WO2014034120A1 - Device and method for spectrum degradation compensation - Google Patents

Device and method for spectrum degradation compensation Download PDF

Info

Publication number
WO2014034120A1
WO2014034120A1 PCT/JP2013/005110 JP2013005110W WO2014034120A1 WO 2014034120 A1 WO2014034120 A1 WO 2014034120A1 JP 2013005110 W JP2013005110 W JP 2013005110W WO 2014034120 A1 WO2014034120 A1 WO 2014034120A1
Authority
WO
WIPO (PCT)
Prior art keywords
degradation
linear
nonlinear
compensation
spectrum
Prior art date
Application number
PCT/JP2013/005110
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 片貝
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014532800A priority Critical patent/JP5861781B2/en
Publication of WO2014034120A1 publication Critical patent/WO2014034120A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion

Definitions

  • the present invention relates to a technique for compensating for spectrum degradation due to analog processing.
  • Patent Document 1 discloses a compensation process for in-vivo frequency-dependent attenuation or the like with respect to a signal processed in the apparatus for the purpose of compensating for deterioration characteristics of the signal processed in the apparatus in the ultrasonic diagnostic apparatus. To obtain information on the moving tissue and the fixed tissue from the frequency spectrum of the frequency difference signal.
  • FIG. 5 illustrates the configuration of a general spectrum degradation compensation device 201.
  • the spectrum degradation compensation device 201 is used for a wireless communication device or the like, and includes a digital processing unit 202 and an analog processing unit 203.
  • the digital processing unit 202 performs digital processing for compensating for spectrum degradation generated in the analog processing unit 203 on the input signal Sin.
  • the analog processing unit 203 performs analog processing on the signal processed by the digital processing unit 202 to generate an output signal Sout.
  • a DAC (Digital-to-Analog-Converter) 225 is a digital-analog converter
  • an ADC (Analog-to-Digital Converter) 226 is an analog-digital converter.
  • the analog processing unit 203 has two linear devices 221 and 222 and one nonlinear device 223, and the nonlinear device 223 is interposed between both linear devices 221 and 222.
  • the linear devices 221 and 222 are, for example, LPF (Low Pass Filter), BPF (Band Pass Filter), and the like.
  • the nonlinear device 223 is an amplifier, a frequency converter, or the like, for example.
  • the digital processing unit 202 includes a linear degradation compensation unit 231 and a nonlinear degradation compensation unit 232.
  • the linear degradation compensation unit 231 performs digital processing for compensating for spectral degradation caused by the linear devices 221 and 222.
  • the nonlinear degradation compensation unit 232 performs digital processing for compensating for the spectrum degradation caused by the nonlinear device 223.
  • the spectrum degradation characteristic caused by the linear devices 221 and 222 can be expressed in the form of an FIR (Finite Impulse Response) filter. Therefore, the linear deterioration compensation unit 231 includes an FIR filter.
  • the spectrum degradation characteristic caused by the nonlinear device 223 cannot be expressed by the FIR filter. Therefore, the nonlinear deterioration compensation unit 232 includes a linearizer.
  • the nonlinear degradation compensation unit 232 receives the output signal of the nonlinear device 223 and the input signal Sin as an ideal signal, and compensates for spectrum degradation by the nonlinear device 223 based on the comparison result of both signals.
  • the linear device degradation compensation unit 231 receives the output signal (Sout) of the subsequent linear device 222 and the input signal Sin, and compensates for the spectral degradation by the linear devices 221 and 222 based on the comparison result of both signals. That is, compensation for spectrum degradation by the two linear devices 221 and 222 is performed collectively by one linear degradation compensator 231 (FIR filter).
  • the spectrum degradation compensation component of the linear device 222 on the rear stage side is degraded by the nonlinear device 223, and an error from the desired spectrum compensation component occurs at the input unit of the linear device 222, and the output of the wireless communication apparatus
  • the signal Sout may not have a desired spectrum characteristic.
  • Such a problem does not occur, for example, in a configuration in which the positions of the linear device 222 and the nonlinear device 223 are interchanged and the two linear devices 221 and 222 are continuous.
  • switching the positions of the linear devices 221 and 222 and the nonlinear device 223 is often impossible because the characteristics of the process are changed.
  • deterioration compensation of the entire spectrum deterioration compensation apparatus 201 may not be performed with high accuracy.
  • an object of the present invention is to enable spectrum degradation compensation with high accuracy even when a linear device and a nonlinear device coexist.
  • a first aspect of the present invention includes digital processing means and analog processing means, and the analog processing means is mixed so that linear devices and nonlinear devices are alternately arranged, and the digital processing means is the linear device.
  • the linear degradation compensation means and the nonlinear degradation compensation means are one-to-one with the linear device and the nonlinear device.
  • the linear degradation compensation unit and the nonlinear degradation compensation unit are arranged in an order opposite to the arrangement order of the linear device and the nonlinear device based on the degradation characteristics of the linear device and the nonlinear device. Spectrum degradation compensation for performing processing for compensating the spectrum degradation It is the location.
  • a spectrum degradation compensation method in an apparatus including an analog processing unit and a digital processing unit.
  • the analog processing unit includes linear devices and nonlinear devices arranged alternately.
  • the digital processing means includes linear degradation compensation means for compensating for spectral degradation due to the linear device and nonlinear degradation compensation means for compensating for spectral degradation due to the nonlinear device, and compensates for spectral degradation due to the linear device.
  • the processing is performed by the linear degradation compensation unit that has a one-to-one correspondence with the linear device
  • the processing for compensating for the spectral degradation by the nonlinear device is performed by the nonlinear degradation compensation unit that has a one-to-one correspondence with the nonlinear device
  • the linear degradation Compensation means and non-linear degradation compensation The arrangement order of the linear device and the nonlinear device on the basis of the deterioration characteristic of the respective linear device and each non-linear device a process of compensating for the spectral degradation due to means a spectrum deterioration compensation method performed in the reverse order.
  • FIG. 1 It is a block diagram which shows the structure of the spectrum degradation compensation apparatus which concerns on Embodiment 1 of this invention.
  • 3 is a block diagram illustrating a specific configuration of a spectrum degradation compensation apparatus according to Embodiment 1.
  • FIG. It is a block diagram which shows the structure of the spectrum degradation compensation apparatus which concerns on Embodiment 2 of this invention.
  • It is a block diagram which shows the structure of the spectrum degradation compensation apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 1 shows a configuration of a spectrum degradation compensation apparatus 1 according to the present embodiment.
  • the spectrum degradation compensation device 1 has a digital processing unit 2 and an analog processing unit 3.
  • the digital processing unit 2 performs digital processing for compensating for spectrum degradation generated in the analog processing unit 3 on the input signal Sin.
  • the analog processing unit 3 performs analog processing on the signal processed by the digital processing unit 2 to generate an output signal Sout.
  • the DAC 5 is a digital-analog converter
  • the ADC 6 is an analog-digital converter. In the present embodiment, the DAC 5 and the ADC 6 are built in the analog processing unit 3, but the present invention is not limited to this.
  • the analog processing unit 3 includes a first linear device 11, a second linear device 12, and a first nonlinear device 13.
  • the first linear device 11 and the second linear device 12 perform linear analog processing on an input signal, for example, LPF, BPF, and the like.
  • the first non-linear device 13 performs non-linear analog processing on an input signal.
  • an amplifier, a frequency converter, and the like correspond to this.
  • the first linear device 11, the first nonlinear device 13, and the second linear device 12 are arranged in this order along the signal transmission direction.
  • the first linear device 11 receives a signal obtained by analog conversion of the signal processed by the digital processing unit 2 by the DAC 5, and outputs a signal obtained by performing first linear analog processing on this signal.
  • the first nonlinear device 13 receives the output signal of the first linear device 11 and outputs a signal obtained by performing first nonlinear analog processing on this signal.
  • the second linear device 12 receives the output signal of the first nonlinear device 13 and outputs a signal (output signal Sout) obtained by performing a second linear analog process on this signal.
  • the digital processing unit 2 includes a first linear degradation compensation unit 21, a second linear degradation compensation unit 22, and a first nonlinear degradation compensation unit 23.
  • the first linear degradation compensation unit 21 performs digital processing for compensating for the spectral degradation caused by the first linear device 11 based on the comparison result between the output signal of the first linear device 11 and the input signal Sin as an ideal signal. I do.
  • the second linear degradation compensation unit 22 performs digital processing for compensating for spectral degradation caused by the second linear device 22 based on the comparison result between the output signal of the second linear device 12 and the input signal Sin.
  • the first nonlinear degradation compensation unit 23 performs digital processing for compensating for spectral degradation caused by the first nonlinear device 13 based on the comparison result between the output signal of the first nonlinear device 13 and the input signal Sin.
  • the second linear degradation compensator 22, the first nonlinear degradation compensator 23, and the first linear degradation compensator 21 are arranged in this order along the signal transmission direction.
  • the second linear degradation compensator 22 receives an input signal Sin, and a signal obtained by performing spectrum degradation compensation processing determined based on the comparison result between the output signal of the second linear device 12 and the input signal Sin. Is output.
  • the first nonlinear degradation compensation unit 23 receives the output signal of the second linear degradation compensation unit 22 and is determined based on the comparison result between the output signal of the first nonlinear device 13 and the input signal Sin. Outputs a signal subjected to spectrum degradation compensation processing.
  • the first linear degradation compensator 21 receives the output signal of the first nonlinear degradation compensator 23 and the spectrum degradation compensation determined based on the comparison result between the first linear device 11 and the input signal Sin. The processed signal is output to the DAC 5.
  • FIG. 2 illustrates a specific configuration of the spectrum degradation compensation apparatus 1 according to the present embodiment.
  • the analog processing unit 3 includes an LPF 41, a BPF 42, and an amplifier 43.
  • the LPF 41 corresponds to the first linear device 11
  • the BPF 42 corresponds to the second linear device 12
  • the amplifier 43 corresponds to the first nonlinear device 13.
  • the output signal Sout output from the BPF 42 is output to the outside via the antenna 45.
  • the digital processing unit 2 includes an FFT (Fast Fourier Transform) unit 51, a spectrum comparison unit 52, a compensation coefficient generation unit 53, a compensation coefficient recording unit 54, and an FIR filter 55 as the first linear degradation compensation unit 21.
  • the second linear degradation compensation unit 22 includes an FFT unit 61, a spectrum comparison unit 62, a compensation coefficient generation unit 63, a compensation coefficient recording unit 64, and an FIR filter 65.
  • the first nonlinear deterioration compensation unit 23 includes an amplitude / phase comparison unit 71, a compensation coefficient generation unit 72, a compensation coefficient recording unit 73, and a linearizer 74.
  • the FIR filter 65 applies spectrum degradation compensation characteristics by the BPF 42 to the input signal Sin.
  • the linearizer 74 applies the spectrum deterioration compensation characteristic by the amplifier 43 to the output signal of the FIR filter 65.
  • the FIR filter 55 applies spectrum degradation compensation characteristics by the LPF 41 to the output signal of the linearizer 74.
  • the digital signal output from the FIR filter 55 is converted into an analog signal by the DAC 5, sequentially passes through the LPF 41, the amplifier 43, and the BPF 42, and is output from the antenna 45 as the output signal Sout.
  • the spectrum degradation compensation characteristic given by the FIR filter 55 is canceled by the LPF 41.
  • the spectrum degradation compensation characteristic given by the linearizer 74 is canceled by the amplifier 43.
  • the spectrum degradation compensation characteristic given by the FIR filter 65 is canceled by the BPF 42.
  • the output signal Sout has ideal spectrum characteristics.
  • the FFT units 51 and 61 Fourier-transform the output signal of the LPF 41 or the output signal of the BPF 42 input to the digital processing unit 2 via the ADC 6 and the input signal Sin as an ideal digital signal.
  • the spectrum comparison units 52 and 62 compare the spectrum signals of the two signals (the output signal of the LPF 41 and the input signal Sin, or the output signal of the BPF 42 and the input signal Sin) subjected to Fourier transform.
  • the compensation coefficient generation units 53 and 63 generate a compensation coefficient by performing an inverse Fourier transform or the like on the comparison results from the spectrum comparison units 52 and 62.
  • the compensation coefficient recording units 54 and 64 record the compensation coefficient.
  • the amplitude / phase comparison unit 71 performs amplitude / phase comparison between the output signal of the amplifier 43 input to the digital processing unit 2 via the ADC 6 and the input signal Sin.
  • the compensation coefficient generation unit 72 generates a compensation coefficient based on the comparison result by the amplitude / phase comparison unit 71.
  • the compensation coefficient recording unit 73 records the compensation coefficient.
  • the operation for obtaining the compensation coefficient in the configuration shown in FIG. 2 will be described.
  • the input signal Sin is input to the FFT units 51 and 61 and the amplitude / phase comparison unit 71.
  • the spectrum deterioration characteristic of the output signal of the LPF 41 is calculated without performing spectrum compensation by the FIR filters 55 and 65 and the linearizer 74.
  • a compensation coefficient indicating the inverse characteristic of the calculated spectrum degradation characteristic is recorded in the compensation characteristic recording unit 54, and the FIR filter 55 performs a spectrum degradation compensation process based on the compensation coefficient.
  • the waveform of the output signal of the LPF 41 becomes an ideal spectrum.
  • the spectrum degradation characteristic by the amplifier 43 is calculated based on the output signal of the amplifier 43 and the input signal Sin.
  • the compensation coefficient indicating the inverse characteristic of the spectrum degradation characteristic calculated here is recorded in the compensation characteristic recording unit 73, and the linearizer 74 performs the spectrum degradation compensation process based on the compensation coefficient.
  • a compensation coefficient indicating the inverse characteristic of the spectrum degradation characteristic by the BPF 42 is calculated and recorded in the compensation characteristic recording unit 64, and the FIR filter 65 is Spectrum degradation compensation processing is performed based on the compensation coefficient.
  • each of the first linear device 11 has a first spectrum degradation.
  • the linear degradation compensation unit 21, the second linear degradation compensation unit 22, and the first linear degradation compensation unit 23 are compensated by the linear degradation compensation unit 21, the second linear degradation compensation unit 22, and the first linear degradation compensation unit 23. That is, the devices 11, 12, and 13 of the analog processing unit 3 and the deterioration compensation units 21, 22, and 23 of the digital processing unit 2 have a one-to-one correspondence. Further, the degradation compensation processing in the digital processing unit 2 is performed in the order of the second linear degradation compensation unit 22 ⁇ the first nonlinear degradation compensation unit 23 ⁇ the first linear degradation compensation unit 23.
  • the degradation compensation processing (processing by the FIR filter 65, the linearizer 74, and the FIR filter 55) by the degradation compensation units 21, 22, and 23 of the digital processing unit 2 is the arrangement of the devices 11, 12, and 13 in the analog processing unit 3. This is done in the reverse order.
  • compensation coefficient acquisition processing FFT units 51 and 61, spectrum comparison units 52 and 62, compensation coefficient generation units 53 and 63, compensation coefficient recording unit 54, 64, processing by the amplitude / phase comparison unit 71, the compensation coefficient generation unit 72, and the compensation coefficient recording unit 73
  • FFT units 51 and 61, spectrum comparison units 52 and 62, compensation coefficient generation units 53 and 63, compensation coefficient recording unit 54, 64, processing by the amplitude / phase comparison unit 71, the compensation coefficient generation unit 72, and the compensation coefficient recording unit 73 are preferably performed in the arrangement order of the devices 11, 12, and 13 of the analog processing unit 3.
  • the present invention is not limited to this.
  • the present invention can be applied to a case where one or more linear devices are interposed between two nonlinear devices. .
  • FIG. 3 shows the configuration of the spectrum degradation compensating device 81 and the receiving device 85 according to this embodiment.
  • the main difference between the spectrum degradation compensator 81 and the spectrum degradation compensator 1 according to the first embodiment is that the digital processing unit 82 according to the present embodiment uses the first external linear degradation compensator 95, the second The external linear degradation compensator 96 and the first external nonlinear degradation compensator 97 are included.
  • the receiving device 85 includes an analog processing unit 86 and a digital processing unit 87.
  • the analog processing unit 86 includes a BPF 88 as a first external linear device, an amplifier 90 as a first external nonlinear device, an LPF 89 as a second external linear device, and an ADC 91.
  • the digital processing unit 87 has a demodulation unit 92.
  • the output signal Sout of the analog processing unit 3 of the spectrum degradation compensating device 81 is received by the BPF 88 of the receiving device 85.
  • the first external linear degradation compensator 95 compensates for spectral degradation caused by the BPF 88.
  • the second external linear degradation compensator 96 compensates for spectrum degradation caused by the LPF 89.
  • the first external nonlinear degradation compensation unit 97 compensates for spectrum degradation caused by the amplifier 90.
  • the first external linear degradation compensation unit 95 and the second external linear degradation compensation unit 96 have the same configuration as the first linear degradation compensation unit 21 and the second linear degradation compensation unit 22 according to the first embodiment. In addition, the same effects can be obtained.
  • the first external linear degradation compensation unit 95 includes an FFT unit 101, a spectrum comparison unit 102, a compensation coefficient generation unit 103, a compensation coefficient recording unit 104, and an FIR filter 105.
  • the second external linear degradation compensation unit 96 includes an FFT unit 111, a spectrum comparison unit 112, a compensation coefficient generation unit 113, a compensation coefficient recording unit 114, and an FIR filter 115.
  • the first external nonlinear degradation compensation unit 97 has the same configuration as that of the first nonlinear degradation compensation unit 23 according to the first embodiment, and provides the same operational effects.
  • the first nonlinear deterioration compensation unit 97 includes an amplitude / phase comparison unit 121, a compensation coefficient generation unit 122, a compensation coefficient recording unit 123, and a linearizer 124.
  • the FFT units 101 and 111 Fourier-transform the output signal of the BPF 88 or the output signal of the LPF 89 and the input signal Sin input to the digital processing unit 82 via the ADC 6.
  • the spectrum comparison units 102 and 112 compare the spectrum signals of the two signals (the output signal of the BPF 88 and the input signal Sin, or the output signal of the LPF 89 and the input signal Sin) that have undergone Fourier transform.
  • the compensation coefficient generation units 103 and 113 generate a compensation coefficient by performing inverse Fourier transform or the like on the comparison results from the spectrum comparison units 102 and 112.
  • the compensation coefficient recording units 104 and 114 record the compensation coefficient.
  • the FIR filters 105 and 115 perform processing for compensating for spectrum degradation caused by the BPF 88 and the LPF 89 based on the compensation coefficient.
  • the amplitude / phase comparison unit 121 performs amplitude / phase comparison between the output signal of the amplifier 90 input to the digital processing unit 82 via the ADC 6 and the input signal Sin.
  • the compensation coefficient generation unit 122 generates a compensation coefficient based on the comparison result by the amplitude / phase comparison unit 121.
  • the compensation coefficient recording unit 123 records the compensation coefficient.
  • the linearizer 124 performs a process of compensating for the spectrum degradation caused by the amplifier 90 based on the compensation coefficient.
  • the devices 41, 42, 43, 88, 89, 90 of the analog processing units 3, 86 and the deterioration assurance units 21, 22, 23, 95, 96 of the digital processing unit 82 are used. 97 correspond one-to-one. Further, the processing by the respective degradation assurance units 21, 22, 23, 95, 96, and 97 in the digital processing unit 82 is the order of arrangement of the devices 41, 42, 43, 88, 89, and 90 in the analog processing units 3 and 86. This is done in the reverse order.
  • the acquisition processing of the deterioration characteristics (compensation coefficients) of the devices 41, 42, 43, 88, 89, 90 by the digital processing unit 82 is performed in each of the devices in the analog processing units 3, 86 as in the first embodiment. 41, 42, 43, 88, 89, 90 are preferably performed in the order of arrangement.
  • FIG. 4 shows the configuration of the spectrum degradation compensation apparatus 131 according to this embodiment.
  • the digital processing unit 132 of the spectrum degradation compensation device 131 includes an FIR filter 55 as a first linear degradation compensation unit, an FIR filter 65 as a second linear degradation compensation unit, a linearizer 74 as a first nonlinear degradation compensation unit, and A compensation coefficient recording ROM 135 is provided.
  • the compensation coefficient recording ROM 135 includes a compensation coefficient indicating spectrum deterioration characteristics by the LPF 41 as the first linear device, a compensation coefficient indicating spectrum deterioration characteristics by the BPF 42 as the second linear device, and an amplifier as the first nonlinear device.
  • the compensation coefficient indicating the spectrum degradation characteristic due to 43 is recorded in advance.
  • the FIR filter 55, the FIR filter 65, and the linearizer 74 read the corresponding compensation coefficient from the compensation coefficient recording ROM 135, respectively, and perform processing for compensating for spectrum degradation.
  • the circuit configuration can be simplified. Such a configuration is effective when the devices 41, 42, and 43 have time-invariant characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

The purpose of the present invention is to enable high-precision spectrum degradation compensation to be performed even when a mixture of linear devices and a non-linear device is provided. Processing for compensating for spectrum degradation caused by linear devices (11, 12) and a non-linear device (13) is performed by linear degradation compensation units (21, 22) and a non-linear degradation compensation unit (23) that correspond to the devices on a one-to-one basis. The spectrum degradation compensation processing by the linear degradation compensation units (21, 22) and the non-linear degradation compensation unit (23) is performed in the reverse order to the order in which the linear devices (11, 12) and the non-linear device (13) are arranged.

Description

スペクトラム劣化補償装置及び方法Spectrum degradation compensation apparatus and method
 本発明は、アナログ処理によるスペクトラム劣化を補償するための技術に関する。 The present invention relates to a technique for compensating for spectrum degradation due to analog processing.
 幹線系、携帯電話の基地局間通信等に用いるデジタルマイクロ波通信装置において、伝送特性を劣化させる要因の一つとして通信装置内のアナログ部分による影響がある。近年、デジタルマイクロ波通信装置において大容量の伝送を実現するために信号の多値化(256QAM、512QAM等)が進んでいる。このような信号の多値化に伴い、通信装置内におけるアナログ部分による伝送特性の劣化が無視できないものとなっている。 In digital microwave communication devices used for communication between trunk lines, mobile phone base stations, etc., one of the factors that degrade the transmission characteristics is the influence of the analog part in the communication device. In recent years, in order to realize large-capacity transmission in digital microwave communication apparatuses, signal multi-value (256QAM, 512QAM, etc.) has been advanced. With such a multi-value signal, deterioration of transmission characteristics due to an analog part in the communication device cannot be ignored.
 特許文献1は、超音波診断装置において装置内で処理される信号についての劣化特性を補償することを目的として、装置内で処理される信号に対して生体内における周波数依存性減衰等の補償処理を施し、周波数差信号の周波数スペクトラムから移動組織と固定組織の情報を取得する構成を開示している。 Patent Document 1 discloses a compensation process for in-vivo frequency-dependent attenuation or the like with respect to a signal processed in the apparatus for the purpose of compensating for deterioration characteristics of the signal processed in the apparatus in the ultrasonic diagnostic apparatus. To obtain information on the moving tissue and the fixed tissue from the frequency spectrum of the frequency difference signal.
特開2009-261827号公報JP 2009-261827 A
 図5は、一般的なスペクトラム劣化補償装置201の構成を例示している。当該スペクトラム劣化補償装置201は無線通信装置等に用いられるものであり、デジタル処理部202及びアナログ処理部203を有する。デジタル処理部202は入力信号Sinに対しアナログ処理部203で発生するスペクトラム劣化を補償するためのデジタル処理を行う。アナログ処理部203はデジタル処理部202により処理された信号にアナログ処理を行い、出力信号Soutを生成する。DAC(Digital to Analog Converter)225はデジタル-アナログ変換器、ADC(Analog to Digital Converter)226はアナログ-デジタル変換器である。 FIG. 5 illustrates the configuration of a general spectrum degradation compensation device 201. The spectrum degradation compensation device 201 is used for a wireless communication device or the like, and includes a digital processing unit 202 and an analog processing unit 203. The digital processing unit 202 performs digital processing for compensating for spectrum degradation generated in the analog processing unit 203 on the input signal Sin. The analog processing unit 203 performs analog processing on the signal processed by the digital processing unit 202 to generate an output signal Sout. A DAC (Digital-to-Analog-Converter) 225 is a digital-analog converter, and an ADC (Analog-to-Digital Converter) 226 is an analog-digital converter.
 本例に係るアナログ処理部203は2つの線形デバイス221,222と1つの非線形デバイス223を有し、非線形デバイス223は両線形デバイス221,222の間に介在されている。線形デバイス221,222は例えばLPF(Low Pass Filter)、BPF(Band Pass Filter)等である。非線形デバイス223は例えば増幅器、周波数変換器等である。 The analog processing unit 203 according to the present example has two linear devices 221 and 222 and one nonlinear device 223, and the nonlinear device 223 is interposed between both linear devices 221 and 222. The linear devices 221 and 222 are, for example, LPF (Low Pass Filter), BPF (Band Pass Filter), and the like. The nonlinear device 223 is an amplifier, a frequency converter, or the like, for example.
 デジタル処理部202は線形劣化補償部231及び非線形劣化補償部232を有する。線形劣化補償部231は線形デバイス221,222により生じるスペクトラム劣化を補償するためのデジタル処理を行う。非線形劣化補償部232は非線形デバイス223により生じるスペクトラム劣化を補償するためのデジタル処理を行う。一般に線形デバイス221,222により生じるスペクトラム劣化特性はFIR(Finite Impulse Response)フィルタの形で表現できる。そのため、線形劣化補償部231はFIRフィルタを含んで構成される。一方、非線形デバイス223により生じるスペクトラム劣化特性はFIRフィルタでは表現できない。そのため、非線形劣化補償部232はリニアライザを含んで構成される。 The digital processing unit 202 includes a linear degradation compensation unit 231 and a nonlinear degradation compensation unit 232. The linear degradation compensation unit 231 performs digital processing for compensating for spectral degradation caused by the linear devices 221 and 222. The nonlinear degradation compensation unit 232 performs digital processing for compensating for the spectrum degradation caused by the nonlinear device 223. In general, the spectrum degradation characteristic caused by the linear devices 221 and 222 can be expressed in the form of an FIR (Finite Impulse Response) filter. Therefore, the linear deterioration compensation unit 231 includes an FIR filter. On the other hand, the spectrum degradation characteristic caused by the nonlinear device 223 cannot be expressed by the FIR filter. Therefore, the nonlinear deterioration compensation unit 232 includes a linearizer.
 非線形劣化補償部232は非線形デバイス223の出力信号と理想信号としての入力信号Sinとを入力し、両信号の比較結果に基づいて非線形デバイス223によるスペクトラム劣化の補償を行う。 The nonlinear degradation compensation unit 232 receives the output signal of the nonlinear device 223 and the input signal Sin as an ideal signal, and compensates for spectrum degradation by the nonlinear device 223 based on the comparison result of both signals.
 線形デバイス用劣化補償部231は後段側の線形デバイス222の出力信号(Sout)と入力信号Sinとを入力し、両信号の比較結果に基づいて線形デバイス221,222によるスペクトラム劣化の補償を行う。即ち、2つの線形デバイス221,222によるスペクトラム劣化の補償が1つの線形劣化補償部231(FIRフィルタ)によりまとめて行われる。 The linear device degradation compensation unit 231 receives the output signal (Sout) of the subsequent linear device 222 and the input signal Sin, and compensates for the spectral degradation by the linear devices 221 and 222 based on the comparison result of both signals. That is, compensation for spectrum degradation by the two linear devices 221 and 222 is performed collectively by one linear degradation compensator 231 (FIR filter).
 このような構成によると、後段側の線形デバイス222のスペクトラム劣化補償成分が非線形デバイス223により劣化され、当該線形デバイス222の入力部において所望のスペクトラム補償成分との誤差が生じ、無線通信装置の出力信号Soutが所望のスペクトラム特性にならない場合がある。このような問題は、例えば当該線形デバイス222と非線形デバイス223の位置が入れ替わり2つの線形デバイス221,222が連続する構成においては生じない。しかし、線形デバイス221,222と非線形デバイス223の位置を入れ替えることは処理の特性を変化させることになるため不可能な場合が多い。このように、線形デバイス221,222と非線形デバイス223とが混在する場合においては、スペクトラム劣化補償装置201全体の劣化補償を精度よく行うことができない場合があった。 According to such a configuration, the spectrum degradation compensation component of the linear device 222 on the rear stage side is degraded by the nonlinear device 223, and an error from the desired spectrum compensation component occurs at the input unit of the linear device 222, and the output of the wireless communication apparatus The signal Sout may not have a desired spectrum characteristic. Such a problem does not occur, for example, in a configuration in which the positions of the linear device 222 and the nonlinear device 223 are interchanged and the two linear devices 221 and 222 are continuous. However, switching the positions of the linear devices 221 and 222 and the nonlinear device 223 is often impossible because the characteristics of the process are changed. As described above, when the linear devices 221 and 222 and the nonlinear device 223 coexist, deterioration compensation of the entire spectrum deterioration compensation apparatus 201 may not be performed with high accuracy.
 そこで、本発明は、線形デバイスと非線形デバイスとが混在する場合であってもスペクトラム劣化補償を高精度で行えるようにすることを目的とする。 Therefore, an object of the present invention is to enable spectrum degradation compensation with high accuracy even when a linear device and a nonlinear device coexist.
 本発明の第1の態様は、デジタル処理手段とアナログ処理手段とを備え、前記アナログ処理手段は線形デバイスと非線形デバイスとが交互に配列されるように混在し、前記デジタル処理手段は前記線形デバイスによるスペクトラム劣化を補償する線形劣化補償手段と前記非線形デバイスによるスペクトラム劣化を補償する非線形劣化補償手段とを備え、前記線形劣化補償手段及び前記非線形劣化補償手段は前記線形デバイス及び前記非線形デバイスと一対一で対応するように設けられ、前記線形劣化補償手段及び前記非線形劣化補償手段は前記線形デバイス及び前記非線形デバイスの各劣化特性に基づいて前記線形デバイス及び前記非線形デバイスの配列順とは逆の順序で前記スペクトラム劣化を補償する処理を行うスペクトラム劣化補償装置である。 A first aspect of the present invention includes digital processing means and analog processing means, and the analog processing means is mixed so that linear devices and nonlinear devices are alternately arranged, and the digital processing means is the linear device. Linear degradation compensation means for compensating for spectrum degradation due to the non-linear device, and nonlinear degradation compensation means for compensating for spectral degradation due to the nonlinear device. The linear degradation compensation means and the nonlinear degradation compensation means are one-to-one with the linear device and the nonlinear device. The linear degradation compensation unit and the nonlinear degradation compensation unit are arranged in an order opposite to the arrangement order of the linear device and the nonlinear device based on the degradation characteristics of the linear device and the nonlinear device. Spectrum degradation compensation for performing processing for compensating the spectrum degradation It is the location.
 本発明の第2の態様は、アナログ処理手段と、デジタル処理手段とを備える装置におけるスペクトラム劣化補償方法であって、前記アナログ処理手段において線形デバイスと非線形デバイスとが交互に配列されるように混在しており、前記デジタル処理手段は、前記線形デバイスによるスペクトラム劣化を補償する線形劣化補償手段と前記非線形デバイスによるスペクトラム劣化を補償する非線形劣化補償手段とを備え、前記線形デバイスによるスペクトラム劣化を補償する処理を前記線形デバイスと一対一で対応する前記線形劣化補償手段により行い、前記非線形デバイスによるスペクトラム劣化を補償する処理を前記非線形デバイスと一対一で対応する前記非線形劣化補償手段により行い、前記線形劣化補償手段及び前記非線形劣化補償手段による前記スペクトラム劣化を補償する処理を前記各線形デバイス及び前記各非線形デバイスの劣化特性に基づいて前記線形デバイス及び前記非線形デバイスの配列順とは逆の順序で行うスペクトラム劣化補償方法である。 According to a second aspect of the present invention, there is provided a spectrum degradation compensation method in an apparatus including an analog processing unit and a digital processing unit. The analog processing unit includes linear devices and nonlinear devices arranged alternately. The digital processing means includes linear degradation compensation means for compensating for spectral degradation due to the linear device and nonlinear degradation compensation means for compensating for spectral degradation due to the nonlinear device, and compensates for spectral degradation due to the linear device. The processing is performed by the linear degradation compensation unit that has a one-to-one correspondence with the linear device, the processing for compensating for the spectral degradation by the nonlinear device is performed by the nonlinear degradation compensation unit that has a one-to-one correspondence with the nonlinear device, and the linear degradation Compensation means and non-linear degradation compensation The arrangement order of the linear device and the nonlinear device on the basis of the deterioration characteristic of the respective linear device and each non-linear device a process of compensating for the spectral degradation due to means a spectrum deterioration compensation method performed in the reverse order.
 本発明によれば、線形デバイスと非線形デバイスとが混在する場合であってもスペクトラム劣化補償を高精度で行うことが可能となる。 According to the present invention, it is possible to perform spectrum degradation compensation with high accuracy even when a linear device and a nonlinear device coexist.
本発明の実施の形態1に係るスペクトラム劣化補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of the spectrum degradation compensation apparatus which concerns on Embodiment 1 of this invention. 実施の形態1に係るスペクトラム劣化補償装置の具体的な構成を例示するブロック図である。3 is a block diagram illustrating a specific configuration of a spectrum degradation compensation apparatus according to Embodiment 1. FIG. 本発明の実施の形態2に係るスペクトラム劣化補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of the spectrum degradation compensation apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るスペクトラム劣化補償装置の構成を示すブロック図である。It is a block diagram which shows the structure of the spectrum degradation compensation apparatus which concerns on Embodiment 3 of this invention. 一般的なスペクトラム劣化補償装置の構成を例示する図である。It is a figure which illustrates the structure of a general spectrum degradation compensation apparatus.
 実施の形態1
 以下、図面を参照して本発明の実施の形態について説明する。図1は本実施の形態に係るスペクトラム劣化補償装置1の構成を示している。
Embodiment 1
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of a spectrum degradation compensation apparatus 1 according to the present embodiment.
 スペクトラム劣化補償装置1はデジタル処理部2及びアナログ処理部3を有する。デジタル処理部2は入力信号Sinに対しアナログ処理部3で発生するスペクトラム劣化を補償するためのデジタル処理を行う。アナログ処理部3はデジタル処理部2により処理された信号にアナログ処理を行い、出力信号Soutを生成する。DAC5はデジタル-アナログ変換器、ADC6はアナログ-デジタル変換器である。尚、本実施の形態においてはDAC5及びADC6がアナログ処理部3に内蔵されているが、本発明はこれに限定されるものではない。 The spectrum degradation compensation device 1 has a digital processing unit 2 and an analog processing unit 3. The digital processing unit 2 performs digital processing for compensating for spectrum degradation generated in the analog processing unit 3 on the input signal Sin. The analog processing unit 3 performs analog processing on the signal processed by the digital processing unit 2 to generate an output signal Sout. The DAC 5 is a digital-analog converter, and the ADC 6 is an analog-digital converter. In the present embodiment, the DAC 5 and the ADC 6 are built in the analog processing unit 3, but the present invention is not limited to this.
 アナログ処理部3は、第1の線形デバイス11、第2の線形デバイス12、及び第1の非線形デバイス13を有する。 The analog processing unit 3 includes a first linear device 11, a second linear device 12, and a first nonlinear device 13.
 第1の線形デバイス11及び第2の線形デバイス12は入力信号に対して線形的なアナログ処理を行うものであり、例えばLPF,BPF等がこれらに該当する。第1の非線形デバイス13は入力信号に対して非線形的なアナログ処理を行うものであり、例えば増幅器、周波数変換器等がこれに該当する。本実施の形態においては、信号の伝達方向に沿って第1の線形デバイス11、第1の非線形デバイス13、及び第2の線形デバイス12の順番で配列されている。 The first linear device 11 and the second linear device 12 perform linear analog processing on an input signal, for example, LPF, BPF, and the like. The first non-linear device 13 performs non-linear analog processing on an input signal. For example, an amplifier, a frequency converter, and the like correspond to this. In the present embodiment, the first linear device 11, the first nonlinear device 13, and the second linear device 12 are arranged in this order along the signal transmission direction.
 第1の線形デバイス11はデジタル処理部2により処理された信号をDAC5によりアナログ変換した信号を入力し、この信号に第1の線形的なアナログ処理を施した信号を出力する。第1の非線形デバイス13は第1の線形デバイス11の出力信号を入力し、この信号に第1の非線形的なアナログ処理を施した信号を出力する。第2の線形デバイス12は第1の非線形デバイス13の出力信号を入力し、この信号に第2の線形的なアナログ処理を施した信号(出力信号Sout)を出力する。 The first linear device 11 receives a signal obtained by analog conversion of the signal processed by the digital processing unit 2 by the DAC 5, and outputs a signal obtained by performing first linear analog processing on this signal. The first nonlinear device 13 receives the output signal of the first linear device 11 and outputs a signal obtained by performing first nonlinear analog processing on this signal. The second linear device 12 receives the output signal of the first nonlinear device 13 and outputs a signal (output signal Sout) obtained by performing a second linear analog process on this signal.
 デジタル処理部2は、第1の線形劣化補償部21、第2の線形劣化補償部22、及び第1の非線形劣化補償部23を有する。 The digital processing unit 2 includes a first linear degradation compensation unit 21, a second linear degradation compensation unit 22, and a first nonlinear degradation compensation unit 23.
 第1の線形劣化補償部21は第1の線形デバイス11の出力信号と理想信号としての入力信号Sinとの比較結果に基づいて第1の線形デバイス11により生じるスペクトラム劣化を補償するためのデジタル処理を行う。第2の線形劣化補償部22は第2の線形デバイス12の出力信号と入力信号Sinとの比較結果に基づいて第2の線形デバイス22により生じるスペクトラム劣化を補償するためのデジタル処理を行う。第1の非線形劣化補償部23は第1の非線形デバイス13の出力信号と入力信号Sinとの比較結果に基づいて第1の非線形デバイス13により生じるスペクトラム劣化を補償するためのデジタル処理を行う。本実施の形態においては、信号の伝達方向に沿って第2の線形劣化補償部22、第1の非線形劣化補償部23、及び第1の線形劣化補償部21の順序で配列されている。 The first linear degradation compensation unit 21 performs digital processing for compensating for the spectral degradation caused by the first linear device 11 based on the comparison result between the output signal of the first linear device 11 and the input signal Sin as an ideal signal. I do. The second linear degradation compensation unit 22 performs digital processing for compensating for spectral degradation caused by the second linear device 22 based on the comparison result between the output signal of the second linear device 12 and the input signal Sin. The first nonlinear degradation compensation unit 23 performs digital processing for compensating for spectral degradation caused by the first nonlinear device 13 based on the comparison result between the output signal of the first nonlinear device 13 and the input signal Sin. In the present embodiment, the second linear degradation compensator 22, the first nonlinear degradation compensator 23, and the first linear degradation compensator 21 are arranged in this order along the signal transmission direction.
 第2の線形劣化補償部22は入力信号Sinを入力し、この信号に第2の線形デバイス12の出力信号と入力信号Sinとの比較結果に基づいて決定されるスペクトラム劣化補償処理を施した信号を出力する。第1の非線形劣化補償部23は第2の線形劣化補償部22の出力信号を入力し、この信号に第1の非線形デバイス13の出力信号と入力信号Sinとの比較結果に基づいて決定されるスペクトラム劣化補償処理を施した信号を出力する。第1の線形劣化補償部21は第1の非線形劣化補償部23の出力信号を入力し、この信号に第1の線形デバイス11と入力信号Sinとの比較結果に基づいて決定されるスペクトラム劣化補償処理を施した信号をDAC5に出力する。 The second linear degradation compensator 22 receives an input signal Sin, and a signal obtained by performing spectrum degradation compensation processing determined based on the comparison result between the output signal of the second linear device 12 and the input signal Sin. Is output. The first nonlinear degradation compensation unit 23 receives the output signal of the second linear degradation compensation unit 22 and is determined based on the comparison result between the output signal of the first nonlinear device 13 and the input signal Sin. Outputs a signal subjected to spectrum degradation compensation processing. The first linear degradation compensator 21 receives the output signal of the first nonlinear degradation compensator 23 and the spectrum degradation compensation determined based on the comparison result between the first linear device 11 and the input signal Sin. The processed signal is output to the DAC 5.
 図2は本実施の形態に係るスペクトラム劣化補償装置1の具体的な構成を例示している。 FIG. 2 illustrates a specific configuration of the spectrum degradation compensation apparatus 1 according to the present embodiment.
 アナログ処理部3は、LPF41、BPF42、及び増幅器43を有する。LPF41は上記第1の線形デバイス11に相当し、BPF42は上記第2の線形デバイス12に相当し、増幅器43は上記第1の非線形デバイス13に相当する。BPF42から出力される出力信号Soutはアンテナ45を介して外部に出力される。 The analog processing unit 3 includes an LPF 41, a BPF 42, and an amplifier 43. The LPF 41 corresponds to the first linear device 11, the BPF 42 corresponds to the second linear device 12, and the amplifier 43 corresponds to the first nonlinear device 13. The output signal Sout output from the BPF 42 is output to the outside via the antenna 45.
 デジタル処理部2は、上記第1の線形劣化補償部21として、FFT(Fast Fourier Transform)部51、スペクトラム比較部52、補償係数生成部53、補償係数記録部54、及びFIRフィルタ55を有する。同様に、上記第2の線形劣化補償部22として、FFT部61、スペクトラム比較部62、補償係数生成部63、補償係数記録部64、及びFIRフィルタ65を有する。また、上記第1の非線形劣化補償部23として、振幅/位相比較部71、補償係数生成部72、補償係数記録部73、及びリニアライザ74を有する。 The digital processing unit 2 includes an FFT (Fast Fourier Transform) unit 51, a spectrum comparison unit 52, a compensation coefficient generation unit 53, a compensation coefficient recording unit 54, and an FIR filter 55 as the first linear degradation compensation unit 21. Similarly, the second linear degradation compensation unit 22 includes an FFT unit 61, a spectrum comparison unit 62, a compensation coefficient generation unit 63, a compensation coefficient recording unit 64, and an FIR filter 65. The first nonlinear deterioration compensation unit 23 includes an amplitude / phase comparison unit 71, a compensation coefficient generation unit 72, a compensation coefficient recording unit 73, and a linearizer 74.
 先ず主信号が通過する経路について説明する。FIRフィルタ65は入力信号SinにBPF42によるスペクトラム劣化補償特性を印加する。リニアライザ74はFIRフィルタ65の出力信号に増幅器43によるスペクトラム劣化補償特性を印加する。FIRフィルタ55はリニアライザ74の出力信号にLPF41によるスペクトラム劣化補償特性を印加する。FIRフィルタ55が出力したデジタル信号はDAC5によりアナログ信号に変換され、LPF41、増幅器43、及びBPF42を順次通過し、出力信号Soutとしてアンテナ45から出力される。当該経路において、FIRフィルタ55で与えられたスペクトラム劣化補償特性はLPF41で相殺される。リニアライザ74で与えられたスペクトラム劣化補償特性は増幅器43で相殺される。FIRフィルタ65で与えられたスペクトラム劣化補償特性はBPF42で相殺される。これにより、出力信号Soutは理想的なスペクトラム特性となる。 First, the route through which the main signal passes will be described. The FIR filter 65 applies spectrum degradation compensation characteristics by the BPF 42 to the input signal Sin. The linearizer 74 applies the spectrum deterioration compensation characteristic by the amplifier 43 to the output signal of the FIR filter 65. The FIR filter 55 applies spectrum degradation compensation characteristics by the LPF 41 to the output signal of the linearizer 74. The digital signal output from the FIR filter 55 is converted into an analog signal by the DAC 5, sequentially passes through the LPF 41, the amplifier 43, and the BPF 42, and is output from the antenna 45 as the output signal Sout. In this path, the spectrum degradation compensation characteristic given by the FIR filter 55 is canceled by the LPF 41. The spectrum degradation compensation characteristic given by the linearizer 74 is canceled by the amplifier 43. The spectrum degradation compensation characteristic given by the FIR filter 65 is canceled by the BPF 42. As a result, the output signal Sout has ideal spectrum characteristics.
 次に第1及び第2の線形劣化補償部21,22について説明する。FFT部51,61はADC6を介してデジタル処理部2に入力したLPF41の出力信号又はBPF42の出力信号と理想的なデジタル信号としての入力信号Sinとをフーリエ変換する。スペクトラム比較部52,62はフーリエ変換された上記2つの信号(LPF41の出力信号と入力信号Sin、又はBPF42の出力信号と入力信号Sin)のスペクトラム信号を比較する。補償係数生成部53,63はスペクトラム比較部52,62による比較結果に逆フーリエ変換等を施すことにより補償係数を生成する。補償係数記録部54,64は当該補償係数を記録する。 Next, the first and second linear degradation compensators 21 and 22 will be described. The FFT units 51 and 61 Fourier-transform the output signal of the LPF 41 or the output signal of the BPF 42 input to the digital processing unit 2 via the ADC 6 and the input signal Sin as an ideal digital signal. The spectrum comparison units 52 and 62 compare the spectrum signals of the two signals (the output signal of the LPF 41 and the input signal Sin, or the output signal of the BPF 42 and the input signal Sin) subjected to Fourier transform. The compensation coefficient generation units 53 and 63 generate a compensation coefficient by performing an inverse Fourier transform or the like on the comparison results from the spectrum comparison units 52 and 62. The compensation coefficient recording units 54 and 64 record the compensation coefficient.
 次に第1の非線形劣化補償部23について説明する。振幅/位相比較部71はADC6を介してデジタル処理部2に入力した増幅器43の出力信号と入力信号Sinとの振幅/位相比較を行う。補償係数生成部72は振幅/位相比較部71による比較結果に基づいて補償係数を生成する。補償係数記録部73は当該補償係数を記録する。 Next, the first nonlinear deterioration compensation unit 23 will be described. The amplitude / phase comparison unit 71 performs amplitude / phase comparison between the output signal of the amplifier 43 input to the digital processing unit 2 via the ADC 6 and the input signal Sin. The compensation coefficient generation unit 72 generates a compensation coefficient based on the comparison result by the amplitude / phase comparison unit 71. The compensation coefficient recording unit 73 records the compensation coefficient.
 次に図2に示す構成において補償係数を取得する動作について説明する。先ず入力信号SinがFFT部51,61及び振幅/位相比較部71に入力する。次いでFIRフィルタ55,65及びリニアライザ74によるスペクトラム補償を行わない状態でLPF41の出力信号のスペクトラム劣化特性が算出される。次いで当該算出したスペクトラム劣化特性の逆特性を示す補償係数が補償特性記録部54に記録され、FIRフィルタ55は当該補償係数に基づいてスペクトラム劣化補償処理を行う。 Next, the operation for obtaining the compensation coefficient in the configuration shown in FIG. 2 will be described. First, the input signal Sin is input to the FFT units 51 and 61 and the amplitude / phase comparison unit 71. Next, the spectrum deterioration characteristic of the output signal of the LPF 41 is calculated without performing spectrum compensation by the FIR filters 55 and 65 and the linearizer 74. Next, a compensation coefficient indicating the inverse characteristic of the calculated spectrum degradation characteristic is recorded in the compensation characteristic recording unit 54, and the FIR filter 55 performs a spectrum degradation compensation process based on the compensation coefficient.
 FIRフィルタ55におけるスペクトラム劣化補償が行われた状態においては、LPF41の出力信号の波形は理想的なスペクトラムとなる。この状態において、増幅器43の出力信号と入力信号Sinとに基づいて増幅器43によるスペクトラム劣化特性が算出される。ここで算出されたスペクトラム劣化特性の逆特性を示す補償係数は補償特性記録部73に記録され、リニアライザ74は当該補償係数に基づいてスペクトラム劣化補償処理を行う。 In a state where spectrum degradation compensation is performed in the FIR filter 55, the waveform of the output signal of the LPF 41 becomes an ideal spectrum. In this state, the spectrum degradation characteristic by the amplifier 43 is calculated based on the output signal of the amplifier 43 and the input signal Sin. The compensation coefficient indicating the inverse characteristic of the spectrum degradation characteristic calculated here is recorded in the compensation characteristic recording unit 73, and the linearizer 74 performs the spectrum degradation compensation process based on the compensation coefficient.
 同様に、FIRフィルタ55及びリニアライザ74によりスペクトラム劣化補償が行われた状態において、BPF42によるスペクトラム劣化特性の逆特性を示す補償係数が算出されると共に補償特性記録部64に記録され、FIRフィルタ65は当該補償係数に基づいてスペクトラム劣化補償処理を行う。 Similarly, in a state where spectrum degradation compensation is performed by the FIR filter 55 and the linearizer 74, a compensation coefficient indicating the inverse characteristic of the spectrum degradation characteristic by the BPF 42 is calculated and recorded in the compensation characteristic recording unit 64, and the FIR filter 65 is Spectrum degradation compensation processing is performed based on the compensation coefficient.
 上述のように本実施の形態においては、第1の線形デバイス11(LPF41)、第2の線形デバイス12(BPF42)、及び第1の非線形デバイス13(増幅器43)の各スペクトラム劣化がそれぞれ第1の線形劣化補償部21、第2の線形劣化補償部22、及び第1の線形劣化補償部23により補償される。即ち、アナログ処理部3の各デバイス11,12,13とデジタル処理部2の各劣化補償部21,22,23とが一対一で対応している。また、デジタル処理部2における劣化補償処理は第2の線形劣化補償部22→第1の非線形劣化補償部23→第1の線形劣化補償部23の順序で行われる。即ち、デジタル処理部2の各劣化補償部21,22,23による劣化補償処理(FIRフィルタ65、リニアライザ74、及びFIRフィルタ55による処理)はアナログ処理部3における各デバイス11,12,13の配列順とは逆の順序で行われる。また、デジタル処理部2の各劣化補償部21,22,23による補償係数の取得処理(FFT部51,61,スペクトラム比較部52,62、補償係数生成部53,63、補償係数記録部54,64、振幅/位相比較部71、補償係数生成部72、補償係数記録部73による処理)は、アナログ処理部3の各デバイス11,12,13の配列順で行われることが好ましい。これにより、線形デバイスと非線形デバイスとが混在される場合であっても高い精度でスペクトラム劣化補償を行うことが可能となる。 As described above, in the present embodiment, each of the first linear device 11 (LPF 41), the second linear device 12 (BPF 42), and the first nonlinear device 13 (amplifier 43) has a first spectrum degradation. Are compensated by the linear degradation compensation unit 21, the second linear degradation compensation unit 22, and the first linear degradation compensation unit 23. That is, the devices 11, 12, and 13 of the analog processing unit 3 and the deterioration compensation units 21, 22, and 23 of the digital processing unit 2 have a one-to-one correspondence. Further, the degradation compensation processing in the digital processing unit 2 is performed in the order of the second linear degradation compensation unit 22 → the first nonlinear degradation compensation unit 23 → the first linear degradation compensation unit 23. That is, the degradation compensation processing (processing by the FIR filter 65, the linearizer 74, and the FIR filter 55) by the degradation compensation units 21, 22, and 23 of the digital processing unit 2 is the arrangement of the devices 11, 12, and 13 in the analog processing unit 3. This is done in the reverse order. Also, compensation coefficient acquisition processing ( FFT units 51 and 61, spectrum comparison units 52 and 62, compensation coefficient generation units 53 and 63, compensation coefficient recording unit 54, 64, processing by the amplitude / phase comparison unit 71, the compensation coefficient generation unit 72, and the compensation coefficient recording unit 73) are preferably performed in the arrangement order of the devices 11, 12, and 13 of the analog processing unit 3. Thereby, even when a linear device and a nonlinear device are mixed, it becomes possible to perform spectrum degradation compensation with high accuracy.
 尚、本実施の形態においては、2つの線形デバイスの間に1つの非線形デバイスが介在する場合を示したが、本発明はこれに限定されるものではない。例えば、2つの線形デバイスの間に2つ以上の非線形デバイスが介在する場合、2つの非線形デバイスの間に1つ以上の線形デバイスが介在する場合等にも本発明を適用することが可能である。 In the present embodiment, the case where one nonlinear device is interposed between two linear devices is shown, but the present invention is not limited to this. For example, when two or more nonlinear devices are interposed between two linear devices, the present invention can be applied to a case where one or more linear devices are interposed between two nonlinear devices. .
 実施の形態2
 以下に本発明の他の実施の形態について図面を参照して説明する。図3は本実施の形態に係るスペクトラム劣化補償装置81及び受信装置85の構成を示している。当該スペクトラム劣化補償装置81と上記実施の形態1に係るスペクトラム劣化補償装置1との主な相違点は、本実施の形態に係るデジタル処理部82が第1の外部線形劣化補償部95、第2の外部線形劣化補償部96、及び第1の外部非線形劣化補償部97を有する点にある。
Embodiment 2
Another embodiment of the present invention will be described below with reference to the drawings. FIG. 3 shows the configuration of the spectrum degradation compensating device 81 and the receiving device 85 according to this embodiment. The main difference between the spectrum degradation compensator 81 and the spectrum degradation compensator 1 according to the first embodiment is that the digital processing unit 82 according to the present embodiment uses the first external linear degradation compensator 95, the second The external linear degradation compensator 96 and the first external nonlinear degradation compensator 97 are included.
 受信装置85はアナログ処理部86及びデジタル処理部87を有する。アナログ処理部86は第1の外部線形デバイスとしてのBPF88、第1の外部非線形デバイスとしての増幅器90、第2の外部線形デバイスとしてのLPF89、及びADC91を有する。デジタル処理部87は復調部92を有する。スペクトラム劣化補償装置81のアナログ処理部3の出力信号Soutは受信装置85のBPF88に受信される。 The receiving device 85 includes an analog processing unit 86 and a digital processing unit 87. The analog processing unit 86 includes a BPF 88 as a first external linear device, an amplifier 90 as a first external nonlinear device, an LPF 89 as a second external linear device, and an ADC 91. The digital processing unit 87 has a demodulation unit 92. The output signal Sout of the analog processing unit 3 of the spectrum degradation compensating device 81 is received by the BPF 88 of the receiving device 85.
 第1の外部線形劣化補償部95はBPF88によるスペクトラム劣化を補償するものである。第2の外部線形劣化補償部96はLPF89によるスペクトラム劣化を補償するものである。第1の外部非線形劣化補償部97は増幅器90によるスペクトラム劣化を補償するものである。 The first external linear degradation compensator 95 compensates for spectral degradation caused by the BPF 88. The second external linear degradation compensator 96 compensates for spectrum degradation caused by the LPF 89. The first external nonlinear degradation compensation unit 97 compensates for spectrum degradation caused by the amplifier 90.
 第1の外部線形劣化補償部95及び第2の外部線形劣化補償部96は上記実施の形態1に係る第1の線形劣化補償部21及び第2の線形劣化補償部22と同様の構成を有し、同様の作用効果を奏する。第1の外部線形劣化補償部95はFFT部101、スペクトラム比較部102、補償係数生成部103、補償係数記録部104、及びFIRフィルタ105を有する。同様に、第2の外部線形劣化補償部96はFFT部111、スペクトラム比較部112、補償係数生成部113、補償係数記録部114、及びFIRフィルタ115を有する。 The first external linear degradation compensation unit 95 and the second external linear degradation compensation unit 96 have the same configuration as the first linear degradation compensation unit 21 and the second linear degradation compensation unit 22 according to the first embodiment. In addition, the same effects can be obtained. The first external linear degradation compensation unit 95 includes an FFT unit 101, a spectrum comparison unit 102, a compensation coefficient generation unit 103, a compensation coefficient recording unit 104, and an FIR filter 105. Similarly, the second external linear degradation compensation unit 96 includes an FFT unit 111, a spectrum comparison unit 112, a compensation coefficient generation unit 113, a compensation coefficient recording unit 114, and an FIR filter 115.
 第1の外部非線形劣化補償部97は上記実施の形態1に係る第1の非線形劣化補償部23と同様の構成を有し、同様の作用効果を奏する。第1の非線形劣化補償部97は、振幅/位相比較部121、補償係数生成部122、補償係数記録部123、及びリニアライザ124を有する。 The first external nonlinear degradation compensation unit 97 has the same configuration as that of the first nonlinear degradation compensation unit 23 according to the first embodiment, and provides the same operational effects. The first nonlinear deterioration compensation unit 97 includes an amplitude / phase comparison unit 121, a compensation coefficient generation unit 122, a compensation coefficient recording unit 123, and a linearizer 124.
 第1及び第2の外部線形劣化補償部95,96の動作について説明する。FFT部101,111はADC6を介してデジタル処理部82に入力したBPF88の出力信号又はLPF89の出力信号と入力信号Sinとをフーリエ変換する。スペクトラム比較部102,112はフーリエ変換された上記2つの信号(BPF88の出力信号と入力信号Sin、又はLPF89の出力信号と入力信号Sin)のスペクトラム信号を比較する。補償係数生成部103,113はスペクトラム比較部102,112による比較結果に逆フーリエ変換等を施すことにより補償係数を生成する。補償係数記録部104,114は当該補償係数を記録する。FIRフィルタ105,115は当該補償係数に基づいてBPF88及びLPF89によるスペクトラム劣化を補償する処理を行う。 The operation of the first and second external linear degradation compensators 95 and 96 will be described. The FFT units 101 and 111 Fourier-transform the output signal of the BPF 88 or the output signal of the LPF 89 and the input signal Sin input to the digital processing unit 82 via the ADC 6. The spectrum comparison units 102 and 112 compare the spectrum signals of the two signals (the output signal of the BPF 88 and the input signal Sin, or the output signal of the LPF 89 and the input signal Sin) that have undergone Fourier transform. The compensation coefficient generation units 103 and 113 generate a compensation coefficient by performing inverse Fourier transform or the like on the comparison results from the spectrum comparison units 102 and 112. The compensation coefficient recording units 104 and 114 record the compensation coefficient. The FIR filters 105 and 115 perform processing for compensating for spectrum degradation caused by the BPF 88 and the LPF 89 based on the compensation coefficient.
 次に第1の外部非線形劣化補償部97の動作について説明する。振幅/位相比較部121はADC6を介してデジタル処理部82に入力した増幅器90の出力信号と入力信号Sinとの振幅/位相比較を行う。補償係数生成部122は振幅/位相比較部121による比較結果に基づいて補償係数を生成する。補償係数記録部123は当該補償係数を記録する。リニアライザ124は当該補償係数に基づいて増幅器90によるスペクトラム劣化を補償する処理を行う。 Next, the operation of the first external nonlinear degradation compensator 97 will be described. The amplitude / phase comparison unit 121 performs amplitude / phase comparison between the output signal of the amplifier 90 input to the digital processing unit 82 via the ADC 6 and the input signal Sin. The compensation coefficient generation unit 122 generates a compensation coefficient based on the comparison result by the amplitude / phase comparison unit 121. The compensation coefficient recording unit 123 records the compensation coefficient. The linearizer 124 performs a process of compensating for the spectrum degradation caused by the amplifier 90 based on the compensation coefficient.
 そして、上記実施の形態1と同様に、アナログ処理部3,86の各デバイス41,42,43,88,89,90とデジタル処理部82の各劣化保証部21,22,23,95,96,97とが一対一で対応している。また、デジタル処理部82における各劣化保証部21,22,23,95,96,97による処理はアナログ処理部3,86における各デバイス41,42,43,88,89,90の配列順とは逆の順序で行われる。また、デジタル処理部82による各デバイス41,42,43,88,89,90の劣化特性(補償係数)の取得処理は、上記実施の形態1と同様に、アナログ処理部3,86における各デバイス41,42,43,88,89,90の配列順で行われることが好ましい。 As in the first embodiment, the devices 41, 42, 43, 88, 89, 90 of the analog processing units 3, 86 and the deterioration assurance units 21, 22, 23, 95, 96 of the digital processing unit 82 are used. 97 correspond one-to-one. Further, the processing by the respective degradation assurance units 21, 22, 23, 95, 96, and 97 in the digital processing unit 82 is the order of arrangement of the devices 41, 42, 43, 88, 89, and 90 in the analog processing units 3 and 86. This is done in the reverse order. The acquisition processing of the deterioration characteristics (compensation coefficients) of the devices 41, 42, 43, 88, 89, 90 by the digital processing unit 82 is performed in each of the devices in the analog processing units 3, 86 as in the first embodiment. 41, 42, 43, 88, 89, 90 are preferably performed in the order of arrangement.
 尚、BPF88、LPF89、及び増幅器90のスペクトラム特性を取得する際には、スペクトラム劣化補償装置81と受信装置85とを有線で接続する等により無線伝送路における影響を排除する必要がある。 When acquiring the spectrum characteristics of the BPF 88, the LPF 89, and the amplifier 90, it is necessary to eliminate the influence on the wireless transmission path by connecting the spectrum degradation compensating device 81 and the receiving device 85 with a wire.
 上記本実施の形態によれば、上記実施の形態1の効果に加え受信装置85によるスペクトラム劣化も補償することが可能となる。これにより、伝送品質を高めることが可能となる。 According to the present embodiment, in addition to the effects of the first embodiment, it is possible to compensate for the spectrum degradation caused by the receiving device 85. Thereby, transmission quality can be improved.
 実施の形態3
 図4は本実施の形態に係るスペクトラム劣化補償装置131の構成を示している。スペクトラム劣化補償装置131のデジタル処理部132は第1の線形劣化補償部としてのFIRフィルタ55、第2の線形劣化補償部としてのFIRフィルタ65、第1の非線形劣化補償部としてのリニアライザ74、及び補償係数記録用ROM135を有する。
Embodiment 3
FIG. 4 shows the configuration of the spectrum degradation compensation apparatus 131 according to this embodiment. The digital processing unit 132 of the spectrum degradation compensation device 131 includes an FIR filter 55 as a first linear degradation compensation unit, an FIR filter 65 as a second linear degradation compensation unit, a linearizer 74 as a first nonlinear degradation compensation unit, and A compensation coefficient recording ROM 135 is provided.
 補償係数記録用ROM135には第1の線形デバイスとしてのLPF41によるスペクトラム劣化特性を示す補償係数、第2の線形デバイスとしてのBPF42によるスペクトラム劣化特性を示す補償係数、及び第1の非線形デバイスとしての増幅器43によるスペクトラム劣化特性を示す補償係数が予め記録されている。FIRフィルタ55、FIRフィルタ65、及びリニアライザ74はそれぞれ対応する補償係数を補償係数記録用ROM135から読み出し、それぞれスペクトラム劣化を補償するための処理を行う。 The compensation coefficient recording ROM 135 includes a compensation coefficient indicating spectrum deterioration characteristics by the LPF 41 as the first linear device, a compensation coefficient indicating spectrum deterioration characteristics by the BPF 42 as the second linear device, and an amplifier as the first nonlinear device. The compensation coefficient indicating the spectrum degradation characteristic due to 43 is recorded in advance. The FIR filter 55, the FIR filter 65, and the linearizer 74 read the corresponding compensation coefficient from the compensation coefficient recording ROM 135, respectively, and perform processing for compensating for spectrum degradation.
 本実施の形態によれば、アナログ処理部133の各デバイス41,42,43の出力信号と入力信号Sinとの比較等を必要とせずにスペクトラム劣化を補償する処理を行うことが可能となる。これにより、回路構成を簡素化することが可能となる。このような構成は各デバイス41,42,43が時間的に不変な特性を持つ場合等に有効となる。 According to the present embodiment, it is possible to perform processing for compensating for spectrum degradation without requiring comparison between the output signals of the devices 41, 42, and 43 of the analog processing unit 133 and the input signal Sin. As a result, the circuit configuration can be simplified. Such a configuration is effective when the devices 41, 42, and 43 have time-invariant characteristics.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2012年8月31日に出願された日本出願特願2012-191686を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-191686 filed on August 31, 2012, the entire disclosure of which is incorporated herein.
 1,81,131 スペクトラム劣化補償装置
 2,82,132 デジタル処理部
 3,133 アナログ処理部
 5 DAC
 6 ADC
 11 第1の線形デバイス
 12 第2の線形デバイス
 13 第1の非線形デバイス
 21 第1の線形劣化補償部
 22 第2の線形劣化補償部
 23 第1の非線形劣化補償部
 41 LPF
 42 BPF
 43 増幅器
 45 アンテナ
 51,61,101,111 FFT部
 52,62,102,112 スペクトラム比較部
 53,63,103,113 補償係数生成部
 54,64,104,114 補償係数記録部
 55,65,105,115 FIRフィルタ
 71,121 振幅/位相比較部
 72,122 補償係数生成部
 73,123 補償係数記録部
 74,124 リニアライザ
 85 受信装置
 86 アナログ処理部
 87 デジタル処理部
 88 BPF(第1の外部線形デバイス)
 89 LPF(第2の外部線形デバイス)
 90 増幅器(第1の外部非線形デバイス)
 95 第1の外部線形劣化補償部
 96 第2の外部線形劣化補償部
 97 第1の外部非線形劣化補償部
 135 補償係数記録用ROM
 Sin 入力信号
 Sout 出力信号
1, 81, 131 Spectrum degradation compensation device 2, 82, 132 Digital processing unit 3, 133 Analog processing unit 5 DAC
6 ADC
DESCRIPTION OF SYMBOLS 11 1st linear device 12 2nd linear device 13 1st nonlinear device 21 1st linear degradation compensation part 22 2nd linear degradation compensation part 23 1st nonlinear degradation compensation part 41 LPF
42 BPF
43 Amplifier 45 Antenna 51, 61, 101, 111 FFT unit 52, 62, 102, 112 Spectrum comparison unit 53, 63, 103, 113 Compensation coefficient generation unit 54, 64, 104, 114 Compensation coefficient recording unit 55, 65, 105 , 115 FIR filter 71, 121 Amplitude / phase comparison unit 72, 122 Compensation coefficient generation unit 73, 123 Compensation coefficient recording unit 74, 124 Linearizer 85 Receiver 86 Analog processing unit 87 Digital processing unit 88 BPF (first external linear device) )
89 LPF (second external linear device)
90 amplifier (first external nonlinear device)
95 First external linear degradation compensator 96 Second external linear degradation compensator 97 First external nonlinear degradation compensator 135 Compensation coefficient recording ROM
Sin input signal Sout output signal

Claims (8)

  1.  デジタル処理手段とアナログ処理手段とを備え、
     前記アナログ処理手段は線形デバイスと非線形デバイスとが交互に配列されるように混在し、
     前記デジタル処理手段は前記線形デバイスによるスペクトラム劣化を補償する線形劣化補償手段と前記非線形デバイスによるスペクトラム劣化を補償する非線形劣化補償手段とを備え、
     前記線形劣化補償手段及び前記非線形劣化補償手段は前記線形デバイス及び前記非線形デバイスと一対一で対応するように設けられ、
     前記線形劣化補償手段及び前記非線形劣化補償手段は前記線形デバイス及び前記非線形デバイスの各劣化特性に基づいて前記線形デバイス及び前記非線形デバイスの配列順とは逆の順序で前記スペクトラム劣化を補償する処理を行う
    スペクトラム劣化補償装置。
    Digital processing means and analog processing means,
    The analog processing means is mixed so that linear devices and nonlinear devices are alternately arranged,
    The digital processing means comprises linear degradation compensation means for compensating for spectral degradation due to the linear device and nonlinear degradation compensation means for compensating for spectral degradation due to the nonlinear device,
    The linear degradation compensation unit and the nonlinear degradation compensation unit are provided so as to correspond to the linear device and the nonlinear device on a one-to-one basis,
    The linear degradation compensation unit and the nonlinear degradation compensation unit perform processing for compensating the spectrum degradation in an order opposite to the arrangement order of the linear device and the nonlinear device based on degradation characteristics of the linear device and the nonlinear device. Spectrum degradation compensator to perform.
  2.  前記劣化特性を取得する処理は前記線形デバイス及び前記非線形デバイスの配列順で行われる
    請求項1に記載のスペクトラム劣化補償装置。
    The spectrum degradation compensation apparatus according to claim 1, wherein the process of acquiring the degradation characteristics is performed in an arrangement order of the linear device and the nonlinear device.
  3.  前記線形劣化補償手段は、
     対応する前記線形デバイスの出力信号と理想的なスペクトラム特性を有する理想信号とをフーリエ変換し、
     前記フーリエ変換により得られた2つのスペクトラム信号を比較し、
     前記スペクトラム信号の比較結果に基づいて当該線形デバイスの前記劣化特性に基づく第1の補償係数を算出し、
     前記第1の補償係数に基づいてFIRフィルタにより当該線形デバイスの前記劣化特性を相殺するように処理を行う
    請求項2に記載のスペクトラム劣化補償装置。
    The linear degradation compensation means includes
    Fourier transform the corresponding output signal of the linear device and an ideal signal having ideal spectral characteristics,
    Compare two spectrum signals obtained by the Fourier transform,
    Calculating a first compensation coefficient based on the degradation characteristic of the linear device based on the comparison result of the spectrum signal;
    The spectrum degradation compensation apparatus according to claim 2, wherein processing is performed so that the degradation characteristics of the linear device are canceled by an FIR filter based on the first compensation coefficient.
  4.  前記非線形劣化補償手段は、
     対応する前記非線形デバイスの出力信号と理想的なスペクトラム特性を有する理想信号との振幅/位相比較を行い、
     前記振幅/位相比較の結果に基づいて当該非線形デバイスの前記劣化特性に基づく第2の補償係数を算出し、
     前記第2の補償係数に基づいてリニアライザにより当該非線形デバイスの前記劣化特性を相殺するように処理を行う
    請求項2又は3に記載のスペクトラム劣化補償装置。
    The nonlinear deterioration compensation means is
    Amplitude / phase comparison between the corresponding output signal of the nonlinear device and an ideal signal having ideal spectrum characteristics is performed.
    Calculating a second compensation coefficient based on the deterioration characteristic of the nonlinear device based on the result of the amplitude / phase comparison;
    The spectrum degradation compensation apparatus according to claim 2 or 3, wherein processing is performed so as to cancel out the degradation characteristics of the nonlinear device by a linearizer based on the second compensation coefficient.
  5.  前記デジタル処理手段は前記線形デバイス及び前記非線形デバイスの前記各劣化特性を記憶する記憶手段を備え、
     前記線形劣化補償手段及び前記非線形劣化補償手段は前記記憶手段に記憶された前記劣化特性に基づいて対応する前記線形デバイス又は前記非線形デバイスのスペクトラム劣化を補償するための処理を行う
    請求項1に記載のスペクトラム劣化補償装置。
    The digital processing means includes storage means for storing the degradation characteristics of the linear device and the nonlinear device,
    The linear degradation compensation unit and the nonlinear degradation compensation unit perform processing for compensating for spectral degradation of the corresponding linear device or nonlinear device based on the degradation characteristic stored in the storage unit. Spectrum degradation compensation device.
  6.  前記アナログ処理手段は、2つの前記線形デバイスと、当該2つの線形デバイスの間に介在される1つの前記非線形デバイスとを含む
    請求項1~5のいずれか1項に記載のスペクトラム劣化補償装置。
    The spectrum degradation compensation apparatus according to any one of claims 1 to 5, wherein the analog processing unit includes two linear devices and one nonlinear device interposed between the two linear devices.
  7.  前記理想信号は前記デジタル処理手段に入力される入力信号である
    請求項2~4のいずれか1項に記載のスペクトラム劣化補償装置。
    The spectrum degradation compensation apparatus according to any one of claims 2 to 4, wherein the ideal signal is an input signal input to the digital processing means.
  8.  アナログ処理手段と、デジタル処理手段とを備える装置におけるスペクトラム劣化補償方法であって、
     前記アナログ処理手段において線形デバイスと非線形デバイスとが交互に配列されるように混在しており、
     前記デジタル処理手段は、前記線形デバイスによるスペクトラム劣化を補償する線形劣化補償手段と前記非線形デバイスによるスペクトラム劣化を補償する非線形劣化補償手段とを備え、
     前記線形デバイスによるスペクトラム劣化を補償する処理を前記線形デバイスと一対一で対応する前記線形劣化補償手段により行い、
     前記非線形デバイスによるスペクトラム劣化を補償する処理を前記非線形デバイスと一対一で対応する前記非線形劣化補償手段により行い、
     前記線形劣化補償手段及び前記非線形劣化補償手段による前記スペクトラム劣化を補償する処理を前記各線形デバイス及び前記各非線形デバイスの劣化特性に基づいて前記線形デバイス及び前記非線形デバイスの配列順とは逆の順序で行う
    スペクトラム劣化補償方法。
    A spectrum degradation compensation method in an apparatus comprising analog processing means and digital processing means,
    In the analog processing means, linear devices and nonlinear devices are mixed so that they are alternately arranged,
    The digital processing means includes linear degradation compensation means for compensating for spectral degradation due to the linear device and nonlinear degradation compensation means for compensating for spectral degradation due to the nonlinear device,
    The process of compensating for the spectral degradation due to the linear device is performed by the linear degradation compensating means that has a one-to-one correspondence with the linear device,
    The processing for compensating for the spectral degradation due to the nonlinear device is performed by the nonlinear degradation compensating means that has a one-to-one correspondence with the nonlinear device,
    The process of compensating for the spectrum degradation by the linear degradation compensation means and the nonlinear degradation compensation means is the order opposite to the arrangement order of the linear devices and the nonlinear devices based on the degradation characteristics of the linear devices and the nonlinear devices. Spectral degradation compensation method performed in
PCT/JP2013/005110 2012-08-31 2013-08-29 Device and method for spectrum degradation compensation WO2014034120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014532800A JP5861781B2 (en) 2012-08-31 2013-08-29 Spectrum degradation compensation apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012191686 2012-08-31
JP2012-191686 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034120A1 true WO2014034120A1 (en) 2014-03-06

Family

ID=50182954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005110 WO2014034120A1 (en) 2012-08-31 2013-08-29 Device and method for spectrum degradation compensation

Country Status (2)

Country Link
JP (1) JP5861781B2 (en)
WO (1) WO2014034120A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001053627A (en) * 1999-08-16 2001-02-23 Matsushita Electric Ind Co Ltd Nonlinear distortion compensating device
JP2001352219A (en) * 2000-06-08 2001-12-21 Sony Corp Nonlinear distortion compensating device
JP2002152289A (en) * 2000-11-08 2002-05-24 Nec Corp Distortion compensation device
JP2003500876A (en) * 1999-05-14 2003-01-07 ハリス コーポレイション Broadcast transmission system with distortion correction
JP2007082015A (en) * 2005-09-15 2007-03-29 Toshiba Corp Distortion compensator
JP2008193323A (en) * 2007-02-02 2008-08-21 Toshiba Corp Distortion compensating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500876A (en) * 1999-05-14 2003-01-07 ハリス コーポレイション Broadcast transmission system with distortion correction
JP2001053627A (en) * 1999-08-16 2001-02-23 Matsushita Electric Ind Co Ltd Nonlinear distortion compensating device
JP2001352219A (en) * 2000-06-08 2001-12-21 Sony Corp Nonlinear distortion compensating device
JP2002152289A (en) * 2000-11-08 2002-05-24 Nec Corp Distortion compensation device
JP2007082015A (en) * 2005-09-15 2007-03-29 Toshiba Corp Distortion compensator
JP2008193323A (en) * 2007-02-02 2008-08-21 Toshiba Corp Distortion compensating device

Also Published As

Publication number Publication date
JP5861781B2 (en) 2016-02-16
JPWO2014034120A1 (en) 2016-08-08

Similar Documents

Publication Publication Date Title
US9735741B2 (en) Receivers for digital predistortion
US9832003B2 (en) Systems and methods for self-interference canceller tuning
US11082074B2 (en) Systems and methods for linearized-mixer out-of-band interference mitigation
US9077421B1 (en) Systems and methods for hybrid self-interference cancellation
US7782235B1 (en) Adaptive mismatch compensators and methods for mismatch compensation
US8164496B2 (en) Mismatch compensators and methods for mismatch compensation
CN104618283B (en) Communication device and the method for improving digital pre-distortion linearization
JP4621245B2 (en) Digital linearization system
US8406340B2 (en) Distortion and aliasing reduction for digital to analog conversion
US10230410B2 (en) Systems and methods for out-of-band interference mitigation
WO2020248584A1 (en) Gain flatness compensation method for transceiver
JP2014050712A (en) Transmission method for magnetic resonance signal, coil device, detection circuit, and magnetic resonance signal transmission device
US20210050877A1 (en) Systems and methods for tunable out-of-band interference mitigation
US20140347132A1 (en) Power amplifier apparatus, transmitter apparatus, and method of controlling the power amplifier apparatus
JP5861781B2 (en) Spectrum degradation compensation apparatus and method
US9595925B2 (en) Distortion-compensating power amplifier and method for compensating for distortion to amplify power
Singh et al. Digitally enhanced wideband I/Q downconversion receiver with 2-channel time-interleaved ADCs
JP5109886B2 (en) Group delay characteristic compensation device and group delay characteristic compensation method
Wang et al. Blind calibration of nonlinearity mismatch errors in two-channel time-interleaved ADCs
WO2011115208A1 (en) Wraparound canceller and relay device
WO2015033524A1 (en) Digital processing apparatus and digital processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833823

Country of ref document: EP

Kind code of ref document: A1