WO2009093396A1 - Non-linear distortion compensation circuit, transmission circuit, and non-linear distortion compensation method - Google Patents

Non-linear distortion compensation circuit, transmission circuit, and non-linear distortion compensation method Download PDF

Info

Publication number
WO2009093396A1
WO2009093396A1 PCT/JP2008/072714 JP2008072714W WO2009093396A1 WO 2009093396 A1 WO2009093396 A1 WO 2009093396A1 JP 2008072714 W JP2008072714 W JP 2008072714W WO 2009093396 A1 WO2009093396 A1 WO 2009093396A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation coefficient
phase
characteristic
nonlinear distortion
nonlinear
Prior art date
Application number
PCT/JP2008/072714
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Ichikawa
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2009093396A1 publication Critical patent/WO2009093396A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Definitions

  • the present invention relates to a non-linear distortion compensation circuit, a transmission circuit, and a non-linear distortion compensation method, and particularly to a technique preferably applied in non-linear distortion compensation in a transmission system of a digital microwave radio communication system.
  • a quadrature amplitude modulation method such as multi-level QAM is used as a modulation method from the viewpoint of frequency utilization efficiency.
  • the power amplifier that amplifies the transmission signal uses only a linear region in its input / output characteristics, and therefore it is desirable to take sufficient backoff.
  • the back-off represents an operating point, and is generally given by the difference between the maximum output amplitude level and the output saturation power level.
  • Fig. 1 shows a configuration example of an open loop transmission circuit using a predistorter.
  • the circuit configuration example of FIG. 1 is also employed in the embodiments of the present invention described later, and each configuration (device) is common to the present embodiment (however, the internal configuration and functions of the predistorter are different). Since these are separate circuits, different numbers are used here for explanation.
  • the transmission circuit includes an FIR (Finite Impulse Response) filter 11, a predistorter 12, a modulator 13, a BPF (Band Pass Filter) 14, and a power amplifier 15.
  • FIR Finite Impulse Response
  • the input baseband digital signal 8 is supplied to the modulator 13 through the FIR filter 11 and the predistorter 12, is subjected to quadrature amplitude modulation there, passes through the BPF 14, and is amplified by the power amplifier 15.
  • the inverse characteristic of the nonlinear distortion characteristic of the power amplifier 15 is obtained in advance, and this is held in the predistorter 12 so that a compensation value for the input level of the power amplifier 15 is obtained. Yes. That is, distortion generated from the power amplifier is caused by nonlinearity of the amplitude and phase characteristics generated in the saturation region of the amplifier, and the predistorter 12 performs nonlinear compensation of the amplitude and phase characteristics of the power amplifier.
  • This circuit configuration has the advantage of being simple and inexpensive.
  • the characteristic held in the predistorter 12 is the reverse characteristic of the power amplifier 15. For this reason, when the power is input to the power amplifier 15 due to the non-linear phase characteristic of the BPF 14 generated in the frequency band where the non-linear distortion is compensated, there is a deviation from the inverse characteristic of the non-linear phase characteristic of the power amplifier 15. In this way, due to the non-linear phase characteristics of the analog filter used in the transmission circuit, it is difficult to sufficiently compensate the distortion even if the predistorter superimposes the inverse component of the non-linear distortion of the power amplifier. There was a problem that the nonlinear distortion compensation effect could not be obtained.
  • Patent Document 1 discloses a distortion compensator that can simultaneously guarantee linear distortion and nonlinear distortion.
  • outputs of a PA (Power Amplifier) that generates nonlinear distortion and a BPF that generates linear distortion are selectively input to a switching circuit.
  • the linear distortion is detected by the linear distortion detection circuit and output to the linear distortion compensation circuit, and the linear distortion is compensated by the linear distortion compensation circuit.
  • the nonlinear distortion is detected by the nonlinear distortion detection circuit and output to the nonlinear distortion compensation circuit, and the nonlinear distortion is compensated by the nonlinear distortion compensation circuit.
  • Patent Document 1 has three compensation circuits, and is configured to perform compensation operation with three compensation circuits each time the main signal changes. For this reason, the circuit scale which operates every time the main signal changes increases, leading to an increase in power consumption. Further, Patent Document 1 compensates for linear distortion generated by a filter, and does not eliminate a shift in nonlinear compensation (with respect to the phase characteristic of the power amplifier) caused by the nonlinear phase characteristic of the filter.
  • the present invention compensates for nonlinear phase characteristics of an analog filter in addition to compensation for nonlinearity of a power amplifier, and achieves highly accurate nonlinearity as a transmission system without significantly increasing the circuit scale.
  • An object of the present invention is to provide a nonlinear distortion compensation circuit, a transmission circuit, and the like that can perform distortion compensation.
  • a nonlinear distortion compensation circuit includes a compensation coefficient calculation unit that calculates a compensation coefficient from an inverse component of nonlinear distortion generated in a power amplifier and an inverse component of nonlinear phase characteristics of an analog filter; A complex multiplier that performs a complex operation of the compensation coefficient calculated by the compensation coefficient calculator and the input baseband digital signal to compensate for nonlinear distortion of the baseband digital signal.
  • the transmission circuit of the present invention includes the above-described nonlinear distortion compensation circuit, a power amplifier, and an analog filter.
  • the nonlinear distortion compensation method of the present invention includes a compensation coefficient calculation step for calculating a compensation coefficient from an inverse component of nonlinear distortion generated in a power amplifier and an inverse component of nonlinear phase characteristics of an analog filter, and a compensation coefficient calculation step.
  • the present invention it is possible to compensate for nonlinear phase characteristics of an analog filter in addition to compensation for nonlinearity of a power amplifier, and to perform highly accurate nonlinear distortion compensation as a transmission system without significantly increasing the circuit scale. It becomes.
  • the nonlinear distortion compensation circuit 1 to which the present invention is applied includes a compensation coefficient calculation unit 2 and a complex multiplication unit 3 as shown in FIG.
  • the compensation coefficient calculation unit 2 calculates a compensation coefficient from the inverse characteristic of the nonlinear distortion (amplitude characteristic and phase characteristic) generated in the power amplifier 5 and the inverse characteristic of the nonlinear phase characteristic of the analog filter 4.
  • the complex multiplier 3 performs a complex operation of the baseband digital signal 6 input to the nonlinear distortion compensation circuit 1 and the compensation coefficient calculated by the compensation coefficient calculator 2 to compensate for nonlinear distortion of the baseband digital signal. .
  • the baseband signal 6 subjected to nonlinear distortion compensation is amplified by the power amplifier 5 after the signal outside the band is removed by the analog filter 4.
  • the compensation coefficient calculation unit 2 includes an amplitude compensation coefficient calculation unit that calculates an inverse characteristic of the amplitude characteristic of the nonlinear distortion generated in the power amplifier 5 as an amplitude compensation coefficient, an inverse characteristic related to the phase characteristic of the nonlinear distortion generated in the power amplifier 5, and You may comprise so that it may have a phase compensation coefficient calculation part which calculates a phase compensation coefficient from the inverse characteristic of the nonlinear phase characteristic of the analog filter 4.
  • the compensation coefficient calculation unit 2 may be configured to calculate the compensation coefficient by performing a complex operation of the amplitude compensation coefficient and the phase compensation coefficient.
  • the compensation coefficient calculation unit 2 relates to the amplitude characteristic and phase characteristic of the nonlinear distortion generated in the power amplifier 5, based on the inverse characteristic data held in advance and the input level of the power amplifier 5, with the inverse characteristic of the amplitude characteristic.
  • a certain amplitude compensation coefficient or a first phase compensation coefficient that is the inverse characteristic of the phase characteristic may be calculated.
  • the compensation coefficient calculation unit 2 is configured to calculate a second phase compensation coefficient that is an inverse characteristic of the phase characteristic based on the inverse characteristic data held in advance with respect to the nonlinear phase characteristic of the analog filter 4. Also good.
  • the compensation coefficient calculation unit 2 may be configured to calculate the phase compensation coefficient by adding the second phase compensation coefficient as an offset to the first phase compensation coefficient.
  • FIG. 1 is a diagram illustrating a configuration of a transmission circuit in which a predistorter that is a nonlinear distortion compensation circuit of the present embodiment is mounted.
  • the transmission circuit 100 employs an open loop configuration using the predistorter 20.
  • the transmission circuit 100 is a circuit used in a microwave digital radio communication system, and includes an FIR filter 10, a modulator 30, a BPF 40, and a power amplifier 50 in addition to the predistorter 20.
  • the input signal format is assumed to be a quadrature amplitude modulation scheme such as multi-level QAM (Quadrature Amplitude Modulation).
  • the FIR filter 10 is supplied with a baseband digital signal (Ich DATA) at one input and a baseband digital signal (Qch DATA) at the other input, and the bandwidth of these input baseband digital signals 8 Limit.
  • the output of the FIR filter 10 is supplied to the predistorter 20, respectively.
  • the baseband digital signal (Ich DATA) is a numerical sequence of the real part (corresponding to the I axis)
  • the baseband digital signal (Qch DATA) is a numerical sequence of the imaginary part (corresponding to the Q axis).
  • the predistorter 20 superimposes the inverse component of the nonlinear distortion (amplitude characteristic and phase characteristic) generated in the power amplifier 50 and the inverse component of the nonlinear phase characteristic of the BPF 40 on the output baseband digital signal from the FIR filter 10. Compensates for nonlinear distortion.
  • the modulator 30 receives the baseband digital signal compensated for the nonlinearity output from the predistorter 20 and outputs the input signal as a modulated wave (transmission signal) obtained by quadrature amplitude modulation.
  • the output of the modulator 30 passes through the BPF 40.
  • the BPF 40 removes unnecessary wave components generated by the modulator 30 and the like.
  • the signal that has passed through the BPF 40 is supplied to the power amplifier 50.
  • the power amplifier 50 amplifies the modulated wave input from the modulator 30, and the level is automatically controlled so that the average output level becomes a desired output level.
  • FIG. 3 is a diagram showing an internal configuration of a predistorter which is a nonlinear distortion compensation circuit of the present embodiment.
  • a specific configuration of the predistorter 20 will be described with reference to FIG.
  • compensation for nonlinear distortion of both the power amplifier 50 and the BPF 40 is performed.
  • the amount of nonlinear distortion generated in the power amplifier 50 varies depending on the input / output level. Since the amount of compensation needs to be increased as the input / output level increases, the amount of nonlinear compensation is changed for each input level of the power amplifier 50.
  • the nonlinear distortion generated by an analog filter such as the BPF 40 is constant regardless of the input / output level, and the compensation of the phase characteristics of the filter is performed as nonlinear distortion compensation.
  • the analog filter amplitude characteristics are almost linear.
  • the filter band is a band where the amplitude characteristics are almost linear. Need to be wider.
  • the band of the filter is widened, unnecessary wave components cannot be removed. Therefore, it is assumed that the filter has a substantially linear amplitude characteristic and a non-linear phase characteristic. Here, only the phase characteristic is compensated.
  • the compensation method for the non-linear distortion generated in the power amplifier 50 and the BPF 40 is different.
  • the predistorter 20 includes an operating point setting circuit 21, an AMP amplitude compensation coefficient calculation unit 22, an AMP phase compensation coefficient calculation unit 23, a BPF phase compensation coefficient offset unit 24, a compensation coefficient calculation unit 25, and a complex multiplier 26.
  • the operating point setting circuit 21 calculates the input level of the power amplifier 50 from the desired output level information 9 of the power amplifier 50 and outputs it to the AMP amplitude compensation coefficient calculator 22 and the AMP phase compensation coefficient calculator 23.
  • the AMP amplitude compensation coefficient calculation unit 22 holds in advance the inverse characteristic data of the nonlinear distortion of the power amplifier 50, and the nonlinear distortion is obtained from the inverse characteristic data and the input level of the power amplifier 50 input from the operating point setting circuit 21.
  • the amplitude correction value is obtained by calculating the amplitude characteristic corresponding to the inverse component of the signal, and the correction value is input to the compensation coefficient calculation unit 5.
  • the AMP phase compensation coefficient calculation unit 23 holds the inverse characteristic data of the nonlinear distortion of the power amplifier 50 in advance, and the inverse characteristic data and the operating point setting circuit 21 are input.
  • the phase correction value (1) is obtained by calculating the phase characteristic corresponding to the inverse characteristic of the nonlinear distortion from the input level of the power amplifier 50, and the correction value is input to the BPF phase compensation coefficient offset unit 24.
  • the BPF phase compensation coefficient offset unit 24 holds in advance inverse characteristic data of the phase characteristics of the analog filter, sets a phase correction value (2) corresponding to the BPF 40, and is input from the AMP phase compensation coefficient calculation unit 23 Add to the phase correction value (1) as an offset.
  • the phase correction value (2) is a value that does not change during operation once set.
  • the value obtained by adding the phase correction value (2) as an offset to the phase correction value (1) is set as the phase correction value (3), and the correction value is input to the compensation coefficient calculation unit 25.
  • the compensation coefficient calculation unit 25 uses the amplitude correction value and the phase correction value (3) obtained above, the compensation coefficient calculation unit 25 performs a complex product to obtain a transmission system compensation coefficient.
  • the complex multiplier 26 performs a complex operation on the baseband digital signal and the compensation coefficient input from the compensation coefficient calculator 5. As a result, the signal output from the predistorter 20 becomes data having the inverse characteristic of the nonlinear distortion of the power amplifier 50 and the BPF 40.
  • This signal is subjected to quadrature amplitude modulation by the modulator 30 and then supplied to the BPF 40.
  • the nonlinear phase characteristic of the filter is added to the modulated wave, but it is canceled by the nonlinear distortion component added based on the phase correction value (2).
  • the signal that has passed through the BPF 14 is supplied to the power amplifier 50 where it is amplified and output. Since the modulated wave passing through the power amplifier 50 is superimposed with a nonlinear distortion component added based on the amplitude correction value and the phase correction value (1), the output signal is subjected to nonlinear distortion compensation with high accuracy. Signal can be obtained.
  • FIG. 4 is a flowchart showing the flow of nonlinear distortion compensation processing in the predistorter in this embodiment.
  • the operating point setting circuit 21 calculates the input level from the output level information of the power amplifier 50 and outputs it to the AMP amplitude compensation coefficient calculator 22 and the AMP phase compensation coefficient calculator 23 (step S1).
  • the AMP amplitude compensation coefficient calculation unit 22 the inverse characteristic data relating to the amplitude characteristic of the nonlinear distortion of the power amplifier 50 that is held in advance is read (step S2). Then, the amplitude characteristic corresponding to the inverse component of the nonlinear distortion is calculated from the input level input from the operating point setting circuit 21 and the read inverse characteristic data (step S3). Then, the calculated amplitude characteristic is output to the compensation coefficient calculator 25 as an amplitude correction value (step S4).
  • the AMP phase compensation coefficient calculation unit 23 reads the inverse characteristic data relating to the phase characteristic of the nonlinear distortion of the power amplifier 50 that is held in advance (step S5). Then, a phase characteristic corresponding to the inverse component of the nonlinear distortion is calculated from the input level input from the operating point setting circuit 21 and the read reverse characteristic data, and is output to the BPF phase compensation coefficient offset unit 24 as a phase correction value (1). (Step S6).
  • the inverse characteristic data of the phase characteristic of the analog filter is read and set as the phase correction value (2) (step S7).
  • the phase correction value (3) is calculated by adding the set phase correction value (2) as an offset to the phase correction value (1) input from the AMP phase compensation coefficient calculation unit 23 (step S8).
  • the phase correction value (3) is output to the compensation coefficient calculation unit 25 as a phase correction value in which the nonlinear phase characteristic of the BPF 40 is offset from the inverse characteristic of the nonlinear distortion of the power amplifier 50 (step S9).
  • the compensation coefficient calculation unit 25 performs complex product using the amplitude correction value input from the AMP amplitude compensation coefficient calculation unit 22 and the phase correction value input from the BPF phase compensation coefficient offset unit 24 to compensate for the transmission system.
  • a coefficient is calculated (step S10).
  • the complex multiplier 26 performs complex operation on the baseband digital signal 8 from the FIR 10 and the compensation coefficient from the compensation coefficient calculator 25 to compensate for nonlinear distortion (step S11).
  • the amplitude characteristics are almost linear and the number of circuits inside the predistorter is increased to compensate for the nonlinear phase characteristics. It is possible to perform nonlinear distortion compensation with higher accuracy while suppressing the above.
  • the circuit configuration other than the circuit configuration inside the predistorter can adopt the same configuration as that used so far, so that the merit that the manufacturing cost is low can be maintained.
  • the present invention considers a filter having a substantially linear amplitude characteristic in the frequency band where nonlinear compensation is performed, and compensates only for the nonlinear phase characteristic. It is also possible to compensate for a significant amplitude characteristic.
  • a quadrature modulator such as multi-level QAM is assumed as an input signal format, but the present invention is not limited to this modulation method, and any circuit in which a modulator and a power amplifier are superimposed on a transmission signal may be used. It can be applied to anything.

Abstract

Provided is a non-linear distortion compensation circuit that compensates the non-linearity of a power amplifier and also the nonlinear phase characteristics of an analog filter and can perform a highly accurate non-linear distortion compensation as a transmission system without significantly increasing a circuit scale. The non-linear distortion compensation circuit comprises: a compensation coefficient calculation unit for calculating a compensation coefficient from a reverse component of the non-linear distortion produced in the power amplifier and a reverse component of the nonlinear phase characteristics of the analog filter; and a complex multiplication unit for performing a complex calculation between the compensation coefficient calculated by the compensation coefficient calculation unit and a baseband digital signal to be inputted and performing a non-linear distortion compensation on the baseband digital signal.

Description

非線形歪補償回路、送信回路、及び非線形歪補償方法Nonlinear distortion compensation circuit, transmission circuit, and nonlinear distortion compensation method
 本発明は、非線形歪補償回路、送信回路、及び非線形歪補償方法に関し、特に、デジタルマイクロ波無線通信システムの送信系における非線形歪補償で好ましく適用される技術に関するものである。 The present invention relates to a non-linear distortion compensation circuit, a transmission circuit, and a non-linear distortion compensation method, and particularly to a technique preferably applied in non-linear distortion compensation in a transmission system of a digital microwave radio communication system.
 デジタルマイクロ波無線通信システムでは、周波数利用効率の点から、変調方式として多値QAM等の直交振幅変調方式が用いられる。この方式では、送信信号を増幅する電力増幅器は、その入出力特性における線形領域のみを使用するようになっているため、バックオフを十分に取ることが望ましい。バックオフとは、動作点を表すもので、一般には出力最大振幅レベルと出力飽和電力レベルの差で与えられるものである。 In the digital microwave radio communication system, a quadrature amplitude modulation method such as multi-level QAM is used as a modulation method from the viewpoint of frequency utilization efficiency. In this method, the power amplifier that amplifies the transmission signal uses only a linear region in its input / output characteristics, and therefore it is desirable to take sufficient backoff. The back-off represents an operating point, and is generally given by the difference between the maximum output amplitude level and the output saturation power level.
 しかし、バックオフを大きくとると十分な大きさの送信電力が得られないため、実際にはバックオフを小さくして非線形領域まで使用する必要がある。この際、電力増幅器の非線形領域まで使用することにより生じる非線形歪が送信信号に重畳されてしまい、特性劣化を引き起こしてしまうという問題が生じる。このため、プレディストータと称される回路を用いて、電力増幅器に入力する電力に応じた非線形歪みの逆成分を送信信号に重畳することで、信号を増幅した際に生じる非線形歪みを補償する方法が行われている。 However, since a sufficiently large transmission power cannot be obtained if the back-off is large, it is actually necessary to reduce the back-off and use it in the non-linear region. At this time, there arises a problem that non-linear distortion generated by using the power amplifier up to the non-linear region is superimposed on the transmission signal and causes characteristic deterioration. For this reason, using a circuit called a predistorter, the nonlinear distortion generated when the signal is amplified is compensated by superimposing the inverse component of the nonlinear distortion corresponding to the power input to the power amplifier on the transmission signal. The way is done.
 プレディストータを用いたオープンループ構成の送信回路の構成例を図1に示す。なお、図1の回路構成例は、後述する本発明の実施形態でも採用しており、各構成(機器)はそれぞれ本実施形態と共通する(ただしプレディストータの内部構成や機能は異なる)が、別個の回路であるためここでは異なる番号を付して説明する。送信回路は、FIR(Finite Impulse Response)フィルタ11、プレディストータ12、変調器13、BPF(Band Pass Filter)14、電力増幅器15から構成される。デジタルマイクロ波無線通信システムでは、所定の周波数帯域のみを使って伝送する必要があるため、アナログフィルタを使用して変調器等で発生した帯域外の信号除去を行う。このため、送信回路はBPF14を備えている。 Fig. 1 shows a configuration example of an open loop transmission circuit using a predistorter. The circuit configuration example of FIG. 1 is also employed in the embodiments of the present invention described later, and each configuration (device) is common to the present embodiment (however, the internal configuration and functions of the predistorter are different). Since these are separate circuits, different numbers are used here for explanation. The transmission circuit includes an FIR (Finite Impulse Response) filter 11, a predistorter 12, a modulator 13, a BPF (Band Pass Filter) 14, and a power amplifier 15. In the digital microwave radio communication system, since it is necessary to transmit using only a predetermined frequency band, an out-of-band signal generated in a modulator or the like is removed using an analog filter. For this reason, the transmission circuit includes a BPF 14.
 入力されたベースバンドデジタル信号8は、FIRフィルタ11及びプレディストータ12を経て変調器13に供給され、そこで直交振幅変調された後にBPF14を通過し、電力増幅器15にて増幅される。この送信回路では、あらかじめ電力増幅器15の非線形歪特性の逆特性を求めておき、それをプレディストータ12に保持しておくことで、電力増幅器15の入力レベルに対する補償値を求めるようになっている。つまり、電力増幅器から発生する歪みは、増幅器の飽和領域で生じる振幅及び位相特性の非線形性に起因しており、プレディストータ12では、電力増幅器の振幅及び位相特性の非線形補償を行っていた。 The input baseband digital signal 8 is supplied to the modulator 13 through the FIR filter 11 and the predistorter 12, is subjected to quadrature amplitude modulation there, passes through the BPF 14, and is amplified by the power amplifier 15. In this transmission circuit, the inverse characteristic of the nonlinear distortion characteristic of the power amplifier 15 is obtained in advance, and this is held in the predistorter 12 so that a compensation value for the input level of the power amplifier 15 is obtained. Yes. That is, distortion generated from the power amplifier is caused by nonlinearity of the amplitude and phase characteristics generated in the saturation region of the amplifier, and the predistorter 12 performs nonlinear compensation of the amplitude and phase characteristics of the power amplifier.
 この回路構成は、単純でありコストも安いというメリットがある。しかし、プレディストータ12に保持されている特性は電力増幅器15の逆特性である。このため、非線形歪の補償を行う周波数帯域内に発生するBPF14の非線形な位相特性により、電力増幅器15に入力するときには、電力増幅器15の非線形な位相特性の逆特性からずれが生じてしまう。このように、送信回路で使われているアナログフィルタの非線形な位相特性により、プレディストータで電力増幅器の非線形歪の逆成分を重畳しても歪みを十分に補償することが困難で、十分な非線形歪補償効果を得ることができないという問題があった。 This circuit configuration has the advantage of being simple and inexpensive. However, the characteristic held in the predistorter 12 is the reverse characteristic of the power amplifier 15. For this reason, when the power is input to the power amplifier 15 due to the non-linear phase characteristic of the BPF 14 generated in the frequency band where the non-linear distortion is compensated, there is a deviation from the inverse characteristic of the non-linear phase characteristic of the power amplifier 15. In this way, due to the non-linear phase characteristics of the analog filter used in the transmission circuit, it is difficult to sufficiently compensate the distortion even if the predistorter superimposes the inverse component of the non-linear distortion of the power amplifier. There was a problem that the nonlinear distortion compensation effect could not be obtained.
 ところで、例えば特許文献1では、線形歪及び非線形歪を同時に保障できる歪補償器が開示されている。当該歪補償器では、非線形歪を生じるPA(Power Amplifier)及び線形歪を生じるBPFそれぞれの出力を切替回路に選択的に入力する。そして、選択入力と伝送信号のタイミング及び周波数を一致させた状態で、線形歪検出回路で線形歪を検出して線形歪補償回路に出力し、線形歪補償回路で線形歪を補償する。また、同様の状態で、非線形歪検出回路で非線形歪を検出して非線形歪補償回路に出力し、非線形歪補償回路で非線形歪を補償する。
特開2007-82015号公報
By the way, for example, Patent Document 1 discloses a distortion compensator that can simultaneously guarantee linear distortion and nonlinear distortion. In the distortion compensator, outputs of a PA (Power Amplifier) that generates nonlinear distortion and a BPF that generates linear distortion are selectively input to a switching circuit. Then, with the selection input and the timing and frequency of the transmission signal matched, the linear distortion is detected by the linear distortion detection circuit and output to the linear distortion compensation circuit, and the linear distortion is compensated by the linear distortion compensation circuit. In the same state, the nonlinear distortion is detected by the nonlinear distortion detection circuit and output to the nonlinear distortion compensation circuit, and the nonlinear distortion is compensated by the nonlinear distortion compensation circuit.
Japanese Patent Laid-Open No. 2007-82015
 特許文献1で開示された歪補償器は、補償回路が3つに分かれており、また主信号が変化するごとに3つの補償回路で補償動作を行うように構成されている。このため、主信号が変化するたびに動作する回路規模が大きくなり、消費電力の増大につながる。また、特許文献1では、フィルタが生じる線形歪を補償しており、フィルタの非線形な位相特性に起因する非線形補償(電力増幅器の位相特性に対するもの)のずれを解消するものではない。 The distortion compensator disclosed in Patent Document 1 has three compensation circuits, and is configured to perform compensation operation with three compensation circuits each time the main signal changes. For this reason, the circuit scale which operates every time the main signal changes increases, leading to an increase in power consumption. Further, Patent Document 1 compensates for linear distortion generated by a filter, and does not eliminate a shift in nonlinear compensation (with respect to the phase characteristic of the power amplifier) caused by the nonlinear phase characteristic of the filter.
 そこで、本発明は、上述した事情に鑑みて、電力増幅器の非線形性の補償に加えてアナログフィルタの非線形な位相特性を補償し、回路規模を大幅に増加させることなく送信系として高精度な非線形歪補償を行うことが可能な非線形歪補償回路、送信回路等を提供することを目的とする。 Therefore, in view of the above-described circumstances, the present invention compensates for nonlinear phase characteristics of an analog filter in addition to compensation for nonlinearity of a power amplifier, and achieves highly accurate nonlinearity as a transmission system without significantly increasing the circuit scale. An object of the present invention is to provide a nonlinear distortion compensation circuit, a transmission circuit, and the like that can perform distortion compensation.
 かかる目的を達成するために、本発明の非線形歪補償回路は、電力増幅器で発生する非線形歪の逆成分とアナログフィルタの非線形な位相特性の逆成分とから補償係数として算出する補償係数算出部と、補償係数算出部により算出された補償係数と入力されるベースバンドデジタル信号との複素演算を行ってベースバンドデジタル信号についての非線形歪の補償を行う複素乗算部と、を有する。 In order to achieve this object, a nonlinear distortion compensation circuit according to the present invention includes a compensation coefficient calculation unit that calculates a compensation coefficient from an inverse component of nonlinear distortion generated in a power amplifier and an inverse component of nonlinear phase characteristics of an analog filter; A complex multiplier that performs a complex operation of the compensation coefficient calculated by the compensation coefficient calculator and the input baseband digital signal to compensate for nonlinear distortion of the baseband digital signal.
 また、本発明の送信回路は、上記の非線形歪補償回路と、電力増幅器と、アナログフィルタとを備えるものである。 The transmission circuit of the present invention includes the above-described nonlinear distortion compensation circuit, a power amplifier, and an analog filter.
 また、本発明の非線形歪補償方法は、電力増幅器で発生する非線形歪の逆成分とアナログフィルタの非線形な位相特性の逆成分とから補償係数として算出する補償係数算出ステップと、補償係数算出ステップにより算出された補償係数と入力されるベースバンドデジタル信号との複素演算を行ってベースバンドデジタル信号についての非線形歪の補償を行う複素乗算ステップと、を有する。 The nonlinear distortion compensation method of the present invention includes a compensation coefficient calculation step for calculating a compensation coefficient from an inverse component of nonlinear distortion generated in a power amplifier and an inverse component of nonlinear phase characteristics of an analog filter, and a compensation coefficient calculation step. A complex multiplication step of performing a complex operation between the calculated compensation coefficient and the input baseband digital signal to compensate for nonlinear distortion of the baseband digital signal.
 本発明によれば、電力増幅器の非線形性の補償に加えてアナログフィルタの非線形な位相特性を補償し、回路規模を大幅に増加させることなく送信系として高精度な非線形歪補償を行うことが可能となる。 According to the present invention, it is possible to compensate for nonlinear phase characteristics of an analog filter in addition to compensation for nonlinearity of a power amplifier, and to perform highly accurate nonlinear distortion compensation as a transmission system without significantly increasing the circuit scale. It becomes.
 本発明が適用される非線形歪補償回路1は、図2に示すように、補償係数算出部2及び複素乗算部3を有する。補償係数算出部2は、電力増幅器5で発生する非線形歪(振幅特性及び位相特性)の逆特性とアナログフィルタ4の非線形な位相特性の逆特性とから補償係数を算出する。複素乗算部3は、非線形歪補償回路1に入力されたベースバンドデジタル信号6と補償係数算出部2で算出された補償係数との複素演算を行い、ベースバンドデジタル信号についての非線形歪を補償する。非線形歪補償が行われたベースバンド信号6は、アナログフィルタ4により帯域外の信号が除去され、電力増幅器5により増幅される。 The nonlinear distortion compensation circuit 1 to which the present invention is applied includes a compensation coefficient calculation unit 2 and a complex multiplication unit 3 as shown in FIG. The compensation coefficient calculation unit 2 calculates a compensation coefficient from the inverse characteristic of the nonlinear distortion (amplitude characteristic and phase characteristic) generated in the power amplifier 5 and the inverse characteristic of the nonlinear phase characteristic of the analog filter 4. The complex multiplier 3 performs a complex operation of the baseband digital signal 6 input to the nonlinear distortion compensation circuit 1 and the compensation coefficient calculated by the compensation coefficient calculator 2 to compensate for nonlinear distortion of the baseband digital signal. . The baseband signal 6 subjected to nonlinear distortion compensation is amplified by the power amplifier 5 after the signal outside the band is removed by the analog filter 4.
 補償係数算出部2は、電力増幅器5で発生する非線形歪の振幅特性の逆特性を振幅補償係数として算出する振幅補償係数算出部と、電力増幅器5で発生する非線形歪の位相特性に関する逆特性及びアナログフィルタ4の非線形な位相特性の逆特性から位相補償係数を算出する位相補償係数算出部を有するように構成してもよい。また、補償係数算出部2は、振幅補償係数と位相補償係数との複素演算を行って補償係数を算出するように構成してもよい。 The compensation coefficient calculation unit 2 includes an amplitude compensation coefficient calculation unit that calculates an inverse characteristic of the amplitude characteristic of the nonlinear distortion generated in the power amplifier 5 as an amplitude compensation coefficient, an inverse characteristic related to the phase characteristic of the nonlinear distortion generated in the power amplifier 5, and You may comprise so that it may have a phase compensation coefficient calculation part which calculates a phase compensation coefficient from the inverse characteristic of the nonlinear phase characteristic of the analog filter 4. FIG. Further, the compensation coefficient calculation unit 2 may be configured to calculate the compensation coefficient by performing a complex operation of the amplitude compensation coefficient and the phase compensation coefficient.
 そして、補償係数算出部2は、電力増幅器5で発生する非線形歪の振幅特性及び位相特性に関し、あらかじめ保持する逆特性データと電力増幅器5の入力レベルとに基づいて、該振幅特性の逆特性である振幅補償係数や該位相特性の逆特性である第1位相補償係数を算出するように構成してもよい。また、補償係数算出部2は、アナログフィルタ4の非線形な位相特性に関し、あらかじめ保持する逆特性データに基づいて、該位相特性の逆特性である第2位相補償係数を算出するように構成してもよい。また、補償係数算出部2は、第1位相補償係数に第2位相補償係数をオフセットとして加えて位相補償係数を算出するように構成してもよい。 Then, the compensation coefficient calculation unit 2 relates to the amplitude characteristic and phase characteristic of the nonlinear distortion generated in the power amplifier 5, based on the inverse characteristic data held in advance and the input level of the power amplifier 5, with the inverse characteristic of the amplitude characteristic. A certain amplitude compensation coefficient or a first phase compensation coefficient that is the inverse characteristic of the phase characteristic may be calculated. Further, the compensation coefficient calculation unit 2 is configured to calculate a second phase compensation coefficient that is an inverse characteristic of the phase characteristic based on the inverse characteristic data held in advance with respect to the nonlinear phase characteristic of the analog filter 4. Also good. The compensation coefficient calculation unit 2 may be configured to calculate the phase compensation coefficient by adding the second phase compensation coefficient as an offset to the first phase compensation coefficient.
 以下、図1、図3、図4を参照して本発明の実施形態について説明する。図1は、本実施形態の非線形歪補償回路であるプレディストータを実装する送信回路の構成を示した図である。本実施形態においては、送信回路100はプレディストータ20を用いたオープンループ構成を採用する。また、送信回路100は、マイクロ波ディジタル無線通信システムに用いられる回路であって、プレディストータ20の他にFIRフィルタ10、変調器30、BPF40、電力増幅器50を備える。ここでは、入力信号形式は多値QAM(QuadratureAmplitude Modulation)等の直交振幅変調方式を想定している。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1, 3, and 4. FIG. 1 is a diagram illustrating a configuration of a transmission circuit in which a predistorter that is a nonlinear distortion compensation circuit of the present embodiment is mounted. In the present embodiment, the transmission circuit 100 employs an open loop configuration using the predistorter 20. The transmission circuit 100 is a circuit used in a microwave digital radio communication system, and includes an FIR filter 10, a modulator 30, a BPF 40, and a power amplifier 50 in addition to the predistorter 20. Here, the input signal format is assumed to be a quadrature amplitude modulation scheme such as multi-level QAM (Quadrature Amplitude Modulation).
 FIRフィルタ10には、一方の入力にベースバンドデジタル信号(Ich DATA)が供給され、他方の入力にベースバンドデジタル信号(Qch DATA)が供給されており、これらの入力ベースバンドデジタル信号8の帯域を制限する。FIRフィルタ10の出力は、それぞれプレディストータ20に供給される。ここで、ベースバンドデジタル信号(Ich DATA)は、実数部(I軸に相当)の数値列であり、ベースバンドデジタル信号(Qch DATA)は、虚数部(Q軸に相当)の数値列である。プレディストータ20は、FIRフィルタ10からの出力ベースバンドデジタル信号に電力増幅器50で発生する非線形歪(振幅特性及び位相特性)の逆成分とBPF40の非線形な位相特性の逆成分を重畳することで非線形歪を補償する。 The FIR filter 10 is supplied with a baseband digital signal (Ich DATA) at one input and a baseband digital signal (Qch DATA) at the other input, and the bandwidth of these input baseband digital signals 8 Limit. The output of the FIR filter 10 is supplied to the predistorter 20, respectively. Here, the baseband digital signal (Ich DATA) is a numerical sequence of the real part (corresponding to the I axis), and the baseband digital signal (Qch DATA) is a numerical sequence of the imaginary part (corresponding to the Q axis). . The predistorter 20 superimposes the inverse component of the nonlinear distortion (amplitude characteristic and phase characteristic) generated in the power amplifier 50 and the inverse component of the nonlinear phase characteristic of the BPF 40 on the output baseband digital signal from the FIR filter 10. Compensates for nonlinear distortion.
 変調器30は、プレディストータ20から出力された非線形性を補償したベースバンドデジタル信号を入力とし、これらの入力信号を直交振幅変調した変調波(送信信号)として出力する。変調器30の出力はBPF40を通過する。BPF40は、変調器30等で発生した不要波成分を取り除くものである。BPF40を通過した信号は電力増幅器50に供給される。電力増幅器50は、変調器30から入力された変調波を増幅するもので、平均出力レベルが所望の出力レベルになるように自動的にレベルが制御されるようになっている。 The modulator 30 receives the baseband digital signal compensated for the nonlinearity output from the predistorter 20 and outputs the input signal as a modulated wave (transmission signal) obtained by quadrature amplitude modulation. The output of the modulator 30 passes through the BPF 40. The BPF 40 removes unnecessary wave components generated by the modulator 30 and the like. The signal that has passed through the BPF 40 is supplied to the power amplifier 50. The power amplifier 50 amplifies the modulated wave input from the modulator 30, and the level is automatically controlled so that the average output level becomes a desired output level.
 図3は、本実施形態の非線形歪補償回路であるプレディストータの内部構成を示した図である。図3を参照してプレディストータ20の具体的な構成を説明する。本実施形態では、電力増幅器50とBPF40の両方の非線形歪の補償を行う。電力増幅器50で発生する非線形歪量は、入出力レベルによって変わり、入出力レベルが高くなるにつれて、補償量を大きくする必要があるため、電力増幅器50の入力レベルごとに非線形補償量を変化させる。一方、BPF40等のアナログフィルタによって発生する非線形歪は、入出力レベルに関わらず一定であり、非線形歪補償としては、フィルタの位相特性の補償を行う。 FIG. 3 is a diagram showing an internal configuration of a predistorter which is a nonlinear distortion compensation circuit of the present embodiment. A specific configuration of the predistorter 20 will be described with reference to FIG. In the present embodiment, compensation for nonlinear distortion of both the power amplifier 50 and the BPF 40 is performed. The amount of nonlinear distortion generated in the power amplifier 50 varies depending on the input / output level. Since the amount of compensation needs to be increased as the input / output level increases, the amount of nonlinear compensation is changed for each input level of the power amplifier 50. On the other hand, the nonlinear distortion generated by an analog filter such as the BPF 40 is constant regardless of the input / output level, and the compensation of the phase characteristics of the filter is performed as nonlinear distortion compensation.
 非線形歪補償を行うために必要な周波数帯域では、アナログフィルタの振幅特性をほぼ線形にするが、位相特性をほぼ線形な特性にするためには、フィルタの帯域を振幅特性がほぼ線形になる帯域より広くする必要がある。他方でフィルタの帯域を広くすると不要波成分を取り除けなくなる。そのため、フィルタとしては、振幅特性はほぼ線形で、位相特性が非線形であるものを想定し、ここでは、位相特性のみの補償を行う。このように、電力増幅器50とBPF40で発生する非線形歪に対する補償方法は異なる。 In the frequency band necessary to perform nonlinear distortion compensation, the analog filter amplitude characteristics are almost linear. To make the phase characteristics almost linear, however, the filter band is a band where the amplitude characteristics are almost linear. Need to be wider. On the other hand, if the band of the filter is widened, unnecessary wave components cannot be removed. Therefore, it is assumed that the filter has a substantially linear amplitude characteristic and a non-linear phase characteristic. Here, only the phase characteristic is compensated. Thus, the compensation method for the non-linear distortion generated in the power amplifier 50 and the BPF 40 is different.
 プレディストータ20は、動作点設定回路21、AMP振幅補償係数計算部22、AMP位相補償係数計算部23、BPF位相補償係数オフセット部24、補償係数計算部25、複素乗算器26を有する。動作点設定回路21は、電力増幅器50の所望の出力レベル情報9から電力増幅器50の入力レベルを算出して、AMP振幅補償係数計算部22とAMP位相補償係数計算部23に出力する。AMP振幅補償係数計算部22は、電力増幅器50の非線形歪の逆特性データをあらかじめ保持しており、この逆特性データと動作点設定回路21から入力される電力増幅器50の入力レベルとから非線形歪の逆成分に相当する振幅特性を計算することによって、振幅補正値を求め、その補正値を補償係数計算部5に入力する。 The predistorter 20 includes an operating point setting circuit 21, an AMP amplitude compensation coefficient calculation unit 22, an AMP phase compensation coefficient calculation unit 23, a BPF phase compensation coefficient offset unit 24, a compensation coefficient calculation unit 25, and a complex multiplier 26. The operating point setting circuit 21 calculates the input level of the power amplifier 50 from the desired output level information 9 of the power amplifier 50 and outputs it to the AMP amplitude compensation coefficient calculator 22 and the AMP phase compensation coefficient calculator 23. The AMP amplitude compensation coefficient calculation unit 22 holds in advance the inverse characteristic data of the nonlinear distortion of the power amplifier 50, and the nonlinear distortion is obtained from the inverse characteristic data and the input level of the power amplifier 50 input from the operating point setting circuit 21. The amplitude correction value is obtained by calculating the amplitude characteristic corresponding to the inverse component of the signal, and the correction value is input to the compensation coefficient calculation unit 5.
 AMP位相補償係数計算部23は、AMP振幅補償係数計算部22と同様に、電力増幅器50の非線形歪の逆特性データをあらかじめ保持しており、この逆特性データと動作点設定回路21から入力される電力増幅器50の入力レベルとから非線形歪の逆特性に相当する位相特性を計算することによって、位相補正値(1)を求め、その補正値をBPF位相補償係数オフセット部24に入力する。BPF位相補償係数オフセット部24は、アナログフィルタの位相特性の逆特性データをあらかじめ保持しており、BPF40に相当する位相補正値(2)を設定し、AMP位相補償係数計算部23から入力された位相補正値(1)にオフセットとして加える。なお、位相補正値(2)は、一度設定されると運用中には変わることのない値である。 Similar to the AMP amplitude compensation coefficient calculation unit 22, the AMP phase compensation coefficient calculation unit 23 holds the inverse characteristic data of the nonlinear distortion of the power amplifier 50 in advance, and the inverse characteristic data and the operating point setting circuit 21 are input. The phase correction value (1) is obtained by calculating the phase characteristic corresponding to the inverse characteristic of the nonlinear distortion from the input level of the power amplifier 50, and the correction value is input to the BPF phase compensation coefficient offset unit 24. The BPF phase compensation coefficient offset unit 24 holds in advance inverse characteristic data of the phase characteristics of the analog filter, sets a phase correction value (2) corresponding to the BPF 40, and is input from the AMP phase compensation coefficient calculation unit 23 Add to the phase correction value (1) as an offset. The phase correction value (2) is a value that does not change during operation once set.
 位相補正値(2)が位相補正値(1)にオフセットとして付加された値を位相補正値(3)とし、その補正値を補償係数計算部25に入力する。上記で求められた振幅補正値と位相補正値(3)とを用いて、補償係数計算部25で複素積を行うことにより、送信系の補償係数を得る。複素乗算器26は、ベースバンドデジタル信号と補償係数計算部5から入力される補償係数を複素演算する。このことによって、プレディストータ20から出力される信号は、電力増幅器50とBPF40の非線形歪の逆特性を持ったデータとなる。 The value obtained by adding the phase correction value (2) as an offset to the phase correction value (1) is set as the phase correction value (3), and the correction value is input to the compensation coefficient calculation unit 25. Using the amplitude correction value and the phase correction value (3) obtained above, the compensation coefficient calculation unit 25 performs a complex product to obtain a transmission system compensation coefficient. The complex multiplier 26 performs a complex operation on the baseband digital signal and the compensation coefficient input from the compensation coefficient calculator 5. As a result, the signal output from the predistorter 20 becomes data having the inverse characteristic of the nonlinear distortion of the power amplifier 50 and the BPF 40.
 この信号は、変調器30で直交振幅変調された後、BPF40に供給される。BPF40では、変調波にフィルタの非線形な位相特性が加えられるが、位相補正値(2)をもとに加えられた非線形歪成分により相殺される。BPF14を通過した信号は、電力増幅器50に供給され、増幅して出力される。電力増幅器50を通過する変調波には、振幅補正値と位相補正値(1)をもとに加えられた非線形歪成分が重畳されているため、出力信号には、高精度に非線形歪補償された信号を得ることができる。 This signal is subjected to quadrature amplitude modulation by the modulator 30 and then supplied to the BPF 40. In the BPF 40, the nonlinear phase characteristic of the filter is added to the modulated wave, but it is canceled by the nonlinear distortion component added based on the phase correction value (2). The signal that has passed through the BPF 14 is supplied to the power amplifier 50 where it is amplified and output. Since the modulated wave passing through the power amplifier 50 is superimposed with a nonlinear distortion component added based on the amplitude correction value and the phase correction value (1), the output signal is subjected to nonlinear distortion compensation with high accuracy. Signal can be obtained.
 図4は、本実施形態におけるプレディストータ内での非線形歪補償処理の流れを示したフローチャートである。まず、動作点設定回路21により、電力増幅器50の出力レベル情報から入力レベルを算出し、AMP振幅補償係数計算部22及びAMP位相補償係数計算部23へ出力する(ステップS1)。 FIG. 4 is a flowchart showing the flow of nonlinear distortion compensation processing in the predistorter in this embodiment. First, the operating point setting circuit 21 calculates the input level from the output level information of the power amplifier 50 and outputs it to the AMP amplitude compensation coefficient calculator 22 and the AMP phase compensation coefficient calculator 23 (step S1).
 AMP振幅補償係数計算部22において、あらかじめ保持している電力増幅器50の非線形歪の振幅特性に関する逆特性データを読み出す(ステップS2)。そして、動作点設定回路21から入力した入力レベルと読み出した逆特性データとから非線形歪の逆成分に相当する振幅特性を計算する(ステップS3)。そして、計算した振幅特性を振幅補正値として補償係数計算部25に出力する(ステップS4)。 In the AMP amplitude compensation coefficient calculation unit 22, the inverse characteristic data relating to the amplitude characteristic of the nonlinear distortion of the power amplifier 50 that is held in advance is read (step S2). Then, the amplitude characteristic corresponding to the inverse component of the nonlinear distortion is calculated from the input level input from the operating point setting circuit 21 and the read inverse characteristic data (step S3). Then, the calculated amplitude characteristic is output to the compensation coefficient calculator 25 as an amplitude correction value (step S4).
 一方、AMP位相補償係数計算部23において、あらかじめ保持している電力増幅器50の非線形歪の位相特性に関する逆特性データを読み出す(ステップS5)。そして、動作点設定回路21から入力した入力レベルと読み出した逆特性データとから非線形歪の逆成分に相当する位相特性を計算し、位相補正値(1)としてBPF位相補償係数オフセット部24に出力する(ステップS6)。 On the other hand, the AMP phase compensation coefficient calculation unit 23 reads the inverse characteristic data relating to the phase characteristic of the nonlinear distortion of the power amplifier 50 that is held in advance (step S5). Then, a phase characteristic corresponding to the inverse component of the nonlinear distortion is calculated from the input level input from the operating point setting circuit 21 and the read reverse characteristic data, and is output to the BPF phase compensation coefficient offset unit 24 as a phase correction value (1). (Step S6).
 そして、BPF位相補償係数オフセット部24において、アナログフィルタの位相特性の逆特性データを読み出し、位相補正値(2)として設定する(ステップS7)。そして、AMP位相補償係数計算部23から入力した位相補正値(1)に、設定した位相補正値(2)をオフセットとして加えて位相補正値(3)を計算する(ステップS8)。そして、電力増幅器50の非線形歪の逆特性にBPF40の非線形な位相特性がオフセットされた位相補正値として、位相補正値(3)を補償係数計算部25に出力する(ステップS9)。 Then, in the BPF phase compensation coefficient offset unit 24, the inverse characteristic data of the phase characteristic of the analog filter is read and set as the phase correction value (2) (step S7). Then, the phase correction value (3) is calculated by adding the set phase correction value (2) as an offset to the phase correction value (1) input from the AMP phase compensation coefficient calculation unit 23 (step S8). Then, the phase correction value (3) is output to the compensation coefficient calculation unit 25 as a phase correction value in which the nonlinear phase characteristic of the BPF 40 is offset from the inverse characteristic of the nonlinear distortion of the power amplifier 50 (step S9).
 補償係数計算部25においては、AMP振幅補償係数計算部22から入力した振幅補正値と、BPF位相補償係数オフセット部24から入力した位相補正値とを用いて複素積を行って、送信系の補償係数を算出する(ステップS10)。そして、複素乗算器26において、FIR10からのベースバンドデジタル信号8と補償係数計算部25からの補償係数とを複素演算して非線形歪の補償を行う(ステップS11)。 The compensation coefficient calculation unit 25 performs complex product using the amplitude correction value input from the AMP amplitude compensation coefficient calculation unit 22 and the phase correction value input from the BPF phase compensation coefficient offset unit 24 to compensate for the transmission system. A coefficient is calculated (step S10). Then, the complex multiplier 26 performs complex operation on the baseband digital signal 8 from the FIR 10 and the compensation coefficient from the compensation coefficient calculator 25 to compensate for nonlinear distortion (step S11).
 このように、本実施形態によれば、電力増幅器の非線形歪補償に加えて、BPFの非線形な位相特性の補償を行うため、送信系として、より高精度な非線形歪補償を行うことが可能となる。 As described above, according to the present embodiment, in addition to the nonlinear distortion compensation of the power amplifier, since the nonlinear phase characteristic of the BPF is compensated, more accurate nonlinear distortion compensation can be performed as a transmission system. Become.
 また、本実施形態によれば、アナログフィルタとして、非線形歪補償を行うために必要な周波数帯域において、振幅特性についてほぼ線形にし、非線形な位相特性を補償するため、プレディストータ内部の回路の増加を抑えつつ、より高精度な非線形歪補償を行うことが可能となる。 In addition, according to the present embodiment, as an analog filter, in the frequency band necessary for performing nonlinear distortion compensation, the amplitude characteristics are almost linear and the number of circuits inside the predistorter is increased to compensate for the nonlinear phase characteristics. It is possible to perform nonlinear distortion compensation with higher accuracy while suppressing the above.
 また、本実施形態によれば、プレディストータ内部の回路構成以外の回路構成は、これまで用いられてきたものと同様の構成を採用することができるので、製造コストが安いというメリットを保てる。 In addition, according to the present embodiment, the circuit configuration other than the circuit configuration inside the predistorter can adopt the same configuration as that used so far, so that the merit that the manufacturing cost is low can be maintained.
 以上、実施形態を参照して本発明を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to embodiment, this invention is not limited to the said embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 すなわち、本発明としては、回路規模の増加を抑える点からも、非線形補償を行う周波数帯域において、ほぼ線形な振幅特性を持つフィルタを考慮し、非線形な位相特性のみを補償することとしてが、非線形な振幅特性を補償することも可能である。 That is, from the viewpoint of suppressing an increase in circuit scale, the present invention considers a filter having a substantially linear amplitude characteristic in the frequency band where nonlinear compensation is performed, and compensates only for the nonlinear phase characteristic. It is also possible to compensate for a significant amplitude characteristic.
 また、入力信号形式として多値QAM等の直交変調器を想定しているが、この変調方式に限定されるものではなく、変調器及び電力増幅器が送信信号に重畳されているような回路であれば、どのようなものにも適用することが可能である。 In addition, a quadrature modulator such as multi-level QAM is assumed as an input signal format, but the present invention is not limited to this modulation method, and any circuit in which a modulator and a power amplifier are superimposed on a transmission signal may be used. It can be applied to anything.
 この出願は、2008年1月25日に出願された日本出願特願2008-015055を基礎とする優先権を主張し、その開示を全てここに取り込む。 This application claims priority based on Japanese Patent Application No. 2008-015055 filed on January 25, 2008, the entire disclosure of which is incorporated herein.
本発明の実施形態に係る非線形歪補償回路を備える送信回路の構成を示した図である。It is the figure which showed the structure of the transmission circuit provided with the nonlinear distortion compensation circuit which concerns on embodiment of this invention. 本発明が適用される非線形歪補償回路の構成を示した図である。It is the figure which showed the structure of the nonlinear distortion compensation circuit to which this invention is applied. 本発明の実施形態に係る非線形歪補償回路の内部構成を示した図である。It is the figure which showed the internal structure of the nonlinear distortion compensation circuit which concerns on embodiment of this invention. 本発明の実施形態における非線形歪補償処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the nonlinear distortion compensation process in embodiment of this invention.
符号の説明Explanation of symbols
 1 非線形歪補償回路
 2,25 補償係数算出部
 3,26 複素乗算部
 4 アナログフィルタ
 5,50 電力増幅器
 6,8 ベースバンドデジタル信号
 9 出力レベル情報
 10 FIRフィルタ
 20 プレディストータ
 21 動作点設定回路
 22 AMP振幅補償係数計算部
 23 AMP位相補償係数計算部
 24 BPF位相補償係数オフセット部
 30 変調器
 40 BPF
 100 送信回路
DESCRIPTION OF SYMBOLS 1 Nonlinear distortion compensation circuit 2,25 Compensation coefficient calculation part 3,26 Complex multiplication part 4 Analog filter 5,50 Power amplifier 6,8 Baseband digital signal 9 Output level information 10 FIR filter 20 Predistorter 21 Operating point setting circuit 22 AMP amplitude compensation coefficient calculation unit 23 AMP phase compensation coefficient calculation unit 24 BPF phase compensation coefficient offset unit 30 Modulator 40 BPF
100 Transmitter circuit

Claims (13)

  1.  電力増幅器で発生する非線形歪の逆成分とアナログフィルタの非線形な位相特性の逆成分とから補償係数として算出する補償係数算出部と、
     前記補償係数算出部により算出された前記補償係数と入力されるベースバンドデジタル信号との複素演算を行って前記ベースバンドデジタル信号についての非線形歪の補償を行う複素乗算部と、
     を有することを特徴とする非線形歪補償回路。
    A compensation coefficient calculation unit that calculates a compensation coefficient from the inverse component of the nonlinear distortion generated in the power amplifier and the inverse component of the nonlinear phase characteristic of the analog filter;
    A complex multiplier that performs a complex operation of the compensation coefficient calculated by the compensation coefficient calculator and an input baseband digital signal to compensate for nonlinear distortion of the baseband digital signal;
    A nonlinear distortion compensation circuit comprising:
  2.  前記補償係数算出部は、
     前記電力増幅器で発生する非線形歪の振幅特性に関する逆特性を振幅補償係数として算出する振幅補償係数算出部と、
     前記電力増幅器で発生する非線形歪の位相特性に関する逆特性及び前記アナログフィルタの非線形な位相特性の逆特性から位相補償係数を算出する位相補償係数算出部と、
     を有することを特徴とする請求項1に記載の非線形歪補償回路。
    The compensation coefficient calculation unit
    An amplitude compensation coefficient calculating unit that calculates an inverse characteristic related to an amplitude characteristic of nonlinear distortion generated in the power amplifier as an amplitude compensation coefficient;
    A phase compensation coefficient calculation unit that calculates a phase compensation coefficient from the inverse characteristic related to the phase characteristic of the nonlinear distortion generated in the power amplifier and the inverse characteristic of the nonlinear phase characteristic of the analog filter;
    The nonlinear distortion compensation circuit according to claim 1, comprising:
  3.  前記補償係数算出部は、前記電力増幅器で発生する非線形歪の振幅特性に関する逆特性である振幅補償係数と、前記電力増幅器で発生する非線形歪の位相特性に関する逆特性及び前記アナログフィルタの非線形な位相特性の逆特性から求めた位相補償係数との複素演算を行って前記補償係数を算出することを特徴とする請求項1又は2に記載の非線形歪補償回路。 The compensation coefficient calculation unit includes an amplitude compensation coefficient that is an inverse characteristic related to an amplitude characteristic of a nonlinear distortion generated in the power amplifier, an inverse characteristic related to a phase characteristic of the nonlinear distortion generated in the power amplifier, and a nonlinear phase of the analog filter. 3. The nonlinear distortion compensation circuit according to claim 1, wherein the compensation coefficient is calculated by performing a complex operation with a phase compensation coefficient obtained from an inverse characteristic of the characteristic.
  4.  前記補償係数算出部は、前記電力増幅器で発生する非線形歪の振幅特性及び位相特性に関し、あらかじめ保持する逆特性データと前記電力増幅器の入力レベルとに基づいて、前記非線形歪の振幅特性の逆特性である振幅補償係数や前記非線形歪の位相特性の逆特性である第1位相補償係数を算出することを特徴とする請求項1から3のいずれか1項に記載の非線形歪補償回路。 The compensation coefficient calculation unit relates to amplitude characteristics and phase characteristics of nonlinear distortion generated in the power amplifier, and based on inverse characteristic data held in advance and an input level of the power amplifier, the inverse characteristics of amplitude characteristics of the nonlinear distortion 4. The nonlinear distortion compensation circuit according to claim 1, wherein a first phase compensation coefficient that is an inverse characteristic of the amplitude compensation coefficient and the phase characteristic of the nonlinear distortion is calculated. 5.
  5.  前記補償係数算出部は、前記アナログフィルタの非線形な位相特性に関し、あらかじめ保持する逆特性データに基づいて、前記非線形な位相特性の逆特性である第2位相補償係数を算出することを特徴とする請求項1から4のいずれか1項に記載の非線形歪補償回路。 The compensation coefficient calculation unit calculates a second phase compensation coefficient that is an inverse characteristic of the nonlinear phase characteristic based on inverse characteristic data stored in advance with respect to the nonlinear phase characteristic of the analog filter. The nonlinear distortion compensation circuit according to any one of claims 1 to 4.
  6.  前記補償係数算出部は、前記電力増幅器で発生する非線形歪の位相特性の逆特性である第1位相補償係数を算出し、前記アナログフィルタの非線形な位相特性として求めた第2位相補償係数を前記第1位相補償係数にオフセットとして加えて位相補償係数を算出することを特徴とする請求項1から5のいずれか1項に記載の非線形歪補償回路。 The compensation coefficient calculation unit calculates a first phase compensation coefficient that is an inverse characteristic of the phase characteristic of the nonlinear distortion generated in the power amplifier, and calculates the second phase compensation coefficient obtained as the nonlinear phase characteristic of the analog filter. 6. The nonlinear distortion compensation circuit according to claim 1, wherein the phase compensation coefficient is calculated by adding the first phase compensation coefficient as an offset.
  7.  請求項1から6のいずれか1項に記載の非線形歪補償回路と、電力増幅器と、アナログフィルタとを備えることを特徴とする送信回路。 A transmission circuit comprising the nonlinear distortion compensation circuit according to any one of claims 1 to 6, a power amplifier, and an analog filter.
  8.  電力増幅器で発生する非線形歪の逆成分とアナログフィルタの非線形な位相特性の逆成分とから補償係数として算出する補償係数算出ステップと、
     前記補償係数算出ステップにより算出された前記補償係数と入力されるベースバンドデジタル信号との複素演算を行って前記ベースバンドデジタル信号についての非線形歪の補償を行う複素乗算ステップと、
     を有することを特徴とする非線形歪補償方法。
    A compensation coefficient calculation step for calculating as a compensation coefficient from the inverse component of the nonlinear distortion generated in the power amplifier and the inverse component of the nonlinear phase characteristic of the analog filter;
    A complex multiplication step for performing a complex operation between the compensation coefficient calculated in the compensation coefficient calculation step and an input baseband digital signal to compensate for nonlinear distortion of the baseband digital signal;
    A non-linear distortion compensation method comprising:
  9.  前記補償係数算出ステップは、
     前記電力増幅器で発生する非線形歪の振幅特性に関する逆特性を振幅補償係数として算出する振幅補償係数算出ステップと、
     前記電力増幅器で発生する非線形歪の位相特性に関する逆特性及び前記アナログフィルタの非線形な位相特性の逆特性から位相補償係数を算出する位相補償係数算出ステップと、
     を有することを特徴とする請求項8に記載の非線形歪補償方法。
    The compensation coefficient calculating step includes:
    An amplitude compensation coefficient calculating step for calculating an inverse characteristic related to an amplitude characteristic of nonlinear distortion generated in the power amplifier as an amplitude compensation coefficient;
    A phase compensation coefficient calculating step for calculating a phase compensation coefficient from an inverse characteristic related to a phase characteristic of nonlinear distortion generated in the power amplifier and an inverse characteristic of a nonlinear phase characteristic of the analog filter;
    The nonlinear distortion compensation method according to claim 8, further comprising:
  10.  前記補償係数算出ステップは、前記電力増幅器で発生する非線形歪の振幅特性に関する逆特性である振幅補償係数と、前記電力増幅器で発生する非線形歪の位相特性に関する逆特性及び前記アナログフィルタの非線形な位相特性の逆特性から求めた位相補償係数との複素演算を行って前記補償係数を算出することを特徴とする請求項8又は9に記載の非線形歪補償方法。 The compensation coefficient calculating step includes an amplitude compensation coefficient that is an inverse characteristic related to an amplitude characteristic of a nonlinear distortion generated in the power amplifier, an inverse characteristic related to a phase characteristic of the nonlinear distortion generated in the power amplifier, and a nonlinear phase of the analog filter. 10. The nonlinear distortion compensation method according to claim 8, wherein the compensation coefficient is calculated by performing a complex operation with a phase compensation coefficient obtained from an inverse characteristic of the characteristic.
  11.  前記補償係数算出ステップは、前記電力増幅器で発生する非線形歪の振幅特性及び位相特性に関し、あらかじめ保持する逆特性データと前記電力増幅器の入力レベルとに基づいて、前記非線形歪の振幅特性の逆特性である振幅補償係数や前記非線形歪の位相特性の逆特性である第1位相補償係数を算出することを特徴とする請求項8から10のいずれか1項に記載の非線形歪補償方法。 The compensation coefficient calculating step relates to amplitude characteristics and phase characteristics of nonlinear distortion generated in the power amplifier, and based on inverse characteristic data held in advance and an input level of the power amplifier, the inverse characteristics of amplitude characteristics of the nonlinear distortion 11. The nonlinear distortion compensation method according to claim 8, wherein the first phase compensation coefficient that is an inverse characteristic of the amplitude compensation coefficient and the phase characteristic of the nonlinear distortion is calculated.
  12.  前記補償係数算出ステップは、前記アナログフィルタの非線形な位相特性に関し、あらかじめ保持する逆特性データに基づいて、前記非線形な位相特性の逆特性である第2位相補償係数を算出することを特徴とする請求項8から11のいずれか1項に記載の非線形歪補償方法。 The compensation coefficient calculating step calculates a second phase compensation coefficient that is an inverse characteristic of the nonlinear phase characteristic based on inverse characteristic data held in advance with respect to the nonlinear phase characteristic of the analog filter. The nonlinear distortion compensation method according to any one of claims 8 to 11.
  13.  前記補償係数算出ステップは、前記電力増幅器で発生する非線形歪の位相特性の逆特性である第1位相補償係数を算出し、前記アナログフィルタの非線形な位相特性として求めた第2位相補償係数を前記第1位相補償係数にオフセットとして加えて位相補償係数を算出することを特徴とする請求項8から12のいずれか1項に記載の非線形歪補償方法。 The compensation coefficient calculating step calculates a first phase compensation coefficient that is the inverse characteristic of the phase characteristic of the nonlinear distortion generated in the power amplifier, and calculates the second phase compensation coefficient obtained as the nonlinear phase characteristic of the analog filter. The nonlinear distortion compensation method according to any one of claims 8 to 12, wherein the phase compensation coefficient is calculated by adding the first phase compensation coefficient as an offset.
PCT/JP2008/072714 2008-01-25 2008-12-14 Non-linear distortion compensation circuit, transmission circuit, and non-linear distortion compensation method WO2009093396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008015055 2008-01-25
JP2008-015055 2008-01-25

Publications (1)

Publication Number Publication Date
WO2009093396A1 true WO2009093396A1 (en) 2009-07-30

Family

ID=40900910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072714 WO2009093396A1 (en) 2008-01-25 2008-12-14 Non-linear distortion compensation circuit, transmission circuit, and non-linear distortion compensation method

Country Status (1)

Country Link
WO (1) WO2009093396A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018159548A1 (en) * 2017-03-01 2020-01-09 国立研究開発法人理化学研究所 Beta ray two-dimensional imaging apparatus and method
CN111314253A (en) * 2018-12-11 2020-06-19 瑞昱半导体股份有限公司 Method for characterizing nonlinear distortion of a transmitter, transmitter and characterization circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276914A (en) * 1985-09-30 1987-04-09 Toshiba Corp Input filter circuit
JP2007082015A (en) * 2005-09-15 2007-03-29 Toshiba Corp Distortion compensator
JP2007527630A (en) * 2002-10-18 2007-09-27 アイピーワイヤレス,インコーポレイテッド Pre-equalization for UMTS base stations
JP4015363B2 (en) * 1998-01-21 2007-11-28 ノキア コーポレイション Pulse shaping method for compensating for distortion due to components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276914A (en) * 1985-09-30 1987-04-09 Toshiba Corp Input filter circuit
JP4015363B2 (en) * 1998-01-21 2007-11-28 ノキア コーポレイション Pulse shaping method for compensating for distortion due to components
JP2007527630A (en) * 2002-10-18 2007-09-27 アイピーワイヤレス,インコーポレイテッド Pre-equalization for UMTS base stations
JP2007082015A (en) * 2005-09-15 2007-03-29 Toshiba Corp Distortion compensator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018159548A1 (en) * 2017-03-01 2020-01-09 国立研究開発法人理化学研究所 Beta ray two-dimensional imaging apparatus and method
US11259768B2 (en) 2017-03-01 2022-03-01 Riken Apparatus and method for beta-emission two-dimensional imaging
JP7100902B2 (en) 2017-03-01 2022-07-14 国立研究開発法人理化学研究所 Beta ray 2D imaging device and method
CN111314253A (en) * 2018-12-11 2020-06-19 瑞昱半导体股份有限公司 Method for characterizing nonlinear distortion of a transmitter, transmitter and characterization circuit

Similar Documents

Publication Publication Date Title
US8989307B2 (en) Power amplifier system including a composite digital predistorter
US8009765B2 (en) Digital polar transmitter
US8619905B2 (en) Predistorter and distortion compensation method
JP5137973B2 (en) Predistorter
EP2820762B1 (en) Fir/iir filter predistorter for power amplifiers exhibiting short-term and/or long-term memory effects
JP4347531B2 (en) Nonlinear distortion compensation method and nonlinear distortion compensation circuit
US20150236730A1 (en) subtracting linear impairments for non-linear impairment digital pre-distortion error signal
JP2012129661A (en) Distortion compensation device, distortion compensation method and radio apparatus
JP4168259B2 (en) Nonlinear distortion compensation circuit, nonlinear distortion compensation method, and transmission circuit
JP5049562B2 (en) Power amplifier
JP4356384B2 (en) Nonlinear compensation circuit, transmitter, and nonlinear compensation method
TWI442697B (en) Feedforward linearization of rf power amplifiers
JP3268135B2 (en) transceiver
US8792583B2 (en) Linearization in the presence of phase variations
US9088472B1 (en) System for compensating for I/Q impairments in wireless communication system
WO2009093396A1 (en) Non-linear distortion compensation circuit, transmission circuit, and non-linear distortion compensation method
JP2005073032A (en) Amplifier and method for distortion compensation
JP2008028746A (en) Distortion compensating device
KR101265241B1 (en) Apparatus and method for implementation of adaptive digital predistortion algorithm
Li et al. Nonideal effects of reconstruction filter and I/Q imbalance in digital predistortion
JP2001053627A (en) Nonlinear distortion compensating device
JPH0865352A (en) Digital modulator
JP2011135143A (en) Distortion compensating apparatus of predistortion system
JP2004363713A (en) Transmission apparatus
JP2011120067A (en) Distortion compensation circuit and distortion compensation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08871410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP