WO2011114651A1 - 算出装置及び算出方法 - Google Patents

算出装置及び算出方法 Download PDF

Info

Publication number
WO2011114651A1
WO2011114651A1 PCT/JP2011/001326 JP2011001326W WO2011114651A1 WO 2011114651 A1 WO2011114651 A1 WO 2011114651A1 JP 2011001326 W JP2011001326 W JP 2011001326W WO 2011114651 A1 WO2011114651 A1 WO 2011114651A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser catheter
excitation light
tissue
fluorescence
fluorescence intensity
Prior art date
Application number
PCT/JP2011/001326
Other languages
English (en)
French (fr)
Inventor
玉村 好司
志穗 箱守
山口 恭司
荒井 恒憲
亜莉沙 伊藤
Original Assignee
ソニー株式会社
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社, 学校法人慶應義塾 filed Critical ソニー株式会社
Priority to EP11755844.5A priority Critical patent/EP2548614A4/en
Priority to CN201180012977XA priority patent/CN102933256A/zh
Priority to SG2012065967A priority patent/SG183935A1/en
Priority to KR1020127023321A priority patent/KR20130004478A/ko
Priority to US13/583,547 priority patent/US20130172697A1/en
Publication of WO2011114651A1 publication Critical patent/WO2011114651A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N2005/0602Apparatus for use inside the body for treatment of blood vessels

Definitions

  • the present invention relates to a calculation device and a calculation method for calculating a drug concentration in a tissue.
  • Atrial fibrillation is known as a type of tachyarrhythmia. Atrial fibrillation occurs when an abnormal excitation site that generates an electric pulse appears near the junction between the pulmonary vein and the left atrium, and the left atrium vibrates and contracts finely by stimulation of the electric pulse.
  • PDT photodynamic therapy
  • singlet oxygen is generated by irradiating myocardial tissue into which a photosensitizing agent has been incorporated with excitation light using a laser catheter.
  • Singlet oxygen having strong oxidizing power damages the myocardial tissue surrounding the abnormally excited site, and forms an electrical conduction block that blocks (blocks) the conduction of electrical pulses from the abnormally excited site to the left atrium.
  • electrical conduction between the abnormal excitation site and the left atrium is blocked, and abnormal vibration and contraction of the left atrium are suppressed.
  • Photosensitive drugs have the property of selectively accumulating in specific tissues. Therefore, in general, after a predetermined time (for example, 8 to 48 hours) has elapsed since the photosensitizing agent was administered to the patient, the photosensitizing agent concentration in the treated tissue is high and the photosensitizing agent concentration in other tissues or blood is low.
  • the excitation light is irradiated after the contrast of the so-called photosensitizing agent is obtained.
  • a PDT that irradiates excitation light when the photosensitive drug is delivered to the tissue to be treated by blood without using the accumulation property of the photosensitive drug has been proposed.
  • a method for monitoring the concentration of a drug in blood a method of measuring the absorbance of blood collected at regular intervals after drug administration is known.
  • this method limits the number of plots because the amount of blood that can be collected is limited, and the concentration cannot be measured in real time.
  • a method of monitoring the drug concentration in the tissue a method is known in which a part of carbon constituting the drug is converted into an isotope, and the drug concentration in each tissue is measured from the radiation dose. Because it is exposed to radiation, it is not a minimally invasive monitoring method and is not realistic.
  • an object of the present invention is to provide a calculation device and a calculation method capable of calculating a drug concentration in a tissue in real time.
  • a calculation device is a calculation device that irradiates a tissue into which a photosensitive drug that absorbs excitation light and emits fluorescence is incorporated from the distal end of a laser catheter. It is an apparatus, Comprising: It has a connection part, a light source, and a detection part.
  • tissue may include blood.
  • the laser catheter can be attached to and detached from the connection portion.
  • the light source outputs the excitation light to the laser catheter via the connection portion.
  • the detection unit detects the intensity of the fluorescence incident from the laser catheter through the connection unit in order to calculate the concentration of the photosensitive drug in the tissue in contact with the tip of the laser catheter.
  • the calculation device may further include a calculation unit that calculates the concentration of the photosensitive drug in the tissue that is in contact with the tip of the laser catheter in accordance with the detected fluorescence intensity.
  • the calculation device may further include a control unit that outputs a signal for prompting additional administration of the photosensitive drug according to the calculated concentration.
  • output signal means that a display command including display information is output to the display unit or a voice output command is output to the speaker unit.
  • the control unit may calculate an excitation light irradiation protocol according to the calculated concentration and output the calculation result.
  • a calculation method includes irradiating a tissue into which a photosensitive drug that absorbs excitation light and emits fluorescence is taken from the distal end portion of the laser catheter.
  • the fluorescence corresponding to the irradiated excitation light is extracted through the laser catheter.
  • the concentration of the photosensitive drug in the tissue with which the tip of the laser catheter contacts is calculated according to the intensity of the extracted fluorescence.
  • the calculation method may further output a signal for prompting additional administration of the photosensitive drug according to the calculated concentration.
  • the calculation method may further calculate an excitation light irradiation protocol according to the calculated concentration and output the calculation result.
  • a calculation method includes a photosensitive drug that absorbs excitation light and emits fluorescence, a laser catheter that can irradiate the excitation light from a distal end portion, a connection portion to which the laser catheter can be attached and detached, and the above A calculation method using a calculation device having a light source that outputs the excitation light to the laser catheter via a connection unit.
  • the photosensitive drug is taken up by the tissue.
  • the distal end portion of the laser catheter attached to the connection portion is guided to the tissue that has taken in the photosensitive drug.
  • Excitation light output from the light source is irradiated from the tip of the laser catheter to the tissue that has taken in the photosensitive drug.
  • the fluorescence corresponding to the irradiated excitation light is extracted through the laser catheter. In accordance with the intensity of the extracted fluorescence, the concentration of the photosensitive drug in the tissue with which the tip of the laser catheter contacts is calculated.
  • the calculation method may further calculate an excitation light irradiation protocol according to the calculated concentration and output the calculation result.
  • the drug concentration in the tissue can be calculated in real time.
  • PDT device photodynamic therapy device
  • FIG. 1 is a schematic diagram showing a PDT apparatus according to a first embodiment of the present invention.
  • the PDT apparatus 1 includes a PDT apparatus main body 100, a tube 200 connected to the PDT apparatus main body 100, and a connector 210 provided at the tip of the tube 200.
  • the tube 200 is a hollow soft tube and can transmit light through a built-in device-attached optical fiber 201 (see FIG. 3).
  • the laser catheter 300 is detachably connected to the connector 210.
  • Photosensitive drugs are drugs that absorb and excite specific wavelengths of light and emit fluorescence.
  • talaporfin sodium Rezafilin (registered trademark), Meiji Seika Co., Ltd.
  • the drug has a Q-band absorption wavelength around 664 nm, for example, 600-800 nm, preferably 660-680 nm, and more preferably 664 ⁇ 2 nm is used as the excitation light source for this drug.
  • FIG. 2 is a schematic view showing a laser catheter inserted into the heart.
  • the laser catheter 300 is inserted into the right atrium 14 of the heart 10 through the femoral vein or jugular vein of the patient 2.
  • the laser catheter 300 that has reached the right atrium 14 passes through the septum and is guided to the left atrium 13.
  • FIG. 3 is a block diagram showing the PDT apparatus main body.
  • the PDT apparatus main body 100 includes a light source 110, an optical system 120, a detection unit 130, an electrocardiogram acquisition unit 140, a control unit 150, a storage unit 160, a display unit 170, and an operation unit 180.
  • the light source 110 outputs excitation light of a photosensitive drug.
  • the wavelength of the light output from the light source 110 is equal to the absorption wavelength in the Q band of the photosensitive drug.
  • a photosensitizer having a Q-band absorption wavelength of around 664 nm a semiconductor laser having an oscillation wavelength of 600-800 nm, preferably 660-680 nm, more preferably 664 ⁇ 2 nm is used as the light source 110.
  • the excitation light output from the light source 110 enters the laser catheter 300 through the optical system 120.
  • the optical system 120 makes the excitation light emitted from the light source 110 incident on the laser catheter 300 connected to the connector 210 via the optical fiber 201 attached to the apparatus.
  • the optical system 120 extracts the fluorescence emitted from the photosensitive drug irradiated with the excitation light from the laser catheter 300 and enters the detection unit 130.
  • the optical system 120 includes a short pass filter 121, a first lens 122, a polarizing beam splitter (hereinafter referred to as “PBS”) 123, a long pass filter 124, and a second lens 125.
  • PBS polarizing beam splitter
  • the short pass filter 121 is a short wavelength transmission filter having a cut-on wavelength of 670 nm, and cuts radiation on the long wave side.
  • Excitation light from the light source 110 has a radiation component in the fluorescence observation wavelength region (longer wavelength side than the peak wavelength). Therefore, the radiation component on the long wave side of the excitation light is cut before the light is condensed on the laser catheter 300.
  • the excitation light transmitted through the short pass filter 121 is incident on the first lens 122.
  • the first lens 122 collects the excitation light incident from the short pass filter 121 on one end surface of the laser catheter 300.
  • the first lens 122 condenses the fluorescence from the distal end portion of the laser catheter 300 on the PBS 123.
  • a part of the excitation light from the light source 110 is reflected from the end face of the device-attached optical fiber 201 on the PDT device main body 100 side, the connector 210, or the distal end portion of the laser catheter 300, and enters the PBS 123 as specularly reflected light. .
  • specularly reflected lights become noise when detecting fluorescence.
  • the PBS 123 transmits the specularly reflected light reflected by the end face of the optical fiber in the tube 200 using the difference in deflection among the light incident from the first lens 122, and detects fluorescence and other end faces. The regular reflection light at is reflected and guided to the detector.
  • the fluorescence transmitted through the PBS 123 enters the long pass filter 124.
  • the long pass filter 124 does not transmit the specularly reflected light reflected from the inside of the connector 210 and the tip of the laser catheter 300 out of the light incident from the PBS 123, but transmits only the fluorescence and guides it to the detector.
  • the fluorescence that has passed through the long pass filter 124 enters the second lens 125.
  • the second lens 125 condenses the fluorescence incident from the long pass filter 124 on the detection unit 130.
  • the detection unit 130 is, for example, a linear image sensor, and spectrally detects fluorescence incident from the optical system 120. That is, the detection unit 130 detects fluorescence of the photosensitive drug that is light having an excitation wavelength and light longer than the light having the excitation wavelength. The detection unit 130 outputs the detected fluorescence intensity to the control unit 150 as an electrical signal.
  • the electrode pad 141 is connected to the electrocardiogram acquisition unit 140 via an electrode cord (not shown).
  • the electrocardiogram acquisition unit 140 acquires the electrocardiogram signal of the patient 2 via the electrode pad 141 and the electrode cord attached to the patient 2 and supplies the acquired electrocardiogram signal to the control unit 150.
  • the control unit 150 controls each unit in the PDT apparatus 1.
  • the control unit 150 calculates the fluorescence intensity based on the electrical signal acquired from the detection unit 130.
  • the control unit 150 calculates the drug concentration in the tissue or blood based on the calculated fluorescence intensity (drug concentration monitoring operation).
  • the control unit 150 determines whether or not additional drug administration is necessary based on the calculated drug concentration.
  • the control unit 150 determines the contact state of the laser catheter 300 with respect to the tissue based on the electrical signal acquired from the detection unit 130 (contact monitoring operation).
  • the control unit 150 determines the presence / absence of abnormalities such as foreign matter and damage and the cell-killing effect based on the change in the fluorescence intensity during the excitation light irradiation (foreign matter / damage monitoring operation and cell-killing effect determination operation).
  • the control unit 150 controls the light source 110 based on the determination result to stop the excitation light irradiation.
  • the control unit 150 determines whether or not an electric conduction block is formed based on the electric signal acquired from the detection unit 130 and the electrocardiogram signal acquired from the electrocardiogram acquisition unit 140 (discriminating operation for forming an electric conduction block).
  • the control unit 150 outputs to the display unit 170 display commands for displaying the various calculation results and determination results and various information.
  • the storage unit 160 is a non-volatile memory, and is set to, for example, a flash memory, an HDD (Hard Disk Drive), or other solid-state memory.
  • the control unit 150 includes information on the fluorescence intensity acquired from the detection unit 130, time information acquired from a time measurement unit (not shown) that measures an elapsed time from a reference time such as a time at which excitation light irradiation is started, and the like. Are associated with each other and recorded in the storage unit 160 as a change in fluorescence intensity over time.
  • the control unit 150 associates the information related to the electrocardiogram signal acquired from the electrocardiogram acquisition unit 140 with the time information, and records them in the storage unit 160 as an electrocardiogram.
  • the display unit 170 is a display device using, for example, a liquid crystal display.
  • the display unit 170 displays, for example, information on the fluorescence intensity, information on the electrocardiogram signal, time information, and the like on the display screen based on display information included in the display command.
  • the operation unit 180 receives a command by an input operation from the practitioner, and outputs the received command to the control unit 150.
  • the command is, for example, a command related to on / off of excitation light output from the light source 110, intensity switching, and the like.
  • the intensity of the excitation light is at least a first intensity of low power (for example, an optical output of 1 mW or less) that is minimally invasive to tissues and blood, and a high power of about 1000 times the first intensity. Two types with two intensities can be selected. The first intensity is selected when the drug concentration or the contact state of the laser catheter 300 is monitored before treatment. The second intensity is selected when performing the treatment. The first intensity is a fixed value, and the second intensity may be variable.
  • the laser catheter 300 emits excitation light from the distal end portion.
  • FIG. 4 is a cross-sectional view showing the distal end portion of the laser catheter.
  • the laser catheter 300 includes a catheter tube 310, a support part 320, an optical fiber 330, and an optical window 340.
  • the catheter tube 310 is a hollow soft tube and is guided to the inner wall of the myocardial tissue of the heart 10 of the patient 2.
  • the catheter tube 310 contains an optical fiber 330.
  • the support part 320 is fixed to the catheter tube 310.
  • the support part 320 holds the optical fiber 330 and the optical window 340 with respect to the catheter tube 310.
  • the optical fiber 330 is, for example, one quartz step index fiber having a core diameter of 133 ⁇ m and an outer shape of 500 ⁇ m.
  • the optical fiber 330 transmits the excitation light from the PDT device 1.
  • the optical fiber 330 emits the transmitted excitation light as irradiation light 301 to the optical window 340 from the tip.
  • the beam diameter of the irradiation light 301 increases at an angle determined by the opening (NA) of the optical fiber 330.
  • the tip of the optical fiber 330 is processed so that the beam diameter of the irradiation light 301 is appropriately increased.
  • the optical fiber 330 transmits the fluorescence emitted by the photosensitive drug taken into the tissue irradiated with the excitation light to the PDT device 1.
  • the optical window 340 is provided on the outermost part of the distal end portion of the laser catheter 300 so as to be optically continuous with the distal end of the optical fiber 330.
  • the optical window 340 is made of a solid transparent material, for example, a glass material such as BK7.
  • the optical window 340 transmits the irradiation light 301 emitted from the tip of the optical fiber 330 as an irradiation unit.
  • the optical window 340 as a light receiving unit, condenses the fluorescence emitted by the photosensitive drug at the tip of the optical fiber 330.
  • the number of optical fibers built into the laser catheter be one, particularly in diseases requiring an approach from the heart chamber such as atrial fibrillation and ventricular flutter.
  • it is necessary to detect fluorescence with low power intensity that does not affect the living body it is necessary to configure a measurement system with a high SN (Signal-Noise) ratio with a single optical fiber.
  • the PBS 123 and the long pass filter 124 remove regular reflection light from the fiber incident end face, and the short pass filter 121 removes the radiation component on the long wave side of the excitation light. Accordingly, the detection unit 130 can detect fluorescence with a high SN ratio while the laser fiber 300 uses the irradiation fiber and the detection fiber as one optical fiber 330. As a result, fluorescence can be detected with a low power that does not affect the living body. Thereby, in the treatment and diagnosis of a circulatory system disease, a minimally invasive diagnosis is possible even though the laser catheter is sufficiently thin and capable of increasing the curvature.
  • FIG. 5 is a flowchart showing the operation of the PDT apparatus.
  • Steps S101 to S103 (2) Drug concentration monitoring operation (steps S104 to S105)
  • the light source 110 outputs the excitation light at the first intensity
  • the control unit 150 calculates the drug concentration over time based on the fluorescence intensity detected by the detection unit 130, and the calculated drug concentration is calculated. Based on the above, it is determined whether or not additional drug administration is necessary.
  • step S106 to S108 In the contact monitoring operation, the light source 110 outputs excitation light at a first intensity, and the control unit 150 determines the contact state of the laser catheter 300 with respect to the tissue inner wall based on the fluorescence intensity detected by the detection unit 130, and the excitation light. The irradiation protocol (intensity, time, etc.) is calculated.
  • step S109 to S112 In the foreign object / damage monitor operation, the light source 110 outputs excitation light at the second intensity, and the control unit 150 uses an appropriate treatment protocol based on the fluorescence intensity detected by the detection unit 130 for any reason during laser irradiation.
  • step S113 In the cell killing effect determination operation, the light source 110 outputs excitation light at the second intensity, and the control unit 150 performs cell killing in the tissue irradiated with the excitation light based on the fluorescence intensity detected by the detection unit 130. Determine if it was effective.
  • Electric conduction block formation discrimination operation steps S114 to S117
  • the electrical conduction block is a block in which the conduction of electrical pulses from the abnormal excitation site to the left atrium is blocked by necrotizing the myocardial tissue surrounding the abnormal excitation site.
  • the determination operation of the electric conduction block formation is determined by calculating the time change data of the fluorescence intensity used in the cell killing effect determination operation (step S113) and the electrocardiographic waveform data by the control unit.
  • the formation of the electrical conduction block may be determined by rearranging the laser catheter in the electrical conduction block, changing the light source 110 to the first intensity, and performing the same processing.
  • FIG. 6 is a schematic diagram showing a laser catheter inserted into the left atrium.
  • an operator such as a doctor inserts the laser catheter 300 into the heart 10 through the femoral vein or jugular vein of the patient 2.
  • the distal end portion of the laser catheter 300 is disposed in the vicinity of the pulmonary vein 12 on the inner wall of the myocardial tissue 11 of the left atrium 13 (step S101).
  • step S102 administers a photosensitive drug to the patient 2 with reference to various reference data
  • step S103 administers a photosensitive drug to the patient 2 with reference to various reference data.
  • a description will be given on the assumption that an amount of a photosensitive drug necessary for treatment is administered to patient 2 by intravenous injection.
  • the administered photosensitive drug diffuses into the blood and is taken up by the tissue.
  • a drug concentration monitoring operation is performed.
  • the practitioner operates the operation unit 180 to input an excitation light output command with a low power first intensity to the control unit 150.
  • the control unit 150 outputs the excitation light output command with the first intensity to the light source 110.
  • the light source 110 receives the excitation light output command from the control unit 150, the light source 110 outputs the excitation light with the first intensity.
  • the excitation light output from the light source 110 is applied to the tissue and blood via the optical system 120 and the laser catheter 300.
  • the photosensitive drug taken into the tissue or blood absorbs the excitation light from the laser catheter 300 and emits fluorescence.
  • the fluorescence emitted by the photosensitive drug is extracted by the optical system 120 via the laser catheter 300 and is incident on the detection unit 130.
  • the detection unit 130 detects the incident fluorescence, and outputs the detected fluorescence intensity to the control unit 150 as an electrical signal.
  • the control unit 150 calculates the fluorescence intensity based on the electrical signal acquired from the detection unit 130.
  • the control unit 150 starts recording the temporal change of the fluorescence intensity in the storage unit 160 as a log that associates the calculated fluorescence intensity with the time information acquired from the time measurement unit (not shown).
  • the control unit 150 Based on the calculated fluorescence intensity and the elapsed time from the reference time such as the time when the intravenous injection is started, the control unit 150 generates display information related to the temporal change of the fluorescence intensity, and includes the generated display information.
  • the command is output to the display unit 170.
  • the display unit 170 displays the change in fluorescence intensity with time on the display screen based on the display information included in the display command. For example, the display unit 170 displays the change in fluorescence intensity over time as a graph on the display screen.
  • FIG. 7 is a graph showing changes in fluorescence intensity over time.
  • a photosensitive drug resaphyrin
  • excitation light semiconductor laser, oscillation wavelength, for example, 600-800 nm, preferably 660--, which matches the absorption band of the drug.
  • 680 nm, more preferably 664 ⁇ 2 nm, 400 ⁇ W shows the change over time in fluorescence intensity (Intensity).
  • the distal end of the laser catheter 300 was placed in the pig right atrium.
  • the fluorescence intensity in blood monotonously decreased after drug administration.
  • the fluorescence intensity in the myocardial tissue increased until a certain time after the drug administration, and then decreased.
  • the fluorescence intensity in blood is larger than the fluorescence intensity in myocardial tissue.
  • FIG. 8 is a graph showing the correlation between fluorescence intensity and drug concentration.
  • the figure shows the correlation between the absolute value of the drug concentration (PS concentration) obtained by the blood collection method and the fluorescence intensity (Intensity) when the excitation light shown in the previous figure is irradiated on the blood.
  • the absolute value of the drug concentration and the fluorescence intensity almost coincided. That is, the drug concentration can be monitored in real time based on the fluorescence intensity calculated over time.
  • the control unit 150 calculates the drug concentration in the tissue and blood based on the calculated fluorescence intensity (step S104).
  • the control unit 150 starts recording the change over time in the drug concentration in the storage unit 160 as a log in which the calculated drug concentration is associated with the time information acquired from the time measurement unit (not shown).
  • the control unit 150 also generates display information regarding the change over time of the drug concentration based on the calculated drug concentration and the elapsed time from the reference time such as the time when the intravenous injection is started, and displays the generated display information.
  • a display command including the same is output to the display unit 170.
  • the display unit 170 displays the change in the drug concentration with time on the display screen based on the display information included in the display command. For example, the display unit 170 displays changes over time in the drug concentration as a graph on the display screen.
  • FIG. 9 is a graph showing changes in drug concentration over time.
  • the fluorescence intensity in blood is greater than that in myocardial tissue, and there is a correlation between fluorescence intensity and drug concentration. Accordingly, the concentration of the drug in the blood monotonously decreases after the administration of the drug, similarly to the change with time of the fluorescence intensity in the blood.
  • the drug concentration in the tissue increases until a certain time after the drug administration, and decreases thereafter, in the same manner as the change in fluorescence intensity in the tissue over time. Further, the drug concentration in the blood shows a higher level than the drug concentration in the tissue.
  • the control unit 150 determines whether or not the calculated drug concentration is equal to or greater than a threshold value (step S105). When determining that the drug concentration is equal to or higher than the threshold, the control unit 150 estimates that the drug concentration is sufficient, and proceeds to a contact monitoring operation (Yes in step S105). On the other hand, when the control unit 150 determines that the drug concentration is less than the threshold, the control unit 150 estimates that the drug concentration is insufficient, generates display information that prompts additional drug administration, and displays a display command including the generated display information. Output to 170. When the display unit 170 obtains a display command from the control unit 150, the display unit 170 displays information that prompts the practitioner to administer additional photosensitizer based on the display information included in the display command (No in step S105).
  • the practitioner such as a doctor can obtain the fluorescence intensity without calculating the drug concentration by the control unit 150.
  • the drug concentration can be estimated from
  • a method for monitoring a change in drug concentration in blood a method is known in which the absorbance of blood collected at regular intervals after drug administration is measured.
  • this method limits the number of plots because the amount of blood that can be collected is limited, and the concentration cannot be measured in real time.
  • a method of monitoring by creating a bypass route outside the body, irradiating light to blood passing through the route, and observing the fluorescence intensity is known.
  • this method requires attention to hygiene.
  • a method for monitoring the drug concentration in a tissue a method is known in which a part of carbon constituting a drug is simultaneously converted to an isotope, and the drug concentration in each tissue is monitored from the radiation dose.
  • the change with time of the drug concentration correlated with the fluorescence intensity can be calculated by calculating the change with time of the fluorescence intensity.
  • tissue and blood can be monitored in real time.
  • it is less invasive than the above conventional monitoring method and it is possible to monitor a change in the drug concentration over time stably and with high reproducibility.
  • the change in the drug concentration over time is monitored via a catheter using the excitation light from the light source 110 of the PDT device 1, it is not necessary to add a drug concentration detection device separately, and low cost and space saving can be realized.
  • the drug concentration can be monitored in real time, it is possible to perform discrimination assistance for additional drug administration in real time.
  • the drug concentration monitoring operation of the present embodiment is not limited to PDT, and can also be executed in treatment and diagnosis using a drug that absorbs excitation light and emits fluorescence. It is important to understand pharmacokinetics (drug delivery) in treatment and diagnosis using drugs.
  • the drug concentration of a desired tissue can be measured in real time and microscopically via a catheter, and the dynamics of various drugs can be grasped.
  • the drug concentration monitoring operation of the present embodiment can also be executed in a system (DDS, Drug Delivery System) that allows a drug to reach only a specific location, and evaluates whether the drug has actually reached a local area. Useful to do.
  • DDS Drug Delivery System
  • FIG. 10 is a schematic diagram showing a contact state of the laser catheter.
  • the laser catheter 300 is desirably arranged so that the distal end as a light emitting portion is in perpendicular contact with the inner wall of the myocardial tissue 11 (see FIG. 10A, hereinafter referred to as “vertical contact state”). This is because the atrial blood 15 is excluded from the tip of the laser catheter 300 to suppress activation of the photosensitive drug in the atrial blood 15. Another reason is to selectively activate the photosensitive drug taken into the tissue by bringing the tip of the laser catheter 300 into direct contact with the tissue. However, it is difficult to recognize the accurate contact state of the distal end portion of the laser catheter 300 by X-ray imaging or tactile sense.
  • the distal end portion of the laser catheter 300 is not always in a vertical contact state with the tissue.
  • the blood 15 may be interposed between the distal end portion of the laser catheter 300 and the tissue, and the distal end portion may be present in the blood (see FIG. 10C, hereinafter referred to as “non-contact state”).
  • the distal end portion of the laser catheter 300 may contact the tissue obliquely, and blood 15 may partially exist in the gap between the distal end portion and the tissue (see FIG. 10B, hereinafter “oblique contact state”). ”).
  • the contact state of the tip of the laser catheter 300 that is, whether it is in a contact state or a non-contact state, a contact angle in a contact state (vertical contact state / oblique contact state), etc. Monitored.
  • the “contact angle” does not mean only a narrow angle value, but a broad contact angle indicating whether the contact state of the tip of the laser catheter 300 with respect to the tissue is vertical or oblique. Is also meant.
  • the light source 110 outputs excitation light to the optical system 120 at the first intensity
  • the control unit 150 calculates the fluorescence intensity and the drug concentration
  • the display unit 170 displays the change over time in the fluorescence intensity on the display screen.
  • the display unit 170 displays a change in fluorescence intensity over time as a graph on the display screen.
  • FIG. 11 is a graph showing changes in fluorescence intensity over time.
  • This figure is a graph showing the change in fluorescence intensity over time under the same conditions as in FIG.
  • the A line has low fluorescence intensity
  • the C line has high fluorescence intensity
  • the B line fluctuated between the fluorescence intensity of the A line and the fluorescence intensity of the C line.
  • a change in fluorescence intensity with time when the tip of the laser catheter 300 is in a vertical contact state, an oblique contact state, and a non-contact state is shown in one graph.
  • the C line is considered to indicate the fluorescence intensity when the laser catheter 300 irradiates blood with excitation light. Therefore, when the fluorescence intensity such as C line is calculated, it is considered that the fluorescence intensity in the blood is reflected because the distal end portion of the laser catheter 300 is not in contact with the tissue.
  • line B Since the B line is located between the fluorescence intensity of the A line and the fluorescence intensity of the C line, it is considered that the distal end portion of the laser catheter 300 is in an oblique contact state with the tissue. Further, since the contact object at the tip of the laser catheter 300 is a moving myocardial tissue, the laser catheter 300 moves following the movement of the tissue.
  • the distal end portion of the laser catheter 300 when the distal end portion of the laser catheter 300 is in contact with the tissue obliquely, the blood volume between the distal end portion of the laser catheter 300 and the tissue is likely to change during measurement.
  • the blood flow in the myocardial tissue and the atrium also changes according to the heart rate. Under these influences, the fluorescence intensity fluctuation of the B line becomes larger than that of the A line and the C line.
  • the laser catheter 300 may be affected by the movement of the myocardial tissue.
  • the contact state of the distal end portion of the laser catheter 300 varies between a contact state (a vertical contact state and an oblique contact state) and a non-contact state.
  • the fluctuation of the fluorescence intensity becomes more severe. Therefore, it can be determined whether or not the laser catheter 300 follows the movement of the myocardial tissue based on the fluctuation of the fluorescence intensity shown in the waveform. For example, in the A line in the graph, the fluorescence intensity in the vicinity of 4 seconds after drug administration is high because the tip of the laser catheter 300 instantaneously changed from the vertical contact state to the non-contact state and returned to the vertical contact state again. Indicates.
  • the control unit 150 determines the contact state (contact / non-contact, contact angle at the time of contact) of the tip of the laser catheter 300 based on the calculated fluorescence intensity (step S106). Specifically, when determining that the calculated fluorescence intensity is greater than or equal to the first threshold, the control unit 150 determines that it is in a non-contact state (C line). When determining that the minimum value of the fluorescence intensity is smaller than the second threshold value or smaller than the second threshold value or at the same level, the control unit 150 determines the vertical contact state (A line). When it is determined that the fluorescence intensity fluctuates at a constant cycle between the first threshold value and the second threshold value, the control unit 150 determines the oblique contact state (line B).
  • the control unit 150 uses the display unit 170 to notify the practitioner of the determined contact state. Specifically, when the control unit 150 determines the oblique contact state or the non-contact state, the control unit 150 generates display information that prompts the contact state change of the distal end portion of the laser catheter 300 and displays a display command including the generated display information. Output to 170. When the display unit 170 obtains a display command from the control unit 150, the display unit 170 displays information that prompts the practitioner to change the contact state of the distal end portion of the laser catheter 300 based on the display information included in the display command (step S107). The practitioner can change the contact state of the distal end portion of the laser catheter 300 with the tissue by operating a handpiece (not shown) provided on the laser catheter 300.
  • the control unit 150 continues to calculate the fluorescence intensity and the drug concentration.
  • the control unit 150 refers to the fluorescence intensity and the drug concentration stored in the storage unit 160.
  • the control unit 150 calculates the amount of blood existing in the gap between the tip of the laser catheter 300 and the tissue based on the referenced fluorescence intensity. Based on the calculated blood volume and the referenced drug concentration, the control unit 150 calculates the excitation light irradiation protocol during treatment, that is, the second intensity and irradiation time of the excitation light (step S108). .
  • the control unit 150 When calculating the excitation light irradiation protocol, the control unit 150 generates display information related to the irradiation protocol and outputs a display command including the generated display information to the display unit 170.
  • the display unit 170 When the display unit 170 obtains a display command from the control unit 150, the display unit 170 displays information related to the excitation light irradiation protocol (second intensity, irradiation time) based on the display information included in the display command. As described above, the control unit 150 calculates the drug concentration and blood volume based on the fluorescence intensity, and calculates the excitation light irradiation protocol based on the calculated drug concentration and blood volume. That is, the control unit 150 can calculate the excitation light irradiation protocol based on the fluorescence intensity.
  • the control unit 150 Since the temporal change in fluorescence intensity varies depending on the contact state of the distal end portion of the laser catheter 300, if the temporal change in fluorescence intensity is displayed on the display screen by the display unit 170, the control unit 150 does not determine the contact state. Even so, the practitioner can estimate the contact state from the change in fluorescence intensity over time.
  • the potential measurement is a method of determining the contact state with the myocardial tissue by measuring the potential because the myocardial tissue is contracting by potential propagation.
  • the distal end portion of the catheter contact portion with the myocardial tissue
  • part will be provided in sites other than the front-end
  • the light irradiation site and the potential measurement site are inconsistent, and there is a possibility that the diagnosis region and the treatment region are misaligned so that accurate treatment cannot be performed.
  • the electrode area is reduced, the accuracy of angle determination may be reduced.
  • the temperature measurement is a method for identifying an occlusion by temperature measurement in a disease having a blood vessel occlusion (see JP-T-2007-525263). However, it is a diagnostic method limited to an obstructed part and cannot be applied to a disease having no occluded space such as atrial fibrillation and ventricular flutter. In addition, unnecessary heat may be applied to the normal blood vessel wall.
  • Force measurement pressure, stress is a method of specifying a contact object by mounting a pressure sensor or stress sensor on a catheter (Japanese translations of PCT publication No. 2009-542371, US Pat. No. 6,696,808, US Pat. (See 2008/0009750, International Publication No.
  • the reflected light measurement using a multicolor light source is a method that uses an absorption coefficient that varies depending on the wavelength. Specifically, a multicolor light source is used to discriminate the tissue from the difference in reflectance at each wavelength (see Japanese Patent No. 4261101). In this method, the blood volume between the catheter and the tissue can be estimated, but since a plurality of light sources are prepared, the optical system becomes complicated, the apparatus becomes large, and the cost may increase.
  • the contact state and the follow-up movement to the desired tissue can be discriminated in real time via a catheter by detecting the fluorescence intensity.
  • This method is minimally invasive because it does not require blood removal or the like.
  • the excitation light irradiation protocol can be calculated based on the determined contact state and the like, safe and reliable treatment and diagnosis can be assisted.
  • a foreign object / damage monitoring operation is performed.
  • the practitioner refers to the excitation light irradiation protocol displayed on the display unit 170 and operates the operation unit 180 to input an excitation light output command at a high power second intensity to the control unit 150.
  • the control unit 150 outputs the excitation light output command with the second intensity to the light source 110.
  • the light source 110 receives the excitation light output command from the control unit 150, the light source 110 outputs the excitation light with the second intensity.
  • the excitation light output from the light source 110 is applied to the tissue via the optical system 120 and the laser catheter 300, and photodynamic treatment is performed (step S109).
  • the control unit 150 calculates the fluorescence intensity based on the electrical signal acquired from the detection unit 130. Based on the calculated fluorescence intensity and the elapsed time from the reference time such as the time when the intravenous injection is started, the control unit 150 generates display information related to the temporal change of the fluorescence intensity, and includes the generated display information.
  • the command is output to the display unit 170.
  • the display unit 170 acquires the display command from the control unit 150, the display unit 170 displays the change in fluorescence intensity with time on the display screen based on the display information included in the display command.
  • the control unit 150 determines whether or not the calculated fluorescence intensity is greater than or equal to a threshold value (step S110).
  • This threshold is, for example, a value that is several times greater than the normal fluorescence intensity.
  • FIG. 19 is a graph showing the relationship between wavelength and fluorescence intensity. This figure shows the relationship between the wavelength (Wavelength) and the fluorescence intensity (Intensity) of a laser catheter or a normal laser catheter that may be in contact with or damaged by a foreign substance. It can be seen that when the tip of the laser catheter comes into contact with or is damaged by a foreign substance other than the living tissue, the fluorescence intensity becomes stronger than the normal fluorescence intensity.
  • controller 150 determines that the fluorescence intensity is greater than or equal to the threshold, that is, if it is determined that the fluorescence intensity has increased several times as much as the previous fluorescence intensity is disregarded, it estimates that there is a foreign object or damage (in step S110). Yes).
  • the control unit 150 When it is estimated that there is a foreign object or damage, the control unit 150 generates display information regarding the end of excitation light irradiation and the occurrence of the foreign object / damage, and outputs a display command including the generated display information to the display unit 170.
  • the display information related to the occurrence of foreign matter / breakage includes information that prompts the stop of the excitation light irradiation, resetting of the irradiation time, resetting of the irradiation power, inspection of the laser catheter 300, and the like.
  • the display unit 170 obtains a display command from the control unit 150, the display unit 170 displays the information regarding the end of excitation light irradiation (step S111) and the occurrence of foreign matter / damage to the practitioner based on the display information included in the display command (step S112). ).
  • control unit 150 also estimates that there is foreign matter or damage when detecting an abnormal intensity increase at any wavelength other than the fluorescence wavelength (excitation light wavelength, etc.) (Yes in step S110), and the same processing is performed. (Step S111, Step S112) may be performed.
  • the controller 150 estimates that there is no foreign matter or damage, and proceeds to the cell killing effect determination operation (No in step S110).
  • the controller 150 does not have to estimate the occurrence of the foreign object or damage. However, the practitioner can estimate the occurrence of foreign matter or damage from the fluorescence intensity.
  • the laser catheter 300 may come into contact with another catheter. For example, if light is emitted from the laser catheter 300 in contact with another catheter placed in the heart chamber, both catheters may lose their functions. If irradiation of the excitation light is continued without noticing the abnormality of the distal end portion of the laser catheter 300, the distal end portion of the laser catheter 300 generates heat and there is a risk of causing thermal damage to the living body. Further, the catheter on the contact side may not be able to perform its function.
  • the foreign object / breakage monitoring operation of the present embodiment when the object is in contact with other than the living tissue, strong reflected light is measured, so that the occurrence of the foreign object / breakage can be estimated in a catheter manner in real time. Accordingly, the operator can be encouraged to inspect the laser catheter 300, so that treatment can be performed extremely safely without causing harm to the patient.
  • the photosensitive drug taken into the tissue absorbs excitation light from the laser catheter 300 to obtain energy, and changes from a ground state to a singlet excited state. Most energy shifts from a singlet excited state to a triplet excited state due to intersystem crossing, but the remaining part returns from the singlet state to the ground state, and emits fluorescence at this time.
  • the photosensitizer in the triplet excited state collides with oxygen in the triplet state, energy is transferred to oxygen, and singlet oxygen having strong oxidizing power is generated. This oxidizing power damages the tissue and destroys (bleaching) the photosensitive drug.
  • the fluorescence emitted by the photosensitive drug is extracted by the optical system 120 via the laser catheter 300 and is incident on the detection unit 130.
  • the detection unit 130 detects fluorescence incident from the optical system 120, and outputs the detected fluorescence intensity to the control unit 150 as an electrical signal.
  • the light source 110 outputs excitation light to the optical system 120 at the second intensity
  • the control unit 150 calculates the fluorescence intensity
  • the display unit 170 displays the change in fluorescence intensity over time on the display screen.
  • the display unit 170 displays the change in fluorescence intensity over time as a graph on the display screen.
  • FIG. 12 is a graph showing changes in fluorescence intensity over time.
  • the figure shows the time-dependent change of fluorescence intensity when excitation light irradiation is performed for 20 seconds at 20 minutes after intravenous injection of a photosensitive drug into pigs.
  • the decrease in the amount of fluorescence serves as an index of bleaching and tissue damage, so that the progress of PDT can be displayed in real time by displaying the decay curve of the fluorescence intensity.
  • the control unit 150 determines whether or not the calculated fluorescence intensity has been attenuated to less than a threshold value (step S113). When determining that the fluorescence intensity has attenuated to less than the threshold, the control unit 150 estimates that there is a cell killing effect in the tissue irradiated with the excitation light (Yes in step S113). And the control part 150 produces
  • the display unit 170 obtains a display command from the control unit 150, the display unit 170 displays information on the cell killing effect indicator to the practitioner based on the display information included in the display command. The practitioner refers to the information regarding the cell killing effect index displayed on the display unit 170, and shifts to the determination operation of the electric conduction block formation.
  • the controller 150 prompts extension of excitation light irradiation or resetting of the light intensity based on the calculated fluorescence intensity.
  • Display information is generated, and a display command including the generated display information is output to the display unit 170 (No in step S113).
  • the display unit 170 obtains a display command from the control unit 150, the display unit 170 displays information that prompts the practitioner to extend the excitation light irradiation or reset the light intensity based on the display information included in the display command.
  • control unit 150 proceeds to the operation of step S108.
  • the control unit 150 since it can be estimated that there was a cell killing effect when the fluorescence intensity was attenuated to less than a threshold value, if the fluorescence intensity is displayed on the display screen by the display unit 170, the control unit 150 does not have to estimate the presence or absence of the cell killing effect. The practitioner can estimate the cell killing effect from the fluorescence intensity.
  • the damage to the cardiomyocytes progressing in the tissue irradiated with the excitation light that is, the therapeutic effect in real time. Since it can be measured by transcatheter, reliable treatment is possible.
  • the practitioner places the distal end portion of the laser catheter 300 in the electric conduction block (in the alternate long and short dash line shown in FIG. 13) or the excitation light irradiation site. Then, the practitioner operates the operation unit 180 to input an excitation light output command at the first intensity with low power to the control unit 150.
  • the control unit 150 outputs the excitation light output command with the first intensity to the light source 110.
  • the light source 110 receives the excitation light output command from the control unit 150, the light source 110 outputs the excitation light with the first intensity.
  • the excitation light output from the light source 110 is applied to the tissue via the optical system 120 and the laser catheter 300.
  • the photosensitive drug taken into the tissue absorbs excitation light from the laser catheter 300 and emits fluorescence.
  • the fluorescence emitted by the photosensitive drug is extracted by the optical system 120 via the laser catheter 300 and enters the detection unit 130.
  • the detection unit 130 detects fluorescence incident from the optical system 120, and outputs the detected fluorescence intensity to the control unit 150 as an electrical signal.
  • the controller 150 calculates the fluorescence intensity based on the acquired electrical signal.
  • the electrocardiogram acquisition unit 140 acquires an electrocardiogram signal and supplies the acquired electrocardiogram signal to the control unit 150.
  • the control unit 150 generates display information based on the calculated fluorescence intensity and the acquired electrocardiogram signal, and outputs a display command including the generated display information to the display unit 170.
  • the display unit 170 displays the correlation between the fluorescence intensity and the R wave of the electrocardiogram on the display screen based on the display information included in the display command.
  • FIG. 14 is a diagram showing the relationship between ECG, intracardiac pressure, and coronary blood flow that governs the blood flow of myocardial tissue, and the premise described in “Essential Anatomy and Physiology” (Gakken Medical Shujunsha, 2001) This knowledge is useful for the following explanation. As shown in the figure, the temporal change in blood flow differs between the blood flow in the heart chamber and in the myocardial tissue.
  • the blood flow in the heart chamber reaches a peak when it coincides with the R wave, whereas the blood flow in the myocardial tissue of the right heart system is delayed by about 400 ms when the first peak is delayed by about 200 ms from the R wave. A second peak appears at the time.
  • FIG. 15 is a diagram showing the correlation between the fluorescence intensity and the R wave when the laser catheter is in a vertical contact state.
  • a correlation between the fluorescence intensity (for example, when the irradiation power is 900 mW) and the R wave when the distal end portion of the laser catheter 300 is in a vertical contact state will be described.
  • a fluorescence peak is observed at a delay of about 100 ms and 400 ms with respect to the R wave.
  • the change is proportional to the left coronary blood flow in the previous figure. This is because the ventricle contracts when an R wave is generated, and blood is supplied to the whole body (including myocardial tissue). Since blood contains a photosensitive drug, the fluorescence intensity of the myocardial tissue is highest when blood is supplied to the blood vessels of the myocardium. For this reason, a fluorescence intensity peak occurs after a predetermined time from R wave generation.
  • FIG. 16 is a diagram showing the correlation between the fluorescence intensity and the R wave when the laser catheter is in an oblique contact state.
  • a correlation between the fluorescence intensity (for example, when the irradiation power is 900 mW) and the R wave when the distal end portion of the laser catheter 300 is in an oblique contact state will be described.
  • the oblique contact state blood exists in the gap, and the control of the blood flow in the heart chamber becomes stronger, so the peak of the fluorescence intensity matches the R wave.
  • the phase difference between the R wave and the fluorescence intensity peak is clearly different, and the phase difference is constant if the contact state is maintained.
  • the control unit 150 determines whether or not the electric conduction block is formed by determining whether the phase difference between the fluorescence intensity and the R wave is constant based on the calculated fluorescence intensity and the acquired electrocardiogram signal. It discriminate
  • FIG. 13 is a schematic diagram showing a locus of movement of the laser catheter.
  • the practitioner moves the distal end portion of the laser catheter 300 so as to surround the abnormal excitation site of the pulmonary vein (PV, Pulmonary Vein) (one-dot chain line or dotted line in the figure).
  • PV pulmonary vein
  • Pulmonary Vein one-dot chain line or dotted line in the figure.
  • the control unit 150 determines that an electric conduction block has been formed (Yes in step S114), and terminates the excitation light irradiation to the practitioner and the laser catheter.
  • a display command that prompts removal of 300 is generated, and a display command including the generated display information is output to the display unit 170.
  • the display unit 170 obtains a display command from the control unit 150, based on the display information included in the display command, the display unit 170 displays information prompting the practitioner to end the excitation light irradiation and to remove the laser catheter 300 on the display screen. Is finished (step S115).
  • an electrically conductive block is formed when the fluorescence intensity and the phase difference between the R waves are not constant.
  • the electrically conductive block in which the injured cardiomyocytes are formed in a box shape does not contract itself but moves so as to follow the contraction motion of the nearby myocardial tissue.
  • the contact state of the tip of the laser catheter 300 becomes unstable and changes every moment.
  • the phase difference between the fluorescence intensity and the R wave becomes unstable.
  • the correlation between the fluorescence intensity and the R wave is in a state where the correlation shown in FIGS. 15 and 16 is performed.
  • the formation of the electric conduction block can be discriminated in real time based on the phase difference between the fluorescence intensity and the R wave of the electrocardiogram. Specifically, when the fluorescence intensity peak occurs after a predetermined time from the R wave, it can be determined that the electric conduction block is not formed and the distal end portion of the laser catheter 300 is in a vertical contact state. When the peak of the fluorescence intensity and the R wave are generated substantially simultaneously, it can be determined that the electrically conductive block is not formed and the tip of the laser catheter 300 is in an oblique contact state. When the phase difference with respect to the R wave at the peak of the fluorescence intensity is not constant, it can be determined that an electric conduction block is formed.
  • the control unit 150 Even without estimating the presence or absence of the electric conduction block formation, the practitioner can estimate the presence or absence of the electric conduction block formation from the correlation between the fluorescence intensity and the R wave.
  • FIG. 17 is a block diagram illustrating an optical system, a detection unit, and the like according to the second embodiment of the present invention.
  • the optical system 120 a includes a short pass filter 121, a first lens 122, a PBS 123, a first dichroic mirror (hereinafter referred to as “DM”) 126, and a second DM 127.
  • DM first dichroic mirror
  • the detection unit 130a includes a first photodiode (hereinafter referred to as “PD”) 131 and a second PD 132.
  • PD first photodiode
  • the first DM 126 reflects light of a specific wavelength out of light incident from the PBS 123 and transmits light of other wavelengths. As a result, the first DM 126 reflects part of the fluorescence from the laser catheter 300 and transmits the fluorescence and specularly reflected light from the laser catheter 300 having other wavelengths.
  • the fluorescence reflected by the first DM 126 is incident on the first PD 131.
  • the first PD 131 detects the fluorescence incident from the first DM 126.
  • the first PD 131 outputs the detected fluorescence intensity to the control unit 150 as an electrical signal.
  • the second DM 127 reflects light of a specific wavelength out of the light transmitted through the first DM 126 and transmits light of other wavelengths. Thereby, the second DM 127 reflects a part of the fluorescence transmitted through the first DM 126 and transmits the fluorescence having the other wavelengths and the specular reflection light.
  • the fluorescence reflected by the second DM 127 is incident on the second PD 132.
  • the second PD 132 detects the fluorescence incident from the second DM 127.
  • the second PD 132 outputs the detected fluorescence intensity to the control unit 150 as an electrical signal.
  • the optical system 120a may further include a DM having the same configuration as the first DM 126 and the second DM 127. In this way, finally, the plurality of DMs 126, 127... Reflect the fluorescence from the laser catheter 300, and the plurality of PDs 131, 132. The plurality of DMs 126, 127... Transmit regular reflection light.
  • a pulsed light source may be used as the light source 110 to separate temporally reflected light from the fiber incident end face from the difference in optical path length (about twice the length of the laser catheter 300).
  • the step of contact monitoring is executed based on the phase difference between the fluorescence intensity peak and the R wave in the RR wave interval.
  • the discriminating operation for forming the electric conduction block of the first embodiment the formation of the electric conduction block was discriminated based on the phase difference between the peak of the fluorescence intensity at the RR wave interval and the R wave. This principle may be used for the contact monitoring operation.
  • the light source 110 outputs excitation light to the optical system 120 with a first intensity.
  • the detection unit 130 detects fluorescence incident from the optical system 120.
  • the detection unit 130 outputs the detected fluorescence intensity to the control unit 150 as an electrical signal.
  • the controller 150 calculates the fluorescence intensity based on the acquired electrical signal.
  • the electrocardiogram acquisition unit 140 acquires an electrocardiogram signal and supplies the acquired electrocardiogram signal to the control unit 150.
  • the control unit 150 generates display information based on the calculated fluorescence intensity and the acquired electrocardiogram signal, and outputs a display command including the generated display information to the display unit 170.
  • the display unit 170 displays the correlation between the fluorescence intensity and the R wave of the electrocardiogram on the display screen based on the display information included in the display command.
  • the control unit 150 determines the contact state of the distal end portion of the laser catheter 300 based on the calculated fluorescence intensity and the acquired electrocardiogram signal (step S106). Specifically, when determining that the peak of the fluorescence intensity occurs after a predetermined time from the R wave, the control unit 150 determines that the distal end portion of the laser catheter 300 is in a vertical contact state. When the controller 150 determines that the fluorescence intensity peak and the R wave are generated simultaneously, the controller 150 determines that the distal end portion of the laser catheter 300 is in an oblique contact state. The blood volume between the tip of the laser catheter 300 and the inner wall of the tissue can also be estimated from the fluorescence peak intensity.
  • the step of touch monitoring is executed using the difference in the spectrum of autofluorescence.
  • Autofluorescence refers to light emitted by the tissue itself, and does not mean fluorescence from a drug. That is, the fourth embodiment shows a diagnostic method that does not use a drug.
  • the light source 110 outputs excitation light that can easily discriminate the difference between the autofluorescence spectrum characteristics of the myocardial tissue and the autofluorescence spectrum characteristics of the blood.
  • the detection unit 130 detects the incident fluorescence.
  • the detection unit 130 outputs the detected fluorescence intensity to the control unit 150 as an electrical signal.
  • the controller 150 calculates a fluorescence spectrum based on the acquired electrical signal.
  • the control unit 150 determines whether the calculated fluorescence spectrum indicates the autofluorescence spectrum characteristic of the myocardial tissue or the autofluorescence spectrum characteristic of the blood.
  • the control unit 150 compares the calculated fluorescence spectrum with the autofluorescence spectral characteristics of the myocardial tissue and blood, and determines the contact state of the tip of the laser catheter 300 (step S106).
  • the control unit 150 determines that the distal end portion of the laser catheter 300 is in a vertical contact state. When determining that the calculated fluorescence spectrum indicates the autofluorescence spectrum characteristic of blood, the control unit 150 determines that the distal end portion of the laser catheter 300 is in a non-contact state. If the controller 150 determines that the calculated fluorescence spectrum does not show any autofluorescence spectrum characteristics, the controller 150 determines that the tip of the laser catheter 300 is in an oblique contact state.
  • FIG. 18 is a schematic diagram showing a contact state of a laser catheter in a blood vessel lumen. Whether the distal end portion of the laser catheter 300 is in contact with the vascular occlusion portion (adenoma) 21 of the blood vessel 20 (see FIG. 18A) or the vascular wall 22 in the treatment of a disease having a vascular occlusion portion. It is required to discriminate (see FIG. 18B).
  • the composition ratio of collagen, elastin, lipid, etc. differs between the vascular occlusion and the vascular wall.
  • the composition ratio of the vascular occlusion is 70% water, 5% collagen, 6% elastin, and 9% lipid.
  • the composition ratio of blood vessels is 73% water, 6.5% collagen, 10.5% elastin, and 1% lipid.
  • the autofluorescence spectrum characteristic of the blood vessel occlusion part and the autofluorescence spectrum characteristic of the blood vessel wall are different.
  • the contact monitor using the difference in autofluorescence spectrum can determine the presence or absence of atheroma from the composition ratio, so IVUS (Intravascular Ultrasound) to determine the presence or absence of atheroma from the size of the blood vessel diameter More accurate diagnosis can be made.
  • IVUS Intravascular Ultrasound
  • the laser catheter 300 is detachably connected to the connector 210 of the PDT apparatus 1, but the laser catheter 300 may be provided integrally with the PDT apparatus 1.
  • the tube 200 is provided in the PDT apparatus main body 100 and the connector 210 is provided at the tip of the tube 200.
  • the connector 210 may be provided in the PDT apparatus main body 100.
  • PBS 123 is used, but DM may be used instead.
  • control unit 150 notifies the display unit 170 of information that prompts the practitioner to perform predetermined control, but the present invention is not limited to this.
  • a speaker unit is provided in the PDT apparatus 1, and the control unit 150 generates a voice output command when prompting the practitioner to perform predetermined control, and outputs the generated voice output command to the speaker unit to output the voice to the speaker unit.
  • the practitioner may be urged to perform predetermined control.
  • SYMBOLS 1 Photodynamic Therapy (PDT) apparatus 100 ... PDT apparatus main body 110 ... Light source 120, 120a ... Optical system 121 ... Short pass filter 122 ... First lens 123 ... Polarizing beam splitter (PBS) 124 ... Long pass filter 125 ... Second lens 126 ... First dichroic mirror (DM) 127 ... Second dichroic mirror (DM) 130, 130a... Detection unit 131... First photodiode (PD) 132: Second photodiode (PD) DESCRIPTION OF SYMBOLS 140 ... Electrocardiogram acquisition part 141 ... Electrode pad 150 ... Control part 160 ... Memory
  • Operation part 200 Tube 201 ... Optical fiber 210 attached to apparatus 210 ... Connector 300 . Laser catheter 301 ... Irradiation light 310 ... Catheter tube 320: support portion 330 ... optical fiber 340 ... optical window

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cardiology (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Endoscopes (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

【課題】組織中の薬剤濃度をリアルタイムに算出する算出装置及び算出方法を提供すること。 【解決手段】算出装置としての光線力学的治療装置1は、励起光を吸収して蛍光を発する光感受性薬剤が取り込まれた組織に、レーザカテーテル300の先端部から励起光を照射する装置であって、コネクタ210と、光源110と、光検出部130とを有する。コネクタ210は、レーザカテーテル300が着脱可能である。光源110は、コネクタ210を介してレーザカテーテル300に励起光を出力する。光検出部130は、レーザカテーテル300の先端部が接触する組織での光感受性薬剤の濃度を算出するため、レーザカテーテル300からコネクタ210を介して入射した蛍光の強度を検出する。

Description

算出装置及び算出方法
 本発明は、組織中の薬剤濃度を算出する算出装置及び算出方法に関する。
 頻脈性不整脈の一種として、心房細動が知られている。心房細動は、肺静脈と左心房との接合部付近に電気パルスを発生する異常興奮部位が出現し、この電気パルスの刺激によって左心房が細かく振動及び収縮することにより発生する。
 心房細動治療法として、発明者らは、光線力学的治療(Photodynamic Therapy、以下「PDT」と記述する。)を適用することを提案してきた(例えば、特許文献1参照。)。PDTでは、光感受性薬剤が取り込まれた心筋組織にレーザカテーテルを用いて励起光を照射して、一重項酸素を発生させる。酸化力の強い一重項酸素は、異常興奮部位を取り囲む心筋組織に傷害を与えて、異常興奮部位から左心房への電気パルスの伝導を遮断(ブロック)する電気伝導ブロックを形成する。この結果、異常興奮部位と左心房との間の電気伝導が遮断され、左心房の異常な振動及び収縮が抑制される。
 光感受性薬剤は、特定の組織に選択的に集積する性質を持つ。そこで、一般には、患者に光感受性薬剤を投与してから所定時間(例えば8~48時間)経過後、治療組織の光感受性薬剤濃度が高く他の組織や血中の光感受性薬剤濃度が低い状態、いわゆる光感受性薬剤のコントラストがついた状態となってから励起光を照射する。また、近年、光感受性薬剤の集積性を利用せず、光感受性薬剤が血液によって被治療組織にデリバリーされた時点で励起光を照射するPDTも提案されている。
国際公開第2008/066126号
 薬剤を用いた治療においては、最適な治療プロトコルを決定する上で組織中の薬剤濃度をモニターすることが重要である。
 そこで従来より、血中の薬剤濃度をモニターする手法として、薬剤投与後から一定時間ごとに採血した血液の吸光度を計測する方法等が知られている。しかし、この方法は、採血可能な血液量が限られているためプロット数が制限され、また、リアルタイムでは濃度を計測することができない。また組織中の薬剤濃度をモニターする方法として、薬剤を構成する一部の炭素を同位体に変換したものを同時に投与し、放射線量から各組織の薬剤濃度を計測する方法が知られているが、被爆するため低侵襲なモニター法とはいえず、現実的ではない。
 以上のような事情に鑑み、本発明の目的は、組織中の薬剤濃度をリアルタイムに算出することができる算出装置及び算出方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係る算出装置は、励起光を吸収して蛍光を発する光感受性薬剤が取り込まれた組織に、レーザカテーテルの先端部から上記励起光を照射する算出装置であって、接続部と、光源と、検出部とを有する。なお、本明細書において「組織」と記述するときは、血液を含む場合がある。
 上記接続部は、上記レーザカテーテルが着脱可能である。
 上記光源は、上記接続部を介して上記レーザカテーテルに上記励起光を出力する。
 上記検出部は、上記レーザカテーテルの先端部が接触する組織での上記光感受性薬剤の濃度を算出するため、上記レーザカテーテルから上記接続部を介して入射した上記蛍光の強度を検出する。
 レーザカテーテルから入射した蛍光の強度を検出することにより、レーザカテーテルの先端部が接触する組織での光感受性薬剤の濃度をリアルタイムに推定することができる。また、治療に用いるレーザカテーテルを用いることで、操作が簡便となる。
 上記算出装置は、さらに、上記検出された蛍光の強度に応じて上記レーザカテーテルの先端部が接触する組織での上記光感受性薬剤の濃度を算出する算出部を有してもよい。
 レーザカテーテルから入射した蛍光の強度を検出することにより、レーザカテーテルの先端部が接触する組織での光感受性薬剤の濃度をリアルタイムに算出することができる。
 上記算出装置は、さらに、上記算出された濃度に応じて上記光感受性薬剤の追加投与を促すための信号を出力する制御部を有してもよい。
 これにより、レーザカテーテルから入射した蛍光の強度に応じて、施術者に光感受性薬剤の追加投与をリアルタイムに促すことができる。なお、「信号を出力」とは、表示情報を含む表示命令を表示部へ出力したり、音声出力命令をスピーカ部へ出力することをいう。
 上記制御部は、上記算出された濃度に応じて励起光照射プロトコルを算出し、算出結果を出力してもよい。
 これにより、レーザカテーテルから入射した蛍光の強度に応じて、施術者に励起光照射プロトコルをリアルタイムに報知することができる。
 本発明の一形態に係る算出方法は、励起光を吸収して蛍光を発する光感受性薬剤が取り込まれた組織に、レーザカテーテルの先端部から上記励起光を照射することを含む。
 上記照射された励起光に応じた上記蛍光は上記レーザカテーテルを介して取り出される。
 上記取り出された蛍光の強度に応じて上記レーザカテーテルの先端部が接触する組織での上記光感受性薬剤の濃度が算出される。
 レーザカテーテルから入射した蛍光の強度を検出することにより、レーザカテーテルの先端部が接触する組織での光感受性薬剤の濃度をリアルタイムに推定することができる。
 上記算出方法は、さらに、上記算出された濃度に応じて上記光感受性薬剤の追加投与を促すための信号を出力してもよい。
 これにより、レーザカテーテルから入射した蛍光の強度に応じて、施術者に光感受性薬剤の追加投与をリアルタイムに促すことができる。
 上記算出方法は、さらに、上記算出された濃度に応じて励起光照射プロトコルを算出し、算出結果を出力してもよい。
 これにより、レーザカテーテルから入射した蛍光の強度に応じて、施術者に励起光照射プロトコルをリアルタイムに報知することができる。
 本発明の一形態に係る算出方法は、励起光を吸収して蛍光を発する光感受性薬剤と、先端部から上記励起光を照射可能なレーザカテーテルと、上記レーザカテーテルが着脱可能な接続部及び上記接続部を介して上記レーザカテーテルに上記励起光を出力する光源を有する算出装置とを使用する算出方法である。
 上記光感受性薬剤が組織に取り込まれる。
 上記接続部に装着される上記レーザカテーテルの先端部が上記光感受性薬剤を取り込んだ組織へ導かれる。
 上記光感受性薬剤を取り込んだ組織に対して上記レーザカテーテルの先端部から、上記光源より出力された励起光が照射される。
 上記照射された励起光に応じた上記蛍光は上記レーザカテーテルを介して取り出される。
 上記取り出された蛍光の強度に応じて、上記レーザカテーテルの先端部が接触する組織での上記光感受性薬剤の濃度が算出される。
 上記算出方法は、さらに、上記算出された濃度に応じて励起光照射プロトコルを算出し、算出結果を出力してもよい。
 本発明によれば、組織中の薬剤濃度をリアルタイムに算出できる。
本発明の第1の実施形態に係るPDT装置を示す模式図である。 心臓に挿入されたレーザカテーテルを示す模式図である。 PDT装置本体を示すブロック図である。 レーザカテーテルの先端部を示す断面図である。 PDT装置の動作を示すフローチャートである。 左心房に挿入されたレーザカテーテルを示す模式図である。 蛍光強度の経時変化を示すグラフである。 蛍光強度と薬剤濃度の相関を示すグラフである。 薬剤濃度の経時変化を示すグラフである。 レーザカテーテルの接触状態を示す模式図である。 蛍光強度の経時変化を示すグラフである。 蛍光強度の経時変化を示す別のグラフである。 レーザカテーテルの移動の軌跡を示す模式図である。 ECGと心腔内圧、心筋組織の血流量を支配する冠状動脈血流量の関係を示す図である。 レーザカテーテルが垂直接触状態のときの蛍光強度とR波との相関を示す図である。 レーザカテーテルが斜め接触状態のときの蛍光強度とR波との相関を示す図である。 本発明の第2の実施形態の光学系及び検出部等を示すブロック図である。 血管内腔でのレーザカテーテルの接触状態を示す模式図である。 波長と蛍光強度との関係を示すグラフである。
 以下、図面を参照しながら、本発明の実施形態を説明する。本実施形態では、算出装置として光線力学的治療装置(以下「PDT装置」と記述する。)を用いるものとして説明する。
 <第1の実施形態>
 図1は、本発明の第1の実施形態に係るPDT装置を示す模式図である。
 PDT装置1は、PDT装置本体100と、PDT装置本体100に接続されたチューブ200と、チューブ200の先端に設けられたコネクタ210とを有する。
 チューブ200は、中空の柔らかい管であり、内蔵する装置付属光ファイバ201(図3参照。)を介して光を伝送可能である。
 コネクタ210には、レーザカテーテル300が着脱可能に接続される。
 患者2には、光感受性薬剤が投与される。静脈注射により投与した場合、投与された光感受性薬剤は血液中に拡散し、さらに心筋組織等の組織に取り込まれる。光感受性薬剤は、静脈注射により治療に必要な分量を一括投与したり、点滴により継続的に投与したり、経口から一括又は継続的に投与したり、局所投与してもよい。光感受性薬剤とは、光の特定波長を吸収して励起し、蛍光を発する薬剤である。例えば、タラポルフィンナトリウム(レザフィリン(登録商標)、明治製菓株式会社)という薬剤がある。この薬剤のQ帯吸収波長は664nm前後に存在するため、この薬剤の励起光源としては、例えば600-800nm、好ましくは660-680nm、さらに好ましくは664±2nmを用いる。
 図2は、心臓に挿入されたレーザカテーテルを示す模式図である。
 レーザカテーテル300は、患者2の大腿静脈又は頸静脈を通して、心臓10の右心房14に挿入される。右心房14に到達したレーザカテーテル300は、中隔を貫通し左心房13に導かれる。
 [PDT装置本体の構成]
 図3は、PDT装置本体を示すブロック図である。
 PDT装置本体100は、光源110と、光学系120と、検出部130と、心電取得部140と、制御部150と、記憶部160と、表示部170と、操作部180とを有する。
 光源110は、光感受性薬剤の励起光を出力する。光源110が出力する光の波長は、光感受性薬剤のQ帯の吸収波長と等しい。例えばQ帯吸収波長が664nm前後の光感受性薬剤が用いられるとき、光源110として発振波長600-800nm、好ましくは660-680nm、さらに好ましくは664±2nmの半導体レーザが使用される。光源110が出力した励起光は、光学系120によりレーザカテーテル300に入射する。
 光学系120は、光源110が発する励起光を、装置付属光ファイバ201を介してコネクタ210に接続されたレーザカテーテル300に入射する。光学系120は、励起光が照射された光感受性薬剤が発する蛍光をレーザカテーテル300から取り出し、検出部130に入射する。光学系120は、ショートパスフィルタ121と、第1のレンズ122と、偏光ビームスプリッタ(Polarizing Beam Splitter、以下「PBS」と記述する。)123と、ロングパスフィルタ124と、第2のレンズ125とを有する。
 ショートパスフィルタ121は、カットオン波長670nmの短波長透過フィルタであり、長波側の輻射をカットする。光源110からの励起光は蛍光観察波長域(ピーク波長よりも長波側)に輻射成分をもつ。そこで、励起光の長波側の輻射成分を、レーザカテーテル300に集光する前段階でカットする。ショートパスフィルタ121を透過した励起光は、第1のレンズ122に入射する。
 第1のレンズ122は、ショートパスフィルタ121より入射した励起光をレーザカテーテル300の一端面に集光する。また、第1のレンズ122は、レーザカテーテル300の先端部からの蛍光をPBS123に集光する。なお、光源110からの励起光の一部は、装置付属光ファイバ201のPDT装置本体100側端面や、コネクタ210内や、レーザカテーテル300の先端部で反射して正反射光としてPBS123に入射する。これら正反射光は、蛍光の検出にあたりノイズとなる。
 PBS123は、第1のレンズ122より入射した光のうち、偏向の違いを利用してチューブ200内の光ファイバの端面で反射した正反射光を透過させて検出せずに、蛍光とその他の端面における正反射光を反射して検出器へと導く。PBS123を透過した蛍光は、ロングパスフィルタ124に入射する。
 ロングパスフィルタ124は、PBS123より入射した光のうち、コネクタ210内及びレーザカテーテル300の先端部で反射した正反射光を透過せずに、蛍光のみを透過して検出器へと導く。ロングパスフィルタ124を透過した蛍光は、第2のレンズ125に入射する。
 第2のレンズ125は、ロングパスフィルタ124より入射した蛍光を検出部130に集光する。
 検出部130は、例えばリニアイメージセンサーであり、光学系120より入射した蛍光を分光検出する。すなわち、検出部130は、励起波長の光と励起波長の光より長い光である光感受性薬剤の蛍光を検出する。検出部130は、検出した蛍光の強度を電気信号として制御部150に出力する。
 心電取得部140には、電極コード(図示せず)を介して電極パッド141が接続される。心電取得部140は、患者2に装着された電極パッド141と電極コードとを介して患者2の心電信号を取得し、取得した心電信号を制御部150に供給する。
 制御部150は、PDT装置1内の各部を制御する。
 制御部150は、検出部130より取得した電気信号をもとに、蛍光強度を算出する。制御部150は、算出した蛍光強度をもとに、組織中や血中の薬剤濃度を算出する(薬剤濃度モニター動作)。制御部150は、算出した薬剤濃度をもとに、薬剤追加投与の要否を判別する。
 制御部150は、検出部130より取得した電気信号をもとに、レーザカテーテル300の組織に対する接触状態を判別する(接触モニター動作)。
 制御部150は、励起光照射中の蛍光強度の変化をもとに、異物、破損等の異常の有無や殺細胞効果を判別する(異物・破損モニター動作及び殺細胞効果判別動作)。制御部150は、判別結果をもとに、光源110を制御して励起光照射を停止させる。
 制御部150は、検出部130より取得した電気信号と心電取得部140より取得した心電信号とをもとに、電気伝導ブロックの形成の有無を判別する(電気伝導ブロック形成の判別動作)。
 制御部150は、上記各種算出結果及び判別結果や種々の情報を表示するための表示命令を表示部170に出力する。
 記憶部160は、不揮発性メモリであり、例えばフラッシュメモリ、HDD(Hard Disk Drive)、その他の固体メモリに設定される。制御部150は、検出部130より取得した蛍光強度に関する情報と、励起光照射を開始した時刻などの基準時刻からの経過時間等を計測する時間計測部(図示せず)より取得した時間情報とを互いに関連付けて、蛍光強度の経時変化として記憶部160に記録する。制御部150は、心電取得部140より取得した心電信号に関する情報と時間情報とを互いに関連付けて、心電図として記憶部160に記録する。
 表示部170は、例えば液晶表示器等を用いた表示デバイスである。表示部170は、制御部150から表示命令を取得すると、表示命令に含まれる表示情報に基き、例えば蛍光強度に関する情報、心電信号に関する情報及び時間情報等を表示画面に表示する。
 操作部180は、施術者からの入力操作による命令を受け付け、受け付けた命令を制御部150に出力する。命令とは、例えば、光源110が出力する励起光のオン・オフや強度の切り替え等に関する命令である。励起光の強度は、少なくとも、組織や血液に対し低侵襲な低パワー(例えば、光出力1mW以下)の第1の強度と、第1の強度のおよそ1000倍程度の強さの高パワーの第2の強度との2種類を選択可能である。第1の強度は、治療前に、薬剤濃度やレーザカテーテル300の接触状態をモニターする際に選択される。第2の強度は、治療を行う際に選択される。なお、第1の強度は固定値であり、第2の強度は可変してもよい。
 [レーザカテーテルの構成]
 レーザカテーテル300は、先端部から励起光を出射する。
 図4は、レーザカテーテルの先端部を示す断面図である。
 レーザカテーテル300は、カテーテルチューブ310と、支持部320と、光ファイバ330と、光学ウィンドウ340とを有する。
 カテーテルチューブ310は、中空の柔らかい管であり、患者2の心臓10の心筋組織の内壁に導かれる。カテーテルチューブ310は、光ファイバ330を内蔵する。
 支持部320は、カテーテルチューブ310に固定される。支持部320は、光ファイバ330及び光学ウィンドウ340をカテーテルチューブ310に対して保持する。
 光ファイバ330は、例えば、コア径133μm且つ外形500μmの1本の石英製ステップインデックスファイバである。光ファイバ330は、PDT装置1からの励起光を伝送する。光ファイバ330は、先端から、伝送した励起光を照射光301として光学ウィンドウ340へ出射する。照射光301のビーム径は、光ファイバ330の開口(NA)で定まる角度で増大する。光ファイバ330の先端は、この照射光301のビーム径が適切に増大するように加工される。光ファイバ330は、励起光が照射された組織に取り込まれた光感受性薬剤が発した蛍光をPDT装置1に伝送する。
 光学ウィンドウ340は、レーザカテーテル300の先端部の最外部に光ファイバ330の先端と光学的に連続して設けられる。光学ウィンドウ340は、固形の透明材料、例えばBK7等の硝子材料からなる。光学ウィンドウ340は、照射部として、光ファイバ330の先端から出射した照射光301を透過させる。光学ウィンドウ340は、受光部として、光感受性薬剤が発した蛍光を光ファイバ330の先端に集光する。
 SN(Signal-Noise)比の高い蛍光検出を行うには、正反射光を除去するために、レーザカテーテルに照射ファイバ及び検出ファイバを独立に設けて照射及び受光を行う方法が知られている(特開2009-148550段落[0037]参照。)。
 一方、心腔内の治療や診断を行う際、レーザカテーテルの曲率を稼ぐため、レーザカテーテルの直径は小さいことが望ましい。複数の光ファイバをレーザカテーテルに設けるには、それぞれの光ファイバを極細に形成することとなり、必要な強度の光を伝送できなくなるおそれがある。
 以上より、特に心房細動や心室粗動などの心腔内からのアプローチを必要とする疾患では、レーザカテーテルに内蔵する光ファイバは1本であることが望まれる。また、生体に影響を与えない程度の低パワーの強度での蛍光検出が必要となるため、SN(Signal-Noise)比の高い計測系を1本の光ファイバで構成する必要がある。
 そこで、本実施形態のPDT装置1によれば、PBS123及びロングパスフィルタ124がファイバ入射端面の正反射光を除去し、さらに、ショートパスフィルタ121が励起光の長波側の輻射成分を除去する。これにより、レーザカテーテル300で照射ファイバと検出ファイバを1本の光ファイバ330で兼用しながらも、検出部130は高SN比で蛍光を検出できる。この結果、生体に影響を及ぼさない程の低パワーで蛍光を検出することができる。これにより、循環器系の疾患の治療及び診断において、十分に細くて曲率が稼げるレーザカテーテルでありながらも、低侵襲な診断が可能である。
 [PDT装置の動作]
 次に、以上のように構成されたPDT装置1の動作について説明する。
 図5は、PDT装置の動作を示すフローチャートである。
 PDT装置1の動作の説明は、以下の(1)~(6)の順序で行うものとする。
 (1)PDTの準備(ステップS101~ステップS103)
 (2)薬剤濃度モニター動作(ステップS104~ステップS105)
 薬剤濃度モニター動作では、光源110は第1の強度で励起光を出力し、制御部150は検出部130が検出する蛍光強度をもとに薬剤濃度を経時的に算出し、算出した薬剤濃度をもとに薬剤追加投与の要否を判別する。
 (3)接触モニター動作(ステップS106~ステップS108)
 接触モニター動作では、光源110は第1の強度で励起光を出力し、制御部150は検出部130が検出する蛍光強度をもとにレーザカテーテル300の組織内壁に対する接触状態を判別し、励起光照射プロトコル(強度、時間等)の算出を行う。
 (4)異物・破損モニター動作(ステップS109~ステップS112)
 異物・破損モニター動作では、光源110は第2の強度で励起光を出力し、制御部150は検出部130が検出する蛍光強度をもとに適切な治療プロトコルにて、レーザ照射中に何らかの理由で異物がレーザカテーテル300先端に付着するか否か、さらにレーザカテーテル300先端付近の破損が有るか無いかを判別する。
 (5)殺細胞効果判別動作(ステップS113)
 殺細胞効果判別動作では、光源110は第2の強度で励起光を出力し、制御部150は検出部130が検出する蛍光強度をもとに、励起光が照射されている組織にて殺細胞効果があったかどうかを判別する。
 (6)電気伝導ブロック形成の判別動作(ステップS114~ステップS117)
 電気伝導ブロックとは、すでに説明したように異常興奮部位を取り囲む心筋組織を壊死させて、異常興奮部位から左心房への電気パルスの伝導を遮断したブロックである。ここで電気伝導ブロック形成の判別動作は、殺細胞効果判別動作(ステップS113)で用いた蛍光強度の時間変化のデータと、心電波形のデータを制御部で演算することで判別する。場合によっては、レーザカテーテルを電気伝導ブロック内に再配置し、光源110を第1の強度に変更して、同様の処理を行うことで電気伝導ブロックの形成を判別してもよい。
 [(1)PDTの準備]
 図6は、左心房に挿入されたレーザカテーテルを示す模式図である。
 まず、医師等の施術者により、レーザカテーテル300が患者2の大腿静脈又は頸静脈を通して心臓10に挿入される。レーザカテーテル300の先端部は、左心房13の心筋組織11内壁の肺静脈12近傍に配置される(ステップS101)。
 続いて、施術者により、各種レファレンスデータを参考に(ステップS102)、患者2に光感受性薬剤が投与される(ステップS103)。ここでは、静脈注射により治療に必要な分量の光感受性薬剤が患者2に一括投与されるものとして説明する。投与された光感受性薬剤は血液に拡散および組織に取り込まれる。
 [(2)薬剤濃度モニター動作]
 続いて、薬剤濃度モニター動作が行われる。
 まず、施術者は、操作部180を操作して低パワーの第1の強度での励起光出力命令を制御部150に入力する。制御部150は、励起光出力命令を取得すると、光源110に第1の強度での励起光出力命令を出力する。光源110は、制御部150より励起光出力命令を取得すると、第1の強度で励起光を出力する。光源110が出力した励起光は、光学系120及びレーザカテーテル300を介して組織や血液に照射される。組織や血液に取り込まれた光感受性薬剤は、レーザカテーテル300からの励起光を吸収して蛍光を発する。光感受性薬剤が発した蛍光はレーザカテーテル300を介して光学系120により取り出され検出部130に入射される。検出部130は、入射した蛍光を検出し、検出した蛍光の強度を電気信号として制御部150に出力する。
 制御部150は、検出部130より取得した電気信号をもとに、蛍光強度を算出する。制御部150は、算出した蛍光強度を時間計測部(図示せず。)から取得した時間情報に関連付けたログとして、蛍光強度の経時変化を記憶部160に記録し始める。制御部150は、算出した蛍光強度と、静脈注射を開始した時刻などの基準時刻からの経過時間とをもとに、蛍光強度の経時変化に関する表示情報を生成し、生成した表示情報を含む表示命令を表示部170へ出力する。表示部170は、制御部150から表示命令を取得すると、表示命令に含まれる表示情報に基き、蛍光強度の経時変化を表示画面に表示する。例えば、表示部170は、蛍光強度の経時変化をグラフとして表示画面に表示する。
 ここで、蛍光強度の経時変化を示すグラフの一例について説明する。
 図7は、蛍光強度の経時変化を示すグラフである。
 同図は、光感受性薬剤(レザフィリン)をブタに静脈注射(intravenous injection, i.v.)し、薬剤の吸収スペクトルのQ帯に一致する励起光(半導体レーザ、発振波長例えば600-800nm、好ましくは660-680nm、さらに好ましくは664±2nm、400μW)を照射したときの蛍光強度(Intensity)の経時変化を示す。レーザカテーテル300の先端部はブタ右心房内に配置した。
 血液での蛍光強度は、薬剤投与後、単調減少した。一方、心筋組織での蛍光強度は、薬剤投与後、一定時間までは増加し、その後減少した。また、血液での蛍光強度は、心筋組織での蛍光強度より大きい。
 ここで、蛍光強度と薬剤濃度との関係について説明する。
 図8は、蛍光強度と薬剤濃度の相関を示すグラフである。
 同図は、採血法により得られた薬剤濃度(PS concentration)の絶対値と、前図に示す励起光を血液に照射したときの蛍光強度(Intensity)との相関を示す。薬剤濃度の絶対値と蛍光強度とはほぼ一致した。すなわち、経時的に算出された蛍光強度をもとに、リアルタイムに薬剤濃度をモニターできる。
 制御部150は、算出した蛍光強度をもとに、組織や血液中の薬剤濃度を算出する(ステップS104)。制御部150は、算出した薬剤濃度を時間計測部(図示せず。)から取得した時間情報に関連付けたログとして、薬剤濃度の経時変化を記憶部160に記録し始める。制御部150は、また、算出した薬剤濃度と、静脈注射を開始した時刻などの基準時刻からの経過時間とをもとに、薬剤濃度の経時変化に関する表示情報を生成し、生成した表示情報を含む表示命令を表示部170へ出力する。表示部170は、制御部150から表示命令を取得すると、表示命令に含まれる表示情報に基き、薬剤濃度の経時変化を表示画面に表示する。例えば、表示部170は、薬剤濃度の経時変化をグラフとして表示画面に表示する。
 ここで、薬剤濃度の経時変化を示すグラフの一例について説明する。
 図9は、薬剤濃度の経時変化を示すグラフである。
 上述のように、血液での蛍光強度は心筋組織での蛍光強度より大きく、また、蛍光強度と薬剤濃度には相関がある。従って、血中の薬剤濃度は、血中の蛍光強度の経時変化と同様と同様に、薬剤投与後単調減少する。一方、組織中での薬剤濃度は、組織中の蛍光強度の経時変化と同様と同様に、薬剤投与後一定時間までは増加し、その後減少する。また、血中の薬剤濃度は組織中の薬剤濃度より高いレベルを示すことになる。
 制御部150は、算出した薬剤濃度が閾値以上かどうかを判別する(ステップS105)。制御部150は、薬剤濃度が閾値以上と判別すると、薬剤濃度が十分であると推定して、接触モニター動作へと移行する(ステップS105でYes)。一方、制御部150は、薬剤濃度が閾値未満と判別すると、薬剤濃度が不十分であると推定して、薬剤追加投与を促す表示情報を生成し、生成した表示情報を含む表示命令を表示部170に出力する。表示部170は、制御部150より表示命令を取得すると、表示命令に含まれる表示情報に基き、施術者へ光感受性薬剤の追加投与を促す情報を表示する(ステップS105でNo)。
 なお、蛍光強度と薬剤濃度とには相関があるので、蛍光強度を表示部170により表示画面に表示すれば、制御部150により薬剤濃度を算出しなくても、医師等の施術者は蛍光強度から薬剤濃度を推定できる。
 ところで、一般に、血中の薬剤濃度変化をモニターする手法としては、薬剤投与後から一定時間ごとに採血した血液の吸光度を計測する方法が知られている。しかし、この方法は、採血可能な血液量が限られているためプロット数が制限され、また、リアルタイムでは濃度を計測することができない。
 あるいは、体外にバイパス経路を作製し、その経路を通過する血液に対して光を照射し、蛍光強度を観察することでモニターする方法が知られている。しかし、この方法は、衛生面に留意する必要がある。
 また、組織中の薬剤濃度をモニターする手法としては、薬剤を構成する一部の炭素を同位体に変換したものを同時に投与し、放射線量から各組織の薬剤濃度をモニターする方法が知られている(CANCER RESEARCH 50. 3985-3990, July 1, 1990, Tissue Distribution and Photosensitizing Properties of Mono-L-aspartyl Chlorin e6 in a Mouse Tumor Model, Charles J. Corner and Angela Ferrario)。しかし、この方法では、被爆の問題と、マクロ的な濃度しかモニターできないという問題がある。
 これに対して、本実施形態の薬剤濃度モニター動作によれば、蛍光強度の経時変化を算出することにより、蛍光強度に相関のある薬剤濃度の経時変化を算出できる。これにより、組織及び血液中の薬剤濃度をリアルタイムにモニターできる。また、上記従来のモニター方法に比べて、低侵襲であり、安定的かつ再現性高く薬剤濃度の経時変化をモニターできる。また、PDT装置1の光源110からの励起光を用いて薬剤濃度の経時変化を経カテーテル的にモニターするので、薬剤濃度検出装置を別途追加する必要がなく、低コストと省スペースを実現できる。さらに、薬剤濃度をリアルタイムにモニターできるので、薬剤追加投与の判別アシストをリアルタイムに行うことができる。
 さらに、本実施形態の薬剤濃度モニター動作は、PDTに限定されず、励起光を吸収して蛍光を発する薬剤を用いた治療や診断においても実行することができる。薬剤を使う治療や診断では、薬剤動態(薬剤デリバリー)を把握することが重要である。本実施形態の薬剤濃度モニター動作によれば、所望組織の薬剤濃度を経カテーテル的にリアルタイムかつミクロに測定でき、各種薬剤の動態を把握できる。また、低侵襲にモニターできるので、メリットが大きく実用的である。さらに、本実施形態の薬剤濃度モニター動作は、特定の場所にのみ薬剤を到達させるシステム(DDS、Drug Delivery System)においても実行することができ、実際に薬が限局的に到達できているかを評価するのに有用である。
 [(3)接触モニター動作]
 続いて、接触モニター動作が行われる。
 図10は、レーザカテーテルの接触状態を示す模式図である。
 レーザカテーテル300は、発光部位としての先端部が心筋組織11の内壁に垂直に接触するように配置されるのが望ましい(図10(a)参照、以下「垂直接触状態」と記述する。)。これは、レーザカテーテル300の先端部から心房内血液15を排除して心房内血液15中の光感受性薬剤の活性化を抑えるためである。また、レーザカテーテル300の先端部を組織に直接接触させることで組織に取り込まれた光感受性薬剤を選択的に活性化するためである。
 しかしながら、レーザカテーテル300の先端部の正確な接触状態をX線撮影又は触覚的に認識するのは困難である。このため、実際には、レーザカテーテル300の先端部が組織に対して垂直接触状態となるとは限らない。レーザカテーテル300の先端部と組織との間に血液15が介在して、先端部が血中に存在することもある(図10(c)参照、以下「非接触状態」と記述する。)。あるいは、レーザカテーテル300の先端部が組織に対して斜めに接触し、先端部と組織との隙間に部分的に血液15が存在することもある(図10(b)参照、以下「斜め接触状態」と記述する。)。
 接触モニター動作では、このようなレーザカテーテル300の先端部の接触状態、すなわち、接触状態であるか非接触状態であるか、接触状態の場合の接触角度(垂直接触状態・斜め接触状態)等がモニターされる。なお、本明細書において「接触角度」とは、狭義の角度の値のみをいうものでなく、レーザカテーテル300の先端部の組織に対する接触状態が垂直であるか斜めであるかといった広義の接触角度をも意味するものとする。
 引き続き、光源110は光学系120に第1の強度で励起光を出力し、制御部150は蛍光強度及び薬剤濃度を算出し、表示部170は蛍光強度の経時変化を表示画面に表示している。例えば、表示部170は、蛍光強度の経時変化をグラフとして表示画面に表示している。
 ここで、蛍光強度の経時変化を示すグラフの一例について説明する。
 図11は、蛍光強度の経時変化を示すグラフである。
 同図は、図7と同条件での蛍光強度の経時変化を示すグラフである。グラフ中、A線は蛍光強度が低く、C線は蛍光強度が高く、B線はA線の蛍光強度とC線の蛍光強度との間で変動した。
 なお、同図では、説明をわかりやすくするため、レーザカテーテル300の先端部が垂直接触状態、斜め接触状態及び非接触状態にあるときの蛍光強度の経時変化を1つのグラフに示している。しかしながら、実際は、レーザカテーテル300の先端部の接触状態に応じて一方が表示される。
 A線について検討する。ここで、図7に示したように、組織での蛍光強度は、血液での蛍光強度より小さい。従って、A線はレーザカテーテル300が励起光を組織に照射したときの蛍光強度を示すと考えられる。よって、A線のような蛍光強度が算出された場合には、レーザカテーテル300の先端部が組織に対して垂直接触状態にあるため、組織中の蛍光強度が反映されたと考えられる。
 C線について検討する。ここで、図7に示したように、血液での蛍光強度は、組織での蛍光強度より大きい。従って、C線はレーザカテーテル300が励起光を血液に照射したときの蛍光強度を示すと考えられる。よって、C線のような蛍光強度が算出された場合には、レーザカテーテル300の先端部が組織に対して非接触状態であるため、血中の蛍光強度が反映されたと考えられる。
 B線について検討する。B線はA線の蛍光強度とC線の蛍光強度との間に位置するので、レーザカテーテル300の先端部が組織に対して斜め接触状態にあると考えられる。また、レーザカテーテル300の先端部の接触対象物が動く心筋組織であるため、レーザカテーテル300が組織の動きに追従して動く。その結果、レーザカテーテル300の先端部が組織に対して斜めに接触している場合には、レーザカテーテル300の先端部と組織との間の血液量が計測中に変化しやすい。また心拍に応じて心筋組織及び心房内の血流量も変化する。これらの影響を受けて、B線の蛍光強度変動は、A線やC線に比べて大きくなる。
 さらに、レーザカテーテル300の先端部が組織に何らかの形で接触している場合には(垂直接触状態、斜め接触状態)、レーザカテーテル300が心筋組織の動きによって影響を受けることもある。つまり、レーザカテーテル300の先端部の接触状態が接触状態(垂直接触状態、斜め接触状態)と非接触状態との間で変動する。この場合には、蛍光強度の変動がより激しくなる。従って、波形に示される蛍光強度の変動をもとに、レーザカテーテル300が心筋組織の動きに追従しているかどうかを判別できる。例えば、グラフ中A線において、薬剤投与後4秒付近の蛍光強度が高いのは、瞬間的にレーザカテーテル300の先端部が垂直接触状態から非接触状態になり、再び垂直接触状態に戻ったことを示す。
 制御部150は、算出した蛍光強度をもとに、レーザカテーテル300の先端部の接触状態(接触・非接触、接触時の接触角度)を判別する(ステップS106)。
 具体的には、制御部150は、算出した蛍光強度が第1の閾値より大きいもしくは同レベルと判別するとき、非接触状態と判別する(C線)。制御部150は、蛍光強度の最小値が第1の閾値より小さい第2の閾値より小さいもしくは同レベルと判別するとき、垂直接触状態と判別する(A線)。制御部150は、蛍光強度が第1の閾値と第2の閾値との間で一定周期で変動すると判別するとき、斜め接触状態と判別する(B線)。
 制御部150は、表示部170を用いて、判別した接触状態を施術者へ報知する。具体的には、制御部150は、斜め接触状態又は非接触状態を判別すると、レーザカテーテル300の先端部の接触状態変更を促す表示情報を生成し、生成した表示情報を含む表示命令を表示部170に出力する。表示部170は、制御部150より表示命令を取得すると、表示命令に含まれる表示情報に基き、施術者へレーザカテーテル300の先端部の接触状態変更を促す情報を表示する(ステップS107)。施術者は、レーザカテーテル300に設けられたハンドピース等(図示せず。)を操作することにより、レーザカテーテル300の先端部の組織に対する接触状態を変更することができる。
 制御部150は、引き続き蛍光強度及び薬剤濃度を算出している。制御部150は、記憶部160に記憶された蛍光強度及び薬剤濃度を参照する。制御部150は、参照した蛍光強度をもとにレーザカテーテル300の先端部と組織との間の隙間に存在する血液量を算出する。制御部150は、算出した血液量と、参照した薬剤濃度とをもとに、治療の際の励起光照射プロトコル、すなわち、励起光の第2の強度や照射時間等を算出する(ステップS108)。
 例えば、レーザカテーテル300の先端部が斜め接触状態又は非接触状態にあって隙間に血液が存在する場合には、血液量から励起光の損失(組織に到達しない励起光)を考慮して、第2の強度を高く設定したり、照射時間を長く設定した励起光照射プロトコルとする。制御部150は、励起光照射プロトコルを算出すると、照射プロトコルに関する表示情報を生成し、生成した表示情報を含む表示命令を表示部170に出力する。表示部170は、制御部150より表示命令を取得すると、表示命令に含まれる表示情報に基き、励起光照射プロトコル(第2の強度、照射時間)に関する情報を表示する。
 以上のように、制御部150は、蛍光強度をもとに薬剤濃度及び血液量を算出し、算出した薬剤濃度及び血液量をもとに励起光照射プロトコルを算出する。すなわち、制御部150は、蛍光強度をもとに励起光照射プロトコルを算出できる。
 なお、蛍光強度の経時変化はレーザカテーテル300の先端部の接触状態に応じて異なるので、蛍光強度の経時変化を表示部170により表示画面に表示すれば、制御部150により接触状態を判別しなくても、施術者は蛍光強度の経時変化から接触状態を推定できる。
 ところで、循環器系疾患の分野では、安全性と確実性を担保するため、カテーテルの先端部の所望組織への接触状態及び隙間に存在する血液量や、異物・破損の有無をリアルタイムに判別することが重要である。また所望組織が心筋組織のように動く対象の場合、確実な治療を施すためには、その組織の動きにレーザカテーテルが追従しているかという詳細な接触状態を判別する必要がある。従来より、例えば、血液排除による透明空間確保、X線透視、電位計測(インピーダンス計測)、電位マッピング、温度計測、力計測(圧力、応力)、多色光源による反射光計測等をもとにカテーテルの接触状態を判別することが知られている。しかしながら、経カテーテル治療及び診断において、血液中でカテーテルの先端状況を判別するのは困難であり、詳細な接触状態を判別可能な技術は未だに開発されていない。上記各従来法では、おおまかな接触状態しか判別できない上、以下に示すように課題も多い。
 血液排除による透明空間の確保とは、バルーンにより血流を一時的に遮断し、生理食塩水等をカテーテル先端部から流出することで透明空間を確保して血管内視鏡で接触状態を観察する方法である。しかしながらこの方法は、末梢血管が虚血状態になるおそれがある。
 X線透視では、精度不足のため、カテーテルと組織との離間距離や、カテーテルと所望組織との間の血液量を判別困難である。また、組織が動く場合、カテーテルの先端がその動きに追従しているかどうかも明確ではない。従って、カテーテルの先端により血液(心腔内治療の場合)又は血管壁(血管内治療の場合)を損傷するおそれがある。また、所望組織へのエネルギー投入量が想定量よりも減少して、十分な治療効果が得られないおそれがある。さらに、解剖学の知識と経験(接触時の手感)を持ち合わせた医者しか判別できず、主観に頼っていることが一番の問題点である(特表第2007-525263号参照)。
 電位計測(インピーダンス計測)とは、心筋組織は電位伝播により収縮運動をしているため、その電位を計測することで心筋組織への接触状態を判別する方法である。しかし、光による治療を施す場合、カテーテルの先端部(心筋組織に対する接触部)は光学ウィンドウとなる。このため、電位測定部位は、カテーテルの先端部以外の部位に設けることとなる。その結果、光照射部位と電位測定部位が不一致となり、診断領域と治療領域にズレが生じて、正確な治療ができないおそれがある。また、電極面積が減るため、角度判別の精度が低くなるおそれがある。さらに、電気計測を行うため、電磁干渉の影響のおそれがある(特表第2008-531170号参照)。
 電位マッピングとは、電位計測を三次元に発展させたものである。しかしながら、従来の装置では詳細な接触状態を判別する分解能が不足している。また、判別の時間がかかり、過剰な接触力によって生じる人為的な影響が生じるおそれがある(特表第2008-531170号参照)。さらに、電位計測となるカテーテルがずれると、マッピング画像と真の位置にズレが生じるおそれがある。さらに、電気計測を行うため、電磁干渉の影響のおそれがある(特表第2008-531170号参照)。
 温度計測とは、血管閉塞部を有する疾患において、温度計測により閉塞部を特定する方法である(特表第2007-525263号参照)。しかし、閉塞部に限った診断法であり、例えば心房細動や心室粗動など閉塞空間がない疾患には適用できない。また正常血管壁へ不必要な熱を与えるおそれがある。
 力計測(圧力、応力)とは、カテーテルに圧力センサや応力センサを搭載して、接触対象物を特定する方法である(特表第2009-542371号、米国特許第6696808号、米国特許公開第2008/0009750号、国際公開第01/33165号参照)しかし、カテーテルの先端部が大型化したり、電磁干渉の影響を受けるおそれがある(特表第2008-531170号参照)。
 多色光源による反射光計測とは、波長により異なる吸収係数を利用した方法である。具体的には、多色光源を用いて、各波長の反射率の違いから組織を判別する(特許第4261101号参照)。この方法ではカテーテルと組織間の血液量を推定できるが、複数光源を用意しているため、光学系が複雑になり、装置が大型化し、コストが増加するおそれがある。
 これに対して、本実施形態の接触モニター動作によれば、蛍光強度を検出することで、所望組織への接触状態や追従移動を経カテーテル的にリアルタイムに判別できる。この方法によれば、血液排除等が不要なので低侵襲である。また、判別された接触状態等をもとに励起光照射プロトコルを算出できるので、安全かつ確実な治療及び診断を補助できる。
 [(4)異物・破損モニター動作]
 光線力学的治療時には、異物・破損モニター動作が行われる。
 まず、施術者は、表示部170に表示された励起光照射プロトコルを参照し、操作部180を操作して高パワーの第2の強度での励起光出力命令を制御部150に入力する。制御部150は、励起光出力命令を取得すると、光源110に第2の強度での励起光出力命令を出力する。光源110は、制御部150より励起光出力命令を取得すると、第2の強度で励起光を出力する。光源110が出力した励起光は、光学系120及びレーザカテーテル300を介して組織に照射され、光線力学的治療が実施される(ステップS109)。
 制御部150は、検出部130より取得した電気信号をもとに、蛍光強度を算出する。制御部150は、算出した蛍光強度と、静脈注射を開始した時刻などの基準時刻からの経過時間とをもとに、蛍光強度の経時変化に関する表示情報を生成し、生成した表示情報を含む表示命令を表示部170へ出力する。表示部170は、制御部150から表示命令を取得すると、表示命令に含まれる表示情報に基き、蛍光強度の経時変化を表示画面に表示する。
 制御部150は、算出した蛍光強度が閾値以上かどうかを判別する(ステップS110)。この閾値は、例えば、通常の蛍光強度の数倍以上の値である。
 図19は、波長と蛍光強度との関係を示すグラフである。
 同図は、異物接触や破損のおそれがあるレーザカテーテル及び通常のレーザカテーテルの波長(Wavelength)と蛍光強度(Intensity)との関係を示す。レーザカテーテルの先端部が生体組織以外の異物に接触したり破損したときは、通常の蛍光強度に比較して蛍光強度が強くなることがわかる。
 制御部150は、蛍光強度が閾値以上と判別すると、すなわち、蛍光強度がそれまでの蛍光強度を度外視するごとく数倍以上に増加したと判別すると、異物や破損があると推定する(ステップS110でYes)。制御部150は、異物や破損があると推定すると、励起光照射の終了及び異物・破損の発生に関する表示情報を生成し、生成した表示情報を含む表示命令を表示部170に出力する。異物・破損の発生に関する表示情報には、励起光照射の停止、照射時間の再設定、照射パワーの再設定、レーザカテーテル300の検査等を促す情報が含まれる。表示部170は、制御部150より表示命令を取得すると、表示命令に含まれる表示情報に基づき、施術者へ励起光照射の終了(ステップS111)及び異物・破損発生に関する情報を表示する(ステップS112)。
 なお、制御部150は、蛍光波長以外の任意の波長(励起光波長など)の異常な強度増加を検知した場合にも異物や破損があると推定して(ステップS110でYes)、同様の処理(ステップS111、ステップS112)を行ってもよい。
 一方、制御部150は、蛍光強度が閾値以上であると所定時間内に判別しないときは、異物や破損がないと推定し、殺細胞効果判別動作に移行する(ステップS110でNo)。
 なお、蛍光強度が所定の閾値を超えたとき異物や破損があると推定できるので、蛍光強度を表示部170により表示画面に表示すれば、制御部150により異物・破損の発生を推定しなくても、施術者は蛍光強度から異物・破損の発生を推定できる。
 また、心腔内にレーザカテーテル300のほか複数本のカテーテルを配置する場合、レーザカテーテル300が別のカテーテルに接触するおそれがある。例えば、心腔内に配置した別のカテーテルに接触した状態でレーザカテーテル300から光を照射すると、双方のカテーテルが機能を失うおそれがある。レーザカテーテル300の先端部の異常に気づかないまま励起光の照射を続行すると、レーザカテーテル300の先端部が発熱し、生体に熱損傷を与える危険がある。また、被接触側のカテーテルも、機能を果たせなくなるおそれがある。
 本実施形態の異物・破損モニター動作によれば、生体組織以外に接触している場合には強い反射光が計測されるため、異物・破損の発生を経カテーテル的にリアルタイムに推定できる。これにより、レーザカテーテル300の検査を施術者に促すことができるので、患者に危害を及ぼすことなく極めて安全に治療が行える。
 [(5)殺細胞効果判別動作]
 続いて、殺細胞効果判別動作が行われる。
 光線力学的治療では、組織に取り込まれた光感受性薬剤は、レーザカテーテル300からの励起光を吸収してエネルギーを得て基底状態から一重項励起状態となる。多くのエネルギーは、項間交差により一重項励起状態から三重項励起状態に移行するが、残りの一部は一重項状態から基底状態に戻り、この時に蛍光を発する。また、三重項励起状態の光感受性薬剤が三重項状態の酸素と衝突すると、エネルギーを酸素に移譲し、酸化力の強い一重項酸素を生成する。この酸化力により組織に傷害を与えるとともに、光感受性薬剤を破壊(ブリーチング)する。ブリーチングが生じると、実効的な薬剤量が減るため、蛍光量も減る。従って、蛍光量の減少は、ブリーチング及び組織傷害量の指標となる。光感受性薬剤が発した蛍光はレーザカテーテル300を介して光学系120により取り出され検出部130に入射される。検出部130は、光学系120より入射した蛍光を検出し、検出した蛍光の強度を電気信号として制御部150に出力する。
 引き続き、光源110は光学系120に第2の強度で励起光を出力し、制御部150は蛍光強度を算出し、表示部170は、蛍光強度の経時変化を表示画面に表示している。例えば、表示部170は、蛍光強度の経時変化をグラフとして表示画面に表示する。
 ここで、蛍光強度の経時変化を示すグラフの一例について説明する。
 図12は、蛍光強度の経時変化を示すグラフである。
 同図は、光感受性薬剤をブタに静脈注射後20分の時点で、励起光照射を20秒間行った場合の、蛍光強度の経時変化を示す。上述のように、蛍光量の減少はブリーチング及び組織傷害量の指標となるので、蛍光強度の減衰カーブを表示することにより、PDTの進行をリアルタイムに表示できる。
 制御部150は、算出した蛍光強度が閾値未満まで減衰したかどうかを判別する(ステップS113)。制御部150は、蛍光強度が閾値未満まで減衰したと判別すると、励起光が照射されている組織にて殺細胞効果があったと推定する(ステップS113でYes)。そして、制御部150は、殺細胞効果の指標に関する表示情報を生成し、生成した表示情報を含む表示命令を表示部170に出力する。表示部170は、制御部150より表示命令を取得すると、表示命令に含まれる表示情報に基き、施術者へ殺細胞効果の指標に関する情報を表示する。施術者は、表示部170に表示された殺細胞効果の指標に関する情報を参照し、電気伝導ブロック形成の判別動作に移行する。
 一方、制御部150は、所定時間内に蛍光強度が閾値未満に低下したことを判別しなかった場合は、算出した蛍光強度をもとに、励起光照射の延長や光強度の再設定を促す表示情報を生成し、生成した表示情報を含む表示命令を表示部170に出力する(ステップS113でNo)。表示部170は、制御部150より表示命令を取得すると、表示命令に含まれる表示情報に基き、施術者へ励起光照射の延長や光強度の再設定を促す情報を表示する。制御部150は、表示命令出力後所定時間が経過すると、ステップS108の動作に移行する。
 なお、蛍光強度が閾値未満まで減衰したとき殺細胞効果があったと推定できるので、蛍光強度を表示部170により表示画面に表示すれば、制御部150により殺細胞効果の有無を推定しなくても、施術者は蛍光強度から殺細胞効果の有無を推定できる。
 本実施形態の殺細胞効果判別動作によれば、薬剤濃度に相関のある蛍光強度をもとに、励起光が照射されている組織にて進行する心筋細胞への傷害、すなわち治療効果をリアルタイムで経カテーテル的に計測できるため、確実な治療が可能となる。
 [(6)電気伝導ブロック形成の判別動作]
 続いて、電気伝導ブロック形成の判別動作が行われる。
 電気伝導ブロック形成の判別動作では、殺細胞効果判別に用いた蛍光の時間波形を心電図(Electrocardiogram、ECG。ECGの取得方法は後で説明する。)と同期する。ECGのR波とR-R波間隔中に現れる蛍光ピーク強度との位相差を制御部150にて解析することで、電気伝導ブロック形成の判別を行う。場合によっては、レーザカテーテル300を電気伝導ブロック内部(図13で示した一点鎖線内)に再配置して、励起光出力を第1の強度に変更して、低パワーで計測した蛍光の時間波形をECGに同期して解析してもよい。レーザカテーテルを再配置して計測する場合の手順は以下の通りである。
 まず、施術者は、レーザカテーテル300の先端部を電気伝導ブロック内部(図13で示した一点鎖線内)又は励起光照射部位に配置する。そして、施術者は、操作部180を操作して低パワーの第1の強度での励起光出力命令を制御部150に入力する。制御部150は、励起光出力命令を取得すると、光源110に第1の強度での励起光出力命令を出力する。光源110は、制御部150より励起光出力命令を取得すると、第1の強度で励起光を出力する。光源110が出力した励起光は、光学系120及びレーザカテーテル300を介して組織に照射される。組織に取り込まれた光感受性薬剤は、レーザカテーテル300からの励起光を吸収して蛍光を発する。光感受性薬剤が発した蛍光は、レーザカテーテル300を介して光学系120により取り出され検出部130に入射する。検出部130は、光学系120より入射した蛍光を検出し、検出した蛍光の強度を電気信号として制御部150に出力する。制御部150は、取得した電気信号をもとに蛍光強度を算出する。
 一方、心電取得部140は心電信号を取得し、取得した心電信号を制御部150に供給する。制御部150は、算出した蛍光強度と取得した心電信号とをもとに表示情報を生成し、生成した表示情報を含む表示命令を表示部170へ出力する。表示部170は、制御部150から表示命令を取得すると、表示命令に含まれる表示情報に基き、蛍光強度と心電図のR波との相関を表示画面に表示する。
 ここで、蛍光強度とECGのR波との相関について説明する。
 図14は、ECGと心腔内圧、心筋組織の血流量を支配する冠状動脈血流量の関係を示す図であり、「エッセンシャル解剖・生理学」(学研メディカル秀潤社、2001年)に記載される前提的な知識で、以下の説明にあたり有効である。
 同図に示すように、心腔内と心筋組織中の血流量では、血流量の時間変化が異なる。心腔内の血流量はR波に一致した時点でピークを迎えるのに対し、右心系の心筋組織中の血流量はR波から約200ms遅れた時点で第1ピークが、約400ms遅れた時点で第2ピークが現れる。
 図15は、レーザカテーテルが垂直接触状態のときの蛍光強度とR波との相関を示す図である。
 レーザカテーテル300の先端部が垂直接触状態のときの蛍光強度(例えば照射パワー900mW時)とR波との相関について説明する。垂直接触状態では、R波に対して約100msと400ms遅れたところに蛍光ピークが観測される。なお、カテーテルを左心系に配置した場合には、前図の左冠状動脈血流量に比例した変化をとる。これは、R波発生時に心室が収縮し、血液が全身(心筋組織を含む)に供給される。血液には光感受性薬剤が存在するので、心筋の血管に血液が供給されたときの心筋組織の蛍光強度が最も高くなる。このため、R波発生から所定時間遅れて蛍光強度のピークが発生する。
 図16は、レーザカテーテルが斜め接触状態のときの蛍光強度とR波との相関を示す図である。
 レーザカテーテル300の先端部が斜め接触状態のときの蛍光強度(例えば照射パワー900mW時)とR波との相関について説明する。斜め接触状態では、隙間に血液が存在し、心腔内の血流量の支配が強くなるために、蛍光強度のピークとR波が一致する。
 以上のように、垂直接触状態及び斜め接触状態において、R波と蛍光強度のピークとの位相差は明らかに異なり、接触状態が維持されていれば位相差は一定である。
 そこで、制御部150は、算出した蛍光強度と取得した心電信号とをもとに、蛍光強度とR波の位相差が一定かどうかを判別することにより、電気伝導ブロックが形成されたかどうかを判別する(ステップS114)。制御部150は、蛍光強度とR波の位相差が一定であると判別すると、電気伝導ブロックが形成されていないと判別して(ステップS114でNo)、表示部170に、施術者に励起光照射の終了(ステップS116)及びレーザカテーテル300の移動を促す情報を表示させる(ステップS117)。施術者は、表示部170に表示された情報を参照し、励起光照射を一旦終了し、レーザカテーテル300を移動する。そして、再びステップS104以降の処理が行われる。
 図13は、レーザカテーテルの移動の軌跡を示す模式図である。
 施術者は、レーザカテーテル300の先端部を肺静脈(PV、Pulmonary Vein)の異常興奮部位を取り囲む(図中一点鎖線もしくは点線)ように移動させる。
 一方、制御部150は、蛍光強度とR波の位相差が一定でないと判別すると、電気伝導ブロックが形成されたと判別して(ステップS114でYes)、施術者に励起光照射の終了及びレーザカテーテル300の抜去を促す表示命令を生成し、生成した表示情報を含む表示命令を表示部170へ出力する。表示部170は、制御部150から表示命令を取得すると、表示命令に含まれる表示情報に基き、施術者に励起光照射の終了及びレーザカテーテル300の抜去を促す情報を表示画面に表示し、処理を終了する(ステップS115)。
 ここで、蛍光強度とR波の位相差が一定でない場合に電気伝導ブロックが形成されたと判別する原理について説明する。心筋細胞の傷害が進行すると、その心筋細胞は電気を伝導しなくなるため、心拍時に心筋細胞自身は収縮しない。この傷害された心筋細胞がボックス状に形成された電気伝導ブロックは、自身は収縮せず、近傍の心筋組織の収縮運動に追従するようにして動くこととなる。その結果、レーザカテーテル300の先端部の接触状態は不安定となり、刻々と変化する。その結果、蛍光強度とR波との位相差は不安定となる。言い換えれば、蛍光強度とR波との相関は、図15及び図16に示した相関を行ったり来たりするような状態となる。
 そこで、本実施形態の電気伝導ブロック形成の判別動作によれば、蛍光強度と心電図のR波との位相差により、電気伝導ブロックの形成をリアルタイムに判別できる。
 具体的には、蛍光強度のピークがR波より所定時間遅れて発生するときは、電気伝導ブロックは形成されておらず、レーザカテーテル300の先端部は垂直接触状態にあると判別できる。蛍光強度のピークとR波とが略同時に発生するときは、電気伝導ブロックは形成されておらず、レーザカテーテル300の先端部は斜め接触状態にあると判別できる。蛍光強度のピークのR波に対する位相差が一定でなくなったときは、電気伝導ブロックが形成されたと判別できる。
 なお、蛍光強度とR波の位相差が一定でない場合に電気伝導ブロックが形成されたと判別できるので、蛍光強度とR波との相関を表示部170により表示画面に表示すれば、制御部150により電気伝導ブロック形成の有無を推定しなくても、施術者は蛍光強度とR波との相関から電気伝導ブロック形成の有無を推定できる。
 <第2の実施形態>
 次に、本発明の他の実施形態に係るPDT装置について説明する。以下の説明において、第1の実施形態のPDT装置1と同様の構成、機能及び動作等については説明を省略又は簡略し、異なる点を中心に説明する。
 第2の実施形態に係る光学系及び検出部について説明する。
 [光学系及び検出部の構成]
 図17は、本発明の第2の実施形態の光学系及び検出部等を示すブロック図である。
 光学系120aは、ショートパスフィルタ121と、第1のレンズ122と、PBS123と、第1のダイクロイックミラー(Dichroic Mirror、以下「DM」と記述する。)126と、第2のDM127とを有する。
 検出部130aは、第1のフォトダイオード(Photodiode、以下「PD」と記述する。)131と、第2のPD132とを有する。
 第1のDM126は、PBS123より入射した光のうち、特定の波長の光を反射し、その他の波長の光を透過させる。これにより、第1のDM126は、レーザカテーテル300からの蛍光の一部を反射し、その他の波長をもつレーザカテーテル300からの蛍光及び正反射光を透過させる。第1のDM126にて反射した蛍光は、第1のPD131に入射する。
 第1のPD131は、第1のDM126から入射した蛍光を検出する。第1のPD131は、検出した蛍光の強度を電気信号として制御部150に出力する。
 第2のDM127は、第1のDM126を透過した光のうち、特定の波長の光を反射し、その他の波長の光を透過させる。これにより、第2のDM127は、第1のDM126を透過した蛍光の一部を反射し、その他の波長をもつ蛍光及び正反射光を透過させる。第2のDM127にて反射した蛍光は、第2のPD132に入射する。
 第2のPD132は、第2のDM127から入射した蛍光を検出する。第2のPD132は、検出した蛍光の強度を電気信号として制御部150に出力する。
 なお、光学系120aは第1のDM126及び第2のDM127と同様の構成を持つDMをさらに有してもよい。このようにして、最終的に、複数のDM126、127…はレーザカテーテル300からの蛍光を反射し、複数のPD131、132…はレーザカテーテル300からの蛍光を検出する。そして、複数のDM126、127…は、正反射光を透過する。
 なお、他の実施形態として、光源110としてパルス光源を用いて、光路長の違い(レーザカテーテル300の長さの2倍程度)からファイバ入射端面の正反射光を時間的に分離してもよい。
 <第3の実施形態>
 第3の実施形態は、R-R波間隔における蛍光強度のピークとR波との位相差をもとに接触モニターのステップを実行するものである。
 第1の実施形態の電気伝導ブロック形成の判別動作で、R-R波間隔における蛍光強度のピークとR波との位相差をもとに、電気伝導ブロックの形成を判別した。この原理を接触モニター動作に利用してもよい。
 光源110は光学系120に第1の強度で励起光を出力する。検出部130は、光学系120より入射した蛍光を検出する。検出部130は、検出した蛍光の強度を電気信号として制御部150に出力する。制御部150は、取得した電気信号をもとに蛍光強度を算出する。
 一方、心電取得部140は心電信号を取得し、取得した心電信号を制御部150に供給する。制御部150は、算出した蛍光強度と取得した心電信号とをもとに表示情報を生成し、生成した表示情報を含む表示命令を表示部170へ出力する。表示部170は、制御部150から表示命令を取得すると、表示命令に含まれる表示情報に基き、蛍光強度と心電図のR波との相関を表示画面に表示する。
 制御部150は、算出した蛍光強度と取得した心電信号とをもとに、レーザカテーテル300の先端部の接触状態を判別する(ステップS106)。具体的には、制御部150は、蛍光強度のピークがR波より所定時間遅れて発生すると判別するときは、レーザカテーテル300の先端部は垂直接触状態にあると判別する。制御部150は、蛍光強度のピークとR波とが同時に発生すると判別するときは、レーザカテーテル300の先端部は斜め接触状態にあると判別する。また蛍光ピーク強度からレーザカテーテル300の先端部と組織の内壁との間の血液量を推定することもできる。
 <第4の実施形態>
 第4の実施形態は、自家蛍光のスペクトルの違いを利用して接触モニターのステップを実行するものである。なお、自家蛍光とは組織自らが発する光を指し、薬剤からの蛍光を意味するものではない。すなわち、第4の実施形態では薬剤を用いない診断方法を示している。
 光源110は、心筋組織の自家蛍光スペクトル特性と血液の自家蛍光スペクトル特性の違いを判別しやすい励起光を出力する。検出部130は、入射した蛍光を検出する。検出部130は、検出した蛍光の強度を電気信号として制御部150に出力する。制御部150は、取得した電気信号をもとに蛍光スペクトルを算出する。制御部150は、算出した蛍光スペクトルが心筋組織の自家蛍光スペクトル特性と血液の自家蛍光スペクトル特性の何れを示すかを判別する。制御部150は、算出した蛍光スペクトルを心筋組織の及び血液の自家蛍光スペクトル特性と比較して、レーザカテーテル300の先端部の接触状態を判別する(ステップS106)。具体的には、制御部150は、算出した蛍光スペクトルが心筋組織の自家蛍光スペクトル特性を示すと判別すると、レーザカテーテル300の先端部が垂直接触状態にあると判別する。制御部150は、算出した蛍光スペクトルが血液の自家蛍光スペクトル特性を示すと判別すると、レーザカテーテル300の先端部が非接触状態にあると判別する。制御部150は、算出した蛍光スペクトルが何れの自家蛍光スペクトル特性も示していないと判別すると、レーザカテーテル300の先端部が斜め接触状態にあると判別する。
 自家蛍光スペクトルの違いを利用した接触モニターは、血管閉塞部(例えば、動脈硬化性疾患など)を有する疾患の治療におけるレーザカテーテルの接触モニターにも有用である。
 図18は、血管内腔でのレーザカテーテルの接触状態を示す模式図である。
 血管閉塞部を有する疾患の治療において、レーザカテーテル300の先端部が血管20の血管閉塞部(粥腫)21に接触しているか(図18(a)参照)、血管壁22に接触しているか(図18(b)参照)を判別することが求められる。ここで、コラーゲン、エラスチン、脂質等の組成比は、血管閉塞部と血管壁との間で異なる。具体的には、血管閉塞部(動脈硬化)の組成比は、水70%、コラーゲン5%、エラスチン6%、脂質9%である。血管の組成比は、水73%、コラーゲン6.5%、エラスチン10.5%、脂質1%である。このため、血管閉塞部の自家蛍光スペクトル特性と血管壁の自家蛍光スペクトル特性とは異なったものとなる。この特性の違いを判別しやすい励起光を被治療部位に照射して、蛍光を計測すれば、レーザカテーテル300の先端部が血管閉塞部21と血管壁22との何れに接触しているかを判別できる。なお、自家蛍光スペクトルの違いを利用した接触モニターでは、組成比から粥腫の有無を判別できるので、血管径の大きさから粥腫の有無を判別するIVUS(Intravascular Ultrasound、血管内超音波検査)よりも正確な診断を行うことができる。
 本発明に係る実施形態は、以上説明した実施形態に限定されず、他の種々の形態が考えられる。
 上記実施形態では、レーザカテーテル300をPDT装置1のコネクタ210に着脱可能に接続したが、レーザカテーテル300をPDT装置1に一体に設けてもよい。
 上記実施形態では、PDT装置本体100にチューブ200を設け、チューブ200の先端にコネクタ210を設けたが、コネクタ210をPDT装置本体100に設けてもよい。
 上記実施形態では、PBS123を用いたが、これに代えてDMを用いてもよい。
 上記実施形態では、制御部150は、施術者に所定の制御を促す情報を表示部170により報知したが、これに限定されない。PDT装置1にスピーカ部を設け、制御部150は、施術者に所定の制御を促す際、音声出力命令を生成し、生成した音声出力命令をスピーカ部に出力してスピーカ部に音声を出力させることにより施術者に所定の制御を促してもよい。
 1…光線力学的治療(Photodynamic Therapy、PDT)装置
 100…PDT装置本体
 110…光源
 120、120a…光学系
 121…ショートパスフィルタ
 122…第1のレンズ
 123…偏光ビームスプリッタ(PBS)
 124…ロングパスフィルタ
 125…第2のレンズ
 126…第1のダイクロイックミラー(DM)
 127…第2のダイクロイックミラー(DM)
 130、130a…検出部
 131…第1のフォトダイオード(PD)
 132…第2のフォトダイオード(PD)
 140…心電取得部
 141…電極パッド
 150…制御部
 160…記憶部
 170…表示部
 180…操作部
 200…チューブ
 201…装置付属光ファイバ
 210…コネクタ
 300…レーザカテーテル
 301…照射光
 310…カテーテルチューブ
 320…支持部
 330…光ファイバ
 340…光学ウィンドウ

Claims (8)

  1.  励起光を吸収して蛍光を発する光感受性薬剤が取り込まれた組織に、レーザカテーテルの先端部から前記励起光を照射する装置であって、
     前記レーザカテーテルが着脱可能な接続部と、
     前記接続部を介して前記レーザカテーテルに前記励起光を出力する光源と、
     前記レーザカテーテルの先端部が接触する組織での前記光感受性薬剤の濃度を算出するため、前記レーザカテーテルから前記接続部を介して入射した前記蛍光の強度を検出する検出部と
     を具備する算出装置。
  2.  請求項1に記載の算出装置であって、さらに、
     前記検出された蛍光の強度に応じて前記レーザカテーテルの先端部が接触する組織での前記光感受性薬剤の濃度を算出する制御部
     を具備する算出装置。
  3.  請求項2に記載の算出装置であって、
     前記制御部は、前記算出された濃度に応じて前記光感受性薬剤の追加投与を促すための信号を出力する
     算出装置。
  4.  請求項2に記載の算出装置であって、
     前記制御部は、前記算出された濃度に応じて励起光照射プロトコルを算出し、算出結果を出力する
     算出装置。
  5.  励起光を吸収して蛍光を発する光感受性薬剤が取り込まれた組織に、レーザカテーテルの先端部から前記励起光を照射し、
     前記照射された励起光に応じた前記蛍光を前記レーザカテーテルを介して取り出し、
     前記取り出された蛍光の強度に応じて前記レーザカテーテルの先端部が接触する組織での前記光感受性薬剤の濃度を算出する
     算出方法。
  6.  請求項5に記載の算出方法であって、さらに、
     前記算出された濃度に応じて励起光照射プロトコルを算出し、算出結果を出力する
     算出方法。
  7.  励起光を吸収して蛍光を発する光感受性薬剤と、先端部から前記励起光を照射可能なレーザカテーテルと、前記レーザカテーテルが着脱可能な接続部及び前記接続部を介して前記レーザカテーテルに前記励起光を出力する光源を有する算出装置とを使用する算出方法であって、
     前記光感受性薬剤を組織に取り込み、
     前記接続部に装着される前記レーザカテーテルの先端部を前記光感受性薬剤が取り込まれた組織へ導き、
     前記光感受性薬剤が取り込まれた組織に対して前記レーザカテーテルの先端部から、前記光源より出力された励起光を照射し、
     前記照射された励起光に応じた前記蛍光を前記レーザカテーテルを介して取り出し、
     前記取り出された蛍光の強度に応じて、前記レーザカテーテルの先端部が接触する組織での前記光感受性薬剤の濃度を算出する
     算出方法。
  8.  請求項7に記載の算出方法であって、さらに、
     前記算出された濃度に応じて励起光照射プロトコルを算出し、算出結果を出力する
     算出方法。
PCT/JP2011/001326 2010-03-15 2011-03-07 算出装置及び算出方法 WO2011114651A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11755844.5A EP2548614A4 (en) 2010-03-15 2011-03-07 CALCULATION DEVICE AND CALCULATION METHOD
CN201180012977XA CN102933256A (zh) 2010-03-15 2011-03-07 计算装置和计算方法
SG2012065967A SG183935A1 (en) 2010-03-15 2011-03-07 Calculation apparatus and calculation method
KR1020127023321A KR20130004478A (ko) 2010-03-15 2011-03-07 산출 장치 및 산출 방법
US13/583,547 US20130172697A1 (en) 2010-03-15 2011-03-07 Calculation apparatus and calculation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010058386A JP5736116B2 (ja) 2010-03-15 2010-03-15 算出装置
JP2010-058386 2010-03-15

Publications (1)

Publication Number Publication Date
WO2011114651A1 true WO2011114651A1 (ja) 2011-09-22

Family

ID=44648767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001326 WO2011114651A1 (ja) 2010-03-15 2011-03-07 算出装置及び算出方法

Country Status (7)

Country Link
US (1) US20130172697A1 (ja)
EP (1) EP2548614A4 (ja)
JP (1) JP5736116B2 (ja)
KR (1) KR20130004478A (ja)
CN (1) CN102933256A (ja)
SG (1) SG183935A1 (ja)
WO (1) WO2011114651A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185372A1 (ja) * 2013-05-13 2014-11-20 株式会社アライ・メッドフォトン研究所 治療進行度モニタ装置及びその方法
WO2016082558A1 (zh) * 2014-11-26 2016-06-02 深圳先进技术研究院 一种激光纳米光学诊疗设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635282B2 (ja) * 2010-03-15 2014-12-03 ソニー株式会社 判別装置
CN103860145A (zh) * 2014-03-27 2014-06-18 黄鹏 基于荧光检测方法的植入式检测装置
JP6576422B2 (ja) * 2017-12-20 2019-09-18 アンリツ株式会社 光治療装置及び光治療装置の光出射方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033165A1 (en) 1999-10-29 2001-05-10 Advanced Sensor Technology, Llc Optical fiber navigation system
US6696808B2 (en) 2000-03-01 2004-02-24 Valeo Auto-Electric Wischer Und Motoren Gmbh Windscreen wiper device for wiping windscreens
WO2004112902A1 (ja) * 2003-06-20 2004-12-29 Keio University 光線力学的治療装置、光線力学的治療装置の制御方法、および光線力学的治療方法
WO2006049132A1 (ja) * 2004-11-02 2006-05-11 Keio University 光線力学的治療装置
JP2007525263A (ja) 2004-01-29 2007-09-06 イコス コーポレイション カテーテルによる血管の状態の検出方法及び装置
US20080009750A1 (en) 2006-06-09 2008-01-10 Endosense Sa Catheter having tri-axial force sensor
WO2008066206A1 (fr) * 2006-11-30 2008-06-05 Keio University Appareil de blocage d'une conduction électrique anormale par thérapie photodynamique (tpd)
WO2008066126A1 (fr) 2006-11-30 2008-06-05 Science Laboratories, Inc. Fullerène chimiquement modifié, son procédé de production et film conducteur de protons comprenant du fullerène chimiquement modifié
JP2008531170A (ja) 2005-03-04 2008-08-14 エンドサンス ソシエテ アノニム 光ファイバ負荷検知能力を備えた医療装置システム
WO2009025826A1 (en) * 2007-08-22 2009-02-26 Cardiac Pacemakers, Inc. Systems and devices for photoablation
JP4261101B2 (ja) 1999-07-14 2009-04-30 カーディオフォーカス・インコーポレイテッド 光剥離システム
JP2009148550A (ja) 2007-11-16 2009-07-09 Biosense Webster Inc 分離された光路を有する全方向性光学先端部を備えたカテーテル
JP2009542371A (ja) 2006-06-30 2009-12-03 アセロメッド, インコーポレイテッド アテローム切除術の装置および方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917084A (en) * 1985-07-31 1990-04-17 C. R. Bard, Inc. Infrared laser catheter system
US4695697A (en) * 1985-12-13 1987-09-22 Gv Medical, Inc. Fiber tip monitoring and protection assembly
US6214033B1 (en) * 1992-12-28 2001-04-10 Matsushita Electric Industrial Co., Ltd. Medical laser apparatus and diagnostic/treatment apparatus using the medical laser apparatus
US5925034A (en) * 1994-08-23 1999-07-20 Sisters Of Providence In Oregon Method and apparatus for determination of psoralen concentrations in biological tissues
US6201989B1 (en) * 1997-03-13 2001-03-13 Biomax Technologies Inc. Methods and apparatus for detecting the rejection of transplanted tissue
US6238426B1 (en) * 1999-07-19 2001-05-29 Light Sciences Corporation Real-time monitoring of photodynamic therapy over an extended time
CA2535276A1 (en) * 2006-02-06 2007-08-06 John Kennedy Therapy device and system and method for reducing harmful exposure to electromagnetic radiation
JP4559995B2 (ja) * 2006-03-30 2010-10-13 株式会社東芝 腫瘍検査装置
DE102006019127A1 (de) * 2006-04-25 2007-10-31 Carl Zeiss Meditec Ag Multiwellenlängen-Lasersystem und Verfahren für ophthalmologische Anwendungen
US8280469B2 (en) * 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US20100286530A1 (en) * 2007-12-19 2010-11-11 Saurav Paul Photodynamic-based tissue sensing device and method
US20100010482A1 (en) * 2008-06-23 2010-01-14 Ceramoptec Industries Inc. Enhanced Photodynamic Therapy Treatment and Instrument
WO2011084722A1 (en) * 2009-12-21 2011-07-14 Terumo Kabushiki Kaisha Excitation, detection, and projection system for visualizing target cancer tissue

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4261101B2 (ja) 1999-07-14 2009-04-30 カーディオフォーカス・インコーポレイテッド 光剥離システム
WO2001033165A1 (en) 1999-10-29 2001-05-10 Advanced Sensor Technology, Llc Optical fiber navigation system
US6696808B2 (en) 2000-03-01 2004-02-24 Valeo Auto-Electric Wischer Und Motoren Gmbh Windscreen wiper device for wiping windscreens
WO2004112902A1 (ja) * 2003-06-20 2004-12-29 Keio University 光線力学的治療装置、光線力学的治療装置の制御方法、および光線力学的治療方法
JP2007525263A (ja) 2004-01-29 2007-09-06 イコス コーポレイション カテーテルによる血管の状態の検出方法及び装置
WO2006049132A1 (ja) * 2004-11-02 2006-05-11 Keio University 光線力学的治療装置
JP2008531170A (ja) 2005-03-04 2008-08-14 エンドサンス ソシエテ アノニム 光ファイバ負荷検知能力を備えた医療装置システム
US20080009750A1 (en) 2006-06-09 2008-01-10 Endosense Sa Catheter having tri-axial force sensor
JP2009542371A (ja) 2006-06-30 2009-12-03 アセロメッド, インコーポレイテッド アテローム切除術の装置および方法
WO2008066206A1 (fr) * 2006-11-30 2008-06-05 Keio University Appareil de blocage d'une conduction électrique anormale par thérapie photodynamique (tpd)
WO2008066126A1 (fr) 2006-11-30 2008-06-05 Science Laboratories, Inc. Fullerène chimiquement modifié, son procédé de production et film conducteur de protons comprenant du fullerène chimiquement modifié
WO2009025826A1 (en) * 2007-08-22 2009-02-26 Cardiac Pacemakers, Inc. Systems and devices for photoablation
JP2009148550A (ja) 2007-11-16 2009-07-09 Biosense Webster Inc 分離された光路を有する全方向性光学先端部を備えたカテーテル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CANCER RESEARCH, vol. 50, 1 July 1990 (1990-07-01), pages 3985 - 3990
See also references of EP2548614A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014185372A1 (ja) * 2013-05-13 2014-11-20 株式会社アライ・メッドフォトン研究所 治療進行度モニタ装置及びその方法
JP2014221117A (ja) * 2013-05-13 2014-11-27 株式会社アライ・メッドフォトン研究所 治療進行度モニタ装置及びその方法
WO2016082558A1 (zh) * 2014-11-26 2016-06-02 深圳先进技术研究院 一种激光纳米光学诊疗设备

Also Published As

Publication number Publication date
KR20130004478A (ko) 2013-01-10
CN102933256A (zh) 2013-02-13
JP2011189020A (ja) 2011-09-29
JP5736116B2 (ja) 2015-06-17
SG183935A1 (en) 2012-10-30
US20130172697A1 (en) 2013-07-04
EP2548614A1 (en) 2013-01-23
EP2548614A4 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5719159B2 (ja) 評価装置
JP5635282B2 (ja) 判別装置
JP4236014B2 (ja) 心筋の脈管再生のモニタリング
US20130289672A1 (en) Laser therapy apparatus, laser therapy system, and determination method
WO2014185372A1 (ja) 治療進行度モニタ装置及びその方法
JP2014526283A (ja) 血管内のイメージング及びフラッシングのための方法
JP5736116B2 (ja) 算出装置
JP2013541392A (ja) 低侵襲処置の間の改善された視覚化のためのシステム及び方法
WO2007146286A2 (en) Device and methods for the detection of locally-weighted tissue ischemia
JP2015089489A (ja) 医療用具及び光線治療装置
JP6724163B2 (ja) 組織の自己蛍光を使用した組織アブレーションの監視のためのシステム及び方法
US11751938B2 (en) Ablation catheter with blood perfusion sensor
Basij et al. Development of an integrated photoacoustic-guided laser ablation intracardiac theranostic system
WO2023198724A1 (en) System and method for combined thermal and photodynamic therapy of malignant tumors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012977.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755844

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011755844

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011755844

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7594/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127023321

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13583547

Country of ref document: US