JP4649302B2 - Distortion compensator - Google Patents

Distortion compensator Download PDF

Info

Publication number
JP4649302B2
JP4649302B2 JP2005269256A JP2005269256A JP4649302B2 JP 4649302 B2 JP4649302 B2 JP 4649302B2 JP 2005269256 A JP2005269256 A JP 2005269256A JP 2005269256 A JP2005269256 A JP 2005269256A JP 4649302 B2 JP4649302 B2 JP 4649302B2
Authority
JP
Japan
Prior art keywords
distortion
compensation
linear
linear distortion
nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005269256A
Other languages
Japanese (ja)
Other versions
JP2007082015A (en
Inventor
卓 三橋
進 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005269256A priority Critical patent/JP4649302B2/en
Publication of JP2007082015A publication Critical patent/JP2007082015A/en
Application granted granted Critical
Publication of JP4649302B2 publication Critical patent/JP4649302B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、中波、短波、地上波・衛星・ケーブルテレビ等の伝送装置に用いられ、線形・非線形を問わず歪を検出し補償する歪補償器に関する。   The present invention relates to a distortion compensator that is used in transmission devices such as medium wave, short wave, terrestrial / satellite / cable television, and detects and compensates for distortion regardless of linear or non-linear.

周知のように、地上デジタル放送システムはOFDM方式を採用する。このOFDM方式では、送信機の線形性が重要である。従来では、送信機を構成する、電力増幅器で主に生じる非線形歪と、帯域制限用の出力フィルタで主に生じる線形歪を、別々の歪補償器にて補償していた。   As is well known, the terrestrial digital broadcasting system employs the OFDM system. In this OFDM system, the linearity of the transmitter is important. Conventionally, non-linear distortion mainly generated in a power amplifier constituting a transmitter and linear distortion mainly generated in an output filter for band limitation are compensated by separate distortion compensators.

尚、非線形歪補償器については、特許文献1、2にその例が記載されている。
特開2003−152459号公報 特開2004−112218号公報
Examples of the nonlinear distortion compensator are described in Patent Documents 1 and 2.
Japanese Patent Laid-Open No. 2003-152459 JP 2004-112218 A

以上のように、従来、非線形歪と線形歪が同時に発生する状況では、別々に歪補償器を用意して対処していたが、近年、回路規模の削減・コスト低減を目的として、両方の歪補償回路の共用化が要望されている。   As described above, in the past, in the situation where nonlinear distortion and linear distortion occurred at the same time, a distortion compensator was prepared separately, but in recent years both distortions have been developed for the purpose of circuit scale reduction and cost reduction. There is a demand for sharing the compensation circuit.

本発明は、上記事情を考慮してなされたもので、線形歪補償・非線形歪補償それぞれの回路を共用化して回路規模を削減し、コスト低減を実現することのできる歪補償器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a distortion compensator capable of reducing the circuit scale and realizing cost reduction by sharing circuits for linear distortion compensation and nonlinear distortion compensation. With the goal.

上記の目的を達成するために、本発明は、非線形歪を生じる第1回路装置、線形歪を生じる第2回路装置で順次処理される伝送信号に対してそれぞれの歪補償を行う歪補償器において、前記伝送信号を入力して線形歪を補償する線形歪補償手段と、前記線形歪の補償出力を入力して非線形歪を補償する非線形歪補償手段と、前記非線形歪の補償出力を前記第1回路装置の入力形式に変換する出力変換手段と、前記第1及び第2回路装置それぞれの出力を選択的に入力する入力切替手段と、前記入力切替手段の選択入力と前記伝送信号とのタイミング及び周波数を一致させる入力変換手段と、前記入力変換手段で得られる選択入力と伝送信号とから線形歪を検出し、前記線形歪補償手段に出力する線形歪検出手段と、前記入力変換手段で得られる選択入力と伝送信号とから非線形歪を検出し、前記非線形歪補償手段に出力する非線形歪検出手段とを具備して構成される。   In order to achieve the above object, the present invention provides a distortion compensator that performs distortion compensation on transmission signals sequentially processed by a first circuit device that generates nonlinear distortion and a second circuit device that generates linear distortion. , Linear distortion compensation means for receiving the transmission signal to compensate for linear distortion, nonlinear distortion compensation means for inputting the linear distortion compensation output to compensate for nonlinear distortion, and the nonlinear distortion compensation output to the first Output conversion means for converting into the input format of the circuit device, input switching means for selectively inputting the outputs of the first and second circuit devices, timing of the selection input of the input switching means and the transmission signal, and Input conversion means for matching frequencies, linear distortion detection means for detecting linear distortion from the selected input and transmission signal obtained by the input conversion means and outputting to the linear distortion compensation means, and obtained by the input conversion means Detecting a nonlinear distortion and a selection input and the transmission signal, and comprises a nonlinear distortion detecting means for outputting to said nonlinear distortion compensating means.

上記した発明によれば、線形歪・非線形歪を同時に補償することのできる歪補償器を提供することができる。   According to the above-described invention, it is possible to provide a distortion compensator capable of simultaneously compensating for linear distortion and nonlinear distortion.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1はOFDM方式を用いた地上デジタル放送システムの送信機に本発明に係る歪補償器を適用した場合の一実施形態を示すブロック図である。   FIG. 1 is a block diagram showing an embodiment in which a distortion compensator according to the present invention is applied to a transmitter of a digital terrestrial broadcasting system using the OFDM method.

図1において、11は被伝送IF信号(例えばISDB−T・ATSC・DVB−T)を入力して後段回路の線形・非線形歪を補償してRF帯にコンバートする歪補償器(励振器ともいう)、12は歪補償器11の出力信号を電力増幅するためのパワーアンプ(PA)、13はパワーアンプ12から出力される送信信号中の隣接チャンネルの混信、スプリアスを除外してアンテナ(図示せず)へ送出するための出力バンドパスフィルタ(BPF)である。   In FIG. 1, reference numeral 11 denotes a distortion compensator (also referred to as an exciter) that receives a transmitted IF signal (for example, ISDB-T / ATSC / DVB-T), compensates for linear / nonlinear distortion of a subsequent circuit, and converts it to an RF band. ), 12 is a power amplifier (PA) for amplifying the output signal of the distortion compensator 11, and 13 is an antenna (not shown) that excludes interference and spurious of adjacent channels in the transmission signal output from the power amplifier 12. Output band-pass filter (BPF) for transmission to the network.

上記歪補償器11において、端子IF INから入力されるIF信号は、第1A/D変換回路111にてクロック生成回路11Jで生成されるサンプリング・クロック(CLK)によりアナログからデジタルに変換され、第1線形歪補償回路112及び遅延回路11Eに送られる。   In the distortion compensator 11, the IF signal input from the terminal IF IN is converted from analog to digital by the sampling clock (CLK) generated by the clock generation circuit 11 J in the first A / D conversion circuit 111, 1 is sent to the linear distortion compensation circuit 112 and the delay circuit 11E.

第1線形歪補償回路112は、A/D変換出力を本線信号として、線形歪検出回路11Fの検出出力に基づいて出力BPF13の線形歪補償を行う。その出力信号は非線形歪補償回路113に送られる。   The first linear distortion compensation circuit 112 performs linear distortion compensation of the output BPF 13 based on the detection output of the linear distortion detection circuit 11F using the A / D conversion output as a main line signal. The output signal is sent to the nonlinear distortion compensation circuit 113.

非線形歪補償回路113は、第1線形補償出力を本線信号として、非線形歪検出回路11Gの検出出力に基づいてPA12の非線形補償を行う。その出力信号は第2線形歪補償回路114に送られる。   The nonlinear distortion compensation circuit 113 performs nonlinear compensation of the PA 12 based on the detection output of the nonlinear distortion detection circuit 11G using the first linear compensation output as the main line signal. The output signal is sent to the second linear distortion compensation circuit 114.

第2線形歪補償回路114は、非線形歪補償出力を本線信号として、線形歪検出回路11Fの検出出力に基づいてアップコンバータ(U/C)117及びPA12の線形歪補償を行う。出力信号は第1アッテネータ(ATT1)115に送られる。   The second linear distortion compensation circuit 114 performs linear distortion compensation of the up-converter (U / C) 117 and the PA 12 based on the detection output of the linear distortion detection circuit 11F using the nonlinear distortion compensation output as a main line signal. The output signal is sent to the first attenuator (ATT1) 115.

第1アッテネータ115は、第2線形歪補償出力を本線信号として、無補償時の信号振幅を可変し適正なレベルに調整する。その出力信号はD/A変換回路116に送られ、上記サンプリング・クロックCLKによりアナログ信号に変換される。その出力信号はアップコンバータ(U/C)117に出力する。   The first attenuator 115 uses the second linear distortion compensation output as the main line signal, and varies the signal amplitude at the time of no compensation to adjust it to an appropriate level. The output signal is sent to the D / A conversion circuit 116 and converted into an analog signal by the sampling clock CLK. The output signal is output to an up converter (U / C) 117.

アップコンバータ117は、アナログ信号に変換された出力を本線入力信号として、IF帯信号を位相同期発振回路(PLO)11Iで生成されるローカル信号LOに基づいて送信周波数帯(RF帯)に周波数変換するもので、その出力信号は端子RF OUTからPA12に送られ、出力BPF13を介してアンテナに送られる。   The up-converter 117 converts the output converted into the analog signal into the main line input signal, and converts the IF band signal into the transmission frequency band (RF band) based on the local signal LO generated by the phase-locked oscillation circuit (PLO) 11I. The output signal is sent from the terminal RF OUT to the PA 12 and sent to the antenna via the output BPF 13.

上記PA12の出力、BPF13の出力は、いずれも本線から分配されて、それぞれ歪補償器11の入力端子RF IN1,RF IN2にフィードバックされる。   Both the output of the PA 12 and the output of the BPF 13 are distributed from the main line and fed back to the input terminals RF IN1 and RF IN2 of the distortion compensator 11, respectively.

歪補償器11のRF IN1入力は、第2アッテネータ(ATT2)118に送られる。この第2アッテネータ118は非線形歪補償時の信号振幅を可変して適正なレベルに調整するもので、その出力信号は切替器11Aに送られる。また、RF IN2入力は、第3アッテネータ(ATT3)119に送られる。この第3アッテネータ119は、線形歪補償時の信号振幅を可変し、適正なレベルに調整するもので、その出力信号は切替器11Aに送られる。   The RF IN1 input of the distortion compensator 11 is sent to the second attenuator (ATT2) 118. The second attenuator 118 adjusts the signal amplitude at the time of nonlinear distortion compensation to an appropriate level, and its output signal is sent to the switch 11A. Also, the RF IN2 input is sent to the third attenuator (ATT3) 119. The third attenuator 119 varies the signal amplitude at the time of linear distortion compensation and adjusts it to an appropriate level, and its output signal is sent to the switch 11A.

切替器11Aは、アッテネータ118,119の出力信号を制御回路11Hからの制御信号に従って選択的に切り替え出力するもので、その切替によって選択された信号はダウンコンバータ(D/C)11Bに送られる。このダウンコンバータ11Bは、切替器11Aの出力を本線入力信号として、RF(送信周波数)帯信号をローカル信号LOと混合してIF(中間周波数)帯信号に周波数変換するもので、その出力信号は第2A/D変換回路11Cに送られる。   The switch 11A selectively outputs the output signals of the attenuators 118 and 119 according to the control signal from the control circuit 11H, and the signal selected by the switching is sent to the down converter (D / C) 11B. The down converter 11B uses the output of the switch 11A as a main line input signal, mixes the RF (transmission frequency) band signal with the local signal LO, and converts the frequency into an IF (intermediate frequency) band signal. It is sent to the second A / D conversion circuit 11C.

第2A/D変換回路11Cは、ダウンコンバータ11Bの出力を本線信号として、サンプリング・クロックCLKに基づいてA/D変換するもので、その出力は温度補償回路11Dに送られる。   The second A / D conversion circuit 11C performs A / D conversion based on the sampling clock CLK using the output of the down converter 11B as a main line signal, and the output is sent to the temperature compensation circuit 11D.

温度補償回路11Dは、ダウンコンバータ11B、A/D変換回路11Cの温度変化による出力変動を補償するためのものである。このダウンコンバータ系統の温度変動は放送波の出力変動につながるため、精密な温度補償が必要である。その出力信号は線形歪検出回路11Fと非線形歪検出回路11Gに送られる。   The temperature compensation circuit 11D is for compensating output fluctuations due to temperature changes of the down converter 11B and the A / D conversion circuit 11C. Since temperature fluctuations in this downconverter system lead to fluctuations in the output of broadcast waves, precise temperature compensation is required. The output signal is sent to the linear distortion detection circuit 11F and the nonlinear distortion detection circuit 11G.

一方、上記遅延回路11Eは、RF IN1,RF IN2信号を基準として、IF IN信号の遅延時間合わせを行う。すなわち、RF IN1信号とRF IN2信号は遅延時間差を持つため、遅延回路11Eにより制御する。   On the other hand, the delay circuit 11E adjusts the delay time of the IF IN signal with reference to the RF IN1 and RF IN2 signals. That is, since the RF IN1 signal and the RF IN2 signal have a delay time difference, they are controlled by the delay circuit 11E.

線形歪検出回路11Fは、遅延回路11E、温度補償回路11Dの各出力を入力とし、IF IN信号を基準信号として、RF IN2信号から出力BPF13の線形歪を、LMSアルゴリズム、FFT+IFFTなどの手法を用いて検出する。この線形歪検出回路11Fは制御回路11Hからの制御により、線形歪検出を停止し、歪値を保持する。   The linear distortion detection circuit 11F uses the outputs of the delay circuit 11E and the temperature compensation circuit 11D as inputs, uses the IF IN signal as a reference signal, uses the RF IN2 signal to output the linear distortion of the output BPF 13, and uses a technique such as an LMS algorithm or FFT + IFFT. To detect. This linear distortion detection circuit 11F stops linear distortion detection and holds the distortion value under the control of the control circuit 11H.

ここで、線形歪検出には、LMS(Least mean Square)アルゴリズムがよく用いられる。このLMSアルゴリズムは、自分の出力信号をフィードバックすることにより、誤差成分を算出するというものである。但し、ここでは送信機の帯域制限された出力信号をLMSへフィードバックしなければならないため、そのままでは対応できない。そこで、LMSを用いる場合には、フィードバックのピーク成分を検出し、その検出タイミングでLMS自身のフィードバックを停止させて線形歪検出処理を停止させる。これにより、LMSの誤差検出精度の低下を抑制することができる。   Here, an LMS (Least Mean Square) algorithm is often used for linear distortion detection. This LMS algorithm calculates an error component by feeding back its own output signal. However, since the transmitter's band-limited output signal must be fed back to the LMS here, it cannot be handled as it is. Therefore, when using the LMS, the peak component of the feedback is detected, and the feedback of the LMS itself is stopped at the detection timing to stop the linear distortion detection process. Thereby, the fall of the error detection accuracy of LMS can be suppressed.

非線形歪検出回路11Gは、遅延回路11E、温度補償回路11Dの各出力を入力とし、例えば特許文献1などに示すアルゴリズムを用いて、IF IN信号を基準信号として、RF IN1信号から非線形歪の検出を行う。また、制御回路11Hからの制御により、非線形歪検出を停止し、歪値を保持する。   The nonlinear distortion detection circuit 11G receives the outputs of the delay circuit 11E and the temperature compensation circuit 11D as inputs, and detects the nonlinear distortion from the RF IN1 signal using the IF IN signal as a reference signal by using an algorithm shown in, for example, Patent Document 1. I do. Further, the nonlinear distortion detection is stopped by the control from the control circuit 11H, and the distortion value is held.

制御回路11Hは、線形歪検出・補償と非線形歪検出・補償との切り替え制御を行う。尚、RF IN2入力にて非線形歪検出・補償をすると、補償器出力が劣化するものの、劣化が許容できるものであるならば、RF IN2入力にて非線形歪検出・補償が可能である。   The control circuit 11H performs switching control between linear distortion detection / compensation and nonlinear distortion detection / compensation. If nonlinear distortion detection / compensation is performed at the RF IN2 input, the compensator output deteriorates. However, if the degradation is acceptable, nonlinear distortion detection / compensation can be performed at the RF IN2 input.

また、上記制御回路11Hは、第1線形歪補償回路112、非線形歪補償回路113、第2線形歪補償回路114、切替器11A、線形歪検出回路11F、非線形歪検出回路11Gそれぞれに対して、電源投入時に初期化データをロードさせ、起動速度を向上する。   Further, the control circuit 11H is provided for each of the first linear distortion compensation circuit 112, the nonlinear distortion compensation circuit 113, the second linear distortion compensation circuit 114, the switch 11A, the linear distortion detection circuit 11F, and the nonlinear distortion detection circuit 11G. Load initialization data at power-on to improve startup speed.

位相同期発振回路(PLO)11Iは内部もしくは外部にもつ周波数基準信号にPLLをかけてローカル信号LOを生成する。また、クロック生成回路11Jは、TCXO(温度補償水晶発振器)により、A/D,D/A用のサンプリング・クロックCLKを生成する。   A phase-locked oscillation circuit (PLO) 11I generates a local signal LO by applying a PLL to an internal or external frequency reference signal. The clock generation circuit 11J generates a sampling clock CLK for A / D and D / A by TCXO (temperature compensated crystal oscillator).

上記構成において、制御回路11Hでの線形・非線形補償切替制御について説明する。   In the above configuration, linear / nonlinear compensation switching control in the control circuit 11H will be described.

図2は上記切替制御の処理フローを示すもので、まずステップS1で補償スタートが指示される(例えば電源立ち上げ時に指示)と、ステップS2でパワーアンプ12の内部に配置される温度センサから温度情報を入手し、ステップS3で温度変化量Δθ°を求め、ステップS4でこの温度変化量Δθ°が許容範囲内(閾値±TH)か否か判断する。許容範囲内ならば、ステップS5で非線形歪補償を優先して実行させ、続いてステップS6で線形歪補償も実行させる。一方、ステップS4で、許容範囲を超えている場合には、ステップS7で非線形補償のみを実行させる。以上のステップS2〜S7の処理をステップS8で補償オフの指示を受けるまで繰り返す。   FIG. 2 shows a processing flow of the switching control. First, when a compensation start is instructed in step S1 (for example, when power is turned on), a temperature is detected from a temperature sensor disposed in the power amplifier 12 in step S2. Information is obtained, a temperature change amount Δθ ° is obtained in step S3, and it is determined in step S4 whether the temperature change amount Δθ ° is within an allowable range (threshold value ± TH). If it is within the allowable range, the nonlinear distortion compensation is preferentially executed in step S5, and then linear distortion compensation is also executed in step S6. On the other hand, if the allowable range is exceeded in step S4, only nonlinear compensation is executed in step S7. The above steps S2 to S7 are repeated until a compensation off instruction is received in step S8.

すなわち、上記構成による歪補償器11では、非線形歪補償及び線形歪補償それぞれの共通部分を共用化し、パワーアンプ12の非線形歪補償を必要とする状況と出力BPF13の線形歪補償を必要とする状況を判断して、非線形歪補償と線形歪補償を選択的に切り替えて処理するようにしている。以上の処理は、通常3秒程度の間隔で実行するものとする。   That is, in the distortion compensator 11 having the above-described configuration, the common parts of the nonlinear distortion compensation and the linear distortion compensation are shared, and the situation where the nonlinear distortion compensation of the power amplifier 12 is required and the situation where the linear distortion compensation of the output BPF 13 is needed. Thus, processing is performed by selectively switching between nonlinear distortion compensation and linear distortion compensation. The above processing is normally executed at intervals of about 3 seconds.

したがって、上記構成によれば、非線形歪補償と線形歪補償それぞれの回路を性能に影響を与えることなく共用化しているので、回路規模を削減し、コスト低減を実現することができる。   Therefore, according to the above configuration, the circuits of the nonlinear distortion compensation and the linear distortion compensation are shared without affecting the performance, so that the circuit scale can be reduced and the cost can be reduced.

尚、上記実施形態では、入力信号がOFDM信号の場合について説明したが、本発明はOFDM信号に限定されるものではなく、他の伝送信号であっても同様に実施可能である。   In the above embodiment, the case where the input signal is the OFDM signal has been described. However, the present invention is not limited to the OFDM signal, and the present invention can be similarly applied to other transmission signals.

また、上記実施形態では、パワーアンプ12の検出温度に応じて線形歪・非線形歪の補償動作を切り替えるようにしたが、IF IN入力の信号レベルの変動による温度変化にも対応させるようにしてもよい。このことは、入力信号がOFDM信号以外のときに特に有効である(OFDM信号は一定であるため、信号レベル変動はほとんどない)。   In the above embodiment, the compensation operation for linear distortion / non-linear distortion is switched in accordance with the detected temperature of the power amplifier 12. However, it is also possible to cope with a temperature change caused by a change in the signal level of the IF IN input. Good. This is particularly effective when the input signal is other than an OFDM signal (the OFDM signal is constant, so there is almost no signal level fluctuation).

また、本発明は上記した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を種々変形して具体化することができる。また、上記した実施の形態に開示されている複数の構成要素を適宜に組み合わせることにより、種々の発明を形成することができる。例えば、実施の形態に示される全構成要素から幾つかの構成要素を削除しても良いものである。さらに、異なる実施の形態に係る構成要素を適宜組み合わせても良いものである。   Further, the present invention is not limited to the above-described embodiments as they are, and various modifications can be made to the constituent elements without departing from the spirit of the invention at the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements according to different embodiments may be appropriately combined.

OFDM方式を用いた地上デジタル放送システムの送信機に本発明に係る歪補償器を適用した場合の一実施形態を示すブロック図。The block diagram which shows one Embodiment at the time of applying the distortion compensator which concerns on this invention to the transmitter of the terrestrial digital broadcasting system using an OFDM system. 図1に示す歪補償器の制御回路における線形歪補償及び非線形歪補償の制御処理を説明するためのフローチャート。The flowchart for demonstrating the control processing of the linear distortion compensation and the nonlinear distortion compensation in the control circuit of the distortion compensator shown in FIG.

符号の説明Explanation of symbols

11…歪補償器、
111…第1A/D変換回路、
112…第1線形歪補償回路、
113…非線形歪補償回路、
114…第2線形歪補償回路、
115…第1アッテネータ(ATT1)、
116…D/A変換回路、
117…アップコンバータ(U/C)、
118…第2アッテネータ(ATT2)、
119…第3アッテネータ(ATT3)、
11A…切替器、
11B…ダウンコンバータ(D/C)、
11C…第2A/D変換回路、
11D…温度補償回路、
11E…遅延回路、
11F…線形歪検出回路、
11G…非線形歪検出回路、
11H…制御回路、
11I…位相同期発振回路(PLO)、
11J…クロック生成回路、
12…パワーアンプ(PA)、
121…温度センサ、
13…出力バンドパスフィルタ(BPF)。
11 ... distortion compensator,
111 ... 1st A / D conversion circuit,
112 ... 1st linear distortion compensation circuit,
113 ... Nonlinear distortion compensation circuit,
114 ... second linear distortion compensation circuit,
115 ... first attenuator (ATT1),
116: D / A conversion circuit,
117: Up-converter (U / C),
118 ... Second attenuator (ATT2),
119: Third attenuator (ATT3),
11A ... switching device,
11B: Down converter (D / C),
11C 2nd A / D conversion circuit,
11D ... temperature compensation circuit,
11E: delay circuit,
11F ... Linear distortion detection circuit,
11G ... Nonlinear distortion detection circuit,
11H: control circuit,
11I: Phase-locked oscillation circuit (PLO),
11J: Clock generation circuit,
12 ... Power amplifier (PA),
121 ... temperature sensor,
13: Output band pass filter (BPF).

Claims (7)

非線形歪を生じる第1回路装置、線形歪を生じる第2回路装置で順次処理される伝送信号に対してそれぞれの歪補償を行う歪補償器において、
前記伝送信号を入力して線形歪を補償する線形歪補償手段と、
前記線形歪の補償出力を入力して非線形歪を補償する非線形歪補償手段と、
前記非線形歪の補償出力を前記第1回路装置の入力形式に変換する出力変換手段と、
前記第1及び第2回路装置それぞれの出力を選択的に入力する入力切替手段と、
前記入力切替手段の選択入力と前記伝送信号とのタイミング及び周波数を一致させる入力変換手段と、
前記入力変換手段で得られる選択入力と伝送信号とから線形歪を検出し、前記線形歪補償手段に出力する線形歪検出手段と、
前記入力変換手段で得られる選択入力と伝送信号とから非線形歪を検出し、前記非線形歪補償手段に出力する非線形歪検出手段と
前記第1回路装置の温度を検出する温度検出手段と、
前記温度検出手段の温度検出結果に基づいて前記非線形歪検出及び補償と前記線形歪検出及び補償との切り替え制御を行う制御手段とを具備することを特徴とする歪補償器。
In a distortion compensator that performs respective distortion compensation on a transmission signal sequentially processed by a first circuit device that generates nonlinear distortion and a second circuit device that generates linear distortion,
Linear distortion compensation means for inputting the transmission signal and compensating for linear distortion;
Nonlinear distortion compensation means for inputting the linear distortion compensation output and compensating for nonlinear distortion;
Output conversion means for converting the compensation output of the nonlinear distortion into an input format of the first circuit device;
Input switching means for selectively inputting the outputs of the first and second circuit devices;
Input conversion means for matching the timing and frequency of the selection input of the input switching means and the transmission signal;
Linear distortion detection means for detecting linear distortion from the selection input and transmission signal obtained by the input conversion means and outputting to the linear distortion compensation means;
Non-linear distortion detection means for detecting non-linear distortion from the selection input and transmission signal obtained by the input conversion means and outputting to the non-linear distortion compensation means ,
Temperature detecting means for detecting the temperature of the first circuit device;
A distortion compensator comprising control means for performing switching control between the nonlinear distortion detection and compensation and the linear distortion detection and compensation based on a temperature detection result of the temperature detection means .
前記伝送信号、前記入力変換手段の選択信号をそれぞれデジタル信号に変換するアナログ・デジタル変換手段と、
前記デジタル化のためのクロック信号を生成するクロック生成手段とをさらに備え、
前記線形歪補償手段、非線形歪補償手段、線形歪検出手段及び非線形歪検出手段はデジタル処理によりそれぞれの処理を実行するものとし、
前記クロック信号を前記線形歪補償及び非線形歪補償のデジタル処理に共用することを特徴とする請求項1記載の歪補償器。
Analog / digital conversion means for converting the transmission signal and the selection signal of the input conversion means into digital signals, and
Further comprising a clock generating means for generating a clock signal for the digitized,
The linear distortion compensation means, the nonlinear distortion compensation means, the linear distortion detection means, and the nonlinear distortion detection means shall perform each processing by digital processing,
Distortion compensator according to claim 1, wherein the sharing the clock signal to the digital processing of the linear distortion compensation and nonlinear distortion compensation.
さらに、前記非線形歪補償手段の補償出力に線形補償を行って前記出力変換手段に出力する後段線形補償手段を備えることを特徴とする請求項1記載の歪補償器。   2. The distortion compensator according to claim 1, further comprising a post-stage linear compensation unit that performs linear compensation on the compensation output of the nonlinear distortion compensation unit and outputs the result to the output conversion unit. さらに、前記出力変換手段は、
前記クロック信号によりデジタル処理された補償出力をアナログ信号に変換するデジタル・アナログ変換手段と、
前記アナログ信号への変換の前後でレベル調整を行うレベル調整手段と
を備えることを特徴とする請求項2記載の歪補償器。
Further, the output conversion means includes
Digital-to-analog conversion means for converting the compensation output digitally processed by the clock signal into an analog signal;
3. The distortion compensator according to claim 2, further comprising level adjusting means for performing level adjustment before and after conversion to the analog signal.
前記入力変換手段は、さらに温度による変動分を補償する温度補償手段を備えることを特徴とする請求項1記載の線形歪補償器。   2. The linear distortion compensator according to claim 1, wherein the input conversion means further comprises temperature compensation means for compensating for a variation due to temperature. 前記非線形歪検出手段及び線形歪検出手段は互いに協調動作することを特徴とする請求項1記載の歪補償器。   2. The distortion compensator according to claim 1, wherein the nonlinear distortion detection means and the linear distortion detection means operate in cooperation with each other. 前記制御手段は、前記温度検出手段で検出された温度の変化量が許容範囲内か否かを判断し、許容範囲内の場合には前記非線形歪補償の実行後に線形歪補償を実行させる処理を繰り返し行い、許容範囲外の場合には非線形歪補償のみを実行させることを特徴とする請求項1記載の歪補償器。  The control means determines whether or not the amount of change in temperature detected by the temperature detection means is within an allowable range, and if it is within the allowable range, performs processing for executing linear distortion compensation after execution of the nonlinear distortion compensation. 2. The distortion compensator according to claim 1, wherein the distortion compensator is repeatedly performed and only nonlinear distortion compensation is executed when it is out of an allowable range.
JP2005269256A 2005-09-15 2005-09-15 Distortion compensator Expired - Fee Related JP4649302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269256A JP4649302B2 (en) 2005-09-15 2005-09-15 Distortion compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269256A JP4649302B2 (en) 2005-09-15 2005-09-15 Distortion compensator

Publications (2)

Publication Number Publication Date
JP2007082015A JP2007082015A (en) 2007-03-29
JP4649302B2 true JP4649302B2 (en) 2011-03-09

Family

ID=37941815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269256A Expired - Fee Related JP4649302B2 (en) 2005-09-15 2005-09-15 Distortion compensator

Country Status (1)

Country Link
JP (1) JP4649302B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093396A1 (en) * 2008-01-25 2009-07-30 Nec Corporation Non-linear distortion compensation circuit, transmission circuit, and non-linear distortion compensation method
JP5720172B2 (en) * 2010-10-20 2015-05-20 ソニー株式会社 Receiving device, receiving method, and program
JP5712559B2 (en) * 2010-10-27 2015-05-07 ソニー株式会社 Signal processing apparatus, signal processing method, and program
WO2014034120A1 (en) * 2012-08-31 2014-03-06 日本電気株式会社 Device and method for spectrum degradation compensation
CN113012402B (en) * 2021-02-22 2022-07-15 台州市菱士达电器有限公司 Intelligent monitoring system and intelligent monitoring method for frequency converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152289A (en) * 2000-11-08 2002-05-24 Nec Corp Distortion compensation device
JP2002151973A (en) * 2000-11-13 2002-05-24 Matsushita Electric Ind Co Ltd Transmitter and pre-distortion compensation method
JP2005151119A (en) * 2003-11-14 2005-06-09 Fujitsu Ltd Distortion compensating apparatus
JP2006270797A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Device and method for distortion compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152289A (en) * 2000-11-08 2002-05-24 Nec Corp Distortion compensation device
JP2002151973A (en) * 2000-11-13 2002-05-24 Matsushita Electric Ind Co Ltd Transmitter and pre-distortion compensation method
JP2005151119A (en) * 2003-11-14 2005-06-09 Fujitsu Ltd Distortion compensating apparatus
JP2006270797A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Device and method for distortion compensation

Also Published As

Publication number Publication date
JP2007082015A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US8224266B2 (en) Power amplifier predistortion methods and apparatus using envelope and phase detector
US7383028B2 (en) Timing adjustment method for wireless communication apparatus
US6388518B1 (en) Distortion compensation apparatus
EP1860770B1 (en) Distortion compensating apparatus and method
WO2009090825A1 (en) Predistorter
EP2202879A1 (en) A predistortion apparatus and predistortion method
JPWO2006051776A1 (en) Amplifier circuit, wireless communication circuit, wireless base station device, and wireless terminal device
JP4649302B2 (en) Distortion compensator
US9036734B1 (en) Methods and apparatus for performing digital predistortion using time domain and frequency domain alignment
US8514019B2 (en) Distortion compensation amplifier
US8854128B2 (en) Amplifying device and signal processing device
JP6340207B2 (en) Nonlinear distortion detector and distortion compensation power amplifier
JP2007060455A (en) Transmitter
US20110124304A1 (en) Transmission apparatus and adjustment value measurement method
EP1848108B1 (en) Distortion compensating apparatus and method
JP2009246655A (en) Non-linear distortion compensation apparatus, and frequency characteristic deviation compensation method thereof
JP2008028746A (en) Distortion compensating device
JP2007049444A (en) Signal processing circuit
JP2008205759A (en) Distortion compensating device
JP4550639B2 (en) Linear distortion detector and linear distortion compensator
JP5591065B2 (en) Wraparound canceller and relay device
JP5907795B2 (en) Transceiver module
JP2008072522A (en) Loop back delay ccorrection device and loop back delay ccorrection method
JP2008294659A (en) Nonlinear distortion compensation apparatus and nonlinear distortion compensation method
JP2007142537A (en) Parallel operation system and method for transmission amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees