WO2011114429A1 - 移動通信システム - Google Patents

移動通信システム Download PDF

Info

Publication number
WO2011114429A1
WO2011114429A1 PCT/JP2010/054360 JP2010054360W WO2011114429A1 WO 2011114429 A1 WO2011114429 A1 WO 2011114429A1 JP 2010054360 W JP2010054360 W JP 2010054360W WO 2011114429 A1 WO2011114429 A1 WO 2011114429A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
station
base station
transmission
relay station
Prior art date
Application number
PCT/JP2010/054360
Other languages
English (en)
French (fr)
Inventor
好明 太田
田島 喜晴
田中 良紀
義博 河▲崎▼
大渕 一央
勝正 杉山
政世 清水
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2012505340A priority Critical patent/JP5429359B2/ja
Priority to PCT/JP2010/054360 priority patent/WO2011114429A1/ja
Publication of WO2011114429A1 publication Critical patent/WO2011114429A1/ja
Priority to US13/618,413 priority patent/US9118479B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a mobile communication system.
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • LTE-A LTE-Advanced
  • LTE-A a mobile communication system based on LTE
  • LTE-A aims at a downlink peak transmission rate of 1 Gbps and an uplink peak transmission rate of 500 Mbps
  • various new technologies such as a radio access method and a network architecture are being studied (for example, non-patent documents). 1).
  • LTE-A is a system based on LTE, it is required to maintain compatibility with LTE.
  • a method of introducing a relay station is being studied in order to support communication between a base station and a mobile station.
  • the relay station is interposed between the conventional base station and the mobile station and is installed to support high-speed data communication.
  • a relay station for example, a relay station that only amplifies a radio signal (data signal and noise) (repeater method), a relay station that can amplify only a data signal from a radio signal (decode and forward method)
  • L2 Layer 2
  • L2 relay station L2 relay station
  • L3 Radio Resource Control
  • a method of deploying relay stations in cells is also being studied.
  • a deployment method installed at the cell edge a method of deploying a relay station in a range (dead zone) where radio waves do not reach, and the like have been studied.
  • HARQ is a data retransmission method in which a retransmission pattern is determined on the reception side in consideration of decoding failure data combined with retransmission data without being discarded.
  • Scheduling is roughly divided into two methods, Centralized Scheduling (centralized scheduling) and Distributed ⁇ ⁇ ⁇ ⁇ Scheduling (distributed scheduling).
  • Centralized Scheduling a base station that controls a relay station executes scheduling of data transmission related to mobile stations under the base station and mobile stations under the relay station.
  • Distributed Scheduling the base station that controls the relay station only performs data transmission scheduling for the mobile station connected to the base station itself, and the relay station schedules data transmission for the mobile station connected to the base station itself. Run only.
  • radio resource management is controlled by the RRC layer of the base station.
  • the relay station is also involved in communication. For this reason, the management location and management method of a radio
  • an L3 relay station having a function equivalent to one or more base stations can be installed in a cell of the base station.
  • the base station that controls the relay station is called a donor base station (Donor eNB).
  • Donor eNB the base station that controls the relay station
  • the donor base station and the relay station can communicate at the RRC layer. For this reason, efficient radio resource management can be implemented by cooperatively managing radio resources between RRC layers.
  • Dynamic Scheduling is used for non-real-time communication such as web browsing.
  • PDCCH Physical-Downlink-Control-Channel
  • SPS Semi-persistent Scheduling
  • VoIP Voice over IP
  • HARQ control methods There are the following control methods as HARQ control methods.
  • the Asynchronous HARQ method asynchronous HARQ method
  • the Synchronous HARQ method synchronous HARQ method
  • LTE-A in order to maintain compatibility with LTE, at least LTE mobile stations are required to support the asynchronous HARQ scheme and the synchronous HARQ scheme described above.
  • the asynchronous HARQ method is a method in which an acknowledgment (ACK or NACK) for downlink transmission is received after 4 ms, and if the acknowledgment is NACK, downlink retransmission is performed at a free timing.
  • the base station is required to always notify the mobile station of data transmission using the PDCCH.
  • the asynchronous HARQ scheme is a method in which an acknowledgment for uplink transmission is received after 4 ms, and if the acknowledgment is NACK, uplink retransmission is further executed after 4 ms.
  • the base station is not required to notify the mobile station of data transmission through the PDCCH. In other words, the mobile station can retransmit the data without receiving notification by PDCCH.
  • data retransmission can be performed without PDCCH, and signaling overhead can be reduced.
  • LTE-A when a relay station is involved in data communication between a base station and a mobile station, data processing time at the relay station occurs. Therefore, it has been desired to develop a method for maintaining the timing defined by the synchronous HARQ method or the asynchronous HARQ method as described above. That is, when a relay station is interposed between a mobile station and a base station, compatibility with the synchronous HARQ scheme and the asynchronous HARQ scheme specified by LTE may not be maintained.
  • FIG. 20 is a diagram illustrating an example of HARQ timing in uplink communication (uplink communication).
  • FIG. 20 illustrates an example in which data is transmitted from a mobile station (UE: User Equipment) to a donor base station (DeNB) via a relay station (RN: Relay Node).
  • UE User Equipment
  • DeNB donor base station
  • RN Relay Node
  • the radio resource (transmission timing) used by the mobile station (UE) and the relay station (RN) for data transmission is determined in advance by SPS.
  • the UE sends data (data 1) to the relay station at the timing according to the SPS, that is, at the subframe number “0” (1 subframe is 1 ms) between the mobile station and the relay station. Send.
  • the relay station relays data 1 from the mobile station to the donor base station at the timing according to the SPS, that is, the subframe number “8” between the relay station and the donor base station.
  • the donor base station returns an acknowledgment (ACK or NACK) to the relay station with a subframe number “12” 4 ms after the subframe number “8” according to the synchronous HARQ scheme.
  • ACK or NACK acknowledgment
  • the donor base station returns a NACK (HARQ NACK) message indicating the failure to the relay station with a subframe number “12” according to the synchronous HARQ scheme.
  • the relay station transfers the HARQ NACK message to the mobile station with the subframe number “12” between the mobile station and the relay station corresponding to 4 ms after the subframe number “12” according to the synchronous HARQ scheme. Therefore, the mobile station receives the HARQ NACK message for data 1 with subframe number “12”. Then, the mobile station retransmits data 1 with a subframe number “16” after 4 ms according to the synchronous HARQ scheme.
  • the HARQ NACK message (HARQ feedback) from the donor base station should be received at the subframe number “4” 4 ms after the subframe number “0”.
  • the retransmission of data 1 from the mobile station is performed at subframe number “8” 4 ms after subframe number “4”.
  • FIG. 21 is a diagram illustrating an example of HARQ timing in downlink communication (downlink communication).
  • FIG. 21 illustrates an example in which data is transmitted from a donor base station (DeNB) to a mobile station (UE: User Equipment) via a relay station (RN: Relay Node).
  • the donor base station transmits data for the mobile station every 10 subframes according to the SPS.
  • data (data 1) from the donor base station is transmitted to the relay station with the subframe number “0” between the relay station and the base station.
  • the relay station transfers data 1 to the mobile station with a subframe number “4” (subframe number “0” between the mobile station and the relay station) after 4 ms.
  • the mobile station returns an acknowledgment (ACK or NACK) to the relay station with a subframe number “4” 4 ms after the subframe number “0” according to the asynchronous HARQ scheme. At this time, if decoding of data 1 (normal reception) fails, a NACK (HARQ NACK) message is returned.
  • ACK acknowledgment
  • NACK HARQ NACK
  • the relay station returns a NACK message to the donor base station with a subframe number “12” (between the relay station and the donor base station) after 4 ms according to the asynchronous HARQ method.
  • the donor base station retransmits data 1 to the relay station at a free timing, for example, subframe number “16” as shown in FIG.
  • the relay station resends data 1 to the mobile station after 4 ms.
  • the donor base station when the relay station is interposed, the donor base station must receive the confirmation response at the timing according to the asynchronous HARQ scheme (original reception timing is the subframe number “4”) even in the downlink communication. I could not.
  • One aspect of the present invention has been made in view of the above problems, and provides a technique capable of executing an appropriate retransmission procedure even when a relay station is interposed in communication between a mobile station and a base station. With the goal.
  • One aspect of the present invention is a mobile communication system including a base station and a relay station that relays data transmitted and received between the base station and the mobile station.
  • the base station passes through the relay station.
  • a first scheduler that schedules the initial transmission of the data transmitted and received between the base station and the mobile station, and a radio resource that is used periodically for the initial transmission of the data.
  • a first manager that manages the radio resources, wherein the relay station transmits a message for confirming the necessity of retransmission of the data, and schedules a retransmission of the data, a second scheduler,
  • a second management unit that manages radio resources used for transmitting the message and retransmitting the data.
  • an appropriate retransmission procedure can be executed even when a relay station is interposed in communication between a mobile station and a base station.
  • FIG. 1 shows a configuration example of a mobile communication system according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a base station-relay station interface (Un interface) and a relay station-mobile station interface (Uu interface).
  • FIG. 3 is a diagram illustrating an example of HARQ timing in uplink communication (uplink communication) in the embodiment.
  • FIG. 4 is a diagram illustrating an example of HARQ timing in downlink communication (downlink communication) in the embodiment.
  • FIG. 5 shows an example of a radio resource setting procedure of the Uu interface of the base station 10 in the embodiment.
  • FIG. 6 shows a format example of the RadioResourceConfigDedicated message.
  • FIG. 7 shows a format example of sps-Config.
  • FIG. 8 shows a configuration example of the base station apparatus.
  • FIG. 9 is a flowchart illustrating an operation example of the base station apparatus when setting up the relay station described in FIG.
  • FIG. 10 is a flowchart showing an operation example (uplink SPS communication process) of the base station apparatus during the uplink SPS communication described in FIG.
  • FIG. 11 is a flowchart illustrating an operation example (downlink SPS communication process) of the base station apparatus during the downlink SPS communication described in FIG.
  • FIG. 12 is a diagram illustrating a configuration example of the relay station apparatus.
  • FIG. 13 is a flowchart showing an operation example (setup process) at the time of setting up the relay station apparatus.
  • FIG. 14 is a flowchart showing an operation example (uplink communication processing) of the relay station apparatus during uplink SPS communication.
  • FIG. 15 is a flowchart illustrating an operation example (downlink communication processing) of the relay station device during downlink SPS communication.
  • FIG. 16 is a diagram illustrating a configuration example of a mobile station apparatus.
  • FIG. 17 is a flowchart showing an operation example (setup process) of the mobile station apparatus at the time of setup of the relay station.
  • FIG. 18 is a flowchart illustrating an operation example (uplink SPS communication process) of the mobile station apparatus during uplink SPS communication.
  • FIG. 19 is a flowchart showing an operation example (downlink SPS communication process) of the mobile station apparatus during downlink SPS communication.
  • FIG. 20 shows an example of uplink SPS communication when a relay station is interposed.
  • FIG. 21 shows an example of downlink SPS communication when a relay station is interposed.
  • FIG. 1 shows a configuration example of a mobile communication system according to an embodiment of the present invention.
  • the mobile communication system includes a donor base station (DeNB) 10 (hereinafter simply referred to as “base station 10”) and one or more relay stations (RN) 20 controlled by the base station 10.
  • Base station 10 donor base station
  • RN relay stations
  • FIG. 1 shows three relay stations 20A, 20B, and 20C (hereinafter referred to as “relay station 20” when the relay stations 20A to 20C are not distinguished) are shown.
  • the number of installations is arbitrary.
  • the relay station 20 is installed at an appropriate position within the communication range (cell) C1 of the base station 10.
  • Each of relay stations 20A, 20B, and 20C has communication ranges (cells) C2, C3, and C4, communicates with mobile stations (UE) 30 that are located in the cell, and communicates between mobile station 30 and base station 10 Communication can be relayed.
  • the mobile station 30A located in the cell C2 of the relay station 20A, the mobile station 30B located in the cell C3 of the relay station 20B, and the mobile station 30C located in the cell C4 of the relay station 20C. are illustrated.
  • the mobile stations 30A to 30C are not distinguished from each other, they are referred to as “mobile station 30”.
  • the mobile station 30 supports LTE.
  • the relay station 20 is a relay station (L3 relay station) that implements an L3 (RRC (Radio Resource Control) protocol) function.
  • L3 Radio Resource Control
  • Such cells (C2 to C4) of the relay station 20 appear as cells independent from the cell C1 of the base station 10 when viewed from the mobile station 30. Therefore, when viewed from the mobile station 30 that supports LTE, the relay station 20 looks like one base station.
  • the base station 10 and the relay station 20 are connected by a network side Un interface, and the relay station 20 and the mobile station 30 are connected by a user side Uu interface. .
  • the base station 10 manages scheduling of initial transmission of data (transmission / reception timing of initial transmission data) and radio resources of the Un interface (between the base station and the relay station) related to the initial transmission.
  • the relay station 20 allocates radio resources of the Uu interface (between the relay station and the mobile station) to the mobile station 30 in accordance with the initial transmission scheduling managed by the base station 10. Further, the relay station 20 manages scheduling for data retransmission (acknowledgment message, retransmission data transmission / reception timing) and radio resources related to data retransmission.
  • the mobile station 30 connected to the relay station 20 and other mobile stations connected to the base station 10 as a result of scheduling radio resources for the mobile station 30 independently by the base station 10 and the relay station 20 It is possible that the same radio resource (frequency and time axis) is allocated to each of 30 and each mobile station performs uplink transmission. In this case, the radio waves emitted from the mobile stations 30 become interference waves with each other.
  • the radio resource used by each mobile station 30 is allocated by the SPS, each mobile station continues to use the radio resource in the medium to long term, so that medium and long term interference continues, There was a possibility that the communication efficiency of the mobile station 30 would deteriorate.
  • the radio resources used for the initial transmission of data according to the SPS are managed by the base station 10 and the radio resources used for data retransmission according to the SPS. Resources are managed by the relay station 20.
  • FIG. 3 is a diagram illustrating an example of HARQ timing in uplink communication (uplink communication) in the present embodiment.
  • FIG. 3 shows an example in which data is transmitted from the mobile station (UE) 30 to the base station (DeNB) 10 via the relay station (RN) 20.
  • UE mobile station
  • DeNB base station
  • RN relay station
  • the base station 10 used for the initial transmission of data transmitted from the mobile station 30 to the base station 10 via the relay station 20 according to the SPS performed by the base station 10. Radio resources are allocated to the relay station 20 and the mobile station 30. On the other hand, scheduling for retransmission of the data is performed by the relay station 20, and radio resources used according to the scheduling result of the relay station 20 are managed by the relay station 20 and allocated to the mobile station 30 and the base station 10.
  • the initial transmission data transmitted from the mobile station 30 to the base station 10 is transmitted and received using the SPS scheduling result in the base station 10 and the radio resources allocated according to the scheduling result.
  • the mobile station 30 relays at the transmission timing according to the SPS, that is, the subframe number (transmission timing) “0” (1 subframe is 1 ms) in the Uu interface between the mobile station and the relay station.
  • Data (data 1) is transmitted to the station 20.
  • the relay station 20 confirms the acknowledgment message with the subframe number “4” so that the mobile station 30 can receive the acknowledgment message (ACK or NACK) after 4 ms has elapsed in accordance with the synchronous HARQ scheme applied to uplink communication in LTE. Reply. At this time, if decoding of data 1 (normal reception) fails, the relay station 20 returns a HARQ NACK message to the mobile station 30.
  • the mobile station 30 that has received the HARQ NACK message with the subframe number “4” receives the subframe number after 4 ms from the subframe number “4” according to the scheduling and radio resource allocation performed by the relay station 20 according to the synchronous HARQ scheme.
  • data 1 is retransmitted to the relay station 20.
  • the relay station 20 When the relay station 20 succeeds in decoding (normal reception) of the data 1, the relay station 20 returns a confirmation response indicating a success and the HARQ ACK message to the mobile station 30 with the subframe number “12” after 4 ms according to the synchronous HARQ method.
  • the relay station 20 transmits the retransmitted data 1 to the base station 10 with the Un interface subframe number (transmission timing) “16” corresponding to the Uu interface subframe number “12”.
  • the base station 10 returns an acknowledgment message (HARQ ACK in FIG. 3) to the relay station 20 with a subframe number “0” after 4 ms in accordance with the synchronous HARQ method.
  • the base station 10 manages scheduling and radio resources for initial transmission of data, a plurality of different mobile stations 30 can simultaneously transmit the same radio resources (frequency, The transmission timing and radio resource allocation of each mobile station 30 can be determined so as not to use the (time axis).
  • the transmission timing and radio resource allocation of each mobile station 30 can be determined so as not to use the (time axis).
  • scheduling and radio resources for data retransmission are managed by the relay station 20.
  • the relay station 20 it is possible to transmit an acknowledgment message and retransmission data transmitted for data retransmission at a desired timing.
  • the mobile station 30 (LTE terminal) performs a retransmission procedure according to the synchronous HARQ scheme supported by LTE. be able to. That is, compatibility (backward compatibility) can be maintained for the mobile station 30 which is an LTE terminal.
  • the radio resources for retransmission that the relay station 20 allocates to the mobile station 30 can be determined in consideration of the cell communication environment of the relay station 20. Thereby, even if the relay station 20 is interposed between the base station 10 and the mobile station 30, proper data retransmission can be performed.
  • the technique applied in uplink communication is applied. That is, the base station 10 performs scheduling (for example, SPS) related to the initial transmission of data and manages the radio resources for the initial transmission. On the other hand, scheduling for data retransmission is performed by the relay station 20, and the radio resource used for data retransmission is managed by the relay station 20.
  • scheduling for example, SPS
  • FIG. 4 is a diagram illustrating an example of HARQ timing in downlink communication (downlink communication) in the embodiment.
  • FIG. 4 shows an example in which data is transmitted from the base station (DeNB) 10 to the mobile station (UE) 30 via the relay station (RN) 20.
  • DeNB base station
  • UE mobile station
  • RN relay station
  • the base station 10 transmits data for the mobile station 30 every 10 subframes according to SPS.
  • the base station 10 transmits data (data 1) to the relay station 20 using the initial transmission radio resource assigned by the base station 10, that is, the subframe number “0” between the relay station and the base station (Un interface).
  • the relay station 20 transfers the data 1 to the mobile station 30 with the subframe number “4” (subframe number “0” between the mobile station and the relay station) after 4 ms.
  • the mobile station 30 sends an acknowledgment (ACK or NACK) at the transmission timing according to the asynchronous HARQ scheme according to the scheduling performed at the relay station 20, that is, the subframe number “4” 4 ms after the subframe number “0”. Return to relay station 20.
  • an ACK (HARQ ACK) message is returned on the assumption that data 1 has been successfully received.
  • the mobile station 30 returns an acknowledgment message to the relay station 20 with the subframe number “4” after 4 ms has passed, according to the asynchronous HARQ method.
  • a NACK message indicating a reception failure is returned to the relay station 20.
  • the relay station 20 retransmits the data 1 to the mobile station 30 according to the asynchronous HARQ scheme at a free timing, in the example of FIG. 4, with the subframe number “8”.
  • the base station 10 transmits the next data (data 2) to the relay station 20 with the subframe number “10”.
  • the relay station 20 transmits an acknowledgment message (HARQ ACK) after 4 ms and transmits data 2 to the mobile station 30 according to the asynchronous HARQ method.
  • HARQ ACK acknowledgment message
  • the mobile station 30 transmits an acknowledgment message (ACK) for the retransmission data 1 with the subframe number “12” and an acknowledgment message (ACK) for the data 2 with the subframe number “14” according to the asynchronous HARQ scheme.
  • ACK acknowledgment message
  • the base station 10 manages the radio resources for the initial transmission, so that the base station 10 and the relay station 20 use the same radio resources at the same time as in the uplink communication. Can avoid medium to long-term interference.
  • the retransmission radio resources are managed by the relay station 20, so that backward compatibility can be maintained with respect to the HARQ timing. That is, a HARQ feedback (acknowledgment response message) corresponding to the asynchronous HARQ scheme can be returned to the base station 10.
  • the base station 10 when the base station 10 receives the acknowledgment message (HARQ ACK) of the successful reception for data 1, data retransmission occurs between the relay station 20 and the mobile station 30. Regardless of whether or not the data transmission of the data 1 to the mobile station 30 is successful, the next data 2 is transmitted. Even in this case, the mobile station 30 can receive the data 1 by performing an appropriate retransmission procedure between the mobile station 30 and the relay station 20, while the base station 10 determines in advance.
  • the acknowledgment message can be received at the specified timing.
  • This embodiment shows a method in which the base station 10 sets radio resources of the Uu interface when setting up the relay station 20.
  • FIG. 5 shows an example of a radio resource setting procedure of the Uu interface of the base station 10 in the embodiment.
  • Application Part (AP: application part) is mounted on the base station 10 and the relay station 20.
  • AP application part
  • an X1 AP defined by LTE can be exemplified as the AP.
  • the AP is not limited to the X1 AP, and a new AP according to LTE-A can be specified.
  • any protocol may be used as long as it is the highest layer (application) that performs various types of control of the radio link between the base station 10 and the relay station 20.
  • the relay station 20 sends an RRC connection request (RRC Connection Request) to the base station 10 in the RRC layer (S1).
  • the base station 10 returns an RCC connection setup (RRC Connection Setup) to the relay station 20 (S2).
  • the relay station 20 returns RRC setup completion (RRC Connection Setup Complete) to the base station 10 (S3).
  • the communication in the above steps S1 to S3 is a procedure (procedure) for setting up the relay station 20.
  • the base station 10 transmits an AP message request (radio resource allocation request), which is an AP layer message, to the relay station 20 (S4), and sets Uu RRC (Uu interface radio resource). That is, the base station 10 designates a radio resource allocation (SPS resource) to be used in the medium to long term for the initial transmission of data by the relay station 20 whose setup is completed, and notifies the relay station 20 of information on the radio resource. .
  • AP message request radio resource allocation request
  • Uu RRC User interface radio resource
  • the base station 10 uses the RadioResourceConfigDedicated message (FIG. 6) defined by LTE, and uses the control information called sps-Config (FIG. 7) included in the RadioResourceConfigDedicated message to perform radio regarding SPS.
  • Resource setting can be performed for the relay station 20.
  • a message different from the RadioResourceConfigDedicated message can be applied for radio resource setting.
  • the relay station receives the RadioResourceConfigDedicated message, the relay station performs SPS setting of the radio resource of the Un interface according to the contents specified in sps-config.
  • the relay station returns a response message (AP Message Response) (S5).
  • AP Message Response AP Message Response
  • the relay station 20 uses the RRC Connection Reconfiguration message (assignment request message) to determine the initial transmission radio resources assigned by the base station 10,
  • the mobile station 30 is assigned (S6).
  • the RRC Connection Reconfiguration message includes the RadioResourceConfigDedicated message including the above-described sps-config, and radio resource allocation based on the SPS performed by the base station 10 is performed for the mobile station 30.
  • the mobile station 30 sets the transmission timing and radio resource according to the allocation request (S6), and returns a response message (RRC Connection Reconfiguration Complete) (S7).
  • the relay station 20 can allocate the radio resources for initial transmission determined by the base station 10 to the mobile station 30.
  • FIG. 8 is a diagram illustrating a configuration example of the base station apparatus 10A.
  • the base station apparatus 10A includes a transmission / reception antenna 11, a transmission / reception unit 12 connected to the transmission / reception antenna 12, a scheduler unit 13 (first scheduler) connected to the transmission / reception unit 13, and an interface with a higher-level station.
  • a control unit (controller) 15 connected to the transmission / reception unit 12, the scheduler unit 13, and the interface unit 14.
  • the control unit 15 includes functions of a radio resource management unit (SPS resource management unit) 16 (first management unit), a scheduler control unit 17, an interface management unit (application unit: AP) 18, and the like.
  • SPS resource management unit radio resource management unit
  • the control unit may be realized by a processor, and the control unit may execute a control operation by operating according to a program.
  • the interface unit 14 controls the highest protocol layer and transmits and receives data.
  • the scheduler unit 13 temporarily stores the received data in a buffer (provided in the scheduler unit 13), and executes data scheduling in accordance with an instruction from the control unit 15.
  • the transmission / reception unit 12 performs wireless transmission / reception of data.
  • the control unit 15 executes various controls related to wireless communication.
  • the scheduler control unit 17 determines a scheduling algorithm and controls the order of data transmission. For this reason, the scheduler control unit 17 controls the scheduler unit 13, and the scheduler control unit 17 performs data retransmission when a data error (decoding failure) occurs.
  • the interface management unit (application unit) 18 is the highest protocol layer installed in the base station apparatus 10A, and manages the exchange of control information with other stations. Management is performed by exchanging AP messages.
  • the radio resource management unit (SPS resource management unit) 16 performs radio resource management control. That is, the radio resource management unit 16 performs management control of radio resources related to SPS.
  • FIG. 9 is a flowchart showing an operation example of the base station apparatus 10A at the time of setup of the relay station described in FIG.
  • the control unit 15 of the base station apparatus 10A receives RRC Connection Request from the relay station 20 (step S001).
  • the control unit 15 transmits RRC Connection Setup to the relay station 20 (step S002).
  • the control unit receives RRC Connection Setup Complete (step S003).
  • the radio resource management unit 16 designates the SPS resource by the AP message and notifies the relay station 20 (step S004).
  • the radio resource management unit 16 receives an AP message response from the relay station 20 (step S005), and ends the process.
  • FIG. 10 is a flowchart showing an operation example (uplink SPS communication process) of the base station apparatus 10A at the time of the uplink SPS communication described in FIG.
  • the transmission / reception unit determines whether uplink data (uplink communication data) has been received (step S101). If uplink data has not been received, the process ends.
  • the scheduler control unit 17 determines whether or not reception of the uplink data has failed (step S102). At this time, if uplink data reception has failed, the radio resource management unit 16 sets radio resources for retransmission (step S103), and the scheduler unit 13 sets. A NACK is returned (step S105).
  • the scheduler unit 13 returns an ACK (step S104). After completion of steps S104 and S105, the upstream SPS communication process ends.
  • FIG. 11 is a flowchart showing an operation example (downlink SPS communication process) of the base station apparatus 10A during the downlink SPS communication described in FIG.
  • the transmission / reception unit determines whether downlink data (downlink communication data) has been received (step S111). If downlink data has not been received, the process ends.
  • the scheduler control unit 17 determines whether or not transmission of the downlink data has failed (step S112). At this time, if downlink data transmission has failed, the radio resource management unit 16 sets radio resources for retransmission (step S113), and the scheduler unit 13 sets. NACK is returned (step S115).
  • the scheduler unit 13 returns an ACK (step S104). After the completion of steps S114 and S115, the downlink SPS communication process ends.
  • FIG. 12 is a diagram illustrating a configuration example of the relay station device 20A.
  • the relay station device 20A includes a transmission / reception antenna 21A on the user side (terminal side), a transmission / reception antenna 21B on the network side (base station side), a transmission / reception unit 22A connected to the transmission / reception antenna 21A, and a transmission / reception antenna 21B. And a transmission / reception unit 22B connected to.
  • the relay station device 20A includes a scheduler unit 23 (second scheduler) connected to the transmission / reception unit 22A, an interface unit 24, a transmission / reception unit 22A, the scheduler unit 23, and a control unit 25 connected to the interface unit 24. It has.
  • the control unit 25 includes a radio resource management unit (SPS initial transmission management unit) 26A, a radio resource management unit (SPS retransmission management unit) 26B (second management unit), a scheduler control unit 27, an interface management unit (application Part: AP) 28.
  • SPS initial transmission management unit 26A
  • SPS retransmission management unit 26B
  • scheduler control unit 27
  • interface management unit application Part: AP
  • the radio resource control unit (SPS initial transmission management unit) 26A performs radio resource management control. In particular, in the case of SPS, management control of radio resources for initial transmission is performed.
  • the radio resource manager (SPS retransmission manager) 26B performs radio resource management control. In particular, in the case of SPS, retransmission radio resource management control is performed.
  • Each block except the radio resource control units 26A and 26B has substantially the same function as the block of the same name in the base station apparatus 10A.
  • FIG. 13 is a flowchart showing an operation example (setup process) of the relay station device 20A when the relay station 20 is set up.
  • the control unit 25 transmits RRC Connection Request to the base station 10 (step S201).
  • control unit 25 receives RRC Connection Setup from the base station 10 (step S202).
  • control unit transmits RRC Connection Setup Complete to the base station 10 (step S203).
  • radio resource management unit 26A receives an SPS resource designation from the base station 10 using an AP message (step S204).
  • the radio resource management unit 26A transmits an AP message response to the base station 10 (step S205).
  • the control unit 15 designates the SPS resource that is initially transmitted by RRC Connection Reconfiguration to the mobile station 30 (step S206). Thereafter, the control unit 15 receives Connection Reconfiguration Complete from the mobile station 30 (step S207), and ends the relay station setup process.
  • FIG. 14 is a flowchart showing an operation example (uplink communication processing) of the relay station 20 during uplink SPS communication.
  • the transmission / reception unit 21A determines whether uplink data has been received (step S211). If uplink data has not been received, the process ends.
  • the scheduler control unit 27 determines whether the reception of the uplink data has failed (step S212). At this time, if reception of uplink data is unsuccessful, the SPS retransmission management unit 26B notifies the radio resource for data retransmission (step S213), and the scheduler unit 23 returns NACK to the mobile station 30. (Step S214). Thereafter, the process returns to step S211.
  • the scheduler unit 23 returns an ACK to the mobile station 30 (step S215).
  • the transmission / reception unit 22B determines whether uplink data has been transmitted (step S216). At this time, if uplink data has not been transmitted, the process ends. On the other hand, when the uplink data is transmitted, the scheduler control unit 27 determines whether or not the transmission is failed (step S217).
  • the radio resource management unit (SPS retransmission management unit) 26B sets a radio resource for retransmission to the mobile station 30 (step S218), and the scheduler unit 27 returns NACK. (Step S219).
  • the scheduler unit 27 returns an ACK. After the completion of steps S219 and S220, the uplink SPS communication process ends.
  • FIG. 15 is a flowchart showing an operation example (downlink communication processing) of the relay station 20 during downlink SPS communication.
  • the transmission / reception unit 21B determines whether downlink data has been received (step S221). If downlink data has not been received, the process ends.
  • the scheduler control unit 27 determines whether or not the reception of the downlink data has failed (step S222). At this time, if reception of the downlink data is unsuccessful, the radio resource management unit (SPS retransmission management unit) 26B sets radio resources for data retransmission (step S213), and the scheduler unit 23 receives NACK. It returns to the base station 10 (step S224). Thereafter, the process returns to step S221.
  • SPS retransmission management unit radio resource management unit
  • the scheduler unit 23 determines whether downlink data has been transmitted (step S226). At this time, if downlink data has not been transmitted, the process ends. On the other hand, when downlink data is transmitted, the scheduler control unit 27 determines whether or not the transmission has failed (step S227).
  • the radio resource management unit (SPS retransmission management unit) 26B sets a radio resource for retransmission to the base station 10 (step S228), and the scheduler unit 27 returns NACK. (Step S229).
  • the scheduler unit 27 returns an ACK to the base station 10.
  • FIG. 16 is a diagram illustrating a configuration example of the mobile station device 30A.
  • the mobile station device 30 ⁇ / b> A includes a transmission / reception antenna 31, a transmission / reception unit 32 connected to the transmission / reception antenna 31, and a control unit 33 connected to the transmission / reception unit 32.
  • the control unit 33 includes a radio resource management unit (SPS resource management unit) 34.
  • SPS resource management unit radio resource management unit
  • the transmission / reception unit 32 performs wireless transmission / reception of data.
  • the control unit 33 executes various controls related to wireless communication. There are a case where the direct control is performed from the relay station 20 as indicated by a solid line arrow shown in FIG. 16 and a case where the control is performed indirectly from the base station 10 as indicated by a dotted line arrow. 20 is not conscious of which is controlled.
  • the radio resource management unit (SPS resource management unit) 34 performs radio resource management control. In particular, when scheduling of radio resources is performed by SPS, management control of radio resources for retransmission is performed.
  • FIG. 17 is a flowchart showing an operation example (setup process) of the mobile station device 30A when the relay station 20 is set up.
  • the control unit 33 receives the SPS resource transmitted for the first time in RRC Connection Reconfiguration (step S301). If it will be in the state which secured the SPS resource for initial transmission according to RRC
  • FIG. 18 is a flowchart showing an operation example (uplink SPS communication process) of the mobile station device 30A during uplink SPS communication.
  • the transmission / reception unit 32 determines whether uplink data has been transmitted (step S311). If uplink data has not been transmitted, the process ends.
  • the control unit 33 determines whether the transmission has failed (step S312). If the transmission is unsuccessful, the radio resource management unit 34 sets a retransmission resource (step S313). Thereafter, the control unit 33 issues a retransmission instruction, and the transmission / reception unit 32 retransmits the uplink data. On the other hand, if the transmission is not unsuccessful, that is, if the transmission is successful, the control unit instructs the initial transmission of the next uplink data (step S315), and the transmission / reception unit 32 transmits the next uplink data. Do. When Steps S314 and S315 are finished, the uplink SPS communication process is finished.
  • FIG. 19 is a flowchart showing an operation example (downlink SPS communication process) of the mobile station device 30A during downlink SPS communication.
  • the transmission / reception unit 32 determines whether downlink data has been received (step S321). If downlink data has not been received, the process ends.
  • the control unit 33 determines whether or not the reception of the downlink data has failed (step S322). At this time, if reception is unsuccessful, the control unit 33 instructs NACK transmission (step S323), and the transmission / reception unit 32 transmits NACK. Thereafter, the radio resource management unit 34 sets radio resources for receiving data to be retransmitted.
  • step S325 the control unit 33 issues an ACK transmission instruction (step S325), and the transmission / reception unit 32 transmits an ACK.
  • step S324 or S325 the downlink SPS communication process ends.
  • the blocks of the base station device 10A, the relay station device 20A, and the mobile station device 30A described above can be realized using dedicated or general-purpose hardware.
  • some or all of the functions realized by each block may be realized by a processor such as a CPU or DSP executing a program stored in a storage device such as a memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 基地局と、当該基地局と移動局との間で送受信されるデータを中継する中継局とを含む移動通信システムであって、基地局は、中継局を介して基地局と移動局との間で送受信されるデータの初送のスケジューリングを行う第1のスケジューラと、データの初送に使用される無線リソースとして、周期的に使用される予め定められた無線リソースを管理する第1管理部とを含み、中継局は、データの再送の要否を確認するためのメッセージの送信、及びデータの再送のスケジューリングを行う第2のスケジューラと、上記メッセージの送信及びデータの再送に使用される無線リソースを管理する第2の管理部とを含む。

Description

移動通信システム
 本発明は、移動通信システムに関する。
 セルラ型の移動通信は、UMTS(Universal Mobile Telecommunication System)からLTE(Long Term Evolution)に進化した。LTEでは、無線アクセス技術としてOFDM(Orthogonal Frequency Division Multiplexing)をベースとした方式が規定されている。LTEによれば、下りのピーク伝送レートは100Mbps以上、上りのピーク伝送レートは50Mbps以上の高速無線パケット通信が可能となる。
 現在、国際標準化団体である3GPP(3rd Generation Partnership Project)では、さらなる高速通信の実現にむけて、LTEをベースとした移動通信システムLTE-A(LTE-Advanced)の検討が始めている。LTE-Aでは、下りのピーク伝送レートは1Gbps、上りのピーク伝送レートは500Mbpsを目指しており、無線アクセス方式やネットワークアーキテクチャなど、様々な新技術の検討が行われている(例えば、非特許文献1)。一方で、LTE-AはLTEをベースとしたシステムとなるため、LTEとの互換性を保つことが要求される。
 高速データ通信を行う方法の一つとして、基地局と移動局の通信をサポートするために、中継局を導入する方法が検討されている。中継局は、従来の基地局と移動局間の間に介在し、高速データ通信をサポートするために設置される。中継局として、例えば、無線信号(データ信号と雑音)を増幅するだけの中継局(リピータ方式)、無線信号の中からデータ信号だけを増幅することが可能となる中継局(デコード&フォワード方式)、レイヤ2(L2:(MAC(Media Access Control)レイヤなど))の機能を実装した中継局(L2中継局)、及びレイヤ3(L3(RRC(Radio Resource Control)レイヤ))の機能を実装し、基地局と同等の機能を持つ局として振る舞う中継局(L3方式)が検討されている。
 なお、中継局をセルに展開する方法も検討されている。例えば、セル端のスループットを増加させることを目的としてセル端に設置する展開方法や、電波が到達しない範囲(不感地帯)に中継局を展開する方法などが検討されている。
 中継局を介したデータ通信では、従来の基地局と移動局とのデータ通信に対し、中継局が関わる。このため、中継局が考慮されたデータ送信のスケジューリングのために検討すべき事項として、無線リソースの管理方法と、HARQ(Hybrid Automatic Repeat Request)の制御方法とが挙げられる。ここに、HARQは、受信側で復号失敗データが破棄されずに再送データと組み合わせて復号されることを考慮した上で再送パターンを決定する、データの再送方式である。
 スケジューリングの実行場所という観点において、スケジューリングは、Centralized Scheduling(集中型スケジューリング)およびDistributed Scheduling(分配型スケジューリング)という二つの方式に大別される。Centralized Schedulingでは、中継局を制御する基地局が、基地局配下の移動局および中継局配下の移動局に関するデータ送信のスケジューリングを実行する。一方、Distributed Schedulingでは、中継局を制御する基地局は基地局自身に接続している移動局に関するデータ送信のスケジューリングのみを実行し、中継局は自身に接続している移動局に関するデータ送信のスケジューリングのみを実行する。
 無線リソースの管理方法について、LTEでは無線リソースの管理は基地局のRRCレイヤで制御される。これに対し、LTE-Aでは中継局も通信に関わる。このため、無線リソースの管理場所や管理方法が検討される。LTE-Aでは、基地局のセル内に、1以上の基地局と同等の機能を有するL3方式の中継局を設置することができる。ここで、中継局を制御する基地局は、ドナー基地局(Donor eNB)と呼ばれる。ドナー基地局と中継局とは、RRCレイヤでの交信が可能である。このため、RRCレイヤ間で無線リソースの管理を協調して行うことによって、効率的な無線リソース管理を実施することができる。
 また、スケジューリングの無線リソース管理方法としては、Dynamic Scheduling(動的スケジューリング)およびSemi-persistent Scheduling(SPS:準永続的スケジューリング)がある。Dynamic Schedulingは、web閲覧のようなノンリアルタイム型の通信で使われる。Dynamic Scheduling では、上り(アップリンク)及び下り(ダウンリンク)通信の双方において、前者は、上り・下り通信ともにPDCCH(Physical Downlink Control Channel)で利用している無線リソースが指定される。これに対し、Semi-persistent Scheduling(SPS)は、VoIP(Voice over IP)に代表されるリアルタイム型の通信で使われる。SPSでは、通信が実際に実行される前から、或る定められた期間、無線リソースが固定的に割り当てらレ留。例えば、VoIP通信では、20ms毎にデータの初送が発生する。このため、20ms毎に利用すべき無線リソースが通知される。但し、データの再送が実行される場合には、Dynamic Schedulingが使用される。
 HARQの制御方法としては、以下の述べる制御方式がある。LTEでは、下り通信に対してAsynchronous HARQ方式(非同期HARQ方式)が採用され、上り通信に対してSynchronous HARQ方式(同期HARQ方式)が採用されている。
 LTE-Aでは、LTEとの互換性を保つため、少なくともLTEの移動局に対し、上記した非同期HARQ方式及び同期HARQ方式をサポートすることが要求される。
 非同期HARQ方式は、下り送信に対する確認応答(ACK又はNACK)は4ms後に受信し、もし確認応答がNACKであれば下り再送は自由なタイミングで実行する方法である。非同期HARQ方式では、基地局は必ずPDCCHを用いてデータの送信を移動局に通知することが要求される。一方、非同期HARQ方式は、上り送信に対する確認応答は4ms後に受信し、もし確認応答がNACKであれば上り再送はさらに4ms後に実行する、という方法である。非同期HARQ方式では、基地局はPDCCHによりデータの送信を移動局に通知ことは要求されない。言い換えれば、移動局はPDCCHによる通知を受信することなくデータを再送することができる。このように、非同期HARQ方式では、PDCCHがなくてもデータ再送が可能であり、シグナリングオーバヘッドを軽減することができる。
 LTE-Aにおいて、基地局と移動局のデータ通信に中継局が関わる場合には、中継局におけるデータの処理時間が発生する。このため、上述したような、同期HARQ方式、或いは非同期HARQ方式で規定されたタイミングを維持する方法の開発が望まれていた。すなわち、移動局と基地局との間に中継局が介在することで、LTEで規定された同期HARQ方式や非同期HARQ方式との互換性を維持できなくなる場合があった。
 図20は、上り通信(アップリンク通信)におけるHARQタイミングの例を示す図である。図20には、移動局(UE:User Equipment)から中継局(RN:Relay Node)を介してドナー基地局(DeNB)へデータが送信される場合の例が示されている。
 図20に示す例では、SPSにより、移動局(UE)及び中継局(RN)がデータ送信に利用する無線リソース(送信タイミング)は予め決められている。図20に示す例では、UEは、SPSに従ったタイミング、すなわち移動局-中継局間におけるサブフレーム番号“0”(1サブフレームは1ms)において、中継局に対してデータ(データ1)を送信する。
 中継局は、SPSに従ったタイミング、すなわち中継局-ドナー基地局間におけるサブフレーム番号“8”で、移動局からのデータ1をドナー基地局へ中継する。ドナー基地局は、同期HARQ方式に従って、サブフレーム番号“8”より4ms後のサブフレーム番号“12”で確認応答(ACK又はNACK)を中継局に返す。このとき、ドナー基地局は、データ1の復号(正常受信)に失敗した場合には、失敗を示すNACK(HARQ NACK)メッセージを、同期HARQ方式に従い、サブフレーム番号“12”で中継局に返す。
 中継局は、同期HARQ方式に従って、サブフレーム番号“12”の4ms後に相当する移動局-中継局間のサブフレーム番号“12”で、HARQ NACKメッセージを移動局に転送する。従って、移動局は、サブフレーム番号“12”で、データ1に対するHARQ NACKメッセージを受信する。そして、移動局は、同期HARQ方式に従って、4ms後のサブフレーム番号“16”で、データ1を再送する。
 ところが、LTEにおける同期HARQ方式に従えば、ドナー基地局からのHARQ NACKメッセージ(HARQ feedback)は、サブフレーム番号“0”から4ms後のサブフレーム番号“4”で受信すべきものである。そして、移動局からのデータ1の再送は、サブフレーム番号“4”から4ms経過後のサブフレーム番号“8”にて行われるものである。このように、中継局が介在した場合には、LTEの同期HARQ方式と互換性のない動作となってしまう問題があった。
 図21は、下り通信(ダウンリンク通信)におけるHARQタイミングの例を示す図である。図21には、ドナー基地局(DeNB)から中継局(RN:Relay Node)を介して移動局(UE:User Equipment)へデータが送信される場合の例が示されている。図21に示す例では、ドナー基地局は、SPSに従って、10サブフレーム毎に、移動局向けのデータを送信する。例えば、中継局-基地局間のサブフレーム番号“0”で、ドナー基地局からのデータ(データ1)が中継局に送信される。中継局は、4ms経過後のサブフレーム番号“4”(移動局-中継局間のサブフレーム番号“0”)で、データ1を移動局に転送する。
 移動局は、非同期HARQ方式に従って、サブフレーム番号“0”から4ms後のサブフレーム番号“4”で確認応答(ACK又はNACK)を中継局に返す。このとき、データ1の復号(正常受信)に失敗したならば、NACK(HARQ NACK)メッセージが返信される。
 中継局は、非同期HARQ方式に従って、4ms経過後のサブフレーム番号“12”(中継局-ドナー基地局間)で、NACKメッセージをドナー基地局に返す。ドナー基地局は、非同期HARQ方式にしたがって、自由なタイミング、例えば、図21に示すようなサブフレーム番号“16”で中継局にデータ1を再送する。中継局は、4ms経過後に移動局にデータ1を再送中継する。
 このように、中継局が介在する場合には、下り通信においても、ドナー基地局は、非同期HARQ方式に従ったタイミング(本来の受信タイミングはサブフレーム番号“4”)で確認応答を受信することができなかった。
 本発明の一態様は、上記問題に鑑みなされたものであり、移動局と基地局との通信に中継局が介在する場合においても、適正な再送手順を実行することのできる技術を提供することを目的とする。
 本発明の一態様は、基地局と、当該基地局と移動局との間で送受信されるデータを中継する中継局とを含む移動通信システムであって、上記基地局は、上記中継局を介して基地局と移動局との間で送受信される上記データの初送のスケジューリングを行う第1のスケジューラと、上記データの初送に使用される無線リソースとして、周期的に使用される予め定められた無線リソースを管理する第1管理部とを含み、上記中継局は、上記データの再送の要否を確認するためのメッセージの送信、及び上記データの再送のスケジューリングを行う第2のスケジューラと、上記メッセージの送信及び上記データの再送に使用される無線リソースを管理する第2の管理部と、を含む。
 本発明の一態様によれば、移動局と基地局との通信に中継局が介在する場合においても、適正な再送手順を実行することができる。
図1は、本発明の実施形態に係る移動通信システムの構成例を示す。 図2は、基地局-中継局間インタフェース(Unインタフェース)及び中継局-移動局間インタフェース(Uuインタフェース)の説明図である。 図3は、実施形態における上り通信(アップリンク通信)におけるHARQタイミングの例を示す図である。 図4は、実施形態における下り通信(ダウンリンク通信)でのHARQタイミングの例を示す図である。 図5は、実施形態における基地局10のUuインタフェースの無線リソース設定手順の例を示す。 図6は、RadioResourceConfigDedicatedメッセージのフォーマット例を示す。 図7は、sps-Configのフォーマット例を示す。 図8は、基地局装置の構成例を示す。 図9は、図5において説明した中継局のセットアップ時における基地局装置の動作例を示すフローチャートである。 図10は、図3において説明した上りSPS通信時における基地局装置の動作例(上りSPS通信処理)を示すフローチャートである。 図11は、図4において説明した下りSPS通信時における基地局装置の動作例(下りSPS通信処理)を示すフローチャートである。 図12は、中継局装置の構成例を示す図である。 図13は、中継局装置のセットアップ時における動作例(セットアップ処理)を示すフローチャートである。 図14は、中継局装置の上りSPS通信時における動作例(上り通信処理)を示すフローチャートである。 図15は、中継局装置の下りSPS通信時における動作例(下り通信処理)を示すフローチャートである。 図16は、移動局装置の構成例を示す図である。 図17は、中継局のセットアップ時における移動局装置の動作例(セットアップ処理)を示すフローチャートである。 図18は、移動局装置の上りSPS通信時における動作例(上りSPS通信処理)を示すフローチャートである。 図19は、移動局装置の下りSPS通信時における動作例(下りSPS通信処理)を示すフローチャートである。 図20は、中継局が介在した場合における上りSPS通信の例を示す。 図21は、中継局が介在した場合における下りSPS通信の例を示す。
 以下、図面を参照して本発明の実施形態について説明する。実施形態における構成は例示であり、本発明は実施形態の構成に限定されない。
 <移動通信システム>
 図1は、本発明の実施形態に係る移動通信システムの構成例を示す。図1において、移動通信システムは、ドナー基地局(DeNB)10(以下、単に「基地局10」と表記)と、基地局10によって制御される1以上の中継局(RN)20とを備える。図1に示す例では、3つの中継局20A,20B,20C(以下、中継局20A~20Cを区別しない場合には、「中継局20」と表記)が示されているが、中継局20の設置数は任意である。
 中継局20は、基地局10の通信範囲(セル)C1内の適宜の位置に設置される。中継局20A,20B,20Cのそれぞれは、通信範囲(セル)C2,C3,C4を有し、セル内に在圏する移動局(UE)30と通信し、移動局30と基地局10との通信を中継することができる。図1に示す例では、中継局20AのセルC2に在圏する移動局30Aと、中継局20BのセルC3に在圏する移動局30Bと、中継局20CのセルC4に在圏する移動局30Cとが例示されている。以下、移動局30A~30Cを区別しない場合には、「移動局30」と表記する。移動局30は、LTEをサポートする。
 中継局20は、L3(RRC(Radio Resource Control)プロトコル))機能を実装した中継局(L3中継局)である。このような中継局20のセル(C2~C4)は、移動局30から見て基地局10のセルC1から独立したセルのように見える。したがって、LTEをサポートする移動局30から見て、中継局20は、一つの基地局のように見える。
 すなわち、実施形態では、図2に示すように、基地局10と中継局20との間は、網側Unインタフェースで接続され、中継局20と移動局30とはユーザ側Uuインタフェースで接続される。
 本実施形態では、データの初送のスケジューリング(初送データの送受信タイミング)及び初送に関わるUnインタフェース(基地局-中継局間)の無線リソースは、基地局10が管理する。中継局20は、基地局10で管理される初送のスケジューリングに従って、Uuインタフェース(中継局-移動局間)の無線リソースを移動局30に割り当てる。さらに、中継局20は、データの再送のためのスケジューリング(確認応答メッセージ、再送データの送受信タイミング)及びデータ再送に関わる無線リソースを管理する。
 <上り通信>
 基地局10がデータ送受信のスケジューリングに関わらないDistribute Schedulingでは、SPS(Semi-persistent Scheduling)が実施される場合に効率が悪くなる。SPSでは、或る定められた期間、割り当てられた無線リソースが中長期的に使い続けられる。この場合、移動局30の通信位置によっては、基地局10と中継局20との間で干渉が発生し、かつ、干渉が或る一定期間、中長期的に継続する可能性がある。
 例えば、基地局10と中継局20とが独立に移動局30に対する無線リソースがスケジューリングされた結果、中継局20に接続している移動局30と、基地局10に接続している他の移動局30との夫々に対し、同一の無線リソース(周波数及び時間軸)が割り当てられ、各移動局が上り送信を実行する場合が起こり得る。この場合、各移動局30から発せられる電波は、相互に干渉波となる。ここで、各移動局30が使用する無線リソースがSPSによって割り当てられたものであると、各移動局は中長期的に当該無線リソースを使用し続けるため、中長期的な干渉が継続され、各移動局30の通信効率が劣化する可能性があった。
 そこで、本実施形態では、SPSが実行される場合には、SPSに従ってデータの初送のために使用される無線リソースは基地局10が管理し、SPSに従ってデータの再送のために使用される無線リソースは中継局20で管理する。
 図3は、本実施形態における上り通信(アップリンク通信)におけるHARQタイミングの例を示す図である。図3には、移動局(UE)30から中継局(RN)20を介して基地局(DeNB)10へデータが送信される場合の例が示されている。
 図3に示す例では、基地局10が実施するSPSに従って、移動局30から中継局20を介して基地局10へ送信されるデータの初送に使用される、基地局10で管理されている無線リソースが、中継局20及び移動局30に割り当てられる。一方、上記データの再送のためのスケジューリングは中継局20で実施され、中継局20のスケジューリング結果に従って使用される無線リソースは、中継局20によって管理され、移動局30及び基地局10に割り当てられる。
 従って、移動局30から基地局10へ向かって送信される初送のデータは、基地局10でのSPSのスケジューリング結果、及び当該スケジューリング結果に従って割り当てられた無線リソースを用いて送受信される。
 図3に示す例では、移動局30は、SPSに従った送信タイミング、すなわち移動局-中継局間のUuインタフェースにおけるサブフレーム番号(送信タイミング)“0”(1サブフレームは1ms)において、中継局20へデータ(データ1)を送信する。
 中継局20は、LTEで上り通信に対して適用される同期HARQ方式に従って移動局30が4ms経過後に確認応答メッセージ(ACK又はNACK)を受信できるように、サブフレーム番号“4”で確認応答メッセージを返信する。このとき、データ1の復号(正常受信)に失敗したならば、中継局20は、HARQ NACKメッセージを移動局30に返す。
 サブフレーム番号“4”でHARQ NACKメッセージを受信した移動局30は、同期HARQ方式に従って中継局20により実施されたスケジューリング及び無線リソース割り当てに従って、サブフレーム番号“4”から4ms経過後のサブフレーム番号“8”でデータ1を中継局20に再送する。
 中継局20では、データ1の復号(正常受信)に成功すると、同期HARQ方式に従って、4ms経過後のサブフレーム番号“12”で成功を示す確認応答、HARQ ACKメッセージを移動局30に返信する。一方、中継局20は、Uuインタフェースのサブフレーム番号“12”に対応するUnインタフェースのサブフレーム番号(送信タイミング)“16”で、再送されたデータ1を基地局10に送信する。基地局10は、同期HARQ方式に従い、4ms後のサブフレーム番号“0”で、確認応答メッセージ(図3では、HARQ ACK)を中継局20に返す。
 このように、実施形態によれば、データの初送のためのスケジューリング及び無線リソースを基地局10が管理するので、基地局10は、複数の異なる移動局30が同時に同一の無線リソース(周波数、時間軸)を使用しないように、各移動局30の送信タイミング及び無線リソース割り当てを決定することができる。このような基地局10による初送用の無線リソース割り当てが移動局30毎に実施されることによって、移動局30が同時に同一の無線リソースを使用することを回避することができる。よって、上述したような、SPS設定によって複数の移動局30が同一の無線リソースを中長期に亘って使用することで、干渉が中長期に亘って発生することを抑えることができ、通信効率低下を回避することができる。
 また、本実施形態によれば、データの再送のためのスケジューリング及び無線リソースは、中継局20によって管理される。これによって、データの再送のために送信される確認応答メッセージ、及び再送データを、所望のタイミングで送信することが可能となる。これによって、基地局10と移動局30との間に中継局20が介在していても、移動局30(LTE端末)に対し、LTEでサポートされた同期HARQ方式に従った再送手順を実施させることができる。すなわち、LTE端末である移動局30に対して互換性(後方互換性)を維持することができる。
 さらに、中継局20が移動局30に対して割り当てる再送用の無線リソースは、中継局20のセルの通信環境を考慮して決定することができる。これにより、基地局10と移動局30との間に中継局20が介在しても適正なデータ再送が実行されるようにすることができる。
 <下り通信>
 下り通信(ダウンリンク通信)の場合でも、上り通信にて適用した手法が適用される。すなわち、基地局10は、データの初送に関わるスケジューリング(例えばSPS)を行うともに、初送用の無線リソースを管理する。一方、データの再送のためのスケジューリングは中継局20で実施され、データの再送で使用される無線リソースは中継局20が管理する。
 図4は、実施形態における下り通信(ダウンリンク通信)でのHARQタイミングの例を示す図である。図4には、基地局(DeNB)10から中継局(RN)20を介して移動局(UE)30へデータが送信される場合の例が示されている。
 図4に示す例では、基地局10は、SPSに従って、10サブフレーム毎に、移動局30向けのデータを送信する。基地局10は、基地局10が割り当てた初送用の無線リソース、すなわち中継局-基地局間(Unインタフェース)のサブフレーム番号“0”で、データ(データ1)を中継局20に送信する。中継局20は、4ms経過後のサブフレーム番号“4”(移動局-中継局間のサブフレーム番号“0”)で、データ1を移動局30に転送する。
 移動局30は、中継局20で実施されたスケジューリングに従って非同期HARQ方式に応じた送信タイミング、すなわち、サブフレーム番号“0”から4ms後のサブフレーム番号“4”で確認応答(ACK又はNACK)を中継局20に返す。図4に示す例では、データ1の受信に成功したものとして、ACK(HARQ ACK)メッセージが返信される。
 移動局30は、非同期HARQ方式に従って、4ms経過後のサブフレーム番号“4”で、確認応答メッセージを中継局20に返す。図4の例では、受信失敗を示すNACKメッセージが中継局20に返信される。
 すると、中継局20は、非同期HARQ方式に従って、自由なタイミング、図4の例では、サブフレーム番号“8”で移動局30にデータ1を再送する。
基地局10は、サブフレーム番号“10”で次のデータ(データ2)を中継局20に送信する。中継局20では、非同期HARQ方式に従って、4ms後に確認応答メッセージ(HARQ ACK)を送信するとともに、データ2を移動局30へ送信する。
 移動局30は、非同期HARQ方式に従って、サブフレーム番号“12”で再送データ1に対する確認応答メッセージ(ACK)を、サブフレーム番号“14”でデータ2に対する確認応答メッセージ(ACK)を送信する。
 以上の動作によれば、初送用の無線リソースが基地局10で管理されることによって、上り通信と同様に、基地局10と中継局20とが同一の無線リソースを同時期に使用することによる、中長期的な干渉を避けることができる。一方、再送用の無線リソースが中継局20で管理されることによって、HARQのタイミングに関して後方互換性を保てるようになる。すなわち、非同期HARQ方式に応じたHARQ feedback(確認応答メッセージ)を基地局10に返すことができる。
 さらに、中継局20の配下のセルの通信環境を考慮した上で、再送のための無線リソース割り当てが可能となる。
 また、図4に示したように、中継局20から移動局30へのデータ1の再送が成功した場合には、移動局30から中継局20へ再送成功を示すHARQ ACKが返信される。但し、中継局20は、HARQ ACKを受信しても、基地局10にはHARQ ACKを中継しない。これによって、基地局10が予期しないタイミングでHARQ feedback(確認応答メッセージ)が受信されることを防止することができる。
 さらに、図4に示したように、基地局10は、データ1に対する受信成功の確認応答メッセージ(HARQ ACK)を受信した場合には、中継局20と移動局30との間でデータ再送が生じたか否かに拘わらず、データ1の移動局30へのデータ送信が成功したものとして、次のデータ2を送信する。このようにしても、移動局30と中継局20との間で適正な再送手順が実施されることで、移動局30はデータ1を受信することができる一方で、基地局10は、予め決められたタイミングで確認応答メッセージを受信することができる。
 <協調制御の設定方法>
 ここまでの説明において、上り通信及び下り通信の夫々の場合における、基地局10と中継局20との無線リソース割り当ての協調制御に基づくHARQの再送制御について説明した。次に、協調制御を実現するための方法について説明する。
 本実施形態では、中継局20のセットアップ時に、Uuインタフェースの無線リソースを基地局10が設定する方法を示す。
 図5は、実施形態における基地局10のUuインタフェースの無線リソース設定手順の例を示す。図5において、基地局10及び中継局20には、Application Part(AP:アプリケーション部)が実装されている。例えば、APとしてLTEで規定されているX1 APを例示することができる。APは、X1 APに限られず、LTE-Aに従った新たなAPが規定されるようにすることもできる。要は、基地局10と中継局20との間の無線リンクの各種制御を行う最高位レイヤ(アプリケーション)であればどのようなプロトコルでもよい。
 図5のプロシージャ(手順)では、最初に、中継局20は、RRCレイヤにおいて、RRC接続要求(RRC Connection Request)を基地局10に送る(S1)。基地局10は、RCC接続セットアップ(RRC Connection Setup)を中継局20に返す(S2)。そして、中継局20は、RRCセットアップ完了(RRC Connection Setup Complete)を基地局10に返す(S3)。以上のステップS1~S3の交信は、中継局20をセットアップするためのプロシージャ(手順)である。
 続いて、基地局10は、APレイヤのメッセージであるAP message request(無線リソースの割り当て要求)を中継局20に送信し(S4)、Uu RRC(Uuインタフェースの無線リソース)の設定を行う。すなわち、基地局10は、セットアップが完了した中継局20がデータの初送について中長期的に使用すべき無線リソース割り当て(SPSリソース)を指定し、その無線リソースの情報を中継局20に通知する。
 例えば、基地局10は、LTEで規定されている、RadioResourceConfigDedicatedというメッセージ(図6)を利用し、RadioResourceConfigDedicatedメッセージに含まれているsps-Config(図7)と呼ばれる制御情報を用いて、SPSに関する無線リソース設定を中継局20に対して行うことができる。もっとも、無線リソース設定用にRadioResourceConfigDedicatedメッセージと異なるメッセージを適用することもできる。
中継局は、RadioResourceConfigDedicatedメッセージを受信すると、sps-configの規定内容に従って、Unインタフェースの無線リソースのSPS設定を行い、設定が完了すると、応答メッセージ(AP Message Response)を返送する(S5)。
 その後、中継局20に移動局30が接続してきた場合には、中継局20は、RRC Connection Reconfigurationメッセージ(割り当て要求メッセージ)を用いて、基地局10によって割り当てられた初送用の無線リソースを、移動局30に対して割り当てる(S6)。RRC Connection Reconfigurationメッセージは、上述したsps-configを含むRadioResourceConfigDedicatedメッセージを含んでおり、基地局10で実施されたSPSに基づく無線リソース割り当てが移動局30に対して行われる。
 移動局30は、割り当て要求(S6)に従って、送信タイミング及び無線リソースの設定を行い、応答メッセージ(RRC Connection Reconfiguration Complete)を返信する(S7)。
 以上のようにして、中継局20は、基地局10で決定された初送用の無線リソースを移動局30に割り当てることができる。
 <基地局装置の構成>
 次に、図1に示した基地局10として機能する基地局装置10Aの構成例について説明する。図8は、基地局装置10Aの構成例を示す図である。図8において、基地局装置10Aは、送受信アンテナ11と、送受信アンテナ12に接続された送受信部12と、送受信部13に接続されたスケジューラ部13(第1のスケジューラ)と、上位局とのインタフェース部14と、送受信部12,スケジューラ部13及びインタフェース部14と接続された制御部(controller)15とを備えている。
 制御部15は、無線リソース管理部(SPSリソース管理部)16(第1の管理部)と、スケジューラ制御部17と、インタフェース管理部(アプリケーション部:AP)18等の機能を備えている。制御部は、プロセッサにより実現でき、制御部は、プログラムに従って動作することで制御動作を実行することとしてもよい。
 インタフェース部14は、最上位のプロトコルレイヤを司り、データの送受信を行う。スケジューラ部13は、受信したデータを一旦バッファ(スケジューラ部13に備えられている)に蓄積し、制御部15の指示に従ってデータのスケジューリングを実行する。送受信部12は、データの無線送受信を行う。
 制御部15は、無線通信に関わる各種制御を実行する。スケジューラ制御部17は、スケジューリングアルゴリズムを決定し、データ送信の順序を制御する。このため、スケジューラ制御部17は、スケジューラ部13を制御する、また、スケジューラ制御部17は、データ誤り(復号失敗)が生じた場合に、データの再送を実行する。
 インタフェース管理部(アプリケーション部)18は、基地局装置10Aに実装される最上位のプロトコルレイヤであり、他局との制御情報のやりとりを管理する。管理はAPメッセージをやりとりすることによって実行される。
 無線リソース管理部(SPSリソース管理部)16は、無線リソースの管理制御を行う。すなわち、無線リソース管理部16は、SPSに関わる無線リソースの管理制御を行う。
 図9は、図5において説明した中継局のセットアップ時における基地局装置10Aの動作例を示すフローチャートである。中継局20のセットアップが開始されると、最初に、基地局装置10Aの制御部15は、中継局20からのRRC Connection Requestを受信する(ステップS001)。次に、制御部15は、中継局20へRRC Connection Setupを送信する(ステップS002)。次に、制御部は、RRC Connection Setup Completeを受信する(ステップS003)。次に、無線リソース管理部16が、APメッセージでSPSリソースを指定し、中継局20へ通知する(ステップS004)。その後、無線リソース管理部16は、中継局20からのAPメッセージ応答を受信し(ステップS005)、処理を終了する。
 図10は、図3において説明した上りSPS通信時における基地局装置10Aの動作例(上りSPS通信処理)を示すフローチャートである。図10において、処理が開始されると、送受信部は、アップリンクデータ(上り通信データ)を受信したか否かを判定する(ステップS101)。アップリンクデータを受信していない場合には、処理が終了する。これに対し、アップリンクデータが受信された場合には、スケジューラ制御部17は、アップリンクデータの受信が失敗か否かを判定する(ステップS102)。このとき、アップリンクデータの受信失敗である場合には、無線リソース管理部16は、再送用の無線リソースを設定し(ステップS103)、スケジューラ部13は。NACKを返信する(ステップS105)。これに対し、アップリンクデータの受信が失敗でない(成功である)場合には、スケジューラ部13は、ACKを返信する(ステップS104)。ステップS104,S105の終了後、上りSPS通信処理が終了する。
 図11は、図4において説明した下りSPS通信時における基地局装置10Aの動作例(下りSPS通信処理)を示すフローチャートである。図11において、処理が開始されると、送受信部は、ダウンリンクデータ(下り通信データ)を受信したか否かを判定する(ステップS111)。ダウンリンクデータを受信していない場合には、処理が終了する。これに対し、ダウンリンクデータが受信された場合には、スケジューラ制御部17は、ダウンリンクデータの送信が失敗か否かを判定する(ステップS112)。このとき、ダウンリンクデータの送信失敗である場合には、無線リソース管理部16は、再送用の無線リソースを設定し(ステップS113)、スケジューラ部13は。NACKを返信する(ステップS115)。これに対し、ダウンリンクデータの受信が失敗でない(成功である)場合には、スケジューラ部13は、ACKを返信する(ステップS104)。ステップS114,S115の終了後、下りSPS通信処理が終了する。
 <中継局装置の構成>
 次に、図1に示した中継局20として機能する中継局装置20Aの構成例について説明する。図12は、中継局装置20Aの構成例を示す図である。図12において、中継局装置20Aは、ユーザ側(端末側)の送受信アンテナ21Aと、網側(基地局側)の送受信アンテナ21Bと、送受信アンテナ21Aに接続された送受信部22Aと、送受信アンテナ21Bに接続された送受信部22Bとを備えている。また、中継局装置20Aは、送受信部22Aに接続されたスケジューラ部23(第2のスケジューラ)と、インタフェース部24と、送受信部22A,スケジューラ部23及びインタフェース部24と接続された制御部25とを備えている。
 制御部25は、無線リソース管理部(SPS初送管理部)26Aと、無線リソース管理部(SPS再送管理部)26B(第2の管理部)と、スケジューラ制御部27と、インタフェース管理部(アプリケーション部:AP)28とを備えている。
 無線リソース制御部(SPS初送管理部)26Aは、無線リソースの管理制御を行う。特にSPSの場合、初送の無線リソースの管理制御を行う。無線リソース管理部(SPS再送管理部)26Bは、無線リソースの管理制御を行う。特にSPSの場合、再送の無線リソースの管理制御を行う。無線リソース制御部26A,26Bを除く各ブロックは、基地局装置10Aにおける同名のブロックとほぼ同様の機能を持つ。
 図13は、中継局20のセットアップ時における中継局装置20Aの動作例(セットアップ処理)を示すフローチャートである。図13において処理が開始されると、制御部25は、RRC Connection Requestを基地局10へ送信する(ステップS201)。
 次に、制御部25は、基地局10からRRC Connection Setupを受信する(ステップS202)。次に、制御部は、基地局10へRRC Connection Setup Completeを送信する(ステップS203)。次に、無線リソース管理部26AはAPメッセージでSPSリソースの指定を基地局10から受信する(ステップS204)。
 次に、無線リソース管理部26Aは、APメッセージ応答を基地局10へ送信する(ステップS205)。次に、制御部15は、RRC Connection Reconfigurationで初送のSPSリソースを移動局30に対して指定する(ステップS206)。その後、制御部15は、Connection Reconfiguration Completeを移動局30から受信し(ステップS207)、中継局のセットアップ処理を終了する。
 図14は、中継局20の上りSPS通信時における動作例(上り通信処理)を示すフローチャートである。図14に示す処理が開始されると、送受信部21Aは、アップリンクデータを受信したか否かを判定する(ステップS211)。アップリンクデータを受信していない場合には、処理が終了する。
 アップリンクデータが受信された場合には、スケジューラ制御部27は、アップリンクデータの受信が失敗か否かを判定する(ステップS212)。このとき、アップリンクデータの受信が失敗である場合には、SPS再送管理部26Bは、データ再送用の無線リソースを通知し(ステップS213)、スケジューラ部23は、NACKを移動局30に返信する(ステップS214)。その後、処理がステップS211に戻る。
 これに対し、アップリンクデータの受信が失敗でない、すなわち成功である場合には、スケジューラ部23は、移動局30にACKを返信する(ステップS215)。
 その後、送受信部22Bは、アップリンクデータが送信されたか否かを判定する(ステップS216)。このとき、アップリンクデータが送信されていなければ、処理が終了する。これに対し、アップリンクデータが送信された場合には、スケジューラ制御部27は、送信が失敗か否かを判定する(ステップS217)。
 このとき、送信が失敗であれば、無線リソース管理部(SPS再送管理部)26Bは、再送用の無線リソースを移動局30に対して設定し(ステップS218)、スケジューラ部27は、NACKを返信する(ステップS219)。これに対し、送信が失敗でない、すなわち送信成功である場合には、スケジューラ部27は、ACKを返信する。ステップS219,S220の終了後、上りSPS通信処理が終了する。
 図15は、中継局20の下りSPS通信時における動作例(下り通信処理)を示すフローチャートである。図15に示す処理が開始されると、送受信部21Bは、ダウンリンクデータを受信したか否かを判定する(ステップS221)。ダウンリンクデータを受信していない場合には、処理が終了する。
 ダウンリンクデータが受信された場合には、スケジューラ制御部27は、ダウンリンクデータの受信が失敗か否かを判定する(ステップS222)。このとき、ダウンリンクデータの受信が失敗である場合には、無線リソース管理部(SPS再送管理部)26Bは、データ再送用の無線リソースを設定し(ステップS213)、スケジューラ部23は、NACKを基地局10に返信する(ステップS224)。その後、処理がステップS221に戻る。
 これに対し、ダウンリンクデータの受信が失敗でない、すなわち成功である場合には、スケジューラ部23は、基地局10にACKを返信する(ステップS225)。
その後、送受信部22Aは、ダウンリンクデータが送信されたか否かを判定する(ステップS226)。このとき、ダウンリンクデータが送信されていなければ、処理が終了する。これに対し、ダウンリンクデータが送信された場合には、スケジューラ制御部27は、送信が失敗か否かを判定する(ステップS227)。
 このとき、送信が失敗であれば、無線リソース管理部(SPS再送管理部)26Bは、再送用の無線リソースを基地局10に対して設定し(ステップS228)、スケジューラ部27は、NACKを返信する(ステップS229)。これに対し、送信が失敗でない、すなわち送信成功である場合には、スケジューラ部27は、ACKを基地局10へ返信する。ステップS229,S230の終了後、下りSPS通信処理が終了する。
 <移動局装置の構成>
 次に、図1に示した移動局30として機能する移動局装置30Aの構成例について説明する。図16は、移動局装置30Aの構成例を示す図である。図16において、移動局装置30Aは、送受信アンテナ31と、送受信アンテナ31に接続された送受信部32と、送受信部32と接続された制御部33とを備えている。制御部33は、無線リソース管理部(SPSリソース管理部)34を備えている。
 送受信部32は、データの無線送受信を行う。制御部33は、無線通信に関わる各種の制御を実行する。図16に示す実線矢印のように、中継局20から直接的に制御される場合と、点線矢印のように基地局10から間接的に制御される場合とがあるが、基地局10と中継局20とのいずれによって制御されているかを意識しない。
 無線リソース管理部(SPSリソース管理部)34は、無線リソースの管理制御を行う。特にSPSで無線リソースのスケジューリングが行われる場合には、再送用の無線リソースの管理制御が行われる。
 図17は、中継局20のセットアップ時における移動局装置30Aの動作例(セットアップ処理)を示すフローチャートである。図17に示す処理が開始されると、制御部33は、RRC Connection Reconfigurationで初送のSPSリソースを受信する(ステップS301)。制御部33は、RRC Connection Reconfigurationに従って、初送用のSPSリソースを確保した状態になると、RRC Connection Reconfiguration Completeを送信し(ステップS302)、処理を終了する。
 図18は、移動局装置30Aの上りSPS通信時における動作例(上りSPS通信処理)を示すフローチャートである。図18に示す処理が開始されると、送受信部32は、アップリンクデータを送信したか否かを判定する(ステップS311)。アップリンクデータを送信していない場合には処理が終了する。
 アップリンクデータが送信された場合には、制御部33は、送信が失敗か否かを判定する(ステップS312)。送信が失敗である場合には、無線リソース管理部34は、再送リソースの設定を行う(ステップS313)。その後、制御部33が再送指示を発し、送受信部32がアップリンクデータの再送を行う。これに対し、送信が失敗でない、すなわち送信が成功した場合には、制御部は、次のアップリンクデータの初送指示を行い(ステップS315)、送受信部32が次のアップリンクデータの送信を行う。ステップS314、S315が終了すると、上りSPS通信処理が終了する。
 図19は、移動局装置30Aの下りSPS通信時における動作例(下りSPS通信処理)を示すフローチャートである。図19に示す処理が開始されると、送受信部32は、ダウンリンクデータを受信したか否かを判定する(ステップS321)。ダウンリンクデータが受信されていない場合には、処理が終了する。
 ダウンリンクデータが受信された場合には、制御部33は、ダウンリンクデータの受信が失敗か否かの判定を行う(ステップS322)。このとき、受信が失敗であれば、制御部33は、NACK送信を指示し(ステップS323)、送受信部32がNACKを送信する。その後、無線リソース管理部34は、再送されるデータを受信するための無線リソースの設定を行う。
 これに対し、受信が失敗でない、すなわち成功である場合には、制御部33はACK送信指示を行い(ステップS325)、送受信部32はACKを送信する。ステップS324又はS325の処理が終了すると、下りSPS通信処理が終了する。
 なお、上述した基地局装置10A,中継局装置20A,移動局装置30Aの各ブロックは、専用又は汎用のハードウェアを用いて実現することができる。或いは、各ブロックで実現される機能の一部又は全部は、CPUやDSPのようなプロセッサがメモリのような記憶装置に格納されたプログラムを実行することによって実現されるようにしても良い。
10・・・ドナー基地局
10A・・・基地局装置
11,21A,21B,31・・・送受信アンテナ
12,22A,22B,32・・・送受信部
13,23・・・スケジューラ部
14,24・・・インタフェース部
15,25,33・・・制御部
16,26A,26B,34・・・無線リソース制御部
17,27・・・スケジューラ制御部
18,28・・・インタフェース制御部

Claims (12)

  1.  基地局と、前記基地局と移動局との間で送受信されるデータを中継する中継局とを含む移動通信システムであって、
     前記基地局は、
    前記中継局を介して前記基地局と前記移動局との間で送受信されるデータの初送のスケジューリングを行う第1のスケジューラと、
    前記データの初送に使用される無線リソースとして、周期的に使用される予め定められた無線リソースを管理する第1の管理部とを含み、
     前記中継局は、
    前記データの再送の要否を確認するためのメッセージの送信、及び前記データの再送のスケジューリングを行う第2のスケジューラと、
    前記メッセージの送信及び前記データの再送に使用される無線リソースを管理する第2の管理部とを含む、
    移動通信システム。
  2.  中継局を介して基地局とデータを送受信する移動局であって、
     前記基地局で管理され、周期的に使用される予め定められた無線リソースを用いた前記データの初送のスケジューリングに従って初送される前記データを送受信する送受信部と、
    前記中継局で管理される無線リソースを用いた、前記データの再送の要否を確認するためのメッセージの送信及び前記データの再送のスケジューリングに従って、前記メッセージ及び再送される前記データを送受信するための制御を行う制御部と
    を含む移動局。
  3.  基地局と移動局との間で送受信されるデータを中継する中継局であって、
     前記基地局で管理され、周期的に使用される予め定められた無線リソースを用いた前記データの初送のスケジューリングに従って初送される前記データを送受信する送受信部と、
     自身が管理する無線リソースを用いた、前記データの再送の要否を判定するためのメッセージの送信及び前記データの再送のスケジューリングに従って、前記メッセージの送信及び前記データの再送を制御する制御部とを含み、
     前記制御部は、前記基地局と前記移動局との一方から受信される前記メッセージの他方への中継を禁止する
    中継局。
  4.  前記中継局は、前記移動局から受信される、再送された前記データの受信成功を示すメッセージを前記基地局へ中継することを禁止する
    請求項1に記載の移動通信システム。
  5.  前記基地局は、前記中継局へ初送した前記データに対する前記中継局での受信成功を示すメッセージを受信した場合には、前記データの再送が前記中継局と前記移動局の間で生じているか否かに拘わらず、前記移動局への前記データの送信が成功したとみなす
    請求項1に記載の移動通信システム。
  6.  前記周期的に使用される予め定められた無線リソースは、LTE(Long Term Evolution)におけるSemi-persistent Schedulingに従って使用される無線リソースである
    請求項1に記載の移動通信システム。
  7.  基地局と、前記基地局と移動局との間で送受信されるデータを中継する中継局とを含む移動通信システムにおけるスケジューリング方法であって、
     前記基地局が、前記基地局で管理され、周期的に使用される予め定められた無線リソースを用いた、前記データの初送のスケジューリングを行い、
    前記中継局が、前記中継局で管理された無線リソースを用いた、前記データの再送の要否を確認するメッセージの送信及び前記データの再送のスケジューリングを行う
    ことを含む移動通信システムのスケジューリング方法。
  8.  中継局を介して基地局とデータを送受信する移動局のデータ送受信方法であって、
     前記基地局で管理され、周期的に使用される予め定められた無線リソースを用いた前記データの初送のスケジューリングに従って初送される前記データを送受信し、
    前記中継局で管理される無線リソースを用いた、前記データの再送の要否を確認するためのメッセージの送信及び前記データの再送のスケジューリングに従って、前記メッセージ及び再送される前記データを送受信する
    移動局のデータ送受信方法。
  9.  基地局と移動局との間で送受信されるデータを中継する中継局のデータ送受信方法であって、
     前記基地局で管理され、周期的に使用される予め定められた無線リソースを用いた前記データの初送のスケジューリングに従って初送される前記データを送受信し、
     自身が管理する無線リソースを用いた、前記データの再送の要否を判定するためのメッセージの送信及び前記データの再送のスケジューリングに従って、前記メッセージの送信及び前記データの再送を行い、
     前記基地局と前記移動局との一方から受信される前記メッセージの他方への中継を禁止する
    中継局のデータ送受信方法。
  10.  前記中継局は、前記移動局から受信される、再送された前記データの受信成功を示すメッセージを前記基地局へ中継することを禁止する
    請求項7に記載の移動通信システムのスケジューリング方法。
  11.  前記基地局は、前記中継局へ初送した前記データに対する前記中継局での受信成功を示すメッセージを受信した場合には、前記データの再送が前記中継局と前記移動局の間で生じているか否かに拘わらず、前記移動局への前記データの送信が成功したとみなす
    請求項7に記載の移動通信システムのスケジューリング方法。
  12.  前記周期的に使用される予め定められた無線リソースは、LTE(Long Term Evolution)におけるSemi-persistent Schedulingに従って使用される無線リソースである
    請求項7に記載の移動通信システムのスケジューリング方法。
PCT/JP2010/054360 2010-03-15 2010-03-15 移動通信システム WO2011114429A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012505340A JP5429359B2 (ja) 2010-03-15 2010-03-15 移動通信システム
PCT/JP2010/054360 WO2011114429A1 (ja) 2010-03-15 2010-03-15 移動通信システム
US13/618,413 US9118479B2 (en) 2010-03-15 2012-09-14 Mobile communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054360 WO2011114429A1 (ja) 2010-03-15 2010-03-15 移動通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/618,413 Continuation US9118479B2 (en) 2010-03-15 2012-09-14 Mobile communication system

Publications (1)

Publication Number Publication Date
WO2011114429A1 true WO2011114429A1 (ja) 2011-09-22

Family

ID=44648561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054360 WO2011114429A1 (ja) 2010-03-15 2010-03-15 移動通信システム

Country Status (3)

Country Link
US (1) US9118479B2 (ja)
JP (1) JP5429359B2 (ja)
WO (1) WO2011114429A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114919A (ja) * 2010-11-25 2012-06-14 Ntt Docomo Inc 無線通信ネットワークにおけるリソース割当て方法、誤りのない情報伝送方法、ノード、及び無線通信ネットワーク
JP2017184255A (ja) * 2011-11-25 2017-10-05 日本電気株式会社 基地局で使用されるノード及びその方法
WO2018061759A1 (ja) * 2016-09-30 2018-04-05 京セラ株式会社 通信制御方法
US10085169B2 (en) 2011-11-25 2018-09-25 Nec Corporation Radio station and method of processing user data with radio station
US10091806B2 (en) 2011-11-25 2018-10-02 Nec Corporation Radio station and method of processing user data with radio station

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111693A1 (en) * 2008-02-14 2011-05-12 Seigo Nakao Radio communication base station device, radio communication relay station device, radio communication terminal device, radio communication system, and radio communication method
US10098035B2 (en) * 2015-02-02 2018-10-09 Sharp Kabushiki Kaisha Terminal device, base station device, integrated circuit, and communication method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060951A (ja) * 2006-08-31 2008-03-13 Fujitsu Ltd リレー通信システムにおける再送制御方法及びリレー局装置
JP2008211803A (ja) * 2007-02-27 2008-09-11 Samsung Electronics Co Ltd 中継方式を使用する無線通信システムにおける制御メッセージの送信装置及び方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370002B1 (ko) * 2007-09-19 2014-03-04 삼성전자주식회사 다중 홉 중계 방식의 무선통신 시스템에서 스케줄링 장치및 방법
US20100302999A1 (en) * 2009-05-29 2010-12-02 Yan Hui Method and apparatus for relaying in wireless networks
US8873454B2 (en) * 2009-12-18 2014-10-28 Qualcomm Incorporated Apparatus and method for transmit-response timing for relay operation in wireless communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060951A (ja) * 2006-08-31 2008-03-13 Fujitsu Ltd リレー通信システムにおける再送制御方法及びリレー局装置
JP2008211803A (ja) * 2007-02-27 2008-09-11 Samsung Electronics Co Ltd 中継方式を使用する無線通信システムにおける制御メッセージの送信装置及び方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "Un HARQ timing alternatives", 3GPP TSG-RAN WG1 #60, R1-100864, 22 February 2010 (2010-02-22) *
SAMSUNG: "HARQ operation for relay", 3GPP TSG RAN WG2 #67, R2-094878, 28 August 2009 (2009-08-28) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114919A (ja) * 2010-11-25 2012-06-14 Ntt Docomo Inc 無線通信ネットワークにおけるリソース割当て方法、誤りのない情報伝送方法、ノード、及び無線通信ネットワーク
US8711682B2 (en) 2010-11-25 2014-04-29 Ntt Docomo, Inc. Method for resource allocation in a wireless communication network, method for error-free transmission of information, node and wireless communication network
JP2017184255A (ja) * 2011-11-25 2017-10-05 日本電気株式会社 基地局で使用されるノード及びその方法
US10085169B2 (en) 2011-11-25 2018-09-25 Nec Corporation Radio station and method of processing user data with radio station
US10091806B2 (en) 2011-11-25 2018-10-02 Nec Corporation Radio station and method of processing user data with radio station
US10154508B2 (en) 2011-11-25 2018-12-11 Nec Corporation Radio station and method of processing user data with radio station
US10244548B2 (en) 2011-11-25 2019-03-26 Nec Corporation Radio station and method of processing user data with radio station
WO2018061759A1 (ja) * 2016-09-30 2018-04-05 京セラ株式会社 通信制御方法
JPWO2018061759A1 (ja) * 2016-09-30 2019-07-25 京セラ株式会社 通信制御方法

Also Published As

Publication number Publication date
JPWO2011114429A1 (ja) 2013-06-27
JP5429359B2 (ja) 2014-02-26
US20130012218A1 (en) 2013-01-10
US9118479B2 (en) 2015-08-25

Similar Documents

Publication Publication Date Title
JP5429359B2 (ja) 移動通信システム
JP6050265B2 (ja) 無線通信システムでバッファー状態報告を伝送する方法及び装置
KR101085179B1 (ko) 스케줄링 요청 절차 및 랜덤 액세스 절차 사이의 인터랙션을 향상시키기 위한 방법 및 장치
US11997744B2 (en) Method and apparatus for sidelink DRX operations in a wireless communication system
JP7364662B2 (ja) Urllcサービスのための低レイテンシharqプロトコル
CN102548011B (zh) 中继接入链路的半持续调度、接收方法、系统及装置
WO2007053949A1 (en) System and method for unbalanced relay-based wireless communications
US9407350B2 (en) Radio communication system, base station, relay station, and radio communication method
US9084237B2 (en) Method and apparatus for processing a data transmission conflict of a relay-node
WO2010121539A1 (zh) 一种tdd系统回程链路通信方法、设备和系统
CA2689295A1 (en) Semi-persistent resource allocation method for uplink transmission in wireless packet data systems
JPWO2012086039A1 (ja) 移動局、基地局、無線通信システムおよび無線通信方法
WO2011137741A1 (zh) 一种数据传输的方法及系统
US8385257B2 (en) Method for relaying and forwarding the feedback information in HARQ scenario
JP7311942B2 (ja) V2x harqプロセス管理
WO2012136101A1 (zh) 一种混合自动重传的处理方法、系统及装置
EP2752072A1 (en) Dynamic scheduling of in-band relay node resources
US20210385851A1 (en) Data transmission method of internet of vehicles, sending terminal and network-side device
KR20190002706A (ko) 서비스 데이터의 전송 방법, 단말기 및 네트워크측 기기
CN102573096B (zh) 回传链路上的半持续调度方法、接收方法、系统及装置
JP2023513240A (ja) サイドリンク送信の再送方法及び装置
JP5643852B2 (ja) 多重ホップ中継方式を使用する無線通信システムにおけるデータ再送信装置及び方法
JP2012160854A (ja) 通信システム、基地局及び通信制御方法
WO2011038614A1 (zh) 下行数据发送方法及系统和中继节点
CN111279753B (zh) 用于资源调度的方法和网络节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505340

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847845

Country of ref document: EP

Kind code of ref document: A1