WO2011114993A1 - Cross-linked polymer particle and method for producing same - Google Patents

Cross-linked polymer particle and method for producing same Download PDF

Info

Publication number
WO2011114993A1
WO2011114993A1 PCT/JP2011/055678 JP2011055678W WO2011114993A1 WO 2011114993 A1 WO2011114993 A1 WO 2011114993A1 JP 2011055678 W JP2011055678 W JP 2011055678W WO 2011114993 A1 WO2011114993 A1 WO 2011114993A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
crosslinked polymer
particle
amino
amino compound
Prior art date
Application number
PCT/JP2011/055678
Other languages
French (fr)
Japanese (ja)
Inventor
優 渡邊
高井 健次
憂子 永原
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2011514911A priority Critical patent/JP4957871B2/en
Publication of WO2011114993A1 publication Critical patent/WO2011114993A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/14Powdering or granulating by precipitation from solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/243Two or more independent types of crosslinking for one or more polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to crosslinked polymer particles and a method for producing the same.
  • Crosslinked polymer particles with a high degree of crosslinking and excellent heat resistance and chemical resistance include various spacers, electrical and electronic materials such as conductive fine particles, resin film sliding property modifiers, chromatography carriers, It is applied and put into practical use in various fields such as biomedical devices.
  • these crosslinked polymer particles are produced by a method such as a suspension polymerization method, an emulsion polymerization method, a seed polymerization method and a dispersion polymerization method.
  • cross-linked polymer particles can be produced by polymerizing the cross-linkable monomer as oil droplets in an aqueous medium by mechanical force.
  • the upper limit of the ratio of the crosslinkable monomer is about 2.0% by mass.
  • the range of the particle diameter of the obtained crosslinked polymer particles is 0.1 to 1.0 ⁇ m, and it is said that particles having a particle diameter exceeding 1 ⁇ m cannot be obtained.
  • Patent Document 1 discloses a method in which emulsion polymerization can be stably performed by using a special seed, even when 20.0% by mass or more of a crosslinkable monomer is used.
  • the range of the particle diameter obtained by this method is 0.1 to 1.0 ⁇ m, which is the same as that of ordinary emulsion polymerization. Thus, it is difficult to obtain crosslinked polymer particles having a particle diameter exceeding 1 ⁇ m by emulsion polymerization.
  • Patent Document 2 discloses a first step in which an organic compound having low solubility in water is absorbed into a seed polymer as a swelling aid, and then a monomer soluble in water to some extent is absorbed into the seed polymer to form monomer swelling particles.
  • a swelling polymerization method is disclosed in which a monomer is polymerized while maintaining the particle shape. According to this method, it becomes possible to use many crosslinkable monomers, and as a result, crosslinked polymer particles having a size of 1 ⁇ m or more and a uniform particle size distribution can be produced.
  • Patent Document 3 discloses a method for producing crosslinked particles by a dispersion polymerization method using 20% by mass or more of a crosslinkable vinyl monomer. According to this method, it is possible to produce monodisperse particles of about several microns to some extent. However, when the particle diameter exceeds 2.5 ⁇ m, the aggregation and fusion of the particles increases, and it is very difficult to obtain monodisperse particles. Moreover, when a hydrophilic or water-soluble polymerizable monomer is copolymerized, it is more difficult to obtain monodisperse particles because aggregation and fusion are likely to occur.
  • a crosslinked polymer particle is produced by copolymerizing an unsaturated monomer having a hydrophilic functional group or an active hydrogen group with a crosslinkable monomer when performing a precipitation polymerization method similar to the dispersion polymerization method.
  • a method has been reported. According to this method, monodisperse particles of several ⁇ m can be obtained efficiently.
  • Patent Document 5 reports a method of crosslinking mother particles by reacting uncrosslinked mother particles having a functional group with an epoxy compound, an oxazoline compound, or an amino compound. According to this method, although it is possible to crosslink uncrosslinked particles, since the reactivity of the compound to be reacted is high, the crosslinking reaction tends to proceed mainly on the particle surface and a core-shell structure tends to be formed.
  • the mother particle contains a functional group derived from a hydrophilic monomer on the surface and inside of the particle
  • a sufficient level is achieved in terms of compression characteristics such as compression deformation recovery rate and compression fracture strength.
  • compression characteristics such as compression deformation recovery rate and compression fracture strength.
  • polymer particles are covered with a metal layer to form conductive particles that are used in an anisotropic conductive adhesive, it is extremely important that the polymer particles have good compression properties.
  • simultaneously with compression characteristics when forming a metal plating layer on the surface of polymer particles by plating, it is required to form a plating layer having high uniformity and good adhesion.
  • a main object of the present invention is to provide polymer particles that have good compression characteristics and can form a plating layer on the surface in a good state.
  • the present invention includes a step of bringing a mother particle formed from a crosslinked polymer having a functional group into contact with an amino compound having two or more amino groups, and further crosslinking the crosslinked polymer by a reaction between the functional group and the amino group.
  • the present invention relates to a crosslinked polymer particle that can be obtained by a production method comprising
  • the amino compound includes a low molecular weight amino compound having a molecular weight of less than 500.
  • the cross-linked polymer particles according to the present invention have a good compression property and can form a plating layer on the surface in a good state.
  • a low molecular weight amino compound having a molecular weight of less than 500 the inside of the mother particle can be efficiently cross-linked, and the compression characteristics can be improved.
  • mother particles obtained by copolymerizing a hydrophilic monomer generally tend to have low compression characteristics due to a small amount of the crosslinkable monomer.
  • Cross-linked polymer with good compression characteristics and good plating formability by post-crosslinking mother particles having functional groups such as carboxyl groups derived from hydrophilic monomers with compounds having two or more amino groups Particles can be obtained.
  • the amino compound preferably further contains a high molecular weight amino compound having a molecular weight of 500 to 10,000.
  • a high molecular weight amino compound having a molecular weight of 500 to 10,000 in combination, a large number of amino groups can be introduced on the surface of the mother particles, and the formability of the plating can be further improved.
  • the average particle size of the crosslinked polymer particles is preferably 0.1 to 10 ⁇ m.
  • the Cv value of the particle diameter of the crosslinked polymer particles is preferably 10% or less. When the Cv value of the particle diameter of the crosslinked polymer particles is low, the connection reliability when the conductive particles obtained from the crosslinked polymer particles are used for the anisotropic conductive adhesive is further improved.
  • the cross-linked polymer that forms the mother particle preferably has at least one functional group selected from the group consisting of a carboxyl group, an epoxy group, and a glycidyl group. These functional groups efficiently react with the amino group of the amino compound, and a crosslinked structure is formed in the mother particle.
  • the mother particles are preferably particles that can be obtained by suspension polymerization, emulsion polymerization, dispersion polymerization, precipitation polymerization or seed polymerization.
  • the crosslinked polymer forming the mother particle is preferably a copolymer formed by copolymerizing a monomer mixture containing 10% by mass or more of a monomer having two or more unsaturated double bonds. .
  • the monomer having two or more unsaturated double bonds preferably contains at least one selected from divinylbenzene and di (meth) acrylate.
  • the mother particles after the step (a) preferably have a compression deformation recovery rate of 40% or more and a compression fracture strength of 10 mN or more at 180 ° C.
  • the present invention also relates to conductive particles that can be obtained by a production method including the step (c) of plating the crosslinked polymer particles according to the present invention.
  • the conductive particles according to the present invention are useful, for example, as conductive particles for anisotropic conductive adhesives.
  • step (c) the crosslinked polymer particles are preferably plated using a Pd ion complex as a plating catalyst.
  • the present invention relates to a method for producing crosslinked polymer particles.
  • a mother particle formed from a cross-linked polymer having a functional group is brought into contact with an amino compound having two or more amino groups, and the cross-linked polymer is formed by a reaction between the functional group and the amino group.
  • a cross-linking step (a) is provided.
  • the amino compound includes a low molecular weight amino compound having a molecular weight of less than 500.
  • the ratio of the amino group of the amino compound is preferably 0.1 to 5 equivalents relative to 1 equivalent of the functional group in the mother particle.
  • the present invention also relates to an anisotropic conductive adhesive comprising a binder resin and the conductive particles dispersed in the binder resin.
  • polymer particles that have good compression characteristics and can form a plating layer in a good state on the surface thereof.
  • the crosslinked polymer particle according to the present embodiment comprises a step of preparing a mother particle formed from a crosslinked polymer having a functional group, and bringing the mother particle into contact with an amino compound having two or more amino groups. And a step (a) of further crosslinking the crosslinked polymer by a reaction between the amino group and the amino group.
  • FIG. 1 is a schematic view showing an embodiment of a crosslinked polymer particle.
  • a crosslinked polymer particle 1 shown in FIG. 1 includes a mother particle 10, a mother particle 10 that is a particulate crosslinked polymer, a crosslinked portion X derived from an amino compound that crosslinks the crosslinked polymer, and an amino group derived from the amino compound.
  • the modification part R has.
  • the cross-linked portion X is distributed over the entire surface and inside of the base particle 10.
  • the modified portion R is mainly disposed on the surface of the base particle 10.
  • the cross-linked polymer constituting the mother particle 10 is, for example, a styrene resin, an acrylic resin, a methacrylic resin, a polyethylene resin, a polypropylene resin, a silicone resin, a polyester resin, a polyurethane resin, a polyamide resin, or an epoxy resin.
  • the mother particle 10 is preferably a crosslinked polymer particle formed by copolymerization of a monomer mixture composed of a plurality of types of monomers having an unsaturated double bond.
  • the monomer mixture is, for example, at least one hydrophilic functional group selected from the group consisting of a multifunctional monomer having two or more unsaturated double bonds, a carboxyl group, an epoxy group, and a glycidyl group.
  • the monomer mixture preferably contains 10% by mass or more of a polyfunctional monomer having two or more unsaturated double bonds with respect to the whole monomer mixture.
  • a polyfunctional monomer having two or more unsaturated double bonds are particularly easily formed.
  • the monomer mixture is preferably a polyfunctional monomer having two or more unsaturated double bonds, more preferably 10 to 80% by mass, still more preferably 10 to 60% by mass, and much more.
  • the content is preferably 10 to 50% by mass.
  • the mother particles 10 are preferably obtained by a solution polymerization method in a medium in which the monomer mixture is dissolved and the resulting crosslinked polymer is not substantially dissolved. It is also possible to form a crosslinked polymer in the absence of a solvent as in bulk polymerization.
  • Solution polymerization includes (1) emulsion or suspension polymerization performed in an aqueous solution, (2) dispersion polymerization performed in the presence of a dispersant in a non-aqueous organic solvent or a mixed solvent of water and a non-aqueous organic solvent, ( 3) A method of combining the above (1) or (2) with a seed polymerization method may be mentioned.
  • a copolymer having a hydrophilic functional group as well as a desired micron-size particle can be obtained without using a seed particle.
  • Precipitation polymerization is preferably employed because, for example, it is possible to easily produce particles with excellent deformation recovery rate at high compression displacement.
  • the monomer having two or more unsaturated double bonds is not particularly limited, and is appropriately selected from, for example, commonly used polyfunctional vinyl monomers and polyfunctional (meth) acrylic acid esters.
  • polyfunctional monomer examples include divinylbenzene; divinylbiphenyl; divinylnaphthalene; (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, and (poly) tetramethylene glycol di (Poly) alkylene glycol di (meth) acrylates such as (meth) acrylate; 1,6-hexanediol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 1,9-nonanediol di ( (Meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 2,4-diethyl- 1,5-pentanediol di (meth
  • NK esters (A-TMPT-6P0, A-TMPT-3E0, A-TMM-3LMN, A-GLY series, manufactured by Shin-Nakamura Chemical Co., Ltd., A-9300, AD-TMP, AD-TMP-4CL, ATM-4E, A-DPH) and the like. These monomers may be used alone or in combination of two or more.
  • the polyfunctional monomer contains at least one selected from divinylbenzene and polyfunctional (meth) acrylic acid ester.
  • the polyfunctional monomer preferably contains di (meth) acrylic acid ester, and more preferably alkanediol di (meth) acrylate.
  • the alkanediol preferably has 6 to 18 carbon atoms, more preferably 8 to 12 carbon atoms.
  • radical polymerizable monomer having a carboxyl group examples include various unsaturated mono- or dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, monobutyl itaconate and monobutyl maleate.
  • unsaturated mono- or dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, monobutyl itaconate and monobutyl maleate.
  • An acid or an unsaturated dibasic acid is mentioned. These may be used alone or in combination of two or more.
  • radical polymerizable monomer having an epoxy group examples include glycidyl (meth) acrylate, ( ⁇ -methyl) glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, allyl glycidyl ether, 3,4- It is selected from epoxy vinylcyclohexane, di ( ⁇ -methyl) glycidyl malate and di ( ⁇ -methyl) glycidyl fumarate.
  • An epoxy group may be introduced into the crosslinked polymer using a compound having another epoxy group.
  • the compound having an epoxy group include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether, cyclohexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether and pentaerythritol tetraglycidyl ether.
  • Glycidyl ethers of aliphatic polyhydric alcohols such as, glycidyl ethers of polyalkylene glycols such as polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether and polytetramethylene glycol diglycidyl ether, polyglycidylated polyester resins Resin-based polyglycidyl compounds, bisphenol A series of epoxy resins, phenol novolak-based epoxy resins, as well as epoxy urethane resin. These may be used alone or in combination of two or more.
  • the monomer mixture may contain a monofunctional monomer having one unsaturated double bond.
  • the proportion of this monofunctional monomer is preferably 0 to 70% by mass of the total monomer mixture.
  • the proportion of the monofunctional monomer is more preferably 5 to 70% by mass, still more preferably 10 to 70% by mass, and still more preferably 15 to 70% by mass.
  • Examples of the monofunctional monomer include (i) styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, ⁇ -methyl styrene, o-ethyl styrene, m-ethyl styrene, p-ethyl styrene.
  • radical polymerization initiator used in radical polymerization for producing mother particles
  • a known radical polymerization initiator can be used.
  • the radical polymerization initiator include benzoyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, peroxides such as sodium persulfate and ammonium persulfate, azobisisobutyronitrile, azobismethylbutyro Examples thereof include azo compounds such as nitrile and azobisisovaleronitrile. These may be used alone or in combination of two or more.
  • polymerization solvents used for producing mother particles by solution polymerization include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1 -Pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2- Alcohols such as pentanol, 2-ethylbutanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-octanol, 2-ethyl-1-hexanol, benzyl alcohol, cyclohexanol; methyl cellosolve, ethyl cellosolve, isopropyl cello Sol , Ether alcohols such as butyl cellosolve
  • a dispersant When producing the mother particles, a dispersant, a stabilizer, an emulsifier, a surfactant and the like may be appropriately selected and used.
  • Dispersants and stabilizers include polyhydroxystyrene, polystyrene sulfonic acid, vinylphenol- (meth) acrylic acid ester copolymer, styrene- (meth) acrylic acid ester copolymer, styrene-vinylphenol- (meth) acrylic Polystyrene derivatives such as acid ester copolymers; poly (meth) acrylic acid derivatives such as poly (meth) acrylic acid, poly (meth) acrylamide, polyacrylonitrile, pothiethyl (meth) acrylate, polybutyl (meth) acrylate; polymethyl vinyl ether , Polyvinyl alkyl ether derivatives such as polyethyl vinyl ether, polybutyl vinyl ether, polyisobutyl vinyl ether; cellulose, methyl cellulose, cellulose acetate, cellulose nitrate, hydroxymethyl cellulose, Cellulose derivatives such as droxyethyl cellulose, hydroxy
  • emulsifiers include alkyl sulfate salts such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, alkylnaphthalene sulfonates, fatty acid salts, alkyl phosphates, and alkylsulfosuccinates.
  • Anionic emulsifiers such as alkylamine salts, quaternary ammonium salts, alkylbetaines, amine oxides; polyoxyethylene alkyl ethers, polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, polyoxyethylene alkylphenyls
  • Nonionic emulsifiers such as ether, sorbitan fatty acid ester, glycerin fatty acid ester, and polyoxyethylene fatty acid ester are listed. These may be used alone or in combination of two or more.
  • step (a) for example, the mother particle is brought into contact with a solution containing an amino compound and a solvent in which the amino compound is dissolved, and the crosslinked polymer is further crosslinked by a reaction between a functional group and the amino group in the mother particle.
  • the solution of the amino compound is impregnated only in the surface layer portion or the inner region of the mother particle.
  • amino compound one or more compounds having two or more amino groups are used. From the viewpoint of improving the formability of plating, compounds having a large amount of primary or secondary amines such as polyethyleneimine and pentaethylenehexamine are preferable.
  • the amino compound preferably contains a low molecular weight amino compound having a molecular weight of less than 500 from the viewpoint of improving compression characteristics.
  • the amino compound preferably contains a high molecular weight amino compound having a molecular weight of 500 to 10,000 in order to improve the formability of plating. It is particularly preferable to use a low molecular weight amino compound and a high molecular weight amino compound in combination.
  • the molecular weight of the low molecular weight amino compound is preferably 50 or more and less than 500, more preferably 50 to 400, still more preferably 50 to 300.
  • the molecular weight of the high molecular weight amino compound is preferably 500 to 10,000, more preferably 500 to 5,000.
  • the amino compound is preferably an aliphatic diamine having a linear or alkyl side chain.
  • Specific examples of the aliphatic diamine include ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 2-methyl-1,8-octane.
  • the amino compound may contain an alicyclic diamine and / or an aromatic diamine.
  • Alicyclic diamines include cyclohexane diamine, methyl cyclohexane diamine, and isophorone diamine.
  • Aromatic diamines include p-phenylene diamine, m-phenylene diamine, xylene diamine, 4,4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl sulfone and 4,4'-diaminodiphenyl ether.
  • those having a molecular weight of less than 500 can be used as low molecular weight amino compounds.
  • the amino compound may contain polyamines such as triamine and tetraamine in addition to the diamine.
  • polyamines such as triamine and tetraamine in addition to the diamine.
  • High molecular weight polyethyleneimine is suitable as a high molecular weight amino compound.
  • amino compounds are used alone or in combination of two or more.
  • the reaction between the mother particle and two or more kinds of amino compounds can be carried out all at once, or each amino compound can be added stepwise to advance the reaction.
  • the amino compound may be dissolved in an organic solvent.
  • organic solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; esters such as ethyl acetate, butyl acetate, ethyl propionate, and cellosolve acetate; pentane, 2-methylbutane, n-hexane, Cyclohexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, n-octane, isooctane, 2,2,3-trimethylpentane, decane, nonane, cyclopentane, methylcyclopentane, methyl Aliphatic or aromatic hydrocarbons such as cyclohexane, ethylcyclohexane, p-menthane, benzene, toluene,
  • amino compound is a water-soluble or hydrophilic organic compound, in addition to the above organic solvent, water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl- Alcohols such as 2-pentanol, 2-ethylbutanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-octanol, 2-ethyl-1-hexanol, benzyl alcohol, cyclohexanol; methyl cellosolve, ethyl cellosolve, Isopropyl cello Bed, butyl cellosolve, ether
  • the reaction solvent for reacting the functional group in the mother particle with the amino group is preferably a solvent in which the mother particle is not substantially dissolved and the amino compound is dissolved.
  • the reaction between the functional group in the mother particle and the amino compound may be performed in the absence of a solvent.
  • reaction solvent examples include alcohols such as ⁇ -butyrolactone, glycerin, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and n-butanol.
  • alcohols such as ⁇ -butyrolactone, glycerin, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and n-butanol.
  • Hydrocarbons such as toluene, xylene, n-octane, n-dodecane, fatty acids such as linoleic acid, polyethylene glycol, dimethyl silicone, water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2 -Butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 1-hexanol, 2-methyl -1-pentanol Alcohols such as 4-methyl-2-pentanol, 2-ethylbutanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-octanol, 2-ethyl-1-hexanol, benzyl alcohol, cyclohexanol;
  • water preferably, water, a lower alcohol such as methanol or ethanol, an ether alcohol such as methyl cellosolve or ethyl cellosolve, a mixture of water and lower alcohol, a water-soluble and hydrophilic medium such as a mixture of water and ether alcohol, toluene, dimethyl
  • a lower alcohol such as methanol or ethanol
  • an ether alcohol such as methyl cellosolve or ethyl cellosolve
  • a mixture of water and lower alcohol a water-soluble and hydrophilic medium
  • a mixture of water and ether alcohol toluene
  • dimethyl examples include formamide (DMF), tetrahydrofuran (THF), methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), acetone, N-methyl-2-pyrrolidone (NMP), dichloromethane, tetrachloroethylene, and more preferably water, methanol.
  • a lower alcohol such as ethanol, a mixture of water and a lower alcohol such as methanol or ethanol, a mixture of water and a lower alcohol such as methanol or ethanol, or a mixture of water and ether alcohol.
  • a water-soluble and hydrophilic media may be used alone or in combination of two or more.
  • the temperature at which the amino compound is reacted in step (a) depends on the type of solvent, but is preferably 10 ° C. to 250 ° C., more preferably 100 to 250 ° C., and even more preferably 180 ° C. to 250 ° C.
  • the reaction time may be the time required for the crosslinking reaction to be almost completed, and greatly depends on the amino compound used and the amount added, the type of functional group in the mother particle, the viscosity and concentration of the solution, etc. It is about 5 to 24 hours at 180 ° C., preferably about 6 to 10 hours. Even if the reaction time is lengthened, crosslinked polymer particles can be obtained, but it is not a good practice to take a long time in practice. Moreover, when reaction time is extremely short, bridge
  • the amount of the amino compound in the step (a) is preferably 0.1 to 5, more preferably 0.5 to 3, in terms of an equivalent ratio of amino groups to functional groups of the mother particles. If this equivalent ratio is too small or excessively large, the effect of improving the compression characteristics and improving the formability of plating tends to be reduced.
  • the average particle diameter of the crosslinked polymer particles is preferably 0.1 to 50 ⁇ m, more preferably 0.2 to 30 ⁇ m, still more preferably 0.3 to 20 ⁇ m, and most preferably 0.5 to 5 ⁇ m. If the average particle size is small, the crosslinked polymer particles may easily aggregate.
  • the Cv value (coefficient of variation) of the particle diameter (diameter) of the crosslinked polymer is preferably 15% or less.
  • the Cv value exceeds 15% the performance of the crosslinked polymer particles in various uses tends to be lowered.
  • the connection reliability when the crosslinked polymer particles are used for conductive particles constituting an anisotropic conductive adhesive is reduced, and the quantitativeness when the crosslinked polymer particles are used for a biopsy element is reduced.
  • the Cv value of the particle diameter is preferably 10% or less, more preferably 5% or less, and still more preferably 4% or less.
  • the average particle diameter and the Cv value of the particle diameter of the crosslinked polymer particles are determined by the following measurement method. 1) Disperse particles in water using an ultrasonic dispersion facility to prepare a dispersion containing 1% by mass of particles. 2) About 20,000 dispersions are observed with a particle size distribution meter (Sysmex Flow, manufactured by Sysmex) under a microscope, and the average particle size and the coefficient of variation Cv of the particle size are calculated.
  • the compression deformation recovery rate measured at 180 ° C. of the mother particles after the step (a) is usually 30% or more, preferably 40% or more, more preferably 50% or more, and further preferably 50 to 65%. It is. If this compression deformation recovery rate is low, the elastic force is insufficient, and there is a tendency that poor contact is likely to occur in applications such as anisotropic conductive adhesives that require high elasticity.
  • the compression deformation recovery rate is the relationship between the load value and the compression displacement in the process of compressing particles from the center to 5 mN at a speed of 0.33 mN / sec and then reducing the load at a speed of 0.33 mN / sec. It is obtained by measuring.
  • Compressive deformation recovery is the ratio (L1 / L2) of the displacement (L1) from the point where the load is reversed to the final unloading value and the displacement (L2) from the point where the load is reversed to the initial load value (%). Rate.
  • the compressive fracture strength measured at 180 ° C. of the mother particles after the step (a) is preferably 10 mN or more.
  • the crosslinked polymer fine particles according to the present embodiment have a high compression deformation recovery rate as described above, there is a high possibility of excellent elasticity. For this reason, when the crosslinked polymer fine particles are used as a conductive material, there is a low possibility of damaging or penetrating a substrate used for connection between electrodes. Even if the conductive material is highly compressed and deformed, there is a high possibility of exhibiting high-precision gap retention and stable connection reliability. Since the crosslinked polymer particles according to the present embodiment have the characteristics as described above, not only in the field of electric materials, but also paints, coating agents, light diffusing agents, cosmetics, medicines or biopsy elements, agricultural chemicals, building materials, etc. Useful in a wide range of fields.
  • FIG. 2 is a cross-sectional view showing an embodiment of the anisotropic conductive adhesive.
  • a film-like anisotropic conductive adhesive 20 shown in FIG. 2 is composed of a binder resin 3 and conductive particles 5 dispersed in the binder resin 3.
  • the electroconductive particle 5 has the crosslinked polymer particle which concerns on this embodiment, and the metal layer (metal plating layer) which covers this crosslinked polymer particle.
  • the binder resin 3 is not particularly limited, but is preferably an insulating adhesive composition.
  • This insulating adhesive composition includes, for example, at least one component selected from a thermoplastic resin, a thermosetting resin, and an elastomer.
  • thermoplastic resins include vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins and styrene resins; polyolefins; ethylene-vinyl acetate copolymers; polyamide resins; styrene-butadiene-styrene block copolymers.
  • thermosetting resin is selected from, for example, an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the thermosetting resin is usually contained in the binder resin 3 together with the curing agent.
  • the thermosetting resin may be any one of a room temperature curing type, a thermosetting type, a light curing type, and a moisture curing type.
  • the elastomer is selected from, for example, styrene-butadiene copolymer rubber, chloroprene rubber, and acrylonitrile-styrene block copolymer rubber. These resins may be used alone or in combination of two or more.
  • the insulating adhesive composition as the binder resin 3 may be, for example, an extender, a softener (plasticizer), an adhesive improver, an antioxidant (anti-aging agent), a heat stabilizer, if necessary.
  • Various additives such as a light stabilizer, an ultraviolet absorber, a colorant, a flame retardant, and an organic solvent may be included.
  • the anisotropic conductive adhesive according to this embodiment can be obtained, for example, by a method in which conductive particles are added to a binder resin, mixed uniformly, and the conductive particles are dispersed.
  • An anisotropic conductive adhesive containing a binder resin and conductive particles is applied to the release treatment surface of a release material such as release paper and release film in a state where it is dissolved by heating as it is or dissolved or dispersed in a solvent.
  • a film-like anisotropic conductive adhesive can be obtained by the method of drying or cooling as needed.
  • the dispersion state of the conductive particles in the anisotropic conductive adhesive is not particularly limited.
  • the conductive particles may be uniformly dispersed in the binder resin, or may be distributed unevenly in the vicinity of the surface layer of the film.
  • the form of the anisotropic conductive adhesive is not limited to a film, and may be, for example, a paste or ink.
  • Synthesis synthesis example 1 of mother particles The following compounds were charged all at once into a 100 mL three-necked flask and stirred for about 6 hours using a stirrer while heating in a water bath at 80 ° C. to form mother particles formed from a crosslinked polymer.
  • DVB-960 Nippon Steel Chemical, 96% by weight of divinylbenzene (DVB), 3% by weight of ethylvinylbenzene (EVB)): 4.9 g ⁇ Methacrylic acid (Wako Pure Chemical Industries): 2.1g ⁇ Azobisisobutyronitrile (AIBN, Wako Pure Chemical Industries): 0.6g ⁇ Acetonitrile (Wako Pure Chemical Industries): 70g
  • the mother particles are filtered off using a suction filtration facility, and washing and filtration with isopropyl alcohol (IPA, Wako Pure Chemical Industries) are repeated about 3 to 5 times, followed by vacuum drying to obtain powdery mother particles. It was.
  • IPA isopropyl alcohol
  • the particle diameter of the obtained mother particle was measured by SEM observation, it was a spherical monodisperse particle having an average particle diameter of 4.1 ⁇ m.
  • the Cv value of the particle diameter was 2.3%.
  • Synthesis example 2 The following compounds were charged all at once into a 100 mL three-necked flask and stirred for about 6 hours using a stirrer while heating in a water bath at 80 ° C. to form mother particles formed from a crosslinked polymer.
  • DVB-960 2.8g ⁇ Methacrylic acid: 4.2 g ⁇ AIBN: 0.6g -Acetonitrile: 70 g
  • the mother particles are filtered off using a suction filtration facility, and washing and filtration with isopropyl alcohol (IPA, Wako Pure Chemical Industries) are repeated about 3 to 5 times, followed by vacuum drying to obtain powdery mother particles. It was.
  • IPA isopropyl alcohol
  • the particle diameter of the obtained mother particle was measured by SEM observation, it was a spherical monodisperse particle having an average particle diameter of 3.1 ⁇ m.
  • the Cv value of the particle diameter was 3.0%.
  • Synthesis example 3 The following compounds were charged all at once into a 100 mL three-necked flask and stirred for about 6 hours using a stirrer while heating in a water bath at 80 ° C. to form mother particles formed from a crosslinked polymer.
  • DVB-960 0.9g ⁇ 1,10-decanediol diacrylate (A-DOD, Shin-Nakamura Chemical): 2.7 g ⁇ Methacrylic acid: 2g ⁇ 11-Undecenoic acid: 1.4g ⁇ AIBN: 0.07g -Acetonitrile: 70 g
  • the mother particles are filtered off using a suction filtration facility, and washing and filtration with isopropyl alcohol (IPA, Wako Pure Chemical Industries) are repeated about 3 to 5 times, followed by vacuum drying to obtain powdery mother particles. It was.
  • IPA isopropyl alcohol
  • the particle diameter of the obtained mother particle was measured by SEM observation, it was a spherical monodisperse particle having an average particle diameter of 2.8 ⁇ m.
  • the Cv value of the particle diameter was 2.7%.
  • the particles are filtered using a suction filtration facility, and washing and filtration with IPA are repeated about 3 to 5 times, followed by vacuum drying, and powdery mother particles crosslinked with hexamethylenediamine and polyethyleneimine ( Particles 1a) were obtained.
  • the compression deformation recovery rate at 180 ° C. of the obtained mother particles was 56%, and the compression fracture strength was 16 mN.
  • Activator Neo Gantt 834 (trade name, palladium ion-amino complexing agent aqueous solution) manufactured by Atotech Japan Co., Ltd. is diluted to 40 mL / L with water, adjusted to pH 10.5, and a one-component alkaline catalyst A liquid was prepared.
  • the particles 1a were immersed in this alkaline catalyst solution at 35 ° C. for 10 minutes to adsorb the palladium complex on the surfaces of the particles 1a.
  • the particles 1a were collected by suction filtration and washed with water. Thereafter, the particles 1a were again suspended in water. Thereto was added dimethylamine borane at 0.1 g / L to reduce the palladium complex on the surface of the particles 1a, and a suspension of particles 1a with palladium supported on the surface was obtained.
  • Electroless plating The suspension was heated to 80 ° C., and an electroless Ni—P plating solution (manufactured by Hitachi Chemical Co., Ltd., trade name: NIPS-100) was gradually added dropwise through a metering pump to particles 1a. Plating treatment was performed. The plating time was 60 minutes. Thereby, the plating layer was formed on the surface of the particle 1a. Thereafter, suction filtration, water washing, suction filtration, and drying were sequentially performed to obtain conductive particles having a plating layer by electroless Ni—P plating. In the obtained conductive particles, the plating layer was formed with good uniformity, and no irregularities were observed on the surface of the plating layer.
  • an electroless Ni—P plating solution manufactured by Hitachi Chemical Co., Ltd., trade name: NIPS-100
  • the obtained conductive particles were pulverized by a jet mill under a pulverization pressure of 0.1 MPa.
  • the plating is peeled off by the crushing treatment, and a large amount of plated pieces are generated after the crushing treatment.
  • the number of particles not completely covered with the plating layer is small (the number of particles completely covered with the plating layer is large), and the number of plated pieces is small, It can be determined that the dispersibility of the particles in the plating solution is good and that the adhesion between the resin particles and the plating layer is excellent. In the observation after crushing, the presence of the plated piece was hardly confirmed.
  • Example 2 A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 6 hours under a nitrogen stream.
  • -Mother particles of Synthesis Example 1 5 parts by weight-Hexamethylenediamine (molecular weight 116.2): 1 part by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
  • ⁇ ⁇ -butyrolactone 93.1 parts by weight
  • the particles are filtered off using a suction filtration facility, and after washing with IPA and filtration about 3 to 5 times, vacuum drying is performed and powdery mother particles (particles) crosslinked with hexamethylenediamine and polyethyleneimine (particles) 2a) was obtained.
  • the compression deformation recovery rate at 180 ° C. of the obtained mother particles was 54%, and the compression fracture strength was 15 mN.
  • Example 3 A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 6 hours under a nitrogen stream.
  • -Mother particles of Synthesis Example 1 5 parts by weight-Hexamethylenediamine (molecular weight 116.2): 1 part by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
  • ⁇ ⁇ -butyrolactone 93.1 parts by weight
  • the particles are filtered off using a suction filtration facility, and after washing with IPA and filtration about 3 to 5 times, vacuum drying is performed and powdery mother particles (particles) crosslinked with hexamethylenediamine and polyethyleneimine (particles) 3a) was obtained.
  • the compression deformation recovery rate at 180 ° C. of the obtained mother particles was 53%, and the compression fracture strength was 16 mN.
  • Example 4 A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 6 hours under a nitrogen stream.
  • -Mother particles of Synthesis Example 1 5 parts by weight-Hexamethylenediamine (molecular weight 116.2): 1 part by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
  • ⁇ ⁇ -butyrolactone 93.1 parts by weight
  • the particles are filtered off using a suction filtration facility, and after washing with IPA and filtration about 3 to 5 times, vacuum drying is performed and powdery mother particles (particles) crosslinked with hexamethylenediamine and polyethyleneimine (particles) 4a) was obtained.
  • the compression deformation recovery rate at 180 ° C. of the obtained mother particles was 55%, and the compression fracture strength was 16 mN.
  • Example 5 A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 6 hours under a nitrogen stream.
  • -Mother particles of Synthesis Example 1 5 parts by weight-Hexamethylenediamine (molecular weight 116.2): 1 part by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
  • ⁇ ⁇ -butyrolactone 93.1 parts by weight
  • the particles are filtered off using a suction filtration facility, and after washing with IPA and filtration about 3 to 5 times, vacuum drying is performed and powdery mother particles (particles) crosslinked with hexamethylenediamine and polyethyleneimine (particles) 5a) was obtained.
  • the compression deformation recovery rate at 180 ° C. of the obtained mother particles was 57%, and the compression fracture strength was 16 mN.
  • Example 6 (Process a) A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 6 hours under a nitrogen stream.
  • the particles are filtered off using a suction filtration facility, washed with IPA and filtered about 3 to 5 times, and then dried in a vacuum to form powdery mother particles crosslinked with ethylenediamine and polyethyleneimine (particles 6a) Got.
  • the compression deformation recovery rate at 180 ° C. of the obtained mother particles was 51%, and the compression fracture strength was 11 mN.
  • Example 7 (Process a) A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 12 hours under a nitrogen stream.
  • -Mother particles of Synthesis Example 3 5 parts by weight-Pentaethylenehexamine (molecular weight 232.4): 0.27 parts by weight (the ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent) Polyethyleneimine (molecular weight 300): 1 part by weight (ratio of amino group to carboxyl group in the mother particle is 1 equivalent) ⁇ ⁇ -Butyrolactone (Wako Pure Chemical) 93.7 parts by weight
  • the particles are filtered using a suction filtration facility, and washing and filtration with IPA are repeated about 3 to 5 times, followed by vacuum drying, and powdery mother particles crosslinked with pentamethylenehexamine and polyethyleneimine ( Particles 7a) were obtained.
  • the compression deformation recovery rate at 180 ° C. of the obtained mother particles was 45%, and the compression fracture strength was 12 mN.
  • Ni particles were applied to the particles 7a to produce conductive particles composed of crosslinked polymer particles and a Ni plating layer covering the particles.
  • the plating layer was formed with good uniformity, and no irregularities were observed on the surface of the plating layer. Moreover, in the observation after crushing, the presence of the plated piece was hardly confirmed.
  • Comparative Example 1 The mother particles synthesized in Synthesis Example 2 were used as they were, and the compression characteristics and the formation state of the plating layer were evaluated.
  • Comparative Example 2 Except having used the mixture of the following ratio as a raw material in the process a, the process of the mother particle of the synthesis example 1 and preparation and evaluation of the electroconductive particle were performed by the same operation as Example 1.
  • -Mother particles of Synthesis Example 1 5 parts by weight-Hexylamine (molecular weight 100): 1.7 parts by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
  • ⁇ ⁇ -butyrolactone 92.3 parts by weight
  • Comparative Example 3 Except having used the mixture of the following ratio as a raw material in the process a, the process of the mother particle of the synthesis example 1 and preparation and evaluation of the electroconductive particle were performed by the same operation as Example 1.
  • -Mother particles of Synthesis Example 1 5 parts by weight-Polyethyleneimine (molecular weight 600): 0.9 parts by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
  • ⁇ ⁇ -butyrolactone 91.4 parts by weight
  • Comparative Example 4 Except having used the mixture of the following ratio as a raw material in the process a, the process of the mother particle of the synthesis example 1 and preparation and evaluation of the electroconductive particle were performed by the same operation as Example 1.
  • -Mother particles of Synthesis Example 1 5 parts by weight-Polyethyleneimine (molecular weight 1200): 0.9 parts by weight (the ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
  • ⁇ ⁇ -butyrolactone 91.4 parts by weight
  • the cross-linked polymer particles according to the present invention have been found to satisfy characteristics useful as particles used in conductive materials including anisotropic conductive films and conductive pastes. Furthermore, since the crosslinked polymer particles obtained by the production method of the present invention are excellent in heat resistance, chemical resistance, reactivity, and solution dispersibility, spacers for liquid crystals, conductive fine particles and conductive materials using the same, Electrostatic developer, silver salt film surface modifier, magnetic tape film modifier, thermal paper running stabilizer, toner and other electrical and electronic industries, ink, adhesive, adhesive, light diffusing agent, paint , Addition to chemical field such as paper coating agent such as paper coating and information recording paper, general industrial field such as fragrance, low shrinkage agent, paper, dental material, resin modifier, liquid or powder cosmetics It can be suitably used in a wide range of fields such as cosmetics such as slip agents and extender pigments, biological and medical fields such as living body and antigen-antibody reaction test particles, pharmaceutical and agrochemical fields, building fields, and automobile fields.
  • cosmetics such as slip agents

Abstract

Disclosed is a cross-linked polymer particle that can be obtained by a production method provided with a step (a) in which a mother particle formed from a cross-linked polymer having functional groups is brought into contact with an amino compound having two or more amino groups, and the cross-linked polymer is further cross-linked by a reaction of the functional groups and amino groups. This amino compound includes low molecular weight amino compounds with molecular weights less than 500.

Description

架橋ポリマー粒子及びその製造方法Crosslinked polymer particles and method for producing the same
 本発明は、架橋ポリマー粒子及びその製造方法に関する。 The present invention relates to crosslinked polymer particles and a method for producing the same.
 架橋度が高く優れた耐熱性及び耐薬品性を有する架橋ポリマー粒子は、各種スペーサー、導電性微粒子等の電気・電子材料分野をはじめ、樹脂フィルムの滑り特性の改質剤、クロマトグラフィー用担体、生物医薬用素子等の種々の分野で応用され、実用化されている。一般に、これらの架橋ポリマー粒子は、懸濁重合法、乳化重合法、シード重合法及び分散重合法などの方法により製造される。 Crosslinked polymer particles with a high degree of crosslinking and excellent heat resistance and chemical resistance include various spacers, electrical and electronic materials such as conductive fine particles, resin film sliding property modifiers, chromatography carriers, It is applied and put into practical use in various fields such as biomedical devices. Generally, these crosslinked polymer particles are produced by a method such as a suspension polymerization method, an emulsion polymerization method, a seed polymerization method and a dispersion polymerization method.
 懸濁重合では、機械的な力によって、架橋性モノマーを水性媒体中に油滴として懸濁した状態で重合することにより、架橋ポリマー粒子を製造することができる。 In suspension polymerization, cross-linked polymer particles can be produced by polymerizing the cross-linkable monomer as oil droplets in an aqueous medium by mechanical force.
 乳化重合の場合、一般に、架橋性モノマーの割合の上限は2.0質量%程度である。また、得られる架橋ポリマー粒子の粒子径の範囲は0.1~1.0μmであり、1μmを超える粒子径を有するものは得られないと言われている。特許文献1では、特殊なシードを用いることにより、架橋性モノマーを20.0質量%以上使用しても安定して乳化重合できる方法が開示されている。ただし、この方法により得られる粒子径の範囲は、通常の乳化重合と同じ0.1~1.0μmである。このように、乳化重合によって1μmを超える粒子径を有する架橋ポリマー粒子を得ることは困難である。 In the case of emulsion polymerization, generally, the upper limit of the ratio of the crosslinkable monomer is about 2.0% by mass. The range of the particle diameter of the obtained crosslinked polymer particles is 0.1 to 1.0 μm, and it is said that particles having a particle diameter exceeding 1 μm cannot be obtained. Patent Document 1 discloses a method in which emulsion polymerization can be stably performed by using a special seed, even when 20.0% by mass or more of a crosslinkable monomer is used. However, the range of the particle diameter obtained by this method is 0.1 to 1.0 μm, which is the same as that of ordinary emulsion polymerization. Thus, it is difficult to obtain crosslinked polymer particles having a particle diameter exceeding 1 μm by emulsion polymerization.
 特許文献2には、水に対する溶解度が小さい有機化合物を膨潤助剤としてシードポリマーに吸収させる第1段階と、その後、水にある程度可溶なモノマーをシードポリマーに吸収させてモノマー膨潤粒子を形成する第2段階とを経て、粒子形状を保持したままモノマーを重合する膨潤重合法が開示されている。この方法によれば、架橋性モノマーを多く使用することが可能となる結果、1μm以上の大きさで均一な粒子径分布を有する架橋ポリマー粒子を製造することができる。しかし、この方法で用いられる膨潤助剤の水に対する溶解度は著しく低いため、膨潤助剤をシードポリマーに吸収させる第1段階に長時間を要するという欠点がある。しかも、シードポリマーに吸収されずに残留した油滴が、重合後、粗大粒子を形成する場合がある。 Patent Document 2 discloses a first step in which an organic compound having low solubility in water is absorbed into a seed polymer as a swelling aid, and then a monomer soluble in water to some extent is absorbed into the seed polymer to form monomer swelling particles. Through the second stage, a swelling polymerization method is disclosed in which a monomer is polymerized while maintaining the particle shape. According to this method, it becomes possible to use many crosslinkable monomers, and as a result, crosslinked polymer particles having a size of 1 μm or more and a uniform particle size distribution can be produced. However, since the solubility of the swelling aid used in this method in water is extremely low, there is a drawback that it takes a long time in the first stage of absorbing the swelling aid into the seed polymer. In addition, oil droplets that remain without being absorbed by the seed polymer may form coarse particles after polymerization.
 特許文献3には、架橋性ビニルモノマーを20質量%以上用いた分散重合法による架橋粒子の製造方法が開示されている。この方法によれば、数ミクロン程度の単分散粒子を製造することがある程度可能である。ただし、粒子径が2.5μmを超えると、粒子同士の凝集融着が増大し、単分散粒子を得ることは非常に困難である。しかも、親水性や水溶性の重合性モノマーを共重合させる場合は、凝集融着が生じやすいことから、単分散粒子を得ることは一層困難である。 Patent Document 3 discloses a method for producing crosslinked particles by a dispersion polymerization method using 20% by mass or more of a crosslinkable vinyl monomer. According to this method, it is possible to produce monodisperse particles of about several microns to some extent. However, when the particle diameter exceeds 2.5 μm, the aggregation and fusion of the particles increases, and it is very difficult to obtain monodisperse particles. Moreover, when a hydrophilic or water-soluble polymerizable monomer is copolymerized, it is more difficult to obtain monodisperse particles because aggregation and fusion are likely to occur.
 特許文献4は、分散重合法に類似した沈殿重合法を行なう際に、親水性官能基または活性水素基を有する不飽和単量体を架橋性モノマーと共重合することによって架橋ポリマー粒子を製造する方法が報告されている。この方法によれば、数μmの単分散粒子を効率良く得ることができる。 In Patent Document 4, a crosslinked polymer particle is produced by copolymerizing an unsaturated monomer having a hydrophilic functional group or an active hydrogen group with a crosslinkable monomer when performing a precipitation polymerization method similar to the dispersion polymerization method. A method has been reported. According to this method, monodisperse particles of several μm can be obtained efficiently.
 特許文献5では、官能基を有する未架橋の母粒子と、エポキシ化合物、オキサゾリン化合物又はアミノ化合物とを反応させることによって母粒子を架橋する方法が報告されている。この方法によれば、未架橋粒子を架橋させることが可能であるものの、反応させる化合物の反応性が高いため、主として粒子表面で架橋反応が進行して、コアシェル構造が形成される傾向がある。 Patent Document 5 reports a method of crosslinking mother particles by reacting uncrosslinked mother particles having a functional group with an epoxy compound, an oxazoline compound, or an amino compound. According to this method, although it is possible to crosslink uncrosslinked particles, since the reactivity of the compound to be reacted is high, the crosslinking reaction tends to proceed mainly on the particle surface and a core-shell structure tends to be formed.
特開平1-315454号公報JP-A-1-315454 特開昭54-126288号公報JP 54-126288 A 特開平6-122703号公報JP-A-6-122703 特開2006-282772号公報JP 2006-282774 A 特許第4215521号公報Japanese Patent No. 4215521
 従来の方法によれば、例えば母粒子が親水性モノマー由来の官能基を粒子表面及び内部に含有する場合、圧縮変形回復率及び圧縮破壊強度のような圧縮特性の点で十分なレベルを達成するポリマー粒子を得ることは困難であった。例えば、ポリマー粒子を金属層で覆って導電性粒子を形成し、これを異方導電性接着剤に用いる場合、ポリマー粒子が良好な圧縮特性を有することが極めて重要である。さらに、圧縮特性と同時に、ポリマー粒子の表面にめっき処理により金属めっき層を形成する際、高い均一性且つ良好な密着性を有するめっき層を形成することが求められる。しかし、親水性モノマー由来の官能基が粒子表面にない場合、優れた圧縮特性を有するのと同時に、めっきの形成性の点でも十分に優れたポリマー粒子を得ることは、従来困難であった。 According to the conventional method, for example, when the mother particle contains a functional group derived from a hydrophilic monomer on the surface and inside of the particle, a sufficient level is achieved in terms of compression characteristics such as compression deformation recovery rate and compression fracture strength. It was difficult to obtain polymer particles. For example, when polymer particles are covered with a metal layer to form conductive particles that are used in an anisotropic conductive adhesive, it is extremely important that the polymer particles have good compression properties. Furthermore, simultaneously with compression characteristics, when forming a metal plating layer on the surface of polymer particles by plating, it is required to form a plating layer having high uniformity and good adhesion. However, when there is no functional group derived from a hydrophilic monomer on the particle surface, it has been difficult in the past to obtain polymer particles having excellent compression characteristics and sufficiently excellent plating formability.
 そこで、本発明の主な目的は、良好な圧縮特性を有するとともに、その表面に良好な状態でめっき層を形成することが可能なポリマー粒子を提供することにある。 Therefore, a main object of the present invention is to provide polymer particles that have good compression characteristics and can form a plating layer on the surface in a good state.
 本発明は、官能基を有する架橋ポリマーから形成された母粒子を、2個以上のアミノ基を有するアミノ化合物と接触させて、前記官能基とアミノ基との反応により架橋ポリマーを更に架橋する工程(a)を備える製造方法により得ることのできる架橋ポリマー粒子に関する。上記アミノ化合物は、分子量500未満の低分子量アミノ化合物を含む。 The present invention includes a step of bringing a mother particle formed from a crosslinked polymer having a functional group into contact with an amino compound having two or more amino groups, and further crosslinking the crosslinked polymer by a reaction between the functional group and the amino group. The present invention relates to a crosslinked polymer particle that can be obtained by a production method comprising The amino compound includes a low molecular weight amino compound having a molecular weight of less than 500.
 上記本発明に係る架橋ポリマー粒子は、良好な圧縮特性を有するとともに、その表面に良好な状態でめっき層を形成することが可能である。分子量500未満の低分子量のアミノ化合物を用いることによって、母粒子内部まで効率的に架橋することができ、圧縮特性を向上することができる。沈殿重合で合成した粒子を例として挙げられるように、親水性モノマーを共重合して得られる母粒子は、一般に、架橋性モノマーの量が少ないために圧縮特性が低い傾向がある。親水性モノマーに由来するカルボキシル基等の官能基を有する母粒子を2個以上のアミノ基を有する化合物を用いて後架橋することによって、圧縮特性、さらには、めっきの形成性の良好な架橋ポリマー粒子を得ることができる。 The cross-linked polymer particles according to the present invention have a good compression property and can form a plating layer on the surface in a good state. By using a low molecular weight amino compound having a molecular weight of less than 500, the inside of the mother particle can be efficiently cross-linked, and the compression characteristics can be improved. As exemplified by particles synthesized by precipitation polymerization, mother particles obtained by copolymerizing a hydrophilic monomer generally tend to have low compression characteristics due to a small amount of the crosslinkable monomer. Cross-linked polymer with good compression characteristics and good plating formability by post-crosslinking mother particles having functional groups such as carboxyl groups derived from hydrophilic monomers with compounds having two or more amino groups Particles can be obtained.
 上記アミノ化合物は、分子量500~10000の高分子量アミノ化合物を更に含むことが好ましい。分子量500~10000の高分子量アミノ化合物を併用することによって、母粒子表面にアミノ基を多く導入することができ、めっきの形成性を更に改善することが可能である。 The amino compound preferably further contains a high molecular weight amino compound having a molecular weight of 500 to 10,000. By using a high molecular weight amino compound having a molecular weight of 500 to 10,000 in combination, a large number of amino groups can be introduced on the surface of the mother particles, and the formability of the plating can be further improved.
 架橋ポリマー粒子の平均粒子径は0.1~10μmであることが好ましい。架橋ポリマー粒子の粒子径のCv値は10%以下であることが好ましい。架橋ポリマー粒子の粒子径のCv値が低いと、架橋ポリマー粒子から得た導電性粒子を異方導電性接着剤に用いたときの接続信頼性が更に向上する。 The average particle size of the crosslinked polymer particles is preferably 0.1 to 10 μm. The Cv value of the particle diameter of the crosslinked polymer particles is preferably 10% or less. When the Cv value of the particle diameter of the crosslinked polymer particles is low, the connection reliability when the conductive particles obtained from the crosslinked polymer particles are used for the anisotropic conductive adhesive is further improved.
 上記母粒子を形成する架橋ポリマーは、カルボキシル基、エポキシ基及びグリシジル基からなる群より選ばれる少なくとも1種の官能基を有することが好ましい。これら官能基はアミノ化合物のアミノ基と効率的に反応し、母粒子中に架橋構造が形成される。 The cross-linked polymer that forms the mother particle preferably has at least one functional group selected from the group consisting of a carboxyl group, an epoxy group, and a glycidyl group. These functional groups efficiently react with the amino group of the amino compound, and a crosslinked structure is formed in the mother particle.
 上記母粒子は、懸濁重合、乳化重合、分散重合、沈殿重合又はシード重合により得ることのできる粒子であることが好ましい。 The mother particles are preferably particles that can be obtained by suspension polymerization, emulsion polymerization, dispersion polymerization, precipitation polymerization or seed polymerization.
 上記母粒子を形成する架橋ポリマーは、2個以上の不飽和二重結合を有する単量体を10質量%以上含む単量体混合物を共重合して形成された共重合体であることが好ましい。これにより、架橋ポリマー粒子の圧縮特性を特に効果的に向上することができる。2個以上の不飽和二重結合を有する単量体は、好ましくは、ジビニルベンゼン及びジ(メタ)アクリル酸エステルから選ばれる少なくとも1種を含む。 The crosslinked polymer forming the mother particle is preferably a copolymer formed by copolymerizing a monomer mixture containing 10% by mass or more of a monomer having two or more unsaturated double bonds. . Thereby, the compression characteristic of a crosslinked polymer particle can be improved especially effectively. The monomer having two or more unsaturated double bonds preferably contains at least one selected from divinylbenzene and di (meth) acrylate.
 工程(a)の後の母粒子は、180℃において、40%以上の圧縮変形回復率、及び10mN以上の圧縮破壊強度を有することが好ましい。 The mother particles after the step (a) preferably have a compression deformation recovery rate of 40% or more and a compression fracture strength of 10 mN or more at 180 ° C.
 本発明はまた、上記本発明に係る架橋ポリマー粒子にめっきを施す工程(c)を備える製造方法により得ることのできる、導電性粒子に関する。本発明に係る導電性粒子は、例えば異方導電性接着剤用の導電性粒子として有用である。 The present invention also relates to conductive particles that can be obtained by a production method including the step (c) of plating the crosslinked polymer particles according to the present invention. The conductive particles according to the present invention are useful, for example, as conductive particles for anisotropic conductive adhesives.
 工程(c)において、Pdイオン錯体をめっき触媒として用いて架橋ポリマー粒子にめっきを施すことが好ましい。 In step (c), the crosslinked polymer particles are preferably plated using a Pd ion complex as a plating catalyst.
 別の側面において、本発明は架橋ポリマー粒子の製造方法に関する。本発明に係る製造方法は、官能基を有する架橋ポリマーから形成された母粒子を、2個以上のアミノ基を有するアミノ化合物と接触させて、前記官能基とアミノ基との反応により架橋ポリマーを更に架橋する工程(a)を備える。アミノ化合物は、分子量500未満の低分子量アミノ化合物を含む。 In another aspect, the present invention relates to a method for producing crosslinked polymer particles. In the production method according to the present invention, a mother particle formed from a cross-linked polymer having a functional group is brought into contact with an amino compound having two or more amino groups, and the cross-linked polymer is formed by a reaction between the functional group and the amino group. Furthermore, a cross-linking step (a) is provided. The amino compound includes a low molecular weight amino compound having a molecular weight of less than 500.
 上記本発明に係る方法によれば、良好な圧縮特性を有するとともに、その表面に良好な状態でめっき層を形成することが可能な架橋ポリマー粒子を得ることができる。 According to the method of the present invention, it is possible to obtain crosslinked polymer particles that have good compression characteristics and can form a plating layer in a good state on the surface.
 工程(a)において、アミノ化合物のアミノ基の比率は、母粒子中の官能基1当量に対して0.1~5当量であることが好ましい。これらの比率のアミノ化合物を用いて母粒子を処理することにより、特に優れた圧縮特性及びめっきの形成性を有する架橋ポリマー粒子が得られる。 In step (a), the ratio of the amino group of the amino compound is preferably 0.1 to 5 equivalents relative to 1 equivalent of the functional group in the mother particle. By treating the mother particles with the amino compound in these ratios, crosslinked polymer particles having particularly excellent compression characteristics and plating formability can be obtained.
 本発明はまた、バインダー樹脂と、該バインダー樹脂中に分散している上記導電性粒子と、を備える異方導電性接着剤に関する。 The present invention also relates to an anisotropic conductive adhesive comprising a binder resin and the conductive particles dispersed in the binder resin.
 本発明によれば、良好な圧縮特性を有するとともに、その表面に良好な状態でめっき層を形成することが可能なポリマー粒子が提供される。 According to the present invention, there are provided polymer particles that have good compression characteristics and can form a plating layer in a good state on the surface thereof.
架橋ポリマー粒子の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of a crosslinked polymer particle. 異方導電性接着剤の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of an anisotropic conductive adhesive.
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
 本実施形態に係る架橋ポリマー粒子は、官能基を有する架橋ポリマーから形成された母粒子を準備する工程と、該母粒子を2個以上のアミノ基を有するアミノ化合物と接触させて、前記官能基とアミノ基との反応により架橋ポリマーを更に架橋する工程(a)とを備える製造方法により得られる。 The crosslinked polymer particle according to the present embodiment comprises a step of preparing a mother particle formed from a crosslinked polymer having a functional group, and bringing the mother particle into contact with an amino compound having two or more amino groups. And a step (a) of further crosslinking the crosslinked polymer by a reaction between the amino group and the amino group.
 図1は、架橋ポリマー粒子の一実施形態を示す模式図である。図1に示す架橋ポリマー粒子1は、母粒子10と、粒子状の架橋ポリマーである母粒子10と、架橋ポリマーを架橋するアミノ化合物に由来する架橋部Xと、アミノ化合物に由来するアミノ基を有する修飾部Rとを備える。架橋部Xは母粒子10表面及び内部の全体にわたって分布している。修飾部Rは主として母粒子10の表面に配されている。 FIG. 1 is a schematic view showing an embodiment of a crosslinked polymer particle. A crosslinked polymer particle 1 shown in FIG. 1 includes a mother particle 10, a mother particle 10 that is a particulate crosslinked polymer, a crosslinked portion X derived from an amino compound that crosslinks the crosslinked polymer, and an amino group derived from the amino compound. The modification part R has. The cross-linked portion X is distributed over the entire surface and inside of the base particle 10. The modified portion R is mainly disposed on the surface of the base particle 10.
 母粒子10を構成する架橋ポリマーは、例えば、スチレン系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、エポキシ系樹脂、ポリビニルブチラール系樹脂、ロジン系樹脂、テルペン系樹脂、フェノール系樹脂、メラミン系樹脂、グアナミン系樹脂、オキサゾリン系樹脂、カルボジイミド系樹脂およびこれらを架橋反応させて得られる硬化樹脂である。これらは1種単独で、または2種以上組み合わせて使用することができる。これらポリマー中に、アミノ化合物と反応する官能基(カルボキシル基、エポキシ基及びグリシジル基等)が導入されている。 The cross-linked polymer constituting the mother particle 10 is, for example, a styrene resin, an acrylic resin, a methacrylic resin, a polyethylene resin, a polypropylene resin, a silicone resin, a polyester resin, a polyurethane resin, a polyamide resin, or an epoxy resin. A resin, a polyvinyl butyral resin, a rosin resin, a terpene resin, a phenol resin, a melamine resin, a guanamine resin, an oxazoline resin, a carbodiimide resin, and a cured resin obtained by crosslinking these. These can be used alone or in combination of two or more. Functional groups that react with amino compounds (carboxyl group, epoxy group, glycidyl group, etc.) are introduced into these polymers.
 母粒子10は、好ましくは、不飽和二重結合を有する複数種の単量体から構成される単量体混合物の共重合によって形成される架橋ポリマーの粒子である。単量体混合物は、例えば、2個以上の不飽和二重結合を有する多官能性の単量体と、カルボキシル基、エポキシ基及びグリシジル基からなる群より選ばれる少なくとも1種の親水性官能基を有する単量体とを含む。 The mother particle 10 is preferably a crosslinked polymer particle formed by copolymerization of a monomer mixture composed of a plurality of types of monomers having an unsaturated double bond. The monomer mixture is, for example, at least one hydrophilic functional group selected from the group consisting of a multifunctional monomer having two or more unsaturated double bonds, a carboxyl group, an epoxy group, and a glycidyl group. And a monomer having
 単量体混合物は、2個以上の不飽和二重結合を有する多官能性の単量体を単量体混合物全体に対して10質量%以上含むことが好ましい。これにより、圧縮変形回復率の高い架橋ポリマー粒子が特に形成され易くなる。架橋ポリマー粒子の圧縮変形回復率が高いと、架橋ポリマー粒子が異方導電性接着剤の導電性粒子を構成するポリマー粒子として用いられたときに、時間経過にともなう接続抵抗の増大が抑制され、より高い接続信頼性が達成される。係る観点から、単量体混合物は、2個以上の不飽和二重結合を有する多官能性の単量体を、より好ましくは10~80質量%、さらに好ましくは10~60質量%、より一層好ましくは10~50質量%含む。 The monomer mixture preferably contains 10% by mass or more of a polyfunctional monomer having two or more unsaturated double bonds with respect to the whole monomer mixture. As a result, crosslinked polymer particles having a high compression deformation recovery rate are particularly easily formed. When the compression deformation recovery rate of the crosslinked polymer particles is high, when the crosslinked polymer particles are used as the polymer particles constituting the conductive particles of the anisotropic conductive adhesive, an increase in connection resistance with time is suppressed, Higher connection reliability is achieved. From such a viewpoint, the monomer mixture is preferably a polyfunctional monomer having two or more unsaturated double bonds, more preferably 10 to 80% by mass, still more preferably 10 to 60% by mass, and much more. The content is preferably 10 to 50% by mass.
 母粒子10は、好ましくは、単量体混合物が溶解し、生成する架橋ポリマーが実質的に溶解しない媒体中で溶液重合を行う方法により得られる。塊状重合のように無溶媒下で架橋ポリマーを形成させることもできる。 The mother particles 10 are preferably obtained by a solution polymerization method in a medium in which the monomer mixture is dissolved and the resulting crosslinked polymer is not substantially dissolved. It is also possible to form a crosslinked polymer in the absence of a solvent as in bulk polymerization.
 溶液重合としては、(1)水溶液中で行う乳化または懸濁重合、(2)非水系有機溶媒中または水と非水系有機溶媒との混合溶媒中、分散剤の存在下で行う分散重合、(3)上記(1)または(2)とシード重合法を組み合わせる方法などが挙げられる。 Solution polymerization includes (1) emulsion or suspension polymerization performed in an aqueous solution, (2) dispersion polymerization performed in the presence of a dispersant in a non-aqueous organic solvent or a mixed solvent of water and a non-aqueous organic solvent, ( 3) A method of combining the above (1) or (2) with a seed polymerization method may be mentioned.
 粒子径が制御し易い、洗浄などの後工程で処理が容易となる、シード粒子を使用せずとも目的とするミクロンサイズの粒子が得られるだけでなく親水性官能基等を有する共重合体を容易に製造できる、高圧縮変位時の変形回復率に優れた粒子が容易に得られる等の理由から、沈殿重合を採用することが好ましい。 A copolymer having a hydrophilic functional group as well as a desired micron-size particle can be obtained without using a seed particle. Precipitation polymerization is preferably employed because, for example, it is possible to easily produce particles with excellent deformation recovery rate at high compression displacement.
 2個以上の不飽和二重結合を有する単量体は、特に限定されるものではなく、例えば、通常用いられる多官能ビニル単量体、及び多官能(メタ)アクリル酸エステル酸から適宜選択される。 The monomer having two or more unsaturated double bonds is not particularly limited, and is appropriately selected from, for example, commonly used polyfunctional vinyl monomers and polyfunctional (meth) acrylic acid esters. The
 多官能の単量体の具体例としては、ジビニルベンゼン;ジビニルビフェニル;ジビニルナフタレン;(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート等の(ポリ)アルキレングリコール系ジ(メタ)アクリレート;1,6-ヘキサンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、2,4-ジエチル-1,5-ペンタンジオールジ(メタ)アクリレート、ブチルエチルプロパンジオールジ(メタ)アクリレート、3-メチル-1,7-オクタンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート等のアルカンジオール系ジ(メタ)アクリレート;ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルエタンジ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルエタントリ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルプロパントリアクリレート、ジアリルフタレートおよびその異性体、トリアリルイソシアヌレートおよびその誘導体が挙げられる。商業的に入手可能な多官能の単量体としては、新中村化学工業(株)製のNKエステル(A-TMPT-6P0、A-TMPT-3E0、A-TMM-3LMN、A-GLYシリーズ、A-9300、AD-TMP、AD-TMP-4CL、ATM-4E、A-DPH)等が挙げられる。これらの単量体は、単独で使用しても、2種類以上を併用してもよい。 Specific examples of the polyfunctional monomer include divinylbenzene; divinylbiphenyl; divinylnaphthalene; (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, and (poly) tetramethylene glycol di (Poly) alkylene glycol di (meth) acrylates such as (meth) acrylate; 1,6-hexanediol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 1,9-nonanediol di ( (Meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, 2,4-diethyl- 1,5-pentanediol di (meth) acrylate Alkanediol di (meth) acrylate such as butylethylpropanediol di (meth) acrylate, 3-methyl-1,7-octanediol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate (Meth) acrylate; neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylation Cyclohexanedimethanol di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, propoxylated ethoxylated bisphenol A di ( ) Acrylate, 1,1,1-trishydroxymethylethane di (meth) acrylate, 1,1,1-trishydroxymethylethane tri (meth) acrylate, 1,1,1-trishydroxymethylpropane triacrylate, diallyl Examples include phthalate and isomers thereof, triallyl isocyanurate and derivatives thereof. Commercially available polyfunctional monomers include NK esters (A-TMPT-6P0, A-TMPT-3E0, A-TMM-3LMN, A-GLY series, manufactured by Shin-Nakamura Chemical Co., Ltd., A-9300, AD-TMP, AD-TMP-4CL, ATM-4E, A-DPH) and the like. These monomers may be used alone or in combination of two or more.
 これらの中でも、多官能性の単量体は、ジビニルベンゼンおよび多官能(メタ)アクリル酸エステルから選ばれる少なくとも1種を含むことが好ましい。これらの単量体を用いることにより、得られる架橋ポリマー粒子の圧縮変形回復率をより容易に高めることができる。同様の観点から、多官能性の単量体は、ジ(メタ)アクリル酸エステルを含むことが好ましく、アルカンジオールジ(メタ)アクリレートがより好ましい。アルカンジオールの炭素数は好ましくは炭素数6~18、より好ましくは炭素数8~12である。 Among these, it is preferable that the polyfunctional monomer contains at least one selected from divinylbenzene and polyfunctional (meth) acrylic acid ester. By using these monomers, the compression deformation recovery rate of the obtained crosslinked polymer particles can be more easily increased. From the same viewpoint, the polyfunctional monomer preferably contains di (meth) acrylic acid ester, and more preferably alkanediol di (meth) acrylate. The alkanediol preferably has 6 to 18 carbon atoms, more preferably 8 to 12 carbon atoms.
 カルボキシル基を有するラジカル重合性単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸モノブチル及びマレイン酸モノブチルのような各種の不飽和モノ若しくはジカルボン酸又は不飽和二塩基酸が挙げられる。これらは、単独で使用してもよいし、2種類以上を併用してもよい。 Examples of the radical polymerizable monomer having a carboxyl group include various unsaturated mono- or dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, monobutyl itaconate and monobutyl maleate. An acid or an unsaturated dibasic acid is mentioned. These may be used alone or in combination of two or more.
 エポキシ基を有するラジカル重合性単量体は、例えば、グリシジル(メタ)アクリレート、(β-メチル)グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシル(メタ)アクリレート、アリルグリシジルエーテル、3,4-エポキシビニルシクロヘキサン、ジ(β-メチル)グリシジルマレート及びジ(β-メチル)グリシジルフマレートから選ばれる。 Examples of the radical polymerizable monomer having an epoxy group include glycidyl (meth) acrylate, (β-methyl) glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, allyl glycidyl ether, 3,4- It is selected from epoxy vinylcyclohexane, di (β-methyl) glycidyl malate and di (β-methyl) glycidyl fumarate.
 その他のエポキシ基を有する化合物を用いて、架橋ポリマー中にエポキシ基を導入してもよい。エポキシ基を有する化合物としては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ヘキサメチレングリコールジグリシジルエーテル、シクロヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル及びペンタエリスリトールテトラグリシジルエーテルのような脂肪族多価アルコールのグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル及びポリテトラメチレングリコールジグリシジルエーテルのようなポリアルキレングリコールのグリシジルエーテル、ポリエステル樹脂系のポリグリシジル化物、ポリアミド樹脂系のポリグリシジル化物、ビスフェノールA系のエポキシ樹脂、フェノールノボラック系のエポキシ樹脂、並びにエポキシウレタン樹脂が挙げられる。これらは、単独で使用してもよいし、2種類以上を併用してもよい。 An epoxy group may be introduced into the crosslinked polymer using a compound having another epoxy group. Examples of the compound having an epoxy group include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether, cyclohexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether and pentaerythritol tetraglycidyl ether. Glycidyl ethers of aliphatic polyhydric alcohols such as, glycidyl ethers of polyalkylene glycols such as polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether and polytetramethylene glycol diglycidyl ether, polyglycidylated polyester resins Resin-based polyglycidyl compounds, bisphenol A series of epoxy resins, phenol novolak-based epoxy resins, as well as epoxy urethane resin. These may be used alone or in combination of two or more.
 単量体混合物は、不飽和二重結合を1個有する単官能性単量体を含んでいてもよい。この単官能性単量体の割合は、好ましくは、単量体混合物全体の0~70質量%である。単官能性単量体の割合は、より好ましくは5~70質量%、さらに好ましくは10~70質量%、より一層好ましくは15~70質量%である。 The monomer mixture may contain a monofunctional monomer having one unsaturated double bond. The proportion of this monofunctional monomer is preferably 0 to 70% by mass of the total monomer mixture. The proportion of the monofunctional monomer is more preferably 5 to 70% by mass, still more preferably 10 to 70% by mass, and still more preferably 15 to 70% by mass.
 単官能性単量体としては、例えば、(i)スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-t-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレン等のスチレン又はその誘導体、(ii)アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸ドデシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸2-クロロエチル、アクリル酸フェニル、α-クロロアクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸ドデシル、メタクリル酸ラウリル、メタクリル酸ステアリル等の(メタ)アクリル酸エステル、(iii)酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル等のビニルエステル、(iv)N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール、N-ビニルピロリドン等のN-ビニル化合物、(v)フッ化ビニル、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、アクリル酸トリフルオロエチル、アクリル酸テトラフルオロプロピル等のフッ化アルキル基含有(メタ)アクリル酸エステル、(vi)ブタジエン、イソプレン等の共役ジエンが挙げられる。これらは1種単独で、または2種以上組み合わせて用いられる。 Examples of the monofunctional monomer include (i) styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, α-methyl styrene, o-ethyl styrene, m-ethyl styrene, p-ethyl styrene. 2,4-dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, styrene such as pn-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene or derivatives thereof, (ii) methyl acrylate, ethyl acrylate, propyl acrylate, N-butyl acrylate, isobutyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, N-octyl acrylate, dodecyl acrylate, lauryl acrylate, stearyl acrylate, 2-chloroethyl acrylate, phenyl acrylate, methyl α-chloroacrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n methacrylate -(Meth) acrylic esters such as butyl, isobutyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, lauryl methacrylate, stearyl methacrylate, (iii) vinyl acetate, propion Vinyl esters such as vinyl acid vinyl, vinyl benzoate and vinyl butyrate; (iv) N-vinyl compounds such as N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole and N-vinyl pyrrolidone; (v) vinyl fluoride Fluorinated alkyl group-containing (meth) acrylate esters such as vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, trifluoroethyl acrylate and tetrafluoropropyl acrylate, and (vi) conjugated dienes such as butadiene and isoprene It is done. These are used individually by 1 type or in combination of 2 or more types.
 これらの中でも、スチレン又はその誘導体、(メタ)アクリル酸エステル、及びビニルエステルが好ましい。これらを用いることで、上述した物性を有する母粒子を効率的に得ることができる。 Among these, styrene or its derivative, (meth) acrylic acid ester, and vinyl ester are preferable. By using these, mother particles having the above-described physical properties can be obtained efficiently.
 母粒子の製造のためのラジカル重合の際に使用する重合開始剤としては、公知のラジカル重合開始剤を使用できる。ラジカル重合開始剤の具体例としては、過酸化ベンゾイル、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、過硫酸ナトリウム、過硫酸アンモニウム等の過酸化物、アゾビスイソブチロニトリル、アゾビスメチルブチロニトリル、アゾビスイソバレロニトリル等のアゾ系化合物等が挙げられる。これらは単独で使用してもよいし、2種類以上を併用してもよい。 As a polymerization initiator used in radical polymerization for producing mother particles, a known radical polymerization initiator can be used. Specific examples of the radical polymerization initiator include benzoyl peroxide, cumene hydroperoxide, t-butyl hydroperoxide, peroxides such as sodium persulfate and ammonium persulfate, azobisisobutyronitrile, azobismethylbutyro Examples thereof include azo compounds such as nitrile and azobisisovaleronitrile. These may be used alone or in combination of two or more.
 溶液重合により母粒子を製造する際に用いられる重合溶媒の具体例として、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチルブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、2-オクタノール、2-エチル-1-ヘキサノール、ベンジルアルコール、シクロヘキサノール等のアルコール類;メチルセロソルブ、エチルセロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、ジエチレングリコールモノブチルエーテル等のエーテルアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、プロピオン酸エチル、(アルキル)セロソルブアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート等のエステル類;ペンタン、2-メチルブタン、n-ヘキサン、シクロヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、n-オクタン、イソオクタン、2,2,3-トリメチルペンタン、デカン、ノナン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、p-メンタン、ジシクロヘキシル、ベンゼン、トルエン、キシレン、エチルベンゼン等の脂肪族又は芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロベンゼン、テトラブロムエタン等のハロゲン化炭化水素類;エチルエーテル、ジメチルエーテル、トリオキサン、テトラヒドロフラン等のエーテル類;メチラール、ジエチルアセタール等のアセタール類;ギ酸、酢酸、プロピオン酸等の脂肪酸類;ニトロプロペン、ニトロベンゼン、ジメチルアミン、モノエタノールアミン、ピリジン、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、N-メチル-2-ピロリドン等の硫黄、窒素含有有機化合物類等が挙げられる。これらは1種単独で、または2種以上組み合わせて用いることができる。これらの中でも、粒子凝集防止の点から、アセトニトリルが好ましい。 Specific examples of polymerization solvents used for producing mother particles by solution polymerization include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1 -Pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2- Alcohols such as pentanol, 2-ethylbutanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-octanol, 2-ethyl-1-hexanol, benzyl alcohol, cyclohexanol; methyl cellosolve, ethyl cellosolve, isopropyl cello Sol , Ether alcohols such as butyl cellosolve and diethylene glycol monobutyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl propionate, (alkyl) cellosolve acetate, ethyl carbitol acetate, butyl carbitol Esters such as acetate; pentane, 2-methylbutane, n-hexane, cyclohexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, n-octane, isooctane, 2,2,3 -Trimethylpentane, decane, nonane, cyclopentane, methylcyclopentane, methylcyclohexane, ethylcyclohexane, p-menthane, dicyclohexyl, benzene, toluene Aliphatic or aromatic hydrocarbons such as xylene and ethylbenzene; Halogenated hydrocarbons such as carbon tetrachloride, trichloroethylene, chlorobenzene, and tetrabromoethane; Ethers such as ethyl ether, dimethyl ether, trioxane, and tetrahydrofuran; Methylal, diethyl acetal Acetals such as formic acid, acetic acid, propionic acid and the like fatty acids; nitropropene, nitrobenzene, dimethylamine, monoethanolamine, pyridine, dimethylformamide, dimethyl sulfoxide, acetonitrile, N-methyl-2-pyrrolidone, nitrogen, etc. Examples thereof include organic compounds. These can be used alone or in combination of two or more. Among these, acetonitrile is preferable from the viewpoint of preventing particle aggregation.
 母粒子を製造する際、分散剤、安定剤、乳化剤及び界面活性剤等を適宜選択し使用してもよい。 When producing the mother particles, a dispersant, a stabilizer, an emulsifier, a surfactant and the like may be appropriately selected and used.
 分散剤及び安定剤としては、ポリヒドロキシスチレン、ポリスチレンスルホン酸、ビニルフェノール-(メタ)アクリル酸エステル共重合体、スチレン-(メタ)アクリル酸エステル共重合体、スチレン-ビニルフェノール-(メタ)アクリル酸エステル共重合体等のポリスチレン誘導体;ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミド、ポリアクリロニトリル、ポチエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート等のポリ(メタ)アクリル酸誘導体;ポリメチルビニルエーテル、ポリエチルビニルエーテル、ポリブチルビニルエーテル、ポリイソブチルビニルエーテル等のポリビニルアルキルエーテル誘導体;セルロース、メチルセルロース、酢酸セルロース、硝酸セルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等のセルロース誘導体;ポリビニルアルコール、ポリビニルブチラール、ポリビニルホルマール、ポリ酢酸ビニル等のポリ酢酸ビニル誘導体;ポリビニルピリジン、ポリビニルピロリドン、ポリエチレンイミン、ポリ-2-メチル-2-オキサゾリン等の含窒素ポリマー誘導体;ポリ塩化ビニル、ポリ塩化ビニリデン等のポリハロゲン化ビニル誘導体;ポリジメチルシロキサン等のポリシロキサン誘導体等の各種疎水性又は親水性の分散剤、安定剤が挙げられる。これらは単独で使用してもよいし、2種類以上を併用してもよい。 Dispersants and stabilizers include polyhydroxystyrene, polystyrene sulfonic acid, vinylphenol- (meth) acrylic acid ester copolymer, styrene- (meth) acrylic acid ester copolymer, styrene-vinylphenol- (meth) acrylic Polystyrene derivatives such as acid ester copolymers; poly (meth) acrylic acid derivatives such as poly (meth) acrylic acid, poly (meth) acrylamide, polyacrylonitrile, pothiethyl (meth) acrylate, polybutyl (meth) acrylate; polymethyl vinyl ether , Polyvinyl alkyl ether derivatives such as polyethyl vinyl ether, polybutyl vinyl ether, polyisobutyl vinyl ether; cellulose, methyl cellulose, cellulose acetate, cellulose nitrate, hydroxymethyl cellulose, Cellulose derivatives such as droxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose; polyvinyl acetate derivatives such as polyvinyl alcohol, polyvinyl butyral, polyvinyl formal, polyvinyl acetate; polyvinyl pyridine, polyvinyl pyrrolidone, polyethyleneimine, poly-2-methyl-2 -Nitrogen-containing polymer derivatives such as oxazoline; polyhalogenated vinyl derivatives such as polyvinyl chloride and polyvinylidene chloride; and various hydrophobic or hydrophilic dispersants and stabilizers such as polysiloxane derivatives such as polydimethylsiloxane. These may be used alone or in combination of two or more.
 乳化剤(界面活性剤)としては、ラウリル硫酸ナトリウムなどのアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、脂肪酸塩、アルキルリン酸塩、アルキルスルホコハク酸塩等のアニオン系乳化剤;アルキルアミン塩、第四級アンモニウム塩、アルキルベタイン、アミンオキサイド等のカチオン系乳化剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等のノニオン系乳化剤等が挙げられる。これらは、単独で使用してもよいし、2種類以上を併用してもよい。 Examples of emulsifiers (surfactants) include alkyl sulfate salts such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, alkylnaphthalene sulfonates, fatty acid salts, alkyl phosphates, and alkylsulfosuccinates. Anionic emulsifiers; Cationic emulsifiers such as alkylamine salts, quaternary ammonium salts, alkylbetaines, amine oxides; polyoxyethylene alkyl ethers, polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, polyoxyethylene alkylphenyls Nonionic emulsifiers such as ether, sorbitan fatty acid ester, glycerin fatty acid ester, and polyoxyethylene fatty acid ester are listed. These may be used alone or in combination of two or more.
 工程(a)では、例えば、母粒子をアミノ化合物及び該アミノ化合物が溶解する溶媒を含有する溶液と接触させて、母粒子中の官能基とアミノ基との反応により架橋ポリマーを更に架橋する。アミノ化合物の溶液は、母粒子の表層部のみ又は内部領域まで含浸される。 In step (a), for example, the mother particle is brought into contact with a solution containing an amino compound and a solvent in which the amino compound is dissolved, and the crosslinked polymer is further crosslinked by a reaction between a functional group and the amino group in the mother particle. The solution of the amino compound is impregnated only in the surface layer portion or the inner region of the mother particle.
 上記アミノ化合物として、2個以上のアミノ基を有する1種または2種以上の化合物が用いられる。めっきの形成性改善の観点からは、例えばポリエチレンイミン及びペンタエチレンヘキサミンのような、1級又は2級アミンを多く有する化合物が好ましい。 As the amino compound, one or more compounds having two or more amino groups are used. From the viewpoint of improving the formability of plating, compounds having a large amount of primary or secondary amines such as polyethyleneimine and pentaethylenehexamine are preferable.
 アミノ化合物は、圧縮特性改善の観点から、分子量500未満の低分子量アミノ化合物を含むことが好ましい。また、アミノ化合物は、めっきの形成性を改善するために、分子量500~10000の高分子量アミノ化合物を含むことが好ましい。低分子量アミノ化合物及び高分子量アミノ化合物を併用することが特に好ましい。低分子量アミノ化合物の分子量は好ましくは50以上500未満であり、より好ましくは50~400、さらに好ましくは50~300である。高分子量アミノ化合物の分子量は好ましくは500~10000、より好ましくは500~5000である。 The amino compound preferably contains a low molecular weight amino compound having a molecular weight of less than 500 from the viewpoint of improving compression characteristics. The amino compound preferably contains a high molecular weight amino compound having a molecular weight of 500 to 10,000 in order to improve the formability of plating. It is particularly preferable to use a low molecular weight amino compound and a high molecular weight amino compound in combination. The molecular weight of the low molecular weight amino compound is preferably 50 or more and less than 500, more preferably 50 to 400, still more preferably 50 to 300. The molecular weight of the high molecular weight amino compound is preferably 500 to 10,000, more preferably 500 to 5,000.
 アミノ化合物は、好ましくは、直鎖状若しくはアルキル側鎖を有する脂肪族ジアミンである。脂肪族ジアミンの具体例としては、エチレンジアミン、プロピレンジアミン、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、1,10-デカンジアミン、1,12-ドデカンジアミン、3-メチル-1,5-ペンタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン及び5-メチル-1,9-ノナンジアミンがある。 The amino compound is preferably an aliphatic diamine having a linear or alkyl side chain. Specific examples of the aliphatic diamine include ethylenediamine, propylenediamine, 1,4-butanediamine, 1,6-hexanediamine, 1,8-octanediamine, 1,9-nonanediamine, 2-methyl-1,8-octane. Diamine, 1,10-decanediamine, 1,12-dodecanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl- There are 1,6-hexanediamine and 5-methyl-1,9-nonanediamine.
 アミノ化合物は、脂環式ジアミン及び/又は芳香族ジアミンを含んでいてもよい。脂環式ジアミンとしては、シクロヘキサンジアミン、メチルシクロヘキサンジアミン及びイソホロンジアミンがある。芳香族ジアミンとしては、p-フェニレンジアミン、m-フェニレンジアミン、キシレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン及び4,4’-ジアミノジフェニルエーテルがある。 The amino compound may contain an alicyclic diamine and / or an aromatic diamine. Alicyclic diamines include cyclohexane diamine, methyl cyclohexane diamine, and isophorone diamine. Aromatic diamines include p-phenylene diamine, m-phenylene diamine, xylene diamine, 4,4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl sulfone and 4,4'-diaminodiphenyl ether.
 上記のアミノ化合物のうち、分子量500未満のものは、低分子量アミノ化合物として用いることができる。 Among the above amino compounds, those having a molecular weight of less than 500 can be used as low molecular weight amino compounds.
 アミノ化合物は、上記ジアミンの他に、トリアミン、テトラアミン等のポリアミンを含んでいてもよい。高分子量のポリエチレンイミンは、高分子量アミノ化合物として好適である。 The amino compound may contain polyamines such as triamine and tetraamine in addition to the diamine. High molecular weight polyethyleneimine is suitable as a high molecular weight amino compound.
 これらのアミノ化合物は1種又は2種以上を組み合わせて用いられる。母粒子と2種類以上のアミノ化合物との反応は、一括して行うことも可能であるし、それぞれのアミノ化合物を段階的に添加し、反応を進行させることもできる。 These amino compounds are used alone or in combination of two or more. The reaction between the mother particle and two or more kinds of amino compounds can be carried out all at once, or each amino compound can be added stepwise to advance the reaction.
 アミノ化合物は、有機溶剤に溶解させてもよい。この有機溶媒の代表例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、プロピオン酸エチル、セロソルブアセテート等のエステル類;ペンタン、2-メチルブタン、n-ヘキサン、シクロヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、n-オクタン、イソオクタン、2,2,3-トリメチルペンタン、デカン、ノナン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、p-メンタン、ベンゼン、トルエン、キシレン、エチルベンゼン等の脂肪族又は芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロベンゼン、テトラブロムエタン等のハロゲン化炭化水素類;エチルエーテル、ジメチルエーテル、トリオキサン、テトラヒドロフラン等のエーテル類;メチラール、ジエチルアセタール等のアセタール類;ニトロプロペン、ニトロベンゼン、ピリジン、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル等の硫黄、窒素含有有機化合物類等が挙げられる。これらは単独で使用してもよいし、2種類以上を併用してもよい。 The amino compound may be dissolved in an organic solvent. Representative examples of the organic solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; esters such as ethyl acetate, butyl acetate, ethyl propionate, and cellosolve acetate; pentane, 2-methylbutane, n-hexane, Cyclohexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, n-octane, isooctane, 2,2,3-trimethylpentane, decane, nonane, cyclopentane, methylcyclopentane, methyl Aliphatic or aromatic hydrocarbons such as cyclohexane, ethylcyclohexane, p-menthane, benzene, toluene, xylene, and ethylbenzene; halogenated hydrocarbons such as carbon tetrachloride, trichloroethylene, chlorobenzene, and tetrabromoethane Ethers such as ethyl ether, dimethyl ether, trioxane and tetrahydrofuran; acetals such as methylal and diethyl acetal; sulfur and nitrogen-containing organic compounds such as nitropropene, nitrobenzene, pyridine, dimethylformamide, dimethyl sulfoxide and acetonitrile; . These may be used alone or in combination of two or more.
 アミノ化合物が水溶性又は親水性の有機化合物であれば、上記有機溶媒の他、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチルブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、2-オクタノール、2-エチル-1-ヘキサノール、ベンジルアルコール、シクロヘキサノール等のアルコール類;メチルセロソルブ、エチルセロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、ジエチレングリコールモノブチルエーテル等のエーテルアルコール類等も使用可能である。これらは単独で使用してもよいし、2種類以上を併用してもよい。 If the amino compound is a water-soluble or hydrophilic organic compound, in addition to the above organic solvent, water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl- Alcohols such as 2-pentanol, 2-ethylbutanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-octanol, 2-ethyl-1-hexanol, benzyl alcohol, cyclohexanol; methyl cellosolve, ethyl cellosolve, Isopropyl cello Bed, butyl cellosolve, ether alcohols such as diethylene glycol monobutyl ether can also be used. These may be used alone or in combination of two or more.
 母粒子中の官能基とアミノ基との反応を行う反応溶媒は、好ましくは、母粒子は実質的に溶解せずアミノ化合物は溶解する溶媒である。アミノ化合物が液状である場合、母粒子中の官能基とアミノ化合物との反応を無溶媒下で行ってもよい。 The reaction solvent for reacting the functional group in the mother particle with the amino group is preferably a solvent in which the mother particle is not substantially dissolved and the amino compound is dissolved. When the amino compound is liquid, the reaction between the functional group in the mother particle and the amino compound may be performed in the absence of a solvent.
 上記反応溶媒としては、γ-ブチロラクトン、グリセリン、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、n-ブタノール等のアルコール類、トルエン、キシレン、n-オクタン、n-ドデカン等の炭化水素類、リノール酸等の脂肪酸類、ポリエチレングリコール、ジメチルシリコーン、水、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチルブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、2-オクタノール、2-エチル-1-ヘキサノール、ベンジルアルコール、シクロヘキサノール等のアルコール類;メチルセロソルブ、エチルセロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、ジエチレンブリコールモノブチルエーテル等のエーテルアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、プロピオン酸エチル、セロソルブアセテート等のエステル類;ペンタン、2-メチルブタン、n-ヘキサン、シクロヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、n-オクタン、イソオクタン、2,2,3-トリメチルペンタン、デカン、ノナン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、p-メンタン、ジシクロヘキシル、ベンゼン、トルエン、キシレン、エチルベンゼン等の脂肪族又は芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロベンゼン、テトラブロムエタン等のハロゲン化炭化水素類;エチルエーテル、ジメチルエーテル、トリオキサン、テトラヒドロフラン等のエーテル類;メチラール、ジエチルアセタール等のアセタール類;ギ酸、酢酸、プロピオン酸等の脂肪酸類;ニトロプロペン、ニトロベンゼン、ジメチルアミン、モノエタノールアミン、ピリジン、ジメチルホルムアミド、ジメチルスルホキシド等の硫黄、窒素含有有機化合物類等が挙げられる。好ましくは、水、メタノールやエタノールなどの低級アルコール、メチルセロソルブ、エチルセロソルブなどのエーテルアルコール、水と低級アルコールの混合物、水とエーテルアルコールの混合物のような水溶性及び親水性の媒体、トルエン、ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、アセトン、N-メチル-2-ピロリドン(NMP)、ジクロロメタン、テトラクロロエチレンなどが挙げられ、さらに好ましくは、水、メタノールやエタノールなどの低級アルコール、水とメタノールやエタノールなどの低級アルコールとの混合物、水とメタノールやエタノールなどの低級アルコールとの混合物、水とエーテルアルコールとの混合物のような水溶性及び親水性の媒体である。これらは単独で使用してもよいし、2種類以上を併用してもよい。 Examples of the reaction solvent include alcohols such as γ-butyrolactone, glycerin, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, and n-butanol. , Hydrocarbons such as toluene, xylene, n-octane, n-dodecane, fatty acids such as linoleic acid, polyethylene glycol, dimethyl silicone, water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2 -Butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 1-hexanol, 2-methyl -1-pentanol Alcohols such as 4-methyl-2-pentanol, 2-ethylbutanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-octanol, 2-ethyl-1-hexanol, benzyl alcohol, cyclohexanol; methyl cellosolve Ether alcohols such as ethyl cellosolve, isopropyl cellosolve, butyl cellosolve, diethylene bricol monobutyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; esters such as ethyl acetate, butyl acetate, ethyl propionate, cellosolve acetate Pentane, 2-methylbutane, n-hexane, cyclohexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, n-octane, Aliphatic or aromatic hydrocarbons such as isooctane, 2,2,3-trimethylpentane, decane, nonane, cyclopentane, methylcyclopentane, methylcyclohexane, ethylcyclohexane, p-menthane, dicyclohexyl, benzene, toluene, xylene, ethylbenzene Halogenated hydrocarbons such as carbon tetrachloride, trichloroethylene, chlorobenzene, and tetrabromoethane; Ethers such as ethyl ether, dimethyl ether, trioxane, and tetrahydrofuran; Acetals such as methylal and diethyl acetal; Formic acid, acetic acid, propionic acid, and the like Fatty acids: sulfur, nitrogen-containing organic compounds such as nitropropene, nitrobenzene, dimethylamine, monoethanolamine, pyridine, dimethylformamide, dimethylsulfoxide, etc. And the like. Preferably, water, a lower alcohol such as methanol or ethanol, an ether alcohol such as methyl cellosolve or ethyl cellosolve, a mixture of water and lower alcohol, a water-soluble and hydrophilic medium such as a mixture of water and ether alcohol, toluene, dimethyl Examples include formamide (DMF), tetrahydrofuran (THF), methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), acetone, N-methyl-2-pyrrolidone (NMP), dichloromethane, tetrachloroethylene, and more preferably water, methanol. Or a lower alcohol such as ethanol, a mixture of water and a lower alcohol such as methanol or ethanol, a mixture of water and a lower alcohol such as methanol or ethanol, or a mixture of water and ether alcohol. A water-soluble and hydrophilic media. These may be used alone or in combination of two or more.
 工程(a)においてアミノ化合物を反応させる温度は溶媒の種類に左右されるが、好ましくは10℃~250℃、より好ましくは100~250℃、さらに好ましくは180℃~250℃である。反応時間は、架橋反応がほぼ完結するのに要する時間であればよく、使用するアミノ化合物及び添加量、母粒子中の官能基の種類、溶液の粘度及び濃度等に大きく左右されるが、例えば180℃で5~24時間、好ましくは6~10時間程度である。反応時間を長くしても架橋ポリマー粒子を得ることができるが、実用上、長時間を要することは得策ではない。また、反応時間が極度に短いと、架橋が十分に進行しない場合がある。 The temperature at which the amino compound is reacted in step (a) depends on the type of solvent, but is preferably 10 ° C. to 250 ° C., more preferably 100 to 250 ° C., and even more preferably 180 ° C. to 250 ° C. The reaction time may be the time required for the crosslinking reaction to be almost completed, and greatly depends on the amino compound used and the amount added, the type of functional group in the mother particle, the viscosity and concentration of the solution, etc. It is about 5 to 24 hours at 180 ° C., preferably about 6 to 10 hours. Even if the reaction time is lengthened, crosslinked polymer particles can be obtained, but it is not a good practice to take a long time in practice. Moreover, when reaction time is extremely short, bridge | crosslinking may not fully advance.
 工程(a)におけるアミノ化合物の量は、母粒子の官能基に対してアミノ基の当量比で好ましくは0.1~5、より好ましくは0.5~3である。この当量比が小さすぎたり、過度に大きくなったりすると、圧縮特性向上やめっきの形成性向上の効果が小さくなる傾向がある。 The amount of the amino compound in the step (a) is preferably 0.1 to 5, more preferably 0.5 to 3, in terms of an equivalent ratio of amino groups to functional groups of the mother particles. If this equivalent ratio is too small or excessively large, the effect of improving the compression characteristics and improving the formability of plating tends to be reduced.
 架橋ポリマー粒子の平均粒子径は、好ましくは0.1~50μm、より好ましくは0.2~30μm、より一層好ましくは0.3~20μm、最良は0.5~5μmである。平均粒子径が小さいと、架橋ポリマー粒子が凝集し易くなる可能性がある。 The average particle diameter of the crosslinked polymer particles is preferably 0.1 to 50 μm, more preferably 0.2 to 30 μm, still more preferably 0.3 to 20 μm, and most preferably 0.5 to 5 μm. If the average particle size is small, the crosslinked polymer particles may easily aggregate.
 架橋ポリマーの粒子径(直径)のCv値(変動係数)は、15%以下であることが好ましい。Cv値が15%を超えると、架橋ポリマー粒子の各種用途における性能が低下する傾向がある。例えば、架橋ポリマー粒子が異方導電性接着剤を構成する導電性粒子に用いられたときの接続信頼性が低下したり、架橋ポリマー粒子が生体検査素子に用いられたときの定量性が低下したりする傾向がある。同様の観点から、粒子径のCv値は、好ましくは10%以下、より好ましくは5%以下、より一層好ましくは4%以下である。 The Cv value (coefficient of variation) of the particle diameter (diameter) of the crosslinked polymer is preferably 15% or less. When the Cv value exceeds 15%, the performance of the crosslinked polymer particles in various uses tends to be lowered. For example, the connection reliability when the crosslinked polymer particles are used for conductive particles constituting an anisotropic conductive adhesive is reduced, and the quantitativeness when the crosslinked polymer particles are used for a biopsy element is reduced. There is a tendency to. From the same viewpoint, the Cv value of the particle diameter is preferably 10% or less, more preferably 5% or less, and still more preferably 4% or less.
 架橋ポリマー粒子の平均粒径と粒径のCv値は、下記測定法により求められる。1)粒子を、超音波分散設備を使用して水に分散させ、1質量%の粒子を含む分散液を調整する。
2)分散液を、粒度分布計(シスメックスフロー、シスメックス製)を用いて約2万個、顕微鏡観察し、平均粒径と粒径の変動係数Cvを算出する。
The average particle diameter and the Cv value of the particle diameter of the crosslinked polymer particles are determined by the following measurement method. 1) Disperse particles in water using an ultrasonic dispersion facility to prepare a dispersion containing 1% by mass of particles.
2) About 20,000 dispersions are observed with a particle size distribution meter (Sysmex Flow, manufactured by Sysmex) under a microscope, and the average particle size and the coefficient of variation Cv of the particle size are calculated.
 工程(a)の後の母粒子の180℃において測定される圧縮変形回復率は、通常、30%以上であり、好ましくは40%以上、より好ましくは50%以上、さらに好ましくは50~65%である。この圧縮変形回復率が低いと、弾性力が不足して、高弾性を要求される異方導電性接着剤などの用途において接触不良を招き易くなる傾向がある。 The compression deformation recovery rate measured at 180 ° C. of the mother particles after the step (a) is usually 30% or more, preferably 40% or more, more preferably 50% or more, and further preferably 50 to 65%. It is. If this compression deformation recovery rate is low, the elastic force is insufficient, and there is a tendency that poor contact is likely to occur in applications such as anisotropic conductive adhesives that require high elasticity.
 圧縮変形回復率は、粒子を中心から0.33mN/秒の速度で5mNまで圧縮した後、逆に0.33mN/秒の速度で荷重を減らしていく過程の、荷重値と圧縮変位との関係を測定して得られる。荷重を反転させる点から最終除荷値までの変位(L1)と、反転の点から初期荷重値までの変位(L2)との比(L1/L2)を%にて表した値が圧縮変形回復率である。 The compression deformation recovery rate is the relationship between the load value and the compression displacement in the process of compressing particles from the center to 5 mN at a speed of 0.33 mN / sec and then reducing the load at a speed of 0.33 mN / sec. It is obtained by measuring. Compressive deformation recovery is the ratio (L1 / L2) of the displacement (L1) from the point where the load is reversed to the final unloading value and the displacement (L2) from the point where the load is reversed to the initial load value (%). Rate.
 工程(a)の後の母粒子の180℃において測定される圧縮破壊強度は、10mN以上であることが好ましい。 The compressive fracture strength measured at 180 ° C. of the mother particles after the step (a) is preferably 10 mN or more.
 本実施形態に係る架橋ポリマー微粒子は、上述のとおり、高い圧縮変形回復率を有するため、弾力性に優れる可能性が高い。このため、当該架橋ポリマー微粒子を導電材料として用いた場合に、電極間の接続に用いる基板を傷つけたり、貫通したりする可能性が低い。導電材料を高圧縮変形させても高精度のギャップ保持性や安定した接続信頼性を発揮する可能性が高い。本実施形態に係る架橋ポリマー粒子は、上述のような特徴を有すことから、電材分野だけでなく、塗料、コーティング剤、光拡散剤、化粧料、医薬又は生体検査素子、農薬、建築材料等、広範囲の分野において有用である。 Since the crosslinked polymer fine particles according to the present embodiment have a high compression deformation recovery rate as described above, there is a high possibility of excellent elasticity. For this reason, when the crosslinked polymer fine particles are used as a conductive material, there is a low possibility of damaging or penetrating a substrate used for connection between electrodes. Even if the conductive material is highly compressed and deformed, there is a high possibility of exhibiting high-precision gap retention and stable connection reliability. Since the crosslinked polymer particles according to the present embodiment have the characteristics as described above, not only in the field of electric materials, but also paints, coating agents, light diffusing agents, cosmetics, medicines or biopsy elements, agricultural chemicals, building materials, etc. Useful in a wide range of fields.
 図2は、異方導電性接着剤の一実施形態を示す断面図である。図2に示すフィルム状の異方導電性接着剤20は、バインダー樹脂3と、バインダー樹脂3中に分散している導電性粒子5とから構成される。導電性粒子5は、本実施形態に係る架橋ポリマー粒子と、該架橋ポリマー粒子を覆う金属層(金属めっき層)とを有する。 FIG. 2 is a cross-sectional view showing an embodiment of the anisotropic conductive adhesive. A film-like anisotropic conductive adhesive 20 shown in FIG. 2 is composed of a binder resin 3 and conductive particles 5 dispersed in the binder resin 3. The electroconductive particle 5 has the crosslinked polymer particle which concerns on this embodiment, and the metal layer (metal plating layer) which covers this crosslinked polymer particle.
 バインダー樹脂3は、特に限定されないが、好ましくは絶縁性接着剤組成物である。この絶縁性接着剤組成物(バインダー樹脂3)は、例えば、熱可塑性樹脂、熱硬化性樹脂及びエラストマーから選ばれる少なくとも1種の成分を含む。熱可塑性樹脂は、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル樹脂及びスチレン系樹脂等のビニル系樹脂;ポリオレフィン;エチレン-酢酸ビニル共重合体;ポリアミド樹脂;スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体及びこれらの水素添加物のような熱可塑性ブロック共重合体から選ばれる。熱硬化性樹脂は、例えば、エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂及び不飽和ポリエステル系樹脂から選ばれる。熱硬化性樹脂は、通常、その硬化剤とともにバインダー樹脂3に含まれる。熱硬化性樹脂は、常温硬化型、熱硬化型、光硬化型及び湿気硬化型のいずれの硬化型であってもよい。エラストマーは、例えば、スチレン-ブタジエン共重合ゴム、クロロプレンゴム及びアクリロニトリル-スチレンブロック共重合ゴムから選ばれる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。 The binder resin 3 is not particularly limited, but is preferably an insulating adhesive composition. This insulating adhesive composition (binder resin 3) includes, for example, at least one component selected from a thermoplastic resin, a thermosetting resin, and an elastomer. Examples of thermoplastic resins include vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins and styrene resins; polyolefins; ethylene-vinyl acetate copolymers; polyamide resins; styrene-butadiene-styrene block copolymers. Polymers, styrene-isoprene-styrene block copolymers and thermoplastic block copolymers such as hydrogenated products thereof are selected. The thermosetting resin is selected from, for example, an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin. The thermosetting resin is usually contained in the binder resin 3 together with the curing agent. The thermosetting resin may be any one of a room temperature curing type, a thermosetting type, a light curing type, and a moisture curing type. The elastomer is selected from, for example, styrene-butadiene copolymer rubber, chloroprene rubber, and acrylonitrile-styrene block copolymer rubber. These resins may be used alone or in combination of two or more.
 バインダー樹脂3としての絶縁性接着剤組成物は、必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を含んでいてもよい。 The insulating adhesive composition as the binder resin 3 may be, for example, an extender, a softener (plasticizer), an adhesive improver, an antioxidant (anti-aging agent), a heat stabilizer, if necessary. Various additives such as a light stabilizer, an ultraviolet absorber, a colorant, a flame retardant, and an organic solvent may be included.
 本実施形態に係る異方導電性接着剤は、例えば、バインダー樹脂中に導電性粒子を添加し、均一に混合して、導電性粒子を分散させる方法により得ることができる。バインダー樹脂及び導電性粒子を含む異方導電性接着剤を、そのまま加熱溶解させて、又は溶剤に溶解又は分散させた状態で離型紙及び離型フィルム等の離型材の離型処理面に塗工し、必要に応じて乾燥又は冷却等を行う方法により、フィルム状異方導電性接着剤を得ることができる。 The anisotropic conductive adhesive according to this embodiment can be obtained, for example, by a method in which conductive particles are added to a binder resin, mixed uniformly, and the conductive particles are dispersed. An anisotropic conductive adhesive containing a binder resin and conductive particles is applied to the release treatment surface of a release material such as release paper and release film in a state where it is dissolved by heating as it is or dissolved or dispersed in a solvent. And a film-like anisotropic conductive adhesive can be obtained by the method of drying or cooling as needed.
 異方導電性接着剤における導電性粒子の分散状態は、特に限定されない。導電性粒子がバインダー樹脂中に均一に分散していてもよいし、フィルムの表層近傍に偏って分布していてもよい。異方導電性接着剤の形態は、フィルムに限定されず、例えば、ペースト、又はインクであってもよい。 The dispersion state of the conductive particles in the anisotropic conductive adhesive is not particularly limited. The conductive particles may be uniformly dispersed in the binder resin, or may be distributed unevenly in the vicinity of the surface layer of the film. The form of the anisotropic conductive adhesive is not limited to a film, and may be, for example, a paste or ink.
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
1.母粒子の合成
合成例1
 100mLの三口フラスコに下記の各化合物を一括して仕込み、80℃のウォーターバスで加熱しながら、攪拌機を用いて約6時間撹拌をして、架橋ポリマーから形成された母粒子を形成させた。
・DVB-960(新日鐵化学、ジビニルベンゼン(DVB)96質量%、エチルビニルベンゼン(EVB)3質量%含有):4.9g
・メタクリル酸(和光純薬):2.1g
・アゾビスイソブチロニトリル(AIBN、和光純薬):0.6g
・アセトニトリル(和光純薬):70g
1. Synthesis synthesis example 1 of mother particles
The following compounds were charged all at once into a 100 mL three-necked flask and stirred for about 6 hours using a stirrer while heating in a water bath at 80 ° C. to form mother particles formed from a crosslinked polymer.
DVB-960 (Nippon Steel Chemical, 96% by weight of divinylbenzene (DVB), 3% by weight of ethylvinylbenzene (EVB)): 4.9 g
・ Methacrylic acid (Wako Pure Chemical Industries): 2.1g
・ Azobisisobutyronitrile (AIBN, Wako Pure Chemical Industries): 0.6g
・ Acetonitrile (Wako Pure Chemical Industries): 70g
 次いで、母粒子を、吸引ろ過設備を使ってろ別し、イソプロピルアルコール(IPA、和光純薬)による洗浄とろ過を3~5回程度繰り返した後、真空乾燥して、粉末状の母粒子を得た。得られた母粒子の粒子径をSEM観察により測定したところ、平均粒子径が4.1μmの球状の単分散粒子であった。粒子径のCv値は2.3%であった。 Next, the mother particles are filtered off using a suction filtration facility, and washing and filtration with isopropyl alcohol (IPA, Wako Pure Chemical Industries) are repeated about 3 to 5 times, followed by vacuum drying to obtain powdery mother particles. It was. When the particle diameter of the obtained mother particle was measured by SEM observation, it was a spherical monodisperse particle having an average particle diameter of 4.1 μm. The Cv value of the particle diameter was 2.3%.
合成例2
 100mLの三口フラスコに下記の各化合物を一括して仕込み、80℃のウォーターバスで加熱しながら、攪拌機を用いて約6時間撹拌をして、架橋ポリマーから形成された母粒子を形成させた。
・DVB-960:2.8g
・メタクリル酸:4.2g
・AIBN:0.6g
・アセトニトリル:70g
Synthesis example 2
The following compounds were charged all at once into a 100 mL three-necked flask and stirred for about 6 hours using a stirrer while heating in a water bath at 80 ° C. to form mother particles formed from a crosslinked polymer.
DVB-960: 2.8g
・ Methacrylic acid: 4.2 g
・ AIBN: 0.6g
-Acetonitrile: 70 g
 次いで、母粒子を、吸引ろ過設備を使ってろ別し、イソプロピルアルコール(IPA、和光純薬)による洗浄とろ過を3~5回程度繰り返した後、真空乾燥して、粉末状の母粒子を得た。得られた母粒子の粒子径をSEM観察により測定したところ、平均粒子径が3.1μmの球状の単分散粒子であった。粒子径のCv値は3.0%であった。 Next, the mother particles are filtered off using a suction filtration facility, and washing and filtration with isopropyl alcohol (IPA, Wako Pure Chemical Industries) are repeated about 3 to 5 times, followed by vacuum drying to obtain powdery mother particles. It was. When the particle diameter of the obtained mother particle was measured by SEM observation, it was a spherical monodisperse particle having an average particle diameter of 3.1 μm. The Cv value of the particle diameter was 3.0%.
合成例3
 100mLの三口フラスコに下記の各化合物を一括して仕込み、80℃のウォーターバスで加熱しながら、攪拌機を用いて約6時間撹拌をして、架橋ポリマーから形成された母粒子を形成させた。
・DVB-960:0.9g
・1,10-デカンジオールジアクリレート(A-DOD、新中村化学工業):2.7g
・メタクリル酸:2g
・11-ウンデセン酸:1.4g
・AIBN:0.07g
・アセトニトリル:70g
Synthesis example 3
The following compounds were charged all at once into a 100 mL three-necked flask and stirred for about 6 hours using a stirrer while heating in a water bath at 80 ° C. to form mother particles formed from a crosslinked polymer.
DVB-960: 0.9g
・ 1,10-decanediol diacrylate (A-DOD, Shin-Nakamura Chemical): 2.7 g
・ Methacrylic acid: 2g
・ 11-Undecenoic acid: 1.4g
・ AIBN: 0.07g
-Acetonitrile: 70 g
 次いで、母粒子を、吸引ろ過設備を使ってろ別し、イソプロピルアルコール(IPA、和光純薬)による洗浄とろ過を3~5回程度繰り返した後、真空乾燥して、粉末状の母粒子を得た。得られた母粒子の粒子径をSEM観察により測定したところ、平均粒子径が2.8μmの球状の単分散粒子であった。粒子径のCv値は2.7%であった。 Next, the mother particles are filtered off using a suction filtration facility, and washing and filtration with isopropyl alcohol (IPA, Wako Pure Chemical Industries) are repeated about 3 to 5 times, followed by vacuum drying to obtain powdery mother particles. It was. When the particle diameter of the obtained mother particle was measured by SEM observation, it was a spherical monodisperse particle having an average particle diameter of 2.8 μm. The Cv value of the particle diameter was 2.7%.
 合成例1~3で得られた各母粒子の圧縮変形回復率及び圧縮破壊強度を測定した。測定結果を表1にまとめて示す。 The compression deformation recovery rate and compressive fracture strength of each mother particle obtained in Synthesis Examples 1 to 3 were measured. The measurement results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.架橋ポリマー粒子及び導電性粒子の作製とその評価
実施例1
(工程a)
 100mLナスフラスコに、下記に示した割合の混合物を一括して仕込み、室温で1時間撹拌機を用いて攪拌して分散液を得た。分散液を、窒素気流下、180℃のオイルバス中で約6時間加熱した。
・合成例1の母粒子:5重量部
・ヘキサメチレンジアミン(分子量116.2):1重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・ポリエチレンイミン(分子量300):0.8重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・γ-ブチロラクトン:93.2重量部
2. Preparation of crosslinked polymer particles and conductive particles and evaluation example 1
(Process a)
A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 6 hours under a nitrogen stream.
-Mother particles of Synthesis Example 1: 5 parts by weight-Hexamethylenediamine (molecular weight 116.2): 1 part by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
Polyethyleneimine (molecular weight 300): 0.8 part by weight (the ratio of amino group to carboxyl group in the mother particle is 1 equivalent)
・ Γ-butyrolactone: 93.2 parts by weight
 次いで、吸引ろ過設備を使って粒子をろ別し、IPAによる洗浄とろ過を3~5回程度繰り返した後、真空乾燥して、ヘキサメチレンジアミン及びポリエチレンイミンによって架橋された粉末状の母粒子(粒子1a)を得た。得られた母粒子の180℃における圧縮変形回復率は56%で、圧縮破壊強度は16mNであった。 Next, the particles are filtered using a suction filtration facility, and washing and filtration with IPA are repeated about 3 to 5 times, followed by vacuum drying, and powdery mother particles crosslinked with hexamethylenediamine and polyethyleneimine ( Particles 1a) were obtained. The compression deformation recovery rate at 180 ° C. of the obtained mother particles was 56%, and the compression fracture strength was 16 mN.
(工程c)
 以下の操作により、粒子1aに対してNiめっきを施して、架橋ポリマー粒子及びこれを覆うNiめっき層から構成される導電性粒子を作製した。
(Process c)
The particles 1a were subjected to Ni plating by the following operation to produce conductive particles composed of crosslinked polymer particles and a Ni plating layer covering the particles.
(触媒付与)
 アトテックジャパン社製のアクチベータネオガント834(商品名、パラジウムイオン-アミノ系錯化剤の水溶液)の原液を40mL/Lまで水により希釈し、pH10.5に調整して、1液型のアルカリ触媒液を準備した。このアルカリ触媒液に、粒子1aを35℃で10分間浸漬して、パラジウム錯体を粒子1aの表面に吸着させた。吸引ろ過により粒子1aを回収し、水洗した。その後、再び粒子1aを水に懸濁させた。そこに、ジメチルアミンボランを0.1g/Lになるように投入して、粒子1a表面のパラジウム錯体を還元し、パラジウムが表面に担持された粒子1aの懸濁液を得た。
(Catalyst added)
A stock solution of Activator Neo Gantt 834 (trade name, palladium ion-amino complexing agent aqueous solution) manufactured by Atotech Japan Co., Ltd. is diluted to 40 mL / L with water, adjusted to pH 10.5, and a one-component alkaline catalyst A liquid was prepared. The particles 1a were immersed in this alkaline catalyst solution at 35 ° C. for 10 minutes to adsorb the palladium complex on the surfaces of the particles 1a. The particles 1a were collected by suction filtration and washed with water. Thereafter, the particles 1a were again suspended in water. Thereto was added dimethylamine borane at 0.1 g / L to reduce the palladium complex on the surface of the particles 1a, and a suspension of particles 1a with palladium supported on the surface was obtained.
(無電解めっき)
 上記懸濁液を80℃まで加温し、そこに、無電解Ni-Pめっき液(日立化成工業株式会社製、商品名:NIPS-100)を定量ポンプを通して徐々に滴下して、粒子1aにめっき処理を施した。めっき時間は60分間であった。これにより、粒子1aの表面にめっき層を形成した。その後、吸引ろ過、水洗、吸引ろ過、及び、乾燥を順次行い、無電解Ni-Pめっきによるめっき層を有する導電性粒子を得た。得られた導電性粒子において、めっき層は良好な均一性で形成されており、めっき層表面に凹凸は認められなかった。
(Electroless plating)
The suspension was heated to 80 ° C., and an electroless Ni—P plating solution (manufactured by Hitachi Chemical Co., Ltd., trade name: NIPS-100) was gradually added dropwise through a metering pump to particles 1a. Plating treatment was performed. The plating time was 60 minutes. Thereby, the plating layer was formed on the surface of the particle 1a. Thereafter, suction filtration, water washing, suction filtration, and drying were sequentially performed to obtain conductive particles having a plating layer by electroless Ni—P plating. In the obtained conductive particles, the plating layer was formed with good uniformity, and no irregularities were observed on the surface of the plating layer.
(解砕処理及び粒子評価)
 得られた導電性粒子をジェットミルで解砕圧力0.1MPaの条件で解砕処理した。この解砕処理後の導電性粒子を電子顕微鏡で観察し、写真撮影した。写真は1枚につき1000個の粒子が写るように倍率を調整し、1枚ごとに撮影場所を変えながら10枚撮影した。これらの写真10枚(全粒子数=10000個)において、めっき層で完全に覆われていない粒子の数と、めっき片の数を調べた。解砕処理前に凝集が多いと、めっき層で完全に覆われず、樹脂が部分的に露出した状態の粒子が多くなる。また、樹脂粒子とめっき層との密着性がよくない場合、解砕処理でめっきが剥れ、解砕処理後にめっき片が多量に発生する。このため、解砕処理後の導電性粒子において、めっき層で完全に覆われていない粒子の数が少なく(めっき層で完全に覆われている粒子の数が多く)、めっき片が少なければ、めっき処理液中の粒子の分散性が良好で、しかも、樹脂粒子とめっき層の密着性が優れていると判断できる。解砕後の観察において、めっき片の存在は殆ど確認されなかった。
(Crushing treatment and particle evaluation)
The obtained conductive particles were pulverized by a jet mill under a pulverization pressure of 0.1 MPa. The conductive particles after the pulverization treatment were observed with an electron microscope and photographed. The magnification was adjusted so that 1000 particles were photographed for each photograph, and 10 photographs were taken while changing the photographing location for each photograph. In these 10 photographs (total number of particles = 10000), the number of particles not completely covered with the plating layer and the number of plated pieces were examined. When there is much aggregation before the crushing treatment, the coating layer is not completely covered, and the number of particles in which the resin is partially exposed increases. Further, when the adhesion between the resin particles and the plating layer is not good, the plating is peeled off by the crushing treatment, and a large amount of plated pieces are generated after the crushing treatment. For this reason, in the conductive particles after the pulverization treatment, the number of particles not completely covered with the plating layer is small (the number of particles completely covered with the plating layer is large), and the number of plated pieces is small, It can be determined that the dispersibility of the particles in the plating solution is good and that the adhesion between the resin particles and the plating layer is excellent. In the observation after crushing, the presence of the plated piece was hardly confirmed.
実施例2
 100mLナスフラスコに、下記に示した割合の混合物を一括して仕込み、室温で1時間撹拌機を用いて攪拌して分散液を得た。分散液を、窒素気流下、180℃のオイルバス中で約6時間加熱した。
・合成例1の母粒子:5重量部
・ヘキサメチレンジアミン(分子量116.2):1重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・ポリエチレンイミン(分子量600):0.9重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・γ-ブチロラクトン:93.1重量部
Example 2
A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 6 hours under a nitrogen stream.
-Mother particles of Synthesis Example 1: 5 parts by weight-Hexamethylenediamine (molecular weight 116.2): 1 part by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
Polyethyleneimine (molecular weight 600): 0.9 parts by weight (the ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
・ Γ-butyrolactone: 93.1 parts by weight
 次いで、粒子を吸引ろ過設備を使ってろ別し、IPAによる洗浄とろ過を3~5回程度繰り返した後、真空乾燥して、ヘキサメチレンジアミン及びポリエチレンイミンによって架橋された粉末状の母粒子(粒子2a)を得た。得られた母粒子の180℃における圧縮変形回復率は54%で、圧縮破壊強度は15mNであった。 Next, the particles are filtered off using a suction filtration facility, and after washing with IPA and filtration about 3 to 5 times, vacuum drying is performed and powdery mother particles (particles) crosslinked with hexamethylenediamine and polyethyleneimine (particles) 2a) was obtained. The compression deformation recovery rate at 180 ° C. of the obtained mother particles was 54%, and the compression fracture strength was 15 mN.
(工程c)
 実施例1と同様の操作により、粒子2aに対してNiめっきを施して、架橋ポリマー粒子及びこれを覆うNiめっき層から構成される導電性粒子を作製した。得られた導電性粒子において、めっき層は良好な均一性で形成されており、めっき層表面に凹凸は認められなかった。また、解砕後の観察において、めっき片の存在は殆ど確認されなかった。
(Process c)
In the same manner as in Example 1, Ni particles were applied to the particles 2a to produce conductive particles composed of crosslinked polymer particles and a Ni plating layer covering the particles. In the obtained conductive particles, the plating layer was formed with good uniformity, and no irregularities were observed on the surface of the plating layer. Moreover, in the observation after crushing, the presence of the plated piece was hardly confirmed.
実施例3
 100mLナスフラスコに、下記に示した割合の混合物を一括して仕込み、室温で1時間撹拌機を用いて攪拌して分散液を得た。分散液を、窒素気流下、180℃のオイルバス中で約6時間加熱した。
・合成例1の母粒子:5重量部
・ヘキサメチレンジアミン(分子量116.2):1重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・ポリエチレンイミン(分子量1200):0.9重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・γ-ブチロラクトン:93.1重量部
Example 3
A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 6 hours under a nitrogen stream.
-Mother particles of Synthesis Example 1: 5 parts by weight-Hexamethylenediamine (molecular weight 116.2): 1 part by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
Polyethyleneimine (molecular weight 1200): 0.9 part by weight (ratio of amino group to carboxyl group in mother particle is 1 equivalent)
・ Γ-butyrolactone: 93.1 parts by weight
 次いで、粒子を吸引ろ過設備を使ってろ別し、IPAによる洗浄とろ過を3~5回程度繰り返した後、真空乾燥して、ヘキサメチレンジアミン及びポリエチレンイミンによって架橋された粉末状の母粒子(粒子3a)を得た。得られた母粒子の180℃における圧縮変形回復率は53%で、圧縮破壊強度は16mNであった。 Next, the particles are filtered off using a suction filtration facility, and after washing with IPA and filtration about 3 to 5 times, vacuum drying is performed and powdery mother particles (particles) crosslinked with hexamethylenediamine and polyethyleneimine (particles) 3a) was obtained. The compression deformation recovery rate at 180 ° C. of the obtained mother particles was 53%, and the compression fracture strength was 16 mN.
(工程c)
 実施例1と同様の操作により、粒子3aに対してNiめっきを施して、架橋ポリマー粒子及びこれを覆うNiめっき層から構成される導電性粒子を作製した。得られた導電性粒子において、めっき層は良好な均一性で形成されており、めっき層表面に凹凸は認められなかった。また、解砕後の観察において、めっき片の存在は殆ど確認されなかった。
(Process c)
By the same operation as in Example 1, Ni particles were applied to the particles 3a to produce conductive particles composed of crosslinked polymer particles and a Ni plating layer covering the particles. In the obtained conductive particles, the plating layer was formed with good uniformity, and no irregularities were observed on the surface of the plating layer. Moreover, in the observation after crushing, the presence of the plated piece was hardly confirmed.
実施例4
 100mLナスフラスコに、下記に示した割合の混合物を一括して仕込み、室温で1時間撹拌機を用いて攪拌して分散液を得た。分散液を、窒素気流下、180℃のオイルバス中で約6時間加熱した。
・合成例1の母粒子:5重量部
・ヘキサメチレンジアミン(分子量116.2):1重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・ポリエチレンイミン(分子量1800):0.9重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・γ-ブチロラクトン:93.1重量部
Example 4
A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 6 hours under a nitrogen stream.
-Mother particles of Synthesis Example 1: 5 parts by weight-Hexamethylenediamine (molecular weight 116.2): 1 part by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
Polyethyleneimine (molecular weight 1800): 0.9 part by weight (ratio of amino group to carboxyl group in the mother particle is 1 equivalent)
・ Γ-butyrolactone: 93.1 parts by weight
 次いで、粒子を吸引ろ過設備を使ってろ別し、IPAによる洗浄とろ過を3~5回程度繰り返した後、真空乾燥して、ヘキサメチレンジアミン及びポリエチレンイミンによって架橋された粉末状の母粒子(粒子4a)を得た。得られた母粒子の180℃における圧縮変形回復率は55%で、圧縮破壊強度は16mNであった。 Next, the particles are filtered off using a suction filtration facility, and after washing with IPA and filtration about 3 to 5 times, vacuum drying is performed and powdery mother particles (particles) crosslinked with hexamethylenediamine and polyethyleneimine (particles) 4a) was obtained. The compression deformation recovery rate at 180 ° C. of the obtained mother particles was 55%, and the compression fracture strength was 16 mN.
(工程c)
 実施例1と同様の操作により、粒子4aに対してNiめっきを施して、架橋ポリマー粒子及びこれを覆うNiめっき層から構成される導電性粒子を作製した。得られた導電性粒子において、めっき層は良好な均一性で形成されており、めっき層表面に凹凸は認められなかった。また、解砕後の観察において、めっき片の存在は殆ど確認されなかった。
(Process c)
By the same operation as in Example 1, Ni particles were applied to the particles 4a to produce conductive particles composed of crosslinked polymer particles and a Ni plating layer covering the particles. In the obtained conductive particles, the plating layer was formed with good uniformity, and no irregularities were observed on the surface of the plating layer. Moreover, in the observation after crushing, the presence of the plated piece was hardly confirmed.
実施例5
 100mLナスフラスコに、下記に示した割合の混合物を一括して仕込み、室温で1時間撹拌機を用いて攪拌して分散液を得た。分散液を、窒素気流下、180℃のオイルバス中で約6時間加熱した。
・合成例1の母粒子:5重量部
・ヘキサメチレンジアミン(分子量116.2):1重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・ポリエチレンイミン(分子量10000):0.9重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・γ-ブチロラクトン:93.1重量部
Example 5
A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 6 hours under a nitrogen stream.
-Mother particles of Synthesis Example 1: 5 parts by weight-Hexamethylenediamine (molecular weight 116.2): 1 part by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
Polyethyleneimine (molecular weight 10,000): 0.9 part by weight (the ratio of amino group to carboxyl group in the mother particle is 1 equivalent)
・ Γ-butyrolactone: 93.1 parts by weight
 次いで、粒子を吸引ろ過設備を使ってろ別し、IPAによる洗浄とろ過を3~5回程度繰り返した後、真空乾燥して、ヘキサメチレンジアミン及びポリエチレンイミンによって架橋された粉末状の母粒子(粒子5a)を得た。得られた母粒子の180℃における圧縮変形回復率は57%で、圧縮破壊強度は16mNであった。 Next, the particles are filtered off using a suction filtration facility, and after washing with IPA and filtration about 3 to 5 times, vacuum drying is performed and powdery mother particles (particles) crosslinked with hexamethylenediamine and polyethyleneimine (particles) 5a) was obtained. The compression deformation recovery rate at 180 ° C. of the obtained mother particles was 57%, and the compression fracture strength was 16 mN.
(工程c)
 実施例1と同様の操作により、粒子5aに対してNiめっきを施して、架橋ポリマー粒子及びこれを覆うNiめっき層から構成される導電性粒子を作製した。得られた導電性粒子において、めっき層は良好な均一性で形成されており、めっき層表面に凹凸は認められなかった。また、解砕後の観察において、めっき片の存在は殆ど確認されなかった。
(Process c)
By the same operation as in Example 1, Ni particles were applied to the particles 5a to produce conductive particles composed of crosslinked polymer particles and a Ni plating layer covering the particles. In the obtained conductive particles, the plating layer was formed with good uniformity, and no irregularities were observed on the surface of the plating layer. Moreover, in the observation after crushing, the presence of the plated piece was hardly confirmed.
実施例6
(工程a)
 100mLナスフラスコに、下記に示した割合の混合物を一括して仕込み、室温で1時間撹拌機を用いて攪拌して分散液を得た。分散液を、窒素気流下、180℃のオイルバス中で約6時間加熱した。
・合成例2の母粒子:5重量部
・エチレンジアミン(分子量60.2):1重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・ポリエチレンイミン(分子量1200):1.8重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・γ-ブチロラクトン(和光純薬)91.7重量部
Example 6
(Process a)
A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 6 hours under a nitrogen stream.
-Mother particles of Synthesis Example 2: 5 parts by weight-Ethylenediamine (molecular weight 60.2): 1 part by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
Polyethyleneimine (molecular weight 1200): 1.8 parts by weight (the ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
・ Γ-Butyrolactone (Wako Pure Chemical) 91.7 parts by weight
 次いで、粒子を吸引ろ過設備を使ってろ別し、IPAによる洗浄とろ過を3~5回程度繰り返した後、真空乾燥して、エチレンジアミン及びポリエチレンイミンによって架橋された粉末状の母粒子(粒子6a)を得た。得られた母粒子の180℃における圧縮変形回復率は51%で、圧縮破壊強度は11mNであった。 Next, the particles are filtered off using a suction filtration facility, washed with IPA and filtered about 3 to 5 times, and then dried in a vacuum to form powdery mother particles crosslinked with ethylenediamine and polyethyleneimine (particles 6a) Got. The compression deformation recovery rate at 180 ° C. of the obtained mother particles was 51%, and the compression fracture strength was 11 mN.
(工程c)
 実施例1と同様の操作により、粒子6aに対してNiめっきを施して、架橋ポリマー粒子及びこれを覆うNiめっき層から構成される導電性粒子を作製した。得られた導電性粒子において、めっき層は良好な均一性で形成されており、めっき層表面に凹凸は認められなかった。また、解砕後の観察において、めっき片の存在は殆ど確認されなかった。
(Process c)
By the same operation as in Example 1, Ni particles were applied to the particles 6a to produce conductive particles composed of crosslinked polymer particles and a Ni plating layer covering the particles. In the obtained conductive particles, the plating layer was formed with good uniformity, and no irregularities were observed on the surface of the plating layer. Moreover, in the observation after crushing, the presence of the plated piece was hardly confirmed.
実施例7
(工程a)
 100mLナスフラスコに、下記に示した割合の混合物を一括して仕込み、室温で1時間撹拌機を用いて攪拌して分散液を得た。分散液を、窒素気流下、180℃のオイルバス中で約12時間加熱した。
・合成例3の母粒子:5重量部
・ペンタエチレンヘキサミン(分子量232.4):0.27重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・ポリエチレンイミン(分子量300):1重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・γ-ブチロラクトン(和光純薬)93.7重量部
Example 7
(Process a)
A 100 mL eggplant flask was charged with the following proportion of the mixture at one time and stirred at room temperature for 1 hour using a stirrer to obtain a dispersion. The dispersion was heated in a 180 ° C. oil bath for about 12 hours under a nitrogen stream.
-Mother particles of Synthesis Example 3: 5 parts by weight-Pentaethylenehexamine (molecular weight 232.4): 0.27 parts by weight (the ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
Polyethyleneimine (molecular weight 300): 1 part by weight (ratio of amino group to carboxyl group in the mother particle is 1 equivalent)
・ Γ-Butyrolactone (Wako Pure Chemical) 93.7 parts by weight
 次いで、吸引ろ過設備を使って粒子をろ別し、IPAによる洗浄とろ過を3~5回程度繰り返した後、真空乾燥して、ペンタメチレンヘキサミン及びポリエチレンイミンによって架橋された粉末状の母粒子(粒子7a)を得た。得られた母粒子の180℃における圧縮変形回復率は45%で、圧縮破壊強度は12mNであった。 Next, the particles are filtered using a suction filtration facility, and washing and filtration with IPA are repeated about 3 to 5 times, followed by vacuum drying, and powdery mother particles crosslinked with pentamethylenehexamine and polyethyleneimine ( Particles 7a) were obtained. The compression deformation recovery rate at 180 ° C. of the obtained mother particles was 45%, and the compression fracture strength was 12 mN.
 実施例1と同様の操作により、粒子7aに対してNiめっきを施して、架橋ポリマー粒子及びこれを覆うNiめっき層から構成される導電性粒子を作製した。得られた導電性粒子において、めっき層は良好な均一性で形成されており、めっき層表面に凹凸は認められなかった。また、解砕後の観察において、めっき片の存在は殆ど確認されなかった。 In the same manner as in Example 1, Ni particles were applied to the particles 7a to produce conductive particles composed of crosslinked polymer particles and a Ni plating layer covering the particles. In the obtained conductive particles, the plating layer was formed with good uniformity, and no irregularities were observed on the surface of the plating layer. Moreover, in the observation after crushing, the presence of the plated piece was hardly confirmed.
比較例1
 合成例2で合成した母粒子をそのまま用い、圧縮特性、及びめっき層の形成状態を評価した。
Comparative Example 1
The mother particles synthesized in Synthesis Example 2 were used as they were, and the compression characteristics and the formation state of the plating layer were evaluated.
比較例2
 工程aにおいて下記割合の混合物を原料として用いたこと以外は実施例1と同様の操作により、合成例1の母粒子の処理、及び導電性粒子の作製とその評価を行った。
・合成例1の母粒子:5重量部
・ヘキシルアミン(分子量100):1.7重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・γ-ブチロラクトン:92.3重量部
Comparative Example 2
Except having used the mixture of the following ratio as a raw material in the process a, the process of the mother particle of the synthesis example 1 and preparation and evaluation of the electroconductive particle were performed by the same operation as Example 1.
-Mother particles of Synthesis Example 1: 5 parts by weight-Hexylamine (molecular weight 100): 1.7 parts by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
・ Γ-butyrolactone: 92.3 parts by weight
比較例3
 工程aにおいて下記割合の混合物を原料として用いたこと以外は実施例1と同様の操作により、合成例1の母粒子の処理、及び導電性粒子の作製とその評価を行った。
・合成例1の母粒子:5重量部
・ポリエチレンイミン(分子量600):0.9重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・γ-ブチロラクトン:91.4重量部
Comparative Example 3
Except having used the mixture of the following ratio as a raw material in the process a, the process of the mother particle of the synthesis example 1 and preparation and evaluation of the electroconductive particle were performed by the same operation as Example 1.
-Mother particles of Synthesis Example 1: 5 parts by weight-Polyethyleneimine (molecular weight 600): 0.9 parts by weight (ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
・ Γ-butyrolactone: 91.4 parts by weight
比較例4
 工程aにおいて下記割合の混合物を原料として用いたこと以外は実施例1と同様の操作により、合成例1の母粒子の処理、及び導電性粒子の作製とその評価を行った。
・合成例1の母粒子:5重量部
・ポリエチレンイミン(分子量1200):0.9重量部(母粒子中のカルボキシル基に対するアミノ基の比率が1当量)
・γ-ブチロラクトン:91.4重量部
Comparative Example 4
Except having used the mixture of the following ratio as a raw material in the process a, the process of the mother particle of the synthesis example 1 and preparation and evaluation of the electroconductive particle were performed by the same operation as Example 1.
-Mother particles of Synthesis Example 1: 5 parts by weight-Polyethyleneimine (molecular weight 1200): 0.9 parts by weight (the ratio of amino groups to carboxyl groups in the mother particles is 1 equivalent)
・ Γ-butyrolactone: 91.4 parts by weight
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 評価結果を表2に示す。各実施例で得られた架橋ポリマー粒子は、良好な圧縮特性を有していた。また、各実施例の架橋ポリマー粒子の表面に良好な均一性でめっき層を形成させること可能であった。さらに、導電性粒子を解砕した後のめっき片もほとんど無かったことから、樹脂粒子とめっき層との密着性が優れていることも確認された。これに対して、比較例の各粒子は圧縮特性とめっき性のいずれかが十分ではなかった。以上の実験結果から、本発明によれば、良好な圧縮特性を有するとともに、その表面に良好な状態でめっき層を形成することが可能な架橋ポリマー粒子が提供されることが確認された。 Evaluation results are shown in Table 2. The crosslinked polymer particles obtained in each example had good compression properties. Moreover, it was possible to form a plating layer on the surface of the crosslinked polymer particles of each Example with good uniformity. Furthermore, since there was almost no plating piece after crushing electroconductive particle, it was also confirmed that the adhesiveness of a resin particle and a plating layer is excellent. On the other hand, each particle of the comparative example was not sufficient in either compression characteristics or plating properties. From the above experimental results, according to the present invention, it was confirmed that crosslinked polymer particles having good compression characteristics and capable of forming a plating layer on the surface in a good state are provided.
 本発明に係る架橋ポリマー粒子は、異方導電性フィルム、導電ペーストを始めとする導電性材料に用いられる粒子として有用な特性を満たすことが分かった。さらに、本発明の製法によって得られた架橋ポリマー粒子は、耐熱性、耐薬品性、反応性、溶液分散性にも優れているため、液晶用スペーサー,導電性微粒子およびそれを用いた導電材料,静電荷現像剤,銀塩フィルム用表面改質剤,磁気テープ用フィルム改質剤,感熱紙走行安定剤,トナー等の電気・電子工業分野、インク,接着剤,粘着剤,光拡散剤,塗料,紙コーティング・情報記録紙等の紙用コーディング剤などの化学分野、芳香剤,低収縮化剤,紙、歯科材料,樹脂改質剤等の一般工業分野、液状またはパウダー状化粧品に添加される滑り剤や体質顔料等の化粧品分野、生体および抗原抗体反応検査用粒子等の生物・医療分野、医薬および農薬分野、建築分野、自動車分野等の広範囲の分野において好適に用いることができる。 The cross-linked polymer particles according to the present invention have been found to satisfy characteristics useful as particles used in conductive materials including anisotropic conductive films and conductive pastes. Furthermore, since the crosslinked polymer particles obtained by the production method of the present invention are excellent in heat resistance, chemical resistance, reactivity, and solution dispersibility, spacers for liquid crystals, conductive fine particles and conductive materials using the same, Electrostatic developer, silver salt film surface modifier, magnetic tape film modifier, thermal paper running stabilizer, toner and other electrical and electronic industries, ink, adhesive, adhesive, light diffusing agent, paint , Addition to chemical field such as paper coating agent such as paper coating and information recording paper, general industrial field such as fragrance, low shrinkage agent, paper, dental material, resin modifier, liquid or powder cosmetics It can be suitably used in a wide range of fields such as cosmetics such as slip agents and extender pigments, biological and medical fields such as living body and antigen-antibody reaction test particles, pharmaceutical and agrochemical fields, building fields, and automobile fields.
 1…架橋ポリマー粒子、3…バインダー樹脂、5…導電性粒子、10…母粒子。 1 ... cross-linked polymer particles, 3 ... binder resin, 5 ... conductive particles, 10 ... mother particles.

Claims (13)

  1.  官能基を有する架橋ポリマーから形成された母粒子を、2個以上のアミノ基を有するアミノ化合物と接触させて、前記官能基と前記アミノ基との反応により前記架橋ポリマーを更に架橋する工程(a)を備え、
     前記アミノ化合物が、分子量500未満の低分子量アミノ化合物を含む、
    製造方法により得ることのできる、架橋ポリマー粒子。
    A step of contacting a mother particle formed from a cross-linked polymer having a functional group with an amino compound having two or more amino groups, and further cross-linking the cross-linked polymer by a reaction between the functional group and the amino group (a )
    The amino compound comprises a low molecular weight amino compound having a molecular weight of less than 500;
    Crosslinked polymer particles obtainable by a production method.
  2.  前記アミノ化合物が、分子量500~10000の高分子量アミノ化合物を更に含む、請求項1に記載の架橋ポリマー粒子。 The crosslinked polymer particle according to claim 1, wherein the amino compound further comprises a high molecular weight amino compound having a molecular weight of 500 to 10,000.
  3.  平均粒子径が0.1~10μmであり、粒子径のCv値が10%以下である、請求項1又は2に記載の架橋ポリマー粒子。 3. The crosslinked polymer particle according to claim 1, wherein the average particle size is 0.1 to 10 μm and the Cv value of the particle size is 10% or less.
  4.  前記官能基が、カルボキシル基、エポキシ基及びグリシジル基からなる群より選ばれる少なくとも1種である、請求項1~3のいずれか一項に記載の架橋ポリマー粒子。 The crosslinked polymer particle according to any one of claims 1 to 3, wherein the functional group is at least one selected from the group consisting of a carboxyl group, an epoxy group, and a glycidyl group.
  5.  前記母粒子が、懸濁重合、乳化重合、分散重合、沈殿重合又はシード重合により得ることのできる粒子である、請求項1~4のいずれか一項に記載の架橋ポリマー粒子。 The crosslinked polymer particle according to any one of claims 1 to 4, wherein the mother particle is a particle obtainable by suspension polymerization, emulsion polymerization, dispersion polymerization, precipitation polymerization or seed polymerization.
  6.  前記架橋ポリマーが、2個以上の不飽和二重結合を有する単量体を10質量%以上含む単量体混合物を共重合して形成された共重合体である、請求項1~5のいずれか一項に記載の架橋ポリマー粒子。 6. The copolymer according to claim 1, wherein the crosslinked polymer is a copolymer formed by copolymerizing a monomer mixture containing 10% by mass or more of a monomer having two or more unsaturated double bonds. The crosslinked polymer particle according to claim 1.
  7.  前記2個以上の不飽和二重結合を有する単量体が、ジビニルベンゼン及びジ(メタ)アクリル酸エステルから選ばれる少なくとも1種を含む、請求項6に記載の架橋ポリマー粒子。 The crosslinked polymer particle according to claim 6, wherein the monomer having two or more unsaturated double bonds includes at least one selected from divinylbenzene and di (meth) acrylic acid ester.
  8.  前記工程(a)の後の前記母粒子が、180℃において、40%以上の圧縮変形回復率、及び10mN以上の圧縮破壊強度を有する、請求項1~7のいずれか一項に記載の架橋ポリマー粒子。 The cross-linking according to any one of claims 1 to 7, wherein the base particles after the step (a) have a compression deformation recovery rate of 40% or more and a compression fracture strength of 10 mN or more at 180 ° C. Polymer particles.
  9.  請求項1~8のいずれか一項に記載の架橋ポリマー粒子にめっきを施す工程(c)を備える製造方法により得ることのできる、導電性粒子。 Conductive particles obtainable by a production method comprising the step (c) of plating the crosslinked polymer particles according to any one of claims 1 to 8.
  10.  前記工程(c)において、Pdイオン錯体をめっき触媒として用いて前記架橋ポリマー粒子にめっきを施す、請求項9に記載の導電性粒子。 The conductive particles according to claim 9, wherein in the step (c), the crosslinked polymer particles are plated using a Pd ion complex as a plating catalyst.
  11.  官能基を有する架橋ポリマーから形成された母粒子を、2個以上のアミノ基を有するアミノ化合物と接触させて、前記官能基と前記アミノ基との反応により前記架橋ポリマーを更に架橋する工程(a)を備え、
     前記アミノ化合物が、分子量500未満の低分子量アミノ化合物を含む、
    架橋ポリマー粒子の製造方法。
    A step of contacting a mother particle formed from a cross-linked polymer having a functional group with an amino compound having two or more amino groups, and further cross-linking the cross-linked polymer by a reaction between the functional group and the amino group (a )
    The amino compound comprises a low molecular weight amino compound having a molecular weight of less than 500;
    A method for producing crosslinked polymer particles.
  12.  前記工程(a)において、前記アミノ化合物のアミノ基の比率が、前記母粒子中の前記官能基1当量に対して0.1~5当量である、請求項11に記載の製造方法。 The production method according to claim 11, wherein in the step (a), the ratio of the amino group of the amino compound is 0.1 to 5 equivalents relative to 1 equivalent of the functional group in the mother particle.
  13.  バインダー樹脂と、該バインダー樹脂中に分散している請求項9又は10に記載の導電性粒子と、を備える異方導電性接着剤。 An anisotropic conductive adhesive comprising: a binder resin; and the conductive particles according to claim 9 or 10 dispersed in the binder resin.
PCT/JP2011/055678 2010-03-15 2011-03-10 Cross-linked polymer particle and method for producing same WO2011114993A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514911A JP4957871B2 (en) 2010-03-15 2011-03-10 Crosslinked polymer particles and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-057882 2010-03-15
JP2010057882 2010-03-15

Publications (1)

Publication Number Publication Date
WO2011114993A1 true WO2011114993A1 (en) 2011-09-22

Family

ID=44649088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055678 WO2011114993A1 (en) 2010-03-15 2011-03-10 Cross-linked polymer particle and method for producing same

Country Status (3)

Country Link
JP (2) JP4957871B2 (en)
TW (1) TW201144341A (en)
WO (1) WO2011114993A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054874A (en) * 2013-09-10 2015-03-23 積水化学工業株式会社 Adhesive
JP2016060776A (en) * 2014-09-16 2016-04-25 綜研化学株式会社 Organic-inorganic composite resin particle and method for producing the same
CN114133732A (en) * 2021-12-06 2022-03-04 中广核俊尔(浙江)新材料有限公司 Polyamide master batch for irradiation crosslinking and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023139987A1 (en) * 2022-01-18 2023-07-27 松本油脂製薬株式会社 Particles and use thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189103A (en) * 1983-04-11 1984-10-26 Nippon Shokubai Kagaku Kogyo Co Ltd Water-absorbing agent
JPS61277105A (en) * 1985-05-31 1986-12-08 積水フアインケミカル株式会社 Conductive fine pellet
JPS62101605A (en) * 1985-10-29 1987-05-12 Nagasaki Pref Gov Synthesis of adsorbent resin
JPH03197512A (en) * 1989-12-26 1991-08-28 Tosoh Corp Production of water-absorptive resin
JPH03215504A (en) * 1990-01-22 1991-09-20 Nippon Oil & Fats Co Ltd Crosslinked polymer particle
JPH04226110A (en) * 1990-06-14 1992-08-14 Kao Corp Fine cross-linked polymer particle
JPH0586205A (en) * 1991-04-26 1993-04-06 Hitachi Chem Co Ltd Production of crosslinked polymer particle
JPH06200046A (en) * 1992-01-28 1994-07-19 Sanyo Chem Ind Ltd Preparation of modified highly water-absorptive resin and resin
JPH06228225A (en) * 1993-02-04 1994-08-16 Hitachi Chem Co Ltd Production of crosslinked polymer particle
JPH07118340A (en) * 1993-10-26 1995-05-09 Nippon Zeon Co Ltd Hydrophilic gel particle modified with ethyleneamine
JPH08319467A (en) * 1995-05-25 1996-12-03 Soken Chem & Eng Co Ltd Conductive particle and anisotropically conductive adhesive
JP2001206954A (en) * 2000-01-26 2001-07-31 Sekisui Chem Co Ltd Method for producing fine particle having crosslinkage and fine particle having crosslinkage
JP2004217762A (en) * 2003-01-14 2004-08-05 Nisshinbo Ind Inc Curable particle and method for producing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189103A (en) * 1983-04-11 1984-10-26 Nippon Shokubai Kagaku Kogyo Co Ltd Water-absorbing agent
JPS61277105A (en) * 1985-05-31 1986-12-08 積水フアインケミカル株式会社 Conductive fine pellet
JPS62101605A (en) * 1985-10-29 1987-05-12 Nagasaki Pref Gov Synthesis of adsorbent resin
JPH03197512A (en) * 1989-12-26 1991-08-28 Tosoh Corp Production of water-absorptive resin
JPH03215504A (en) * 1990-01-22 1991-09-20 Nippon Oil & Fats Co Ltd Crosslinked polymer particle
JPH04226110A (en) * 1990-06-14 1992-08-14 Kao Corp Fine cross-linked polymer particle
JPH0586205A (en) * 1991-04-26 1993-04-06 Hitachi Chem Co Ltd Production of crosslinked polymer particle
JPH06200046A (en) * 1992-01-28 1994-07-19 Sanyo Chem Ind Ltd Preparation of modified highly water-absorptive resin and resin
JPH06228225A (en) * 1993-02-04 1994-08-16 Hitachi Chem Co Ltd Production of crosslinked polymer particle
JPH07118340A (en) * 1993-10-26 1995-05-09 Nippon Zeon Co Ltd Hydrophilic gel particle modified with ethyleneamine
JPH08319467A (en) * 1995-05-25 1996-12-03 Soken Chem & Eng Co Ltd Conductive particle and anisotropically conductive adhesive
JP2001206954A (en) * 2000-01-26 2001-07-31 Sekisui Chem Co Ltd Method for producing fine particle having crosslinkage and fine particle having crosslinkage
JP2004217762A (en) * 2003-01-14 2004-08-05 Nisshinbo Ind Inc Curable particle and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054874A (en) * 2013-09-10 2015-03-23 積水化学工業株式会社 Adhesive
JP2016060776A (en) * 2014-09-16 2016-04-25 綜研化学株式会社 Organic-inorganic composite resin particle and method for producing the same
CN114133732A (en) * 2021-12-06 2022-03-04 中广核俊尔(浙江)新材料有限公司 Polyamide master batch for irradiation crosslinking and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2011114993A1 (en) 2013-06-27
JP4957871B2 (en) 2012-06-20
JP2011231336A (en) 2011-11-17
TW201144341A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
TWI356425B (en) Coated fine particle and their manufacturing metho
JP4962706B2 (en) Conductive particles and method for producing the same
JP4206235B2 (en) Composite particle having carbodiimide resin layer and method for producing the same
WO2005113649A1 (en) Particle with rough surface and process for producing the same
JP4957871B2 (en) Crosslinked polymer particles and method for producing the same
JP2006269296A (en) Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
WO2005113650A1 (en) Particle with rough surface for plating or vapor deposition
JP5375961B2 (en) Crosslinked polymer particles, production method thereof, and conductive particles
JP5927862B2 (en) SUBMICRON POLYMER PARTICLE AND METHOD FOR PRODUCING INSULATION-CONTAINING CONDUCTIVE PARTICLE HAVING THE SAME
JP4771026B1 (en) Crosslinked polymer particles and method for producing the same
WO2004026945A1 (en) Flaky particles and process for production thereof
JP6044254B2 (en) Crosslinked polymer particle, conductive particle, anisotropic conductive material, and connection structure of circuit member
JP6014438B2 (en) Conductive fine particles and anisotropic conductive material using the same
JP5821552B2 (en) Water-repellent conductive particles, anisotropic conductive material, and conductive connection structure
TW201716474A (en) Highly durable cross-linked polymer microparticles characterized by using a seed polymer microparticle of a homogeneous particle size having a number average molecular weight less than 50,000 as the mother particle
JP4215521B2 (en) Curable particle and method for producing the same
JP2005017773A (en) Particle having rugged surface and its manufacturing method
JP2010116539A (en) Polymer microparticle, and method for manufacturing the same
JP2013095781A (en) Polymer-covered particle
JP2014080474A (en) Crosslinked polymer particle, conductive particle, anisotropic conductive material and connection structure for circuit member
JP2020193239A (en) Resin particle for conductive fine particle
KR20070031911A (en) Particle with rough surface for plating or vapor deposition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011514911

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756179

Country of ref document: EP

Kind code of ref document: A1