WO2011114416A1 - Power supply voltage determination method for semiconductor integrated circuit and power supply voltage control system for semiconductor integrated circuit - Google Patents

Power supply voltage determination method for semiconductor integrated circuit and power supply voltage control system for semiconductor integrated circuit Download PDF

Info

Publication number
WO2011114416A1
WO2011114416A1 PCT/JP2010/054302 JP2010054302W WO2011114416A1 WO 2011114416 A1 WO2011114416 A1 WO 2011114416A1 JP 2010054302 W JP2010054302 W JP 2010054302W WO 2011114416 A1 WO2011114416 A1 WO 2011114416A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
circuit
semiconductor integrated
integrated circuit
power supply
Prior art date
Application number
PCT/JP2010/054302
Other languages
French (fr)
Japanese (ja)
Inventor
宣夫 札抜
喜幸 平井
陽子 藤田
Original Assignee
ケイレックス・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケイレックス・テクノロジー株式会社 filed Critical ケイレックス・テクノロジー株式会社
Priority to JP2010510590A priority Critical patent/JPWO2011114416A1/en
Priority to PCT/JP2010/054302 priority patent/WO2011114416A1/en
Publication of WO2011114416A1 publication Critical patent/WO2011114416A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/1731Optimisation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Definitions

  • the present invention relates to a power supply voltage determination method for a semiconductor integrated circuit that determines an optimum power supply voltage for the semiconductor integrated circuit, and a power supply voltage control system for the semiconductor integrated circuit.
  • the power supply voltage has been controlled for the purpose of reducing the power consumption of semiconductor integrated circuits or guaranteeing the operation performance.
  • DVFS Dynamic Voltage and Frequency Scaling
  • processor commercialized by ARM provides a function called IEM (Intelligent Energy Management), and the output of the performance monitor circuit mounted on the chip is processed by embedded software to obtain the optimum operating power supply voltage. ing.
  • IEM Intelligent Energy Management
  • the optimum operating power supply voltage is determined based on the evaluation of the prototype. Therefore, it is difficult to accumulate reliable data unless the chip is produced in large quantities such as a microprocessor. Or, like IEM, it is necessary to perform processing by software using an internal processor in order to calculate the optimum operating power supply voltage. For this reason, the products to be applied are extremely limited.
  • Patent Document 1 As a method for calculating the performance dispersion system of a semiconductor integrated circuit for accurately calculating the influence of process variations and the like on the performance of the semiconductor integrated circuit, for example, there is a method described in Patent Document 1.
  • process fluctuations, power supply voltage fluctuations, and temperature fluctuations are not directly calculated as variations in characteristics of large-scale semiconductor integrated circuits, but are mapped to variations in gate levels.
  • a method for calculating variation in circuit characteristics has been proposed.
  • the variation in characteristics of the semiconductor integrated circuit is calculated by mapping the variation in the gate level to the variation in the gate level. It takes time to create In addition, the device parameter dependency is not taken into account in the variation in characteristics of the semiconductor integrated circuit indicated by the created performance distribution.
  • the variation in characteristics of a semiconductor integrated circuit is preferably calculated in consideration of the dependence of device parameters that cause characteristics variation for each signal transmission path based on the connection relationship of various circuits included in the semiconductor integrated circuit. Was not realized.
  • the conventional performance distribution system calculation method for a semiconductor integrated circuit only calculates the power consumption of the semiconductor integrated circuit using the performance distribution.
  • An optimum power supply voltage for shortening the time for creating a performance distribution of a semiconductor integrated circuit and reducing the power consumption of the semiconductor integrated circuit using the performance distribution is provided.
  • An object of the present invention is to provide a power supply voltage determination method for a semiconductor integrated circuit to be determined and a power supply voltage control system for the semiconductor integrated circuit.
  • a method of determining a power supply voltage of a semiconductor integrated circuit includes: a cell library of a plurality of cells constituting a semiconductor integrated circuit; and at least a gate as a parameter that causes variation in characteristics of delay times of the plurality of cells.
  • process variation information given as a variation range of device parameters including parameters equivalent to the above parameters on a long or threshold voltage or a device model (for example, SPICE model), and at least a power supply voltage or an operating temperature given as an operating condition.
  • the plurality of cells having a high sensitivity of the plurality of parameters and different dependencies between the plurality of parameters are selected from the cell library, and the selected plurality of cells are selected.
  • Forming a characteristic monitor circuit including a plurality of delay circuits in which a plurality of cells are connected in series, and the delay time of all signal transmission paths in the semiconductor integrated circuit is a plurality of parameters that cause the characteristic variation of each cell.
  • a database expressed and stored as a response curved surface for the above is prepared, and the optimum power supply voltage that satisfies the required performance of the delay characteristics of the semiconductor integrated circuit when a plurality of parameters that cause the characteristic variation is given to the database
  • a plurality of parameters serving as the characteristic variation factor are estimated from the output of the characteristic monitor circuit, and the estimated characteristic variation factor
  • the optimum power supply voltage of the semiconductor integrated circuit is determined using a plurality of parameters and the map.
  • a substrate bias voltage determination method for a semiconductor integrated circuit includes: a cell library of a plurality of cells constituting a semiconductor integrated circuit; and at least a parameter that causes a characteristic variation factor of a delay time of the plurality of cells.
  • process variation information given as a variation range of a device parameter including a parameter equivalent to the parameter on the gate length or threshold voltage or a device model (for example, SPICE model), and at least a power supply voltage or an operating temperature given as an operating condition .
  • Statistically analyzing the characteristic variation of each cell included in the cell library expressing the delay time of each cell as a response surface with respect to a plurality of parameters serving as a characteristic variation factor, and a plurality of parameters serving as the characteristic variation factor.
  • the sensitivity and mutual dependence of Based on the calculation results for the sensitivity of the plurality of parameters and the dependence between the plurality of parameters, a plurality of cells having high sensitivity of the plurality of parameters and different dependencies between the plurality of parameters are selected from the cell library, and the selected cells are selected.
  • Forming a characteristic monitor circuit including a delay circuit in which a plurality of cells are connected in series, and the delay time of all signal transmission paths in the semiconductor integrated circuit is a plurality of parameters that cause the characteristic variation of each cell.
  • An optimum substrate bias voltage satisfying the required performance of a delay characteristic of the semiconductor integrated circuit when a database expressed and stored as a response curved surface is created and a plurality of parameters that cause the characteristic variation is given to the database
  • a map showing the relationship between the determined optimum substrate bias voltage and the multiple parameters that cause the characteristic variation is created.
  • the optimum substrate bias voltage of the semiconductor integrated circuit is determined using a plurality of parameters that cause the characteristic variation and the map.
  • a power supply voltage control system for a semiconductor integrated circuit includes a semiconductor integrated circuit and a plurality of delay circuits, and each of the delay signals is different from an input signal using the plurality of delay circuits.
  • a characteristic monitor circuit that outputs a signal
  • an encoder circuit that encodes each of a plurality of delay signals output from the characteristic monitor circuit and outputs data of a predetermined number of bits, and the data that is output from the encoder circuit according to the data
  • a power supply voltage control circuit for outputting a power supply voltage value corresponding to the data to the semiconductor integrated circuit based on a table in which the power supply voltage value of the semiconductor integrated circuit is set.
  • a substrate bias voltage control system for a semiconductor integrated circuit includes a semiconductor integrated circuit and a plurality of delay circuits, and each of the plurality of delay circuits is used to provide different delays with respect to an input signal.
  • a characteristic monitor circuit that outputs a signal
  • an encoder circuit that encodes each of a plurality of delay signals output from the characteristic monitor circuit and outputs data of a predetermined number of bits, and a response to the data output from the encoder circuit
  • a substrate bias voltage control circuit for outputting a substrate bias voltage value corresponding to the data to the semiconductor integrated circuit based on a table in which the substrate bias voltage value of the semiconductor integrated circuit is set.
  • the present invention by using the design data and process variation information of the semiconductor integrated circuit, the dependency between the device parameters that cause the characteristic variation is obtained for all the signal transmission paths in the semiconductor integrated circuit.
  • FIG. 2 is a flowchart for explaining the outline of the power supply voltage determination method for the semiconductor integrated circuit according to the embodiment of the present invention following FIG. 1; It is a figure which shows an example of the optimal operation
  • FIG. 5 is a diagram illustrating a circuit configuration example of a characteristic monitor circuit and an encoder circuit of the power supply voltage control system for the semiconductor integrated circuit shown in FIG. 4.
  • FIGS. 2A and 2B show an embodiment of a response surface for a plurality of device parameters that cause the delay time of each cell stored in the cell library characteristic variation model shown in step ST104 in FIG.
  • FIG. It is a figure which shows one Example of the semiconductor chip carrying the characteristic monitor circuit containing the delay circuit comprised using the cell extracted from the cell library. It is a figure which shows one Example of the chip level timing model shown to step ST110 in FIG.
  • DESCRIPTION OF SYMBOLS 100 Power supply voltage control system of a semiconductor integrated circuit, 200 ... Semiconductor chip, 300 ... Target semiconductor integrated circuit, 400 ... Characteristic monitoring circuit, 500 ... Encoding circuit, 600 ... DC / DC converter
  • FIG. 1 is a flowchart for explaining an outline of a power supply voltage determination method for a semiconductor integrated circuit according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining the outline of the power supply voltage determination method for the semiconductor integrated circuit according to the embodiment of the present invention subsequent to FIG. 1 and 2, the characteristic monitor circuit design data and the encoder circuit design data used when determining the power supply voltage of the semiconductor integrated circuit according to the present embodiment are created.
  • the cell library includes a plurality of macro cells (functional blocks (basic circuits)), SPICE models, logic functions, and electrical characteristics necessary for designing a semiconductor integrated circuit provided by a semiconductor manufacturer.
  • the process variation information includes information on random variation and information on systematic variation when the semiconductor integrated circuit is manufactured.
  • the systematic variation refers to a reproducible variation that correlates with the position and layout pattern of the transistor, or the characteristics and manufacturing conditions of the manufacturing apparatus.
  • the exposure pattern variation due to the exposure apparatus CMP (Chemical Mechanical)
  • Random variation refers to variation that occurs regardless of systematic variation, and includes, for example, variation in threshold voltage due to variation in impurity concentration.
  • the characterization process uses a SAP (Stochastic Analysis Process) technique to analyze the dependency on the characteristic variation factor of the macro cell included in the cell library, and to calculate the characteristic variation model of the cell library. It is a process to generate.
  • SAP Stochastic Analysis Process
  • the dependence of the delay time of the cell and the power consumption on the device parameters is calculated by executing a delay simulation process based on a transistor constituting the cell.
  • the characteristic variation factor is, for example, the transistor gate length, threshold voltage, gate width, gate oxide film thickness, diffusion resistance, wiring resistance, wiring capacitance, or device model (SPICE model, etc.) that varies due to systematic variation.
  • device parameters such as parameters equivalent to them, and parameters such as power supply voltage, operating temperature or substrate bias voltage given as operating conditions.
  • the characteristic variation factor fluctuates circuit operation characteristics such as delay time and power consumption.
  • step ST104 the cell library characteristic variation model generated in step ST103 is made into a database.
  • This cell library characteristic variation model is a database that stores analysis results (response surface) of dependence on each device parameter and operating conditions obtained by characterization processing for cells included in the cell library of step ST101. is there.
  • step ST105 principal component analysis (PCA) analyzes the cell library characteristic variation using a statistical method, and for each characteristic change of each cell, the device parameter that becomes the characteristic change factor is changed. Extract sensitivity and correlation.
  • the sensitivity is an index that represents the degree of influence of device parameters that are characteristics variation factors on the characteristics variation of each cell in the cell library. This sensitivity is determined based on, for example, the magnitude of the influence of device parameters on the cell delay characteristics.
  • the correlation is an index that represents the degree of contribution between device parameters that is a characteristic variation factor with respect to cell characteristic variation. For example, the correlation is large when the variation for the same device parameter shows the same tendency, and the correlation is small when the tendency is different.
  • step ST106 in the cell selection of the delay circuit, based on the result of the principal component analysis, a cell group in which the sensitivity of each device parameter is high and the correlation with other device parameters is small is included in the cell library. Select from.
  • step ST107 the delay circuit design is performed by configuring different delay circuits in which each of the selected cell groups is connected in a plurality of stages in series so that the influence of random variations can be ignored.
  • the design data of each delay circuit is created by setting the number of cell stages of each delay circuit so that the delay time difference between the delay circuits is within a measurable range.
  • the characteristic monitor circuit design data is a database for storing design data including connection information and the like of the cells constituting the delay circuit designed in step ST107.
  • step ST109 chip level timing model generation is performed for each of the target semiconductor integrated circuit and the characteristic monitor circuit (delay circuit) using the characteristic monitor circuit design data and the SAP technology.
  • characteristic variation factors such as device parameters, power supply voltage, operating temperature, etc.
  • the response surface is an approximate function of the output variable represented by the input variable created based on the sampled input variable (here, each parameter of the characteristic variation factor) and output variable (here, the delay time of the signal transmission path). It is. That is, the variation of the delay time characteristic of the circuit is expressed as a function of each parameter of the characteristic variation factor.
  • step ST110 the chip level timing model created in step ST109 is made into a database.
  • the dependence of the delay characteristics of all signal transmission paths included in each of the target semiconductor integrated circuit and the characteristic monitor circuit (delay circuit) with respect to the characteristic variation factor, that is, a response surface is stored.
  • the optimum power supply voltage map generation processing is a device parameter (for example, a delay time to be measured) of the characteristic monitor circuit (delay circuit) from the inverse function of the chip level timing model, that is, the response surface. , Gate length, threshold voltage, etc.). Then, an optimum power supply voltage that satisfies the required performance (step ST111) is obtained from the delay characteristics of the target semiconductor integrated circuit corresponding to the obtained device parameters.
  • the required performance in step ST111 is, for example, a delay characteristic to be satisfied as the specification of the target semiconductor integrated circuit.
  • step ST113 the optimum power supply voltage obtained in step ST112 is made into a database as a map.
  • the database of the optimum power supply voltage map when the output (measured delay time) of the characteristic monitor circuit (delay circuit) is changed, the delay characteristic of the target semiconductor integrated circuit satisfies the required performance (step ST111).
  • the obtained power supply voltage is stored as an optimum power supply voltage map.
  • FIG. 3 shows an example in which the optimum power supply voltage Vdd (V) obtained for the threshold voltage LVt ( ⁇ ) and the threshold voltage HVt ( ⁇ ) as device parameters is displayed as a map.
  • step ST114 polynomial conversion and logic synthesis are performed by converting the optimum power supply voltage map created in step ST113 into a polynomial using each output of the characteristic monitor circuit (delay circuit) as a variable, and performing logic synthesis on this polynomial.
  • the encoder circuit design data forms an encoder circuit that inputs each delay time output from the characteristic monitor circuit (delay circuit) as data having a predetermined number of bits and outputs an optimum power supply voltage as data having a predetermined number of bits.
  • Logic synthesis is to form a logic circuit (gate level netlist) expressed by gate connections from circuit operation specifications written in an abstract description (in this case polynomial) like a hardware description language. . That is, the synthesized logic circuit has a function of inputting a binary code group corresponding to the delay time of each delay circuit of the characteristic monitor circuit and outputting a binary code representing a differential power supply voltage.
  • step ST115 the encoder circuit design data created in step ST112 is stored in the database, and this process is terminated.
  • the characteristic monitor circuit design data and the encoder circuit design data are created using statistical analysis processing and delay simulation processing.
  • the characteristic monitor circuit delay circuit
  • An encoder circuit for calculating an optimum power supply voltage that is calculated from the output and that satisfies the required performance of the semiconductor integrated circuit can be formed.
  • FIG. 4 is a block diagram showing a schematic configuration of the power supply voltage control system 100 of the semiconductor integrated circuit.
  • FIG. 5 is a diagram showing circuit configurations of the characteristic monitor circuit 400 and the encoder circuit 500 shown in FIG.
  • FIG. 6 is a diagram showing a circuit configuration of DC / DC converter 600 shown in FIG.
  • the power supply voltage control system 100 of the semiconductor integrated circuit shown in FIG. 4 is measured by a plurality of delay circuits included in the characteristic monitor circuit 400 using the semiconductor chip 200 on which both the target semiconductor integrated circuit 300 and the characteristic monitor circuit 400 are mounted.
  • the delay characteristic is output as data of a predetermined number of bits.
  • the encoder circuit 500 receives the output of the characteristic monitor circuit 400 as an input, and outputs, as data of a predetermined number of bits, an optimum power supply voltage that satisfies the required performance of the delay characteristics of all signal transmission paths included in the target semiconductor integrated circuit 300. .
  • the DC / DC converter (power supply voltage control circuit) 600 adjusts the power supply voltage value according to the output of the encoder circuit 500 and determines the power supply voltage to be applied to the semiconductor chip 200.
  • the target semiconductor integrated circuit 300 and the characteristic monitor circuit 400 are mounted on the same chip. Since the target semiconductor integrated circuit 300 and the characteristic monitor circuit 400 are formed by the same manufacturing method, it is assumed that the circuit design data and the process variation information are the same.
  • the target semiconductor integrated circuit 300 includes, for example, an IC and an LSI such as a microprocessor and a gate array configured by various logic circuits, but the target semiconductor integrated circuit 300 is not particularly limited.
  • the characteristic monitor circuit 400 includes a plurality of delay circuits configured based on the characteristic monitor circuit design data stored in step ST108 with respect to the target semiconductor integrated circuit 300, and each delay signal based on the delay characteristic of each delay circuit. And a delay error between the standard delay signal and the delay error are output to the encoder circuit 500.
  • the encoder circuit 500 encodes the delay error input from the characteristic monitor circuit 400 into data having a predetermined number of bits, and outputs the encoded signal to the DC / DC converter 600.
  • the DC / DC converter 600 adjusts the power supply voltage value according to the encode signal input from the encoder circuit 500, and outputs the adjusted power supply voltage value to the semiconductor chip 200.
  • the characteristic monitor circuit 400 includes a clock generator 401, a standard delay circuit 402, a delay monitor path circuit 403, a path selector circuit 404, a delay time detector 405, a frequency divider 407, a selector circuit 408, and an address decoder 409.
  • the encoder circuit 500 is connected to the delay time detector 405 and outputs the difference between the delay values of the standard delay circuit 402 and the delay monitor path circuit 403 in numerical values.
  • the clock generator 401 When the MODE signal is “L” level, the clock generator 401 is in a delay operation mode in which a clock signal is output to the standard delay circuit 402 and the delay monitor path circuit 403. When the MODE signal is “H” level, A clock oscillation operation mode in which a clock signal is output to the frequency divider 407 is set. Further, when the R / B signal is “H” level, the clock generator 401 is in a state of stopping operation (sleep mode), and when the R / B signal is “L” level, the clock generator 401 is in operation state (active mode). It becomes.
  • the clock generator 401 When the clock generator 401 enters the delay operation mode by the MODE signal and enters the active mode by the R / B signal, the clock generator 401 generates a predetermined clock signal according to the reference clock signal CLK, and the clock signal is delayed by the standard delay circuit 402 and the delay. Output to the monitor path circuit 403. In addition, when the clock generator 401 enters the clock oscillation operation mode by the MODE signal and enters the active mode by the R / B signal, the clock generator 401 oscillates a predetermined clock signal according to the reference clock signal CLK and supplies it to the frequency divider 407. Output.
  • the standard delay circuit 402 is a delay circuit designed including the standard delay element of the target semiconductor integrated circuit 300 based on, for example, a delay margin designed according to the specifications of the target semiconductor integrated circuit 300.
  • the standard delay circuit 402 delays the clock signal input from the clock generator 401 and outputs it to the path selector circuit 404.
  • the delay monitor path circuit 403 includes a plurality of delay circuits designed based on the design data designed in the chip level timing model processing.
  • the delay monitor path circuit 403 delays the clock signal input from the clock generator 401 by the delay circuit selected by the path selector circuit 404 and outputs the delayed signal to the path selector circuit 404.
  • the address decoder 409 is, for example, a predetermined delay circuit among a plurality of delay circuits included in the standard delay circuit 402 and the delay monitor path circuit 403 connected to the path selector circuit 404 by an SEL [3: 0] address signal input from the outside.
  • a select signal for selecting the delay circuit is output to the path selector circuit 404.
  • the path selector circuit 404 selects a predetermined delay circuit among a plurality of delay circuits included in the standard delay circuit 402 and the delay monitor path circuit 403 in accordance with the select signal input from the address decoder 409.
  • the path selector circuit 404 outputs a delay signal output from the selected predetermined delay circuit to the delay time detector 405.
  • the path selector circuit 404 corresponds to the 4-bit select signal input from the address decoder 409, and includes, for example, one delay circuit of 16 different delay circuits included in the delay monitor path circuit 403. select.
  • the delay time detector 405 detects an error between delay signals output from a predetermined delay circuit in the standard delay circuit 402 and the delay monitor path circuit 403 selected by the path selector circuit 404, and encodes the detected error into an encoding circuit. Output to 500.
  • the frequency divider 407 divides the clock signal input from the clock generator 401 by a predetermined frequency dividing ratio and outputs the frequency divided signal to the selector circuit 408.
  • Encoder circuit 500 encodes an error between each delay signal input from delay time detector 405 into data having a predetermined number of bits.
  • the encoded signal is output to the outside as, for example, CDOUT [3: 0] and also output to the selector circuit 408.
  • the selector circuit 408 outputs the encode signal input from the encoder circuit 500 to the external DC / DC converter 600 as, for example, CDOUT [4] when the MODE signal is in the delay operation mode when the “L” level. To do. Further, when the MODE signal is in the clock oscillation operation mode when the MODE signal is “H” level, the selector circuit 408 uses, for example, the frequency-divided signal input from the frequency divider 407 as the frequency-divided signal Clock (f / n). Output to an external DC / DC converter 600.
  • FIG. 6 is a diagram illustrating a configuration example of the DC / DC converter 600.
  • the power supply voltage control circuit 600 shown in FIG. 6 adjusts the power supply voltage value in accordance with the combination of 4-bit data indicated by CDOUT [3: 0] input from the encoding circuit 500 and applies it to the target semiconductor integrated circuit 300. Output.
  • a DC / DC converter 600 shown in FIG. 6 includes a PWM control circuit 601 and a switching circuit 602.
  • the PWM control circuit 601 adjusts the duty ratio of the pulse signal that controls the power supply voltage Vcc according to the 4-bit data indicated by CDOUT [3: 0] input from the encode circuit 500 and outputs the adjusted signal to the switching circuit 602. .
  • the switching circuit 602 switches the power supply according to the pulse width of the pulse signal input from the PWM control circuit 601, adjusts the voltage value, and outputs the voltage value to the target semiconductor integrated circuit 300 in the semiconductor chip 200.
  • the power supply voltage value is adjusted between 1.08 V and 1.32 V in accordance with the setting of CDOUT [3: 0].
  • the target in the semiconductor chip 200 is obtained.
  • the power supply voltage applied to the semiconductor integrated circuit 300 can be optimally controlled using the delay outputs of the plurality of delay circuits included in the characteristic monitor circuit 400.
  • step ST109 specific examples of each process in step ST109, step ST111, step ST112, and step ST114 will be described below.
  • step ST109 the dependence on the characteristic variation factors such as device parameters, power supply voltage, and operating temperature included in the delay characteristics of the target semiconductor integrated circuit on which the characteristic monitor circuit is mounted and the characteristic monitor circuit (delay circuit) is obtained.
  • a standard delay model (delay matrix) in which device parameters for delay elements are set with different correlations is created.
  • An example of the created standard delay model (delay matrix) is shown below.
  • Lg, V tp , V tn ,..., Vdd are device parameters of the target semiconductor integrated circuit
  • Lg is a gate length
  • V tp is a p-channel threshold voltage
  • V tn is an n-channel threshold voltage
  • Vdd is a power supply voltage.
  • the device parameters of the target semiconductor integrated circuit are merely examples, and in addition to Lg, V tp , V tn ,..., Vdd, the gate width W, operating temperature temp, substrate bias voltage Vsubp, Vsubn, etc. may be used as device parameters. .
  • step ST111 when the variation in delay characteristics of the target semiconductor integrated circuit is the maximum value tmax , the standard delay model (delay matrix) t chip has a delay characteristic smaller than that of the target semiconductor integrated circuit.
  • This relational expression is shown below.
  • Vdd f v (Lg, V tp , V tn ,%)
  • step ST114 polynomial conversion and logic synthesis convert the optimum power supply voltage map created in step ST112 into a polynomial with each output of the characteristic monitor circuit (delay circuit) as a variable.
  • Lg, V tp , V tn ,..., Vdd are device parameters of the target semiconductor integrated circuit
  • Lg is a gate length
  • V tp is a p-channel threshold voltage
  • V tn is an n-channel threshold voltage
  • Vdd is a power supply voltage.
  • the device parameters of this semiconductor integrated circuit are an example, and in addition to Lg, V tp , V tn ,..., Gate width W, operating temperature temp, substrate bias voltage Vsubp, Vsubn, etc. may be used as device parameters.
  • Mathematical formulas (4), (5), and (6) are delay matrices that estimate the dependence between device parameters that are delay elements of the target semiconductor integrated circuit.
  • V tp f p (t m1 , t m2, ⁇ , t mn) ⁇ (8)
  • V tn f n (t m1 , t m2 ,..., T mn ) (9)
  • the device parameters that are delay elements can be converted into functions that correlate with the delay time of the delay circuit by the equations (7), (8), and (9).
  • V dd F (t m1 , t m2 ,..., T mn ) (10)
  • the power supply voltage of the target semiconductor integrated circuit can be obtained by a function correlated with the delay time of the delay circuit included in the characteristic monitor circuit 400.
  • FIG. 7 is a diagram showing an example of the cell library shown in step ST101 in FIG. 8A and 8B are diagrams showing an example of a response surface for a plurality of device parameters that cause the delay time of each cell stored in the cell library shown in step ST101 in FIG. .
  • FIG. 9 is a diagram illustrating an example of a circuit configuration of a semiconductor chip on which a characteristic monitor circuit including a delay circuit configured using cells extracted from a cell library is mounted.
  • FIG. 10 is a diagram showing an example of the chip level timing model shown in step ST110 in FIG.
  • the cell library 700 shown in FIG. 7 shows an example in which an inverter circuit INV, a NAND circuit ND2, and a NOR circuit NR2 are stored as elements constituting a semiconductor integrated circuit.
  • the gate length Lg, the threshold voltage Vtp, the threshold voltage Vtn, the power supply voltage Vdd, etc. are provided as device parameters for the delay element among the characteristic variation factors of the respective circuits. Is stored.
  • mathematical expressions representing delay characteristics using device parameters of the inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 are shown below. Equation (11) represents the delay characteristic of the inverter circuit INV, Equation (12) represents the delay characteristic of the NAND circuit ND2, and Equation (13) represents the delay characteristic of the NOR circuit NR2.
  • FIG. 8A is a diagram showing, as a three-dimensional map, a response curved surface of power consumption with respect to the threshold voltage Vtp and the gate length Lg as device parameters that cause characteristic variation.
  • FIG. 8A is a diagram showing, as a three-dimensional map, a response curved surface of power consumption with respect to the threshold voltage Vtp and the gate length Lg as device parameters that cause characteristic variation.
  • FIG. 8B is a diagram showing a response surface of a delay time with respect to the power supply voltage Vdd and the temperature temp as a device parameter as a characteristic variation factor as a three-dimensional map.
  • the cell library 700 shown in FIG. 7 is an example expressing only response surfaces of delay times of the inverter circuit INV, NAND circuit ND2, and NOR circuit NR2, and illustrates response surfaces of delay times and power consumption of other cells. Is omitted.
  • the sensitivities and mutual dependencies of a plurality of device parameters that are characteristic variation factors are calculated. From the calculated sensitivity of the plurality of device parameters and the dependencies between them, a plurality of cell groups having a high sensitivity of the plurality of device parameters and having different dependencies are selected from all the cells in the cell library 700. To do.
  • a plurality of delay circuits having different delay characteristics are configured by connecting each of the selected cell groups in a plurality of stages so that the influence of random variations can be ignored.
  • the plurality of delay circuits sets the number of cell stages of each delay circuit so that the delay time or the delay time difference between the delay circuits falls within a measurable range.
  • An example of the set delay circuit is shown as a characteristic monitor circuit 1000 in FIG.
  • the characteristic monitor circuit 1000 shown in FIG. 9 is a configuration example of one delay circuit, and illustration of other delay circuits having different delay characteristics is omitted.
  • the target semiconductor integrated circuit 900 is included in the semiconductor chip 800 on which the characteristic monitor circuit 1000 shown in FIG. 9 is mounted.
  • the target semiconductor integrated circuit 900 is an example of a logic circuit including a flip-flop circuit, an inverter circuit, a NAND circuit, a NOR circuit, a wiring load (wiring resistance and wiring capacitance), and the like.
  • the target semiconductor integrated circuit 900 includes a signal transmission path (A ⁇ C) from the terminal A to the terminal C, a signal transmission path (B ⁇ C) from the terminal B to the terminal C, and a signal transmission path (from the terminal B to the terminal D) ( B ⁇ D) has three signal transmission paths.
  • the circuit configuration of the signal transmission path (A ⁇ C) is from the input stage to terminal A, wiring load R1, NAND circuit 901, wiring load R2, NOR circuit 902, wiring load R3, inverter circuit 903, wiring load R4, NAND circuit 904.
  • the wiring load R5, the NAND circuit 905, the wiring load R6, and the terminal C are connected in series.
  • the circuit configuration of the signal transmission path (B ⁇ C) is from the input stage to terminal B, wiring load R7, NOR circuit 906, wiring load R8, NOR circuit 907, wiring load R9, wiring load R10, NAND circuit 904, wiring load R5.
  • the NAND circuit 905, the wiring load R6, and the terminal C are connected in series.
  • the circuit configuration of the signal transmission path (B ⁇ D) is from the input stage to terminal B, resistor R7, NOR circuit 906, wiring load R8, NOR circuit 907, wiring load R9, NAND circuit 908, wiring load R11, NOR circuit 909.
  • the wiring load R12, the NOR circuit 910, the wiring load R13, and the terminal D are connected in series.
  • the delay circuit shown as the characteristic monitor circuit 1000 is an example of a cell selected from the cell library 700, and shows a case where the delay circuit is constituted by five stages of NAND circuits.
  • This cell is not limited to the NAND circuit, and may be replaced with another cell selected as described above.
  • the number of stages is not limited to five, and the number of stages is sufficiently large (for example, 20 stages or more) so that the influence of random variations can be eliminated, so that the delay time or the delay time difference between the delay circuits falls within a measurable range.
  • the number of cell stages may be set in.
  • wiring loads R15 to R19 are arranged between NAND circuits 1001 to 1005, respectively, and a plurality of circuits 1001 to 1005 and wiring loads R15 to R19 are alternately connected in series. .
  • step ST109 to step ST113 shown in FIG. 2 Characteristics variation factors such as device parameters, threshold voltage Vtp, threshold voltage Vtn, gate length Lg, and power supply voltage Vdd included in the delay characteristics of each signal transmission path (A ⁇ C, B ⁇ C, B ⁇ D) shown in FIG.
  • a response surface (not shown) is calculated as a dependency on.
  • the calculation result is stored as a chip level timing model 1100 shown in FIG.
  • the chip level timing model 1100 is expressed as the following formula (14), formula (15), and formula (16).
  • These formulas (14), (15), and (16) include the gate length Lg, threshold voltage Vtp, threshold voltage Vtn, power supply voltage Vdd, and the like as device parameters.
  • Expression (14) represents the delay characteristic of the signal transmission path A ⁇ C in the target semiconductor integrated circuit 900
  • Expression (15) represents the delay characteristic of the signal transmission path B ⁇ C in the target semiconductor integrated circuit 900
  • Equation (16) represents the delay characteristic of the signal transmission path B ⁇ D in the target semiconductor integrated circuit 900.
  • the optimum power supply voltage Vdd (V) represented by the above equation (17) is set to the threshold voltage LVt ( ⁇ ) and the threshold voltage HVt ( ⁇ ) which are device parameters included as characteristic variation factors. Is expressed in three dimensions.
  • the characteristic monitor circuit 1000 shown in FIG. 9 shows a configuration example of the first delay circuit.
  • a second delay circuit (not shown) having a delay characteristic different from the configuration example of the delay circuit is shown here.
  • a third delay circuit (not shown).
  • the delay elements of the first, second, and third delay circuits include threshold voltage Vtp, threshold voltage Vtn, gate length Lg, power supply voltage Vdd, and the like as device parameters as shown in the chip level timing model 1100. It is. Accordingly, the delay characteristics of the first, second, and third delay circuits are expressed as the following formula (18), formula (19), and formula (20). Equation (18) represents the delay characteristic of the first delay circuit, Equation (19) represents the delay characteristic of the second delay circuit, and Equation (20) represents the delay characteristic of the third delay circuit. .
  • Equation (21) represents an inverse function with respect to the p-channel threshold voltage Vtp
  • Equation (22) represents an inverse function with respect to the n-channel threshold voltage Vtn
  • Equation (23) represents an inverse function with respect to the gate length Lg.
  • Vdd MIN (Delay 1 , Delay 2 , Delay 3 , etc.
  • the optimum power supply voltage Vdd MIN is converted into a polynomial with the output of each delay circuit in the characteristic monitor circuit 1000 as a variable. That is, the optimum power supply voltage Vdd MIN can be obtained using the output of each delay circuit in the characteristic monitor circuit 1000 as a variable.
  • Equation (19), Equation (19), and Equation (20) physically (circuitically) as data of a predetermined number of bits will be described.
  • Equation (24) representing the optimum power supply voltage Vdd MIN is as follows. It can represent with numerical formula (25) shown to.
  • Vdd MIN (Code (Delay 1), Code (Delay 2), Code (Delay 3), 7)
  • the optimum power supply voltage Vdd MIN can be obtained by using Code (Delay 1 ), Code (Delay 2 ), and Code (Delay 3 ) represented by binary values as variables.
  • the encoder circuit is designed by logic synthesis using the above equation (25)
  • the delay time of each delay circuit output from the characteristic monitor circuit 1000 is input as data of a predetermined number of bits, and the optimum power supply voltage Vdd MIN is set to a predetermined bit.
  • the encoder circuit 500 shown in FIG. 5 for outputting as numerical data is formed.
  • the variation characteristics of the delay characteristics of the target semiconductor integrated circuit 900 are analyzed using statistical analysis processing and principal component analysis processing on the cell library of the target semiconductor integrated circuit 900. It is possible to design a characteristic monitor circuit 1000 that includes a plurality of delay circuits including device parameters and having delay characteristics in consideration of all signal transmission paths of the target semiconductor integrated circuit 900. Further, by inversely converting the mathematical expression representing the delay characteristic of each delay circuit, it is possible to convert the mathematical expression representing the delay time of the device parameter included in the delay element of each delay circuit into a mathematical expression.
  • the optimum supply voltage Vdd MIN is it possible to determine the output of the delay circuit as a variable. Furthermore, by designing the optimum supply voltage Vdd MIN is determined encoder circuit to encode the output of each delay circuit, to be capable of obtaining the delayed output of the delay circuits coded optimum supply voltage Vdd MIN as a variable Become. As a result, the circuit for obtaining the optimum power supply voltage Vdd MIN becomes a binary processing circuit, which facilitates design and processing.
  • the second embodiment is characterized in that the substrate bias voltage Vsub of the semiconductor integrated circuit is determined.
  • the second embodiment is an example in which the device parameters and the power supply voltage Vdd of the semiconductor integrated circuit described in the first embodiment are replaced with the substrate bias voltage Vsub.
  • a specific example of the cell library of the semiconductor integrated circuit shown in the above embodiment will be described, and more specific processing of the processing shown in FIGS. 1 and 2 will be described.
  • the same processing as that in the first embodiment is performed, and thus a duplicate description is omitted.
  • the cell library stores an inverter circuit INV, a NAND circuit ND2, and a NOR circuit NR2 as elements constituting a semiconductor integrated circuit.
  • the inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 of this cell library the gate length Lg, the threshold voltage Vtp, the threshold voltage Vtn, the substrate bias voltage Vsub, etc. as device parameters for the delay element among the characteristic variation factors of the respective circuits. Is stored.
  • Equation (26) represents the delay characteristic of the inverter circuit INV
  • Equation (27) represents the delay characteristic of the NAND circuit ND2
  • Equation (28) represents the delay characteristic of the NOR circuit NR2.
  • each inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 are analyzed statistically on a transistor basis for the inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 of the cell library. Is determined as a response surface (not shown).
  • the sensitivity of a plurality of device parameters that are characteristic variation factors and the dependency between them are calculated. From the calculated sensitivity of multiple device parameters and their dependencies, select multiple cell groups with high sensitivity of multiple device parameters and different dependencies from all cells in the cell library. .
  • a plurality of delay circuits having different delay characteristics are configured by connecting each of the selected cell groups in a plurality of stages so that the influence of random variations can be ignored.
  • the plurality of delay circuits sets the number of cell stages of each delay circuit so that the delay time or the delay time difference between the delay circuits falls within a measurable range.
  • An example of the set delay circuit is shown as a characteristic monitor circuit 1000 in FIG.
  • the characteristic monitor circuit 1000 shown in FIG. 9 is a configuration example of one delay circuit, and illustration of other delay circuits having different delay characteristics is omitted.
  • the target semiconductor integrated circuit 900 is included in the semiconductor chip 800 on which the characteristic monitor circuit 1000 shown in FIG. 9 is mounted.
  • the target semiconductor integrated circuit 900 is an example of a logic circuit including a flip-flop circuit, an inverter circuit, a NAND circuit, a NOR circuit, a wiring load (wiring resistance and wiring capacitance), and the like.
  • the target semiconductor integrated circuit 900 includes a signal transmission path (A ⁇ C) from the terminal A to the terminal C, a signal transmission path (B ⁇ C) from the terminal B to the terminal C, and a signal transmission path (from the terminal B to the terminal D) ( B ⁇ D) has three signal transmission paths.
  • the circuit configuration of the signal transmission path (A ⁇ C) is from the input stage to terminal A, wiring load R1, NAND circuit 901, wiring load R2, NOR circuit 902, wiring load R3, inverter circuit 903, wiring load R4, NAND circuit 904.
  • the wiring load R5, the NAND circuit 905, the wiring load R6, and the terminal C are connected in series.
  • the circuit configuration of the signal transmission path (B ⁇ C) is from the input stage to terminal B, wiring load R7, NOR circuit 906, wiring load R8, NOR circuit 907, wiring load R9, wiring load R10, NAND circuit 904, wiring load R5.
  • the NAND circuit 905, the wiring load R6, and the terminal C are connected in series.
  • the circuit configuration of the signal transmission path (B ⁇ D) is from the input stage to terminal B, wiring load R7, NOR circuit 906, wiring load R8, NOR circuit 907, wiring load R9, NAND circuit 908, wiring load R11, NOR circuit 909.
  • the wiring load R12, the NOR circuit 910, the wiring load R13, and the terminal D are connected in series.
  • the delay circuit shown as the characteristic monitor circuit 1000 is an example of a cell selected from the cell library 700, and shows a case where the delay circuit is constituted by five stages of NAND circuits.
  • This cell is not limited to the NAND circuit, and may be replaced with another cell selected as described above.
  • the number of stages is not limited to five, and the number of stages is sufficiently large (for example, 20 stages or more) so that the influence of random variations can be eliminated, so that the delay time or the delay time difference between the delay circuits falls within a measurable range.
  • the number of cell stages may be set in.
  • wiring loads R15 to R19 are arranged between NAND circuits 1001 to 1005, respectively, and a plurality of NAND circuits 1001 to 1005 and wiring loads R15 to R19 are alternately connected in series. Yes.
  • step ST109 to step ST113 shown in FIG. 2 Variations in characteristics such as device parameters, threshold voltage Vtp, threshold voltage Vtn, gate length Lg, and substrate bias voltage Vsub included in the delay characteristics of each signal transmission path (A ⁇ C, B ⁇ C, B ⁇ D) shown in FIG.
  • a response surface (not shown) is calculated as a dependency on the factor.
  • the calculation result is stored as a chip level timing model (not shown).
  • This chip level timing model is expressed as the following formula (29), formula (30), and formula (31).
  • These mathematical formulas (29), (30), and (31) include the gate length Lg, threshold voltage Vtp, threshold voltage Vtn, substrate bias voltage Vsub, and the like as device parameters.
  • Expression (29) represents the delay characteristic of the signal transmission path A ⁇ C in the target semiconductor integrated circuit 900
  • Expression (30) represents the delay characteristic of the signal transmission path B ⁇ C in the target semiconductor integrated circuit 900
  • Equation (31) represents the delay characteristic of the signal transmission path B ⁇ D in the target semiconductor integrated circuit 900.
  • the delay characteristic which is the specification of the target semiconductor integrated circuit 900 is Delay MAX , and when this Delay MAX is given to the above formula (29), formula (30) and formula (31) as the required performance, the inverse function thereof is obtained.
  • the substrate bias voltage is expressed by the following equation (32).
  • Vsub MIN Vtp, Vtn, Lg, etc
  • the characteristic monitor circuit 1000 shown in FIG. 9 shows a configuration example of the first delay circuit.
  • a second delay circuit (not shown) having a delay characteristic different from the configuration example of the delay circuit is shown here.
  • a third delay circuit (not shown).
  • the delay elements of the first, second, and third delay circuits include device parameters such as threshold voltage Vtp, threshold voltage Vtn, gate length Lg, and substrate bias voltage Vsub as shown in the chip level timing model. It is. Therefore, the delay characteristics of the first, second, and third delay circuits are expressed as the following formula (33), formula (34), and formula (35). Equation (33) represents the delay characteristic of the first delay circuit, Equation (34) represents the delay characteristic of the second delay circuit, and Equation (35) represents the delay characteristic of the third delay circuit. .
  • Equation (36) represents an inverse function with respect to the p-channel threshold voltage Vtp
  • Equation (37) represents an inverse function with respect to the n-channel threshold voltage Vtn
  • Equation (38) represents an inverse function with respect to the gate length Lg.
  • Vtp (Delay 1 , Delay 2 , Delay 3 ,%)
  • the substrate bias voltage Vsub is converted into a polynomial with the output of each delay circuit in the characteristic monitor circuit 1000 as a variable. That is, the substrate bias voltage Vsub can be obtained using the output of each delay circuit in the characteristic monitor circuit 1000 as a variable.
  • Equation (33) representing the delay characteristics of these delay circuits.
  • An encoder circuit that outputs each delay time Delay 1 , Delay 2, and Delay 3 obtained by (34) and Equation (35) physically as a data of a predetermined number of bits will be described.
  • Equation (39) representing the substrate bias voltage Vsub is as follows: It can represent with the numerical formula (40) shown.
  • the substrate bias voltage Vsub can be obtained by using Code (Delay 1 ), Code (Delay 2 ), and Code (Delay 3 ) represented by binary values as variables.
  • the encoder circuit is designed by logic synthesis using the above equation (40)
  • the delay time of each delay circuit output from the characteristic monitor circuit 1000 is input as data of a predetermined number of bits, and the substrate bias voltage Vsub is set to the predetermined number of bits.
  • the variation characteristics of the delay characteristics of the target semiconductor integrated circuit 900 are analyzed using statistical analysis processing and principal component analysis processing on the cell library of the target semiconductor integrated circuit 900. It is possible to design a characteristic monitor circuit 1000 that includes a plurality of delay circuits including device parameters and having delay characteristics in consideration of all signal transmission paths of the target semiconductor integrated circuit 900. Further, by inversely converting the mathematical expression representing the delay characteristic of each delay circuit, it is possible to convert the mathematical expression representing the delay time of the device parameter included in the delay element of each delay circuit into a mathematical expression.
  • the substrate bias voltage Vsub can be obtained using the output of each delay circuit as a variable by performing a polynomial transformation on the mathematical formula for obtaining the substrate bias voltage Vsub using the converted device parameters. Furthermore, by designing an encoder circuit that codes the output of each delay circuit and obtains the substrate bias voltage Vsub, the delay output of each delay circuit coded with the substrate bias voltage Vsub can be obtained as a variable. As a result, the circuit for obtaining the substrate bias voltage Vsub becomes a binary processing circuit, which facilitates design and processing.

Abstract

Provided are a power supply voltage determination method for a semiconductor integrated circuit and a power supply voltage control system for the semiconductor integrated circuit. In the power supply voltage determination method for a semiconductor integrated circuit, a power supply voltage of the integrated circuit is determined as follows: using a plurality of cell libraries constituting the semiconductor integrated circuit and process variation information, the characteristic variation of each cell included in the cell libraries is statistically analyzed; the sensitivities and mutual dependency of a plurality of parameters causing the characteristic variation of the delay time of the each cell are calculated; a characteristic monitoring circuit is mounted and a database is created in which the delay times of the all signal transmission paths in the semiconductor integrated circuit are stored; a map is created that indicates a relationship between the plurality of parameters causing the characteristic variation and the optimum power supply voltage of the semiconductor integrated circuit; using the inverse function of the response surface of a cell constituting a plurality of delay circuits, the plurality of parameters causing the characteristic variation are estimated from the output of the characteristic monitoring circuit; and the power supply voltage of the semiconductor integrated circuit is determined using the map and the estimated plurality of parameters causing the characteristic variation.

Description

半導体集積回路の電源電圧決定方法及び半導体集積回路の電源電圧制御システムSemiconductor integrated circuit power supply voltage determination method and semiconductor integrated circuit power supply voltage control system
 本発明は、半導体集積回路の最適電源電圧を決定する半導体集積回路の電源電圧決定方法及び半導体集積回路の電源電圧制御システムに関する。 The present invention relates to a power supply voltage determination method for a semiconductor integrated circuit that determines an optimum power supply voltage for the semiconductor integrated circuit, and a power supply voltage control system for the semiconductor integrated circuit.
 従来から半導体集積回路の低消費電力化、あるいは動作性能保証の目的で、電源電圧を制御することが行われている。 Conventionally, the power supply voltage has been controlled for the purpose of reducing the power consumption of semiconductor integrated circuits or guaranteeing the operation performance.
 例えば、多くの高性能マイクロプロセッサにはDVFS(Dynamic Voltage and Frequency Scaling)という機能が搭載されている。このDVFSは、チップ上に搭載された遅延測定回路から得られるデータをもとに、内部の回路の電源電圧、あるいはクロック周波数を制御し、性能を抑制して熱暴走を防止するようになっている。 For example, many high-performance microprocessors are equipped with a function called DVFS (Dynamic Voltage and Frequency Scaling). This DVFS controls the power supply voltage or clock frequency of the internal circuit based on the data obtained from the delay measurement circuit mounted on the chip, and suppresses performance to prevent thermal runaway. Yes.
 また、ARM社で製品化されたプロセッサでは、IEM(Intelligent Energy Management)という機能が提供されており、チップ上に搭載された性能モニタ回路の出力を組込みソフトウェアで処理し、最適動作電源電圧を求めている。 In addition, the processor commercialized by ARM provides a function called IEM (Intelligent Energy Management), and the output of the performance monitor circuit mounted on the chip is processed by embedded software to obtain the optimum operating power supply voltage. ing.
 一般に、これら既存の技術では、最適動作電源電圧を試作品の評価に基づいて決定している。そのため、マイクロプロセッサのような大量に生産するチップでなければ、信頼できるデータを蓄積することが困難であった。あるいは、IEMのように、最適動作電源電圧の算出のために、内蔵プロセッサを用いてソフトウェアで処理することが必要であった。そのため、適用される製品が極めて限定されている。 Generally, with these existing technologies, the optimum operating power supply voltage is determined based on the evaluation of the prototype. Therefore, it is difficult to accumulate reliable data unless the chip is produced in large quantities such as a microprocessor. Or, like IEM, it is necessary to perform processing by software using an internal processor in order to calculate the optimum operating power supply voltage. For this reason, the products to be applied are extremely limited.
 一方、近年、半導体集積回路の微細化にともない、プロセスのばらつき、電源電圧の低下、クロストークなどの統計的要因がチップ性能に与える影響が大きくなってきており、これらの統計的要因により、例えば、回路遅延の変動が増大している。従来の静的遅延解析(STA)では、これらの統計的要因による回路遅延の変動は遅延マージンとして余分に確保されているが、遅延マージンの増大化のためタイミング設計が困難となってきている。 On the other hand, in recent years, with the miniaturization of semiconductor integrated circuits, statistical factors such as process variation, power supply voltage drop, crosstalk, etc. have been increasing on chip performance. Due to these statistical factors, for example, The fluctuation of the circuit delay is increasing. In the conventional static delay analysis (STA), fluctuations in circuit delay due to these statistical factors are secured as a delay margin, but timing design becomes difficult due to an increase in the delay margin.
 そこで、プロセスのばらつき等が半導体集積回路の性能に与える影響を正確に算出する半導体集積回路の性能分散系算出方法として、例えば、特許文献1に記載されたものがある。この半導体集積回路の性能分散系算出方法では、プロセス変動や電源電圧変動、温度変動を直接大規模な半導体集積回路の特性のばらつきとして計算するのではなく、ゲートレベルのばらつきに写像して半導体集積回路の特性のばらつきを計算する方法が提案されている。 Therefore, as a method for calculating the performance dispersion system of a semiconductor integrated circuit for accurately calculating the influence of process variations and the like on the performance of the semiconductor integrated circuit, for example, there is a method described in Patent Document 1. In this semiconductor integrated circuit performance distribution system calculation method, process fluctuations, power supply voltage fluctuations, and temperature fluctuations are not directly calculated as variations in characteristics of large-scale semiconductor integrated circuits, but are mapped to variations in gate levels. A method for calculating variation in circuit characteristics has been proposed.
特開2005-19524号公報Japanese Patent Laid-Open No. 2005-19524
 従来の半導体集積回路の性能分散系算出方法では、半導体集積回路の特性のばらつきをゲートレベルのばらつきに写像して計算しているため、セルの性能分布の精度を上げることができるものの、性能分布を作成するまでに時間を要する。また、作成した性能分布により示される半導体集積回路の特性のばらつきでは、デバイスパラメータの依存性が考慮されていない。半導体集積回路の特性のばらつきは、半導体集積回路内に含まれる各種回路の接続関係に基づいて信号伝達経路毎に特性変動要因となるデバイスパラメータの依存性を考慮して算出することが望ましく、従来は実現されていなかった。さらに、従来の半導体集積回路の性能分散系算出方法では、性能分布を用いて半導体集積回路の消費電力を算出しているだけである。 In the conventional semiconductor integrated circuit performance distribution calculation method, the variation in characteristics of the semiconductor integrated circuit is calculated by mapping the variation in the gate level to the variation in the gate level. It takes time to create In addition, the device parameter dependency is not taken into account in the variation in characteristics of the semiconductor integrated circuit indicated by the created performance distribution. The variation in characteristics of a semiconductor integrated circuit is preferably calculated in consideration of the dependence of device parameters that cause characteristics variation for each signal transmission path based on the connection relationship of various circuits included in the semiconductor integrated circuit. Was not realized. Furthermore, the conventional performance distribution system calculation method for a semiconductor integrated circuit only calculates the power consumption of the semiconductor integrated circuit using the performance distribution.
 本発明は、上記のような課題に鑑みてなされたものであり、半導体集積回路の性能分布の作成時間を短縮し、その性能分布を用いて半導体集積回路の消費電力を低減する最適電源電圧を決定する半導体集積回路の電源電圧決定方法及び半導体集積回路の電源電圧制御システムを提供することを目的とする。 The present invention has been made in view of the above-described problems. An optimum power supply voltage for shortening the time for creating a performance distribution of a semiconductor integrated circuit and reducing the power consumption of the semiconductor integrated circuit using the performance distribution is provided. An object of the present invention is to provide a power supply voltage determination method for a semiconductor integrated circuit to be determined and a power supply voltage control system for the semiconductor integrated circuit.
 本発明の一実施の形態に係る半導体集積回路の電源電圧決定方法は、半導体集積回路を構成する複数のセルのセルライブラリ、前記複数のセルの遅延時間の特性変動要因となるパラメータとして、少なくともゲート長もしくは閾値電圧またはデバイスモデル(たとえばSPICEモデル)上で前記パラメータと等価なパラメータを含むデバイスパラメータの変動範囲として与えられるプロセスばらつき情報、および動作条件として与えられる少なくとも電源電圧または動作温度を用いて、前記セルライブラリに含まれる各セルの特性変動を統計的に解析し、前記各セルの遅延時間を特性変動要因となる複数のパラメータに対する応答曲面として表現し、前記特性変動要因となる複数のパラメータの感度および相互間の依存性を算出し、前記複数のパラメータの感度及び相互間の依存性に対する算出結果に基づいて、前記複数のパラメータの感度が高く、相互間の依存性の異なる複数のセルを前記セルライブラリから選択し、前記選択された複数のセルをそれぞれ複数段直列に接続した複数の遅延回路を含む特性モニタ回路を形成し、前記半導体集積回路内の全信号伝達経路の遅延時間を、前記各セルの特性変動要因となる複数のパラメータに対する応答曲面として表現して格納したデータベースを作成し、前記データベースに対して前記特性変動要因となる複数のパラメータが与えられたときの前記半導体集積回路の遅延特性が要求性能を満たす最適電源電圧を求め、求めた最適電源電圧と前記特性変動要因となる複数のパラメータとの関係を示すマップを作成し、前記特性モニタ回路に搭載された複数の遅延回路を構成するセルの応答曲面の逆関数を用いて、前記特性モニタ回路の出力から前記特性変動要因となる複数のパラメータを推定し、前記推定された特性変動要因となる複数のパラメータと前記マップとを用いて前記半導体集積回路の最適電源電圧を決定することを特徴とする。 A method of determining a power supply voltage of a semiconductor integrated circuit according to an embodiment of the present invention includes: a cell library of a plurality of cells constituting a semiconductor integrated circuit; and at least a gate as a parameter that causes variation in characteristics of delay times of the plurality of cells. Using process variation information given as a variation range of device parameters including parameters equivalent to the above parameters on a long or threshold voltage or a device model (for example, SPICE model), and at least a power supply voltage or an operating temperature given as an operating condition, Statistically analyze the characteristic variation of each cell included in the cell library, and express the delay time of each cell as a response surface with respect to a plurality of parameters that cause the characteristic variation. Calculate sensitivity and interdependence, and Based on the calculation results for the sensitivity of the number parameters and the dependency between the plurality of cells, the plurality of cells having a high sensitivity of the plurality of parameters and different dependencies between the plurality of parameters are selected from the cell library, and the selected plurality of cells are selected. Forming a characteristic monitor circuit including a plurality of delay circuits in which a plurality of cells are connected in series, and the delay time of all signal transmission paths in the semiconductor integrated circuit is a plurality of parameters that cause the characteristic variation of each cell. A database expressed and stored as a response curved surface for the above is prepared, and the optimum power supply voltage that satisfies the required performance of the delay characteristics of the semiconductor integrated circuit when a plurality of parameters that cause the characteristic variation is given to the database A map showing the relationship between the determined optimum power supply voltage and the plurality of parameters that cause the characteristic variation; Using the inverse function of the response surface of the cells constituting a plurality of delay circuits mounted on the circuit, a plurality of parameters serving as the characteristic variation factor are estimated from the output of the characteristic monitor circuit, and the estimated characteristic variation factor The optimum power supply voltage of the semiconductor integrated circuit is determined using a plurality of parameters and the map.
 本発明の一実施の形態に係る半導体集積回路の基板バイアス電圧決定方法は、半導体集積回路を構成する複数のセルのセルライブラリ、前記複数のセルの遅延時間の特性変動要因となるパラメータとして、少なくともゲート長もしくは閾値電圧またはデバイスモデル(たとえばSPICEモデル)上で前記パラメータと等価なパラメータを含むデバイスパラメータの変動範囲として与えられるプロセスばらつき情報、および動作条件として与えられる少なくとも電源電圧または動作温度を用いて、前記セルライブラリに含まれる各セルの特性変動を統計的に解析し、前記各セルの遅延時間を特性変動要因となる複数のパラメータに対する応答曲面として表現し、前記特性変動要因となる複数のパラメータの感度および相互間の依存性を算出し、前記複数のパラメータの感度及び相互間の依存性に対する算出結果に基づいて、前記複数のパラメータの感度が高く、相互間の依存性の異なる複数のセルを前記セルライブラリから選択し、前記選択された複数のセルをそれぞれ複数段直列に接続した遅延回路を含む特性モニタ回路を形成し、前記半導体集積回路内の全信号伝達経路の遅延時間を、前記各セルの特性変動要因となる複数のパラメータに対する応答曲面として表現して格納したデータベースを作成し、前記データベースに対して前記特性変動要因となる複数のパラメータが与えられたときの前記半導体集積回路の遅延特性が要求性能を満たす最適基板バイアス電圧を求め、求めた最適基板バイアス電圧と前記特性変動要因となる複数のパラメータとの関係を示すマップを作成し、前記特性モニタ回路に搭載された複数の遅延回路を構成するセルの応答曲面の逆関数を用いて、前記特性モニタ回路の出力から前記特性変動要因となる複数のパラメータを推定し、前記推定された特性変動要因となる複数のパラメータと前記マップとを用いて前記半導体集積回路の最適基板バイアス電圧を決定することを特徴とする。 A substrate bias voltage determination method for a semiconductor integrated circuit according to an embodiment of the present invention includes: a cell library of a plurality of cells constituting a semiconductor integrated circuit; and at least a parameter that causes a characteristic variation factor of a delay time of the plurality of cells. Using process variation information given as a variation range of a device parameter including a parameter equivalent to the parameter on the gate length or threshold voltage or a device model (for example, SPICE model), and at least a power supply voltage or an operating temperature given as an operating condition , Statistically analyzing the characteristic variation of each cell included in the cell library, expressing the delay time of each cell as a response surface with respect to a plurality of parameters serving as a characteristic variation factor, and a plurality of parameters serving as the characteristic variation factor The sensitivity and mutual dependence of Based on the calculation results for the sensitivity of the plurality of parameters and the dependence between the plurality of parameters, a plurality of cells having high sensitivity of the plurality of parameters and different dependencies between the plurality of parameters are selected from the cell library, and the selected cells are selected. Forming a characteristic monitor circuit including a delay circuit in which a plurality of cells are connected in series, and the delay time of all signal transmission paths in the semiconductor integrated circuit is a plurality of parameters that cause the characteristic variation of each cell. An optimum substrate bias voltage satisfying the required performance of a delay characteristic of the semiconductor integrated circuit when a database expressed and stored as a response curved surface is created and a plurality of parameters that cause the characteristic variation is given to the database A map showing the relationship between the determined optimum substrate bias voltage and the multiple parameters that cause the characteristic variation is created. And using the inverse function of the response surface of the cells constituting the plurality of delay circuits mounted on the characteristic monitor circuit, estimating a plurality of parameters that cause the characteristic variation from the output of the characteristic monitor circuit, and The optimum substrate bias voltage of the semiconductor integrated circuit is determined using a plurality of parameters that cause the characteristic variation and the map.
 本発明の一実施の形態に係る半導体集積回路の電源電圧制御システムは、半導体集積回路と、複数の遅延回路を有し、前記複数の遅延回路を用いて、入力信号に対して各々異なる遅延信号を出力する特性モニタ回路と、前記特性モニタ回路から出力される複数の遅延信号を各々エンコードして所定ビット数のデータを出力するエンコーダ回路と、前記エンコーダ回路から出力される前記データに応じて前記半導体集積回路の電源電圧値を設定したテーブルに基づいて、前記データに対応する電源電圧値を前記半導体集積回路に出力する電源電圧制御回路と、を備えることを特徴とする。 A power supply voltage control system for a semiconductor integrated circuit according to an embodiment of the present invention includes a semiconductor integrated circuit and a plurality of delay circuits, and each of the delay signals is different from an input signal using the plurality of delay circuits. A characteristic monitor circuit that outputs a signal, an encoder circuit that encodes each of a plurality of delay signals output from the characteristic monitor circuit and outputs data of a predetermined number of bits, and the data that is output from the encoder circuit according to the data And a power supply voltage control circuit for outputting a power supply voltage value corresponding to the data to the semiconductor integrated circuit based on a table in which the power supply voltage value of the semiconductor integrated circuit is set.
 本発明の一実施の形態に係る半導体集積回路の基板バイアス電圧制御システムは、半導体集積回路と、複数の遅延回路を有し、前記複数の遅延回路を用いて、入力信号に対して各々異なる遅延信号を出力する特性モニタ回路と、前記特性モニタ回路から出力される複数の遅延信号を各々エンコードして所定ビット数のデータを出力するエンコーダ回路と、前記エンコーダ回路から出力される前記データに応じて前記半導体集積回路の基板バイアス電圧値を設定したテーブルに基づいて、前記データに対応する基板バイアス電圧値を前記半導体集積回路に出力する基板バイアス電圧制御回路と、を備えることを特徴とする。 A substrate bias voltage control system for a semiconductor integrated circuit according to an embodiment of the present invention includes a semiconductor integrated circuit and a plurality of delay circuits, and each of the plurality of delay circuits is used to provide different delays with respect to an input signal. A characteristic monitor circuit that outputs a signal, an encoder circuit that encodes each of a plurality of delay signals output from the characteristic monitor circuit and outputs data of a predetermined number of bits, and a response to the data output from the encoder circuit And a substrate bias voltage control circuit for outputting a substrate bias voltage value corresponding to the data to the semiconductor integrated circuit based on a table in which the substrate bias voltage value of the semiconductor integrated circuit is set.
 本発明によれば、半導体集積回路の設計データ及びプロセスばらつき情報を用いて、半導体集積回路内の全信号伝達経路に対して、特性変動要因となるデバイスパラメータ間の依存性を求めることによって、性能分布の作成時間を短縮し、その性能分布を用いて半導体集積回路の消費電力を低減する最適電源電圧を決定する半導体集積回路の電源電圧決定方法及び半導体集積回路の電源電圧制御システムを提供することができる。 According to the present invention, by using the design data and process variation information of the semiconductor integrated circuit, the dependency between the device parameters that cause the characteristic variation is obtained for all the signal transmission paths in the semiconductor integrated circuit. To provide a power supply voltage determination method for a semiconductor integrated circuit and a power supply voltage control system for a semiconductor integrated circuit that determine an optimum power supply voltage that shortens the creation time of the distribution and uses the performance distribution to reduce the power consumption of the semiconductor integrated circuit. Can do.
本発明の実施の形態に係る半導体集積回路の電源電圧決定方法の概要を説明するためのフロー図である。It is a flowchart for demonstrating the outline | summary of the power supply voltage determination method of the semiconductor integrated circuit which concerns on embodiment of this invention. 図1に続く本発明の実施の形態に係る半導体集積回路の電源電圧決定方法の概要を説明するためのフロー図である。FIG. 2 is a flowchart for explaining the outline of the power supply voltage determination method for the semiconductor integrated circuit according to the embodiment of the present invention following FIG. 1; デバイスパラメータを用いて生成した最適動作電源電圧マップの一例を示す図である。It is a figure which shows an example of the optimal operation | movement power supply voltage map produced | generated using the device parameter. 本発明の実施の形態に係る半導体集積回路の電源電圧制御システムの概略構成を示す図である。It is a figure which shows schematic structure of the power supply voltage control system of the semiconductor integrated circuit which concerns on embodiment of this invention. 図4に示す半導体集積回路の電源電圧制御システムの特性モニタ回路及びエンコーダ回路の回路構成例について説明する図である。FIG. 5 is a diagram illustrating a circuit configuration example of a characteristic monitor circuit and an encoder circuit of the power supply voltage control system for the semiconductor integrated circuit shown in FIG. 4. 本発明の実施の形態に係る電源電圧制御回路の回路構成例について説明する図である。It is a figure explaining the circuit structural example of the power supply voltage control circuit which concerns on embodiment of this invention. 図1においてステップST104に示したセルライブラリ特性ばらつきモデルの一実施例を示す図である。It is a figure which shows one Example of the cell library characteristic dispersion | variation model shown to step ST104 in FIG. (A)及び(B)は、図2においてステップST104に示したセルライブラリ特性ばらつきモデルに格納された各セルの遅延時間を特性変動要因となる複数のデバイスパラメータに対する応答曲面の一実施例を示す図である。FIGS. 2A and 2B show an embodiment of a response surface for a plurality of device parameters that cause the delay time of each cell stored in the cell library characteristic variation model shown in step ST104 in FIG. FIG. セルライブラリから抽出したセルを用いて構成した遅延回路を含む特性モニタ回路を搭載した半導体チップの一実施例を示す図である。It is a figure which shows one Example of the semiconductor chip carrying the characteristic monitor circuit containing the delay circuit comprised using the cell extracted from the cell library. 図2においてステップST110に示したチップレベルタイミングモデルの一実施例を示す図である。It is a figure which shows one Example of the chip level timing model shown to step ST110 in FIG.
 100…半導体集積回路の電源電圧制御システム、200…半導体チップ、300…対象半導体集積回路、400…特性モニタ回路、500…エンコード回路、600…DC/DCコンバータ DESCRIPTION OF SYMBOLS 100 ... Power supply voltage control system of a semiconductor integrated circuit, 200 ... Semiconductor chip, 300 ... Target semiconductor integrated circuit, 400 ... Characteristic monitoring circuit, 500 ... Encoding circuit, 600 ... DC / DC converter
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the following embodiments.
 まず、本発明の実施の形態に係る半導体集積回路の電源電圧決定方法の概要について、図面を参照しながら詳細に説明する。 First, an outline of a power supply voltage determination method for a semiconductor integrated circuit according to an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の実施の形態に係る半導体集積回路の電源電圧決定方法の概要を説明するためのフロー図である。図2は、図1に続く本発明の実施の形態に係る半導体集積回路の電源電圧決定方法の概要を説明するためのフロー図である。図1及び図2では、本実施の形態に係る半導体集積回路の電源電圧を決定する際に用いる特性モニタ回路設計データ及びエンコーダ回路設計データを作成する。 FIG. 1 is a flowchart for explaining an outline of a power supply voltage determination method for a semiconductor integrated circuit according to an embodiment of the present invention. FIG. 2 is a flowchart for explaining the outline of the power supply voltage determination method for the semiconductor integrated circuit according to the embodiment of the present invention subsequent to FIG. 1 and 2, the characteristic monitor circuit design data and the encoder circuit design data used when determining the power supply voltage of the semiconductor integrated circuit according to the present embodiment are created.
 図1に示すように、ステップST101において、セルライブラリは、半導体メーカから提供される半導体集積回路の設計に必要な複数のマクロセル(機能ブロック(基本回路))、SPICEモデル、論理機能、電気的特性、レイアウトなどの回路設計データを格納するデータベースである。 As shown in FIG. 1, in step ST101, the cell library includes a plurality of macro cells (functional blocks (basic circuits)), SPICE models, logic functions, and electrical characteristics necessary for designing a semiconductor integrated circuit provided by a semiconductor manufacturer. A database for storing circuit design data such as layouts.
 次に、ステップST102において、プロセスばらつき情報は、半導体集積回路を製造する際のランダムばらつきに関する情報とシステマティックばらつきに関する情報とを含む。ここで、システマティックばらつきとは、トランジスタの位置やレイアウトパターン、あるいは製造装置の特性や製造条件と相関のある、再現性のあるばらつきをいい、例えば、露光装置による露光パターンのばらつき、CMP(Chemical Mechanical Polishing)装置によるCMP時に生じる膜圧のばらつきなどがある。また、ランダムばらつきとは、システマティックばらつきに関係なく発生するばらつきをいい、例えば、不純物濃度のばらつきによる閾値電圧のばらつきなどがある。 Next, in step ST102, the process variation information includes information on random variation and information on systematic variation when the semiconductor integrated circuit is manufactured. Here, the systematic variation refers to a reproducible variation that correlates with the position and layout pattern of the transistor, or the characteristics and manufacturing conditions of the manufacturing apparatus. For example, the exposure pattern variation due to the exposure apparatus, CMP (Chemical Mechanical) There is a variation in film pressure generated during CMP by a polishing apparatus. Random variation refers to variation that occurs regardless of systematic variation, and includes, for example, variation in threshold voltage due to variation in impurity concentration.
 次に、ステップST103において、キャラクタライズ処理は、例えば、SAP(Stochastic Analysis Prosess)技術を用いて、セルライブラリに含まれるマクロセルの特性変動要因に対する依存性の解析を行い、セルライブラリの特性ばらつきモデルを生成する処理である。キャラクタライズ処理は、例えば、セルを構成するトランジスタベースの遅延シミュレーション処理を実行することにより、そのセルの遅延時間や消費電力のデバイスパラメータへの依存性を算出する。ここで、特性変動要因とは、例えば、システマティックばらつきによって変動するトランジスタのゲート長、閾値電圧、ゲート幅、ゲート酸化膜厚、拡散抵抗、配線抵抗、配線容量、あるいはデバイスモデル(SPICEモデルなど)上でそれらと等価なパラメータなどのデバイスパラメータ、および動作条件として与えられる電源電圧、動作温度または基板バイアス電圧などのパラメータのことである。特性変動要因は、回路の動作特性、例えば遅延時間や消費電力を変動させる。 Next, in step ST103, for example, the characterization process uses a SAP (Stochastic Analysis Process) technique to analyze the dependency on the characteristic variation factor of the macro cell included in the cell library, and to calculate the characteristic variation model of the cell library. It is a process to generate. In the characterization process, for example, the dependence of the delay time of the cell and the power consumption on the device parameters is calculated by executing a delay simulation process based on a transistor constituting the cell. Here, the characteristic variation factor is, for example, the transistor gate length, threshold voltage, gate width, gate oxide film thickness, diffusion resistance, wiring resistance, wiring capacitance, or device model (SPICE model, etc.) that varies due to systematic variation. And device parameters such as parameters equivalent to them, and parameters such as power supply voltage, operating temperature or substrate bias voltage given as operating conditions. The characteristic variation factor fluctuates circuit operation characteristics such as delay time and power consumption.
 次に、ステップST104において、ステップST103において生成されたセルライブラリ特性ばらつきモデルをデータベース化する。このセルライブラリ特性ばらつきモデルは、ステップST101のセルライブラリに含まれるセルに対して、キャラクタライズ処理により求められた各デバイスパタメータや動作条件に対する依存性の解析結果(応答曲面)を格納するデータベースである。 Next, in step ST104, the cell library characteristic variation model generated in step ST103 is made into a database. This cell library characteristic variation model is a database that stores analysis results (response surface) of dependence on each device parameter and operating conditions obtained by characterization processing for cells included in the cell library of step ST101. is there.
 次に、ステップST105において、主成分分析(PCA:Principal components analysis)は、セルライブラリ特性ばらつきを統計的な手法で分析して、それぞれのセルの特性変動に対し、特性変動要因となるデバイスパラメータの感度や相関を抽出する。ここで、感度とは、セルライブラリ内の各セルの特性変動に対し、特性変動要因となるデバイスパラメータが与える影響の程度を表す指標である。この感度は、例えばセルの遅延特性に与えるデバイスパラメータの影響の大きさに基づいて決定される。また、相関とは、セルの特性変動に対し、特性変動要因となるデバイスパラメータ相互間の寄与の度合いを表す指標である。例えば、同じデバイスパラメータに対する変動が同じ傾向を示す場合には相関が大きく、異なる傾向を示す場合には相関が小さい。 Next, in step ST105, principal component analysis (PCA) analyzes the cell library characteristic variation using a statistical method, and for each characteristic change of each cell, the device parameter that becomes the characteristic change factor is changed. Extract sensitivity and correlation. Here, the sensitivity is an index that represents the degree of influence of device parameters that are characteristics variation factors on the characteristics variation of each cell in the cell library. This sensitivity is determined based on, for example, the magnitude of the influence of device parameters on the cell delay characteristics. Further, the correlation is an index that represents the degree of contribution between device parameters that is a characteristic variation factor with respect to cell characteristic variation. For example, the correlation is large when the variation for the same device parameter shows the same tendency, and the correlation is small when the tendency is different.
 次に、ステップST106において、遅延回路のセル選択では、主成分分析の結果を基に、それぞれのデバイスパラメータの感度が高く、他のデバイスパラメータとの相関の小さなセル群をセルライブラリに含まれるセルから選択する。 Next, in step ST106, in the cell selection of the delay circuit, based on the result of the principal component analysis, a cell group in which the sensitivity of each device parameter is high and the correlation with other device parameters is small is included in the cell library. Select from.
 次に、ステップST107において、遅延回路設計は、選択したセル群のそれぞれを、ランダムばらつきの影響が無視できるように複数段直列に接続した異なる遅延回路を構成し、各遅延回路の遅延時間あるいはその遅延回路間の遅延時間差が計測可能な範囲内に収まるように各遅延回路のセル段数を設定して、各遅延回路の設計データを作成する。 Next, in step ST107, the delay circuit design is performed by configuring different delay circuits in which each of the selected cell groups is connected in a plurality of stages in series so that the influence of random variations can be ignored. The design data of each delay circuit is created by setting the number of cell stages of each delay circuit so that the delay time difference between the delay circuits is within a measurable range.
 次に、ステップST108において、特性モニタ回路設計データは、ステップST107において設計された遅延回路を構成するセルの接続情報等を含む設計データを格納するデータベースである。 Next, in step ST108, the characteristic monitor circuit design data is a database for storing design data including connection information and the like of the cells constituting the delay circuit designed in step ST107.
 次に、図2に示すように、ステップST109において、チップレベルタイミングモデル生成は、上記特性モニタ回路設計データ及び、SAP技術を用いて、対象半導体集積回路、及び特性モニタ回路(遅延回路)のそれぞれの回路構成に含まれる信号伝達経路の遅延特性に対し、デバイスパラメータ、電源電圧、動作温度などの特性変動要因に対する依存性、すなわち応答曲面を求める。応答曲面とは、サンプリングした入力変数(ここでは特性変動要因の各パラメータ)および出力変数(ここでは信号伝達経路の遅延時間)のデータを元に作成した、入力変数によって表わされる出力変数の近似関数である。すなわち、回路の遅延時間特性の変動が、特性変動要因の各パラメータの関数として表現される。 Next, as shown in FIG. 2, in step ST109, chip level timing model generation is performed for each of the target semiconductor integrated circuit and the characteristic monitor circuit (delay circuit) using the characteristic monitor circuit design data and the SAP technology. Dependency on characteristic variation factors such as device parameters, power supply voltage, operating temperature, etc., that is, a response curved surface is obtained for the delay characteristic of the signal transmission path included in the circuit configuration. The response surface is an approximate function of the output variable represented by the input variable created based on the sampled input variable (here, each parameter of the characteristic variation factor) and output variable (here, the delay time of the signal transmission path). It is. That is, the variation of the delay time characteristic of the circuit is expressed as a function of each parameter of the characteristic variation factor.
 次に、ステップST110において、ステップST109において作成されたチップレベルタイミングモデルをデータベース化する。チップレベルタイミングモデルのデータベースには、対象半導体集積回路、及び特性モニタ回路(遅延回路)各々に含まれる全ての信号伝達経路の遅延特性の、特性変動要因に対する依存性、すなわち応答曲面を格納する。 Next, in step ST110, the chip level timing model created in step ST109 is made into a database. In the database of the chip level timing model, the dependence of the delay characteristics of all signal transmission paths included in each of the target semiconductor integrated circuit and the characteristic monitor circuit (delay circuit) with respect to the characteristic variation factor, that is, a response surface is stored.
 次に、ステップST112において、最適電源電圧マップ生成処理は、チップレベルタイミングモデル、すなわち応答曲面の逆関数から、特性モニタ回路(遅延回路)の出力(計測される遅延時間)を与えるデバイスパラメータ(例えば、ゲート長、閾値電圧等)を求める。そして、求められた各デバイスパラメータに対応する対象半導体集積回路の遅延特性から、要求性能(ステップST111)を満たす最適電源電圧を求める。ここで、ステップST111における要求性能とは、例えば、対象半導体集積回路の仕様として満たすべき遅延特性である。 Next, in step ST112, the optimum power supply voltage map generation processing is a device parameter (for example, a delay time to be measured) of the characteristic monitor circuit (delay circuit) from the inverse function of the chip level timing model, that is, the response surface. , Gate length, threshold voltage, etc.). Then, an optimum power supply voltage that satisfies the required performance (step ST111) is obtained from the delay characteristics of the target semiconductor integrated circuit corresponding to the obtained device parameters. Here, the required performance in step ST111 is, for example, a delay characteristic to be satisfied as the specification of the target semiconductor integrated circuit.
 次に、ステップST113において、ステップST112において求められる最適電源電圧をマップとしてデータベース化する。最適電源電圧マップのデータベースには、特性モニタ回路(遅延回路)の出力(計測される遅延時間)を変化させたときに、対象半導体集積回路の遅延特性が要求性能(ステップST111)を満たすように求められる電源電圧を、最適電源電圧マップとして格納する。このデータベースに格納される最適電源電圧マップの一例を図3に示す。図3は、デバイスパラメータとして閾値電圧LVt(σ)及び閾値電圧HVt(σ)に対して求めた最適電源電圧Vdd(V)をマップとして表示した一例である。 Next, in step ST113, the optimum power supply voltage obtained in step ST112 is made into a database as a map. In the database of the optimum power supply voltage map, when the output (measured delay time) of the characteristic monitor circuit (delay circuit) is changed, the delay characteristic of the target semiconductor integrated circuit satisfies the required performance (step ST111). The obtained power supply voltage is stored as an optimum power supply voltage map. An example of the optimum power supply voltage map stored in this database is shown in FIG. FIG. 3 shows an example in which the optimum power supply voltage Vdd (V) obtained for the threshold voltage LVt (σ) and the threshold voltage HVt (σ) as device parameters is displayed as a map.
 次に、ステップST114において、多項式変換および論理合成は、ステップST113において作成した最適電源電圧マップを、特性モニタ回路(遅延回路)の各出力を変数とした多項式に変換し、この多項式に論理合成を適用してエンコーダ回路を構成する設計データを作成する。エンコーダ回路設計データは、特性モニタ回路(遅延回路)から出力される各遅延時間を所定ビット数のデータとして入力し、最適電源電圧を所定ビット数のデータとして出力するエンコーダ回路を形成する。論理合成とは、ハードウェア記述言語のように抽象的な記述(ここでは多項式)で書かれた回路動作仕様からゲートの接続で表現された論理回路(ゲートレベルネットリスト)を形成することである。すなわち、合成された論理回路は、特性モニタ回路の各遅延回路の遅延時間に応じたバイナリコード群を入力とし、差的電源電圧を表現するバイナリコードを出力する機能を持つ。 Next, in step ST114, polynomial conversion and logic synthesis are performed by converting the optimum power supply voltage map created in step ST113 into a polynomial using each output of the characteristic monitor circuit (delay circuit) as a variable, and performing logic synthesis on this polynomial. Apply to create design data that configures the encoder circuit. The encoder circuit design data forms an encoder circuit that inputs each delay time output from the characteristic monitor circuit (delay circuit) as data having a predetermined number of bits and outputs an optimum power supply voltage as data having a predetermined number of bits. Logic synthesis is to form a logic circuit (gate level netlist) expressed by gate connections from circuit operation specifications written in an abstract description (in this case polynomial) like a hardware description language. . That is, the synthesized logic circuit has a function of inputting a binary code group corresponding to the delay time of each delay circuit of the characteristic monitor circuit and outputting a binary code representing a differential power supply voltage.
 ステップST115において、ステップST112において作成されたエンコーダ回路設計データをデータベースに格納して、本処理を終了する。 In step ST115, the encoder circuit design data created in step ST112 is stored in the database, and this process is terminated.
 以上説明したように、本実施の形態に係る半導体集積回路の電源電圧決定方法の概要では、統計的な解析処理や遅延シミュレーション処理を用いて、特性モニタ回路設計データ及びエンコーダ回路設計データを作成することで、多数の当該半導体集積回路を試作し、その遅延特性とデバイスパラメータの関係を評価することなく、当該半導体集積回路内の全信号伝達経路に対する遅延特性を、特性モニタ回路(遅延回路)の出力から算出し、さらに当該半導体集積回路が要求性能を満たす最適電源電圧を求めるためのエンコーダ回路を形成することができる。 As described above, in the outline of the power supply voltage determination method for the semiconductor integrated circuit according to the present embodiment, the characteristic monitor circuit design data and the encoder circuit design data are created using statistical analysis processing and delay simulation processing. As a result, a large number of semiconductor integrated circuits are prototyped, and the delay characteristics for all signal transmission paths in the semiconductor integrated circuit are evaluated by the characteristic monitor circuit (delay circuit) without evaluating the relationship between the delay characteristics and device parameters. An encoder circuit for calculating an optimum power supply voltage that is calculated from the output and that satisfies the required performance of the semiconductor integrated circuit can be formed.
 次に、図1及び図2のフローにより作成した特性モニタ回路の設計データ及びエンコーダ回路の設計データを用いて、本実施の形態に係る半導体集積回路200に適用する特性モニタ回路400とエンコーダ回路500を含む半導体集積回路の電源電圧制御システム100の一例について、図4、図5及び図6を参照して詳細に説明する。図4は、半導体集積回路の電源電圧制御システム100の概略構成を示すブロック図である。図5は、図4に示す特性モニタ回路400及びエンコーダ回路500の各回路構成を示す図である。図6は、図4に示すDC/DCコンバータ600の回路構成を示す図である。 Next, the characteristic monitor circuit 400 and the encoder circuit 500 applied to the semiconductor integrated circuit 200 according to the present embodiment using the design data of the characteristic monitor circuit and the design data of the encoder circuit created by the flow of FIG. 1 and FIG. An example of a power supply voltage control system 100 for a semiconductor integrated circuit including the above will be described in detail with reference to FIGS. FIG. 4 is a block diagram showing a schematic configuration of the power supply voltage control system 100 of the semiconductor integrated circuit. FIG. 5 is a diagram showing circuit configurations of the characteristic monitor circuit 400 and the encoder circuit 500 shown in FIG. FIG. 6 is a diagram showing a circuit configuration of DC / DC converter 600 shown in FIG.
 図4に示す半導体集積回路の電源電圧制御システム100は、対象半導体集積回路300および特性モニタ回路400をともに搭載した半導体チップ200を用いて、特性モニタ回路400に含まれる複数の遅延回路によって計測される遅延特性を所定ビット数のデータとして出力する。エンコーダ回路500は、上記特性モニタ回路400の出力を入力とし、対象半導体集積回路300内に含まれる全信号伝達経路の遅延特性が要求性能を満たす最適電源電圧を、所定ビット数のデータとして出力する。DC/DCコンバータ(電源電圧制御回路)600は、上記エンコーダ回路500の出力に応じて電源電圧値を調整し、半導体チップ200に与える電源電圧を決定する。 The power supply voltage control system 100 of the semiconductor integrated circuit shown in FIG. 4 is measured by a plurality of delay circuits included in the characteristic monitor circuit 400 using the semiconductor chip 200 on which both the target semiconductor integrated circuit 300 and the characteristic monitor circuit 400 are mounted. The delay characteristic is output as data of a predetermined number of bits. The encoder circuit 500 receives the output of the characteristic monitor circuit 400 as an input, and outputs, as data of a predetermined number of bits, an optimum power supply voltage that satisfies the required performance of the delay characteristics of all signal transmission paths included in the target semiconductor integrated circuit 300. . The DC / DC converter (power supply voltage control circuit) 600 adjusts the power supply voltage value according to the output of the encoder circuit 500 and determines the power supply voltage to be applied to the semiconductor chip 200.
 半導体チップ200は、対象半導体集積回路300及び特性モニタ回路400が同一のチップ上に搭載されている。この対象半導体集積回路300及び特性モニタ回路400は、同一の製造方法で形成されているため、上記した回路設計データ及びプロセスのばらつき情報が同一であると仮定している。ここで、対象半導体集積回路300には、例えば、各種論理回路により構成されるマイクロプロセッサやゲートアレイなどのIC、LSIが含まれるが、その対象半導体集積回路300を特に限定するものではない。特性モニタ回路400は、対象半導体集積回路300に対して、上記ステップST108において格納した特性モニタ回路設計データに基づいて構成される複数の遅延回路を含み、各遅延回路が有する遅延特性による各遅延信号と標準delay信号との間の遅延誤差を検出し、その遅延誤差をエンコーダ回路500に出力する。エンコーダ回路500は、特性モニタ回路400から入力される遅延誤差を所定ビット数のデータにエンコードし、そのエンコード信号をDC/DCコンバータ600に出力する。DC/DCコンバータ600は、エンコーダ回路500から入力されるエンコード信号に応じて電源電圧値を調整し、その調整した電源電圧値を半導体チップ200に出力する。 In the semiconductor chip 200, the target semiconductor integrated circuit 300 and the characteristic monitor circuit 400 are mounted on the same chip. Since the target semiconductor integrated circuit 300 and the characteristic monitor circuit 400 are formed by the same manufacturing method, it is assumed that the circuit design data and the process variation information are the same. Here, the target semiconductor integrated circuit 300 includes, for example, an IC and an LSI such as a microprocessor and a gate array configured by various logic circuits, but the target semiconductor integrated circuit 300 is not particularly limited. The characteristic monitor circuit 400 includes a plurality of delay circuits configured based on the characteristic monitor circuit design data stored in step ST108 with respect to the target semiconductor integrated circuit 300, and each delay signal based on the delay characteristic of each delay circuit. And a delay error between the standard delay signal and the delay error are output to the encoder circuit 500. The encoder circuit 500 encodes the delay error input from the characteristic monitor circuit 400 into data having a predetermined number of bits, and outputs the encoded signal to the DC / DC converter 600. The DC / DC converter 600 adjusts the power supply voltage value according to the encode signal input from the encoder circuit 500, and outputs the adjusted power supply voltage value to the semiconductor chip 200.
 次に、図5を参照して、図1及び図2のフローにより作成した特性モニタ回路の設計データ及びエンコーダ回路の設計データを用いて構成した特性モニタ回路400及びエンコーダ回路500の回路構成及び動作の一例について説明する。 Next, referring to FIG. 5, the circuit configuration and operation of the characteristic monitor circuit 400 and the encoder circuit 500 configured using the design data of the characteristic monitor circuit and the design data of the encoder circuit created by the flow of FIG. 1 and FIG. An example will be described.
 特性モニタ回路400は、クロック発生器401、標準Delay回路402、遅延モニタパス回路403、パスセレクタ回路404、遅延時間検出器405、分周器407、セレクタ回路408及びアドレスデコーダ409を具備する。また、遅延時間検出器405に接続され、標準Delay回路402および遅延モニタパス回路403それぞれの遅延値の差異を数値化して出力するエンコーダ回路500を具備する。 The characteristic monitor circuit 400 includes a clock generator 401, a standard delay circuit 402, a delay monitor path circuit 403, a path selector circuit 404, a delay time detector 405, a frequency divider 407, a selector circuit 408, and an address decoder 409. The encoder circuit 500 is connected to the delay time detector 405 and outputs the difference between the delay values of the standard delay circuit 402 and the delay monitor path circuit 403 in numerical values.
 クロック発生器401は、MODE信号が“L”レベルの時は、標準ディレイ回路402及び遅延モニタパス回路403に対してクロック信号を出力する遅延動作モードとなり、MODE信号が“H”レベルの時は、分周器407に対してクロック信号を出力するクロック発振動作モードとなる。また、クロック発生器401は、R/B信号が“H”レベルの時は、動作を停止する状態(スリープモード)となり、R/B信号が“L”レベルの時は動作状態(アクティブモード)となる。 When the MODE signal is “L” level, the clock generator 401 is in a delay operation mode in which a clock signal is output to the standard delay circuit 402 and the delay monitor path circuit 403. When the MODE signal is “H” level, A clock oscillation operation mode in which a clock signal is output to the frequency divider 407 is set. Further, when the R / B signal is “H” level, the clock generator 401 is in a state of stopping operation (sleep mode), and when the R / B signal is “L” level, the clock generator 401 is in operation state (active mode). It becomes.
 クロック発生器401は、MODE信号により遅延動作モードとなり、R/B信号によりアクティブモードとなった場合、基準クロック信号CLKに応じて所定クロック信号を発生し、そのクロック信号を標準delay回路402及び遅延モニタパス回路403に出力する。また、クロック発生器401は、MODE信号によりクロック発振動作モードとなり、R/B信号によりアクティブモードとなった場合、基準クロック信号CLKに応じて所定のクロック信号を発振して、分周器407に出力する。 When the clock generator 401 enters the delay operation mode by the MODE signal and enters the active mode by the R / B signal, the clock generator 401 generates a predetermined clock signal according to the reference clock signal CLK, and the clock signal is delayed by the standard delay circuit 402 and the delay. Output to the monitor path circuit 403. In addition, when the clock generator 401 enters the clock oscillation operation mode by the MODE signal and enters the active mode by the R / B signal, the clock generator 401 oscillates a predetermined clock signal according to the reference clock signal CLK and supplies it to the frequency divider 407. Output.
 標準Delay回路402は、例えば、対象半導体集積回路300の仕様により設計された遅延マージンに基づいて対象半導体集積回路300の標準遅延要素を含めて設計した遅延回路である。標準Delay回路402は、クロック発生器401から入力されるクロック信号を遅延させてパスセレクタ回路404に出力する。 The standard delay circuit 402 is a delay circuit designed including the standard delay element of the target semiconductor integrated circuit 300 based on, for example, a delay margin designed according to the specifications of the target semiconductor integrated circuit 300. The standard delay circuit 402 delays the clock signal input from the clock generator 401 and outputs it to the path selector circuit 404.
 遅延モニタパス回路403は、上記チップレベルタイミングモデル処理において設計された設計データに基づいて設計された複数の遅延回路を含む。遅延モニタパス回路403は、クロック発生器401から入力されるクロック信号をパスセレクタ回路404により選択される遅延回路により遅延させてパスセレクタ回路404に出力する。 The delay monitor path circuit 403 includes a plurality of delay circuits designed based on the design data designed in the chip level timing model processing. The delay monitor path circuit 403 delays the clock signal input from the clock generator 401 by the delay circuit selected by the path selector circuit 404 and outputs the delayed signal to the path selector circuit 404.
 アドレスデコーダ409は、例えば、外部から入力されるSEL[3:0]のアドレス信号により、パスセレクタ回路404に接続される標準Delay回路402及び遅延モニタパス回路403に含まれる複数の遅延回路のうち所定の遅延回路を選択させるセレクト信号をパスセレクタ回路404に出力する。 The address decoder 409 is, for example, a predetermined delay circuit among a plurality of delay circuits included in the standard delay circuit 402 and the delay monitor path circuit 403 connected to the path selector circuit 404 by an SEL [3: 0] address signal input from the outside. A select signal for selecting the delay circuit is output to the path selector circuit 404.
 パスセレクタ回路404は、アドレスデコーダ409から入力されるセレクト信号に応じて、標準Delay回路402及び遅延モニタパス回路403に含まれる複数の遅延回路のうち所定の遅延回路を選択する。パスセレクタ回路404は、選択した所定の遅延回路から出力される遅延信号を遅延時間検出器405に出力する。ここで、パスセレクタ回路404は、アドレスデコーダ409から入力される4ビットのセレクト信号に対応して、遅延モニタパス回路403に含まれる、例えば、16本の異なる遅延回路のうち1本の遅延回路を選択する。 The path selector circuit 404 selects a predetermined delay circuit among a plurality of delay circuits included in the standard delay circuit 402 and the delay monitor path circuit 403 in accordance with the select signal input from the address decoder 409. The path selector circuit 404 outputs a delay signal output from the selected predetermined delay circuit to the delay time detector 405. Here, the path selector circuit 404 corresponds to the 4-bit select signal input from the address decoder 409, and includes, for example, one delay circuit of 16 different delay circuits included in the delay monitor path circuit 403. select.
 遅延時間検出器405は、パスセレクタ回路404により選択された標準Delay回路402及び遅延モニタパス回路403内の所定の遅延回路から出力された各遅延信号間の誤差を検出し、検出した誤差をエンコード回路500に出力する。 The delay time detector 405 detects an error between delay signals output from a predetermined delay circuit in the standard delay circuit 402 and the delay monitor path circuit 403 selected by the path selector circuit 404, and encodes the detected error into an encoding circuit. Output to 500.
 分周器407は、クロック発生器401から入力される上記クロック信号を所定の分周比で分周して、その分周信号をセレクタ回路408に出力する。 The frequency divider 407 divides the clock signal input from the clock generator 401 by a predetermined frequency dividing ratio and outputs the frequency divided signal to the selector circuit 408.
 エンコーダ回路500は、遅延時間検出器405から入力される各遅延信号間の誤差を所定ビット数のデータにエンコードする。そのエンコード信号は、例えば、CDOUT[3:0]として外部に出力するとともに、セレクタ回路408に出力する。 Encoder circuit 500 encodes an error between each delay signal input from delay time detector 405 into data having a predetermined number of bits. The encoded signal is output to the outside as, for example, CDOUT [3: 0] and also output to the selector circuit 408.
 セレクタ回路408は、上記MODE信号が“L”レベル時の遅延動作モードとなった場合、エンコーダ回路500から入力されるエンコード信号を、例えば、CDOUT[4]として外部のDC/DCコンバータ600に出力する。また、セレクタ回路408は、上記MODE信号が“H”レベル時のクロック発振動作モードとなった場合、分周器407から入力される分周信号を例えば、分周信号Clock(f/n)として外部のDC/DCコンバータ600に出力する。 The selector circuit 408 outputs the encode signal input from the encoder circuit 500 to the external DC / DC converter 600 as, for example, CDOUT [4] when the MODE signal is in the delay operation mode when the “L” level. To do. Further, when the MODE signal is in the clock oscillation operation mode when the MODE signal is “H” level, the selector circuit 408 uses, for example, the frequency-divided signal input from the frequency divider 407 as the frequency-divided signal Clock (f / n). Output to an external DC / DC converter 600.
 次に、DC/DCコンバータ600に入力されるCDOUT[3:0]の処理について、図6を参照して詳細に説明する。図6は、DC/DCコンバータ600の構成例を示す図である。 Next, the processing of CDOUT [3: 0] input to the DC / DC converter 600 will be described in detail with reference to FIG. FIG. 6 is a diagram illustrating a configuration example of the DC / DC converter 600.
 図6に示した電源電圧制御回路600は、エンコード回路500から入力されるCDOUT[3:0]により示される4ビットデータの組み合わせに応じて、電源電圧値を調整して対象半導体集積回路300に出力する。 The power supply voltage control circuit 600 shown in FIG. 6 adjusts the power supply voltage value in accordance with the combination of 4-bit data indicated by CDOUT [3: 0] input from the encoding circuit 500 and applies it to the target semiconductor integrated circuit 300. Output.
 図6に示すDC/DCコンバータ600は、PWM制御回路601及びスイッチング回路602を具備する。 A DC / DC converter 600 shown in FIG. 6 includes a PWM control circuit 601 and a switching circuit 602.
 PWM制御回路601は、エンコード回路500から入力されるCDOUT[3:0]により示される4ビットデータに応じて電源電圧Vccを制御するパルス信号のデューティ比を調整して、スイッチング回路602に出力する。 The PWM control circuit 601 adjusts the duty ratio of the pulse signal that controls the power supply voltage Vcc according to the 4-bit data indicated by CDOUT [3: 0] input from the encode circuit 500 and outputs the adjusted signal to the switching circuit 602. .
 スイッチング回路602は、PWM制御回路601から入力されるパルス信号のパルス幅に応じて電源をスイッチングし、電圧値を調整して半導体チップ200内の対象半導体集積回路300に出力する。例えば、CDOUT[3:0]の設定に応じて電源電圧値を1.08V~1.32Vの間で調整する。 The switching circuit 602 switches the power supply according to the pulse width of the pulse signal input from the PWM control circuit 601, adjusts the voltage value, and outputs the voltage value to the target semiconductor integrated circuit 300 in the semiconductor chip 200. For example, the power supply voltage value is adjusted between 1.08 V and 1.32 V in accordance with the setting of CDOUT [3: 0].
 以上説明したように、本発明の実施の形態に係る特性モニタ回路400、エンコーダ回路500及びDC/DCコンバータ600を含む半導体集積回路の電源電圧制御システム100を用いることにより、半導体チップ200内の対象半導体集積回路300に与える電源電圧を、特性モニタ回路400に含まれる複数の遅延回路の各遅延出力を用いて最適に制御することが可能になる。 As described above, by using the power supply voltage control system 100 of the semiconductor integrated circuit including the characteristic monitor circuit 400, the encoder circuit 500, and the DC / DC converter 600 according to the embodiment of the present invention, the target in the semiconductor chip 200 is obtained. The power supply voltage applied to the semiconductor integrated circuit 300 can be optimally controlled using the delay outputs of the plurality of delay circuits included in the characteristic monitor circuit 400.
 次に、上記ステップST109、ステップST111、ステップST112、ステップST114における各処理の具体例について以下に説明する。 Next, specific examples of each process in step ST109, step ST111, step ST112, and step ST114 will be described below.
 ステップST109において、特性モニタ回路を搭載する対象半導体集積回路、及び特性モニタ回路(遅延回路)のそれぞれの遅延特性に含まれるデバイスパラメータ、電源電圧、動作温度などの特性変動要因に対する依存性を求め、その結果をチップレベルタイミングモデルとして、遅延要素に対するデバイスパラメータをそれぞれ異なる相関関係で設定した標準遅延モデル(遅延行列))を作成する。作成した標準遅延モデル(遅延行列)の一例を以下に示す。 In step ST109, the dependence on the characteristic variation factors such as device parameters, power supply voltage, and operating temperature included in the delay characteristics of the target semiconductor integrated circuit on which the characteristic monitor circuit is mounted and the characteristic monitor circuit (delay circuit) is obtained. Using the result as a chip level timing model, a standard delay model (delay matrix) in which device parameters for delay elements are set with different correlations is created. An example of the created standard delay model (delay matrix) is shown below.
 tchip=fc(Lg,Vtp,Vtn,・・・,Vdd)・・・(1) t chip = fc (Lg, V tp , V tn ,..., Vdd) (1)
 ここで、Lg,Vtp,Vtn,・・・,Vddは、対象半導体集積回路のデバイスパラメータであり、Lgはゲート長、Vtpはpチャネルの閾値電圧、Vtnはnチャネルの閾値電圧、Vddは電源電圧である。この対象半導体集積回路のデバイスパラメータは一例であり、Lg,Vtp,Vtn,・・・,Vddの他にゲート幅W、動作温度temp、基板バイアス電圧Vsubp、Vsubn等をデバイスパラメータとしてもよい。 Here, Lg, V tp , V tn ,..., Vdd are device parameters of the target semiconductor integrated circuit, Lg is a gate length, V tp is a p-channel threshold voltage, and V tn is an n-channel threshold voltage. , Vdd is a power supply voltage. The device parameters of the target semiconductor integrated circuit are merely examples, and in addition to Lg, V tp , V tn ,..., Vdd, the gate width W, operating temperature temp, substrate bias voltage Vsubp, Vsubn, etc. may be used as device parameters. .
 次に、ステップST111において、対象半導体集積回路の遅延特性のばらつきが最大値tmaxである場合、上記標準遅延モデル(遅延行列)tchipは、遅延特性が対象半導体集積回路の遅延特性より小さくなる。この関係式を以下に示す。 Next, in step ST111, when the variation in delay characteristics of the target semiconductor integrated circuit is the maximum value tmax , the standard delay model (delay matrix) t chip has a delay characteristic smaller than that of the target semiconductor integrated circuit. . This relational expression is shown below.
 tmax>tchip・・・(2) t max > t chip (2)
 次に、ステップST112において、上記数式(1)の標準遅延モデル(遅延行列)を電源電圧Vddの逆関数として求めた結果を以下に数式(3)として示す。 Next, the result of obtaining the standard delay model (delay matrix) of the above formula (1) as an inverse function of the power supply voltage Vdd in step ST112 is shown as the following formula (3).
 Vdd=f(Lg,Vtp,Vtn,・・・)・・・(3) Vdd = f v (Lg, V tp , V tn ,...) (3)
 この数式(3)を用いて、特性モニタ回路(遅延回路)の出力(計測される遅延時間)に対するデバイスパラメータの影響を推定する最適電源電圧マップ(例えば、図3参照)を作成する。 Using this equation (3), an optimum power supply voltage map (for example, see FIG. 3) for estimating the influence of device parameters on the output (measured delay time) of the characteristic monitor circuit (delay circuit) is created.
 次に、ステップST114において、多項式変換および論理合成は、ステップST112において作成した最適電源電圧マップを、特性モニタ回路(遅延回路)の各出力を変数とした多項式に変換する。 Next, in step ST114, polynomial conversion and logic synthesis convert the optimum power supply voltage map created in step ST112 into a polynomial with each output of the characteristic monitor circuit (delay circuit) as a variable.
 特性モニタ回路(遅延回路)の各出力を変数とした多項式変換では、遅延要素となる複数のデバイスパラメータをそれぞれ異なる相関関係で設定した標準遅延モデル(遅延行列)を求めた結果を以下に数式(4)、(5)及び(6)として示す。 In polynomial transformation using each output of the characteristic monitor circuit (delay circuit) as a variable, the following formula is obtained as a result of obtaining a standard delay model (delay matrix) in which a plurality of device parameters serving as delay elements are set with different correlations. Shown as 4), (5) and (6).
 tm1=fm1(Lg,Vtp,Vtn,・・・,Vdd)・・・(4) t m1 = f m1 (Lg, V tp , V tn ,..., Vdd) (4)
 tm2=fm2(Lg,Vtp,Vtn,・・・,Vdd)・・・(5) t m2 = f m2 (Lg, V tp , V tn ,..., Vdd) (5)
 tmn=fmn(Lg,Vtp,Vtn,・・・,Vdd)・・・(6) t mn = f mn (Lg, V tp , V tn ,..., Vdd) (6)
 ここで、Lg,Vtp,Vtn,・・・,Vddは、対象半導体集積回路のデバイスパラメータであり、Lgはゲート長、Vtpはpチャネルの閾値電圧、Vtnはnチャネルの閾値電圧、Vddは電源電圧である。この半導体集積回路のデバイスパラメータは一例であり、Lg,Vtp,Vtn,・・・の他にゲート幅W、動作温度temp、基板バイアス電圧Vsubp、Vsubn等をデバイスパラメータとしてもよい。 Here, Lg, V tp , V tn ,..., Vdd are device parameters of the target semiconductor integrated circuit, Lg is a gate length, V tp is a p-channel threshold voltage, and V tn is an n-channel threshold voltage. , Vdd is a power supply voltage. The device parameters of this semiconductor integrated circuit are an example, and in addition to Lg, V tp , V tn ,..., Gate width W, operating temperature temp, substrate bias voltage Vsubp, Vsubn, etc. may be used as device parameters.
 この数式(4)、(5)及び(6)は、対象半導体集積回路の遅延要素となるデバイスパラメータ相互間の依存性を推定した遅延行列となる。 Mathematical formulas (4), (5), and (6) are delay matrices that estimate the dependence between device parameters that are delay elements of the target semiconductor integrated circuit.
 次に、標準遅延モデル(遅延行列)の数式(4)、(5)及び(6)を各デバイスパラメータLg,Vtp,Vtnの逆関数として求めた結果を以下に数式(7)、(8)及び(9)として示す。 Next, the results obtained by obtaining the mathematical expressions (4), (5) and (6) of the standard delay model (delay matrix) as inverse functions of the device parameters Lg, V tp and V tn are as follows: Shown as 8) and (9).
 Lg=fLg(tm1,tm2,・・・,tmn)・・・(7) Lg = f Lg (t m1 , t m2 ,..., T mn ) (7)
 Vtp=f(tm1,tm2,・・・,tmn)・・・(8) V tp = f p (t m1 , t m2, ···, t mn) ··· (8)
 Vtn=f(tm1,tm2,・・・,tmn)・・・(9) V tn = f n (t m1 , t m2 ,..., T mn ) (9)
 この数式(7)、(8)及び(9)により、遅延要素となる各デバイスパラメータを遅延回路の遅延時間と相関する関数に変換できる。 The device parameters that are delay elements can be converted into functions that correlate with the delay time of the delay circuit by the equations (7), (8), and (9).
 次に、逆関数により求めた数式(7)、(8)及び(9)を上記数式(3)に代入することにより、以下に示す数式(10)になる。 Next, by substituting the formulas (7), (8) and (9) obtained by the inverse function into the formula (3), the following formula (10) is obtained.
 Vdd=F(tm1,tm2,・・・,tmn)・・・(10) V dd = F (t m1 , t m2 ,..., T mn ) (10)
 この数式(10)を用いることにより、対象半導体集積回路の電源電圧は特性モニタ回路400に含まれる遅延回路の遅延時間と相関する関数により求めることができる。 By using the equation (10), the power supply voltage of the target semiconductor integrated circuit can be obtained by a function correlated with the delay time of the delay circuit included in the characteristic monitor circuit 400.
 次に、上記実施の形態において示した半導体集積回路のセルライブラリの具体例を示して、上記図1~図2に示した処理のより具体的な処理について図7~図10を参照して説明する。 Next, a specific example of the cell library of the semiconductor integrated circuit shown in the above embodiment will be shown, and more specific processing of the processing shown in FIGS. 1 to 2 will be described with reference to FIGS. To do.
 図7は、図1においてステップST101に示したセルライブラリの一例を示す図である。図8(A)及び(B)は、図2においてステップST101に示したセルライブラリに格納された各セルの遅延時間を特性変動要因となる複数のデバイスパラメータに対する応答曲面の一例を示す図である。図9は、セルライブラリから抽出したセルを用いて構成した遅延回路を含む特性モニタ回路を搭載した半導体チップの回路構成の一例を示す図である。図10は、図2においてステップST110に示したチップレベルタイミングモデルの一例を示す図である。 FIG. 7 is a diagram showing an example of the cell library shown in step ST101 in FIG. 8A and 8B are diagrams showing an example of a response surface for a plurality of device parameters that cause the delay time of each cell stored in the cell library shown in step ST101 in FIG. . FIG. 9 is a diagram illustrating an example of a circuit configuration of a semiconductor chip on which a characteristic monitor circuit including a delay circuit configured using cells extracted from a cell library is mounted. FIG. 10 is a diagram showing an example of the chip level timing model shown in step ST110 in FIG.
 まず、図1に示したステップST101及びステップST102に対する具体的な処理について説明する。図7に示したセルライブラリ700は、半導体集積回路を構成する要素としてインバータ回路INV、NAND回路ND2及びNOR回路NR2を格納する例を示している。このセルライブラリ700のインバータ回路INV、NAND回路ND2及びNOR回路NR2には、それぞれの回路の特性変動要因のうち遅延要素に対するデバイスパラメータとしてゲート長Lg、閾値電圧Vtp、閾値電圧Vtn及び電源電圧Vdd等を格納している。また、インバータ回路INV、NAND回路ND2及びNOR回路NR2の各回路のデバイスパラメータを用いて遅延特性を表す数式を以下に示す。数式(11)は、インバータ回路INVの遅延特性を表し、数式(12)は、NAND回路ND2の遅延特性を表し、数式(13)は、NOR回路NR2の遅延特性を表す。 First, specific processing for step ST101 and step ST102 shown in FIG. 1 will be described. The cell library 700 shown in FIG. 7 shows an example in which an inverter circuit INV, a NAND circuit ND2, and a NOR circuit NR2 are stored as elements constituting a semiconductor integrated circuit. In the inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 of the cell library 700, the gate length Lg, the threshold voltage Vtp, the threshold voltage Vtn, the power supply voltage Vdd, etc. are provided as device parameters for the delay element among the characteristic variation factors of the respective circuits. Is stored. In addition, mathematical expressions representing delay characteristics using device parameters of the inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 are shown below. Equation (11) represents the delay characteristic of the inverter circuit INV, Equation (12) represents the delay characteristic of the NAND circuit ND2, and Equation (13) represents the delay characteristic of the NOR circuit NR2.
 DelayINV(Vtp、Vtn、Lg、Vdd、・・・)・・・(11) DelayINV (Vtp, Vtn, Lg, Vdd,...) (11)
 DelayND2(Vtp、Vtn、Lg、Vdd、・・・)・・・(12) DelayND2 (Vtp, Vtn, Lg, Vdd, ...) (12)
 DelayNR2(Vtp、Vtn、Lg、Vdd、・・・)・・・(13) DelayNR2 (Vtp, Vtn, Lg, Vdd, ...) (13)
 次に、図1に示したステップST103~ステップST108に対する具体的な処理について説明する。セルライブラリ700のインバータ回路INV、NAND回路ND2及びNOR回路NR2に対してトランジスタベースで統計的(例えば、SAP処理)に解析して各インバータ回路INV、NAND回路ND2及びNOR回路NR2の遅延時間や消費電力のデバイスパラメータへの依存性を応答曲面として求める。この応答曲面の一例を図8(A)及び(B)に示す。図8(A)は、特性変動要因となるデバイスパラメータとして閾値電圧Vtp及びゲート長Lgに対する消費電力の応答曲面を三次元マップとして示した図である。図8(B)は、特性変動要因となるデバイスパラメータとして電源電圧Vdd及び温度tempに対する遅延時間の応答曲面を三次元マップとして示した図である。なお、図7に示すセルライブラリ700は、インバータ回路INV、NAND回路ND2及びNOR回路NR2の遅延時間の応答曲面だけを表現した例であり、他のセルに関する遅延時間や消費電力の応答曲面の図示は省略している。 Next, specific processing for steps ST103 to ST108 shown in FIG. 1 will be described. The inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 of the cell library 700 are statistically analyzed on a transistor basis (for example, SAP processing) and the delay time and consumption of each inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 are analyzed. The dependence of power on device parameters is obtained as a response surface. An example of this response surface is shown in FIGS. 8 (A) and 8 (B). FIG. 8A is a diagram showing, as a three-dimensional map, a response curved surface of power consumption with respect to the threshold voltage Vtp and the gate length Lg as device parameters that cause characteristic variation. FIG. 8B is a diagram showing a response surface of a delay time with respect to the power supply voltage Vdd and the temperature temp as a device parameter as a characteristic variation factor as a three-dimensional map. Note that the cell library 700 shown in FIG. 7 is an example expressing only response surfaces of delay times of the inverter circuit INV, NAND circuit ND2, and NOR circuit NR2, and illustrates response surfaces of delay times and power consumption of other cells. Is omitted.
 上記図7に示したセルライブラリ、図8(A)及び(B)に示した応答曲面に基づいて、特性変動要因となる複数のデバイスパラメータの感度及び相互間の依存性を算出する。算出した複数のデバイスパラメータの感度及び相互間の依存性の中から、複数のデバイスパラメータの感度が高く、相互間の依存性の異なる複数のセル群を、セルライブラリ700内のすべてのセルから選択する。選択したセル群のそれぞれを、ランダムばらつきの影響が無視できるように複数段直列に接続して各々遅延特性が異なる複数の遅延回路を構成する。これら複数の遅延回路は、遅延時間あるいはその遅延回路間の遅延時間差が計測可能な範囲内に収まるように各遅延回路のセル段数を設定する。設定した遅延回路の一例を図9において特性モニタ回路1000として示す。なお、図9に示す特性モニタ回路1000は、一つの遅延回路の構成例であり、異なる遅延特性を有する他の遅延回路の図示は省略している。 7) Based on the cell library shown in FIG. 7 and the response surface shown in FIGS. 8A and 8B, the sensitivities and mutual dependencies of a plurality of device parameters that are characteristic variation factors are calculated. From the calculated sensitivity of the plurality of device parameters and the dependencies between them, a plurality of cell groups having a high sensitivity of the plurality of device parameters and having different dependencies are selected from all the cells in the cell library 700. To do. A plurality of delay circuits having different delay characteristics are configured by connecting each of the selected cell groups in a plurality of stages so that the influence of random variations can be ignored. The plurality of delay circuits sets the number of cell stages of each delay circuit so that the delay time or the delay time difference between the delay circuits falls within a measurable range. An example of the set delay circuit is shown as a characteristic monitor circuit 1000 in FIG. The characteristic monitor circuit 1000 shown in FIG. 9 is a configuration example of one delay circuit, and illustration of other delay circuits having different delay characteristics is omitted.
 図9に示した特性モニタ回路1000を搭載した半導体チップ800には、対象半導体集積回路900が含まれる。対象半導体集積回路900は、フリップフロップ回路、インバータ回路、NAND回路、NOR回路及び配線負荷(配線抵抗及び配線容量)などから構成される論理回路の一例を示すものである。対象半導体集積回路900は、端子Aから端子Cまでの信号伝達経路(A→C)、端子Bから端子Cまでの信号伝達経路(B→C)及び端子Bから端子Dまでの信号伝達経路(B→D)の3本の信号伝達経路を有する。信号伝達経路(A→C)の回路構成は、入力段から端子A、配線負荷R1、NAND回路901、配線負荷R2、NOR回路902、配線負荷R3、インバータ回路903、配線負荷R4、NAND回路904、配線負荷R5、NAND回路905、配線負荷R6及び端子Cが直列に接続されている。信号伝達経路(B→C)の回路構成は、入力段から端子B、配線負荷R7、NOR回路906、配線負荷R8、NOR回路907、配線負荷R9、配線負荷R10、NAND回路904、配線負荷R5、NAND回路905、配線負荷R6及び端子Cが直列に接続されている。信号伝達経路(B→D)の回路構成は、入力段から端子B、抵抗器R7、NOR回路906、配線負荷R8、NOR回路907、配線負荷R9、NAND回路908、配線負荷R11、NOR回路909、配線負荷R12、NOR回路910、配線負荷R13及び端子Dが直列に接続されている。 The target semiconductor integrated circuit 900 is included in the semiconductor chip 800 on which the characteristic monitor circuit 1000 shown in FIG. 9 is mounted. The target semiconductor integrated circuit 900 is an example of a logic circuit including a flip-flop circuit, an inverter circuit, a NAND circuit, a NOR circuit, a wiring load (wiring resistance and wiring capacitance), and the like. The target semiconductor integrated circuit 900 includes a signal transmission path (A → C) from the terminal A to the terminal C, a signal transmission path (B → C) from the terminal B to the terminal C, and a signal transmission path (from the terminal B to the terminal D) ( B → D) has three signal transmission paths. The circuit configuration of the signal transmission path (A → C) is from the input stage to terminal A, wiring load R1, NAND circuit 901, wiring load R2, NOR circuit 902, wiring load R3, inverter circuit 903, wiring load R4, NAND circuit 904. The wiring load R5, the NAND circuit 905, the wiring load R6, and the terminal C are connected in series. The circuit configuration of the signal transmission path (B → C) is from the input stage to terminal B, wiring load R7, NOR circuit 906, wiring load R8, NOR circuit 907, wiring load R9, wiring load R10, NAND circuit 904, wiring load R5. The NAND circuit 905, the wiring load R6, and the terminal C are connected in series. The circuit configuration of the signal transmission path (B → D) is from the input stage to terminal B, resistor R7, NOR circuit 906, wiring load R8, NOR circuit 907, wiring load R9, NAND circuit 908, wiring load R11, NOR circuit 909. The wiring load R12, the NOR circuit 910, the wiring load R13, and the terminal D are connected in series.
 上記特性モニタ回路1000として示す遅延回路は、セルライブラリ700内から選択されたセルの例として、NAND回路5段により構成された場合を示している。このセルはNAND回路に限定されず、上記により選定された他のセルに置き換えてもよい。また段数は、5段に限定されず、ランダムばらつきの影響を排除できるように十分大きな段数(たとえば20段以上)で、遅延時間あるいはその遅延回路間の遅延時間差が計測可能な範囲内に収まるようにセル段数を設定してもよい。図9に示した特性モニタ回路1000は、NAND回路1001~1005の間にそれぞれ配線負荷R15~R19を配置し、複数の回路1001~1005及び配線負荷R15~R19が交互に直列に接続されている。 The delay circuit shown as the characteristic monitor circuit 1000 is an example of a cell selected from the cell library 700, and shows a case where the delay circuit is constituted by five stages of NAND circuits. This cell is not limited to the NAND circuit, and may be replaced with another cell selected as described above. Further, the number of stages is not limited to five, and the number of stages is sufficiently large (for example, 20 stages or more) so that the influence of random variations can be eliminated, so that the delay time or the delay time difference between the delay circuits falls within a measurable range. The number of cell stages may be set in. In the characteristic monitor circuit 1000 shown in FIG. 9, wiring loads R15 to R19 are arranged between NAND circuits 1001 to 1005, respectively, and a plurality of circuits 1001 to 1005 and wiring loads R15 to R19 are alternately connected in series. .
 次に、図2に示したステップST109~ステップST113に対する具体的な処理について説明する。図9に示す各信号伝達経路(A→C、B→C、B→D)の遅延特性に含まれるデバイスパラメータ、閾値電圧Vtp、閾値電圧Vtn、ゲート長Lg及び電源電圧Vdd等の特性変動要因に対する依存性として応答曲面(図示せず)を計算する。この計算結果を図10に示すチップレベルタイミングモデル1100として格納する。このチップレベルタイミングモデル1100は、以下に示す数式(14)、数式(15)及び数式(16)として表される。これらの数式(14)、数式(15)及び数式(16)には、デバイスパラメータとしてゲート長Lg、閾値電圧Vtp及び閾値電圧Vtn及び電源電圧Vdd等を含む。数式(14)は、対象半導体集積回路900内の信号伝達経路A→Cの遅延特性を表し、数式(15)は、対象半導体集積回路900内の信号伝達経路B→Cの遅延特性を表し、数式(16)は、対象半導体集積回路900内の信号伝達経路B→Dの遅延特性を表す。 Next, specific processing for step ST109 to step ST113 shown in FIG. 2 will be described. Characteristics variation factors such as device parameters, threshold voltage Vtp, threshold voltage Vtn, gate length Lg, and power supply voltage Vdd included in the delay characteristics of each signal transmission path (A → C, B → C, B → D) shown in FIG. A response surface (not shown) is calculated as a dependency on. The calculation result is stored as a chip level timing model 1100 shown in FIG. The chip level timing model 1100 is expressed as the following formula (14), formula (15), and formula (16). These formulas (14), (15), and (16) include the gate length Lg, threshold voltage Vtp, threshold voltage Vtn, power supply voltage Vdd, and the like as device parameters. Expression (14) represents the delay characteristic of the signal transmission path A → C in the target semiconductor integrated circuit 900, and Expression (15) represents the delay characteristic of the signal transmission path B → C in the target semiconductor integrated circuit 900. Equation (16) represents the delay characteristic of the signal transmission path B → D in the target semiconductor integrated circuit 900.
 DelayA→C(Vtp、Vtn、Lg、Vdd・・・)・・・(14) Delay A → C (Vtp, Vtn, Lg, Vdd...) (14)
 DelayB→C(Vtp、Vtn、Lg、Vdd・・・)・・・(15) Delay B → C (Vtp, Vtn, Lg, Vdd...) (15)
 DelayB→D(Vtp、Vtn、Lg、Vdd・・・)・・・(16) Delay B → D (Vtp, Vtn, Lg, Vdd...) (16)
 対象半導体集積回路900の仕様である遅延特性がDelayMAXであり、このDelayMAXが要求性能として上記数式(14)、数式(15)及び数式(16)に対して与えられると、その逆関数として求められる最適電源電圧は、以下に示す数式(17)となる。 When the delay characteristic which is the specification of the target semiconductor integrated circuit 900 is Delay MAX , and this Delay MAX is given as the required performance to the above formula (14), formula (15) and formula (16), the inverse function thereof is obtained. The required optimum power supply voltage is expressed by the following formula (17).
 VddMIN(Vtp、Vtn、Lg、・・・)・・・(17) Vdd MIN (Vtp, Vtn, Lg,...) (17)
 上記図3に示したマップは、上記数式(17)で表わされる最適電源電圧Vdd(V)を、特性変動要因として含まれるデバイスパラメータである閾値電圧LVt(σ)及び閾値電圧HVt(σ)だけに対して三次元で表現したものである。 In the map shown in FIG. 3, the optimum power supply voltage Vdd (V) represented by the above equation (17) is set to the threshold voltage LVt (σ) and the threshold voltage HVt (σ) which are device parameters included as characteristic variation factors. Is expressed in three dimensions.
 次に、図2に示したステップST114に対する具体的な処理について説明する。上記図9に示した特性モニタ回路1000は第1の遅延回路の構成例を示しているが、ここでは、その遅延回路の構成例とはそれぞれ異なる遅延特性を有する第2の遅延回路(図示せず)及び第3の遅延回路(図示せず)を含むものとする。第1、第2及び第3の遅延回路の遅延要素には、チップレベルタイミングモデル1100において示したのと同様にデバイスパラメータとして閾値電圧Vtp、閾値電圧Vtn、ゲート長Lg及び電源電圧Vdd等が含まれる。したがって、各第1、第2及び第3の遅延回路の遅延特性は、以下に示す数式(18)、数式(19)及び数式(20)として表される。数式(18)は、第1の遅延回路の遅延特性を表し、数式(19)は、第2の遅延回路の遅延特性を表し、数式(20)は、第3の遅延回路の遅延特性を表す。 Next, specific processing for step ST114 shown in FIG. 2 will be described. The characteristic monitor circuit 1000 shown in FIG. 9 shows a configuration example of the first delay circuit. Here, a second delay circuit (not shown) having a delay characteristic different from the configuration example of the delay circuit is shown here. And a third delay circuit (not shown). The delay elements of the first, second, and third delay circuits include threshold voltage Vtp, threshold voltage Vtn, gate length Lg, power supply voltage Vdd, and the like as device parameters as shown in the chip level timing model 1100. It is. Accordingly, the delay characteristics of the first, second, and third delay circuits are expressed as the following formula (18), formula (19), and formula (20). Equation (18) represents the delay characteristic of the first delay circuit, Equation (19) represents the delay characteristic of the second delay circuit, and Equation (20) represents the delay characteristic of the third delay circuit. .
 Delay(Vtp、Vtn、Lg、Vdd・・・)・・・(18) Delay 1 (Vtp, Vtn, Lg, Vdd...) (18)
 Delay(Vtp、Vtn、Lg、Vdd・・・)・・・(19) Delay 2 (Vtp, Vtn, Lg, Vdd...) (19)
 Delay(Vtp、Vtn、Lg、Vdd・・・)・・・(20) Delay 3 (Vtp, Vtn, Lg, Vdd...) (20)
 上記数式(18)、数式(19)及び数式(20)のデバイスパラメータ、閾値電圧Vtp、閾値電圧Vtn及びゲート長Lgに対する逆関数を求めた結果を以下の数式(21)、数式(22)及び数式(23)に示す。数式(21)は、pチャネル閾値電圧Vtpに対する逆関数を表し、数式(22)は、nチャネル閾値電圧Vtnに対する逆関数を表し、数式(23)は、ゲート長Lgに対する逆関数を表す。 The following equations (21), (22), and (22) are obtained as the inverse functions for the device parameters, threshold voltage Vtp, threshold voltage Vtn, and gate length Lg in the above equations (18), (19), and (20). It is shown in Formula (23). Equation (21) represents an inverse function with respect to the p-channel threshold voltage Vtp, Equation (22) represents an inverse function with respect to the n-channel threshold voltage Vtn, and Equation (23) represents an inverse function with respect to the gate length Lg.
 Vtp(Delay、Delay、Delay、・・・)・・・(21) Vtp (Delay 1 , Delay 2 , Delay 3 ,...) (21)
 Vtn(Delay、Delay、Delay、・・・)・・・(22) Vtn (Delay 1 , Delay 2 , Delay 3 ,...) (22)
 Lg(Delay、Delay、Delay、・・・)・・・(23) Lg (Delay 1 , Delay 2 , Delay 3 ,...) (23)
 上記逆関数により求めた結果である数式(21)、数式(22)及び数式(23)を数式(17)に代入することにより以下に示す数式(24)になる。 The following formula (24) is obtained by substituting the formula (21), the formula (22), and the formula (23), which are the results obtained by the inverse function, into the formula (17).
 VddMIN(Delay、Delay、Delay、・・・)・・・(24) Vdd MIN (Delay 1 , Delay 2 , Delay 3 ,...) (24)
 上記数式(24)により、最適電源電圧VddMINは、特性モニタ回路1000内の各遅延回路の出力を変数とした多項式に変換される。すなわち、最適電源電圧VddMINは、特性モニタ回路1000内の各遅延回路の出力を変数として求めることが可能になる。 According to the above equation (24), the optimum power supply voltage Vdd MIN is converted into a polynomial with the output of each delay circuit in the characteristic monitor circuit 1000 as a variable. That is, the optimum power supply voltage Vdd MIN can be obtained using the output of each delay circuit in the characteristic monitor circuit 1000 as a variable.
 次に、上記図9に示した特性モニタ回路1000の遅延回路を第1の遅延回路とし、図示しない他の第2及び第3の遅延回路とした場合、これら遅延回路の遅延特性を表す上記数式(18)、数式(19)及び数式(20)により求められる各遅延時間Delay、Delay及びDelayを物理的(回路的)に所定ビット数のデータとして出力するエンコーダ回路について説明する。例えば、各遅延時間Delay、Delay及びDelayに対するデータをそれぞれCode(Delay)、Code(Delay)及びCode(Delay)とすると、最適電源電圧VddMINを表す数式(24)は以下に示す数式(25)により表すことができる。 Next, when the delay circuit of the characteristic monitor circuit 1000 shown in FIG. 9 is the first delay circuit, and other second and third delay circuits (not shown), the above formulas representing the delay characteristics of these delay circuits. An encoder circuit that outputs each delay time Delay 1 , Delay 2, and Delay 3 obtained from Equation (19), Equation (19), and Equation (20) physically (circuitically) as data of a predetermined number of bits will be described. For example, assuming that the data for each delay time Delay 1 , Delay 2 and Delay 3 is Code (Delay 1 ), Code (Delay 2 ) and Code (Delay 3 ), respectively, Equation (24) representing the optimum power supply voltage Vdd MIN is as follows. It can represent with numerical formula (25) shown to.
 VddMIN(Code(Delay1)、Code(Delay2)、Code(Delay3)、・・・)・・・(25) Vdd MIN (Code (Delay 1), Code (Delay 2), Code (Delay 3), ...) (25)
 次に、図2に示したステップST115に対する具体的な処理について説明する。上記数式(25)により最適電源電圧VddMINはバイナリの数値で表されるCode(Delay)、Code(Delay)及びCode(Delay)を変数として求めることが可能になる。上記数式(25)を用いて、論理合成によりエンコーダ回路を設計すると、特性モニタ回路1000から出力される各遅延回路の遅延時間を所定ビット数のデータとして入力し、最適電源電圧VddMINを所定ビット数のデータとして出力する図5に示したエンコーダ回路500が形成される。 Next, specific processing for step ST115 shown in FIG. 2 will be described. From the above equation (25), the optimum power supply voltage Vdd MIN can be obtained by using Code (Delay 1 ), Code (Delay 2 ), and Code (Delay 3 ) represented by binary values as variables. When the encoder circuit is designed by logic synthesis using the above equation (25), the delay time of each delay circuit output from the characteristic monitor circuit 1000 is input as data of a predetermined number of bits, and the optimum power supply voltage Vdd MIN is set to a predetermined bit. The encoder circuit 500 shown in FIG. 5 for outputting as numerical data is formed.
 以上、説明したように、本実施例1では、対象半導体集積回路900のセルライブラリに対して統計的な解析処理や主成分分析処理を用いて、対象半導体集積回路900の遅延特性の変動要因となるデバイスパラメータを含み、かつ、対象半導体集積回路900の全信号伝達経路を考慮した遅延特性を有する複数の遅延回路を含む特性モニタ回路1000を設計することが可能になる。また、各遅延回路の遅延特性を表す数式を逆変換することにより、各遅延回路の遅延要素に含まれるデバイスパラメータの遅延時間を変数とした数式に変換することが可能になる。そして、この変換したデバイスパラメータを用いて最適電源電圧VddMINを求める数式を多項式変換することにより、最適電源電圧VddMINは各遅延回路の出力を変数として求めることが可能になる。さらに、各遅延回路の出力をコード化して最適電源電圧VddMINは求めるエンコーダ回路を設計することにより、最適電源電圧VddMINをコード化された各遅延回路の遅延出力を変数として求めることが可能になる。これにより、最適電源電圧VddMINを求める回路がバイナリ処理回路となり設計及び処理が容易になる。 As described above, in the first embodiment, the variation characteristics of the delay characteristics of the target semiconductor integrated circuit 900 are analyzed using statistical analysis processing and principal component analysis processing on the cell library of the target semiconductor integrated circuit 900. It is possible to design a characteristic monitor circuit 1000 that includes a plurality of delay circuits including device parameters and having delay characteristics in consideration of all signal transmission paths of the target semiconductor integrated circuit 900. Further, by inversely converting the mathematical expression representing the delay characteristic of each delay circuit, it is possible to convert the mathematical expression representing the delay time of the device parameter included in the delay element of each delay circuit into a mathematical expression. By equation for the polynomial transformation for obtaining the optimal supply voltage Vdd MIN using the device parameters this conversion, the optimum supply voltage Vdd MIN is it possible to determine the output of the delay circuit as a variable. Furthermore, by designing the optimum supply voltage Vdd MIN is determined encoder circuit to encode the output of each delay circuit, to be capable of obtaining the delayed output of the delay circuits coded optimum supply voltage Vdd MIN as a variable Become. As a result, the circuit for obtaining the optimum power supply voltage Vdd MIN becomes a binary processing circuit, which facilitates design and processing.
 本実施例2は、半導体集積回路の基板バイアス電圧Vsubを決定することに特徴がある。本実施例2では、実施例1で説明した半導体集積回路のデバイスパラメータ、電源電圧Vddを基板バイアス電圧Vsubに置き換えた例である。以下、上記実施の形態で示した半導体集積回路のセルライブラリの具体例を示して、上記図1~図2に示した処理のより具体的な処理について説明する。なお、本実施例2では、上記実施例1と同様の処理を行うため、重複する説明は省略する。 The second embodiment is characterized in that the substrate bias voltage Vsub of the semiconductor integrated circuit is determined. The second embodiment is an example in which the device parameters and the power supply voltage Vdd of the semiconductor integrated circuit described in the first embodiment are replaced with the substrate bias voltage Vsub. Hereinafter, a specific example of the cell library of the semiconductor integrated circuit shown in the above embodiment will be described, and more specific processing of the processing shown in FIGS. 1 and 2 will be described. In the second embodiment, the same processing as that in the first embodiment is performed, and thus a duplicate description is omitted.
 まず、図1に示したステップST101及びステップST102に対する具体的な処理について説明する。セルライブラリは、半導体集積回路を構成する要素としてインバータ回路INV、NAND回路ND2及びNOR回路NR2を格納している。このセルライブラリのインバータ回路INV、NAND回路ND2及びNOR回路NR2には、それぞれの回路の特性変動要因のうち遅延要素に対するデバイスパラメータとしてゲート長Lg、閾値電圧Vtp、閾値電圧Vtn及び基板バイアス電圧Vsub等を格納している。また、インバータ回路INV、NAND回路ND2及びNOR回路NR2の各回路のデバイスパラメータを用いて遅延特性を表す数式を以下に示す。数式(26)は、インバータ回路INVの遅延特性を表し、数式(27)は、NAND回路ND2の遅延特性を表し、数式(28)は、NOR回路NR2の遅延特性を表す。 First, specific processing for step ST101 and step ST102 shown in FIG. 1 will be described. The cell library stores an inverter circuit INV, a NAND circuit ND2, and a NOR circuit NR2 as elements constituting a semiconductor integrated circuit. In the inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 of this cell library, the gate length Lg, the threshold voltage Vtp, the threshold voltage Vtn, the substrate bias voltage Vsub, etc. as device parameters for the delay element among the characteristic variation factors of the respective circuits. Is stored. In addition, mathematical expressions representing delay characteristics using device parameters of the inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 are shown below. Equation (26) represents the delay characteristic of the inverter circuit INV, Equation (27) represents the delay characteristic of the NAND circuit ND2, and Equation (28) represents the delay characteristic of the NOR circuit NR2.
 DelayINV(Vtp、Vtn、Lg、Vsub、・・・)・・・(26) Delay INV (Vtp, Vtn, Lg, Vsub,...) (26)
 DelayND2(Vtp、Vtn、Lg、Vsub・・・)・・・(27) Delay ND2 (Vtp, Vtn, Lg, Vsub ...) (27)
 DelayNR2(Vtp、Vtn、Lg、Vsub・・・)・・・(28) Delay NR2 (Vtp, Vtn, Lg, Vsub ...) (28)
 次に、図1に示したステップST103~ステップST108に対する具体的な処理について説明する。セルライブラリのインバータ回路INV、NAND回路ND2及びNOR回路NR2に対してトランジスタベースで統計的(例えば、SAP処理)に解析して各インバータ回路INV、NAND回路ND2及びNOR回路NR2の遅延時間や消費電力のデバイスパラメータへの依存性を応答曲面(図示せず)として求める。 Next, specific processing for steps ST103 to ST108 shown in FIG. 1 will be described. The delay time and power consumption of each inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 are analyzed statistically on a transistor basis for the inverter circuit INV, NAND circuit ND2, and NOR circuit NR2 of the cell library. Is determined as a response surface (not shown).
 上記セルライブラリ及び応答曲面(図示せず)に基づいて、特性変動要因となる複数のデバイスパラメータの感度及び相互間の依存性を算出する。算出した複数のデバイスパラメータの感度及び相互間の依存性の中から、複数のデバイスパラメータの感度が高く、相互間の依存性の異なる複数のセル群を、セルライブラリ内のすべてのセルから選択する。選択したセル群のそれぞれを、ランダムばらつきの影響が無視できるように複数段直列に接続して各々遅延特性が異なる複数の遅延回路を構成する。これら複数の遅延回路は、遅延時間あるいはその遅延回路間の遅延時間差が計測可能な範囲内に収まるように各遅延回路のセル段数を設定する。設定した遅延回路の一例を図9において特性モニタ回路1000として示す。なお、図9に示す特性モニタ回路1000は、一つの遅延回路の構成例であり、異なる遅延特性を有する他の遅延回路の図示は省略している。 Based on the cell library and the response surface (not shown), the sensitivity of a plurality of device parameters that are characteristic variation factors and the dependency between them are calculated. From the calculated sensitivity of multiple device parameters and their dependencies, select multiple cell groups with high sensitivity of multiple device parameters and different dependencies from all cells in the cell library. . A plurality of delay circuits having different delay characteristics are configured by connecting each of the selected cell groups in a plurality of stages so that the influence of random variations can be ignored. The plurality of delay circuits sets the number of cell stages of each delay circuit so that the delay time or the delay time difference between the delay circuits falls within a measurable range. An example of the set delay circuit is shown as a characteristic monitor circuit 1000 in FIG. The characteristic monitor circuit 1000 shown in FIG. 9 is a configuration example of one delay circuit, and illustration of other delay circuits having different delay characteristics is omitted.
 図9に示した特性モニタ回路1000を搭載した半導体チップ800には、対象半導体集積回路900が含まれる。対象半導体集積回路900は、フリップフロップ回路、インバータ回路、NAND回路、NOR回路及び配線負荷(配線抵抗及び配線容量)などから構成される論理回路の一例を示すものである。対象半導体集積回路900は、端子Aから端子Cまでの信号伝達経路(A→C)、端子Bから端子Cまでの信号伝達経路(B→C)及び端子Bから端子Dまでの信号伝達経路(B→D)の3本の信号伝達経路を有する。信号伝達経路(A→C)の回路構成は、入力段から端子A、配線負荷R1、NAND回路901、配線負荷R2、NOR回路902、配線負荷R3、インバータ回路903、配線負荷R4、NAND回路904、配線負荷R5、NAND回路905、配線負荷R6及び端子Cが直列に接続されている。信号伝達経路(B→C)の回路構成は、入力段から端子B、配線負荷R7、NOR回路906、配線負荷R8、NOR回路907、配線負荷R9、配線負荷R10、NAND回路904、配線負荷R5、NAND回路905、配線負荷R6及び端子Cが直列に接続されている。信号伝達経路(B→D)の回路構成は、入力段から端子B、配線負荷R7、NOR回路906、配線負荷R8、NOR回路907、配線負荷R9、NAND回路908、配線負荷R11、NOR回路909、配線負荷R12、NOR回路910、配線負荷R13及び端子Dが直列に接続されている。 The target semiconductor integrated circuit 900 is included in the semiconductor chip 800 on which the characteristic monitor circuit 1000 shown in FIG. 9 is mounted. The target semiconductor integrated circuit 900 is an example of a logic circuit including a flip-flop circuit, an inverter circuit, a NAND circuit, a NOR circuit, a wiring load (wiring resistance and wiring capacitance), and the like. The target semiconductor integrated circuit 900 includes a signal transmission path (A → C) from the terminal A to the terminal C, a signal transmission path (B → C) from the terminal B to the terminal C, and a signal transmission path (from the terminal B to the terminal D) ( B → D) has three signal transmission paths. The circuit configuration of the signal transmission path (A → C) is from the input stage to terminal A, wiring load R1, NAND circuit 901, wiring load R2, NOR circuit 902, wiring load R3, inverter circuit 903, wiring load R4, NAND circuit 904. The wiring load R5, the NAND circuit 905, the wiring load R6, and the terminal C are connected in series. The circuit configuration of the signal transmission path (B → C) is from the input stage to terminal B, wiring load R7, NOR circuit 906, wiring load R8, NOR circuit 907, wiring load R9, wiring load R10, NAND circuit 904, wiring load R5. The NAND circuit 905, the wiring load R6, and the terminal C are connected in series. The circuit configuration of the signal transmission path (B → D) is from the input stage to terminal B, wiring load R7, NOR circuit 906, wiring load R8, NOR circuit 907, wiring load R9, NAND circuit 908, wiring load R11, NOR circuit 909. The wiring load R12, the NOR circuit 910, the wiring load R13, and the terminal D are connected in series.
 上記特性モニタ回路1000として示す遅延回路は、セルライブラリ700内から選択されたセルの例として、NAND回路5段により構成された場合を示している。このセルはNAND回路に限定されず、上記により選定された他のセルに置き換えてもよい。また段数は、5段に限定されず、ランダムばらつきの影響を排除できるように十分大きな段数(たとえば20段以上)で、遅延時間あるいはその遅延回路間の遅延時間差が計測可能な範囲内に収まるようにセル段数を設定してもよい。図9に示した特性モニタ回路1000は、NAND回路1001~1005の間にそれぞれ配線負荷R15~R19を配置し、複数のNAND回路1001~1005及び配線負荷R15~R19が交互に直列に接続されている。 The delay circuit shown as the characteristic monitor circuit 1000 is an example of a cell selected from the cell library 700, and shows a case where the delay circuit is constituted by five stages of NAND circuits. This cell is not limited to the NAND circuit, and may be replaced with another cell selected as described above. Further, the number of stages is not limited to five, and the number of stages is sufficiently large (for example, 20 stages or more) so that the influence of random variations can be eliminated, so that the delay time or the delay time difference between the delay circuits falls within a measurable range. The number of cell stages may be set in. In the characteristic monitor circuit 1000 shown in FIG. 9, wiring loads R15 to R19 are arranged between NAND circuits 1001 to 1005, respectively, and a plurality of NAND circuits 1001 to 1005 and wiring loads R15 to R19 are alternately connected in series. Yes.
 次に、図2に示したステップST109~ステップST113に対する具体的な処理について説明する。図9に示す各信号伝達経路(A→C、B→C、B→D)の遅延特性に含まれるデバイスパラメータ、閾値電圧Vtp、閾値電圧Vtn、ゲート長Lg及び基板バイアス電圧Vsub等の特性変動要因に対する依存性として応答曲面(図示せず)を計算する。この計算結果をチップレベルタイミングモデル(図示せず)として格納する。このチップレベルタイミングモデルは、以下に示す数式(29)、数式(30)及び数式(31)として表される。これらの数式(29)、数式(30)及び数式(31)には、デバイスパラメータとしてゲート長Lg、閾値電圧Vtp、閾値電圧Vtn及び基板バイアス電圧Vsub等を含む。数式(29)は、対象半導体集積回路900内の信号伝達経路A→Cの遅延特性を表し、数式(30)は、対象半導体集積回路900内の信号伝達経路B→Cの遅延特性を表し、数式(31)は、対象半導体集積回路900内の信号伝達経路B→Dの遅延特性を表す。 Next, specific processing for step ST109 to step ST113 shown in FIG. 2 will be described. Variations in characteristics such as device parameters, threshold voltage Vtp, threshold voltage Vtn, gate length Lg, and substrate bias voltage Vsub included in the delay characteristics of each signal transmission path (A → C, B → C, B → D) shown in FIG. A response surface (not shown) is calculated as a dependency on the factor. The calculation result is stored as a chip level timing model (not shown). This chip level timing model is expressed as the following formula (29), formula (30), and formula (31). These mathematical formulas (29), (30), and (31) include the gate length Lg, threshold voltage Vtp, threshold voltage Vtn, substrate bias voltage Vsub, and the like as device parameters. Expression (29) represents the delay characteristic of the signal transmission path A → C in the target semiconductor integrated circuit 900, and Expression (30) represents the delay characteristic of the signal transmission path B → C in the target semiconductor integrated circuit 900. Equation (31) represents the delay characteristic of the signal transmission path B → D in the target semiconductor integrated circuit 900.
 DelayA→C(Vtp、Vtn、Lg、Vsub、・・)・・(29) Delay A → C (Vtp, Vtn, Lg, Vsub, ...) (29)
 DelayB→C(Vtp、Vtn、Lg、Vsub、・・)・・(30) Delay B → C (Vtp, Vtn, Lg, Vsub, ...) (30)
 DelayB→D(Vtp、Vtn、Lg、Vsub、・・)・・(31) Delay B → D (Vtp, Vtn, Lg, Vsub,...) (31)
 対象半導体集積回路900の仕様である遅延特性がDelayMAXであり、このDelayMAXが要求性能として上記数式(29)、数式(30)及び数式(31)に対して与えられると、その逆関数として基板バイアス電圧は、以下に示す数式(32)となる。 The delay characteristic which is the specification of the target semiconductor integrated circuit 900 is Delay MAX , and when this Delay MAX is given to the above formula (29), formula (30) and formula (31) as the required performance, the inverse function thereof is obtained. The substrate bias voltage is expressed by the following equation (32).
 VsubMIN(Vtp、Vtn、Lg、・・・)・・・(32) Vsub MIN (Vtp, Vtn, Lg,...) (32)
 次に、図2に示したステップST114に対する具体的な処理について説明する。上記図9に示した特性モニタ回路1000は第1の遅延回路の構成例を示しているが、ここでは、その遅延回路の構成例とはそれぞれ異なる遅延特性を有する第2の遅延回路(図示せず)及び第3の遅延回路(図示せず)を含むものとする。第1、第2及び第3の遅延回路の遅延要素には、チップレベルタイミングモデルにおいて示したのと同様にデバイスパラメータとして閾値電圧Vtp、閾値電圧Vtn、ゲート長Lg及び基板バイアス電圧Vsub等が含まれる。したがって、各第1、第2及び第3の遅延回路の遅延特性は、以下に示す数式(33)、数式(34)及び数式(35)として表される。数式(33)は、第1の遅延回路の遅延特性を表し、数式(34)は、第2の遅延回路の遅延特性を表し、数式(35)は、第3の遅延回路の遅延特性を表す。 Next, specific processing for step ST114 shown in FIG. 2 will be described. The characteristic monitor circuit 1000 shown in FIG. 9 shows a configuration example of the first delay circuit. Here, a second delay circuit (not shown) having a delay characteristic different from the configuration example of the delay circuit is shown here. And a third delay circuit (not shown). The delay elements of the first, second, and third delay circuits include device parameters such as threshold voltage Vtp, threshold voltage Vtn, gate length Lg, and substrate bias voltage Vsub as shown in the chip level timing model. It is. Therefore, the delay characteristics of the first, second, and third delay circuits are expressed as the following formula (33), formula (34), and formula (35). Equation (33) represents the delay characteristic of the first delay circuit, Equation (34) represents the delay characteristic of the second delay circuit, and Equation (35) represents the delay characteristic of the third delay circuit. .
 Delay(Vtp、Vtn、Lg、Vsub、・・・)・・・(33) Delay 1 (Vtp, Vtn, Lg, Vsub,...) (33)
 Delay(Vtp、Vtn、Lg、Vsub、・・・)・・・(34) Delay 2 (Vtp, Vtn, Lg, Vsub,...) (34)
 Delay(Vtp、Vtn、Lg、Vsub、・・・)・・・(35) Delay 3 (Vtp, Vtn, Lg, Vsub,...) (35)
 上記数式(33)、数式(34)及び数式(35)のデバイスパラメータ、閾値電圧Vtp、閾値電圧Vtn及びゲート長Lgに対する逆関数を求めた結果を以下の数式(36)、数式(37)及び数式(38)に示す。数式(36)は、pチャネル閾値電圧Vtpに対する逆関数を表し、数式(37)は、nチャネル閾値電圧Vtnに対する逆関数を表し、数式(38)は、ゲート長Lgに対する逆関数を表す。 The following equations (36), (37), and (37) are obtained as the inverse functions for the device parameters, threshold voltage Vtp, threshold voltage Vtn, and gate length Lg of the above equations (33), (34), and (35). It is shown in Formula (38). Equation (36) represents an inverse function with respect to the p-channel threshold voltage Vtp, Equation (37) represents an inverse function with respect to the n-channel threshold voltage Vtn, and Equation (38) represents an inverse function with respect to the gate length Lg.
 Vtp(Delay、Delay、Delay、・・・)・・・(36) Vtp (Delay 1 , Delay 2 , Delay 3 ,...) (36)
 Vtn(Delay、Delay、Delay、・・・)・・・(37) Vtn (Delay 1 , Delay 2 , Delay 3 ,...) (37)
 Lg(Delay、Delay、Delay、・・・)・・・(38) Lg (Delay 1 , Delay 2 , Delay 3 ,...) (38)
 上記逆関数により求めた結果である数式(36)、数式(37)及び数式(38)を数式(32)に代入することにより以下に示す数式(39)になる。 The following formula (39) is obtained by substituting the formula (36), the formula (37), and the formula (38), which are the results obtained by the inverse function, into the formula (32).
 Vsub(Delay、Delay、Delay、・・・)・・・(39) Vsub (Delay 1 , Delay 2 , Delay 3 ,...) (39)
 上記数式(39)により、基板バイアス電圧Vsubは、特性モニタ回路1000内の各遅延回路の出力を変数とした多項式に変換される。すなわち、基板バイアス電圧Vsubは、特性モニタ回路1000内の各遅延回路の出力を変数として求めることが可能になる。 By the above equation (39), the substrate bias voltage Vsub is converted into a polynomial with the output of each delay circuit in the characteristic monitor circuit 1000 as a variable. That is, the substrate bias voltage Vsub can be obtained using the output of each delay circuit in the characteristic monitor circuit 1000 as a variable.
 次に、上記特性モニタ回路1000の遅延回路を第1の遅延回路とし、図示しない他の第2及び第3の遅延回路とした場合、これらの遅延回路の遅延特性を表す数式(33)、数式(34)及び数式(35)により求められる各遅延時間Delay、Delay及びDelayを物理的(回路的)に所定ビット数のデータとして出力するエンコーダ回路について説明する。例えば、各遅延時間Delay、Delay及びDelayに対するデータをそれぞれCode(Delay)、Code(Delay)及びCode(Delay)とすると、基板バイアス電圧Vsubを表す数式(39)は以下に示す数式(40)により表すことができる。 Next, when the delay circuit of the characteristic monitor circuit 1000 is the first delay circuit, and other second and third delay circuits (not shown), the mathematical expressions (33) and (33) representing the delay characteristics of these delay circuits. An encoder circuit that outputs each delay time Delay 1 , Delay 2, and Delay 3 obtained by (34) and Equation (35) physically as a data of a predetermined number of bits will be described. For example, assuming that the data for each delay time Delay 1 , Delay 2 and Delay 3 is Code (Delay 1 ), Code (Delay 2 ) and Code (Delay 3 ), respectively, Equation (39) representing the substrate bias voltage Vsub is as follows: It can represent with the numerical formula (40) shown.
 Vsub(Code(Delay)、Code(Delay)、Code(Delay)、・・・)・・・(40) Vsub (Code (Delay 1 ), Code (Delay 2 ), Code (Delay 3 ), ...) (40)
 次に、図2に示したステップST115に対する具体的な処理について説明する。上記数式(40)により基板バイアス電圧Vsubはバイナリの数値で表されるCode(Delay)、Code(Delay)及びCode(Delay)を変数として求めることが可能になる。上記数式(40)を用いて、論理合成によりエンコーダ回路を設計すると、特性モニタ回路1000から出力される各遅延回路の遅延時間を所定ビット数のデータとして入力し、基板バイアス電圧Vsubを所定ビット数のデータとして出力する図5に示したエンコーダ回路500が形成される。 Next, specific processing for step ST115 shown in FIG. 2 will be described. With the above equation (40), the substrate bias voltage Vsub can be obtained by using Code (Delay 1 ), Code (Delay 2 ), and Code (Delay 3 ) represented by binary values as variables. When the encoder circuit is designed by logic synthesis using the above equation (40), the delay time of each delay circuit output from the characteristic monitor circuit 1000 is input as data of a predetermined number of bits, and the substrate bias voltage Vsub is set to the predetermined number of bits. The encoder circuit 500 shown in FIG.
 以上、説明したように、本実施例2では、対象半導体集積回路900のセルライブラリに対して統計的な解析処理や主成分分析処理を用いて、対象半導体集積回路900の遅延特性の変動要因となるデバイスパラメータを含み、かつ、対象半導体集積回路900の全信号伝達経路を考慮した遅延特性を有する複数の遅延回路を含む特性モニタ回路1000を設計することが可能になる。また、各遅延回路の遅延特性を表す数式を逆変換することにより、各遅延回路の遅延要素に含まれるデバイスパラメータの遅延時間を変数とした数式に変換することが可能になる。そして、この変換したデバイスパラメータを用いて基板バイアス電圧Vsubを求める数式を多項式変換することにより、基板バイアス電圧Vsubは各遅延回路の出力を変数として求めることが可能になる。さらに、各遅延回路の出力をコード化して基板バイアス電圧Vsubは求めるエンコーダ回路を設計することにより、基板バイアス電圧Vsubをコード化された各遅延回路の遅延出力を変数として求めることが可能になる。これにより、基板バイアス電圧Vsubを求める回路がバイナリ処理回路となり設計及び処理が容易になる。 As described above, in the second embodiment, the variation characteristics of the delay characteristics of the target semiconductor integrated circuit 900 are analyzed using statistical analysis processing and principal component analysis processing on the cell library of the target semiconductor integrated circuit 900. It is possible to design a characteristic monitor circuit 1000 that includes a plurality of delay circuits including device parameters and having delay characteristics in consideration of all signal transmission paths of the target semiconductor integrated circuit 900. Further, by inversely converting the mathematical expression representing the delay characteristic of each delay circuit, it is possible to convert the mathematical expression representing the delay time of the device parameter included in the delay element of each delay circuit into a mathematical expression. Then, the substrate bias voltage Vsub can be obtained using the output of each delay circuit as a variable by performing a polynomial transformation on the mathematical formula for obtaining the substrate bias voltage Vsub using the converted device parameters. Furthermore, by designing an encoder circuit that codes the output of each delay circuit and obtains the substrate bias voltage Vsub, the delay output of each delay circuit coded with the substrate bias voltage Vsub can be obtained as a variable. As a result, the circuit for obtaining the substrate bias voltage Vsub becomes a binary processing circuit, which facilitates design and processing.

Claims (12)

  1.  半導体集積回路を構成する複数のセルのセルライブラリ、前記複数のセルの遅延時間の特性変動要因となるパラメータとして、少なくともゲート長もしくは閾値電圧またはデバイスモデル上で前記パラメータと等価なパラメータを含むデバイスパラメータの変動範囲として与えられるプロセスばらつき情報、および動作条件として与えられる少なくとも電源電圧または動作温度を用いて、前記セルライブラリに含まれる各セルの特性変動を統計的に解析し、
     前記各セルの遅延時間を特性変動要因となる複数のパラメータに対する応答曲面として表現し、前記特性変動要因となる複数のパラメータの感度および相互間の依存性を算出し、
     前記複数のパラメータの感度及び相互間の依存性に対する算出結果に基づいて、前記複数のパラメータの感度が高く、相互間の依存性の異なる複数のセルを前記セルライブラリから選択し、
     前記選択された複数のセルをそれぞれ複数段直列に接続した複数の遅延回路を含む特性モニタ回路を形成し、
     前記半導体集積回路内の全信号伝達経路の遅延時間を、前記各セルの特性変動要因となる複数のパラメータに対する応答曲面として表現して格納したデータベースを作成し、
     前記データベースに対して前記特性変動要因となる複数のパラメータが与えられたときの前記半導体集積回路の遅延特性が要求性能を満たす最適電源電圧を求め、求めた最適電源電圧と前記特性変動要因となる複数のパラメータとの関係を示すマップを作成し、
     前記特性モニタ回路に搭載された複数の遅延回路を構成するセルの応答曲面の逆関数を用いて、前記特性モニタ回路の出力から前記特性変動要因となる複数のパラメータを推定し、
     前記推定された特性変動要因となる複数のパラメータと前記マップとを用いて前記半導体集積回路の最適電源電圧を決定することを特徴とする半導体集積回路の電源電圧決定方法。
    Device parameters including at least a gate length or a threshold voltage or a parameter equivalent to the parameter on a device model as a parameter that causes variation in characteristics of delay times of the plurality of cells constituting the semiconductor integrated circuit Statistical analysis of the characteristic variation of each cell included in the cell library, using process variation information given as a fluctuation range of at least the power supply voltage or operating temperature given as an operating condition,
    Expressing the delay time of each cell as a response surface with respect to a plurality of parameters that are characteristic variation factors, and calculating the sensitivity and mutual dependence of the plurality of parameters that are the characteristic variation factors,
    Based on the calculation results for the sensitivity of the plurality of parameters and the dependence between the plurality of parameters, the plurality of cells having high sensitivity and different dependencies between the plurality of parameters are selected from the cell library,
    Forming a characteristic monitor circuit including a plurality of delay circuits each connecting a plurality of selected cells in a plurality of stages in series;
    Create a database that stores the delay times of all signal transmission paths in the semiconductor integrated circuit as response surfaces with respect to a plurality of parameters that cause the characteristic variation of each cell.
    The optimum power supply voltage satisfying the required performance is obtained by the delay characteristic of the semiconductor integrated circuit when a plurality of parameters that cause the characteristic variation are given to the database, and the obtained optimum power supply voltage and the characteristic variation factor are obtained. Create a map showing the relationship between multiple parameters,
    Using the inverse function of the response surface of the cells constituting a plurality of delay circuits mounted on the characteristic monitor circuit, estimating a plurality of parameters that cause the characteristic variation from the output of the characteristic monitor circuit,
    A method of determining a power supply voltage of a semiconductor integrated circuit, wherein an optimum power supply voltage of the semiconductor integrated circuit is determined using a plurality of parameters that are the estimated characteristic variation factors and the map.
  2.  前記特性モニタ回路は、前記複数の遅延回路の遅延時間あるいは遅延時間の差異を数値化して出力し、
     前記マップを前記複数の遅延回路の各出力を変数とした多項式に変換し、
     前記多項式に論理合成を適用してエンコーダ回路を設計する設計データを作成し、
     前記設計データに基づいて前記特性モニタ回路から出力された遅延時間あるいは遅延時間の差異を所定ビット数のデータにエンコードするエンコーダ回路を形成することをさらに含むことを特徴とする請求項1に記載の半導体集積回路の電源電圧決定方法。
    The characteristic monitor circuit outputs a numerical value of a delay time or a difference between the delay times of the plurality of delay circuits,
    Converting the map into a polynomial with each output of the plurality of delay circuits as a variable;
    Create design data to design the encoder circuit by applying logic synthesis to the polynomial,
    2. The encoder circuit according to claim 1, further comprising forming an encoder circuit that encodes a delay time or a difference in delay time output from the characteristic monitor circuit into data of a predetermined number of bits based on the design data. A method for determining a power supply voltage of a semiconductor integrated circuit.
  3.  前記各セルの特性変動を統計的に解析する処理は、主成分分析処理であることを特徴とする請求項1に記載の半導体集積回路の電源電圧決定方法。 2. The method for determining a power supply voltage of a semiconductor integrated circuit according to claim 1, wherein the process of statistically analyzing the characteristic variation of each cell is a principal component analysis process.
  4.  前記複数のパラメータの感度は、前記セルライブラリに含まれる各セルの特性変動に対して、前記特性変動要因となる複数のパラメータが与える影響の程度を表す指標であることを特徴とする請求項1に記載の半導体集積回路の電源電圧決定方法。 2. The sensitivity of the plurality of parameters is an index representing a degree of influence of the plurality of parameters serving as the characteristic variation factor on the characteristic variation of each cell included in the cell library. 2. A method for determining a power supply voltage of a semiconductor integrated circuit according to 1.
  5.  前記複数のパラメータの相関は、前記各セルの特性変動に対し、前記特性変動要因となる複数のパラメータ相互間の寄与の度合いを表す指標であることを特徴とする請求項1に記載の半導体集積回路の電源電圧決定方法。 2. The semiconductor integrated circuit according to claim 1, wherein the correlation between the plurality of parameters is an index representing a degree of contribution between the plurality of parameters that are the characteristic variation factors with respect to the characteristic variation of each cell. Circuit power supply voltage determination method.
  6.  前記応答曲面は、前記特性変動要因となる複数のパラメータからサンプリングした入力変数および出力変数のデータを元に作成し、前記入力変数によって表わされる前記出力変数の近似関数であることを特徴とする請求項1に記載の半導体集積回路の電源電圧決定方法。 The response surface is an approximation function of the output variable represented by the input variable, created based on input variable and output variable data sampled from a plurality of parameters that cause the characteristic variation. Item 2. A method for determining a power supply voltage of a semiconductor integrated circuit according to Item 1.
  7.  前記論理合成は、前記多項式で表現された論理回路を形成することを特徴とする請求項2に記載の半導体集積回路の電源電圧決定方法。 3. The method of determining a power supply voltage of a semiconductor integrated circuit according to claim 2, wherein the logic synthesis forms a logic circuit expressed by the polynomial.
  8.  半導体集積回路を構成する複数のセルのセルライブラリ、前記複数のセルの遅延時間の特性変動要因となるパラメータとして、少なくともゲート長もしくは閾値電圧またはデバイスモデル上で前記パラメータと等価なパラメータを含むデバイスパラメータの変動範囲として与えられるプロセスばらつき情報、および動作条件として与えられる少なくとも電源電圧または動作温度を用いて、前記セルライブラリに含まれる各セルの特性変動を統計的に解析し、
     前記各セルの遅延時間を特性変動要因となる複数のパラメータに対する応答曲面として表現し、前記特性変動要因となる複数のパラメータの感度および相互間の依存性を算出し、
     前記複数のパラメータの感度及び相互間の依存性に対する算出結果に基づいて、前記複数のパラメータの感度が高く、相互間の依存性の異なる複数のセルを前記セルライブラリから選択し、
     前記選択された複数のセルをそれぞれ複数段直列に接続した遅延回路を含む特性モニタ回路を形成し、
     前記半導体集積回路内の全信号伝達経路の遅延時間を、前記各セルの特性変動要因となる複数のパラメータに対する応答曲面として表現して格納したデータベースを作成し、
     前記データベースに対して前記特性変動要因となる複数のパラメータが与えられたときの前記半導体集積回路の遅延特性が要求性能を満たす最適基板バイアス電圧を求め、求めた最適基板バイアス電圧と前記特性変動要因となる複数のパラメータとの関係を示すマップを作成し、
     前記特性モニタ回路に搭載された複数の遅延回路を構成するセルの応答曲面の逆関数を用いて、前記特性モニタ回路の出力から前記特性変動要因となる複数のパラメータを推定し、
     前記推定された特性変動要因となる複数のパラメータと前記マップとを用いて前記半導体集積回路の最適基板バイアス電圧を決定することを特徴とする半導体集積回路の基板バイアス電圧決定方法。
    Device parameters including at least a gate length or a threshold voltage or a parameter equivalent to the parameter on a device model as a parameter that causes variation in characteristics of delay times of the plurality of cells constituting the semiconductor integrated circuit Statistical analysis of the characteristic variation of each cell included in the cell library, using process variation information given as a fluctuation range of at least the power supply voltage or operating temperature given as an operating condition,
    Expressing the delay time of each cell as a response surface with respect to a plurality of parameters that are characteristic variation factors, and calculating the sensitivity and mutual dependence of the plurality of parameters that are the characteristic variation factors,
    Based on the calculation results for the sensitivity of the plurality of parameters and the dependence between the plurality of parameters, the plurality of cells having high sensitivity and different dependencies between the plurality of parameters are selected from the cell library,
    Forming a characteristic monitor circuit including a delay circuit in which a plurality of selected cells are connected in series in a plurality of stages,
    Create a database that stores the delay times of all signal transmission paths in the semiconductor integrated circuit as response surfaces with respect to a plurality of parameters that cause the characteristic variation of each cell.
    Obtaining an optimum substrate bias voltage that satisfies the required performance of delay characteristics of the semiconductor integrated circuit when a plurality of parameters that cause the characteristic variation are given to the database, and obtaining the optimum substrate bias voltage and the characteristic variation factor Create a map that shows the relationship with multiple parameters,
    Using the inverse function of the response surface of the cells constituting a plurality of delay circuits mounted on the characteristic monitor circuit, estimating a plurality of parameters that cause the characteristic variation from the output of the characteristic monitor circuit,
    A method of determining a substrate bias voltage of a semiconductor integrated circuit, wherein an optimum substrate bias voltage of the semiconductor integrated circuit is determined using a plurality of parameters that are the estimated characteristic variation factors and the map.
  9.  半導体集積回路と、
     複数の遅延回路を有し、前記複数の遅延回路を用いて、入力信号に対して各々異なる遅延信号を出力する特性モニタ回路と、
     前記特性モニタ回路から出力される複数の遅延信号を各々エンコードして所定ビット数のデータを出力するエンコーダ回路と、
     前記エンコーダ回路から出力される前記データに応じて前記半導体集積回路の電源電圧値を設定したテーブルに基づいて、前記データに対応する電源電圧値を前記半導体集積回路に出力する電源電圧制御回路と、
     を備えることを特徴とする半導体集積回路の電源電圧制御システム。
    A semiconductor integrated circuit;
    A characteristic monitor circuit that has a plurality of delay circuits and outputs different delay signals with respect to an input signal using the plurality of delay circuits;
    An encoder circuit that encodes each of a plurality of delay signals output from the characteristic monitor circuit and outputs data of a predetermined number of bits;
    A power supply voltage control circuit that outputs a power supply voltage value corresponding to the data to the semiconductor integrated circuit based on a table in which the power supply voltage value of the semiconductor integrated circuit is set according to the data output from the encoder circuit;
    A power supply voltage control system for a semiconductor integrated circuit, comprising:
  10.  前記複数の遅延回路は、前記半導体集積回路が動作する際に求められた遅延時間の分布に基づいて前記半導体集積回路内の全信号伝達経路に対応する遅延要素を含むデバイスパラメータが各々設定されることを特徴とする請求項9に記載の半導体集積回路の電源電圧制御システム。 In the plurality of delay circuits, device parameters including delay elements corresponding to all signal transmission paths in the semiconductor integrated circuit are set based on a delay time distribution obtained when the semiconductor integrated circuit operates. The power supply voltage control system for a semiconductor integrated circuit according to claim 9.
  11.  前記特性モニタ回路は、前記半導体集積回路の特性変動要因から求められた遅延要素に基づいて設計された前記半導体集積回路に対応する標準遅延回路をさらに含み、前記複数の遅延回路及び前記標準遅延回路に各々入力される入力信号に対して各々異なる遅延信号を出力し、前記複数の遅延回路及び前記標準遅延回路から各々出力される遅延信号間の遅延誤差を検出する遅延時間検出器をさらに有し、
     前記エンコーダ回路は、前記遅延時間検出器から出力される各遅延誤差を各々エンコードして所定ビット数のデータを出力し、
     前記電源電圧制御回路は、前記エンコーダ回路から出力される前記データに応じて前記半導体集積回路の電源電圧値を設定したテーブルに基づいて前記データに対応する電源電圧値を前記半導体集積回路に出力することを特徴とする請求項9または10に記載の半導体集積回路の電源電圧制御システム。
    The characteristic monitor circuit further includes a standard delay circuit corresponding to the semiconductor integrated circuit designed based on a delay element obtained from a characteristic variation factor of the semiconductor integrated circuit, and the plurality of delay circuits and the standard delay circuit And a delay time detector for outputting a delay signal different from each of the input signals to each of the plurality of delay circuits and detecting a delay error between the delay signals output from the plurality of delay circuits and the standard delay circuit. ,
    The encoder circuit encodes each delay error output from the delay time detector and outputs a predetermined number of bits of data,
    The power supply voltage control circuit outputs a power supply voltage value corresponding to the data to the semiconductor integrated circuit based on a table in which the power supply voltage value of the semiconductor integrated circuit is set according to the data output from the encoder circuit. 11. A power supply voltage control system for a semiconductor integrated circuit according to claim 9 or 10.
  12.  半導体集積回路と、
     複数の遅延回路を有し、前記複数の遅延回路を用いて、入力信号に対して各々異なる遅延信号を出力する特性モニタ回路と、
     前記特性モニタ回路から出力される複数の遅延信号を各々エンコードして所定ビット数のデータを出力するエンコーダ回路と、
     前記エンコーダ回路から出力される前記データに応じて前記半導体集積回路の基板バイアス電圧値を設定したテーブルに基づいて、前記データに対応する基板バイアス電圧値を前記半導体集積回路に出力する基板バイアス電圧制御回路と、
     を備えることを特徴とする半導体集積回路の基板バイアス電圧制御システム。
    A semiconductor integrated circuit;
    A characteristic monitor circuit that has a plurality of delay circuits and outputs different delay signals with respect to an input signal using the plurality of delay circuits;
    An encoder circuit that encodes a plurality of delay signals output from the characteristic monitor circuit and outputs data of a predetermined number of bits;
    Substrate bias voltage control for outputting a substrate bias voltage value corresponding to the data to the semiconductor integrated circuit based on a table in which the substrate bias voltage value of the semiconductor integrated circuit is set according to the data output from the encoder circuit Circuit,
    A substrate bias voltage control system for a semiconductor integrated circuit, comprising:
PCT/JP2010/054302 2010-03-15 2010-03-15 Power supply voltage determination method for semiconductor integrated circuit and power supply voltage control system for semiconductor integrated circuit WO2011114416A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010510590A JPWO2011114416A1 (en) 2010-03-15 2010-03-15 Semiconductor integrated circuit power supply voltage determination method and semiconductor integrated circuit power supply voltage control system
PCT/JP2010/054302 WO2011114416A1 (en) 2010-03-15 2010-03-15 Power supply voltage determination method for semiconductor integrated circuit and power supply voltage control system for semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054302 WO2011114416A1 (en) 2010-03-15 2010-03-15 Power supply voltage determination method for semiconductor integrated circuit and power supply voltage control system for semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
WO2011114416A1 true WO2011114416A1 (en) 2011-09-22

Family

ID=44648549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054302 WO2011114416A1 (en) 2010-03-15 2010-03-15 Power supply voltage determination method for semiconductor integrated circuit and power supply voltage control system for semiconductor integrated circuit

Country Status (2)

Country Link
JP (1) JPWO2011114416A1 (en)
WO (1) WO2011114416A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216338A (en) * 1999-01-20 2000-08-04 Sony Corp Power supply voltage controller
JP2004246988A (en) * 2003-02-14 2004-09-02 Renesas Technology Corp Semiconductor device
JP2005073494A (en) * 2003-08-26 2005-03-17 Hewlett-Packard Development Co Lp System and method for adjusting voltage
WO2008114416A1 (en) * 2007-03-20 2008-09-25 Fujitsu Limited Power supply voltage regulator, recording medium and power supply voltage regulating method
JP2008258185A (en) * 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device, method and device for designing semiconductor integrated circuit device
JP2009010344A (en) * 2007-05-30 2009-01-15 Oki Electric Ind Co Ltd Semiconductor integrated circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000216338A (en) * 1999-01-20 2000-08-04 Sony Corp Power supply voltage controller
JP2004246988A (en) * 2003-02-14 2004-09-02 Renesas Technology Corp Semiconductor device
JP2005073494A (en) * 2003-08-26 2005-03-17 Hewlett-Packard Development Co Lp System and method for adjusting voltage
WO2008114416A1 (en) * 2007-03-20 2008-09-25 Fujitsu Limited Power supply voltage regulator, recording medium and power supply voltage regulating method
JP2008258185A (en) * 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device, method and device for designing semiconductor integrated circuit device
JP2009010344A (en) * 2007-05-30 2009-01-15 Oki Electric Ind Co Ltd Semiconductor integrated circuit

Also Published As

Publication number Publication date
JPWO2011114416A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
US20060058994A1 (en) Power estimation through power emulation
US8555236B2 (en) Non-invasive leakage power device characterization of integrated circuits using device grouping and compressive sensing
US8095354B2 (en) Power consumption peak estimation program for LSI and device therefor
JP2004252831A (en) Statistical delay simulation device for lsi and its simulation method
US7295938B2 (en) Clock jitter calculation device, clock jitter calculation method, and clock jitter calculation program
US8478576B1 (en) Including variability in simulation of logic circuits
JPWO2009066431A1 (en) Semiconductor integrated circuit manufacturing system, manufacturing apparatus, manufacturing method, integrated circuit, and communication system
Chahal et al. BTI aware thermal management for reliable DVFS designs
Zhang et al. Statistical timing analysis with extended pseudo-canonical timing model
WO2011114416A1 (en) Power supply voltage determination method for semiconductor integrated circuit and power supply voltage control system for semiconductor integrated circuit
JP2009086848A (en) Semiconductor device, method for controlling semiconductor device, and method for creating control information of semiconductor device
Jeang et al. Process mean of tolerance settings of CPU components via CAE simulation and response surface methodology
Chen et al. Estimation of power dissipation using a novel power macromodeling technique
US7552410B1 (en) Estimating LUT power usage
Pendyala et al. State encoding based NBTI optimization in finite state machines
Afacan et al. On chip reconfigurable CMOS analog circuit design and automation against aging phenomena: Sense and react
Choudhury et al. Thermal-aware partitioning and encoding of power-gated FSM
US7584439B2 (en) Cell modeling for integrated circuit design with characterization of upstream driver strength
Hillebrand et al. Reliability-Aware Multi-Vth Domain Digital Design Assessment
Farahani et al. Reliability-aware cross-layer custom instruction screening
JP2006350548A (en) Creation method, creation program and creation device of timing library
Khalil et al. Enhancing Voltage Scalability of Asynchronous Circuits through Logic Transformation
WO2023200533A1 (en) Path margin monitor integration with integrated circuit
Cheremisinova et al. Estimation of peak sustainable power consumption for sequential CMOS circuits
WO2012046344A1 (en) Program, library creating device, and power consumption calculating device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010510590

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847833

Country of ref document: EP

Kind code of ref document: A1