆離散フーリエ変換することで前記遅延プロファイルを導出する逆離散フーリエ変換部と、
 を備えたことを特徴とする。
The invention described in the second aspect of the present application is the wraparound canceller described in the first aspect.
The delay profile calculation means includes:
A discrete Fourier transform unit for extracting a spectrum on the frequency axis of the OFDM signal by performing a discrete Fourier transform on the OFDM signal extracted by each of the signal extraction units;
A transfer function calculating unit that calculates a transfer function of a transmission path from the transmitting antenna to the receiving antenna based on the spectrum extracted by the discrete Fourier transform unit;
An inverse calculation unit for calculating the inverse of the transfer function calculated by the transfer function calculation unit;
An inverse discrete Fourier transform unit that derives the delay profile by performing an inverse discrete Fourier transform on an output from the inverse number calculation unit;
It is provided with.
 また、本願の第3局面に記載の発明は、第1局面又は第2局面に記載の回り込みキャンセラにおいて、
 回り込み信号の除去対象となる対象チャンネルを外部から指定するための入力手段と、
 前記信号抽出手段、前記除去信号生成手段、前記回り込み除去手段、前記周波数変換手段、及び、前記レベル調整手段によりチャンネル毎に構成される複数の信号処理手段の内、前記入力手段を介して指定された対象チャンネルに対応する信号処理手段を選択的に動作させ、該対象チャンネル以外のチャンネルに対応した信号処理手段の動作を停止させると共に、前記遅延プロファイル算出手段が時分割で順次取り込み前記遅延プロファイルを算出するOFDM信号を、前記入力手段を介して指定された対象チャンネルのOFDM信号に制限する制御手段と、
 を備えたことを特徴とする。
The invention described in the third aspect of the present application is the wraparound canceller described in the first aspect or the second aspect.
An input means for externally designating a target channel from which a wraparound signal is to be removed;
The signal extraction means, the removal signal generation means, the wraparound removal means, the frequency conversion means, and the level adjustment means are designated via the input means among a plurality of signal processing means configured for each channel. The signal processing unit corresponding to the target channel is selectively operated, the operation of the signal processing unit corresponding to the channel other than the target channel is stopped, and the delay profile calculation unit sequentially captures the delay profile in time division. Control means for limiting the OFDM signal to be calculated to the OFDM signal of the target channel designated via the input means;
It is provided with.
 また、本願の第4局面に記載の発明は、多チャンネルのOFDM信号を受信アンテナにて受信し、該受信信号を送信アンテナから再送信する中継装置において、前記送信アンテナからの送信電波が前記受信アンテナに回り込むことにより前記受信信号に重畳された回り込み信号を除去する回り込みキャンセラとして、第1局面~第3局面の何れかに記載の回り込みキャンセラを備えたことを特徴とする。 The invention described in the fourth aspect of the present application is a relay apparatus that receives a multi-channel OFDM signal at a receiving antenna and retransmits the received signal from the transmitting antenna. A sneak canceller according to any one of the first to third aspects is provided as a sneak canceller that removes a sneak signal superimposed on the received signal by sneaking around an antenna.
 本願の第1局面に記載の回り込みキャンセラにおいては、受信アンテナにて受信された各チャンネルのOFDM信号を、それぞれ、全チャンネル共通の特定周波数に周波数変換すると共に、その周波数変換後の特定周波数のOFDM信号を抽出する複数の信号抽出手段が備えられている。 In the wraparound canceller described in the first aspect of the present application, the OFDM signal of each channel received by the receiving antenna is frequency-converted to a specific frequency common to all channels, and the OFDM of the specific frequency after the frequency conversion is performed. A plurality of signal extraction means for extracting a signal are provided.
 そして、全チャンネル共通の一つの遅延プロファイル算出手段が、各信号抽出手段にて抽出された各チャンネルのOFDM信号を時分割で順次取り込み、その取り込んだチャンネル毎に、送信アンテナから送信されたOFDM信号の遅延プロファイルを算出する。 Then, one delay profile calculation unit common to all channels sequentially captures the OFDM signal of each channel extracted by each signal extraction unit in a time division manner, and the OFDM signal transmitted from the transmission antenna for each of the captured channels. The delay profile is calculated.
 つまり、本発明の回り込みキャンセラにおいては、一つの遅延プロファイル算出手段にて、各チャンネルのOFDM信号の遅延プロファイルを時分割で算出できるように、複数の信号抽出手段にて、各チャンネルのOFDM信号を全チャンネル共通の特定周波数に周波数変換する。そして、遅延プロファイル算出手段が、その周波数変換された各チャンネルのOFDM信号から各チャンネルの遅延プロファイルを算出する。 In other words, in the wraparound canceller of the present invention, the OFDM signal of each channel is converted by the plurality of signal extraction means so that the delay profile of the OFDM signal of each channel can be calculated by time division by one delay profile calculation means. Frequency conversion to a specific frequency common to all channels. Then, the delay profile calculating means calculates the delay profile of each channel from the frequency-converted OFDM signal of each channel.
 また、遅延プロファイル算出手段にてチャンネル毎に算出された遅延プロファイルは、それぞれ、複数の除去信号生成手段に入力される。
 この複数の除去信号生成手段は、遅延プロファイル算出手段にて算出された一つのチャンネルの遅延プロファイルを用いて、この遅延プロファイルに対応するチャンネルのOFDM信号に対する回り込み除去信号を生成する手段である。少なくとも1つの除去信号生成手段が、信号抽出手段と同様、受信アンテナにて受信されたチャンネル毎に備えられる。
In addition, the delay profile calculated for each channel by the delay profile calculation unit is input to a plurality of removal signal generation units.
The plurality of removal signal generation means are means for generating a wraparound removal signal for the OFDM signal of the channel corresponding to the delay profile, using the delay profile of one channel calculated by the delay profile calculation means. At least one removal signal generating means is provided for each channel received by the receiving antenna, like the signal extracting means.
 そして、これら各除去信号生成手段にて生成された各チャンネルの回り込み除去信号は、それぞれ、対応するチャンネルの回り込み除去手段に入力され、複数の信号抽出手段にて抽出された各チャンネルのOFDM信号から回り込み信号を除去するために用いられる。 Then, the sneak removal signal of each channel generated by each of these removal signal generation means is input to the sneak removal means of the corresponding channel, respectively, and from the OFDM signal of each channel extracted by the plurality of signal extraction means. Used to remove sneak signals.
 また、各回り込み除去手段にて回り込み信号が除去された各チャンネルのOFDM信号は、チャンネル毎に設けられた複数の周波数変換手段にて、各信号抽出手段にて周波数変換される前の元の周波数に周波数変換された後、混合手段にて混合されて、送信アンテナ側に出力される。 Further, the OFDM signal of each channel from which the sneak signal is removed by each sneak removal unit is the original frequency before being frequency-converted by each signal extraction unit by a plurality of frequency conversion units provided for each channel. After the frequency conversion, the signal is mixed by the mixing means and output to the transmitting antenna side.
 また、各回り込み除去手段にて回り込み信号が除去されたOFDM信号、若しくは、各周波数変換手段にて周波数変換され前記混合手段に入力されるOFDM信号は、それぞれ、その信号レベルが所定の送信レベルとなるよう、チャンネル毎に設けられたレベル調整手段にてレベル調整される。 In addition, the OFDM signal from which the sneak signal is removed by each sneak removal unit, or the OFDM signal that is frequency-converted by each frequency conversion unit and input to the mixing unit has a signal level of a predetermined transmission level. The level is adjusted by level adjusting means provided for each channel.
 このように、本発明の回り込みキャンセラにおいては、受信アンテナにて受信された複数チャンネルのOFDM信号の中から特定チャンネルのOFDM信号を抽出して遅延プロファイルを算出し、その遅延プロファイルから、受信した全チャンネルのOFDM信号に対する回り込み除去信号を生成するのではなく、各チャンネルのOFDM信号を用いてチャンネル毎に遅延プロファイルを算出し、各チャンネルのOFDM信号に対する回り込み除去信号を生成する。 As described above, in the wraparound canceller of the present invention, a delay profile is calculated by extracting an OFDM signal of a specific channel from OFDM signals of a plurality of channels received by a receiving antenna, and all received signals are obtained from the delay profile. Instead of generating a wraparound removal signal for the OFDM signal of the channel, a delay profile is calculated for each channel using the OFDM signal of each channel, and a wraparound removal signal for the OFDM signal of each channel is generated.
 このため、本発明によれば、受信アンテナにて受信された各チャンネルのOFDM信号の信号レベルにバラツキがある場合であっても、各チャンネルのOFDM信号から回り込み信号を除去する際に、回り込み除去信号が適正値から外れてしまって過補償若しくは補償不足となるようなことはない。従って、各チャンネルのOFDM信号から回り込み信号が良好に除去され得る。 Therefore, according to the present invention, even when there is a variation in the signal level of the OFDM signal of each channel received by the receiving antenna, the wraparound removal is performed when the wrap signal is removed from the OFDM signal of each channel. The signal will not deviate from the proper value and will not be overcompensated or undercompensated. Therefore, the sneak signal can be satisfactorily removed from the OFDM signal of each channel.
 また、本発明の回り込みキャンセラにおいては、全チャンネル共通の一つの遅延プロファイル算出手段を備える。この遅延プロファイル算出手段に、各チャンネルのOFDM信号が時分割で入力され、しかも、その入力されるOFDM信号の周波数は、全チャンネル共通の特定周波数にされている。 The wraparound canceller of the present invention includes one delay profile calculation means common to all channels. The OFDM signal of each channel is input to this delay profile calculation means in a time division manner, and the frequency of the input OFDM signal is set to a specific frequency common to all channels.
 このため、本発明によれば、チャンネル毎に遅延プロファイルを算出する従来装置においてそのチャンネル毎に設けられる遅延プロファイル算出手段と同様の遅延プロファイル算出手段を、一つだけ設けてもよい。従って、従来装置と比較して、充分コスト低減を図ることができる。 For this reason, according to the present invention, in the conventional apparatus for calculating the delay profile for each channel, only one delay profile calculation means similar to the delay profile calculation means provided for each channel may be provided. Therefore, the cost can be sufficiently reduced as compared with the conventional apparatus.
 ところで、この遅延プロファイル算出手段としては、[背景技術]の項で挙げた(a)~(c)の方法等、従来から知られている各種演算方法を利用して遅延プロファイルを算出するように構成し得る。一方、例えば、次のように構成すれば、測定対象となる遅延プロファイルを精度よく算出することができる。 By the way, as this delay profile calculation means, a delay profile is calculated using various conventionally known calculation methods such as the methods (a) to (c) mentioned in the section of “Background Art”. Can be configured. On the other hand, for example, if configured as follows, a delay profile to be measured can be accurately calculated.
 具体的には、遅延プロファイル算出手段は、まず、離散フーリエ変換部にて、信号抽出手段にて抽出されたOFDM信号を離散フーリエ変換することで、当該OFDM信号の周波数軸上のスペクトルを抽出する。そして、伝達関数算出部にて、離散フーリエ変換部で抽出されたスペクトルに基づき送信アンテナから受信アンテナに至る伝送路の伝達関数を算出する。そして、逆数算出部にて、伝達関数算出部により算出された伝達関数の逆数を算出する。さらに、逆離散フーリエ変換部にて、逆数算出部からの出力を逆離散フーリエ変換する。これにより、遅延プロファイル算出手段は、遅延プロファイルを導出する。 Specifically, the delay profile calculation unit first extracts a spectrum on the frequency axis of the OFDM signal by performing a discrete Fourier transform on the OFDM signal extracted by the signal extraction unit in the discrete Fourier transform unit. . Then, the transfer function calculation unit calculates the transfer function of the transmission path from the transmission antenna to the reception antenna based on the spectrum extracted by the discrete Fourier transform unit. Then, the reciprocal number calculation unit calculates the reciprocal number of the transfer function calculated by the transfer function calculation unit. Further, the inverse discrete Fourier transform unit performs an inverse discrete Fourier transform on the output from the reciprocal number calculation unit. Thereby, the delay profile calculating means derives the delay profile.
 遅延プロファイル算出手段をこのように構成すれば、OFDM信号の遅延プロファイルを、伝送路の伝達関数に基づき導出することができるので、遅延プロファイルを精度よく算出することができ、延いては、各チャンネルのOFDM信号から回り込み信号を良好に除去することが可能となる。 If the delay profile calculating means is configured in this way, the delay profile of the OFDM signal can be derived based on the transfer function of the transmission path, so that the delay profile can be calculated with high accuracy, and thus each channel. It is possible to satisfactorily remove the sneak signal from the OFDM signal.
 一方、本発明の回り込みキャンセラにおいては、信号抽出手段、除去信号生成手段、回り込み除去手段、周波数変換手段、及び、レベル調整手段が、受信アンテナにて受信されるチャンネル毎に設けられるが、受信アンテナにて受信されて回り込み信号を除去すべきOFDM信号のチャンネル数は、当該回り込みキャンセラが設けられる中継装置の設置場所や放送局からの放送状況等によって変化することがある。 On the other hand, in the sneak canceller of the present invention, the signal extraction unit, the removal signal generation unit, the sneak removal unit, the frequency conversion unit, and the level adjustment unit are provided for each channel received by the reception antenna. The number of OFDM signal channels that should be removed from the sneak signal may vary depending on the installation location of the relay device in which the sneak canceller is installed, the broadcast situation from the broadcast station, and the like.
 このため、信号抽出手段、除去信号生成手段、回り込み除去手段、周波数変換手段、及び、レベル調整手段にて構成される信号処理手段を、回り込みキャンセラに設けられている全チャンネル分動作させるようにすると、回り込み信号を除去する必要のないチャンネル(換言すれば、実際には存在しないOFDM信号のチャンネル)に対応した信号処理手段にて、回り込み信号の除去には不要な回り込み除去信号が生成されることになる。そして、この不要な回り込み除去信号がノイズとなって、他のチャンネルのOFDM信号に悪影響が及ぶ可能性も考えられる。 For this reason, when the signal processing means constituted by the signal extraction means, the removal signal generation means, the sneak removal means, the frequency conversion means, and the level adjustment means is operated for all channels provided in the sneak canceller. The signal processing means corresponding to the channel that does not need to remove the sneak signal (in other words, the channel of the OFDM signal that does not actually exist) generates a sneak removal signal that is unnecessary for the removal of the sneak signal. become. Then, there is a possibility that the unnecessary wraparound removal signal becomes noise and adversely affects the OFDM signals of other channels.
 そこで、本発明の回り込みキャンセラには、更に、回り込み信号の除去対象となる対象チャンネルを外部から指定するための入力手段と、制御手段とを設けてもよい。
 すなわち、本発明の回り込みキャンセラにおいて、制御手段は、信号抽出手段、除去信号生成手段、回り込み除去手段、周波数変換手段、及び、レベル調整手段によりチャンネル毎に構成される複数の信号処理手段の内、入力手段を介して指定された対象チャンネルに対応する信号処理手段を選択的に動作させ、その対象チャンネル以外のチャンネルに対応した信号処理手段の動作を停止させると共に、遅延プロファイル算出手段が時分割で順次取り込み遅延プロファイルを算出するOFDM信号を、入力手段を介して指定された対象チャンネルのOFDM信号に制限する。
Therefore, the sneak canceller of the present invention may further include an input unit for externally specifying a target channel from which a sneak signal is to be removed, and a control unit.
That is, in the sneak canceller of the present invention, the control means includes a signal extraction means, a removal signal generation means, a sneak removal means, a frequency conversion means, and a plurality of signal processing means configured for each channel by the level adjustment means. The signal processing means corresponding to the target channel designated via the input means is selectively operated, the operation of the signal processing means corresponding to the channel other than the target channel is stopped, and the delay profile calculation means is time-divisionally divided. The OFDM signal for calculating the sequential capture delay profile is limited to the OFDM signal of the target channel designated via the input means.
 このような本発明の回り込みキャンセラによれば、信号抽出手段、除去信号生成手段、回り込み除去手段、周波数変換手段、及び、レベル調整手段によりチャンネル毎に構成される複数の信号処理手段の内、入力手段を介して指定された対象チャンネルに対応する信号処理手段だけが動作し、入力手段を介して指定された対象チャンネル以外のチャンネルに対応する信号処理手段は、動作を停止することになる。 According to the sneak canceller of the present invention as described above, the signal extraction unit, the removal signal generation unit, the sneak removal unit, the frequency conversion unit, and the level adjustment unit, among the plurality of signal processing units configured for each channel, are input. Only the signal processing means corresponding to the target channel designated via the means operates, and the signal processing means corresponding to a channel other than the target channel designated via the input means stops operating.
 よって、本発明の回り込みキャンセラによれば、複数の信号処理手段の内、回り込み信号を除去すべき対象チャンネルに対応する信号処理手段だけを選択的に動作させて、対象チャンネルに対応しない信号処理手段の動作を停止させることにより、回り込みキャンセラによる消費電力を低減することができる。 Therefore, according to the sneak canceller of the present invention, only the signal processing unit corresponding to the target channel from which the sneak signal should be removed is selectively operated among the plurality of signal processing units, and the signal processing unit does not correspond to the target channel. By stopping the operation, power consumption by the wraparound canceller can be reduced.
 また、対象チャンネルに対応しない信号処理手段の動作を停止させることにより、不要なノイズの発生を抑制し、送信アンテナから送信される送信信号の信号品質を向上させることができる。 Further, by stopping the operation of the signal processing means that does not correspond to the target channel, it is possible to suppress the generation of unnecessary noise and improve the signal quality of the transmission signal transmitted from the transmission antenna.
 また、本発明の回り込みキャンセラによれば、制御手段は、単に、対象チャンネルに対応する信号処理手段を選択的に動作させるだけでなく、遅延プロファイル算出手段が時分割で順次取り込むOFDM信号であって、遅延プロファイルを算出する対象となるOFDM信号を、入力手段を介して指定された対象チャンネルのOFDM信号に制限する。これによれば、対象チャンネルに対応する遅延プロファイルの算出周期、延いては、回り込み除去信号の算出周期を、必要最小限に短くすることができる。 Further, according to the wraparound canceller of the present invention, the control means is not only to selectively operate the signal processing means corresponding to the target channel, but also to the OFDM signal that the delay profile calculation means sequentially takes in time division. The OFDM signal for which the delay profile is calculated is limited to the OFDM signal of the target channel designated via the input means. According to this, the calculation cycle of the delay profile corresponding to the target channel, that is, the calculation cycle of the wraparound removal signal can be shortened to the minimum necessary.
 このため、本発明の回り込みキャンセラによれば、回り込み除去信号の更新頻度を高めて、回り込み信号の除去精度を向上させることができる。
 また、本発明の中継装置によれば、上述した本発明の回り込みキャンセラを備えているので、送信アンテナからの送信電波が受信アンテナに回り込んで、受信信号にその回り込み信号が重畳されても、回り込みキャンセラにて、受信信号から回り込み信号を除去することができる。
Therefore, according to the sneak canceller of the present invention, it is possible to increase the update frequency of the sneak removal signal and improve the sneak signal removal accuracy.
Further, according to the relay device of the present invention, since the wraparound canceler of the present invention described above is provided, even if the transmission radio wave from the transmission antenna wraps around the reception antenna and the wraparound signal is superimposed on the reception signal, The sneak canceller can remove the sneak signal from the received signal.
 そして、本発明の回り込みキャンセラは、回り込み信号を良好に除去することができるだけでなく、従来のものに比べて製造コストを低減することができる。このため、本発明の中継装置によれば、回り込み信号により発振等の不具合が生じるのを抑制し得る中継装置を、低コストで実現できることになる。 And the sneak canceller of the present invention can not only effectively remove the sneak signal, but also can reduce the manufacturing cost as compared with the conventional one. For this reason, according to the relay apparatus of the present invention, a relay apparatus that can suppress the occurrence of problems such as oscillation due to the sneak signal can be realized at low cost.
実施形態の中継装置の構成を表すブロック図である。It is a block diagram showing the structure of the relay apparatus of embodiment. 図1に示す演算部の構成を表すブロック図である。It is a block diagram showing the structure of the calculating part shown in FIG. 図1に示す(a)~(e)の各部における受信信号を説明図である。FIG. 2 is an explanatory diagram of received signals in the respective units (a) to (e) shown in FIG. 実施形態の変形例の中継装置の構成を表すブロック図である。It is a block diagram showing the structure of the relay apparatus of the modification of embodiment.
 2・・・受信アンテナ、4・・・送信アンテナ、6・・・A/D変換部、7・・・受信周波数変換部、8・・・D/A変換部、9・・・送信周波数変換部、10・・・チャンネル信号処理部、12・・・局部発振部、14・・・ミキサ部、16・・・LPF、18・・・ダウンサンプリング部、20・・・FIRフィルタ、22・・・加算部、24・・・LPF、26・・・遅延素子部、28・・・増幅部、30・・・アップサンプリング部、32・・・LPF、34・・・ミキサ部、40・・・混合部、42・・・入力選択部、44・・・出力選択部、46・・・タイミング制御部、50・・・演算部、52・・・離散フーリエ変換部、54・・・伝達関数算出部、56・・・逆数算出部、58・・・逆離散フーリエ変換部、60・・・係数算出部、62・・・対象チャンネル選択スイッチ、64・・・対象チャンネル設定部。 2 ... receiving antenna, 4 ... transmitting antenna, 6 ... A / D converter, 7 ... receiving frequency converter, 8 ... D / A converter, 9 ... transmission frequency converter , 10 ... Channel signal processing part, 12 ... Local oscillation part, 14 ... Mixer part, 16 ... LPF, 18 ... Downsampling part, 20 ... FIR filter, 22 ... Adder 24 ... LPF 26 ... delay element 28 ... amplifier 30 ... upsampling 32 ... LPF 34 ... mixer 40 ... Mixing unit, 42 ... input selection unit, 44 ... output selection unit, 46 ... timing control unit, 50 ... calculation unit, 52 ... discrete Fourier transform unit, 54 ... transfer function calculation , 56... Reciprocal calculation unit, 58... Inverse discrete Fourier transform unit, 60. Number calculating unit, 62 ... target channel selection switch, 64 ... target channel setting unit.
 以下に本発明の実施形態を図面と共に説明する。
 図1は、本発明が適用された中継装置全体の構成を表すブロック図である。
 本実施形態の中継装置は、地上デジタルテレビ放送の放送電波を受信アンテナ2で受信し、その受信信号を、放送電波が直接届かない地域に向けて、送信アンテナ4から再送信する装置である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the entire relay apparatus to which the present invention is applied.
The relay apparatus according to the present embodiment is an apparatus that receives a broadcast wave of terrestrial digital television broadcasting with a reception antenna 2 and retransmits the received signal from the transmission antenna 4 toward an area where the broadcast wave does not reach directly.
 そして、本実施形態の中継装置には、回り込みキャンセラとして、A/D変換部6、受信周波数変換部7、チャンネル信号処理部10、混合部40、D/A変換部8、送信周波数変換部9、入力選択部42、出力選択部44、タイミング制御部46、及び、演算部50が設けられている。回り込みキャンセラは、中継装置において、送信アンテナ4からの送信電波が受信アンテナ2に回り込むことによって受信信号に重畳された回り込み信号を、受信信号から除去するために中継装置に設けられる。 The relay apparatus according to the present embodiment includes an A / D conversion unit 6, a reception frequency conversion unit 7, a channel signal processing unit 10, a mixing unit 40, a D / A conversion unit 8, and a transmission frequency conversion unit 9 as a wraparound canceller. , An input selection unit 42, an output selection unit 44, a timing control unit 46, and a calculation unit 50 are provided. The wraparound canceller is provided in the relay apparatus in order to remove the wraparound signal superimposed on the reception signal when the transmission radio wave from the transmission antenna 4 wraps around the reception antenna 2 in the relay apparatus.
 なお、チャンネル信号処理部10は、図に示す符号10-1,10-2,・・・10-nから明らかなように、再送信すべき放送信号(OFDM信号)のチャンネル数(n)に対応した数だけ設けられている。 The channel signal processing unit 10 determines the number of channels (n) of the broadcast signal (OFDM signal) to be retransmitted, as is clear from the reference numerals 10-1, 10-2,. A corresponding number is provided.
 ここで、まず、受信周波数変換部7は、受信アンテナ2からの受信信号のうち中継対象となるOFDM信号が、図3Aに示すように、ベースバンド付近でチャンネル毎に一定間隔(本実施形態では6MHz間隔)で並ぶよう、受信信号を各チャンネル毎(図3Aでは全4チャンネル)に周波数変換する。 Here, first, the reception frequency conversion unit 7 determines that the OFDM signal to be relayed among the reception signals from the reception antenna 2 is a fixed interval for each channel near the baseband (in this embodiment, as shown in FIG. 3A). The received signals are frequency-converted for each channel (all four channels in FIG. 3A) so that they are arranged at intervals of 6 MHz.
 そして、A/D変換部6は、この受信周波数変換部7で配列された全チャンネルの受信信号をデジタルデータに変換する。
 なお、図3A、3Bに点線で示す信号波形は、A/D変換部6で受信信号をサンプリング周波数Fsでサンプリングすることによって生成されるイメージ成分を表している。
Then, the A / D conversion unit 6 converts the reception signals of all channels arranged by the reception frequency conversion unit 7 into digital data.
3A and 3B represent image components generated by sampling the received signal at the sampling frequency Fs by the A / D conversion unit 6.
 次に、このA/D変換部6にてデジタルデータに変換されたベースバンドのOFDM信号(図3A参照)は、それぞれ、n個のチャンネル信号処理部10(10-1,10-2,・・・10-n)に入力される。 Next, baseband OFDM signals (see FIG. 3A) converted into digital data by the A / D conversion unit 6 are respectively supplied to n channel signal processing units 10 (10-1, 10-2,.・ ・ 10-n)
 各チャンネル信号処理部10(10-1,10-2,・・・10-n)は、各チャンネル信号処理部10に割り当てられた処理対象となるチャンネルのOFDM信号毎に、回り込み信号を除去するのに必要な回り込み除去信号(以下、キャンセル信号という)を生成し、その生成したキャンセル信号をOFDM信号に加算することで、OFDM信号から回り込み信号を除去する。 Each channel signal processing unit 10 (10-1, 10-2,... 10-n) removes a wraparound signal for each OFDM signal of a channel to be processed assigned to each channel signal processing unit 10. A sneak removal signal (hereinafter referred to as a cancel signal) necessary for the above is generated, and the generated cancel signal is added to the OFDM signal to remove the sneak signal from the OFDM signal.
 そして、各チャンネル信号処理部10(10-1,10-2,・・・10-n)にて回り込み信号が除去された各チャンネルのOFDM信号は、混合部40にて混合(加算)された後、D/A変換部8に出力される。D/A変換部8は、混合部40からの入力信号(多チャンネルのOFMD信号)をアナログ信号に変換する。 Then, the OFDM signal of each channel from which the sneak signal is removed by each channel signal processing unit 10 (10-1, 10-2,... 10-n) is mixed (added) by the mixing unit 40. Thereafter, the data is output to the D / A converter 8. The D / A converter 8 converts the input signal (multi-channel OFMD signal) from the mixing unit 40 into an analog signal.
 また、D/A変換部8にて変換されたアナログ信号は、送信周波数変換部9に入力される。そのアナログ信号は、この送信周波数変換部9にて、チャンネル毎に、受信周波数変換部7で周波数変換される前の元の周波数に周波数変換された後、再送信用の送信信号として送信アンテナ4に出力される。 The analog signal converted by the D / A converter 8 is input to the transmission frequency converter 9. The analog signal is frequency-converted by the transmission frequency conversion unit 9 to the original frequency before being frequency-converted by the reception frequency conversion unit 7 for each channel, and then transmitted to the transmission antenna 4 as a transmission signal for retransmission. Is output.
 次に、チャンネル信号処理部10(10-1,10-2,・・・10-n)の構成、並びに、入力選択部42、出力選択部44、タイミング制御部46及び演算部50の動作、について説明する。 Next, the configuration of the channel signal processing unit 10 (10-1, 10-2,... 10-n), and the operations of the input selection unit 42, the output selection unit 44, the timing control unit 46, and the calculation unit 50, Will be described.
 なお、これら各部は、全て、デジタルデータを処理するデジタル回路にて構成されている。各チャンネル信号処理部10も、各種デジタル回路(論理ゲート等)からなるASIC等で構成されている。図1では、各チャンネル信号処理部10の機能を分かり易く説明するため、各チャンネル信号処理部10の構成を機能ブロックで表している。 All of these units are configured by digital circuits that process digital data. Each channel signal processing unit 10 is also composed of an ASIC composed of various digital circuits (logic gates and the like). In FIG. 1, the configuration of each channel signal processing unit 10 is represented by functional blocks in order to easily explain the function of each channel signal processing unit 10.
 図1に示すように、各チャンネル信号処理部10には、周波数変換部(入力側の周波数変換部)が設けられている。周波数変換部は、A/D変換部6を介して入力される受信信号と局部発振部12で生成された局部発振信号とをミキサ部14にて混合することで、処理対象となる特定チャンネルのOFDM信号の中心周波数が基準周波数(例えば0MHz)となるように、受信信号を周波数変換する。 As shown in FIG. 1, each channel signal processing unit 10 is provided with a frequency conversion unit (input-side frequency conversion unit). The frequency conversion unit mixes the reception signal input via the A / D conversion unit 6 and the local oscillation signal generated by the local oscillation unit 12 in the mixer unit 14, so that the specific channel to be processed is mixed. The received signal is frequency-converted so that the center frequency of the OFDM signal becomes a reference frequency (for example, 0 MHz).
 なお、各チャンネル信号処理部10(10-1,10-2,・・・10-n)は、処理対象となるOFDM信号のチャンネルが異なるものの、図3Bに例示するように、処理対象となるOFDM信号の中心周波数が、各チャンネル共通の基準周波数(例えば0MHz)となるように、受信信号を周波数変換する。 Each channel signal processing unit 10 (10-1, 10-2,... 10-n) is a processing target as illustrated in FIG. 3B, although the channel of the OFDM signal to be processed is different. The received signal is frequency-converted so that the center frequency of the OFDM signal is a reference frequency common to each channel (for example, 0 MHz).
 このため、各チャンネル信号処理部10(10-1,10-2,・・・10-n)において、局部発振部12で生成される局部発振信号の周波数は、受信信号のうち処理対象となるOFDM信号の中心周波数に対応した周波数(各チャンネルのOFDM信号が図3に示す周波数配列の場合、6MHz、12MHz、18MHz、24MHz)となるように設定される。 Therefore, in each channel signal processing unit 10 (10-1, 10-2,... 10-n), the frequency of the local oscillation signal generated by the local oscillation unit 12 is a processing target of the received signal. The frequency is set to be a frequency corresponding to the center frequency of the OFDM signal (6 MHz, 12 MHz, 18 MHz, 24 MHz when the OFDM signal of each channel is the frequency array shown in FIG. 3).
 そして、このように周波数変換された受信信号は、処理対象となるOFDM信号(周波数帯域:基準周波数±2.8MHz)のみを選択的に通過させるローパスフィルタ(LPF:デジタルフィルタ)16を介して、ダウンサンプリング部18に入力される。 The frequency-converted reception signal is passed through a low-pass filter (LPF: digital filter) 16 that selectively passes only the OFDM signal (frequency band: reference frequency ± 2.8 MHz) to be processed. Input to the downsampling unit 18.
 ダウンサンプリング部18は、OFDM信号のデータ数が所定数(m)分の1となるよう、LPF16から出力されるOFDM信号をダウンサンプリングする。
 そして、そのダウンサンプリングされたOFDM信号(図3C参照)は、加算部22に入力され、加算部22で、FIRフィルタ20にて生成された回り込み除去信号と加算される。これにより、OFDM信号から回り込み信号が除去される。
The downsampling unit 18 downsamples the OFDM signal output from the LPF 16 so that the number of data of the OFDM signal is a predetermined number (m).
Then, the downsampled OFDM signal (see FIG. 3C) is input to the adder 22, and is added to the wraparound removal signal generated by the FIR filter 20 in the adder 22. As a result, the sneak signal is removed from the OFDM signal.
 また、回り込み信号除去後のOFDM信号(図3D参照)は、処理対象となるOFDM信号(周波数帯域:基準周波数±2.8MHz)のみを選択的に通過させるローパスフィルタ(LPF:デジタルフィルタ)24に入力されることにより帯域外のノイズ成分が除去された後(図3E参照)、増幅部28に入力される。 Further, the OFDM signal (see FIG. 3D) after the wraparound signal removal is passed to a low-pass filter (LPF: digital filter) 24 that selectively passes only the OFDM signal (frequency band: reference frequency ± 2.8 MHz) to be processed. After being input, noise components outside the band are removed (see FIG. 3E), and then input to the amplifying unit 28.
 この増幅部28は、所謂AGC回路付きの増幅部である。OFDM信号は、その出力レベルが一定レベルとなるよう増幅処理された後、アップサンプリング部30に入力される。 The amplifying unit 28 is an amplifying unit with a so-called AGC circuit. The OFDM signal is amplified so that its output level becomes a constant level, and then input to the upsampling unit 30.
 そして、アップサンプリング部30では、OFDM信号のデータ数が、ダウンサンプリング部18にてダウンサンプリングされる前のデータ数となるよう、OFDM信号のデータ数が所定数(m)倍にアップサンプリングされる。 Then, in the upsampling unit 30, the number of data of the OFDM signal is upsampled by a predetermined number (m) times so that the number of data of the OFDM signal becomes the number of data before being downsampled by the downsampling unit 18. .
 また、アップサンプリング部30でアップサンプリングされたOFDM信号は、LPF16と同様のフィルタ処理を実行することにより、OFDM信号(周波数帯域:基準周波数±2.8MHz)のみを選択的に通過させるローパスフィルタ(LPF:デジタルフィルタ)32を介して、ミキサ部34に入力される。アップサンプリングされたOFDM信号は、ミキサ部34にて、局部発振部12で生成された局部発振信号と混合されることで、入力側の周波数変換部で周波数変換される前の元の周波数帯のOFDM信号に変換された後、混合部40に出力される。 The OFDM signal up-sampled by the up-sampling unit 30 performs a filter process similar to that of the LPF 16 to selectively pass only the OFDM signal (frequency band: reference frequency ± 2.8 MHz) ( The signal is input to the mixer unit 34 via an LPF (digital filter) 32. The upsampled OFDM signal is mixed with the local oscillation signal generated by the local oscillation unit 12 in the mixer unit 34, so that the original frequency band before being frequency-converted by the frequency conversion unit on the input side is mixed. After being converted to an OFDM signal, it is output to the mixing unit 40.
 次に、FIRフィルタ20は、LPF24にてフィルタ処理されたOFDM信号を、遅延素子部26を介して取り込み、その取り込んだOFDM信号を、出力選択部44を介して入力されるフィルタ係数に基づきフィルタ処理することで、ダウンサンプリング部18を介して入力されたOFDM信号から回り込み信号を除去するためのキャンセル信号を生成する。 Next, the FIR filter 20 takes in the OFDM signal filtered by the LPF 24 through the delay element unit 26 and filters the taken-in OFDM signal based on the filter coefficient input through the output selection unit 44. By processing, a cancel signal for removing the sneak signal from the OFDM signal input via the downsampling unit 18 is generated.
 なお、遅延素子部26は、ダウンサンプリング部18を介して加算部22に入力されるOFDM信号と、FIRフィルタ20にて生成されるキャンセル信号との位相を一致させるために、FIRフィルタ20に入力されるOFDM信号の位相を調整するための構成であり、遅延量Z-Xは予め設定されている。 The delay element unit 26 is input to the FIR filter 20 in order to match the phase of the OFDM signal input to the adder unit 22 via the downsampling unit 18 and the cancel signal generated by the FIR filter 20. The delay amount Z- X is set in advance.
 また次に、FIRフィルタ20のフィルタ係数は、演算部50にて算出される。演算部50は、図2に示すように、離散フーリエ変換部52、伝達関数算出部54、逆数算出部56、逆離散フーリエ変換部58、及び、係数算出部60にて構成されている。 Next, the filter coefficient of the FIR filter 20 is calculated by the calculation unit 50. As shown in FIG. 2, the calculation unit 50 includes a discrete Fourier transform unit 52, a transfer function calculation unit 54, an inverse number calculation unit 56, an inverse discrete Fourier transform unit 58, and a coefficient calculation unit 60.
 この演算部50には、上記複数(n個)のチャンネル信号処理部10(10-1,10-2,・・・10-n)内のLPF24にてそれぞれフィルタ処理されたOFDM信号の一つが、入力選択部42を介して選択的に入力される。演算部50では、その入力されたOFDM信号に対する演算処理が実施される。 In the arithmetic unit 50, one of the OFDM signals respectively filtered by the LPF 24 in the plurality (n) of channel signal processing units 10 (10-1, 10-2,... 10-n) is stored. Are selectively input via the input selection unit 42. The arithmetic unit 50 performs arithmetic processing on the input OFDM signal.
 すなわち、まず、離散フーリエ変換部52は、入力選択部42を介して入力されたOFDM信号を離散フーリエ変換することで、OFDM信号の周波数軸上のスペクトルを抽出する。そして、その抽出されたスペクトルは、伝達関数算出部54に入力される。 That is, first, the discrete Fourier transform unit 52 extracts a spectrum on the frequency axis of the OFDM signal by performing a discrete Fourier transform on the OFDM signal input via the input selection unit 42. Then, the extracted spectrum is input to the transfer function calculation unit 54.
 次に、伝達関数算出部54は、離散フーリエ変換部52で抽出されたスペクトルに基づき、送信アンテナ4から受信アンテナ2に至る回り込み信号の伝送路の伝達関数を算出する。逆数算出部56は、伝達関数算出部54により算出された伝達関数の逆数を算出する。逆離散フーリエ変換部58は、逆数算出部56からの出力を逆離散フーリエ変換する。これにより、遅延プロファイルが導出される。 Next, based on the spectrum extracted by the discrete Fourier transform unit 52, the transfer function calculation unit 54 calculates the transfer function of the transmission path of the wraparound signal from the transmission antenna 4 to the reception antenna 2. The reciprocal calculator 56 calculates the reciprocal of the transfer function calculated by the transfer function calculator 54. The inverse discrete Fourier transform unit 58 performs an inverse discrete Fourier transform on the output from the inverse number calculation unit 56. Thereby, a delay profile is derived.
 なお、伝達関数を算出して、その逆数から遅延プロファイルを算出する手順は、上述の特許文献1等に記載されており、従来から知られているので、ここでは詳細な説明は省略する。 Note that the procedure for calculating the transfer function and calculating the delay profile from the reciprocal thereof is described in the above-mentioned Patent Document 1 and the like, and has been heretofore known, so detailed description thereof is omitted here.
 また、逆離散フーリエ変換部58で算出された遅延プロファイルは、係数算出部60に入力される。係数算出部60は、その入力されたOFDM信号の遅延プロファイルに基づき、FIRフィルタ20にて回り込み信号除去用のキャンセル信号を生成するのに要するフィルタ係数を算出し、その算出されたフィルタ係数は、出力選択部44に出力される。 The delay profile calculated by the inverse discrete Fourier transform unit 58 is input to the coefficient calculation unit 60. The coefficient calculation unit 60 calculates a filter coefficient required to generate a cancel signal for removing the sneak signal in the FIR filter 20 based on the delay profile of the input OFDM signal, and the calculated filter coefficient is The data is output to the output selection unit 44.
 出力選択部44は、演算部50から出力されたフィルタ係数を、入力選択部42により選択されたOFDM信号に対応するチャンネル信号処理部10に出力する。これにより、出力選択部44は、そのチャンネル信号処理部10内のFIRフィルタ20のフィルタ係数を、演算部50にて算出されたフィルタ係数に更新する。より具体的には、出力選択部44は、タイミング制御部46から出力される切替タイミング信号に同期して、フィルタ係数の更新対象のチャンネル信号処理部10の選択、及び、フィルタ係数の更新を行う。 The output selection unit 44 outputs the filter coefficient output from the calculation unit 50 to the channel signal processing unit 10 corresponding to the OFDM signal selected by the input selection unit 42. As a result, the output selection unit 44 updates the filter coefficient of the FIR filter 20 in the channel signal processing unit 10 to the filter coefficient calculated by the calculation unit 50. More specifically, the output selection unit 44 performs selection of the filter signal update target channel signal processing unit 10 and update of the filter coefficient in synchronization with the switching timing signal output from the timing control unit 46. .
 入力選択部42は、タイミング制御部46から出力される切替タイミング信号に同期して、演算部50にOFDM信号を入力するチャンネル信号処理部10を選択する。演算部50もタイミング制御部46から出力される切替タイミング信号に同期して、離散フーリエ変換部52から係数算出部60に至る一連の処理を開始する。 The input selection unit 42 selects the channel signal processing unit 10 that inputs the OFDM signal to the calculation unit 50 in synchronization with the switching timing signal output from the timing control unit 46. The arithmetic unit 50 also starts a series of processes from the discrete Fourier transform unit 52 to the coefficient calculation unit 60 in synchronization with the switching timing signal output from the timing control unit 46.
 つまり、本実施形態では、タイミング制御部46が、演算部50で一連の演算処理を実行するのに要する時間よりも少し長い一定間隔で、周期的に切替タイミング信号を出力するように構成されている。 That is, in the present embodiment, the timing control unit 46 is configured to periodically output the switching timing signal at a constant interval that is slightly longer than the time required for the calculation unit 50 to execute a series of calculation processes. Yes.
 そして、入力選択部42が、その切替タイミング信号に同期して、演算部にOFDM信号を入力するチャンネル信号処理部10を、チャンネル信号処理部10-1から10-nの間で順次切り替える。次に、演算部50が、その切り替えられたチャンネル信号処理部10からのOFDM信号に基づき、各チャンネル信号処理部10に対応したフィルタ係数を順次算出する。そして、出力選択部44が、その算出されたフィルタ係数を、このフィルタ係数に対応するチャンネル信号処理部10に出力することで、そのチャンネル信号処理部10内のFIRフィルタ20のフィルタ係数を更新する。 Then, the input selection unit 42 sequentially switches the channel signal processing unit 10 that inputs the OFDM signal to the calculation unit between the channel signal processing units 10-1 to 10-n in synchronization with the switching timing signal. Next, the calculation unit 50 sequentially calculates filter coefficients corresponding to each channel signal processing unit 10 based on the switched OFDM signal from the channel signal processing unit 10. Then, the output selection unit 44 outputs the calculated filter coefficient to the channel signal processing unit 10 corresponding to the filter coefficient, thereby updating the filter coefficient of the FIR filter 20 in the channel signal processing unit 10. .
 以上説明したように、本実施形態の中継装置(換言すれば回り込みキャンセラ)によれば、中継対象となるチャンネルのOFDM信号毎に、チャンネル信号処理部10にて回り込み信号除去用のキャンセル信号が生成されてOFDM信号から回り込み信号が除去される。 As described above, according to the relay apparatus of this embodiment (in other words, the wraparound canceller), the channel signal processing unit 10 generates a cancellation signal for wraparound signal removal for each OFDM signal of the channel to be relayed. Thus, the sneak signal is removed from the OFDM signal.
 そして、その回り込み信号を除去するためのキャンセル信号は、各チャンネル信号処理部10に設けられた、各チャンネル専用のFIRフィルタ20にて生成され、そのFIRフィルタ20のフィルタ係数は、演算部50にて、対応するチャンネルのOFDM信号に基づき算出される。 A cancel signal for removing the sneak signal is generated by the FIR filter 20 dedicated to each channel provided in each channel signal processing unit 10, and the filter coefficient of the FIR filter 20 is sent to the calculation unit 50. And calculated based on the OFDM signal of the corresponding channel.
 よって、本実施形態の中継装置(換言すれば回り込みキャンセラ)によれば、受信アンテナ2にて受信された各チャンネルのOFDM信号の信号レベルにバラツキがある場合であっても、あるチャンネルでキャンセル信号が適正値から外れてしまってそのチャンネルのOFDM信号に対する品質補償が過補償若しくは補償不足となるようなことはなく、各チャンネルのOFDM信号から回り込み信号を良好に除去することが可能となる。 Therefore, according to the relay device of this embodiment (in other words, the wraparound canceller), even if the signal level of the OFDM signal of each channel received by the receiving antenna 2 varies, the cancel signal is transmitted in a certain channel. Does not deviate from the proper value and the quality compensation for the OFDM signal of that channel is not overcompensated or undercompensated, and the wraparound signal can be satisfactorily removed from the OFDM signal of each channel.
 また、本実施形態の中継装置(換言すれば回り込みキャンセラ)によれば、チャンネル毎に適正なキャンセル信号を生成できるものの、その生成に用いられるフィルタ係数(換言すれば遅延プロファイル)は、全チャンネル共通の一つの演算部50を用いて時分割で生成することから、チャンネル毎に演算部50を設ける必要がなく、回り込みキャンセラのコストを低減することができる。 In addition, according to the relay device of this embodiment (in other words, the wraparound canceller), an appropriate cancel signal can be generated for each channel, but the filter coefficient (in other words, the delay profile) used for the generation is common to all channels. Therefore, it is not necessary to provide the calculation unit 50 for each channel, and the cost of the wraparound canceller can be reduced.
 以下、文言の対応関係について説明する。
 各チャンネル信号処理部10における局部発振部12、ミキサ部14、及びLPF16が、信号抽出手段の一例に相当し、遅延素子部26及びFIRフィルタ20が、除去信号生成手段の一例に相当し、加算部22及びLPF24が、回り込み除去手段の一例に相当し、局部発振部12及びミキサ部34が、周波数変換手段の一例に相当し、増幅部28が、レベル調整手段の一例に相当し、これら各部にて構成されたチャンネル信号処理手段10-1、10-2、・・・10-nが、信号処理手段の一例に相当する。また、混合部40は、混合手段の一例に相当し、演算部50は、遅延プロファイル算出手段の一例に相当する。
Hereinafter, the correspondence between words will be described.
The local oscillating unit 12, the mixer unit 14, and the LPF 16 in each channel signal processing unit 10 correspond to an example of a signal extraction unit, and the delay element unit 26 and the FIR filter 20 correspond to an example of a removal signal generation unit, and are added. The unit 22 and the LPF 24 correspond to an example of a sneak removal unit, the local oscillation unit 12 and the mixer unit 34 correspond to an example of a frequency conversion unit, and the amplification unit 28 corresponds to an example of a level adjustment unit. The channel signal processing means 10-1, 10-2,..., 10-n configured in the above correspond to an example of the signal processing means. The mixing unit 40 corresponds to an example of a mixing unit, and the calculation unit 50 corresponds to an example of a delay profile calculation unit.
 ここで、本実施形態は、ダウンサンプリング部18によって、LPF16を通過したOFDM信号のデータ数を、所定数(m)分の1となるようダウンサンプリングし、更に、増幅部28にて一定レベルまで増幅されたOFDM信号のデータ数を、アップサンプリング部30によって所定数(m)倍することで、そのデータ数を元のデータ数に戻すように構成されている。この理由は以下の通りである。 Here, in the present embodiment, the downsampling unit 18 downsamples the number of data of the OFDM signal that has passed through the LPF 16 to be a predetermined number (m), and the amplification unit 28 further reduces the data to a certain level. The upsampling unit 30 multiplies the number of data of the amplified OFDM signal by a predetermined number (m), thereby returning the number of data to the original number of data. The reason is as follows.
 まず、日本の地上デジタル放送信号(OFDM信号を使ったテレビ放送信号)をサンプリングする際、そのサンプリングを正確に実行するのに必要な1波当たりの「基本サンプリング数」は、少なくとも「213」にする必要がある。 First, when sampling Japanese terrestrial digital broadcasting signals (TV broadcasting signals using OFDM signals), the “basic sampling number” per wave necessary to accurately perform the sampling is at least “2 13 ”. It is necessary to.
 また、地上デジタル放送信号の受信信号をサンプリングする場合の1波当たりのサンプリング数をM′とすると、多波の受信信号を正確にサンプリングするのに必要な総サンプリング数Mは、次式(1)の通り、1波当たりのサンプリング数M′に、受信する波数に応じて決まる「2のべき乗値」からなる所定値jを乗じることで求められる。 If the sampling number per wave when sampling the received signal of the terrestrial digital broadcast signal is M ′, the total sampling number M required to accurately sample the multi-wave received signal is given by the following formula (1 ), The number of samplings M ′ per wave is obtained by multiplying by a predetermined value j consisting of “power value of 2” determined according to the wave number to be received.
 総サンプリング数M=1波当たりのサンプリング数M′×j ・・・(1)
 ここで、1波当たりのサンプリング数M′は、次式(2)の通りである。
 サンプリング数M′=213×2 ・・・(2)
 (但し、k=0,1,2,3・・・)
 所定値jは、波数が2以上で、しかも「2のべき乗値」の場合は、j=波数(例えば、波数=4の場合:j=2、波数=8の場合:j=2 )となる。また、所定値jは、波数が2以上で、しかも「2のべき乗値」ではない場合は、j=波数より大きい直近の「2のべき乗値」(例えば、波数=3の場合:j=2、波数=5,6,7の場合:j=2 )となる。
Total sampling number M = sampling number per wave M ′ × j (1)
Here, the sampling number M ′ per wave is expressed by the following equation (2).
Sampling number M ′ = 2 13 × 2 k (2)
(However, k = 0, 1, 2, 3 ...)
The predetermined value j is j = wave number (for example, when wave number = 4: j = 2 2 , and when wave number = 8: j = 2 3 ) when the wave number is 2 or more and “power value of 2”. It becomes. Further, when the wave number is 2 or more and is not “a power of 2”, the predetermined value j is j = a power value of “2” that is the most recent value greater than the wave number (for example, when wave number = 3: j = 2 2 and wave number = 5, 6 and 7: j = 2 3 ).
 なお、kは、1波当たりのサンプリング数M′を決めるための補正値であり、サンプリングの精度を上げるために1波当たりのサンプリング数を基本サンプリング数:213より増やす場合に使用される。 Note that k is a correction value for determining the sampling number M ′ per wave, and is used when the sampling number per wave is increased from the basic sampling number: 2 13 in order to increase the sampling accuracy.
 つまり、総サンプリング数Mの最小値は、k=0としたときの1波当たりのサンプリング数M′=213×2に、波数に応じて決まる所定値jを乗じた値となり、サンプリング及び演算の精度を上げる場合は、1波当たりに必要な「基本サンプリング数」である「213」に対し、「2」(k=1)、「2 」(k=2)、・・・を乗じて、1波当たりのサンプリング数M′を増やしてもよい。 In other words, the minimum value of the total sampling number M is the number of samplings M '= 2 13 × 2 0 per one wave when the k = 0, becomes a value obtained by multiplying a predetermined value j determined according to the wave number, sampling and In order to increase the accuracy of the calculation, “2 1 ” (k = 1), “2 2 ” (k = 2), “2 13 ” which is the “basic sampling number” required per wave,. The number of samplings M ′ per wave may be increased by multiplying by.
 そして、本実施形態では、例えば、1波当たりのサンプリング数M′=213×2とし、受信信号の波数を最大8波として、A/D変換部6で受信信号(8波のOFDM信号)をA/D変換する際のサンプリング数Mを、次式(3)の通り、65536個としている。 In the present embodiment, for example, the sampling number M '= 2 13 × 2 0 per one wave, as 8-wave maximum wavenumber of the received signal, the received signal by the A / D converter 6 (8 waves of the OFDM signal ) Is A / D-converted, the sampling number M is 65536 as shown in the following equation (3).
 M=「213×2」×「2 」  ・・・(3)
  =8192×8
  =65536
 また、本実施形態では、LPF12において、A/D変換部6にてA/D変換(サンプリング)されたOFDM信号(多波)の中から、OFDM信号1波を抽出し、その抽出したOFDM信号に基づき遅延プロファイル(延いてはキャンセル信号)を算出する。
M = “2 13 × 2 0 ” × “2 3 ” (3)
= 8192 × 8
= 65536
In the present embodiment, the LPF 12 extracts one OFDM signal from the OFDM signal (multi-wave) A / D converted (sampled) by the A / D converter 6, and the extracted OFDM signal Based on the above, a delay profile (and hence a cancel signal) is calculated.
 そして、この遅延プロファイルの算出には、LPF16でフィルタリングされたOFDM信号1波分の全データ(65536個)を用いる必要はなく、LPF16からの出力データをダウンサンプリングしても、OFDM信号1波分の遅延プロファイルを算出することができる。 For calculating the delay profile, it is not necessary to use all data (65536) of one wave of the OFDM signal filtered by the LPF 16, and even if the output data from the LPF 16 is down-sampled, Can be calculated.
 そこで、本実施形態では、LPF16と加算部22との間にダウンサンプリング部18を設けて、LPF16から出力される受信信号1チャンネル分のデータをダウンサンプリングすることで、遅延プロファイル(延いてはキャンセル信号)の演算に用いるOFDM信号のデータ数を、A/D変換部6でのサンプリング数の所定数(m)分の1にして、チャンネル信号処理部10及び演算部50での演算負荷を軽減し、その後、アップサンプリング部30にて、OFDM信号のサンプリング数を所定数(m)倍にアップサンプリングすることで、ミキサ部34にて、元のOFDM信号と同じデータ数のOFDM信号を復元するようにしている。 Therefore, in the present embodiment, a downsampling unit 18 is provided between the LPF 16 and the adding unit 22 to downsample the data for one channel of the received signal output from the LPF 16, thereby delay profile (and thus canceling). The number of data of the OFDM signal used for the calculation of the signal) is reduced to a predetermined number (m) of the sampling number in the A / D converter 6 to reduce the calculation load on the channel signal processing unit 10 and the calculation unit 50. After that, the upsampling unit 30 upsamples the number of samplings of the OFDM signal by a predetermined number (m), so that the mixer unit 34 restores the OFDM signal having the same number of data as the original OFDM signal. I am doing so.
 また、このように、LPF16から出力される総サンプリング数Mのデータを、所定数(m)分の1にダウンサンプリングする場合、ダウンサンプリング後のサンプリング数M″は、1波当たりに必要な「基本サンプリング数」=「213」と同じか、若しくは、「213」よりも大きく、総サンプリング数Mを超えない「2のべき乗値」となるように決めてもよい。 Further, in this way, when the data of the total sampling number M output from the LPF 16 is down-sampled to a predetermined number (m), the sampling number M ″ after the down-sampling is “ or basic sampling number "= same as" 2 13 ", or" 2 13 larger than "may be determined so as not to exceed the total sampling number M becomes" power of two values ".
 具体的には、3波受信の場合、M′=(213×2)、j=2であるから、総サンプリング数M=(213×2 )×2 となり、ダウンサンプリング時の所定数(m)は、k=0の場合:2,2 ,2 の何れかとなり、k=1の場合:2 ,2 ,2,2 の何れかとなる。 Specifically, in the case of three-wave reception, since M ′ = (2 13 × 2 k ) and j = 2 2 , the total sampling number M = (2 13 × 2 k ) × 2 2 , and during downsampling The predetermined number (m) of k is 0: 2 0 , 2 1 , 2 2 , and k = 1: 2 0 , 2 1 , 2 2 , 2 3 .
 また、8波受信の場合、M′=(213×2)、j=2 であるから、総サンプリング数M=(213×2 )×2となり、ダウンサンプリング時の所定数(m)は、k=0の場合:2 ,2 ,2 ,2の何れかとなり、k=1の場合:2 ,2
 ,2 ,2 ,2の何れかとなる。
In the case of 8-wave reception, since M ′ = (2 13 × 2 k ) and j = 2 3 , the total sampling number M = (2 13 × 2 k ) × 2 3 , which is a predetermined number at the time of downsampling (M) is any of 2 0 , 2 1 , 2 2 , 2 3 when k = 0 , and 2 0 , 2 1 when k = 1.
, 2 2 , 2 3 , 2 4 .
 つまり、ダウンサンプリングのサイズを決めるための所定数(m)は、下記範囲内の「2のべき乗値」の何れかにしてもよい。
 1 ≦ 所定数(m)
 所定数(m)≦ 総サンプリング数M /「基本サンプリング数」
 そして、本実施形態では、ダウンサンプリング部18でダウンサンプリングする際の所定値(m)を値8(=2)とすることで、LPF16から出力されるOFDM信号1波分のデータ(サンプリング数M:65536)を、1/8にダウンサンプリングし、そのダウンサンプリング後のデータ(サンプリング数:8192)を演算部50に出力することで、遅延プロファイル(延いてはフィルタ係数)を算出する。更に、アップサンプリング部30で、増幅部28から出力されるOFDM信号(サンプリング数:8192)を8倍することで、そのOFDM信号をダウンプリングされる前のデータ数となるよう、拡張する。
That is, the predetermined number (m) for determining the size of downsampling may be any one of “power-of-two values” within the following range.
1 ≤ predetermined number (m)
Predetermined number (m) ≤ total sampling number M / "basic sampling number"
In this embodiment, the predetermined value (m) when down-sampling by the down-sampling unit 18 is set to the value 8 (= 2 3 ), so that data for one wave of the OFDM signal output from the LPF 16 (sampling number) M: 65536) is down-sampled to 1/8, and the data after the down-sampling (sampling number: 8192) is output to the arithmetic unit 50, thereby calculating a delay profile (and thus a filter coefficient). Further, the upsampling unit 30 multiplies the OFDM signal (sampling number: 8192) output from the amplifying unit 28 by 8 so that the OFDM signal becomes the number of data before being down-pulled.
 なお、上記説明を要約すると、本実施形態の中継装置を構成する際には、下記のように設定してもよいことになる。
 ・総サンプリング数M、1波当たりのサンプリング数M′、ダウンサンプリングサイズ、アップサンプリングサイズ等は、すべて「2のべき乗値」とする。
To summarize the above description, when configuring the relay device of the present embodiment, the following settings may be made.
The total sampling number M, the sampling number M ′ per wave, the downsampling size, the upsampling size, etc. are all “power-of-two values”.
 ・受信する波数に応じた「2のべき乗値」からなる所定値jを決める。
 ・複数のチャンネルを受信するための総サンプリング数Mは、「基本サンプリング数」(例えば、213)から求めた1波当たりのサンプリング数M′(213×2)に、受信する波数に応じて決まる所定値jを乗じて決める。
A predetermined value j consisting of “a power of 2” corresponding to the received wave number is determined.
The total sampling number M for receiving a plurality of channels is equal to the sampling number M ′ (2 13 × 2 k ) per wave obtained from the “basic sampling number” (for example, 2 13 ). It is determined by multiplying a predetermined value j determined accordingly.
 ・ダウンサンプリングのサイズを決める所定数(m)は、算出した総サンプリング数Mを所定数(m)で割ったダウンサンプリング後のサンプリング数M″が、1波当たりに必要な「基本サンプリング数」213と等しいか、総サンプリング数Mを超えない「2のべき乗値」となるように決める。 -The predetermined number (m) for determining the size of downsampling is the "number of samplings M" after downsampling obtained by dividing the calculated total sampling number M by the predetermined number (m). 2 is determined to be “a power of 2” that is equal to 13 or does not exceed the total sampling number M.
 ・アップサンプリングは、ダウンサンプリングの所定数(m)と同じサイズで拡張する。
 但し、「基本サンプリング数」は、必ずしも「213」以上にする必要はなく、本発明が適用される中継装置による中継信号(OFDM信号)に応じて適宜設定すしてもよい。
Upsampling is expanded with the same size as a predetermined number (m) of downsampling.
However, the “basic sampling number” does not necessarily need to be “2 13 ” or more, and may be set as appropriate according to a relay signal (OFDM signal) by the relay apparatus to which the present invention is applied.
 以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内にて、種々の態様をとることができる。
 例えば、上記実施形態では、信号処理手段としてのチャンネル信号処理部10-1、10-2、・・・10-nは常時動作し、入力選択部42は、タイミング制御部46から周期的に出力される切替タイミング信号に同期して、演算部50へのOFDM信号の入力元をチャンネル信号処理部10-1~10-nの何れかに順次切り換える。出力選択部44は、その切り換えに同期して、FIRフィルタ20のフィルタ係数を演算部50にて算出されたフィルタ係数に更新するチャンネル信号処理部10-1~10-nを切り換える。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various aspect can be taken in the range which does not deviate from the summary of this invention.
For example, in the above embodiment, the channel signal processing units 10-1, 10-2,... 10-n as signal processing means always operate, and the input selection unit 42 periodically outputs from the timing control unit 46. In synchronization with the switching timing signal, the input source of the OFDM signal to the calculation unit 50 is sequentially switched to one of the channel signal processing units 10-1 to 10-n. In synchronization with the switching, the output selection unit 44 switches the channel signal processing units 10-1 to 10-n that update the filter coefficients of the FIR filter 20 to the filter coefficients calculated by the calculation unit 50.
 しかし、このようにすると、再送信すべきOFDM信号のチャンネル数が、チャンネル信号処理部10-1~10-nにて回り込み信号を除去可能なチャンネル数よりも少なく、回り込み信号の除去動作が不要なチャンネル信号処理部10が存在する場合に、その不要なチャンネル信号処理部10にて、回り込み信号の除去には不要な回り込み除去信号が生成されることになる。 However, in this case, the number of OFDM signal channels to be retransmitted is smaller than the number of channels from which the sneak signal can be removed by the channel signal processing units 10-1 to 10-n, and the sneak signal removal operation is unnecessary. In the case where the correct channel signal processing unit 10 exists, the unnecessary channel signal processing unit 10 generates a sneak removal signal that is unnecessary for the removal of the sneak signal.
 このため、図4に示すように、上記実施形態の回り込みキャンセラには、更に、対象チャンネル選択スイッチ62と、対象チャンネル設定部64とを設けるようにしても良い。対象チャンネル選択スイッチ62は、回り込み信号の除去対象となる対象チャンネルを外部操作により手動で指定するためのスイッチである。対象チャンネル設定部64は、対象チャンネル選択スイッチ62にて指定された対象チャンネルに応じて、チャンネル信号処理部10-1~10-n、入力選択部42,及び出力選択部44の動作を設定する。 For this reason, as shown in FIG. 4, the wraparound canceller of the above embodiment may further include a target channel selection switch 62 and a target channel setting unit 64. The target channel selection switch 62 is a switch for manually specifying a target channel from which a wraparound signal is to be removed by an external operation. The target channel setting unit 64 sets the operations of the channel signal processing units 10-1 to 10-n, the input selection unit 42, and the output selection unit 44 according to the target channel designated by the target channel selection switch 62. .
 対象チャンネル設定部64は、制御手段の一例に相当する。対象チャンネル設定部64は、入力手段の一例としての対象チャンネル選択スイッチ62を介して指定された対象チャンネルに応じて、その対象チャンネルに対応したチャンネル信号処理部10を選択的に動作させ、一方で、対象チャンネル以外のチャンネルに対応したチャンネル信号処理部10の動作を停止させる。また、対象チャンネル設定部64は、入力選択部42によるOFDM信号の取り込み元であり、且つ、出力選択部44がフィルタ係数を出力する対象であるチャンネル信号処理部10を、対象チャンネルに対応するチャンネル信号処理部10に制限する。 The target channel setting unit 64 corresponds to an example of a control unit. The target channel setting unit 64 selectively operates the channel signal processing unit 10 corresponding to the target channel according to the target channel specified via the target channel selection switch 62 as an example of the input unit, Then, the operation of the channel signal processing unit 10 corresponding to a channel other than the target channel is stopped. In addition, the target channel setting unit 64 sets the channel signal processing unit 10 that is the source from which the input selection unit 42 receives the OFDM signal and the output selection unit 44 outputs the filter coefficient to the channel corresponding to the target channel. The signal processing unit 10 is limited.
 この結果、図4に示す回り込みキャンセラによれば、対象チャンネル選択スイッチ62を介して指定された対象チャンネルに対応するチャンネル信号処理部10だけが動作することになる。この場合、対象チャンネルに対応しないチャンネル信号処理部10の動作が停止して消費電力が低減され、延いては、回り込みキャンセラの省エネ化を図ることができるようになる。 As a result, according to the wraparound canceller shown in FIG. 4, only the channel signal processing unit 10 corresponding to the target channel specified via the target channel selection switch 62 operates. In this case, the operation of the channel signal processing unit 10 that does not correspond to the target channel is stopped and the power consumption is reduced. As a result, the wraparound canceller can save energy.
 また、対象チャンネルに対応しないチャンネル信号処理部10の動作を停止させることにより、その動作を停止させたチャンネル信号処理部10からの不要なノイズの発生を抑制し、送信アンテナ4から送信される送信信号の信号品質を向上させることができる。 Further, by stopping the operation of the channel signal processing unit 10 that does not correspond to the target channel, generation of unnecessary noise from the channel signal processing unit 10 that has stopped the operation is suppressed, and transmission transmitted from the transmission antenna 4 is performed. The signal quality of the signal can be improved.
 また、対象チャンネル設定部70は、単に、対象チャンネルに対応するチャンネル信号処理部10を選択的に動作させるだけでなく、入力選択部42を介して演算部50に入力されるOFDM信号を、対象チャンネルのOFDM信号に制限する。よって、演算部50による対象チャンネルに対応する遅延プロファイルの算出周期、延いては、動作中のチャンネル信号処理部10での回り込み除去信号の算出周期を、必要最小限に短くすることができる。 Further, the target channel setting unit 70 not only selectively operates the channel signal processing unit 10 corresponding to the target channel, but also applies the OFDM signal input to the calculation unit 50 via the input selection unit 42 as a target. Restrict to channel OFDM signal. Therefore, the calculation cycle of the delay profile corresponding to the target channel by the calculation unit 50, that is, the calculation cycle of the wraparound removal signal in the channel signal processing unit 10 in operation can be shortened to the minimum necessary.
 このため、図4に示す回り込みキャンセラによれば、回り込み除去信号の更新頻度を高めて、回り込み信号の除去精度を向上することができる。
 なお、対象チャンネル設定部64は、各チャンネル信号処理部10を動作状態若しくは停止状態に切り換える機能を有し、その切り換えは、例えば、各チャンネル信号処理部10に動作用のクロックを供給するか否かを切り換えることにより行うようにしてもよい。或いは、各チャンネル信号処理部10への電源供給ラインの導通/遮断を切り換えるようにしてもよい。また、例えば、各チャンネル信号処理部10を構成している増幅器28のゲイン(利得)を、通常の利得調整されたゲインにするか、ゼロにするかを切り換えるようにしてもよい。
For this reason, according to the sneak canceller shown in FIG. 4, the update frequency of the sneak removal signal can be increased to improve the sneak signal removal accuracy.
Note that the target channel setting unit 64 has a function of switching each channel signal processing unit 10 to an operating state or a stopped state. For example, whether or not to supply an operation clock to each channel signal processing unit 10 You may make it carry out by switching. Alternatively, conduction / cutoff of the power supply line to each channel signal processing unit 10 may be switched. Further, for example, the gain (gain) of the amplifier 28 constituting each channel signal processing unit 10 may be switched between a normal gain adjusted gain and zero.
 一方、例えば、上記実施形態では、各チャンネル信号処理部10や演算部50での演算負荷を軽減するため、ダウンサンプリング部18及びアップサンプリング部30を設けるものとして説明したが、ダウンサンプリング部18及びアップサンプリング部30は必ずしも設ける必要はない。 On the other hand, for example, in the embodiment described above, the downsampling unit 18 and the upsampling unit 30 are provided in order to reduce the calculation load in each channel signal processing unit 10 and the calculation unit 50. The upsampling unit 30 is not necessarily provided.
 また、例えば、上記実施形態では、各チャンネル共通の演算部50にて、各チャンネルのOFDM信号から遅延プロファイルを算出するために、各演算部50には、離散フーリエ変換部52、伝達関数算出部54、逆数算出部56及び逆離散フーリエ変換部58を設けるものとして説明したが、遅延プロファイルの算出方法としては、従来から各種方法が知られているので、遅延プロファイル算出手段は、それらの方法を適宜選択して構成してもよい。 Further, for example, in the above-described embodiment, in order to calculate the delay profile from the OFDM signal of each channel by the calculation unit 50 common to each channel, each calculation unit 50 includes a discrete Fourier transform unit 52, a transfer function calculation unit. 54, the reciprocal number calculation unit 56 and the inverse discrete Fourier transform unit 58 have been described. However, since various methods are conventionally known as delay profile calculation methods, the delay profile calculation unit uses those methods. You may select suitably and may comprise.
 また上記実施形態では、各チャンネル信号処理部10には、LPF24を通過した回り込み信号除去後のOFDM信号を一定レベルまで増幅する増幅部28を設けるものとして説明したが、この増幅部28は、ミキサ部34にて周波数変換されたOFDM信号を増幅するよう、ミキサ部34と混合部40との間に設けるようにしてもよい。 In the above-described embodiment, each channel signal processing unit 10 has been described as including an amplification unit 28 that amplifies the OFDM signal after removal of the sneak signal that has passed through the LPF 24 to a certain level. It may be provided between the mixer unit 34 and the mixing unit 40 so as to amplify the OFDM signal frequency-converted by the unit 34.
 また更に、上記実施形態では、FIRフィルタ20及び演算部50には、LPF24を通過した回り込み信号除去後のOFDM信号を入力することで、キャンセル信号の生成、遅延プロファイル及びフィルタ係数の算出、を行うものとして説明したが、例えば、LPF16を通過し、ダウンサンプリング部18でダウンサンプリングされたOFDM信号を、FIRフィルタ20及び演算部50に入力するようにしても、キャンセル信号の生成、遅延プロファイル及びフィルタ係数の算出、を行うことはできる。 Furthermore, in the above embodiment, the cancellation signal is generated and the delay profile and the filter coefficient are calculated by inputting the OFDM signal after removal of the sneak signal that has passed through the LPF 24 to the FIR filter 20 and the calculation unit 50. As described above, for example, even if the OFDM signal that has passed through the LPF 16 and is down-sampled by the down-sampling unit 18 is input to the FIR filter 20 and the calculation unit 50, the generation of the cancellation signal, the delay profile, and the filter Coefficients can be calculated.

Claims (6)

  1.  多チャンネルのOFDM信号を受信アンテナにて受信し、該受信信号を送信アンテナから再送信する中継装置において、前記送信アンテナからの送信電波が前記受信アンテナに回り込むことにより前記受信信号に重畳された回り込み信号を除去する回り込みキャンセラであって、
     前記受信アンテナにて受信された各チャンネルのOFDM信号を、それぞれ、全チャンネル共通の特定周波数に周波数変換すると共に、該周波数変換後の特定周波数のOFDM信号を抽出する複数の信号抽出手段と、
     前記複数の信号抽出手段にて抽出された各チャンネルのOFDM信号を時分割で順次取り込み、その取り込んだチャンネル毎に、前記送信アンテナから送信されたOFDM信号の遅延プロファイルを算出する、一つの遅延プロファイル算出手段と、
     該遅延プロファイル算出手段にてチャンネル毎に算出された遅延プロファイルに基づき、前記受信アンテナにて受信された各チャンネルのOFDM信号に対する回り込み除去信号を各々生成する複数の除去信号生成手段と、
     前記複数の除去信号生成手段にて生成された各チャンネルの回り込み除去信号を用いて、前記複数の信号抽出手段にて抽出された各チャンネルのOFDM信号から回り込み信号を除去する複数の回り込み除去手段と、
     前記複数の回り込み除去手段にて回り込み信号が除去されたOFDM信号を、前記各信号抽出手段にて周波数変換される前の元の周波数に周波数変換する複数の周波数変換手段と、
     該複数の周波数変換手段にて周波数変換された各チャンネルのOFDM信号を混合して前記送信アンテナ側に出力する混合手段と、
     前記複数の回り込み除去手段にて回り込み信号が除去されたOFDM信号、若しくは、前記複数の周波数変換手段にて周波数変換され前記混合手段に入力されるOFDM信号、の信号レベルを、それぞれ、所定の送信レベルに調整する複数のレベル調整手段と、
     を備えたことを特徴とする回り込みキャンセラ。
    In a relay apparatus that receives a multi-channel OFDM signal at a receiving antenna and retransmits the received signal from a transmitting antenna, a wraparound that is superimposed on the received signal when a transmission radio wave from the transmitting antenna wraps around the receiving antenna A wraparound canceller that removes the signal,
    A plurality of signal extraction means for frequency-converting the OFDM signal of each channel received by the receiving antenna to a specific frequency common to all channels, and extracting the OFDM signal of the specific frequency after the frequency conversion;
    One delay profile that sequentially captures OFDM signals of each channel extracted by the plurality of signal extraction means in a time division manner and calculates a delay profile of the OFDM signal transmitted from the transmission antenna for each of the captured channels. A calculation means;
    A plurality of removal signal generation means each for generating a wraparound removal signal for the OFDM signal of each channel received by the reception antenna based on the delay profile calculated for each channel by the delay profile calculation means;
    A plurality of wraparound removal means for removing a wraparound signal from the OFDM signals of each channel extracted by the plurality of signal extraction means, using the wraparound removal signals of each channel generated by the plurality of removal signal generation means; ,
    A plurality of frequency conversion means for frequency-converting the OFDM signal from which the sneak signal has been removed by the plurality of wraparound removal means to the original frequency before being frequency-converted by the signal extraction means;
    Mixing means for mixing the OFDM signals of the respective channels frequency-converted by the plurality of frequency converting means and outputting them to the transmitting antenna side;
    The signal levels of the OFDM signal from which the sneak signal has been removed by the plurality of sneak removal means or the OFDM signal that has been frequency-converted by the plurality of frequency conversion means and input to the mixing means are respectively transmitted in a predetermined manner. A plurality of level adjusting means for adjusting to the level;
    A wraparound canceller characterized by comprising:
  2.  前記遅延プロファイル算出手段は、
     前記各信号抽出手段にて抽出されたOFDM信号を離散フーリエ変換することで当該OFDM信号の周波数軸上のスペクトルを抽出する離散フーリエ変換部と、
     該離散フーリエ変換部にて抽出されたスペクトルに基づき前記送信アンテナから前記受信アンテナに至る伝送路の伝達関数を算出する伝達関数算出部と、
     該伝達関数算出部にて算出された伝達関数の逆数を算出する逆数算出部と、
     該逆数算出部からの出力を逆離散フーリエ変換することで前記遅延プロファイルを導出する逆離散フーリエ変換部と、
     を備えたことを特徴とする請求項1に記載の回り込みキャンセラ。
    The delay profile calculation means includes:
    A discrete Fourier transform unit for extracting a spectrum on the frequency axis of the OFDM signal by performing a discrete Fourier transform on the OFDM signal extracted by each of the signal extraction units;
    A transfer function calculating unit that calculates a transfer function of a transmission path from the transmitting antenna to the receiving antenna based on the spectrum extracted by the discrete Fourier transform unit;
    An inverse calculation unit for calculating the inverse of the transfer function calculated by the transfer function calculation unit;
    An inverse discrete Fourier transform unit that derives the delay profile by performing an inverse discrete Fourier transform on an output from the inverse number calculation unit;
    The wraparound canceller according to claim 1, comprising:
  3.  回り込み信号の除去対象となる対象チャンネルを外部から指定するための入力手段と、
     前記信号抽出手段、前記除去信号生成手段、前記回り込み除去手段、前記周波数変換手段、及び、前記レベル調整手段によりチャンネル毎に構成される複数の信号処理手段の内、前記入力手段を介して指定された対象チャンネルに対応する信号処理手段を選択的に動作させ、該対象チャンネル以外のチャンネルに対応した信号処理手段の動作を停止させると共に、前記遅延プロファイル算出手段が時分割で順次取り込み前記遅延プロファイルを算出するOFDM信号を、前記入力手段を介して指定された対象チャンネルのOFDM信号に制限する制御手段と、
     を備えたことを特徴とする請求項1に記載の回り込みキャンセラ。
    An input means for externally designating a target channel from which a wraparound signal is to be removed;
    The signal extraction means, the removal signal generation means, the wraparound removal means, the frequency conversion means, and the level adjustment means are designated via the input means among a plurality of signal processing means configured for each channel. The signal processing unit corresponding to the target channel is selectively operated, the operation of the signal processing unit corresponding to the channel other than the target channel is stopped, and the delay profile calculation unit sequentially captures the delay profile in time division. Control means for limiting the OFDM signal to be calculated to the OFDM signal of the target channel designated via the input means;
    The wraparound canceller according to claim 1, comprising:
  4.  多チャンネルのOFDM信号を受信アンテナにて受信し、該受信信号を送信アンテナから再送信する中継装置において、
     前記送信アンテナからの送信電波が前記受信アンテナに回り込むことにより前記受信信号に重畳された回り込み信号を除去する回り込みキャンセラとして、
     前記受信アンテナにて受信された各チャンネルのOFDM信号を、それぞれ、全チャンネル共通の特定周波数に周波数変換すると共に、該周波数変換後の特定周波数のOFDM信号を抽出する複数の信号抽出手段と、
     前記複数の信号抽出手段にて抽出された各チャンネルのOFDM信号を時分割で順次取り込み、その取り込んだチャンネル毎に、前記送信アンテナから送信されたOFDM信号の遅延プロファイルを算出する、一つの遅延プロファイル算出手段と、
     該遅延プロファイル算出手段にてチャンネル毎に算出された遅延プロファイルに基づき、前記受信アンテナにて受信された各チャンネルのOFDM信号に対する回り込み除去信号を各々生成する複数の除去信号生成手段と、
     前記複数の除去信号生成手段にて生成された各チャンネルの回り込み除去信号を用いて、
      前記複数の信号抽出手段にて抽出された各チャンネルのOFDM信号から回り込み信号を除去する複数の回り込み除去手段と、
     前記複数の回り込み除去手段にて回り込み信号が除去されたOFDM信号を、前記各信号抽出手段にて周波数変換される前の元の周波数に周波数変換する複数の周波数変換手段と、
     該複数の周波数変換手段にて周波数変換された各チャンネルのOFDM信号を混合して前記送信アンテナ側に出力する混合手段と、
     前記複数の回り込み除去手段にて回り込み信号が除去されたOFDM信号、若しくは、前記複数の周波数変換手段にて周波数変換され前記混合手段に入力されるOFDM信号、の信号レベルを、それぞれ、所定の送信レベルに調整する複数のレベル調整手段と、を備えた回り込みキャンセラを備えたことを特徴とする中継装置。
    In a relay apparatus that receives a multi-channel OFDM signal at a receiving antenna and retransmits the received signal from a transmitting antenna
    As a sneak canceller that removes a sneak signal superimposed on the received signal by sneaking a transmission radio wave from the transmitting antenna to the receiving antenna,
    A plurality of signal extraction means for frequency-converting the OFDM signal of each channel received by the receiving antenna to a specific frequency common to all channels, and extracting the OFDM signal of the specific frequency after the frequency conversion;
    One delay profile that sequentially captures OFDM signals of each channel extracted by the plurality of signal extraction means in a time division manner and calculates a delay profile of the OFDM signal transmitted from the transmission antenna for each of the captured channels. A calculation means;
    A plurality of removal signal generation means each for generating a wraparound removal signal for the OFDM signal of each channel received by the reception antenna based on the delay profile calculated for each channel by the delay profile calculation means;
    Using the wraparound removal signal of each channel generated by the plurality of removal signal generation means,
    A plurality of wraparound removing means for removing a wraparound signal from the OFDM signal of each channel extracted by the plurality of signal extracting means;
    A plurality of frequency conversion means for frequency-converting the OFDM signal from which the sneak signal has been removed by the plurality of wraparound removal means to the original frequency before being frequency-converted by the signal extraction means;
    Mixing means for mixing the OFDM signals of the respective channels frequency-converted by the plurality of frequency converting means and outputting them to the transmitting antenna side;
    The signal levels of the OFDM signal from which the sneak signal has been removed by the plurality of sneak removal means or the OFDM signal that has been frequency-converted by the plurality of frequency conversion means and input to the mixing means are respectively transmitted in a predetermined manner. A relay apparatus comprising a wraparound canceller comprising a plurality of level adjusting means for adjusting to a level.
  5.  前記遅延プロファイル算出手段は、
     前記各信号抽出手段にて抽出されたOFDM信号を離散フーリエ変換することで当該OFDM信号の周波数軸上のスペクトルを抽出する離散フーリエ変換部と、
     該離散フーリエ変換部にて抽出されたスペクトルに基づき前記送信アンテナから前記受信アンテナに至る伝送路の伝達関数を算出する伝達関数算出部と、
     該伝達関数算出部にて算出された伝達関数の逆数を算出する逆数算出部と、
     該逆数算出部からの出力を逆離散フーリエ変換することで前記遅延プロファイルを導出する逆離散フーリエ変換部と、
     を備えたことを特徴とする請求項4に記載の中継装置。
    The delay profile calculation means includes:
    A discrete Fourier transform unit for extracting a spectrum on the frequency axis of the OFDM signal by performing a discrete Fourier transform on the OFDM signal extracted by each of the signal extraction units;
    A transfer function calculating unit that calculates a transfer function of a transmission path from the transmitting antenna to the receiving antenna based on the spectrum extracted by the discrete Fourier transform unit;
    An inverse calculation unit for calculating the inverse of the transfer function calculated by the transfer function calculation unit;
    An inverse discrete Fourier transform unit that derives the delay profile by performing an inverse discrete Fourier transform on an output from the inverse number calculation unit;
    The relay apparatus according to claim 4, further comprising:
  6.  前記回り込みキャンセラが、
     回り込み信号の除去対象となる対象チャンネルを外部から指定するための入力手段と、
     前記信号抽出手段、前記除去信号生成手段、前記回り込み除去手段、前記周波数変換手段、及び、前記レベル調整手段によりチャンネル毎に構成される複数の信号処理手段の内、前記入力手段を介して指定された対象チャンネルに対応する信号処理手段を選択的に動作させ、該対象チャンネル以外のチャンネルに対応した信号処理手段の動作を停止させると共に、前記遅延プロファイル算出手段が時分割で順次取り込み前記遅延プロファイルを算出するOFDM信号を、前記入力手段を介して指定された対象チャンネルのOFDM信号に制限する制御手段と、を備えたことを特徴とする請求項4に記載の中継装置。
    The wraparound canceller is
    An input means for externally designating a target channel from which a wraparound signal is to be removed;
    The signal extraction means, the removal signal generation means, the wraparound removal means, the frequency conversion means, and the level adjustment means are designated via the input means among a plurality of signal processing means configured for each channel. The signal processing unit corresponding to the target channel is selectively operated, the operation of the signal processing unit corresponding to the channel other than the target channel is stopped, and the delay profile calculation unit sequentially captures the delay profile in time division. The relay apparatus according to claim 4, further comprising: a control unit that limits an OFDM signal to be calculated to an OFDM signal of a target channel designated through the input unit.
PCT/JP2011/056383 2010-03-17 2011-03-17 Wraparound canceller and relay device WO2011115208A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010060740 2010-03-17
JP2010-060740 2010-03-17
JP2010-244448 2010-10-29
JP2010244448A JP5591065B2 (en) 2010-03-17 2010-10-29 Wraparound canceller and relay device

Publications (1)

Publication Number Publication Date
WO2011115208A1 true WO2011115208A1 (en) 2011-09-22

Family

ID=44649291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056383 WO2011115208A1 (en) 2010-03-17 2011-03-17 Wraparound canceller and relay device

Country Status (2)

Country Link
JP (1) JP5591065B2 (en)
WO (1) WO2011115208A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9503134B2 (en) * 2014-04-11 2016-11-22 Qualcomm Incorporated Methods and apparatus for adapting transmitter configuration for efficient concurrent transmission and radar detection through adaptive self-interference cancellation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261454A (en) * 1998-03-09 1999-09-24 Nec Corp Multichannel echo canceler
JP2002271295A (en) * 2001-03-13 2002-09-20 Japan Radio Co Ltd Transmission path characteristic measuring device and wraparound canceller
JP2008078806A (en) * 2006-09-19 2008-04-03 Toshiba Corp Broadcast wave relay apparatus
JP2008124724A (en) * 2006-11-10 2008-05-29 Toshiba Corp Separation type relay broadcast unit
JP2009100068A (en) * 2007-10-15 2009-05-07 Japan Radio Co Ltd Control device and relay device using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3942781B2 (en) * 1999-12-27 2007-07-11 日本放送協会 Wraparound canceller
JP2011124764A (en) * 2009-12-10 2011-06-23 Maspro Denkoh Corp Coupling loop interference canceler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261454A (en) * 1998-03-09 1999-09-24 Nec Corp Multichannel echo canceler
JP2002271295A (en) * 2001-03-13 2002-09-20 Japan Radio Co Ltd Transmission path characteristic measuring device and wraparound canceller
JP2008078806A (en) * 2006-09-19 2008-04-03 Toshiba Corp Broadcast wave relay apparatus
JP2008124724A (en) * 2006-11-10 2008-05-29 Toshiba Corp Separation type relay broadcast unit
JP2009100068A (en) * 2007-10-15 2009-05-07 Japan Radio Co Ltd Control device and relay device using same

Also Published As

Publication number Publication date
JP2011217346A (en) 2011-10-27
JP5591065B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5544359B2 (en) Nonlinear distortion compensation receiver and nonlinear distortion compensation method
US8588711B2 (en) Transmission apparatus and distortion compensation method
JP2006148854A (en) Multicarrier receiver and transmitter with delay correcting function
US20140009318A1 (en) Method and system for time interleaved analog-to-digital converter timing mismatch estimation and compensation
JPWO2008126356A1 (en) OFDM receiving apparatus and OFDM receiving method
JP3513066B2 (en) OFDM transmission signal repeater and receiver
US8948325B1 (en) Method and apparatus for digital post-distortion compensation of signal non-linearities
JP2010183171A (en) Receiver
JP4649302B2 (en) Distortion compensator
WO2011115208A1 (en) Wraparound canceller and relay device
JP2014200019A (en) Interference wave elimination apparatus and interference wave elimination method
JP2017135555A (en) Radio equipment and distortion compensation method
JP2009100068A (en) Control device and relay device using same
JP4405439B2 (en) Broadcast wave repeater
JP2008042720A (en) Radio equipment
JP4627230B2 (en) Signal processing circuit
JP6110650B2 (en) Wraparound canceller and relay device
JP5049730B2 (en) Relay device
JP4033374B2 (en) OFDM signal relay device
JP2011124764A (en) Coupling loop interference canceler
JP6247024B2 (en) Relay device and relay system
JP5631158B2 (en) Delay wave canceller and relay device
WO2011046209A1 (en) Wraparound canceller and relaying apparatus
JP5360662B2 (en) Wireless device
JP4116591B2 (en) Digital receiver and receiving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756392

Country of ref document: EP

Kind code of ref document: A1