WO2011114375A1 - Cross-flow fan and air conditioner - Google Patents

Cross-flow fan and air conditioner Download PDF

Info

Publication number
WO2011114375A1
WO2011114375A1 PCT/JP2010/001945 JP2010001945W WO2011114375A1 WO 2011114375 A1 WO2011114375 A1 WO 2011114375A1 JP 2010001945 W JP2010001945 W JP 2010001945W WO 2011114375 A1 WO2011114375 A1 WO 2011114375A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
groove
cross
rotation axis
impeller
Prior art date
Application number
PCT/JP2010/001945
Other languages
French (fr)
Japanese (ja)
Inventor
池田尚史
田所敬英
山下哲央
平川誠司
代田光宏
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201080065532.3A priority Critical patent/CN102812253B/en
Priority to EP10847797.7A priority patent/EP2549114B1/en
Priority to ES10847797.7T priority patent/ES2690196T3/en
Priority to PCT/JP2010/001945 priority patent/WO2011114375A1/en
Priority to AU2010348684A priority patent/AU2010348684B2/en
Publication of WO2011114375A1 publication Critical patent/WO2011114375A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/306Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the suction side of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/294Three-dimensional machined; miscellaneous grooved

Definitions

  • the present invention relates to a once-through fan used as a blowing means and an air conditioner equipped with the once-through fan.
  • a cross-flow fan mounted on a conventional air conditioner there is a fan provided with a groove, a small depression, or a small protrusion along the rotation direction around the periphery of the impeller on the suction surface side of each blade.
  • a fan provided with a groove, a small depression, or a small protrusion along the rotation direction around the periphery of the impeller on the suction surface side of each blade.
  • Patent Document 1 The example described in Patent Document 1 as an example of a conventional once-through fan is provided with grooves, small depressions, and small protrusions along the rotation direction around the periphery of the impeller on the suction surface side of each blade.
  • the once-through fan is installed in the air passage formed by the inlet and outlet, and when the blades forming the once-through fan rotate and are located on the outlet side, separation occurs as the flow passing through the blade approaches the trailing edge. This separation causes pressure fluctuations that cause noise. Therefore, in Patent Document 1, pressure fluctuations that cause noise are absorbed by grooves, small depressions, and small protrusions provided on the suction surface of the blade, thereby reducing broadband noise and reducing noise.
  • thermoplastic resin such as AS is poured into a blade mold, and after cooling, it is released in the impeller rotating shaft direction to form a blade portion.
  • a blade having grooves, small depressions, or small protrusions extending in the blade rotation direction (direction orthogonal to the rotation axis) on the suction surface of the blade as in the configuration of Patent Document 1, in the direction of the rotation axis. Therefore, there is a problem in that it is impossible to release the mold, and it is necessary to release the mold in the direction perpendicular to the rotation axis, which complicates the manufacturing method and deteriorates the productivity.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a cross-flow fan that can achieve low noise and high efficiency. Moreover, it aims at obtaining the air conditioner which can be quiet and can save energy.
  • a cross-flow fan includes a disc-shaped support plate having a center of rotation located at the center, a plurality of fans arranged along the outer periphery of the support plate, extending in the direction of the rotation axis, and supported at both ends by the support plate.
  • An impeller having a plurality of blades, an impeller formed by fixing a plurality of impellers in the direction of the rotation axis, and a blade suction surface that is a rear surface with respect to the rotation direction of the blades.
  • a plurality of concave grooves extending, and the grooves are provided separated by a predetermined interval so as to have a flat portion between adjacent grooves.
  • the cross-flow fan according to the present invention includes a disc-shaped support plate having a center of rotation located at the center, and is disposed along the outer periphery of the support plate and extends in the rotation axis direction, and both ends thereof are supported by the support plate.
  • An impeller having a plurality of blades, an impeller formed by adhering a plurality of impellers in the direction of the rotation axis, and a motor shaft fixed to the support plate located at an end of the impeller.
  • the cross-flow fan according to the present invention includes a disc-shaped support plate having a center of rotation located at the center, and is disposed along the outer periphery of the support plate and extends in the rotation axis direction, and both ends thereof are supported by the support plate.
  • An impeller having a plurality of blades and an impeller formed by fixing a plurality of the impellers in the direction of the rotation axis, and rotation at a connection portion connected to the support plate at one end of the blade
  • the cross-sectional shape perpendicular to the axis is made larger than the cross-sectional shape perpendicular to the rotation axis at the connecting portion connected to the support plate at the other end of the blade, and the rear surface is the rear surface with respect to the rotation direction of the blade.
  • the blade suction surface is provided with a plurality of concave grooves extending in the rotation axis direction.
  • the air conditioner which concerns on this invention mounts the said cross-flow fan.
  • a cross-flow fan that can suppress separation on the suction surface side of the blade, stabilize the flow, and achieve low noise and high efficiency.
  • an air conditioner that can be quiet and save energy can be obtained.
  • FIG. 4 is a longitudinal sectional view taken along line QQ in FIG. 1 according to the first embodiment of the present invention. It is the schematic which shows the impeller of the crossflow fan which concerns on Embodiment 1 of this invention.
  • FIG. 5 is a perspective view illustrating a state in which, for example, one wing is fixed to one ring according to the first embodiment of the present invention.
  • FIG. 5 is an explanatory view showing, on an enlarged scale, the cross section along line PP in FIG. 4 according to the first embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing the air flow when the blade 8c passes through the impeller suction region E1 according to the first embodiment of the present invention. It is explanatory drawing which concerns on Embodiment 1 of this invention and shows the flow of air when a wing
  • FIG. 11A is a perspective view partially showing a motor-side impeller
  • FIG. 11B is an explanatory view seen from the side, according to Embodiment 2 of the present invention.
  • FIGS. 12A and 12B are schematic views showing an impeller of a cross-flow fan according to Embodiment 3 of the present invention
  • FIG. 12A is a side view of the cross-flow fan
  • FIG. 12B is a cross-sectional view taken along line SS in FIG. The figure is shown.
  • FIG. 12A is a perspective view partially showing a motor-side impeller
  • FIG. 11B is an explanatory view seen from the side, according to Embodiment 2 of the present invention.
  • FIGS. 12A and 12B are schematic views showing an impeller of a cross-flow fan according to Embodiment 3 of the present invention
  • FIG. 12A is a side view of the cross-flow fan
  • FIG. 13 is a cross-sectional view taken along the line AA of one blade in FIG. 12 according to the third embodiment of the present invention.
  • FIG. 13 is a cross-sectional view taken along the line BB of one blade in FIG. 12 according to the third embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating one blade according to another configuration example of the cross-flow fan according to the third embodiment of the present invention.
  • FIG. 9 is an enlarged cross-sectional view showing a part of a cross section perpendicular to a rotation axis at a blade longitudinal tip portion of a blade according to Embodiment 3 of the present invention. It is a front view which shows another structural example of the crossflow fan which concerns on Embodiment 3 of this invention, and shows one blade.
  • FIG. Embodiment 1 is an external perspective view showing an air conditioner equipped with a cross-flow fan according to the present embodiment
  • FIG. 2 is a longitudinal sectional view taken along line QQ in FIG.
  • the flow of air is indicated by white arrows in FIG. 1 and indicated by dotted arrows in FIG.
  • the air conditioner main body 1 is installed in the wall 11a of the room 11 to be air-conditioned.
  • the air conditioner main body upper portion 1a is provided with a suction grill 2 that serves as a suction port for room air, an electric dust collector 6 that electrostatically collects dust and collects dust, and a mesh-like filter 5 that removes dust.
  • the heat exchanger 7 having a configuration in which the pipe 7b passes through the plurality of aluminum fins 7a is arranged on the front side and the upper side of the impeller 8a so as to surround the impeller 8a.
  • the air conditioner main body front surface 1b is covered with the front panel, and the blower outlet 3 is opened on the lower side.
  • the cross-flow fan 8 that is a blower has a stabilizer 9 that separates the suction side flow path E1 and the blowout side flow path E2 from the impeller 8a, and temporarily stores water droplets dripped from the heat exchanger 7.
  • a spiral guide wall 10 is provided on the outlet side of the vehicle 8a in order to form the back surface of the outlet side flow path.
  • an up / down wind direction vane 4a and a left / right wind direction vane 4b are rotatably attached to the air outlet 3 to change the blowing direction into the room.
  • O indicates the rotation center of the impeller 8a
  • E1 is a suction region of the impeller 8a
  • E2 is a blowout region of the impeller 8a
  • RO indicates the rotation direction of the impeller 8a.
  • the impeller 8a of the cross-flow fan 8 rotates in the RO direction. Then, the air in the room 11 is sucked in from the suction port 2 provided in the air conditioner main body upper portion 1a, dust is removed by the electric dust collector 6 and the filter 5, and then the air is heated and heated by the heat exchanger 7. Alternatively, it is cooled, cooled or dehumidified, and sucked into the impeller 8 a of the cross-flow fan 8. Thereafter, the flow blown out from the impeller 8 a is guided to the guide wall 10, travels to the blowout port 3, and is blown into the room 11 to be air-conditioned. At this time, the air flow is controlled in the vertical and horizontal directions by the vertical wind direction vanes 4a and the left and right wind direction vanes 4b, so that the entire room 11 is blown to suppress temperature unevenness.
  • FIG. 3 is a schematic view showing the impeller 8a of the cross-flow fan 8 according to the present embodiment
  • FIG. 3 (a) is a side view of the cross-flow fan 8
  • FIG. 3 (b) is an N ⁇ line in FIG. 3 (a).
  • N-line sectional view is shown, the lower half shows a state in which a plurality of wings on the other side can be seen, and the upper half shows one wing 8c.
  • the impeller 8a of the cross-flow fan 8 has a plurality of impellers 8d in the rotation axis direction AX.
  • the impeller single unit 8d is constituted by a disc-shaped support plate whose center of rotation is located at the center, for example, a ring 8b, and a plurality of blades 8c arranged along the outer periphery of the ring 8b and extending in the rotation axis direction AX. Is done.
  • the plurality of blades 8c are supported at both ends by the ring 8b.
  • a single impeller 8d formed of a thermoplastic resin such as AS resin or ABS resin is provided in a plurality of impellers 8d in the rotation axis direction AX, and the tip of the blade 8c is arranged next to each other by, for example, ultrasonic welding. Connected to the ring 8b.
  • a fan shaft 8f is provided at the center of the ring 8b located at one end in the rotational axis direction AX, and a fan boss 8e is provided at the center of the ring 8b located at the other end.
  • the fan boss 8e and the motor shaft 12a of the motor 12 are fixed with screws or the like.
  • the ring 8b is a plate-like support plate having a circular outer shape, and the ring 8b positioned at both ends of the impeller 8a in the rotation axis direction is formed with a fan shaft 8f and a fan boss 8e at a central portion where the rotation axis is positioned.
  • the ring 8b excluding both ends has a ring shape in which the central portion where the rotation axis is located is a space.
  • the alternate long and short dash line connects the motor shaft 12a and the fan shaft 8f and is a virtual rotation axis indicating the rotation center O, and indicates the rotation axis direction.
  • FIG. 3 is a perspective view showing a state in which one blade 8c is fixed to, for example, one ring 8b, and FIG. 5 is an explanatory view showing an enlarged cross section along line PP in FIG. As shown in FIG.
  • the blade outer peripheral end 15a of the blade 8c is located on the outer peripheral side of the ring 8b, and the blade inner peripheral end 15b of the blade 8c is positioned on the inner peripheral side of the ring 8b.
  • a substantially arc shape is formed between the end portion 15a and the blade inner peripheral side end portion 15b.
  • the warp line U which is the thickness center line of the blade 8c when there is no groove 14, is connected to the blade outer end 15a and the blade inner end 15b of the blade 8c.
  • the straight line is a chord line L, and the length of the chord line L is L1.
  • the blade 8c is compared with the blade thickness te1 at the arcuate blade outer peripheral end 15a and the blade thickness te2 (not shown) at the blade inner peripheral end 15b.
  • the wing thickness te3 of the central portion in the chord line L direction is configured to be thicker than the wing thickness te1 and the wing thickness te2. That is, the blade thickness maximum portion 15c having the maximum thickness tmax is between the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b in the chord line L direction of the blade 8c, and from the blade outer peripheral end portion 15a.
  • the blade thickness increases smoothly from the blade thickness maximum portion 15c, and the blade thickness decreases smoothly from the blade thickness maximum portion 15c to the blade inner peripheral side end portion 15b.
  • the blade suction surface 13a is provided with a plurality of grooves 14 extending in the rotation axis direction AX, that is, in the blade longitudinal direction.
  • the concave groove 14 includes a groove bottom portion 14b and groove side portions 14a connected to both ends of the groove bottom portion 14b.
  • 6 and 7 are explanatory views showing, in an enlarged manner, the shape of the groove 14 provided in the blade suction surface 13a in a cross section orthogonal to the impeller rotational axis AX.
  • the groove side part 14a is inclined so that the groove width gradually increases from the groove bottom part 14b toward the blade suction surface 13a.
  • the groove side portion 14a and the blade negative pressure surface 13a are connected, and is formed to have, for example, a substantially arc shape.
  • the groove side part 14a and the groove bottom part 14b are rounded in the vicinity where they are connected to form a substantially arc shape.
  • the groove depth of the groove 14 is h
  • the groove width is g
  • the flat part between the adjacent blades 14 of the blade suction surface 13a is M
  • the flat part length is ML.
  • a dotted line i indicates the blade suction surface 13a when the groove 14 is not formed.
  • the groove width g and the flat portion length ML are set to a length between the virtual intersection points 14p by setting a virtual intersection point 14p obtained by extending an extension line of the blade suction surface 13a and the groove side portion 14a.
  • the dotted line K is based on the blade pressure surface 13b, and the blade thickness te1 at the blade outer peripheral end 15a or the blade thickness te2 at the blade inner peripheral end 15b, etc.
  • the groove bottom part 14b of the groove 14 is formed so as to be closer to the blade negative pressure surface 13a side than the constant thickness line K.
  • the groove 14 is provided on the blade suction surface 13a side of the constant thickness line K.
  • the groove 14 is formed so that the groove depth h ⁇ the flat portion length ML is satisfied as the relationship between the groove depth h of the groove 14 and the flat portion length ML of the flat portion M.
  • the groove depth hc in the central portion 15c between the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b is greater than the groove depth ht in the vicinity of the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b. It is also bigger.
  • FIG. 8 is an explanatory view showing the air flow when the blade 8c passes through the impeller suction region E1.
  • the suction air passes from the blade outer peripheral end 15a to the blade negative pressure surface 13a.
  • the groove 14 is provided on the blade negative pressure surface 13 a, the inside of the groove 14 becomes negative pressure, and a flow having a directional component toward the inside of the groove 14 as indicated by an arrow 20.
  • the air flow is attracted to the blade negative pressure surface 13a even if the blade negative pressure surface 13a is likely to be separated toward the downstream side. And since it draws to the blade negative pressure surface 13a over the blade inner peripheral end 15b on the downstream side, the separation vortex when the flow is separated at the blade inner peripheral end 15b can be reduced.
  • FIG. 9 is an explanatory view showing the air flow of the blade negative pressure surface 13a and the blade pressure surface 13b of one blade 8c when the blade 8c passes through the impeller blowing region E2.
  • the intake air passes from the blade inner peripheral end 15b to the blade negative pressure surface 13a.
  • the groove 14 is provided on the blade negative pressure surface 13 a, the inside of the groove 14 becomes negative pressure, and the flow has a directional component toward the inside of the groove 14 as indicated by an arrow 21. For this reason, the air flow is attracted to the blade negative pressure surface 13a even if the blade negative pressure surface 13a is likely to be separated toward the downstream side. And since it draws toward the blade negative pressure surface 13a over the downstream blade outer peripheral end portion 15a, it is possible to reduce the separation vortex when the flow is separated at the blade outer peripheral end portion 15a.
  • the groove 14 provided on the blade suction surface 13a can suppress separation of the air flow at the blade suction surface 13a in both the suction region E1 and the blowout region E2, and as a result, the blowout from the blade outer peripheral end 15a. It is possible to reduce the separation vortex when the flow separates into the region E2.
  • the groove 14 is formed to extend in the rotation axis direction (blade longitudinal direction), even if a wind speed difference occurs in the flow passing in the blade longitudinal direction, the pulling effect by the groove 14 can be obtained. For this reason, peeling can be suppressed as a whole. Furthermore, since the separation can be suppressed, the effective area of the inter-blade flow path can be increased and the driving torque of the motor can be reduced. As a result, an efficient once-through fan is obtained.
  • the plurality of grooves 14 formed on the blade suction surface 13a of the cross-flow fan are provided at a predetermined interval ML so as to have a flat portion M between the adjacent grooves 14 in a cross section perpendicular to the rotation axis. ing.
  • the groove 14 is continuously formed without a gap in the chord line L direction, even if a negative pressure is generated in the groove 14, the flow cannot be reattached to the blade negative pressure surface 13a and becomes unstable. That is, the air flow flowing along the blade negative pressure surface 13 a tries to reattach to the blade negative pressure surface 13 a connected to the groove 14 after getting over the groove 14 due to the drawing effect in the groove 14.
  • the cross-flow fan can achieve low noise and high efficiency, and can prevent separation against changes in ventilation resistance, and can prevent backflow to the fan due to instability of the blowout flow.
  • the connecting portions of the groove side portions 14a of the plurality of grooves 14 formed on the blade suction surface 13a and the blade suction surface 13a are rounded, for example, have a substantially arc shape. Formed. For this reason, when the flow is attracted by the groove 14 and flows to the blade blade pressure surface 13a on the downstream side, it is possible to prevent the pressure fluctuation caused by hitting the corner. Therefore, a cross-flow fan that can further reduce noise and increase efficiency can be obtained. Further, two corners connecting the two groove side portions 14a and the blade suction surface 13a to one groove 14 are both substantially arc-shaped. Thereby, even if the wing
  • the groove bottom portion 14b has a rounded shape
  • the groove side portion 14a continuous to the groove bottom portion 14b has a shape extending toward the blade suction surface 13a. Since the groove bottom portion 14b has, for example, an arc shape, the flow inside the groove can be smoothly circulated and stabilized. Further, the groove side portion 14a has an inclination so as to expand toward the blade suction surface 13a, thereby effectively guiding the flow into the groove 14 to obtain a drawing effect. Accordingly, it is possible to obtain a cross-flow fan that can be made more efficient with lower noise.
  • the groove bottom portion 14b of the groove 14 is formed so as to be closer to the blade suction surface 13a side than the contour line K.
  • the iso-thick line K indicates the blade pressure surface. From 13b to about 0.5 mm. Since the groove 14 is formed in the blade suction surface 13a from the blade thickness line K, the groove depth hc at the blade center portion 15c is configured to be 1.0 mm or less.
  • the groove depth h is set to about 0.25 mm
  • the groove 14 is provided in the blade negative pressure surface 13a in a portion where the blade thickness is larger than about 0.75 mm in the vicinity of the blade outer peripheral end portion 15a or the blade inner peripheral end portion 15b.
  • the groove 14 is formed so as to satisfy the groove depth h ⁇ the flat portion length ML. That is, the plurality of grooves 14 formed on the blade suction surface 13a of the cross-flow fan are formed with a cross section perpendicular to the rotation axis and at least a predetermined interval ML in the chord line direction. As described above, the function and effect of the flat portion M have been described. By making the flat portion length ML larger than the groove depth h, the flat portion M can ensure re-attachment after the flow has passed over the groove 14 and attracted. By repeating the effect and reattachment, the flow is always stabilized without peeling from the blade suction surface 13a. For this reason, a cross-flow fan that can achieve low noise and high efficiency can be obtained.
  • the groove 14 is provided on the entire surface of the blade negative pressure surface 13a from the blade outer peripheral side end portion 15a to the blade inner peripheral side end portion 15b, it is not limited to this. What is necessary is just to provide in the at least one edge part vicinity of the blade outer peripheral side edge part 15a and the blade inner peripheral side edge part 15b.
  • a configuration in which several, for example, two grooves 14 are provided in the vicinity of the blade outer peripheral end 15a, and several, for example, two grooves 14, in the vicinity of the blade inner peripheral end 15b may be provided.
  • only a few, for example, two grooves 14 may be provided in the vicinity of the blade outer peripheral end 15a.
  • grooves 14 are provided in the vicinity of the blade inner peripheral end 15b. Such a configuration may be used. By providing at least the blade outer peripheral side 15a upstream in the suction region E1 and the blade inner peripheral side 15b upstream in the blowout region E2, separation of the air flow can be effectively reduced by the grooves 14. .
  • the groove 14 extending in the direction of the rotation axis of the blade suction surface 13a of the blade 8c is a long groove 14 extending from one end portion to the other end portion of the blade 8c.
  • the plurality of grooves 14 need not have the same length.
  • channel 14 may be arrange
  • the groove depth h, the flat part length ML, and the groove width g may not be the same.
  • the groove width g may be changed gradually or stepwise so that the groove width g is larger at one end in the blade longitudinal direction and smaller at the other end.
  • the cross section perpendicular to the rotation axis changes at the position in the blade longitudinal direction. That is, in the case of drifting and flowing into the blade suction surface 13a, the number of grooves 14 changes in the direction of the chord line L. Even if minute separation occurs in the blade longitudinal direction, it is diffused by being influenced by the flow in the blade longitudinal direction in the vicinity thereof. And the wind speed distribution is made uniform. As a result, noise is reduced.
  • the groove depth hc in the vicinity of the center portion of the blade chord between the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b of the blade 8c It is formed to be larger than the groove depth ht on the end portion 15a and the blade inner peripheral side end portion 15b side. For this reason, the drawing effect by the groove 14 can be obtained, and the blade thickness of the blade 8c can be prevented from becoming extremely thin, so that deterioration of the hot water around the molding and insufficient strength at the time of assembly can be prevented, and productivity can be improved. it can.
  • the blade negative pressure surface 13a has a smaller arc radius on the blade surface and a larger curvature than the blade pressure surface 13b. That is, the blade thickness at the central portion 15c in the chord line L direction is larger than the blade thickness at the blade inner peripheral end portions 15a and 15b.
  • the plurality of grooves 14 are arranged in parallel substantially in the blade longitudinal direction, and are formed substantially parallel to the blade outer peripheral end 15a and the blade inner peripheral end 15b in the blade longitudinal direction. did. If a plurality of grooves 14 are formed in a cross section perpendicular to the rotation axis, a pulling effect can be obtained, so that the blade outer circumferential end 15a and the blade inner circumferential end 15b are slightly inclined in the longitudinal direction of the blade. However, the same effect can be obtained.
  • the plurality of grooves 14 arranged side by side may be formed by twisting with respect to the rotation axis so as to advance or retreat in the rotation direction of the impeller 8a.
  • the cross-flow fan according to the present embodiment is arranged along the outer periphery of the disc-shaped support plate 8b whose center of rotation is located at the center and the support plate 8b, and extends in the direction of the rotation axis and has both ends thereof.
  • a single impeller having a plurality of blades 8c supported by the support plate 8b, an impeller 8a formed by fixing a plurality of single impellers 8d in the direction of the rotation axis, and a rear surface with respect to the rotational direction of the blades 8c;
  • a plurality of concave grooves 14 provided on the blade suction surface 13a and extending in the direction of the rotation axis, and the grooves 14 are provided separated by a predetermined interval so as to have a flat portion M between adjacent grooves 14.
  • the cross-flow fan 8 is disposed between the suction-side flow path E1 and the blow-off-side flow path E2, and the heat exchanger 7 is disposed in the suction-side flow path E1 so as to surround the impeller 8a.
  • the air conditioner that exchanges heat with the sucked air blown by the heat exchanger 7 and blows out into the room through the blow-out side flow path E2
  • an energy-saving air conditioner can be obtained.
  • even if the ventilation resistance increases on the upstream side it is difficult to separate, and further, the separation vortex when the flow is separated from the blade 8c by the groove 14 can be reduced, and a stable flow is blown out.
  • back flow from the room to the cross-flow fan 8 can be prevented, and the impeller 8a can be prevented from dewing and releasing condensed water to the outside.
  • FIG. 10 is a perspective view showing an impeller 8a of a once-through fan according to Embodiment 2 of the present invention
  • FIG. 11 is a view showing a motor side portion of the impeller of the once-through fan
  • FIG.11 (b) is explanatory drawing seen from the side surface.
  • FIG. 11B shows a part of the side surface of the ring 8b closest to the motor by cutting away, and the notched part shows the blade 8c together with the adjacent ring 8b.
  • the same reference numerals as those in Embodiment 1 denote the same or corresponding parts.
  • the fan boss 8e fixed to the motor shaft 12a protrudes to the inner side of the impeller unit 8d located at the end of the impeller 8a.
  • the impeller 8a of the cross-flow fan 8 has a plurality of impellers 8d in the rotation axis direction AX.
  • the impeller unit 8d is arranged along the outer periphery of a disc-shaped support plate, in this case, for example, the ring 8b and the ring 8b, in which the center of rotation is located at the center, extends in the direction of the rotation axis, and is supported by the ring 8b at both ends.
  • a plurality of wings 8c is arranged along the outer periphery of a disc-shaped support plate, in this case, for example, the ring 8b and the ring 8b, in which the center of rotation is located at the center, extends in the direction of the rotation axis, and is supported by the ring 8b at both ends.
  • the impeller single unit 8d is formed of, for example, a thermoplastic resin such as AS resin or ABS resin, and a plurality of, for example, five impeller units 8d in the rotational axis direction AX are formed in the rotational axis direction AX by, for example, ultrasonic welding. Adhering to form the impeller 8a.
  • a fan boss 8e is provided at the center of the ring 8b at the end on the motor side, and the fan boss 8e and the motor shaft 12a of the motor 12 (shown in FIG. 3) are fixed at the fixing portion 16 with screws or the like. By fixing the rotation shaft of the motor shaft 12a and the impeller 8a by the fixing portion 16, the impeller 8a is rotationally driven by the rotation of the motor 12.
  • the blades 8c are provided evenly around the rotation shaft which is a shaft at 360 degrees, but in the impeller unit 8da, a predetermined number of blades 8c facing the screw holes 16 are provided.
  • the screw hole 16 can be seen from the opening C without being provided with only one toothless here.
  • the blade negative pressure surface 13a of the blade 8ca advanced in the rotational direction at least from the opening C.
  • the groove 14 shown in the first embodiment is provided.
  • a plurality of grooves 14 extending in the longitudinal direction of the blade 8c are formed on at least the blade suction surface 13a of the first blade 8ca on the downstream side in the rotation direction of the blade 8c in the space C.
  • the configuration of the groove 14 is the same as that of the first embodiment. If the groove 14 shown in the first embodiment is provided at least on the blade suction surface 13a of the blade 8ca advanced in the rotation direction from the opening C, the air flow flowing between the blades is effective. Furthermore, by providing the groove 14 on the blade suction surface 13a of the other blade 8c, it is possible to further suppress separation between the blades as the entire impeller. Since the separation can be suppressed, the effective area of the flow path between the blades can be increased and the driving torque of the motor can be reduced.
  • the blade suction surface 13a of the blade 8ca advanced in the rotation direction from the opening C, but also a groove formed in the plurality of blades 8c in the portion advanced in the rotation direction from the opening C as shown in the region D. If 14 is provided, it is more effective. Further, it is more effective to provide the groove 14 on the blade suction surface 13a of the plurality of blades 8c including the blade 8cb in the counter-rotating direction with respect to the opening C.
  • the impeller single unit 8d may be provided with a plurality of blades 8c at unequal pitches rather than at equal intervals.
  • the fixing portion 16 is configured to face a portion having a wide interval, the fixing tool can be inserted into the fixing portion 16.
  • the opening is at least on the rotational direction RO side of the impeller 8a.
  • a plurality of concave grooves 14 extending in the rotation axis direction AX may be provided on the blade suction surface 13a which is the rear surface of the blade 8c adjacent to the portion C with respect to the rotation direction RO.
  • the disk-shaped support plate 8b whose center of rotation is located at the center, and the plurality of support plates 8b arranged along the outer periphery of the support plate 8b and extending in the rotation axis direction AX and supported at both ends by the support plate 8b.
  • the motor shaft 12a is fixed to an impeller 8d having blades 8c, an impeller 8a formed by fixing a plurality of impellers 8d in the rotation axis direction AX, and a support plate 8b positioned at an end of the impeller 8a.
  • a blade suction surface 13a which is a rear surface of the blade 8ca adjacent to the opening C on the rotation direction RO side of the impeller 8a at the rear side with respect to the rotation direction RO.
  • Rotation axis direction AX By building provided with a plurality of concave grooves 14, peeled from the wing negative pressure surface 13a is suppressed. For this reason, a stable flow can be obtained and noise can be reduced.
  • the grooves 14 may be provided so as to be separated from each other by a predetermined interval so as to have a flat portion M between adjacent grooves, particularly in a cross section perpendicular to the rotation axis.
  • the present invention is not limited to this, and even when a portion where the interval between adjacent blades is increased for other reasons is formed on the blade suction surface 13a of the blade 8c on the rotation direction side of at least the portion where the interval is wide.
  • a plurality of grooves 14 extending in the rotation axis direction AX may be provided.
  • FIG. 12 is a schematic view showing the impeller 8a of the cross-flow fan 8 according to the present embodiment
  • FIG. 12 (a) is a side view of the cross-flow fan 8
  • FIG. 12 (b) is a view of FIG. A sectional view of line S is shown.
  • the lower half shows a state where a plurality of wings on the other side are visible
  • the upper half shows one wing 8c.
  • the same reference numerals as those in the first and second embodiments indicate the same or corresponding parts. Also in FIG.
  • the alternate long and short dash line is a virtual rotation axis that connects the motor shaft 12a and the fan shaft 8f and indicates the rotation center O.
  • the impeller 8a of the cross-flow fan 8 has a plurality of impellers 8d in the rotation axis direction AX.
  • the impeller unit 8d is arranged along the outer periphery of a disk-shaped support plate, in this case, for example, the ring 8b and the ring 8b, in which the center of rotation is located at the center, extends in the direction of the rotation axis, and is supported by the ring 8b at both ends.
  • a plurality of wings 8c is arranged along the outer periphery of a disk-shaped support plate, in this case, for example, the ring 8b and the ring 8b, in which the center of rotation is located at the center, extends in the direction of the rotation axis, and is supported by the ring 8b at both ends.
  • the blade 8c in the present embodiment has a cross-sectional shape perpendicular to the rotation axis at the blade root (right side in FIG. 12 (b)) which is a connecting portion connected to the ring 8b at one end in the impeller 8d. It is the largest and formed so that the sectional shape gradually becomes smaller. Then, at the other end of the blade 8c, the cross-sectional shape perpendicular to the rotation axis is minimized at the front end in the blade longitudinal direction (the left side in FIG. 12B) which is a connection portion fixed to the adjacent impeller 8d. Such a tapered shape.
  • the chord line length L1 which is the height, is made to be a shape that decreases from the blade root toward the tip in the blade longitudinal direction.
  • both the blade outer peripheral end 15a and the blade inner peripheral end 15b are inclined inward of the blade 8c from the blade root toward the blade longitudinal tip. It becomes a shape.
  • a plurality of concave grooves 14 extending in the rotation axis direction AX are provided on the blade suction surface 13a which is the rear surface with respect to the rotation direction of the blade 8c.
  • the impeller 8d is molded with a thermoplastic resin such as an AS resin or an ABS resin.
  • the plurality of blades 8c are fixed between the two rings 8b, and are formed integrally with one of the rings 8b, for example, the motor-side ring 8b, to form the impeller 8d.
  • the state of mold release of this resin molding is shown in FIG.
  • FIG. 13 is a cross-sectional view showing the molds 17 and 18 and shows a state in which the blades 8c are formed one by one up and down, but actually, a plurality of blades 8c are arranged in a ring shape inside the outer periphery of the ring 8b. To be molded.
  • molds 17 and 18 are formed in a concavo-convex shape in the shape of a plurality of blades 8c, resin is injected into the mold at high pressure, and after cooling, the mold 18 is moved in the direction of the arrow. Thus, an impeller single body 8d formed of resin is obtained.
  • the shape of the impeller 8d needs to be a shape that can be released in the rotation axis direction AX.
  • the blade 8c has the largest cross-sectional shape at the blade root 8c1, which is the portion of the blade 8c continuous with the ring 8b, and the cross-sectional shape at the blade longitudinal tip 8c2 is small in the impeller 8d.
  • the cross-sectional shape of the blade is gradually reduced to form a tapered blade 8c.
  • the blade outer peripheral side end portion 15a and the blade inner peripheral side end portion 15b are inclined on the inner side of the blade 8c so as to have an angle of, for example, several degrees. For this reason, when the mold 18 is slightly moved at the time of mold release, there is a space between the mold 18 and the molded impeller unit 8d on the entire surface of the blade 8c, so that the mold release is performed easily and smoothly. .
  • the impeller 8d is fixed in the rotational axis direction AX.
  • the impeller 8a is formed.
  • the same groove 14 as in the first embodiment is provided on the blade suction surface 13a of the blade 8c.
  • the blade suction surface 13a of the blade 8c is provided with a plurality of concave grooves 14 extending in the blade longitudinal direction which is the rotation axis direction AX.
  • a plurality of grooves 14 arranged evenly between the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b include a groove bottom portion 14b and two opposing groove side portions 14a.
  • the groove bottom portion 14b has a rounded shape, and here has a substantially arc shape.
  • the groove side part 14a that continues to the groove bottom part 14b has a shape that expands toward the blade suction surface 13a, and the connecting portion between the groove side part 14a and the blade suction surface 13 also has a round shape.
  • the groove 14 extending in the rotational axis direction AX has a shape with irregularities in the circumferential direction of the impeller 8a and no irregularities in the rotational axis direction AX. For this reason, it is a shape suitable for shape
  • FIG. 14 is a cross-sectional view taken along the line AA of one blade of FIG. 12, and shows a cross section of the blade longitudinal tip 8c2 of the blade 8c.
  • FIG. 15 is a BB cross-sectional view of one blade of FIG. 12, showing a cross section of the blade root portion 8c1 of the blade 8c.
  • the shape of the blade 8c is the same in any cross section, and the size is the largest at the blade root portion 8c1, and the tip portion in the blade longitudinal direction. It becomes the smallest at 8c2.
  • the chord line length is L12
  • the groove depth is h2
  • the groove width is g2
  • the maximum thickness of the blade thickness which is the diameter, is tmax2.
  • the chord line length is L11
  • the groove depth is h1
  • the groove width is g1
  • the maximum thickness is tmax1.
  • the definitions of the groove width g and the groove depth h are the same as those shown in FIG. 7 of the first embodiment.
  • the chord line length L1 and the maximum thickness tmax are smoothly reduced from the blade root 8c1 toward the blade longitudinal tip 8c2 by tmax1> tmax2 and L11> L12. It has a tapered shape.
  • the suction air passes from the blade outer peripheral end 15a to the blade negative pressure surface 13a.
  • the plurality of grooves 14 extending in the blade longitudinal direction are formed in the blade negative pressure surface 13a, the air flow when the intake air passes through the blade negative pressure surface 13a is as shown in FIG. That is, the inside of the groove 14 has a negative pressure, and the flow has a directional component toward the inside of the groove 14 as indicated by an arrow 20.
  • the groove 14 provided on the blade suction surface 13a can suppress separation of the air flow at the blade suction surface 13a in both the suction region E1 and the blowout region E2, and as a result, the blowout from the blade outer peripheral end 15a. It is possible to reduce the separation vortex when the flow separates into the region E2.
  • the groove 14 is formed so as to extend in the rotation axis direction AX, the pulling effect by the groove 14 can be obtained even if a wind speed difference occurs in the blade longitudinal direction. For this reason, peeling can be suppressed as a whole. Furthermore, since the separation can be suppressed, the effective area of the inter-blade flow path can be increased and the driving torque of the motor can be reduced. As a result, an efficient once-through fan is obtained.
  • the plurality of grooves 14 formed in the blade suction surface 13a of the cross-flow fan have a flat portion M between the adjacent grooves 14 in a cross section perpendicular to the rotation axis.
  • the predetermined interval ML is provided apart.
  • the flat portion M having the length ML is formed between the adjacent grooves 14, so that the reattachment can be stably performed by taking a sufficient length for the reattachment.
  • the flow is always stabilized by reattaching to the negative pressure surface 13a and repeating the attracting effect again.
  • the cross-flow fan can achieve low noise and high efficiency, and can prevent separation against changes in ventilation resistance, and can prevent backflow to the fan due to instability of the blowout flow.
  • the connecting portions of the groove side portions 14a of the plurality of grooves 14 formed on the blade suction surface 13a and the blade suction surface 13a are rounded. For example, it formed so that it might become a substantially circular arc shape. For this reason, when the flow is attracted by the groove 14 and flows to the blade blade pressure surface 13a on the downstream side, it is possible to prevent the pressure fluctuation caused by hitting the corner. Therefore, a cross-flow fan that can further reduce noise and increase efficiency can be obtained. Further, two corners connecting the two groove side portions 14a and the blade suction surface 13a to one groove 14 are both substantially arc-shaped. Thereby, even if the wing
  • the groove bottom portion 14b has a rounded shape in a cross section perpendicular to the rotation axis, and the groove side portion 14a continuous to the groove bottom portion 14b extends toward the blade negative pressure surface 13a. Shaped. Since the groove bottom portion 14b has, for example, an arc shape, the flow inside the groove can be smoothly circulated and stabilized. Further, the groove side portion 14a has an inclination so as to expand toward the blade suction surface 13a, thereby effectively guiding the flow into the groove 14 to obtain a drawing effect. Accordingly, it is possible to obtain a cross-flow fan that can be made more efficient with lower noise.
  • the groove bottom 14b of the groove 14 is formed so as to be closer to the blade negative pressure surface 13a side than the constant thickness line K.
  • the grooves 14 are formed so that the groove depth h ⁇ the flat portion length ML is satisfied in all cross sections perpendicular to the rotational axis direction from the blade root portion 8c1 to the blade longitudinal direction tip portion 8c2. Forming.
  • the flat portion length ML can ensure the reattachment after the flow has passed over the groove 14, and the blade suction surface 13a can be obtained by repeating the drawing effect and the reattachment.
  • the flow is always stable without peeling off. For this reason, a cross-flow fan that can achieve low noise and high efficiency can be obtained.
  • FIG. 16 is a perspective view showing one blade 8c according to another configuration example of the cross-flow fan according to the present embodiment.
  • the groove width g or the groove depth h of the groove 14 is not the same in the blade longitudinal direction, but is changed at the blade root 8c1 and the blade longitudinal tip 8c2.
  • FIG. 17 shows an enlarged part of a section perpendicular to the rotation axis at the blade longitudinal tip 8c2 of the blade 8c. That is, this is the same as the cross section taken along the line AA of FIG.
  • g1 ⁇ g2 and h1 ⁇ h2 with respect to the groove width g1 and groove depth h1 of the groove 14 of the blade root portion 8c1 and the groove width g2 and groove depth h2 of the groove 14 of the blade longitudinal direction tip portion 8c2.
  • the shape of the blade 8c is a tapered shape in which the blade thickness and the chord line length L1 gradually decrease from the blade root 8c1 on the ring 8b side toward the blade longitudinal tip 8c2 which is a free end before fixing.
  • the concave groove 14 provided on the blade suction surface 13a is formed such that the groove width g and the groove depth h gradually increase from the blade root 8c1 toward the blade longitudinal tip 8c2.
  • the pulling effect changes gently in the blade longitudinal direction (rotational axis direction).
  • the flow velocity and the direction of the air gently change in the blade longitudinal direction, so that the flow velocity and the angle in contact with the guide wall 10 change particularly in the blowing region E2.
  • the pressure fluctuation is attenuated, and noise can be further reduced.
  • the blade outer peripheral side end portion 15a and the blade inner peripheral end portion 15b are slightly in the mold release direction. While having an inclination, the whole recessed part which comprises the groove
  • the once-through fan can further reduce noise and increase efficiency while maintaining productivity. Further, separation can be suppressed against changes in ventilation resistance, a stable blowout flow can be realized, and noise reduction and high efficiency of the cross-flow fan can be achieved.
  • the blade 8c In the longitudinal direction of the single impeller 8d, the blade 8c has a blade thickness and chord line length L1 from the root 8c1 on the ring 8b side toward the other blade longitudinal tip 8c2 which is the free end before fixing.
  • the present invention is not limited to this, but the taper shape gradually decreases and the cross-sectional shape perpendicular to the rotation axis direction gradually decreases.
  • it instead of gradually changing the cross-sectional shape of the blade 8c with an inclination, it may be changed stepwise. Even in the configuration that changes stepwise, like the smoothly changed shape, when the mold 18 is slightly moved at the time of mold release, the entire surface of the impeller 8d is placed between the mold 18 and the molded impeller 8d. Since a space is created and separated, mold release is easily and smoothly performed.
  • the groove width g and the groove depth h of the groove 14 formed on the blade suction surface 13a may not be formed so as to gradually increase from the blade root 8c1 side toward the blade longitudinal tip 8c2. That is, at least one of the groove width g and the groove depth h of the groove 14 may be formed so as to increase gradually or stepwise. It is only necessary that at least one of the groove width g and the groove depth h is gradually or stepwise increased in the blade longitudinal direction. Even if the groove 14 has a concave shape that changes stepwise, when the flow passes over the groove 14, the pulling effect changes in the blade longitudinal direction, and when the flow is discharged from the blade 8c, the flow velocity and wind direction in the blade longitudinal direction. Changes.
  • the blade outer peripheral end portion 15a with respect to the groove depth hc near the chord central portion 15c between the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b of the blade 8c.
  • the groove depth ht on the blade inner peripheral end 15b side may be shallower. In this case, even if the groove 14 is formed on the blade suction surface 13a, the thickness of the blade 8c does not become extremely thin, the hot water circumference at the time of molding does not deteriorate, and the strength at the time of assembly does not occur. Can be improved.
  • the groove 14 in the cross section perpendicular to the rotation axis The shape is the same as in the first embodiment. That is, the noise is further reduced by devising the flat part M, the shape of the groove side part 14a, the corners of the groove side part 14a and the blade suction surface 13a, the shape of the groove bottom part 14b, and the like as in the first embodiment. And an efficient once-through fan can be obtained.
  • FIG. 18 shows another configuration example of the cross-flow fan according to the present embodiment, and is a front view showing one blade 8c.
  • this configuration for example, three grooves 14 are provided only on the blade outer peripheral side where the blade outer peripheral side end portion 15a of the blade suction surface 13a exists.
  • the shape of one groove 14 is the same as in FIG.
  • the pulling effect of the groove 14 is obtained at the blade outer peripheral side end portion 15a which is the first separation in the suction region E1, so that the separation can be suppressed and stabilized in the suction region E1.
  • separation in the blowing region E2 can be prevented, and a once-through fan that can be quiet and save energy can be obtained.
  • a plurality of grooves 14 may be provided on the blade outer peripheral side end portion 15b side and at the blade inner peripheral side end portion 15b side. That is, a plurality of grooves 14 may be provided on the blade outer peripheral side and the blade inner peripheral side, respectively, without being provided in the central portion of the blade 8c. With the configuration in which the groove 14 is provided on the blade inner peripheral side end portion 15b side, an effect of suppressing the separation particularly in the blowing region E2 is obtained. By providing a plurality of grooves 14 extending in the rotational axis direction AX on at least one of the blade outer peripheral end portion 15a side and the blade inner peripheral end portion 15b side, a certain pulling effect can be obtained.
  • the blade outer peripheral end 15a that is the upstream side of the flow in the suction region E1. It is effective to provide the groove 14 in the vicinity. Further, in the case where the flow is easily separated in the blowing region E2, it is effective to provide the groove 14 in the vicinity of the blade inner peripheral end portion 15b which is the upstream side of the flow in the blowing region E2.
  • FIG. 19 shows another configuration example of the cross-flow fan according to the present embodiment, and is a front view showing one blade 8c.
  • a plurality of grooves 14 are provided on the blade longitudinal tip 8c2 side without being provided on the blade root 8c1 of the blade suction surface 13a.
  • the shape of one groove 14 is the same as that in FIG. 15, and at least one of the groove depth h and the groove width g of the groove 14 increases from the blade root 8c1 toward the blade longitudinal tip 8c2. To form.
  • the blade longitudinal direction tip 8c2 side has a thin blade thickness and a short chord length L1. For this reason, compared with the blade root 8c1 side, the space between the blade suction surface 13a and the blade pressure surface 13b of the adjacent blade is wide and easily peeled off. Therefore, by forming the groove 14 at least on the blade longitudinal tip 8c2 side, peeling can be suppressed by the pulling effect due to the negative pressure in the groove 14, and noise can be reduced.
  • the plurality of grooves 14 formed on the blade suction surface 13a are formed so that the length J gradually changes in the blade longitudinal direction of the blade 8c.
  • the end of the plurality of grooves 14 on the blade root 8c1 side is defined as a groove side end 14c, and the grooves 14 are formed so that the groove side ends 14c of the plurality of grooves 14 are inclined with respect to the impeller rotating shaft. Therefore, the length J of the groove 14 in the blade longitudinal direction of the groove 14 changes so as to gradually increase along the outer peripheral direction of the ring 8b.
  • the groove 14 is formed obliquely so that the length J of the groove 14 gradually increases from the blade outer peripheral end 15 a toward the blade inner peripheral end 15 b.
  • the air flow shown in FIG. 7 varies depending on the position in the blade longitudinal direction.
  • the suction flow may drift in the suction region E1 due to the influence of a resistor or the like in the blade longitudinal direction.
  • the drawing effect changes more smoothly in the blade longitudinal direction in the configuration shown in FIG. For this reason, the wind speed distribution can be made uniform, the increase in speed locally on the blade surface can be suppressed, the flow can be stabilized, and the noise can be reduced.
  • FIG. 20 shows another configuration example of the cross-flow fan according to the present embodiment, and is a front view showing one blade 8c.
  • the length J of the groove 14 is gradually shortened from the blade outer peripheral end 15a toward the blade inner peripheral end 15b.
  • the drawing effect changes more smoothly in the longitudinal direction of the blade even if the suction flow is deviated in the suction region E1 due to the influence of a resistor or the like in the longitudinal direction of the blade, as in FIG. For this reason, the wind speed distribution can be made uniform, the increase in speed locally on the blade surface can be suppressed, a stable flow can be realized, and the noise can be reduced.
  • FIG. 21 shows still another configuration example.
  • the length J of the groove 14 gradually extends from the blade outer peripheral end 15a toward the blade inner peripheral end 15b to the vicinity of the central portion, and gradually decreases from near the central portion toward the blade inner peripheral end 15b. It is comprised as follows. In such a configuration, even if the suction flow is drifted in the suction region E1 due to the influence of a resistor or the like in the blade longitudinal direction, the drawing effect changes more smoothly in the blade longitudinal direction. For this reason, the wind speed distribution can be made uniform, the increase in the flow velocity locally on the blade surface can be suppressed, and the noise can be reduced. Further, in the blowing side region E2, the blowing flow changes smoothly in the blade longitudinal direction, and the flow velocity and angle when contacting the guide wall 10 change smoothly. For this reason, pressure fluctuations are attenuated, and noise can be further reduced.
  • the blade outer peripheral end 15a and the blade inner peripheral end 15b are thin in the portion where the thickness of the groove 14 is shortened, and the blade thickness near the center in the chord line L direction.
  • the thick part has the length of the groove 14 increased. For this reason, the intensity
  • the cross-flow fan can further reduce noise and secure the strength when assembling the impeller, so there is no assembly loss. By installing this cross-flow fan, a quiet and productive air conditioner can be obtained. .
  • FIG. 22 shows still another configuration example.
  • the blade length direction J of the plurality of grooves 14 formed on the blade suction surface 13a is irregularly changed.
  • the number of grooves 14 varies in the chord line L direction depending on the position in the blade longitudinal direction. For this reason, even if drift occurs in the suction region E1 and minute separation occurs in the longitudinal direction of the blade, it is diffused by the flow in the vicinity. In addition, the wind speed distribution can be made uniform and the noise can be reduced. Further, even if a drift occurs due to dust accumulated on the filter 5 on the upstream side of the cross-flow fan, it is possible to prevent separation and to stabilize the suction flow.
  • blowing region E2 the blowing flow changes irregularly in the blade longitudinal direction, and the flow velocity and angle when contacting the guide wall 10 change irregularly. For this reason, pressure fluctuations are irregularly attenuated, and noise can be reduced. It is effective to provide the concave groove 14 provided on the blade negative pressure surface 13a at a location where peeling is considered to occur depending on the situation where the cross-flow fan is operated.
  • the disk-shaped support plate 8b whose center of rotation is located at the center, and the plurality of support plates 8b that are arranged along the outer periphery of the support plate 8b and extend in the direction of the rotation axis and are supported by the support plate 8b at both ends.
  • An impeller 8d having a plurality of blades 8c and an impeller 8a formed by fixing a plurality of the impellers 8d in the direction of the rotation axis, and connected to the support plate 8b at one end of the blade 8c.
  • the cross-sectional shape perpendicular to the rotational axis in the connection portion 8c1 is made larger than the cross-sectional shape perpendicular to the rotational axis in the connection portion 8c2 connected to the support plate 8b at the other end of the blade 8c, and the blade 8c.
  • the groove length was changed with the blade longitudinal direction tip 8c2 as a reference in consideration of setting the mold release direction as the impeller rotation direction in resin molding, but if the mold release direction is changed to another direction, the blade A groove with a more irregular position and length may be provided with the base portion 8c1 as a reference, or between the blade longitudinal direction tip portion 8c2 and the blade root portion 8c1 as a reference. If the blade suction surface 13a is configured to extend at least in the rotation axis direction AX and is provided with a flat portion M between the adjacent grooves 14, the flow is to be separated. 14, the air can be drawn toward the blade suction surface 13a to obtain a stable flow.
  • the configuration of the groove 14 that changes the groove width G, changes the groove depth h, or changes the groove length J is the same as that of the first embodiment.
  • the blade 8c may be applied to a shape that is not tapered, and the same effect is obtained. Similarly, the same effects can be obtained when applied to the second embodiment.
  • the cross-flow fan according to any of the first to third embodiments, a stable flow can be obtained, noise reduction and high efficiency can be achieved, and a change in ventilation resistance can be prevented. Preventing separation and preventing backflow to the fan due to instability of the blowout flow, resulting in a quiet and high quality air conditioner.
  • the plurality of grooves extending in the rotation axis direction AX are formed on the blade negative pressure surface 13a of the impeller of the once-through fan, a stable air flow can be realized. Therefore, it is possible to obtain a cross-flow fan that is audible, quiet, quiet, highly efficient and energy-saving.
  • this cross-flow fan by installing this cross-flow fan, a stable air flow can be realized, and during cooling operation, the impeller can be prevented from dewing and releasing condensed water to the outside, and a high-quality air conditioner can be obtained. Can do.
  • the present invention is not limited to this.
  • the present invention can be applied to a cross-flow fan mounted on another device such as an air curtain.

Abstract

A cross-flow fan comprises: blade wheel units (8d) provided with circular plate-like support plates (8b) having a rotation center located at the center section thereof, and also with blades (8c) which are arranged along the outer peripheries of the support plates (8b), extend in the direction of the rotation axis, and each have both ends supported by the support plates (8b); a blade wheel (8a) comprising the blade wheel units (8d) secured in the direction of the rotation axis; and grooves (14) which are provided in negative pressure surfaces (13a) of the blades (8c), the negative pressure surfaces (13a) being the rear surfaces of the blades (8c) relative to the rotational direction, and which extend in the direction of the rotation axis. The grooves (14) are separated from each other with predetermined intervals therebetween so that a flat section (M) is provided between adjacent grooves (14).

Description

貫流ファン及び空気調和機Cross-flow fan and air conditioner
 この発明は、送風手段として用いられる貫流ファン、及びその貫流ファンを搭載した空気調和機に関するものである。 The present invention relates to a once-through fan used as a blowing means and an air conditioner equipped with the once-through fan.
 従来の空気調和機に搭載されている貫流ファンの一例として、各翼の負圧面側の羽根車外周側周辺に、回転方向に沿った溝や、小窪み、または小突起を設けたものがある(例えば、特許文献1参照。)。 As an example of a cross-flow fan mounted on a conventional air conditioner, there is a fan provided with a groove, a small depression, or a small protrusion along the rotation direction around the periphery of the impeller on the suction surface side of each blade. (For example, refer to Patent Document 1).
特開平3-210093号公報JP-A-3-210093
 従来の貫流ファンの一例として特許文献1に記載されているものは、各翼の負圧面側の羽根車外周側周辺に、回転方向に沿った溝や小窪みや小突起を備えている。貫流ファンは吸込口と吹出口で形成される風路にが設置され、貫流ファンを形成する翼が回転して吹出側に位置する場合、翼を通過する流れが後縁部に近づくにつれ剥離が生じ、この剥離によって騒音の原因となる圧力変動が生じる。そこで、特許文献1では、翼の負圧面に設けた溝や小窪みや小突起によって、騒音の原因となる圧力変動を吸収し、広帯域騒音を抑制することで低騒音化を図っている。しかし、翼が回転して吸込側に位置する場合には、吹出側に位置する場合に対し、翼での流れの通過方向が反転する。そのため、前記溝、小窪み、小突起が流れに対し前縁部となり、小さな溝部への流れの集中によって翼長手方向で大きな流速差が生じたり、小窪み側面での流れの剥離や小突起によって翼長手方向への流れが生成されて流れが不安定になり、逆に圧力変動を生じ広帯域騒音の悪化する可能性があった。 The example described in Patent Document 1 as an example of a conventional once-through fan is provided with grooves, small depressions, and small protrusions along the rotation direction around the periphery of the impeller on the suction surface side of each blade. The once-through fan is installed in the air passage formed by the inlet and outlet, and when the blades forming the once-through fan rotate and are located on the outlet side, separation occurs as the flow passing through the blade approaches the trailing edge. This separation causes pressure fluctuations that cause noise. Therefore, in Patent Document 1, pressure fluctuations that cause noise are absorbed by grooves, small depressions, and small protrusions provided on the suction surface of the blade, thereby reducing broadband noise and reducing noise. However, when the blade is rotated and positioned on the suction side, the flow passage direction of the blade is reversed as compared with the case where the blade is positioned on the outlet side. Therefore, the groove, small depression, and small projection become the leading edge of the flow, and a large flow velocity difference occurs in the longitudinal direction of the blade due to the concentration of the flow in the small groove, or flow separation and small protrusion on the side of the small depression The flow in the longitudinal direction of the blade is generated and the flow becomes unstable. On the contrary, there is a possibility that the pressure fluctuation occurs and the broadband noise is deteriorated.
 また、空気調和機に貫流ファンを搭載したとき、羽根車吸込側に配置されるフィルタへのホコリ付着等により通風抵抗が増加し、翼に対する流れの迎角が変化して剥離しやすくなり、さらに吹出流れが不安定になるなどの問題点があった。空気調和機の冷房運転時には、吹出流れが不安定になって室内からファンへの逆流が生じると、冷風が羽根車に流入して結露し、外部に結露水を飛散することで床が湿ってしまう可能性があった。 In addition, when a cross-flow fan is installed in the air conditioner, the ventilation resistance increases due to dust adhesion to the filter arranged on the impeller suction side, and the angle of attack of the flow with respect to the blades changes, and it becomes easy to peel off. There were problems such as unstable flow. During cooling operation of the air conditioner, if the air flow becomes unstable and a reverse flow from the room to the fan occurs, the cold air flows into the impeller and forms condensation, and the floor is moistened by splashing condensed water to the outside. There was a possibility.
 また、通常、翼を製造する際には、翼の成形型にASなどの熱可塑性樹脂を流し込み、冷却後羽根車回転軸方向に離型して翼の部分を形成する。ところが、特許文献1の構成のように翼の負圧面に翼回転方向(回転軸に直交する方向)に伸びる溝や小窪みや小突起を設けた翼を製造するためには、回転軸方向への離型が不可能で回転軸に直交する方向に離型する必要があり、製造方法が複雑となり生産性が悪化するという問題点があった。 Usually, when manufacturing a blade, a thermoplastic resin such as AS is poured into a blade mold, and after cooling, it is released in the impeller rotating shaft direction to form a blade portion. However, in order to manufacture a blade having grooves, small depressions, or small protrusions extending in the blade rotation direction (direction orthogonal to the rotation axis) on the suction surface of the blade as in the configuration of Patent Document 1, in the direction of the rotation axis. Therefore, there is a problem in that it is impossible to release the mold, and it is necessary to release the mold in the direction perpendicular to the rotation axis, which complicates the manufacturing method and deteriorates the productivity.
 本発明は、上記のような課題を解決するためになされたもので、低騒音化及び高効率化が図れる貫流ファンを得ることを目的とする。
 また、静粛で省エネルギー化できる空気調和機を得ることを目的とする。
The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a cross-flow fan that can achieve low noise and high efficiency.
Moreover, it aims at obtaining the air conditioner which can be quiet and can save energy.
 本発明に係る貫流ファンは、中央部に回転中心が位置する円板状の支持板、及び前記支持板の外周に沿って配置され回転軸方向に伸びると共に両端を前記支持板に支持される複数の翼を有する羽根車単体と、前記羽根車単体を前記回転軸方向に複数固着してなる羽根車と、前記翼の回転方向に対して後面となる翼負圧面に設けられ前記回転軸方向に伸びる複数の凹状の溝と、を備え、隣合う溝との間に平坦部を有するように前記溝を所定の間隔離して設けたことを特徴とするものである。 A cross-flow fan according to the present invention includes a disc-shaped support plate having a center of rotation located at the center, a plurality of fans arranged along the outer periphery of the support plate, extending in the direction of the rotation axis, and supported at both ends by the support plate. An impeller having a plurality of blades, an impeller formed by fixing a plurality of impellers in the direction of the rotation axis, and a blade suction surface that is a rear surface with respect to the rotation direction of the blades. A plurality of concave grooves extending, and the grooves are provided separated by a predetermined interval so as to have a flat portion between adjacent grooves.
 また、本発明に係る貫流ファンは、中央部に回転中心が位置する円板状の支持板、及び前記支持板の外周に沿って配置され回転軸方向に伸びると共に両端を前記支持板に支持される複数の翼を有する羽根車単体と、前記羽根車単体を前記回転軸方向に複数固着してなる羽根車と、前記羽根車の端部に位置する前記支持板にモータシャフトが固定されて前記羽根車を回転駆動するモータと、前記羽根車単体の内側に位置する前記モータシャフトとの固定部と、前記固定部に固定具を挿入しうるように前記羽根車単体の前記翼の間隔を一部分広くしてなる開口部と、を備え、少なくとも前記羽根車の回転方向側で前記開口部に隣接する翼の、前記回転方向に対して後面となる翼負圧面に前記回転軸方向に伸びる複数の凹状の溝を設けたことを特徴とするものである。 The cross-flow fan according to the present invention includes a disc-shaped support plate having a center of rotation located at the center, and is disposed along the outer periphery of the support plate and extends in the rotation axis direction, and both ends thereof are supported by the support plate. An impeller having a plurality of blades, an impeller formed by adhering a plurality of impellers in the direction of the rotation axis, and a motor shaft fixed to the support plate located at an end of the impeller. A fixed portion of a motor that rotationally drives the impeller, a fixed portion of the motor shaft located inside the impeller single unit, and a part of the interval between the blades of the impeller so that a fixing tool can be inserted into the fixed portion A widened opening, and at least a plurality of blades adjacent to the opening on the rotational direction side of the impeller and extending in the rotational axis direction on a blade suction surface that is a rear surface with respect to the rotational direction Specially provided with a concave groove It is an.
 また、本発明に係る貫流ファンは、中央部に回転中心が位置する円板状の支持板、及び前記支持板の外周に沿って配置され回転軸方向に伸びると共に両端を前記支持板に支持される複数の翼を有する羽根車単体と、前記羽根車単体を前記回転軸方向に複数固着してなる羽根車と、を備え、前記翼の一端部の、前記支持板に接続する接続部における回転軸に垂直な断面形状を、前記翼の他端部の、前記支持板に接続する接続部における前記回転軸に垂直な断面形状よりも大きくすると共に、前記翼の回転方向に対して後面となる翼負圧面に前記回転軸方向に伸びる複数の凹状の溝を設けたことを特徴とするものである。
 また、本発明に係る空気調和機は、前記の貫流ファンを搭載したものである。
The cross-flow fan according to the present invention includes a disc-shaped support plate having a center of rotation located at the center, and is disposed along the outer periphery of the support plate and extends in the rotation axis direction, and both ends thereof are supported by the support plate. An impeller having a plurality of blades and an impeller formed by fixing a plurality of the impellers in the direction of the rotation axis, and rotation at a connection portion connected to the support plate at one end of the blade The cross-sectional shape perpendicular to the axis is made larger than the cross-sectional shape perpendicular to the rotation axis at the connecting portion connected to the support plate at the other end of the blade, and the rear surface is the rear surface with respect to the rotation direction of the blade. The blade suction surface is provided with a plurality of concave grooves extending in the rotation axis direction.
Moreover, the air conditioner which concerns on this invention mounts the said cross-flow fan.
 本発明によれば、翼の負圧面側で剥離を抑制し、流れを安定化して低騒音化と高効率化が図れる貫流ファンが得られる効果がある。
 また、この貫流ファンを空気調和機に搭載することで、静粛で省エネルギー化できる空気調和機が得られる。
According to the present invention, it is possible to obtain a cross-flow fan that can suppress separation on the suction surface side of the blade, stabilize the flow, and achieve low noise and high efficiency.
In addition, by installing this cross-flow fan in an air conditioner, an air conditioner that can be quiet and save energy can be obtained.
本発明の実施の形態1に係る貫流ファンを搭載した空気調和機を示す外観斜視図である。It is an external appearance perspective view which shows the air conditioner carrying the cross-flow fan which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係り、図1のQ-Q線における縦断面図である。FIG. 4 is a longitudinal sectional view taken along line QQ in FIG. 1 according to the first embodiment of the present invention. 本発明の実施の形態1に係る貫流ファンの羽根車を示す概略図である。It is the schematic which shows the impeller of the crossflow fan which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係り、例えば1つのリングに1枚の翼が固定されている状態を示す斜視図である。FIG. 5 is a perspective view illustrating a state in which, for example, one wing is fixed to one ring according to the first embodiment of the present invention. 本発明の実施の形態1に係り、図5は図4のP-P線断面を拡大して示す説明図である。FIG. 5 is an explanatory view showing, on an enlarged scale, the cross section along line PP in FIG. 4 according to the first embodiment of the present invention. 本発明の実施の形態1に係り、羽根車回転軸に垂直な断面で、翼負圧面に設けた溝の形状を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 of this invention and shows the shape of the groove | channel provided in the blade negative pressure surface in the cross section perpendicular | vertical to an impeller rotating shaft. 本発明の実施の形態1に係り、羽根車回転軸に垂直な断面で、翼負圧面に設けた溝の形状を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 of this invention and shows the shape of the groove | channel provided in the blade negative pressure surface in the cross section perpendicular | vertical to an impeller rotating shaft. 本発明の実施の形態1に係り、図8は翼8cが羽根車吸込領域E1を通過する時の空気の流れを示す説明図である。FIG. 8 is an explanatory diagram showing the air flow when the blade 8c passes through the impeller suction region E1 according to the first embodiment of the present invention. 本発明の実施の形態1に係り、翼が羽根車吹出領域E2を通過する時の空気の流れを示す説明図である。It is explanatory drawing which concerns on Embodiment 1 of this invention and shows the flow of air when a wing | blade passes the impeller blowing area | region E2. 本発明の実施の形態2に係る貫流ファンの羽根車を示す斜視図である。It is a perspective view which shows the impeller of the once-through fan which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係り、図11(a)はモータ側の羽根車を部分的に示す斜視図、図11(b)は側面からみた説明図である。FIG. 11A is a perspective view partially showing a motor-side impeller, and FIG. 11B is an explanatory view seen from the side, according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る貫流ファンの羽根車を示す概略図であり、図12(a)は貫流ファンの側面図、図12(b)は図12(a)のS-S線断面図を示す。FIGS. 12A and 12B are schematic views showing an impeller of a cross-flow fan according to Embodiment 3 of the present invention, FIG. 12A is a side view of the cross-flow fan, and FIG. 12B is a cross-sectional view taken along line SS in FIG. The figure is shown. 本発明の実施の形態3に係り、型17、18を示す断面図である。It is sectional drawing which shows type | molds 17 and 18 regarding Embodiment 3 of this invention. 本発明の実施の形態3に係り、図12の翼1枚におけるA-A断面図である。FIG. 13 is a cross-sectional view taken along the line AA of one blade in FIG. 12 according to the third embodiment of the present invention. 本発明の実施の形態3に係り、図12の翼1枚におけるB-B断面図である。FIG. 13 is a cross-sectional view taken along the line BB of one blade in FIG. 12 according to the third embodiment of the present invention. 本発明の実施の形態3に係り、貫流ファンの他の構成例による1枚の翼を示す斜視図である。FIG. 10 is a perspective view illustrating one blade according to another configuration example of the cross-flow fan according to the third embodiment of the present invention. 本発明の実施の形態3に係り、翼の翼長手方向先端部における回転軸に垂直な断面の一部を拡大して示す断面図である。FIG. 9 is an enlarged cross-sectional view showing a part of a cross section perpendicular to a rotation axis at a blade longitudinal tip portion of a blade according to Embodiment 3 of the present invention. 本発明の実施の形態3に係る貫流ファンの別の構成例を示すもので、1枚の翼を示す正面図である。It is a front view which shows another structural example of the crossflow fan which concerns on Embodiment 3 of this invention, and shows one blade. 本発明の実施の形態3に係る貫流ファンの別の構成例を示すもので、1枚の翼を示す正面図である。It is a front view which shows another structural example of the crossflow fan which concerns on Embodiment 3 of this invention, and shows one blade. 本発明の実施の形態3に係る貫流ファンの別の構成例を示すもので、1枚の翼を示す正面図である。It is a front view which shows another structural example of the crossflow fan which concerns on Embodiment 3 of this invention, and shows one blade. 本発明の実施の形態3に係る貫流ファンの別の構成例を示すもので、1枚の翼を示す正面図である。It is a front view which shows another structural example of the crossflow fan which concerns on Embodiment 3 of this invention, and shows one blade. 本発明の実施の形態3に係る貫流ファンの別の構成例を示すもので、1枚の翼を示す正面図である。It is a front view which shows another structural example of the crossflow fan which concerns on Embodiment 3 of this invention, and shows one blade.
実施の形態1.
 以下、本発明の実施の形態1について、図に基づいて説明する。図1は本実施の形態に係る貫流ファンを搭載した空気調和機を示す外観斜視図、図2は図1のQ-Q線における縦断面図である。空気の流れを、図1では白抜き矢印で示し、図2では点線矢印で示す。
図1及び図2に示すように、空気調和機本体1は空調される部屋11の壁11aに設置される。空気調和機本体上部1aには、室内空気の吸込口となる吸込グリル2、ホコリを静電させ集塵する電気集塵器6、ホコリを除塵する網目状のフィルタ5を配設している。さらに、複数のアルミフィン7aに配管7bが貫通する構成の熱交換器7を、羽根車8aの正面側と上部側に、羽根車8aを囲むように配置している。また、空気調和機本体前面1bは前面パネルで覆われ、その下側に吹出口3が開口している。送風機である貫流ファン8は、羽根車8aに対して吸込側流路E1と吹出側流路E2を分離すると共に、熱交換器7から滴下される水滴を一時貯水するスタビライザー9を有し、羽根車8aの吹出側には吹出側流路の背面を構成するため、渦巻状のガイドウォール10を有する。さらに吹出口3には上下風向ベーン4a、左右風向ベーン4bが回動自在に取り付けられ、室内への送風方向を変化させる。図中、Oは羽根車8aの回転中心を示し、E1は羽根車8aの吸込領域、E2は羽根車8aの吹出領域である。また、ROは羽根車8aの回転方向を示す。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is an external perspective view showing an air conditioner equipped with a cross-flow fan according to the present embodiment, and FIG. 2 is a longitudinal sectional view taken along line QQ in FIG. The flow of air is indicated by white arrows in FIG. 1 and indicated by dotted arrows in FIG.
As shown in FIG.1 and FIG.2, the air conditioner main body 1 is installed in the wall 11a of the room 11 to be air-conditioned. The air conditioner main body upper portion 1a is provided with a suction grill 2 that serves as a suction port for room air, an electric dust collector 6 that electrostatically collects dust and collects dust, and a mesh-like filter 5 that removes dust. Furthermore, the heat exchanger 7 having a configuration in which the pipe 7b passes through the plurality of aluminum fins 7a is arranged on the front side and the upper side of the impeller 8a so as to surround the impeller 8a. Moreover, the air conditioner main body front surface 1b is covered with the front panel, and the blower outlet 3 is opened on the lower side. The cross-flow fan 8 that is a blower has a stabilizer 9 that separates the suction side flow path E1 and the blowout side flow path E2 from the impeller 8a, and temporarily stores water droplets dripped from the heat exchanger 7. A spiral guide wall 10 is provided on the outlet side of the vehicle 8a in order to form the back surface of the outlet side flow path. Further, an up / down wind direction vane 4a and a left / right wind direction vane 4b are rotatably attached to the air outlet 3 to change the blowing direction into the room. In the figure, O indicates the rotation center of the impeller 8a, E1 is a suction region of the impeller 8a, and E2 is a blowout region of the impeller 8a. RO indicates the rotation direction of the impeller 8a.
 このように構成された空気調和機本体1において、電源基板によって羽根車8aを回転駆動するモータに通電されると貫流ファン8の羽根車8aがRO方向に回転する。すると空気調和機本体上部1aに設けられた吸込口2より部屋11の空気が吸込まれ、電気集塵器6、フィルタ5でホコリが除去された後、熱交換器7で空気は加熱され暖房、または冷却され冷房、除湿のいずれかがされ、貫流ファン8の羽根車8aへ吸込まれる。その後、羽根車8aから吹出された流れはガイドウォール10に誘導され吹出口3へ向かい、部屋11へ吹出すことで空調される。この際、上下風向べーン4a、左右風向ベーン4bにより吹出し空気を上下、左右方向へ風向制御することで、部屋11全体に風を流し温度ムラの抑制を図っている。 In the air conditioner body 1 configured as described above, when the motor that rotates the impeller 8a is energized by the power supply board, the impeller 8a of the cross-flow fan 8 rotates in the RO direction. Then, the air in the room 11 is sucked in from the suction port 2 provided in the air conditioner main body upper portion 1a, dust is removed by the electric dust collector 6 and the filter 5, and then the air is heated and heated by the heat exchanger 7. Alternatively, it is cooled, cooled or dehumidified, and sucked into the impeller 8 a of the cross-flow fan 8. Thereafter, the flow blown out from the impeller 8 a is guided to the guide wall 10, travels to the blowout port 3, and is blown into the room 11 to be air-conditioned. At this time, the air flow is controlled in the vertical and horizontal directions by the vertical wind direction vanes 4a and the left and right wind direction vanes 4b, so that the entire room 11 is blown to suppress temperature unevenness.
 図3は本実施の形態に係る貫流ファン8の羽根車8aを示す概略図であり、図3(a)は貫流ファン8の側面図、図3(b)は図3(a)のN-N線断面図を示し、下半分は向こう側の複数枚の翼が見えている状態を示し、上半分は1枚の翼8cを示している。図3に示すように、貫流ファン8の羽根車8aは、回転軸方向AXに複数の羽根車単体8dを有する。羽根車単体8dは、中央部に回転中心が位置する円板状の支持板、ここでは例えばリング8bと、リング8bの外周に沿って配置され回転軸方向AXに伸びる複数の翼8cとで構成される。複数の翼8cは両端をリング8bに支持される。例えばAS樹脂やABS樹脂などの熱可塑性樹脂で成形された羽根車単体8dを、回転軸方向AXに複数個備え、例えば超音波溶着などによって翼8cの先端を隣に配置する羽根車単体8dのリング8bに連結する。回転軸方向AXの一端に位置するリング8bの中心にファンシャフト8fが設けられ、他端に位置するリング8bの中心にファンボス8eが設けられる。そして、ファンボス8eとモータ12のモータシャフト12aがネジ等で固定される。リング8bは外形が円形である板状の支持板であり、羽根車8aの回転軸方向の両端に位置するリング8bは、回転軸が位置する中央部分にファンシャフト8f及びファンボス8eが形成されており、両端を除くリング8bは、回転軸が位置する中央部分が空間となるリング状である。図3(b)で、一点鎖線はモータシャフト12aとファンシャフト8fを結び、回転中心Oを示す仮想回転軸線であり、回転軸方向を示すものである。 FIG. 3 is a schematic view showing the impeller 8a of the cross-flow fan 8 according to the present embodiment, FIG. 3 (a) is a side view of the cross-flow fan 8, and FIG. 3 (b) is an N− line in FIG. 3 (a). N-line sectional view is shown, the lower half shows a state in which a plurality of wings on the other side can be seen, and the upper half shows one wing 8c. As shown in FIG. 3, the impeller 8a of the cross-flow fan 8 has a plurality of impellers 8d in the rotation axis direction AX. The impeller single unit 8d is constituted by a disc-shaped support plate whose center of rotation is located at the center, for example, a ring 8b, and a plurality of blades 8c arranged along the outer periphery of the ring 8b and extending in the rotation axis direction AX. Is done. The plurality of blades 8c are supported at both ends by the ring 8b. For example, a single impeller 8d formed of a thermoplastic resin such as AS resin or ABS resin is provided in a plurality of impellers 8d in the rotation axis direction AX, and the tip of the blade 8c is arranged next to each other by, for example, ultrasonic welding. Connected to the ring 8b. A fan shaft 8f is provided at the center of the ring 8b located at one end in the rotational axis direction AX, and a fan boss 8e is provided at the center of the ring 8b located at the other end. The fan boss 8e and the motor shaft 12a of the motor 12 are fixed with screws or the like. The ring 8b is a plate-like support plate having a circular outer shape, and the ring 8b positioned at both ends of the impeller 8a in the rotation axis direction is formed with a fan shaft 8f and a fan boss 8e at a central portion where the rotation axis is positioned. The ring 8b excluding both ends has a ring shape in which the central portion where the rotation axis is located is a space. In FIG. 3B, the alternate long and short dash line connects the motor shaft 12a and the fan shaft 8f and is a virtual rotation axis indicating the rotation center O, and indicates the rotation axis direction.
 本実施の形態では、図3に示すように翼8cの翼負圧面13aで、翼外周側端部15aと翼内周側端部15bの間には、複数の溝14が形成されている。 ここで、翼の形状について、詳しく説明する。翼8cの回転方向側の面で回転時に圧力を受ける面を翼圧力面13b、翼圧力面13bと反対側の面で回転時に負圧になる面を翼負圧面13aと称する。図4は例えば1つのリング8bに1枚の翼8cが固定されている状態を示す斜視図であり、図5は図4のP-P線断面を拡大して示す説明図である。図4に示すように、リング8bの外周側に翼8cの翼外周側端部15aが位置し、リング8bの内周側に翼8cの翼内周側端部15bが位置し、翼外周側端部15aと翼内周側端部15bの間で略円弧形状をなす。翼8cの回転軸に垂直な断面において、溝14が無い時の翼8cの肉厚中心線であるそり線Uと翼8cの翼外周側端部15a、翼内周側端部15bとを結ぶ直線を翼弦線Lとし、翼弦線Lの長さをL1とする。 In the present embodiment, as shown in FIG. 3, a plurality of grooves 14 are formed between the blade outer peripheral end 15a and the blade inner peripheral end 15b on the blade suction surface 13a of the blade 8c. Here, the shape of the wing will be explained in detail. The surface that receives pressure during rotation on the surface of the blade 8c in the direction of rotation is referred to as blade pressure surface 13b, and the surface opposite to the blade pressure surface 13b that generates negative pressure during rotation is referred to as blade negative pressure surface 13a. FIG. 4 is a perspective view showing a state in which one blade 8c is fixed to, for example, one ring 8b, and FIG. 5 is an explanatory view showing an enlarged cross section along line PP in FIG. As shown in FIG. 4, the blade outer peripheral end 15a of the blade 8c is located on the outer peripheral side of the ring 8b, and the blade inner peripheral end 15b of the blade 8c is positioned on the inner peripheral side of the ring 8b. A substantially arc shape is formed between the end portion 15a and the blade inner peripheral side end portion 15b. In a cross section perpendicular to the rotation axis of the blade 8c, the warp line U, which is the thickness center line of the blade 8c when there is no groove 14, is connected to the blade outer end 15a and the blade inner end 15b of the blade 8c. The straight line is a chord line L, and the length of the chord line L is L1.
 また、図5に示すように、円弧状の翼外周側端部15aでの翼の厚さte1、翼内周側端部15bでの翼の厚さte2(図示せず)に対し、翼8cの翼弦線L方向での中央部分の翼の厚さte3は、翼の厚さte1、翼の厚さte2よりも厚くなるように構成する。即ち、最大の厚さtmaxとなる翼厚最大部15cは翼8cの翼弦線L方向で翼外周側端部15aと翼内周側端部15bの間にあり、翼外周側端部15aから翼厚最大部15cにかけて滑らかに翼厚が厚くなり、翼厚最大部15cから翼内周側端部15bにかけて滑らかに翼厚が薄くなる構成である。 Further, as shown in FIG. 5, the blade 8c is compared with the blade thickness te1 at the arcuate blade outer peripheral end 15a and the blade thickness te2 (not shown) at the blade inner peripheral end 15b. The wing thickness te3 of the central portion in the chord line L direction is configured to be thicker than the wing thickness te1 and the wing thickness te2. That is, the blade thickness maximum portion 15c having the maximum thickness tmax is between the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b in the chord line L direction of the blade 8c, and from the blade outer peripheral end portion 15a. The blade thickness increases smoothly from the blade thickness maximum portion 15c, and the blade thickness decreases smoothly from the blade thickness maximum portion 15c to the blade inner peripheral side end portion 15b.
 さらに、翼負圧面13aに回転軸方向AX、即ち翼長手方向へ伸びる溝14が複数本設けられている。凹形状の溝14は、溝底部14bと、溝底部14bの両端に接続する溝側部14aとで構成される。図6、図7は、羽根車回転軸AXと直交する断面で、翼負圧面13aに設けた溝14の形状を拡大して示す説明図である。溝側部14aは溝底部14bから翼負圧面13aに向かって溝幅を徐々に広くなるように傾斜させる。また、溝側部14aと翼負圧面13aとが接続される付近では丸みをつけて、例えば略円弧形状となるように形成する。さらに、溝側部14aと溝底部14bとが接続される付近では丸みをつけて、略円弧状となるように形成する。ここで、溝14の溝深さをh、溝幅をg、翼負圧面13aの隣の溝14との間の平坦部をM、その長さを平坦部長さをMLとする。点線iは溝14が形成されていない場合の翼負圧面13aを示す。溝幅g、平坦部長さMLは、翼負圧面13aと溝側部14aの延長線を延ばした仮想交点14pを設定し、仮想交点14p間の長さとする。 Furthermore, the blade suction surface 13a is provided with a plurality of grooves 14 extending in the rotation axis direction AX, that is, in the blade longitudinal direction. The concave groove 14 includes a groove bottom portion 14b and groove side portions 14a connected to both ends of the groove bottom portion 14b. 6 and 7 are explanatory views showing, in an enlarged manner, the shape of the groove 14 provided in the blade suction surface 13a in a cross section orthogonal to the impeller rotational axis AX. The groove side part 14a is inclined so that the groove width gradually increases from the groove bottom part 14b toward the blade suction surface 13a. Moreover, it is rounded in the vicinity where the groove side portion 14a and the blade negative pressure surface 13a are connected, and is formed to have, for example, a substantially arc shape. Furthermore, the groove side part 14a and the groove bottom part 14b are rounded in the vicinity where they are connected to form a substantially arc shape. Here, the groove depth of the groove 14 is h, the groove width is g, the flat part between the adjacent blades 14 of the blade suction surface 13a is M, and the flat part length is ML. A dotted line i indicates the blade suction surface 13a when the groove 14 is not formed. The groove width g and the flat portion length ML are set to a length between the virtual intersection points 14p by setting a virtual intersection point 14p obtained by extending an extension line of the blade suction surface 13a and the groove side portion 14a.
 また、図5及び図6に示すように点線Kを翼圧力面13bを基準とし、翼外周側端部15aにおける翼の厚さte1または翼内周側端部15bにおける翼の厚さte2の等厚線として、溝14の溝底部14bは等厚線Kよりも翼負圧面13a側となるように形成する。即ち、溝14を等厚線Kよりも翼負圧面13a側に設ける。また、溝14の溝深さhと平坦部Mの平坦部長さMLの関係として、溝深さh<平坦部長さMLを満足するように溝14を形成する。さらに、翼外周側端部15aと翼内周側端部15bの間の中央部分15cにおける溝深さhcを、翼外周側端部15aと翼内周側端部15b近傍における溝深さhtよりも大きくしている。 Further, as shown in FIGS. 5 and 6, the dotted line K is based on the blade pressure surface 13b, and the blade thickness te1 at the blade outer peripheral end 15a or the blade thickness te2 at the blade inner peripheral end 15b, etc. As a thick line, the groove bottom part 14b of the groove 14 is formed so as to be closer to the blade negative pressure surface 13a side than the constant thickness line K. In other words, the groove 14 is provided on the blade suction surface 13a side of the constant thickness line K. In addition, the groove 14 is formed so that the groove depth h <the flat portion length ML is satisfied as the relationship between the groove depth h of the groove 14 and the flat portion length ML of the flat portion M. Further, the groove depth hc in the central portion 15c between the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b is greater than the groove depth ht in the vicinity of the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b. It is also bigger.
 このような翼8cに溝14を有する構成の羽根車8aにおいて、翼8cが羽根車吸込領域E1を通過する時の1枚の翼8cの翼負圧面13aと翼圧力面13bの空気の流れを図8に示す。図8は翼8cが羽根車吸込領域E1を通過する時の空気の流れを示す説明図である。
 翼8cが羽根車吸込領域E1を通過する時、翼外周側端部15aから翼負圧面13aに吸込空気が通過する。ここで、翼負圧面13aに溝14を設けているので、溝14の内部が負圧となって、矢印20で示すように溝14内部へ向かう方向成分を有する流れとなる。このため、下流側へ向かうにつれて翼負圧面13aで剥離しそうになっても、空気流れが翼負圧面13aへ引き寄せられる。そして、下流側の翼内周側端部15bにかけて翼負圧面13aへ引き寄せるので、翼内周側端部15bで流れが離脱する際の剥離渦を小さくできる。
In the impeller 8a having the groove 14 in the blade 8c, the air flow of the blade negative pressure surface 13a and the blade pressure surface 13b of the single blade 8c when the blade 8c passes through the impeller suction region E1. As shown in FIG. FIG. 8 is an explanatory view showing the air flow when the blade 8c passes through the impeller suction region E1.
When the blade 8c passes through the impeller suction region E1, the suction air passes from the blade outer peripheral end 15a to the blade negative pressure surface 13a. Here, since the groove 14 is provided on the blade negative pressure surface 13 a, the inside of the groove 14 becomes negative pressure, and a flow having a directional component toward the inside of the groove 14 as indicated by an arrow 20. For this reason, the air flow is attracted to the blade negative pressure surface 13a even if the blade negative pressure surface 13a is likely to be separated toward the downstream side. And since it draws to the blade negative pressure surface 13a over the blade inner peripheral end 15b on the downstream side, the separation vortex when the flow is separated at the blade inner peripheral end 15b can be reduced.
 また、図9は、翼8cが羽根車吹出領域E2を通過する時の1枚の翼8cの翼負圧面13aと翼圧力面13bの空気の流れを示す説明図である。翼8cが羽根車吹出領域E2を通過している時には、翼内周側端部15bから翼負圧面13aに吸込空気が通過する。ここで、翼負圧面13aに溝14を設けているので、溝14の内部が負圧となって、矢印21で示すように溝14内部へ向かう方向成分を有する流れとなる。このため、下流側へ向かうにつれて翼負圧面13aで剥離しそうになっても、空気流れが翼負圧面13aへ引き寄せられる。そして、下流側の翼外周側端部15aにかけて翼負圧面13aへ引き寄せるので、翼外周側端部15aで流れが離脱する際の剥離渦を小さくできる。 FIG. 9 is an explanatory view showing the air flow of the blade negative pressure surface 13a and the blade pressure surface 13b of one blade 8c when the blade 8c passes through the impeller blowing region E2. When the blade 8c passes through the impeller blowing region E2, the intake air passes from the blade inner peripheral end 15b to the blade negative pressure surface 13a. Here, since the groove 14 is provided on the blade negative pressure surface 13 a, the inside of the groove 14 becomes negative pressure, and the flow has a directional component toward the inside of the groove 14 as indicated by an arrow 21. For this reason, the air flow is attracted to the blade negative pressure surface 13a even if the blade negative pressure surface 13a is likely to be separated toward the downstream side. And since it draws toward the blade negative pressure surface 13a over the downstream blade outer peripheral end portion 15a, it is possible to reduce the separation vortex when the flow is separated at the blade outer peripheral end portion 15a.
 このように、翼負圧面13aに設けた溝14によって、吸込領域E1及び吹出領域E2の両方において翼負圧面13aでの空気流の剥離を抑制でき、結果として、翼外周側端部15aから吹出領域E2へ流れが離脱する際の剥離渦を小さくできる。 Thus, the groove 14 provided on the blade suction surface 13a can suppress separation of the air flow at the blade suction surface 13a in both the suction region E1 and the blowout region E2, and as a result, the blowout from the blade outer peripheral end 15a. It is possible to reduce the separation vortex when the flow separates into the region E2.
 また、溝14は回転軸方向(翼長手方向)に伸びて形成されているので、翼長手方向で通過する流れに風速差が生じても、溝14による引き寄せ効果が得られる。このため、全体として剥離を抑制できる。
 さらに、剥離を抑制できることで、翼間流路の有効面積が拡大し、モータの駆動トルクも低減できる。これによって、効率のよい貫流ファンが得られる。
Further, since the groove 14 is formed to extend in the rotation axis direction (blade longitudinal direction), even if a wind speed difference occurs in the flow passing in the blade longitudinal direction, the pulling effect by the groove 14 can be obtained. For this reason, peeling can be suppressed as a whole.
Furthermore, since the separation can be suppressed, the effective area of the inter-blade flow path can be increased and the driving torque of the motor can be reduced. As a result, an efficient once-through fan is obtained.
 また、貫流ファンの翼負圧面13aに形成された複数の溝14は、回転軸に垂直な断面で、隣合う溝14との間に平坦部Mを有するように、所定の間隔ML離して設けている。溝14を翼弦線L方向に間隔がなく連続的に形成した場合、溝14で負圧が生成されても翼負圧面13aに流れが再付着できず不安定となる。即ち、溝14での引き寄せ効果によって、翼負圧面13aに沿って流れる空気流は、溝14を乗り越えた後、溝14に接続する翼負圧面13aに再付着しようとする。そこで、隣合う溝14との間に長さMLの平坦部Mを有するように構成することで、再付着するときの長さを十分にとることで安定して再付着する。このように、溝14での引き寄せ効果後、負圧面に再付着し、再度引き寄せ効果・・と繰り返すことで、流れが常に安定する。特に、溝14による引き寄せ効果を十分に発揮させることができる効果がある。その結果、貫流ファンは低騒音化と高効率化が図れ、さらに通風抵抗の変化に対して剥離防止、吹出流れの不安定によるファンへの逆流を防止できる。 The plurality of grooves 14 formed on the blade suction surface 13a of the cross-flow fan are provided at a predetermined interval ML so as to have a flat portion M between the adjacent grooves 14 in a cross section perpendicular to the rotation axis. ing. When the groove 14 is continuously formed without a gap in the chord line L direction, even if a negative pressure is generated in the groove 14, the flow cannot be reattached to the blade negative pressure surface 13a and becomes unstable. That is, the air flow flowing along the blade negative pressure surface 13 a tries to reattach to the blade negative pressure surface 13 a connected to the groove 14 after getting over the groove 14 due to the drawing effect in the groove 14. Therefore, by forming the flat portion M having the length ML between the adjacent grooves 14, it is possible to stably reattach by taking a sufficient length when reattaching. As described above, after the pulling effect in the groove 14, the flow is always stabilized by reattaching to the suction surface and repeating the pulling effect again. In particular, there is an effect that the pulling effect by the groove 14 can be sufficiently exhibited. As a result, the cross-flow fan can achieve low noise and high efficiency, and can prevent separation against changes in ventilation resistance, and can prevent backflow to the fan due to instability of the blowout flow.
 また、回転軸に垂直な断面で、翼負圧面13aに形成された複数の溝14の溝側部14aと翼負圧面13aとの接続部は丸みを有するように、例えば略円弧形状となるように形成した。このため、溝14で流れが引き寄せられ、下流側の翼負圧面13aへ流れる時、角部にぶつかって生じる圧力変動を防止できる。従って、さらに低騒音化及び高効率化できる貫流ファンを得ることができる。また、1つの溝14に対し2つ溝側部14aと翼負圧面13aを接続する2つの角部を共に略円弧形状とした。これにより、翼8cが吸込領域E1と吹出領域E2で流れの方向が逆転しても、両方の領域E1、E2において剥離を抑制できる。 Further, in the cross section perpendicular to the rotation axis, the connecting portions of the groove side portions 14a of the plurality of grooves 14 formed on the blade suction surface 13a and the blade suction surface 13a are rounded, for example, have a substantially arc shape. Formed. For this reason, when the flow is attracted by the groove 14 and flows to the blade blade pressure surface 13a on the downstream side, it is possible to prevent the pressure fluctuation caused by hitting the corner. Therefore, a cross-flow fan that can further reduce noise and increase efficiency can be obtained. Further, two corners connecting the two groove side portions 14a and the blade suction surface 13a to one groove 14 are both substantially arc-shaped. Thereby, even if the wing | blade 8c reverses the direction of a flow in the suction area | region E1 and the blowing area | region E2, peeling can be suppressed in both area | regions E1 and E2.
 また、回転軸に垂直な断面で、溝底部14bを丸みを有する形状とすると共に、溝底部14bに連続する溝側部14aを翼負圧面13aに向かって広がりを有する形状とした。溝底部14bは例えば円弧状であるため、溝の内部での流れは滑らかに循環でき安定する。さらに溝側部14aは、翼負圧面13aに向かって広がるように傾斜を有することで、流れを溝14内に効果的に誘導して引き寄せ効果が得られる。従って、さらに低騒音で高効率化できる貫流ファンを得ることができる。 In addition, in the cross section perpendicular to the rotation axis, the groove bottom portion 14b has a rounded shape, and the groove side portion 14a continuous to the groove bottom portion 14b has a shape extending toward the blade suction surface 13a. Since the groove bottom portion 14b has, for example, an arc shape, the flow inside the groove can be smoothly circulated and stabilized. Further, the groove side portion 14a has an inclination so as to expand toward the blade suction surface 13a, thereby effectively guiding the flow into the groove 14 to obtain a drawing effect. Accordingly, it is possible to obtain a cross-flow fan that can be made more efficient with lower noise.
 また、溝14の溝底部14bを等厚線Kよりも翼負圧面13a側となるように形成している。例えば、翼外周端部15aまたは翼内周端部15b近傍の翼厚を0.5mm程度とし、翼中央部15cでの翼厚を1.5mm程度とした場合、等厚線Kは翼圧力面13bから0.5mm程度のところになる。この翼厚線Kよりも翼負圧面13aに溝14を形成するので、翼中央部15cでの溝深さhcは1.0mm以下となるように構成する。例えば、溝深さhを0.25mm程度とし、翼外周端部15aまたは翼内周端部15b近傍では翼厚が0.75mm程度よりも大きい部分の翼負圧面13aに溝14を設ける。このように構成することで、溝14による引き寄せ効果を得ることができると共に、溝14を形成しても翼8cの厚さを確保でき、強度の向上を図ることができる。 Further, the groove bottom portion 14b of the groove 14 is formed so as to be closer to the blade suction surface 13a side than the contour line K. For example, when the blade thickness in the vicinity of the blade outer peripheral end portion 15a or the blade inner peripheral end portion 15b is about 0.5 mm and the blade thickness at the blade central portion 15c is about 1.5 mm, the iso-thick line K indicates the blade pressure surface. From 13b to about 0.5 mm. Since the groove 14 is formed in the blade suction surface 13a from the blade thickness line K, the groove depth hc at the blade center portion 15c is configured to be 1.0 mm or less. For example, the groove depth h is set to about 0.25 mm, and the groove 14 is provided in the blade negative pressure surface 13a in a portion where the blade thickness is larger than about 0.75 mm in the vicinity of the blade outer peripheral end portion 15a or the blade inner peripheral end portion 15b. With such a configuration, it is possible to obtain the pulling effect by the groove 14, and even if the groove 14 is formed, the thickness of the blade 8c can be secured and the strength can be improved.
 また、溝深さh<平坦部長さMLを満足するように溝14を形成している。即ち、貫流ファンの翼負圧面13aに形成された複数の溝14は、回転軸に垂直な断面で、翼弦線方向に少なくとも所定の間隔MLを開けて形成されている。前記に平坦部Mによる作用効果を述べたが、平坦部長さMLを溝深さhよりも大きくすることで、平坦部Mによって溝14を流れが乗り越えた後の再付着を確実にでき、引き寄せ効果と再付着を繰り返すことで、翼負圧面13aから剥離することなく流れが常に安定する。このため、低騒音化と高効率化を図ることのできる貫流ファンが得られる。 Further, the groove 14 is formed so as to satisfy the groove depth h <the flat portion length ML. That is, the plurality of grooves 14 formed on the blade suction surface 13a of the cross-flow fan are formed with a cross section perpendicular to the rotation axis and at least a predetermined interval ML in the chord line direction. As described above, the function and effect of the flat portion M have been described. By making the flat portion length ML larger than the groove depth h, the flat portion M can ensure re-attachment after the flow has passed over the groove 14 and attracted. By repeating the effect and reattachment, the flow is always stabilized without peeling from the blade suction surface 13a. For this reason, a cross-flow fan that can achieve low noise and high efficiency can be obtained.
 また、翼外周側端部15aから翼内周側端部15bまでの翼負圧面13aに全面に溝14を設けた構成としたが、これに限るものではない。翼外周側端部15aと翼内周側端部15bの少なくとも一方の端部近傍に設ければよい。例えば、翼外周側端部15aの近傍に数本例えば2本の溝14を設けると共に、翼内周側端部15bの近傍に数本例えば2本の溝14を設けたような構成でもよい。また、翼外周側端部15aの近傍に数本例えば2本の溝14を設けただけでもよく、逆に、翼内周側端部15bの近傍に数本例えば2本の溝14を設けたような構成でもよい。少なくとも吸込領域E1において上流側となる翼外周側15aと、吹出領域E2において上流側となる翼内周側15bとに設けることで、効果的に溝14によって空気流の剥離を低減することができる。 Further, although the groove 14 is provided on the entire surface of the blade negative pressure surface 13a from the blade outer peripheral side end portion 15a to the blade inner peripheral side end portion 15b, it is not limited to this. What is necessary is just to provide in the at least one edge part vicinity of the blade outer peripheral side edge part 15a and the blade inner peripheral side edge part 15b. For example, a configuration in which several, for example, two grooves 14 are provided in the vicinity of the blade outer peripheral end 15a, and several, for example, two grooves 14, in the vicinity of the blade inner peripheral end 15b may be provided. Further, only a few, for example, two grooves 14 may be provided in the vicinity of the blade outer peripheral end 15a. Conversely, a few, for example, two grooves 14 are provided in the vicinity of the blade inner peripheral end 15b. Such a configuration may be used. By providing at least the blade outer peripheral side 15a upstream in the suction region E1 and the blade inner peripheral side 15b upstream in the blowout region E2, separation of the air flow can be effectively reduced by the grooves 14. .
 貫流ファン8を搭載する装置の構成によって、吸込領域E1で流れが剥離しやすい場合には、吸込領域E1で流れの上流側となる翼外周側端部15aの近傍に溝14を設けると効果的である。また、吹出領域E2で流れが剥離しやすい場合には、吹出領域E2で流れの上流側となる翼内周側端部15bの近傍に溝14を設けると効果的である。
 ただし、図8及び図9で示したように、回転軸に垂直な断面で、翼負圧面13aの翼外周側端部15aから翼内周側端部15bの全面に溝14を設けると、翼負圧面13aのどこで剥離が起ころうとしてもこれを防止できるので、さらに効果的である。
When the flow is easily separated in the suction region E1 due to the configuration of the device in which the cross-flow fan 8 is mounted, it is effective to provide the groove 14 in the vicinity of the blade outer peripheral end 15a that is the upstream side of the flow in the suction region E1. It is. Further, in the case where the flow is easily separated in the blowing region E2, it is effective to provide the groove 14 in the vicinity of the blade inner peripheral end portion 15b which is the upstream side of the flow in the blowing region E2.
However, as shown in FIG. 8 and FIG. 9, if the groove 14 is provided on the entire surface from the blade outer peripheral end 15 a to the blade inner peripheral end 15 b of the blade negative pressure surface 13 a in a cross section perpendicular to the rotation axis, the blade This is more effective because it can be prevented where peeling occurs on the negative pressure surface 13a.
 また、上記では、翼8cの翼負圧面13aの回転軸方向に伸びる溝14は、翼8cの一端部から他端部まで至る長い溝14としたが、一部に設けてもよい。例えば、翼長手方向の中央部分、一端部、他端部の少なくともいずれか一部分に設ければ、効果を奏する。また、複数の溝14は同じの長さでなくてもよい。また、複数の溝14が不規則に配置されていてもよい。即ち、翼8cの翼長手方向において、溝14の開始位置と終了位置が、複数の溝14によってさまざまに変化していてもよい。
 また、一本の溝14において、溝深さh、平坦部長さML、溝幅gは同じでなくてもよい。例えば、溝幅gが翼長手方向の一端部で大きく、他端部で小さくなるように、徐々にまたは段階的に変化させてもよい。
In the above description, the groove 14 extending in the direction of the rotation axis of the blade suction surface 13a of the blade 8c is a long groove 14 extending from one end portion to the other end portion of the blade 8c. For example, if it is provided in at least one part of the central part, one end part, and the other end part in the blade longitudinal direction, the effect is obtained. Further, the plurality of grooves 14 need not have the same length. Moreover, the some groove | channel 14 may be arrange | positioned irregularly. That is, the start position and the end position of the groove 14 may be variously changed by the plurality of grooves 14 in the blade longitudinal direction of the blade 8 c.
Further, in one groove 14, the groove depth h, the flat part length ML, and the groove width g may not be the same. For example, the groove width g may be changed gradually or stepwise so that the groove width g is larger at one end in the blade longitudinal direction and smaller at the other end.
 翼長手方向に均一な溝14を形成するのではなく、不均一にすることで、回転軸に垂直な断面が翼長手方向の位置で変化することになる。即ち、翼負圧面13aに偏流して流れ込む場合、翼弦線Lの方向で溝14の数が変化する。翼長手方向で微小に剥離が生じようとしても、その近傍の翼長手方向の流れに影響されて拡散される。そして風速分布が均一化されることになる。これによって、騒音が低減される。 By not making the uniform groove 14 in the blade longitudinal direction, but making it non-uniform, the cross section perpendicular to the rotation axis changes at the position in the blade longitudinal direction. That is, in the case of drifting and flowing into the blade suction surface 13a, the number of grooves 14 changes in the direction of the chord line L. Even if minute separation occurs in the blade longitudinal direction, it is diffused by being influenced by the flow in the blade longitudinal direction in the vicinity thereof. And the wind speed distribution is made uniform. As a result, noise is reduced.
 また、図5に示すように、翼弦線L方向で、翼8cの翼外周端部15aと翼内周側端部15bの間の翼弦中央部付近の溝深さhcが、前記翼外周端部15aと翼内周側端部15b側の溝深さhtよりも大きくなるように形成している。このため、溝14による引き寄せ効果が得られると共に、翼8cの翼厚が極端に薄くなることなく、成形時の湯周り悪化や組立て時の強度不足を防止でき、生産性の向上を図ることができる。 Further, as shown in FIG. 5, in the direction of the chord line L, the groove depth hc in the vicinity of the center portion of the blade chord between the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b of the blade 8c It is formed to be larger than the groove depth ht on the end portion 15a and the blade inner peripheral side end portion 15b side. For this reason, the drawing effect by the groove 14 can be obtained, and the blade thickness of the blade 8c can be prevented from becoming extremely thin, so that deterioration of the hot water around the molding and insufficient strength at the time of assembly can be prevented, and productivity can be improved. it can.
 翼8cの形状で、翼圧力面13aと翼負圧面13b間の翼厚が略等厚のものでは、翼内周側端部15bから翼外周側端部15aにかけて徐々に流路が狭くなる。この場合、特に吸込領域で外周側から内周側へ空気流が流入する時、内周側で翼間距離が広くなり、流れが不安定となるが、溝14を設けることで引き寄せ効果によって剥離を抑制できる。これに対して、図5に示すような翼形状では、翼圧力面13bに対し、翼負圧面13aの方が翼表面の円弧半径が小さく曲率が大きい。即ち、翼弦線L方向の中央部分15cでの翼厚が、翼内外周側端部15a、15bでの翼厚よりも大きい。このような形状では、隣り合う翼8cとの流路距離をみると、翼内周側端部15bから翼外周側端部15aで変化が小さく、翼通過中に流れが安定しやすい。そこで、さらに本実施の形態のような溝14を翼負圧面13aに設けることで、微小な境界層の発達を抑制し、翼間での空気流をスムーズな流れとし、乱流によって翼間流路が狭くなるのを防止できる。 In the shape of the blade 8c, when the blade thickness between the blade pressure surface 13a and the blade suction surface 13b is substantially equal, the flow path gradually narrows from the blade inner peripheral end 15b to the blade outer peripheral end 15a. In this case, especially when the air flow flows from the outer peripheral side to the inner peripheral side in the suction region, the distance between the blades becomes wider on the inner peripheral side, and the flow becomes unstable. Can be suppressed. On the other hand, in the blade shape as shown in FIG. 5, the blade negative pressure surface 13a has a smaller arc radius on the blade surface and a larger curvature than the blade pressure surface 13b. That is, the blade thickness at the central portion 15c in the chord line L direction is larger than the blade thickness at the blade inner peripheral end portions 15a and 15b. In such a shape, when the flow path distance between the adjacent blades 8c is viewed, the change from the blade inner peripheral side end portion 15b to the blade outer peripheral side end portion 15a is small, and the flow is likely to be stable while passing through the blade. Therefore, by providing a groove 14 as in the present embodiment on the blade suction surface 13a, the development of a minute boundary layer is suppressed, the air flow between the blades is made smooth, and the flow between the blades is caused by turbulent flow. It is possible to prevent the road from becoming narrow.
 また、本実施の形態では、複数の溝14を翼長手方向に略平行に並設し、かつ翼長手方向で翼外周側端部15aと翼内周側端部15bに対して略平行に形成した。回転軸に垂直な断面で複数の溝14が形成されていれば、引き寄せ効果を奏するので、翼長手方向で翼外周側端部15aや翼内周側端部15bに対して、若干斜めであっても、同様の効果を奏する。例えば、並設する複数の溝14が、羽根車8aの回転方向に前進または後退するように、回転軸に対して捻って形成されていてもよい。 Further, in the present embodiment, the plurality of grooves 14 are arranged in parallel substantially in the blade longitudinal direction, and are formed substantially parallel to the blade outer peripheral end 15a and the blade inner peripheral end 15b in the blade longitudinal direction. did. If a plurality of grooves 14 are formed in a cross section perpendicular to the rotation axis, a pulling effect can be obtained, so that the blade outer circumferential end 15a and the blade inner circumferential end 15b are slightly inclined in the longitudinal direction of the blade. However, the same effect can be obtained. For example, the plurality of grooves 14 arranged side by side may be formed by twisting with respect to the rotation axis so as to advance or retreat in the rotation direction of the impeller 8a.
 以上のように、本実施の形態に係る貫流ファンは、中央部に回転中心が位置する円板状の支持板8b、及び支持板8bの外周に沿って配置され回転軸方向に伸びると共に両端を支持板8bに支持される複数の翼8cを有する羽根車単体と、前記羽根車単体8dを前記回転軸方向に複数固着してなる羽根車8aと、前記翼8cの回転方向に対して後面となる翼負圧面13aに設けられ前記回転軸方向に伸びる複数の凹状の溝14と、を備え、隣合う溝14との間に平坦部Mを有するように前記溝14を所定の間隔離して設けたことを特徴とすることにより、溝14で負圧を生成することで、空気流れを翼負圧面13aへ引き寄せ、溝14を乗り越えた流れを再付着させて、翼負圧面13aから剥離しにくくできる。そして、翼の負圧面側での境界層の発達および剥離を抑制し、翼間流路の有効面積の拡大を促し、モータの駆動トルクを低減できる。このため、低騒音化と高効率化が図れる貫流ファンが得られる。 As described above, the cross-flow fan according to the present embodiment is arranged along the outer periphery of the disc-shaped support plate 8b whose center of rotation is located at the center and the support plate 8b, and extends in the direction of the rotation axis and has both ends thereof. A single impeller having a plurality of blades 8c supported by the support plate 8b, an impeller 8a formed by fixing a plurality of single impellers 8d in the direction of the rotation axis, and a rear surface with respect to the rotational direction of the blades 8c; A plurality of concave grooves 14 provided on the blade suction surface 13a and extending in the direction of the rotation axis, and the grooves 14 are provided separated by a predetermined interval so as to have a flat portion M between adjacent grooves 14. By generating negative pressure in the groove 14, the air flow is attracted to the blade negative pressure surface 13 a, and the flow over the groove 14 is reattached so that it is difficult to separate from the blade negative pressure surface 13 a. it can. Then, the development and separation of the boundary layer on the suction surface side of the blade can be suppressed, the effective area of the inter-blade channel can be increased, and the driving torque of the motor can be reduced. For this reason, a cross-flow fan that can achieve low noise and high efficiency can be obtained.
 また、この貫流ファン8を吸込側流路E1と吹出側流路E2の間に配置し、吸込側流路E1に、羽根車8aを囲むように熱交換器7を配設し、貫流ファン8で送風される吸い込んだ空気と熱交換器7で熱交換して吹出側流路E2を通って室内に吹き出す空気調和機において、本実施の形態で述べた貫流ファン8を搭載することで、静粛で省エネな空気調和機が得られる。さらに、上流側で通風抵抗が増加しても剥離しにくく、さらに、溝14によって翼8cから流れが離脱する際の剥離渦を小さくでき安定した流れが吹き出されるので、空気調和機の冷房運転時に室内から貫流ファン8への逆流を防止でき、羽根車8aが結露して外部に結露水を放出することを防止できる。 Further, the cross-flow fan 8 is disposed between the suction-side flow path E1 and the blow-off-side flow path E2, and the heat exchanger 7 is disposed in the suction-side flow path E1 so as to surround the impeller 8a. In the air conditioner that exchanges heat with the sucked air blown by the heat exchanger 7 and blows out into the room through the blow-out side flow path E2, by mounting the cross-flow fan 8 described in the present embodiment, And an energy-saving air conditioner can be obtained. Further, even if the ventilation resistance increases on the upstream side, it is difficult to separate, and further, the separation vortex when the flow is separated from the blade 8c by the groove 14 can be reduced, and a stable flow is blown out. Sometimes, back flow from the room to the cross-flow fan 8 can be prevented, and the impeller 8a can be prevented from dewing and releasing condensed water to the outside.
実施の形態2.
 図10は本発明の実施の形態2に係る貫流ファンの羽根車8aを示す斜視図であり、図11は貫流ファンの羽根車のモータ側の部分を示す図で、図11(a)はモータ側の羽根車8aを部分的に示す斜視図、図11(b)は側面からみた説明図である。図11(b)は最もモータに近いリング8bの側面を一部切り欠いて示しており、切り欠いた部分はその隣のリング8bと共に翼8cを示している。各図において、実施の形態1と同一符号は同一、または相当部分を示す。
Embodiment 2. FIG.
10 is a perspective view showing an impeller 8a of a once-through fan according to Embodiment 2 of the present invention, FIG. 11 is a view showing a motor side portion of the impeller of the once-through fan, and FIG. The perspective view which shows the impeller 8a of a side partially, FIG.11 (b) is explanatory drawing seen from the side surface. FIG. 11B shows a part of the side surface of the ring 8b closest to the motor by cutting away, and the notched part shows the blade 8c together with the adjacent ring 8b. In each figure, the same reference numerals as those in Embodiment 1 denote the same or corresponding parts.
 本実施の形態における羽根車8aでは、モータシャフト12aに固定されるファンボス8eが、羽根車8aの端部に位置する羽根車単体8dの内部側に突出した構成である。図10に示すように、貫流ファン8の羽根車8aは、回転軸方向AXに複数の羽根車単体8dを有する。羽根車単体8dは、中央部に回転中心が位置する円板状の支持板、ここでは例えばリング8b、及びリング8bの外周に沿って配置され回転軸方向に伸びると共に両端をリング8bに支持される複数の翼8cを有する。羽根車単体8dは、例えばAS樹脂やABS樹脂などの熱可塑性樹脂で成形され、回転軸方向AXに複数個、ここでは5個の羽根車単体8dを例えば超音波溶着などによって回転軸方向AXに固着して羽根車8aを形成する。そして、モータ側の端部のリング8bの中心にファンボス8eが設けられ、ファンボス8eとモータ12のモータシャフト12a(図3に示す)が固定部16で例えばネジ等で固定される。固定部16でモータシャフト12aと羽根車8aの回転軸を固定することで、モータ12の回転によって羽根車8aが回転駆動される。 In the impeller 8a in the present embodiment, the fan boss 8e fixed to the motor shaft 12a protrudes to the inner side of the impeller unit 8d located at the end of the impeller 8a. As shown in FIG. 10, the impeller 8a of the cross-flow fan 8 has a plurality of impellers 8d in the rotation axis direction AX. The impeller unit 8d is arranged along the outer periphery of a disc-shaped support plate, in this case, for example, the ring 8b and the ring 8b, in which the center of rotation is located at the center, extends in the direction of the rotation axis, and is supported by the ring 8b at both ends. A plurality of wings 8c. The impeller single unit 8d is formed of, for example, a thermoplastic resin such as AS resin or ABS resin, and a plurality of, for example, five impeller units 8d in the rotational axis direction AX are formed in the rotational axis direction AX by, for example, ultrasonic welding. Adhering to form the impeller 8a. A fan boss 8e is provided at the center of the ring 8b at the end on the motor side, and the fan boss 8e and the motor shaft 12a of the motor 12 (shown in FIG. 3) are fixed at the fixing portion 16 with screws or the like. By fixing the rotation shaft of the motor shaft 12a and the impeller 8a by the fixing portion 16, the impeller 8a is rotationally driven by the rotation of the motor 12.
 本実施の形態では、羽根車8aとモータ12を固定するファンボス8eが羽根車内部へ突出し、モータシャフト12aに固定する固定部が羽根車単体8daの内側に位置して形成されている。このように構成することで、空気調和機の横幅を維持したまま、羽根車8aの全長をファンボス8eの長さだけ長くできるので、送風特性を向上できる。このように構成したモータ12側の端部に位置する羽根車単体8daでは、ファンボス8eとモータシャフト12aをネジ穴16で固定する際に固定具を挿入しうるように、部分的に翼8cを設けずに開口部Cを有する構成である。これを図11の丸Cに開口部を示す。例えば、他の羽根車単体8dでは翼8cが360度でシャフトである回転軸の周囲に均等に設けられているが、羽根車単体8daではネジ穴16に対向する部分の翼8cが所定枚数、例えばここでは1枚だけ歯抜きとなって設けられずに、開口部Cからネジ穴16が見えている。 In the present embodiment, a fan boss 8e that fixes the impeller 8a and the motor 12 protrudes into the impeller, and a fixing portion that is fixed to the motor shaft 12a is formed inside the impeller unit 8da. By comprising in this way, since the full length of the impeller 8a can be lengthened only the length of the fan boss | hub 8e, maintaining the width of an air conditioner, ventilation characteristics can be improved. In the impeller single unit 8da positioned at the end portion on the motor 12 side configured as described above, the blade 8c is partially inserted so that a fixing tool can be inserted when the fan boss 8e and the motor shaft 12a are fixed by the screw holes 16. It is the structure which has the opening part C without providing. This is indicated by a circle C in FIG. For example, in the other impeller unit 8d, the blades 8c are provided evenly around the rotation shaft which is a shaft at 360 degrees, but in the impeller unit 8da, a predetermined number of blades 8c facing the screw holes 16 are provided. For example, the screw hole 16 can be seen from the opening C without being provided with only one toothless here.
 本実施の形態では、羽根車単体8daの翼が部分的に欠けて開口部Cを有する構成の羽根車8aの場合、少なくともその開口部Cよりも回転方向に前進した翼8caの翼負圧面13aに、実施の形態1で示した溝14を設ける。 In the present embodiment, in the case of the impeller 8a having a configuration in which the blades of the single impeller 8da are partially missing and have the opening C, the blade negative pressure surface 13a of the blade 8ca advanced in the rotational direction at least from the opening C. The groove 14 shown in the first embodiment is provided.
 開口部Cで隣り合う翼8caと翼8cbの間隔は、他の翼間に比べ広いので、他の翼間で形成される流路よりも多くの空気が流れて剥離しやすくなる。開口部Cにできた広い流路で剥離すると、バタバタというような異常音が発生したりする。これに対し、本実施の形態では、少なくとも空間Cの翼8cの回転方向下流側1枚目の翼8caの翼負圧面13aに、翼8cの長手方向へ延びる複数の溝14を形成する。実施の形態1で述べたが、図8及び図9に示したように溝14によって流れが引き寄せられて剥離が抑制されるため、溝14が形成されない場合に比べて剥離による騒音が低減でき静かな貫流ファンを得ることができる。 Since the distance between the blade 8ca and the blade 8cb adjacent to each other in the opening C is wider than that between the other blades, more air flows than the flow path formed between the other blades, so that the air easily peels off. If it peels in the wide flow path made in the opening C, an abnormal sound such as fluttering may occur. On the other hand, in the present embodiment, a plurality of grooves 14 extending in the longitudinal direction of the blade 8c are formed on at least the blade suction surface 13a of the first blade 8ca on the downstream side in the rotation direction of the blade 8c in the space C. As described in the first embodiment, as shown in FIGS. 8 and 9, since the flow is attracted by the groove 14 and the separation is suppressed, the noise due to the separation can be reduced compared with the case where the groove 14 is not formed, and it is quiet. Can be obtained.
 溝14の構成については、実施の形態1と同様である。少なくとも開口部Cよりも回転方向に前進した翼8caの翼負圧面13aに、実施の形態1で示した溝14を設ければ、この翼間を流れる空気流に対して効果がある。さらに、他の翼8cの翼負圧面13aにも溝14を設けることで、さらに羽根車全体として、翼間の剥離を抑制できる。剥離を抑制できることで、翼間流路の有効面積を拡大でき、モータの駆動トルクを低減できる。 The configuration of the groove 14 is the same as that of the first embodiment. If the groove 14 shown in the first embodiment is provided at least on the blade suction surface 13a of the blade 8ca advanced in the rotation direction from the opening C, the air flow flowing between the blades is effective. Furthermore, by providing the groove 14 on the blade suction surface 13a of the other blade 8c, it is possible to further suppress separation between the blades as the entire impeller. Since the separation can be suppressed, the effective area of the flow path between the blades can be increased and the driving torque of the motor can be reduced.
 また、開口部Cよりも回転方向に前進した翼8caの翼負圧面13aのみではなく、領域Dに示したように、開口部Cよりも回転方向に前進した部分の複数枚の翼8cに溝14を設けると、さらに効果的である。また、開口部Cよりも反回転方向の翼8cbを含む複数の翼8cの翼負圧面13aに溝14を設けると、さらに効果的である。 Further, not only the blade suction surface 13a of the blade 8ca advanced in the rotation direction from the opening C, but also a groove formed in the plurality of blades 8c in the portion advanced in the rotation direction from the opening C as shown in the region D. If 14 is provided, it is more effective. Further, it is more effective to provide the groove 14 on the blade suction surface 13a of the plurality of blades 8c including the blade 8cb in the counter-rotating direction with respect to the opening C.
 なお、図11では、固定部16に固定具を挿入しうるように、翼8cを1枚設けていない構成としたが、これに限るものではない。例えば羽根車単体8dに複数の翼8cが等間隔ではなく不等ピッチで設けられている場合もある。この場合には、間隔の広い部分に固定部16が対向するように構成すると、固定部16に固定具を挿入しうるようになる。このように、固定部16に固定具を挿入しうるように翼8cの間隔を部分的に広くしてなる開口部Cが形成されている場合でも、少なくとも羽根車8aの回転方向RO側で開口部Cに隣接する翼8cの、回転方向ROに対して後面となる翼負圧面13aに回転軸方向AXに伸びる複数の凹状の溝14を設ければよい。 In addition, in FIG. 11, although it was set as the structure which does not provide one blade 8c so that a fixing tool can be inserted in the fixing | fixed part 16, it does not restrict to this. For example, the impeller single unit 8d may be provided with a plurality of blades 8c at unequal pitches rather than at equal intervals. In this case, if the fixing portion 16 is configured to face a portion having a wide interval, the fixing tool can be inserted into the fixing portion 16. As described above, even when the opening C is formed so that the interval between the blades 8c is partially widened so that the fixing tool 16 can be inserted into the fixing portion 16, the opening is at least on the rotational direction RO side of the impeller 8a. A plurality of concave grooves 14 extending in the rotation axis direction AX may be provided on the blade suction surface 13a which is the rear surface of the blade 8c adjacent to the portion C with respect to the rotation direction RO.
 以上のように、中央部に回転中心が位置する円板状の支持板8b、及び支持板8bの外周に沿って配置され回転軸方向AXに伸びると共に両端を支持板8bに支持される複数の翼8cを有する羽根車単体8dと、羽根車単体8dを回転軸方向AXに複数固着してなる羽根車8aと、羽根車8aの端部に位置する支持板8bにモータシャフト12aが固定されて羽根車8aを回転駆動するモータ12と、羽根車単体8dの内側に位置するモータシャフト12aとの固定部16と、固定部16に固定具を挿入しうるように羽根車単体8dの翼8cの間隔を部分的に広くしてなる開口部Cと、を備え、少なくとも羽根車8aの回転方向RO側で開口部Cに隣接する翼8caの、回転方向ROに対して後面となる翼負圧面13aに回転軸方向AXに伸びる複数の凹状の溝14を設けたことによって、翼負圧面13aからの剥離が抑制される。このため、安定した流れが得られ、騒音を低減できる。 As described above, the disk-shaped support plate 8b whose center of rotation is located at the center, and the plurality of support plates 8b arranged along the outer periphery of the support plate 8b and extending in the rotation axis direction AX and supported at both ends by the support plate 8b. The motor shaft 12a is fixed to an impeller 8d having blades 8c, an impeller 8a formed by fixing a plurality of impellers 8d in the rotation axis direction AX, and a support plate 8b positioned at an end of the impeller 8a. The motor 12 for rotationally driving the impeller 8a, the fixed portion 16 of the motor shaft 12a located inside the impeller single unit 8d, and the blades 8c of the impeller single unit 8d so that a fixing tool can be inserted into the fixed unit 16. And a blade suction surface 13a which is a rear surface of the blade 8ca adjacent to the opening C on the rotation direction RO side of the impeller 8a at the rear side with respect to the rotation direction RO. Rotation axis direction AX By building provided with a plurality of concave grooves 14, peeled from the wing negative pressure surface 13a is suppressed. For this reason, a stable flow can be obtained and noise can be reduced.
 また、実施の形態1で述べたように、特に回転軸に垂直な断面で、隣合う溝との間に平坦部Mを有するように溝14を所定の間隔離して設けてもよい。このように構成することで、固定部16が見えているので製造しやすい。且つ翼間で部分的に開口部Cがあっても、溝14による引き寄せ効果と平坦部Mによる再付着効果で、流れを安定にでき、騒音を低減でき効率のよい貫流ファンが得られる。
 また、貫流ファンを搭載することで耳障りのない静粛で高品質な空気調和機が得られる。
Further, as described in the first embodiment, the grooves 14 may be provided so as to be separated from each other by a predetermined interval so as to have a flat portion M between adjacent grooves, particularly in a cross section perpendicular to the rotation axis. By comprising in this way, since the fixing | fixed part 16 is visible, it is easy to manufacture. Even if there is a partial opening C between the blades, the flow can be stabilized by the pulling effect by the groove 14 and the reattachment effect by the flat portion M, noise can be reduced, and an efficient once-through fan can be obtained.
In addition, by installing a cross-flow fan, a quiet and high-quality air conditioner without any harshness can be obtained.
 ここでは、組立工程の固定部の都合で隣り合う翼の間隔が広くなっている部分での流れを考慮して剥離を抑制する構成について記載した。ただし、これに限定されるものではなく、他の理由から隣り合う翼の間隔が広くなる部分が構成された場合でも、少なくとも間隔が広い部分の回転方向側の翼8cの、翼負圧面13aに回転軸方向AXに伸びる溝14を複数設ければよい。 Here, a configuration is described in which separation is suppressed in consideration of the flow in the part where the interval between adjacent blades is wide due to the convenience of the fixing part in the assembly process. However, the present invention is not limited to this, and even when a portion where the interval between adjacent blades is increased for other reasons is formed on the blade suction surface 13a of the blade 8c on the rotation direction side of at least the portion where the interval is wide. A plurality of grooves 14 extending in the rotation axis direction AX may be provided.
実施の形態3.
 以下、本発明の実施の形態3について、図に基づいて説明する。図12は本実施の形態に係る貫流ファン8の羽根車8aを示す概略図であり、図12(a)は貫流ファン8の側面図、図12(b)は図12(a)のS-S線断面図を示し、各羽根車単体8dで、下半分は向こう側の複数枚の翼が見えている状態を示し、上半分は1枚の翼8cを示している。図において、実施の形態1及び実施の形態2と同一符号は同一、又は相当部分を示す。図12(b)でも、一点鎖線はモータシャフト12aとファンシャフト8fを結び、回転中心Oを示す仮想回転軸線である。図12に示すように、貫流ファン8の羽根車8aは、回転軸方向AXに複数の羽根車単体8dを有する。羽根車単体8dは、中央部に回転中心が位置する円板状の支持板、ここでは例えばリング8b、及びリング8bの外周に沿って配置され回転軸方向に伸びると共に両端をリング8bに支持される複数の翼8cを有する。本実施の形態における翼8cは、羽根車単体8dにおいて、一端部でリング8bと接続する接続部である翼付け根部(図12(b)では向かって右側)で回転軸に垂直な断面形状が一番大きく、徐々に断面形状が小さくなるように形成する。そして翼8cの他端部で隣接する羽根車単体8dに固着される接続部である翼長手方向先端部(図12(b)では向かって左側)で回転軸に垂直な断面形状が最小となるような先細り形状とする。即ち、回転軸に垂直な断面で、翼負圧面13aと翼圧力面13bで形成される翼8cの翼厚と、翼外周側端部15aと翼内周側端部15bとを結ぶ直線の長さである翼弦線長さL1とを、翼付け根部から翼長手方向先端部へ向かって減少させた形状とする。このため、図12(b)に示した断面では、翼外周側端部15a及び翼内周側端部15bは共に、翼付け根部から翼長手方向先端部に向かって翼8cの内側に傾斜した形状となる。本実施の形態でも、翼8cの回転方向に対して後面となる翼負圧面13aに回転軸方向AXに伸びる複数
の凹状の溝14を設ける。
Embodiment 3 FIG.
Hereinafter, Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 12 is a schematic view showing the impeller 8a of the cross-flow fan 8 according to the present embodiment, FIG. 12 (a) is a side view of the cross-flow fan 8, and FIG. 12 (b) is a view of FIG. A sectional view of line S is shown. In each impeller 8d, the lower half shows a state where a plurality of wings on the other side are visible, and the upper half shows one wing 8c. In the figure, the same reference numerals as those in the first and second embodiments indicate the same or corresponding parts. Also in FIG. 12B, the alternate long and short dash line is a virtual rotation axis that connects the motor shaft 12a and the fan shaft 8f and indicates the rotation center O. As shown in FIG. 12, the impeller 8a of the cross-flow fan 8 has a plurality of impellers 8d in the rotation axis direction AX. The impeller unit 8d is arranged along the outer periphery of a disk-shaped support plate, in this case, for example, the ring 8b and the ring 8b, in which the center of rotation is located at the center, extends in the direction of the rotation axis, and is supported by the ring 8b at both ends. A plurality of wings 8c. The blade 8c in the present embodiment has a cross-sectional shape perpendicular to the rotation axis at the blade root (right side in FIG. 12 (b)) which is a connecting portion connected to the ring 8b at one end in the impeller 8d. It is the largest and formed so that the sectional shape gradually becomes smaller. Then, at the other end of the blade 8c, the cross-sectional shape perpendicular to the rotation axis is minimized at the front end in the blade longitudinal direction (the left side in FIG. 12B) which is a connection portion fixed to the adjacent impeller 8d. Such a tapered shape. That is, in the cross section perpendicular to the rotation axis, the blade thickness of the blade 8c formed by the blade suction surface 13a and the blade pressure surface 13b, and the length of the straight line connecting the blade outer peripheral end 15a and the blade inner peripheral end 15b. The chord line length L1, which is the height, is made to be a shape that decreases from the blade root toward the tip in the blade longitudinal direction. For this reason, in the cross section shown in FIG. 12B, both the blade outer peripheral end 15a and the blade inner peripheral end 15b are inclined inward of the blade 8c from the blade root toward the blade longitudinal tip. It becomes a shape. Also in the present embodiment, a plurality of concave grooves 14 extending in the rotation axis direction AX are provided on the blade suction surface 13a which is the rear surface with respect to the rotation direction of the blade 8c.
 製造工程において、羽根車単体8dを例えばAS樹脂やABS樹脂などの熱可塑性樹脂で樹脂成形する。羽根車8aでは複数の翼8cは2つのリング8bの間に固定されるのであるが、その一方のリング8b、例えばモータ側のリング8bと一体に成形されて羽根車単体8dを構成する。この樹脂成形の離型の様子を図13に示す。図13は型17、18を示す断面図であり、上下に1枚づつの翼8cが成形された様子を示すが、実際にはリング8bの外周の内側に複数の翼8cが環状に並設されて成形される。樹脂成形では、複数の翼8cの形に凹凸型であわせた金型17、18を作成し、その金型内に高圧で樹脂を射出し、冷却後に金型18を矢印方向に移動することで、樹脂で形成された羽根車単体8dが得られる。 In the manufacturing process, the impeller 8d is molded with a thermoplastic resin such as an AS resin or an ABS resin. In the impeller 8a, the plurality of blades 8c are fixed between the two rings 8b, and are formed integrally with one of the rings 8b, for example, the motor-side ring 8b, to form the impeller 8d. The state of mold release of this resin molding is shown in FIG. FIG. 13 is a cross-sectional view showing the molds 17 and 18 and shows a state in which the blades 8c are formed one by one up and down, but actually, a plurality of blades 8c are arranged in a ring shape inside the outer periphery of the ring 8b. To be molded. In resin molding, molds 17 and 18 are formed in a concavo-convex shape in the shape of a plurality of blades 8c, resin is injected into the mold at high pressure, and after cooling, the mold 18 is moved in the direction of the arrow. Thus, an impeller single body 8d formed of resin is obtained.
 この矢印のように回転軸方向AXに離型する場合には、羽根車単体8dの形状が回転軸方向AXに離型可能な形状にする必要がある。このため、翼8cは、羽根車単体8dにおいて、リング8bに連続する翼8cの部分である翼付け根部8c1で断面形状が一番大きく、翼長手方向先端部8c2で断面形状が小さくなるように形成する。このような翼8cの断面形状にすることで、樹脂成形の際の離型が円滑に行なわれる。ここでは、例えば翼8cの翼付け根部8c1から翼長手方向先端部8c2に向かって、徐々に翼の断面形状を小さくして先細り形状の翼8cとする。翼外周側端部15a及び翼内周側端部15bは翼8cの内側に、例えば数度程度の角度を有するように傾斜した形状となる。このため、離型時に金型18を少し移動した時点で翼8cの全面で金型18と成形した羽根車単体8dとの間に空間ができて離れるため、離型が容易に円滑に行なわれる。 When the mold is released in the rotation axis direction AX as indicated by the arrow, the shape of the impeller 8d needs to be a shape that can be released in the rotation axis direction AX. For this reason, the blade 8c has the largest cross-sectional shape at the blade root 8c1, which is the portion of the blade 8c continuous with the ring 8b, and the cross-sectional shape at the blade longitudinal tip 8c2 is small in the impeller 8d. Form. By making such a cross-sectional shape of the blade 8c, mold release during resin molding is performed smoothly. Here, for example, from the blade root 8c1 of the blade 8c toward the blade longitudinal direction tip 8c2, the cross-sectional shape of the blade is gradually reduced to form a tapered blade 8c. The blade outer peripheral side end portion 15a and the blade inner peripheral side end portion 15b are inclined on the inner side of the blade 8c so as to have an angle of, for example, several degrees. For this reason, when the mold 18 is slightly moved at the time of mold release, there is a space between the mold 18 and the molded impeller unit 8d on the entire surface of the blade 8c, so that the mold release is performed easily and smoothly. .
 そして、樹脂成形した先細り形状の羽根車単体8dの翼長手方向先端部8c2を隣に位置するリング8bに、例えば超音波溶着などによって固着すれば、回転軸方向AXに羽根車単体8d同士が固定されて羽根車8aが形成される。 Then, if the blade longitudinal tip 8c2 of the resin-shaped tapered impeller 8d is fixed to the adjacent ring 8b by, for example, ultrasonic welding or the like, the impeller 8d is fixed in the rotational axis direction AX. Thus, the impeller 8a is formed.
 本実施の形態においても、実施の形態1と同様の溝14を、翼8cの翼負圧面13aに設けている。即ち、翼8cの翼負圧面13aには、回転軸方向AXである翼長手方向へ伸びる凹状の溝14が複数本設けられている。回転軸に垂直な断面で、翼外周側端部15aと翼内周側端部15bの間に、例えば均等に配置された複数の溝14は、溝底部14bと2つの向かい合う溝側部14aとを有し、溝底部14bの形状を丸みを有する構成とし、ここでは略円弧形状とする。溝底部14bに連続する溝側部14aは、翼負圧面13aに向かって広がりを有する形状とし、溝側部14aと翼負圧面13との接続部も丸みを有する形状とする。回転軸方向AXに伸びた溝14は、羽根車8aの周方向に凹凸があり回転軸方向AXには凹凸がない形状である。このため、図13で示した回転軸方向AXに離型する樹脂成形で羽根車単体8dを成形するのに適した形状である。 Also in the present embodiment, the same groove 14 as in the first embodiment is provided on the blade suction surface 13a of the blade 8c. In other words, the blade suction surface 13a of the blade 8c is provided with a plurality of concave grooves 14 extending in the blade longitudinal direction which is the rotation axis direction AX. In a cross section perpendicular to the rotation axis, for example, a plurality of grooves 14 arranged evenly between the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b include a groove bottom portion 14b and two opposing groove side portions 14a. The groove bottom portion 14b has a rounded shape, and here has a substantially arc shape. The groove side part 14a that continues to the groove bottom part 14b has a shape that expands toward the blade suction surface 13a, and the connecting portion between the groove side part 14a and the blade suction surface 13 also has a round shape. The groove 14 extending in the rotational axis direction AX has a shape with irregularities in the circumferential direction of the impeller 8a and no irregularities in the rotational axis direction AX. For this reason, it is a shape suitable for shape | molding the impeller single-piece | unit 8d by resin shaping | molding which molds in the rotating shaft direction AX shown in FIG.
 さらに、翼の形状について、詳しく説明する。図14は図12の翼1枚におけるA-A断面図で、翼8cの翼長手方向先端部8c2の断面を示している。また、図15は図12の翼1枚におけるB-B断面図で、翼8cの翼付け根部8c1の断面を示している。図14及び図15に示すように、貫流ファンの回転軸に垂直な断面では、どの断面においても翼8cの形状は同様であり、大きさは翼付け根部8c1が最も大きく、翼長手方向先端部8c2で最も小さくなる。 Furthermore, the shape of the wing will be explained in detail. FIG. 14 is a cross-sectional view taken along the line AA of one blade of FIG. 12, and shows a cross section of the blade longitudinal tip 8c2 of the blade 8c. FIG. 15 is a BB cross-sectional view of one blade of FIG. 12, showing a cross section of the blade root portion 8c1 of the blade 8c. As shown in FIGS. 14 and 15, in the cross section perpendicular to the rotation axis of the once-through fan, the shape of the blade 8c is the same in any cross section, and the size is the largest at the blade root portion 8c1, and the tip portion in the blade longitudinal direction. It becomes the smallest at 8c2.
 翼長手方向先端部8c2の断面を示す図14において、翼弦線長さをL12、溝深さをh2、溝幅をg2、翼8cの翼圧力面13bと翼負圧面13aの内接円の直径である翼厚の最大の厚さをtmax2とする。同様に、翼付け根部8c1の断面を示す図15において、翼弦線長さをL11、溝深さをh1、溝幅をg1、最大の厚さをtmax1とする。ここで、溝幅g、溝深さhの定義は、実施の形態1の図7で示したものと同様である。本実施の形態の翼8cでは、tmax1>tmax2、L11>L12で、翼付け根部8c1から翼長手方向先端部8c2に向かって、翼弦線長さL1及び最大の厚さtmaxを滑らかに減少させた先細り形状である。溝14に関しては、図12に示した構成例では、h1=h2、g1=g2として、同じ形状の溝14を翼負圧面13aに複数本設けている。 In FIG. 14 showing the cross section of the blade longitudinal tip 8c2, the chord line length is L12, the groove depth is h2, the groove width is g2, the inscribed circle of the blade pressure surface 13b and the blade negative pressure surface 13a of the blade 8c. The maximum thickness of the blade thickness, which is the diameter, is tmax2. Similarly, in FIG. 15 showing a cross section of the blade root 8c1, the chord line length is L11, the groove depth is h1, the groove width is g1, and the maximum thickness is tmax1. Here, the definitions of the groove width g and the groove depth h are the same as those shown in FIG. 7 of the first embodiment. In the blade 8c of the present embodiment, the chord line length L1 and the maximum thickness tmax are smoothly reduced from the blade root 8c1 toward the blade longitudinal tip 8c2 by tmax1> tmax2 and L11> L12. It has a tapered shape. Regarding the groove 14, in the configuration example shown in FIG. 12, a plurality of grooves 14 having the same shape are provided on the blade negative pressure surface 13 a with h 1 = h 2 and g 1 = g 2.
 実施の形態1と同様、翼8cが吸込領域E1を通過する時、翼外周側端部15aから翼負圧面13aに吸込空気が通過する。ここで、翼負圧面13aに翼長手方向へ伸びる複数の溝14が形成されているので、翼負圧面13aを吸込空気が通過する際の空気流れは、図8に示すようになる。即ち、溝14の内部が負圧となって矢印20で示すように溝14内部へ向かう方向成分を有する流れとなる。このため、翼外周側端部15aで剥離しかけても翼負圧面13aへ引き寄せられ、さらに下流側の翼内周側端部15bにかけても翼負圧面13aへ引き寄せるので、翼内周側端部15bで流れが離脱する際の剥離渦を小さくできる。 As in the first embodiment, when the blade 8c passes through the suction region E1, the suction air passes from the blade outer peripheral end 15a to the blade negative pressure surface 13a. Here, since the plurality of grooves 14 extending in the blade longitudinal direction are formed in the blade negative pressure surface 13a, the air flow when the intake air passes through the blade negative pressure surface 13a is as shown in FIG. That is, the inside of the groove 14 has a negative pressure, and the flow has a directional component toward the inside of the groove 14 as indicated by an arrow 20. For this reason, even if it is peeled off at the blade outer peripheral end portion 15a, it is attracted to the blade negative pressure surface 13a, and further toward the downstream blade inner peripheral end portion 15b, it is also attracted to the blade negative pressure surface 13a. The separation vortex when the flow is separated can be reduced.
 また、図9に示すように、翼8cが吹出領域E2を通過する時には、翼内周側端部15bから翼負圧面13aに吸込空気が通過する。ここで、翼負圧面13aに溝14を設けているので、溝14の内部が負圧となって、矢印21で示すように溝14内部へ向かう方向成分を有する流れとなる。このため、下流側へ向かうにつれて翼負圧面13aで剥離しそうになっても、空気流れが翼負圧面13aへ引き寄せられる。そして、下流側の翼外周側端部15aにかけて翼負圧面13aへ引き寄せるので、翼外周側端部15aで流れが離脱する際の剥離渦を小さくできる。 Further, as shown in FIG. 9, when the blade 8c passes through the blowing region E2, the intake air passes from the blade inner peripheral side end portion 15b to the blade negative pressure surface 13a. Here, since the groove 14 is provided on the blade negative pressure surface 13 a, the inside of the groove 14 becomes negative pressure, and the flow has a directional component toward the inside of the groove 14 as indicated by an arrow 21. For this reason, the air flow is attracted to the blade negative pressure surface 13a even if the blade negative pressure surface 13a is likely to be separated toward the downstream side. And since it draws toward the blade negative pressure surface 13a over the downstream blade outer peripheral end portion 15a, it is possible to reduce the separation vortex when the flow is separated at the blade outer peripheral end portion 15a.
 このように、翼負圧面13aに設けた溝14によって、吸込領域E1及び吹出領域E2の両方において翼負圧面13aでの空気流の剥離を抑制でき、結果として、翼外周側端部15aから吹出領域E2へ流れが離脱する際の剥離渦を小さくできる。 Thus, the groove 14 provided on the blade suction surface 13a can suppress separation of the air flow at the blade suction surface 13a in both the suction region E1 and the blowout region E2, and as a result, the blowout from the blade outer peripheral end 15a. It is possible to reduce the separation vortex when the flow separates into the region E2.
 また、溝14は回転軸方向AXに伸びて形成されているので、翼長手方向での風速差が生じても溝14による引き寄せ効果が得られる。このため、全体として剥離を抑制できる。
 さらに、剥離を抑制できることで、翼間流路の有効面積が拡大し、モータの駆動トルクも低減できる。これによって、効率のよい貫流ファンが得られる。
Further, since the groove 14 is formed so as to extend in the rotation axis direction AX, the pulling effect by the groove 14 can be obtained even if a wind speed difference occurs in the blade longitudinal direction. For this reason, peeling can be suppressed as a whole.
Furthermore, since the separation can be suppressed, the effective area of the inter-blade flow path can be increased and the driving torque of the motor can be reduced. As a result, an efficient once-through fan is obtained.
 また、実施の形態1における図7と同様、貫流ファンの翼負圧面13aに形成された複数の溝14は、回転軸に垂直な断面で、隣合う溝14との間に平坦部Mを有するように、所定の間隔ML離して設けている。このように、隣合う溝14との間に長さMLの平坦部Mを有するように構成することで、再付着するときの長さを十分にとることで安定して再付着する。溝14での引き寄せ効果後、負圧面13aに再付着し、再度引き寄せ効果・・と繰り返すことで、流れが常に安定する。特に、溝14による引き寄せ効果を有効に発揮させることができる効果がある。その結果、貫流ファンは低騒音化と高効率化が図れ、さらに通風抵抗の変化に対して剥離防止、吹出流れの不安定によるファンへの逆流を防止できる。 Further, similarly to FIG. 7 in the first embodiment, the plurality of grooves 14 formed in the blade suction surface 13a of the cross-flow fan have a flat portion M between the adjacent grooves 14 in a cross section perpendicular to the rotation axis. As described above, the predetermined interval ML is provided apart. As described above, the flat portion M having the length ML is formed between the adjacent grooves 14, so that the reattachment can be stably performed by taking a sufficient length for the reattachment. After the attracting effect in the groove 14, the flow is always stabilized by reattaching to the negative pressure surface 13a and repeating the attracting effect again. In particular, there is an effect that the pulling effect by the groove 14 can be effectively exhibited. As a result, the cross-flow fan can achieve low noise and high efficiency, and can prevent separation against changes in ventilation resistance, and can prevent backflow to the fan due to instability of the blowout flow.
 また、実施の形態1と同様、回転軸に垂直な断面で、翼負圧面13aに形成された複数の溝14の溝側部14aと翼負圧面13aとの接続部は丸みを有するように、例えば略円弧形状となるように形成した。このため、溝14で流れが引き寄せられ、下流側の翼負圧面13aへ流れる時、角部にぶつかって生じる圧力変動を防止できる。従って、さらに低騒音化及び高効率化できる貫流ファンを得ることができる。また、1つの溝14に対し2つ溝側部14aと翼負圧面13aを接続する2つの角部を共に略円弧形状とした。これにより、翼8cが吸込領域E1と吹出領域E2で流れの方向が逆転しても、両方の領域E1、E2において剥離を抑制できる。 Further, as in the first embodiment, in the cross section perpendicular to the rotation axis, the connecting portions of the groove side portions 14a of the plurality of grooves 14 formed on the blade suction surface 13a and the blade suction surface 13a are rounded. For example, it formed so that it might become a substantially circular arc shape. For this reason, when the flow is attracted by the groove 14 and flows to the blade blade pressure surface 13a on the downstream side, it is possible to prevent the pressure fluctuation caused by hitting the corner. Therefore, a cross-flow fan that can further reduce noise and increase efficiency can be obtained. Further, two corners connecting the two groove side portions 14a and the blade suction surface 13a to one groove 14 are both substantially arc-shaped. Thereby, even if the wing | blade 8c reverses the direction of a flow in the suction area | region E1 and the blowing area | region E2, peeling can be suppressed in both area | regions E1 and E2.
 また、実施の形態1と同様、回転軸に垂直な断面で、溝底部14bを丸みを有する形状とすると共に、溝底部14bに連続する溝側部14aを翼負圧面13aに向かって広がりを有する形状とした。溝底部14bは例えば円弧状であるため、溝の内部での流れは滑らかに循環でき安定する。さらに溝側部14aは、翼負圧面13aに向かって広がるように傾斜を有することで、流れを溝14内に効果的に誘導して引き寄せ効果が得られる。従って、さらに低騒音で高効率化できる貫流ファンを得ることができる。 Similarly to the first embodiment, the groove bottom portion 14b has a rounded shape in a cross section perpendicular to the rotation axis, and the groove side portion 14a continuous to the groove bottom portion 14b extends toward the blade negative pressure surface 13a. Shaped. Since the groove bottom portion 14b has, for example, an arc shape, the flow inside the groove can be smoothly circulated and stabilized. Further, the groove side portion 14a has an inclination so as to expand toward the blade suction surface 13a, thereby effectively guiding the flow into the groove 14 to obtain a drawing effect. Accordingly, it is possible to obtain a cross-flow fan that can be made more efficient with lower noise.
 また、実施の形態1と同様、溝14の溝底部14bを等厚線Kよりも翼負圧面13a側となるように形成している。このように構成することで、溝14による引き寄せ効果を得ることができると共に、溝14を形成しても翼8cの厚さを確保でき、強度の向上を図ることができる。 Further, as in the first embodiment, the groove bottom 14b of the groove 14 is formed so as to be closer to the blade negative pressure surface 13a side than the constant thickness line K. With such a configuration, it is possible to obtain the pulling effect by the groove 14, and even if the groove 14 is formed, the thickness of the blade 8c can be secured and the strength can be improved.
 また、実施の形態1と同様、翼付け根部8c1から翼長手方向先端部8c2にかけて、回転軸方向に垂直なすべての断面において、溝深さh<平坦部長さMLを満足するように溝14を形成している。平坦部長さMLを溝深さhよりも大きくすることで、平坦部Mによって溝14を流れが乗り越えた後の再付着を確実にでき、引き寄せ効果と再付着を繰り返すことで、翼負圧面13aから剥離することなく流れが常に安定する。このため、低騒音化と高効率化を図ることのできる貫流ファンが得られる。 Similarly to the first embodiment, the grooves 14 are formed so that the groove depth h <the flat portion length ML is satisfied in all cross sections perpendicular to the rotational axis direction from the blade root portion 8c1 to the blade longitudinal direction tip portion 8c2. Forming. By making the flat portion length ML larger than the groove depth h, the flat portion M can ensure the reattachment after the flow has passed over the groove 14, and the blade suction surface 13a can be obtained by repeating the drawing effect and the reattachment. The flow is always stable without peeling off. For this reason, a cross-flow fan that can achieve low noise and high efficiency can be obtained.
 このように、離型が容易に円滑に行なわれる構成の貫流ファンで、低騒音化と高効率化が図れ、この貫流ファンを搭載することで生産性がよく、静粛で省エネな空気調和機が得られる。 In this way, it is a cross-flow fan that can be released easily and smoothly, reducing noise and increasing efficiency. By installing this cross-flow fan, it is possible to produce a quiet, energy-saving air conditioner. can get.
 図16は、本実施の形態に係る貫流ファンの他の構成例による1枚の翼8cを示す斜視図である。この構成では、溝14の溝幅gまたは溝深さhを翼長手方向に同一ではなく、翼付け根部8c1と翼長手方向先端部8c2で変化させている。また、図17に、翼8cの翼長手方向先端部8c2における回転軸に垂直な断面の一部を拡大して示す。即ち、図12のA-A線断面と同様である。ここで、翼付け根部8c1の溝14の溝幅g1、溝深さh1、翼長手方向先端部8c2の溝14の溝幅g2、溝深さh2に対し、g1<g2、h1<h2とする。翼8cの形状は、リング8b側の翼付け根部8c1から固着前に自由端である翼長手方向先端部8c2へ向かって、翼厚と翼弦線長さL1が徐々に縮小する先細り形状とする。さらに翼負圧面13aに設ける凹状の溝14は、溝幅gと溝深さhが翼付け根部8c1から翼長手方向先端部8c2へ向かって、徐々に増加するように形成する。 FIG. 16 is a perspective view showing one blade 8c according to another configuration example of the cross-flow fan according to the present embodiment. In this configuration, the groove width g or the groove depth h of the groove 14 is not the same in the blade longitudinal direction, but is changed at the blade root 8c1 and the blade longitudinal tip 8c2. FIG. 17 shows an enlarged part of a section perpendicular to the rotation axis at the blade longitudinal tip 8c2 of the blade 8c. That is, this is the same as the cross section taken along the line AA of FIG. Here, g1 <g2 and h1 <h2 with respect to the groove width g1 and groove depth h1 of the groove 14 of the blade root portion 8c1 and the groove width g2 and groove depth h2 of the groove 14 of the blade longitudinal direction tip portion 8c2. . The shape of the blade 8c is a tapered shape in which the blade thickness and the chord line length L1 gradually decrease from the blade root 8c1 on the ring 8b side toward the blade longitudinal tip 8c2 which is a free end before fixing. . Further, the concave groove 14 provided on the blade suction surface 13a is formed such that the groove width g and the groove depth h gradually increase from the blade root 8c1 toward the blade longitudinal tip 8c2.
 このため、溝14による引き寄せ効果での剥離を抑制できることに加え、溝14を流れが乗越える時、翼長手方向(回転軸方向)で引き寄せ効果がなだらかに変化する。流れが翼8cから放出される際、翼長手方向で流速及び風向がなだらかに変化することで、特に吹出領域E2において、ガイドウォール10に接する流速及び角度が変化する。このように吹出流れがガイドウォール10に同時に到達しないので、圧力変動が減衰し、さらに低騒音化が図れる。 For this reason, in addition to being able to suppress separation due to the pulling effect by the groove 14, when the flow gets over the groove 14, the pulling effect changes gently in the blade longitudinal direction (rotational axis direction). When the flow is discharged from the blade 8c, the flow velocity and the direction of the air gently change in the blade longitudinal direction, so that the flow velocity and the angle in contact with the guide wall 10 change particularly in the blowing region E2. As described above, since the blowing flow does not reach the guide wall 10 at the same time, the pressure fluctuation is attenuated, and noise can be further reduced.
 さらに、図13のように、翼回転軸方向AXに型17、18を離型する成形方法で製造する際、翼外周側端部15a及び翼内周側端部15bが離型方向に若干の傾斜を有すると共に、溝14を構成する凹部全体が離型方向に若干の傾斜を有する。このため、樹脂成形する際、溝14も含めた翼8c全体で離型しやすい。 Further, as shown in FIG. 13, when manufacturing by the molding method in which the dies 17 and 18 are released in the blade rotation axis direction AX, the blade outer peripheral side end portion 15a and the blade inner peripheral end portion 15b are slightly in the mold release direction. While having an inclination, the whole recessed part which comprises the groove | channel 14 has some inclination in a mold release direction. For this reason, when resin molding is performed, it is easy to release the entire blade 8 c including the groove 14.
 その結果、貫流ファンは、生産性を維持しながら、さらに低騒音化、高効率化が図れる。またさらに通風抵抗の変化に対して剥離を抑制でき、安定した吹出流れを実現でき、貫流ファンの低騒音化と高効率化を図ることができる。 As a result, the once-through fan can further reduce noise and increase efficiency while maintaining productivity. Further, separation can be suppressed against changes in ventilation resistance, a stable blowout flow can be realized, and noise reduction and high efficiency of the cross-flow fan can be achieved.
 なお、羽根車単体8dの長手方向で翼8cは、リング8b側の付け根部8c1から固着前に自由端である他方の翼長手方向先端部8c2へ向かって、翼厚と翼弦線長さL1が徐々に縮小する先細り形状とし、回転軸方向に垂直な断面形状が徐々に減少するように形成したが、これに限るものではない。例えば傾斜をもたせて徐々に翼8cの断面形状を変化させる代わりに、段階的に変化させてもよい。段階的に変化させる構成でも、滑らかに変化させた形状と同様、離型時に金型18を少し移動した時点で羽根車単体8dの全面で金型18と成形した羽根車単体8dとの間に空間ができて離れるため、離型が容易に円滑に行なわれる。 In the longitudinal direction of the single impeller 8d, the blade 8c has a blade thickness and chord line length L1 from the root 8c1 on the ring 8b side toward the other blade longitudinal tip 8c2 which is the free end before fixing. However, the present invention is not limited to this, but the taper shape gradually decreases and the cross-sectional shape perpendicular to the rotation axis direction gradually decreases. For example, instead of gradually changing the cross-sectional shape of the blade 8c with an inclination, it may be changed stepwise. Even in the configuration that changes stepwise, like the smoothly changed shape, when the mold 18 is slightly moved at the time of mold release, the entire surface of the impeller 8d is placed between the mold 18 and the molded impeller 8d. Since a space is created and separated, mold release is easily and smoothly performed.
 また、翼負圧面13aに形成される溝14の溝幅gと溝深さhが、翼付け根8c1側から翼長手方向先端部8c2へ向け徐々に増加するように形成されていなくてもよい。即ち、溝14の溝幅gと溝深さhの少なくとも一方が徐々に、又は段階的に増加するように形成してもよい。翼長手方向で少なくとも溝幅gと溝深さhのいずれか一方が徐々にまたは段階的に増加するように形成されていればよい。段階的に凹状が変化する溝14であっても、溝14を流れが乗越える時、翼長手方向で引き寄せ効果が変化し、流れが翼8cから放出される際、翼長手方向で流速や風向が変化する。このことから、特に羽根車吹出領域E2で吹出流れがガイドウォール10に接する際、吹出流れの流速や角度が変化することで同時に到達することなく、圧力変動が減衰しさらに低騒音化の効果を奏する。 Further, the groove width g and the groove depth h of the groove 14 formed on the blade suction surface 13a may not be formed so as to gradually increase from the blade root 8c1 side toward the blade longitudinal tip 8c2. That is, at least one of the groove width g and the groove depth h of the groove 14 may be formed so as to increase gradually or stepwise. It is only necessary that at least one of the groove width g and the groove depth h is gradually or stepwise increased in the blade longitudinal direction. Even if the groove 14 has a concave shape that changes stepwise, when the flow passes over the groove 14, the pulling effect changes in the blade longitudinal direction, and when the flow is discharged from the blade 8c, the flow velocity and wind direction in the blade longitudinal direction. Changes. From this, especially when the blown flow contacts the guide wall 10 in the impeller blowout region E2, the pressure fluctuation is attenuated without reaching at the same time by changing the flow velocity or angle of the blown flow, and the effect of lowering the noise is achieved. Play.
 さらに図17の翼弦線L方向で、翼8cの翼外周端部15aと翼内周側端部15bの間の翼弦中央部15c付近の溝深さhcに対し、前記翼外周端部15aと翼内周側端部15b側の溝深さhtの方が浅くなるように形成してもよい。この場合には、翼負圧面13aに溝14を形成しても、翼8cの肉厚が極端に薄くならなず、成形時の湯周り悪化や組立て時の強度不足が発生せず、生産性を向上できる。 Further, in the direction of the chord line L in FIG. 17, the blade outer peripheral end portion 15a with respect to the groove depth hc near the chord central portion 15c between the blade outer peripheral end portion 15a and the blade inner peripheral end portion 15b of the blade 8c. Alternatively, the groove depth ht on the blade inner peripheral end 15b side may be shallower. In this case, even if the groove 14 is formed on the blade suction surface 13a, the thickness of the blade 8c does not become extremely thin, the hot water circumference at the time of molding does not deteriorate, and the strength at the time of assembly does not occur. Can be improved.
 また、図16のように、翼付け根部8c1と翼長手方向先端部8c2とで溝14の溝幅gや溝深さhを変化させた場合でも、回転軸に垂直な断面での溝14の形状に関しては、実施の形態1と同様である。即ち、平坦部M、溝側部14aの形状、溝側部14aと翼負圧面13aの角部、溝底部14bの形状等を実施の形態1と同様に工夫することで、さらに騒音を低減化でき、効率のよい貫流ファンを得ることができる。 Further, as shown in FIG. 16, even when the groove width g and the groove depth h of the groove 14 are changed between the blade root 8c1 and the blade longitudinal tip 8c2, the groove 14 in the cross section perpendicular to the rotation axis The shape is the same as in the first embodiment. That is, the noise is further reduced by devising the flat part M, the shape of the groove side part 14a, the corners of the groove side part 14a and the blade suction surface 13a, the shape of the groove bottom part 14b, and the like as in the first embodiment. And an efficient once-through fan can be obtained.
 また、図18は本実施の形態の貫流ファンの別の構成例を示すもので、1枚の翼8cを示す正面図である。この構成では、翼負圧面13aの翼外周側端部15aのある翼外周側のみに、例えば3本の溝14を設けている。一本の溝14の形状は図17と同様である。
 このように翼外周側のみに設けた構成では、吸込領域E1で剥離の最初となる翼外周側端部15aで溝14の引き寄せ効果が得られるので、吸込領域E1で剥離を抑制でき、安定した流れとすることで吹出領域E2での剥離防止ができ、静粛で省エネルギー化できる貫流ファンが得られる。
 また、翼外周側端部15a側に設けると共に、翼内周側端部15b側に複数本溝14を設けてもよい。即ち、翼8cの中央部分には設けずに、翼外周側と翼内周側にそれぞれ複数本の溝14を設けてもよい。翼内周側端部15b側に溝14を設けた構成では、特に吹出領域E2での剥離を抑制する効果が得られる。翼外周側端部15a側と翼内周側端部15b側の少なくともどちらか一方の翼負圧面13aに回転軸方向AXに伸びる複数の溝14を設けることで、ある程度の引き寄せ効果が得られる。
FIG. 18 shows another configuration example of the cross-flow fan according to the present embodiment, and is a front view showing one blade 8c. In this configuration, for example, three grooves 14 are provided only on the blade outer peripheral side where the blade outer peripheral side end portion 15a of the blade suction surface 13a exists. The shape of one groove 14 is the same as in FIG.
Thus, in the structure provided only on the blade outer peripheral side, the pulling effect of the groove 14 is obtained at the blade outer peripheral side end portion 15a which is the first separation in the suction region E1, so that the separation can be suppressed and stabilized in the suction region E1. By making it flow, separation in the blowing region E2 can be prevented, and a once-through fan that can be quiet and save energy can be obtained.
Further, a plurality of grooves 14 may be provided on the blade outer peripheral side end portion 15b side and at the blade inner peripheral side end portion 15b side. That is, a plurality of grooves 14 may be provided on the blade outer peripheral side and the blade inner peripheral side, respectively, without being provided in the central portion of the blade 8c. With the configuration in which the groove 14 is provided on the blade inner peripheral side end portion 15b side, an effect of suppressing the separation particularly in the blowing region E2 is obtained. By providing a plurality of grooves 14 extending in the rotational axis direction AX on at least one of the blade outer peripheral end portion 15a side and the blade inner peripheral end portion 15b side, a certain pulling effect can be obtained.
 実施の形態1でも述べたが、貫流ファン8を搭載する装置の構成によって、吸込領域E1で流れが剥離しやすい場合には、吸込領域E1で流れの上流側となる翼外周側端部15aの近傍に溝14を設けると効果的である。また、吹出領域E2で流れが剥離しやすい場合には、吹出領域E2で流れの上流側となる翼内周側端部15bの近傍に溝14を設けると効果的である。
 ただし、図8及び図9で示したように、回転軸に垂直な断面で、翼負圧面13aの翼外周側端部15aから翼内周側端部15bの全面に溝14を設けると、翼負圧面13aのどこで剥離が起ころうとしてもこれを防止できるので、さらに効果的である。
As described in the first embodiment, when the flow is easily separated in the suction region E1 due to the configuration of the device in which the cross-flow fan 8 is mounted, the blade outer peripheral end 15a that is the upstream side of the flow in the suction region E1. It is effective to provide the groove 14 in the vicinity. Further, in the case where the flow is easily separated in the blowing region E2, it is effective to provide the groove 14 in the vicinity of the blade inner peripheral end portion 15b which is the upstream side of the flow in the blowing region E2.
However, as shown in FIG. 8 and FIG. 9, if the groove 14 is provided on the entire surface from the blade outer peripheral end 15 a to the blade inner peripheral end 15 b of the blade negative pressure surface 13 a in a cross section perpendicular to the rotation axis, the blade This is more effective because it can be prevented where peeling occurs on the negative pressure surface 13a.
 上記に示した翼負圧面13aに設けた溝14は、翼付け根部8c1から翼長手方向先端部8c2まで設け、溝14の長さはすべて同じように形成していた。ここで、溝14の長さを可変にした構成例について説明する。図19は本実施の形態の貫流ファンの別の構成例を示すもので、1枚の翼8cを示す正面図である。この構成では、翼負圧面13aの翼付け根部8c1には設けずに翼長手方向先端部8c2側に複数の溝14を設けている。一本の溝14の形状は図15と同様であり、翼付け根部8c1から翼長手方向先端部8c2に向かって、溝14の溝深さh及び溝幅gの少なくともいずれか一方が大きくなるように形成する。 The groove 14 provided on the blade suction surface 13a described above was provided from the blade root 8c1 to the blade longitudinal tip 8c2, and the length of the groove 14 was all the same. Here, a configuration example in which the length of the groove 14 is variable will be described. FIG. 19 shows another configuration example of the cross-flow fan according to the present embodiment, and is a front view showing one blade 8c. In this configuration, a plurality of grooves 14 are provided on the blade longitudinal tip 8c2 side without being provided on the blade root 8c1 of the blade suction surface 13a. The shape of one groove 14 is the same as that in FIG. 15, and at least one of the groove depth h and the groove width g of the groove 14 increases from the blade root 8c1 toward the blade longitudinal tip 8c2. To form.
 翼8cが先細り形状の場合、翼長手方向先端部8c2側は、翼厚が薄く、翼弦長さL1が短い。このため、翼付け根部8c1側に比べ、翼負圧面13aと隣り合う翼の翼圧力面13bとの間隔が広く剥離しやすい。そこで、少なくとも翼長手方向先端部8c2側に溝14を形成することで、溝14での負圧による引き寄せ効果によって剥離を抑制でき、低騒音化を図ることができる。 When the blade 8c has a tapered shape, the blade longitudinal direction tip 8c2 side has a thin blade thickness and a short chord length L1. For this reason, compared with the blade root 8c1 side, the space between the blade suction surface 13a and the blade pressure surface 13b of the adjacent blade is wide and easily peeled off. Therefore, by forming the groove 14 at least on the blade longitudinal tip 8c2 side, peeling can be suppressed by the pulling effect due to the negative pressure in the groove 14, and noise can be reduced.
 さらに、翼負圧面13aに形成される複数の溝14は、翼8cの翼長手方向で長さJが徐々に変化するように形成する。複数の溝14の翼付け根部8c1側の端部を溝側端部14cとし、複数の溝14での溝側端部14cを、羽根車回転軸に対し斜めになるように溝14を形成しているので、溝14の翼長手方向の長さJは、リング8bの外周方向に沿って徐々に増加するように変化する。図19に示す構成では、翼外周側端部15aから翼内周側端部15bに向かって溝14の長さJが徐々に長くなるように斜めに形成している。 Furthermore, the plurality of grooves 14 formed on the blade suction surface 13a are formed so that the length J gradually changes in the blade longitudinal direction of the blade 8c. The end of the plurality of grooves 14 on the blade root 8c1 side is defined as a groove side end 14c, and the grooves 14 are formed so that the groove side ends 14c of the plurality of grooves 14 are inclined with respect to the impeller rotating shaft. Therefore, the length J of the groove 14 in the blade longitudinal direction of the groove 14 changes so as to gradually increase along the outer peripheral direction of the ring 8b. In the configuration shown in FIG. 19, the groove 14 is formed obliquely so that the length J of the groove 14 gradually increases from the blade outer peripheral end 15 a toward the blade inner peripheral end 15 b.
 翼弦線方向の溝14の数が翼長手方向の位置で異なるため、吸込領域E1では図7に示した空気流れが翼長手方向の位置で異なることになる。貫流ファンを例えば空気調和機に搭載した場合、翼長手方向で抵抗体などの影響で吸込領域E1において吸込流れが偏流することがある。吸込流れが偏流していても、図19に示す構成では、翼長手方向でより滑らかに引き寄せ効果が変化する。このため、風速分布が均一化でき、翼表面で局所的に速度が増加するのを抑制でき、流れを安定化して低騒音化を図ることができる。 Since the number of grooves 14 in the chord line direction differs depending on the position in the blade longitudinal direction, in the suction region E1, the air flow shown in FIG. 7 varies depending on the position in the blade longitudinal direction. When the cross-flow fan is mounted on, for example, an air conditioner, the suction flow may drift in the suction region E1 due to the influence of a resistor or the like in the blade longitudinal direction. Even if the suction flow is uneven, the drawing effect changes more smoothly in the blade longitudinal direction in the configuration shown in FIG. For this reason, the wind speed distribution can be made uniform, the increase in speed locally on the blade surface can be suppressed, the flow can be stabilized, and the noise can be reduced.
 また、図20は本実施の形態の貫流ファンの別の構成例を示すもので、1枚の翼8cを示す正面図である。この構成例では、翼外周側端部15aから翼内周側端部15bに向かって溝14の長さJを徐々に短くした構成である。このような構成の溝14でも、図19と同様、翼長手方向で抵抗体などの影響で吸込領域E1において吸込流れが偏流していても、翼長手方向でより滑らかに引き寄せ効果が変化する。このため、風速分布が均一化でき、翼表面で局所的に速度が増加するのを抑制でき、安定した流れを実現して低騒音化を図ることができる。 FIG. 20 shows another configuration example of the cross-flow fan according to the present embodiment, and is a front view showing one blade 8c. In this configuration example, the length J of the groove 14 is gradually shortened from the blade outer peripheral end 15a toward the blade inner peripheral end 15b. Even in the groove 14 having such a configuration, the drawing effect changes more smoothly in the longitudinal direction of the blade even if the suction flow is deviated in the suction region E1 due to the influence of a resistor or the like in the longitudinal direction of the blade, as in FIG. For this reason, the wind speed distribution can be made uniform, the increase in speed locally on the blade surface can be suppressed, a stable flow can be realized, and the noise can be reduced.
 さらに、図19及び図20に示したような構成では、ガイドウォール10に接する時の流速や角度の変化が翼長手方向で滑らか変化し、圧力変動が減衰しさらに低騒音化が図れる。 Further, in the configuration as shown in FIGS. 19 and 20, the change in flow velocity and angle when contacting the guide wall 10 changes smoothly in the longitudinal direction of the blade, the pressure fluctuation is attenuated, and further noise reduction can be achieved.
 また、図21にさらに別の構成例を示す。翼外周側端部15aから翼内周側端部15bに向かって中央部付近まで溝14の長さJは徐々に延び、中央部付近から翼内周側端部15bに向かって徐々に短くなるように構成したものである。このような構成では、翼長手方向で抵抗体などの影響で吸込領域E1において吸込流れが偏流していても、翼長手方向でより滑らかに引き寄せ効果が変化する。このため、風速分布が均一化でき、翼表面で局所的に流れの速度が増加するのを抑制でき低騒音化ができる。また吹出側領域E2では、吹出流れが翼長手方向でなめらかに変化し、ガイドウォール10に接する時の流速や角度が滑らかに変化する。このため、圧力変動が減衰し、さらに低騒音化が図れる。 FIG. 21 shows still another configuration example. The length J of the groove 14 gradually extends from the blade outer peripheral end 15a toward the blade inner peripheral end 15b to the vicinity of the central portion, and gradually decreases from near the central portion toward the blade inner peripheral end 15b. It is comprised as follows. In such a configuration, even if the suction flow is drifted in the suction region E1 due to the influence of a resistor or the like in the blade longitudinal direction, the drawing effect changes more smoothly in the blade longitudinal direction. For this reason, the wind speed distribution can be made uniform, the increase in the flow velocity locally on the blade surface can be suppressed, and the noise can be reduced. Further, in the blowing side region E2, the blowing flow changes smoothly in the blade longitudinal direction, and the flow velocity and angle when contacting the guide wall 10 change smoothly. For this reason, pressure fluctuations are attenuated, and noise can be further reduced.
 さらに、図21の構成では、翼外周側端部15a及び翼内周側端部15bの翼厚が薄い部分は溝14の長さを短くし、翼弦線L方向で中央部付近の翼厚が厚い部分は溝14の長さを長くしている。このため、翼8c全体の強度が確保でき、羽根車単体8d同士を超音波溶着などによって固着するときの座屈を防止できる。
 その結果、貫流ファンは、さらに低騒音化できると共に羽根車の組立て時の強度を確保できるため組立て損失がなく、この貫流ファンを搭載することで、静粛で生産性のよい空気調和機が得られる。
Further, in the configuration shown in FIG. 21, the blade outer peripheral end 15a and the blade inner peripheral end 15b are thin in the portion where the thickness of the groove 14 is shortened, and the blade thickness near the center in the chord line L direction. The thick part has the length of the groove 14 increased. For this reason, the intensity | strength of the whole wing | blade 8c can be ensured and the buckling at the time of adhering the impeller single-piece | unit 8d by ultrasonic welding etc. can be prevented.
As a result, the cross-flow fan can further reduce noise and secure the strength when assembling the impeller, so there is no assembly loss. By installing this cross-flow fan, a quiet and productive air conditioner can be obtained. .
 また、図22にさらに別の構成例を示す。この構成は、翼負圧面13aに形成する複数の溝14の翼長手方向長さJを不規則に変化させたものである。この場合には、翼長手方向の位置によって翼弦線L方向で溝14の数が変化する。このため、吸込領域E1で偏流が生じ、翼長手方向で微小に剥離が生じようとしても、近傍の流れで拡散される。そして、風速分布を均一化でき、低騒音化される。
 また、貫流ファンの上流側で、例えばフィルタ5でホコリが堆積することなどによって偏流が生じても、剥離しようとするのを防止でき、吸込流れを安定化できる。さらに、吹出領域E2においても同様であり、吹出流れが翼長手方向で不規則に変化し、ガイドウォール10に接する時の流速や角度が不規則に変化する。このため、圧力変動が不規則に減衰し、低騒音化が図れる。
 翼負圧面13aに設ける凹状の溝14は、貫流ファンを動作させる状況に応じて剥離が生じると考えられる箇所に設けると、効果的である。
FIG. 22 shows still another configuration example. In this configuration, the blade length direction J of the plurality of grooves 14 formed on the blade suction surface 13a is irregularly changed. In this case, the number of grooves 14 varies in the chord line L direction depending on the position in the blade longitudinal direction. For this reason, even if drift occurs in the suction region E1 and minute separation occurs in the longitudinal direction of the blade, it is diffused by the flow in the vicinity. In addition, the wind speed distribution can be made uniform and the noise can be reduced.
Further, even if a drift occurs due to dust accumulated on the filter 5 on the upstream side of the cross-flow fan, it is possible to prevent separation and to stabilize the suction flow. Further, the same applies to the blowing region E2, and the blowing flow changes irregularly in the blade longitudinal direction, and the flow velocity and angle when contacting the guide wall 10 change irregularly. For this reason, pressure fluctuations are irregularly attenuated, and noise can be reduced.
It is effective to provide the concave groove 14 provided on the blade negative pressure surface 13a at a location where peeling is considered to occur depending on the situation where the cross-flow fan is operated.
 以上のように、中央部に回転中心が位置する円板状の支持板8b、及び前記支持板8bの外周に沿って配置され回転軸方向に伸びると共に両端を前記支持板8bに支持される複数の翼8cを有する羽根車単体8dと、前記羽根車単体8dを前記回転軸方向に複数固着してなる羽根車8aと、を備え、前記翼8cの一端部の、前記支持板8bに接続する接続部8c1における回転軸に垂直な断面形状を、前記翼8cの他端部の、前記支持板8bに接続する接続部8c2における前記回転軸に垂直な断面形状よりも大きくすると共に、前記翼8cの回転方向に対して後面となる翼負圧面13aに前記回転軸方向に伸びる複数の凹状の溝14を設けたことにより、生産性を保持して低騒音化できる貫流ファンを得ることができる。また、吹出流れが不安定になることで生じる貫流ファンへの逆流を防止できる。さらに、通風抵抗が増加しても翼負圧面13aで流れが剥離しにくく、吹出流れも安定する。 As described above, the disk-shaped support plate 8b whose center of rotation is located at the center, and the plurality of support plates 8b that are arranged along the outer periphery of the support plate 8b and extend in the direction of the rotation axis and are supported by the support plate 8b at both ends. An impeller 8d having a plurality of blades 8c and an impeller 8a formed by fixing a plurality of the impellers 8d in the direction of the rotation axis, and connected to the support plate 8b at one end of the blade 8c. The cross-sectional shape perpendicular to the rotational axis in the connection portion 8c1 is made larger than the cross-sectional shape perpendicular to the rotational axis in the connection portion 8c2 connected to the support plate 8b at the other end of the blade 8c, and the blade 8c. By providing a plurality of concave grooves 14 extending in the direction of the rotation axis on the blade negative pressure surface 13a, which is the rear surface with respect to the rotation direction, it is possible to obtain a cross-flow fan capable of maintaining productivity and reducing noise. Further, it is possible to prevent the backflow to the once-through fan caused by the unstable blowout flow. Furthermore, even if the ventilation resistance increases, the flow is hardly separated at the blade negative pressure surface 13a, and the blowing flow is also stabilized.
 なお、図18~図22のそれぞれにおいて、溝14の溝幅g及び溝深さhの少なくとも一方を翼付け根部8c1側よりも翼長手方向先端部8c2で大きくなるように構成したものについて述べたが、これに限るものではない。樹脂成形で離型方向を羽根車回転方向ではなく他の方向になるようにすれば、溝14の溝幅g及び溝深さhを同一にした溝14としてもよい。さらに、樹脂成形で離型方向を羽根車回転方向とすることを考慮して翼長手方向先端部8c2を基準として溝長さを変化させたが、離型方向を他の方向にすれば、翼付け根部8c1を基準としたり、翼長手方向先端部8c2と翼付け根部8c1の間のいずれかを基準としたり、さらにはもっと不規則な位置及び長さの溝を設けてもよい。翼負圧面13aで、少なくとも回転軸方向AXに伸びて構成され、隣合う溝14との間に平坦部Mを有するように所定の間隔離して設けるようにすれば、剥離しようとする流れを溝14によって翼負圧面13aに引き寄せて安定した流れとすることができる。 In each of FIGS. 18 to 22, a configuration in which at least one of the groove width g and groove depth h of the groove 14 is larger at the blade longitudinal tip 8c2 than at the blade root 8c1 is described. However, it is not limited to this. If the mold release direction is not the impeller rotation direction but a different direction by resin molding, the groove 14 may have the same groove width g and groove depth h. Furthermore, the groove length was changed with the blade longitudinal direction tip 8c2 as a reference in consideration of setting the mold release direction as the impeller rotation direction in resin molding, but if the mold release direction is changed to another direction, the blade A groove with a more irregular position and length may be provided with the base portion 8c1 as a reference, or between the blade longitudinal direction tip portion 8c2 and the blade root portion 8c1 as a reference. If the blade suction surface 13a is configured to extend at least in the rotation axis direction AX and is provided with a flat portion M between the adjacent grooves 14, the flow is to be separated. 14, the air can be drawn toward the blade suction surface 13a to obtain a stable flow.
 また、図16~図22のそれぞれのように、溝幅Gを変化させたり、溝深さhを変化させたり、溝長さJを変化させるような溝14の構成は、実施の形態1の翼8cの形状が先細りでないものに適用してもよく、同様の効果を奏する。また、同様に、実施の形態2に適用しても、同様の効果を奏する。 Further, as shown in FIGS. 16 to 22, the configuration of the groove 14 that changes the groove width G, changes the groove depth h, or changes the groove length J is the same as that of the first embodiment. The blade 8c may be applied to a shape that is not tapered, and the same effect is obtained. Similarly, the same effects can be obtained when applied to the second embodiment.
 特に空気調和機では図2に示したように、翼8cが熱交換器7側の羽根車吸込領域E1を通過する時、空気調和機本体上方のみの吸込口2、電気集塵器6、フィルタ5など大きさや通風抵抗の異なる複数の抵抗体が不均一に配設されるため、吸込風速にバラツキが生じる。また羽根車吸込側に配置されるフィルタへのホコリ付着等により通風抵抗が増加した時の翼に対する流れの迎角変化に対し剥離しやすく、吹出流れが不安定となりファンへ逆流することで、冷房運転時羽根車が結露し外部に結露水を放出することで床が湿ってしまう可能性がある。そこで、実施の形態1~実施の形態3のいずれかの貫流ファンを搭載することで、安定した流れを得ることができ、低騒音化と高効率化が図れ、さらに通風抵抗の変化に対して剥離防止、吹出流れの不安定によるファンへの逆流を防止して、静粛で高品質な空気調和機が得られる。 Particularly, in the air conditioner, as shown in FIG. 2, when the blade 8c passes through the impeller suction region E1 on the heat exchanger 7 side, the suction port 2, the electrostatic precipitator 6, and the filter only above the air conditioner main body. Since a plurality of resistors having different sizes and ventilation resistances such as 5 are arranged unevenly, the suction air speed varies. In addition, when the airflow resistance increases due to dust adhering to the filter arranged on the impeller suction side, it is easy to peel off against the change in the angle of attack of the flow with respect to the blade, and the blowout flow becomes unstable and backflows to the fan. There is a possibility that the floor gets wet when the impeller condenses during operation and releases condensed water to the outside. Therefore, by installing the cross-flow fan according to any of the first to third embodiments, a stable flow can be obtained, noise reduction and high efficiency can be achieved, and a change in ventilation resistance can be prevented. Preventing separation and preventing backflow to the fan due to instability of the blowout flow, resulting in a quiet and high quality air conditioner.
 このように、実施の形態1~実施の形態3によれば、貫流ファンの羽根車の翼負圧面13aに回転軸方向AXに伸びる複数の溝を形成したので、安定した空気の流れを実現でき、聴感が良く低騒音で静粛で、高効率で省エネルギーな貫流ファンを得ることができる。また、この貫流ファンを搭載することで安定した空気の流れを実現して、冷房運転時、羽根車が結露し外部に結露水を放出することを防止でき、高品質な空気調和機を得ることができる。 As described above, according to the first to third embodiments, since the plurality of grooves extending in the rotation axis direction AX are formed on the blade negative pressure surface 13a of the impeller of the once-through fan, a stable air flow can be realized. Therefore, it is possible to obtain a cross-flow fan that is audible, quiet, quiet, highly efficient and energy-saving. In addition, by installing this cross-flow fan, a stable air flow can be realized, and during cooling operation, the impeller can be prevented from dewing and releasing condensed water to the outside, and a high-quality air conditioner can be obtained. Can do.
 また、実施の形態1~実施の形態3では、貫流ファンを例えば空気調和機に搭載した構成例について説明したが、これに限るものではない。例えば、エアーカーテンなど他の装置に搭載される貫流ファンに適用することもできる。騒音を低減化できる貫流ファンを用いることで、これを搭載した装置の騒音を低減できる効果がある。 In the first to third embodiments, the configuration example in which the cross-flow fan is mounted on, for example, an air conditioner has been described. However, the present invention is not limited to this. For example, the present invention can be applied to a cross-flow fan mounted on another device such as an air curtain. By using a cross-flow fan that can reduce noise, there is an effect that the noise of a device equipped with the fan can be reduced.
 1 空気調和機本体
 2 吸込口
 3 吹出口
 7 熱交換器
 8 貫流ファン
 8a 羽根車
 8b 支持板
 8c 翼
 8c1 翼付け根部
 8c2 翼長手方向先端部
 8d 羽根車単体
 9 スタビライザー
 10 ガイドウォール
 12 モータ
 12a モータシャフト
 13a 翼負圧面
 13b 翼圧力面
 14 溝
 14a 溝側部
 14b 溝底部
 14P 仮想交点
 15a 翼外周側端部
 15b 翼内周側端部
 16 固定部
 C 開口部
 E1 吸込領域
 E2 吹出領域
 L 翼弦線
 L1 翼弦線Lの長さ
 L11 翼付け根部8c1の翼弦線長さ
 L12 翼長手方向先端部8c2の翼弦線長さ
 M 平坦部
 ML 平坦部長さ
 O 回転中心
 RO 回転方向
 g 溝幅
 g1 翼付け根部8c1の溝幅
 g2 翼長手方向先端部8c2の溝幅
 h 溝深さ
 h1 翼付け根部8c1の溝深さ
 h2 翼長手方向先端部8c2の溝深さ
 ht 翼外周側端部15a及び翼内周側端部15b近傍の溝深さ
 hc 翼の翼弦線方向中央部分付近の溝深さ
 K 翼圧力面を基準とした翼外周側端部又は翼内周側端部の厚さの等厚線
 tmax 翼の最大厚さ
 tmax1 翼付け根部8c1の最大厚さ
 tmax2 翼長手方向先端部8c2の最大厚さ
DESCRIPTION OF SYMBOLS 1 Air conditioner main body 2 Suction port 3 Outlet 7 Heat exchanger 8 Cross-flow fan 8a Impeller 8b Support plate 8c Wing 8c1 Wing root part 8c2 Wing longitudinal direction tip 8d Impeller simple substance 9 Stabilizer 10 Guide wall 12 Motor 12a Motor shaft 13a Blade negative pressure surface 13b Blade pressure surface 14 Groove 14a Groove side portion 14b Groove bottom portion 14P Virtual intersection 15a Blade outer peripheral end portion 15b Blade inner peripheral end portion 16 Fixed portion C Opening portion E1 Suction region E2 Outlet region L Blade chord L1 Length of chord line L11 Length of chord line of blade root portion 8c1 L12 Length of chord line of tip portion 8c2 in blade longitudinal direction M Flat portion ML Flat portion length O Center of rotation RO Rotation direction g Groove width g1 Blade root Groove width of portion 8c1 g2 Groove width of blade longitudinal tip 8c2 h Groove depth h1 Groove depth of blade root 8c1 h2 Blade longitudinal tip 8 No. 2 groove depth ht Groove depth in the vicinity of the blade outer peripheral end 15a and blade inner peripheral end 15b hc Groove depth in the vicinity of the central portion in the chord line direction of the blade K Blade outer peripheral side with reference to the blade pressure surface Contour line of thickness of end or blade inner circumferential side end tmax Maximum thickness of blade tmax1 Maximum thickness of blade root 8c1 tmax2 Maximum thickness of blade longitudinal tip 8c2

Claims (15)

  1. 中央部に回転中心が位置する円板状の支持板、及び前記支持板の外周に沿って配置され回転軸方向に伸びると共に両端を前記支持板に支持される複数の翼を有する羽根車単体と、
    前記羽根車単体を前記回転軸方向に複数固着してなる羽根車と、前記翼の回転方向に対して後面となる翼負圧面に設けられ前記回転軸方向に伸びる複数の凹状の溝と、を備え、
    隣合う溝との間に平坦部を有するように前記溝を所定の間隔離して設けたことを特徴とする貫流ファン。
    A disc-shaped support plate having a center of rotation located at the center, and an impeller having a plurality of blades disposed along the outer periphery of the support plate and extending in the rotation axis direction and supported at both ends by the support plate; ,
    An impeller formed by fixing a plurality of impellers alone in the direction of the rotation axis, and a plurality of concave grooves provided on a blade suction surface that is a rear surface with respect to the rotation direction of the blades and extending in the direction of the rotation axis. Prepared,
    A once-through fan, wherein the groove is provided with a predetermined interval so as to have a flat portion between adjacent grooves.
  2. 中央部に回転中心が位置する円板状の支持板、及び前記支持板の外周に沿って配置され回転軸方向に伸びると共に両端を前記支持板に支持される複数の翼を有する羽根車単体と、
    前記羽根車単体を前記回転軸方向に複数固着してなる羽根車と、前記羽根車の端部に位置する前記支持板にモータシャフトが固定されて前記羽根車を回転駆動するモータと、
    前記羽根車単体の内側に位置する前記モータシャフトとの固定部と、前記固定部に固定具を挿入しうるように前記羽根車単体の前記翼の間隔を部分的に広くしてなる開口部と、を備え
    、少なくとも前記羽根車の回転方向側で前記開口部に隣接する翼の、前記回転方向に対して後面となる翼負圧面に前記回転軸方向に伸びる複数の凹状の溝を設けたことを特徴とする貫流ファン。
    A disc-shaped support plate having a center of rotation located at the center, and an impeller having a plurality of blades disposed along the outer periphery of the support plate and extending in the rotation axis direction and supported at both ends by the support plate; ,
    An impeller formed by fixing a plurality of impellers alone in the direction of the rotation axis, a motor that rotates the impeller by fixing a motor shaft to the support plate located at an end of the impeller, and
    A fixed portion with the motor shaft located inside the impeller alone, and an opening that partially widens the blades of the impeller so that a fixture can be inserted into the fixed portion. And a plurality of concave grooves extending in the rotational axis direction are provided on the blade suction surface, which is the rear surface of the blade adjacent to the opening on the rotational direction side of the impeller. Cross-flow fan characterized by
  3. 中央部に回転中心が位置する円板状の支持板、及び前記支持板の外周に沿って配置され回転軸方向に伸びると共に両端を前記支持板に支持される複数の翼を有する羽根車単体と、
    前記羽根車単体を前記回転軸方向に複数固着してなる羽根車と、を備え、
    前記翼の一端部の、前記支持板に接続する接続部における回転軸に垂直な断面形状を、前記翼の他端部の前記支持板に接続する接続部における前記回転軸に垂直な断面形状よりも大きくすると共に、前記翼の回転方向に対して後面となる翼負圧面に前記回転軸方向に伸びる複数の凹状の溝を設けたことを特徴とする貫流ファン。
    A disc-shaped support plate having a center of rotation located at the center, and an impeller having a plurality of blades disposed along the outer periphery of the support plate and extending in the rotation axis direction and supported at both ends by the support plate; ,
    An impeller formed by fixing a plurality of impellers alone in the direction of the rotation axis,
    From the cross-sectional shape perpendicular to the rotation axis at the connection portion connected to the support plate at the other end of the blade, the cross-sectional shape perpendicular to the rotation axis at the connection portion connected to the support plate at one end of the blade. And a plurality of concave grooves extending in the direction of the rotation axis are provided on the blade suction surface which is the rear surface of the blade in the rotation direction.
  4. 前記回転軸方向に伸びる前記溝を、前記翼負圧面の少なくとも前記他端部の前記接続部側に設けたことを特徴とする請求項3記載の貫流ファン。 The cross-flow fan according to claim 3, wherein the groove extending in the rotation axis direction is provided on at least the other end portion of the blade suction surface on the connection portion side.
  5. 前記回転軸に垂直な断面で、隣合う溝との間に平坦部を有するように前記溝を所定の間隔離して設けたことを特徴とする請求項2または請求項3または請求項4記載の貫流ファン。 5. The groove according to claim 2, wherein the groove is provided at a predetermined interval so as to have a flat portion between adjacent grooves in a cross section perpendicular to the rotation axis. Cross-flow fan.
  6. 前記回転軸に垂直な断面で、隣合う前記溝の間隔を、前記凹状の溝の溝深さよりも大きくしたことを特徴とする請求項1または請求項5記載の貫流ファン。 The cross-flow fan according to claim 1 or 5, wherein, in a cross section perpendicular to the rotation axis, an interval between the adjacent grooves is larger than a groove depth of the concave groove.
  7. 前記回転軸に垂直な断面で、向かい合う溝側部と溝底部とで前記凹状の溝を構成し、前記溝側部と前記翼負圧面との接続部を丸みを有する形状としたことを特徴とする請求項1乃至請求項6のいずれか1項に記載の貫流ファン。 In the cross section perpendicular to the rotation axis, the groove side portion and the groove bottom portion facing each other constitute the concave groove, and the connection portion between the groove side portion and the blade suction surface is rounded. The once-through fan according to any one of claims 1 to 6.
  8. 前記回転軸に垂直な断面で、向かい合う溝側部と溝底部とで前記凹状の溝を構成し、前記溝底部を丸みを有する形状とすると共に、前記溝底部に連続する溝側部を前記翼負圧面に向かって広がりを有する形状としたことを特徴とする請求項1乃至請求項7のいずれか1項に記載の貫流ファン。 In the cross section perpendicular to the rotation axis, the groove side portion and the groove bottom portion facing each other constitute the concave groove, the groove bottom portion is rounded, and the groove side portion continuous to the groove bottom portion is the wing. The cross-flow fan according to any one of claims 1 to 7, wherein the cross-flow fan has a shape that expands toward the suction surface.
  9. 前記回転軸に垂直な断面で、前記複数の翼は、前記支持板の外周側に位置する翼外周側端部と前記支持板の内周側に位置する翼内周側端部との間で略円弧状であると共に、前記翼外周側端部及び前記翼内周側端部における翼の厚さよりも前記翼外周側端部と前記翼内周側端部の間の中央部分での翼の厚さを大きくし、少なくとも前記翼の前記回転方向に対して前面となる翼圧力面から前記翼外周側端部または前記翼内周側端部における翼の厚さだけ離して、前記翼負圧面に前記凹状の溝を設けたことを特徴とする請求項1乃至請求項8のいずれか1項に記載の貫流ファン。 In the cross section perpendicular to the rotation axis, the plurality of blades are between a blade outer peripheral side end located on the outer peripheral side of the support plate and a blade inner peripheral end located on the inner peripheral side of the support plate. The blade is substantially arc-shaped and has a blade at a central portion between the blade outer peripheral end and the blade inner peripheral end rather than the blade thickness at the blade outer peripheral end and the blade inner peripheral end. The blade suction surface is increased in thickness by being separated by at least the blade thickness at the blade outer peripheral end or the blade inner peripheral end from the blade pressure surface that is the front surface in the rotational direction of the blade. The cross-flow fan according to any one of claims 1 to 8, wherein the concave groove is provided.
  10. 前記回転軸に垂直な断面で、前記複数の翼は、前記支持板の外周側に位置する翼外周側端部と前記支持板の内周側に位置する翼内周側端部との間で略円弧状とし、前記複数の溝を前記翼外周側端部と前記翼内周側端部の少なくとも一方の端部近傍に設けたことを特徴とする請求項1乃至請求項9のいずれか1項に記載の貫流ファン。 In the cross section perpendicular to the rotation axis, the plurality of blades are between a blade outer peripheral side end located on the outer peripheral side of the support plate and a blade inner peripheral end located on the inner peripheral side of the support plate. 10. The structure according to claim 1, wherein the plurality of grooves are provided in the vicinity of at least one end of the blade outer peripheral side end and the blade inner peripheral side end. The once-through fan according to item.
  11. 前記回転軸に垂直な断面で、前記凹状の溝の溝幅と溝深さの少なくとも一方を、前記回転軸方向で増加または減少させたことを特徴とする請求項1乃至請求項10のいずれか1項に記載の貫流ファン。 The cross-section perpendicular to the rotation axis, at least one of the groove width and the groove depth of the concave groove is increased or decreased in the rotation axis direction. The once-through fan according to item 1.
  12. 前記翼負圧面に形成される複数の前記溝のうち、少なくとも一部の溝の前記回転軸方向の長さを不規則に変化させたことを特徴とする請求項1乃至請求項11のいずれか1項に記載の貫流ファン。 12. The length of the rotation axis direction of at least a part of the plurality of grooves formed on the blade suction surface is irregularly changed. The once-through fan according to item 1.
  13. 前記翼負圧面に形成される複数の前記溝のうち、少なくとも一部の溝の前記回転軸方向の長さを、前記支持板の外周方向に沿って徐々に増加又は減少するように変化させたことを特徴とする請求項1乃至請求項11のいずれか1項に記載の貫流ファン。 Of the plurality of grooves formed on the blade suction surface, the length in the rotation axis direction of at least some of the grooves is changed so as to gradually increase or decrease along the outer circumferential direction of the support plate. The cross-flow fan according to any one of claims 1 to 11, wherein the cross-flow fan is provided.
  14. 前記回転軸に垂直な断面で、前記複数の翼は、前記支持板の外周側に位置する翼外周側端部と前記支持板の内周側に位置する翼内周側端部との間で略円弧状とし、前記翼負圧面に形成された複数の前記凹状の溝の、前記翼外周側端部と前記翼内周側端部の間の中央部分における溝深さを、前記翼外周側端部と前記翼内周側端部近傍における溝深さよりも大きくしたことを特徴とする請求項1乃至請求項13のいずれか1項に記載の貫流ファン。 In the cross section perpendicular to the rotation axis, the plurality of blades are between a blade outer peripheral side end located on the outer peripheral side of the support plate and a blade inner peripheral end located on the inner peripheral side of the support plate. The groove depth in the central portion between the blade outer peripheral side end and the blade inner peripheral end of the plurality of concave grooves formed on the blade suction surface is a substantially arc shape, The cross-flow fan according to any one of claims 1 to 13, wherein the cross-sectional fan is larger than a groove depth in the vicinity of the end portion and the end portion on the blade inner peripheral side.
  15. 請求項1乃至請求項14の少なくともいずれか1項に記載の貫流ファンと、前記貫流ファンで形成される吸込側流路に配設され、吸い込んだ空気と熱交換する熱交換器と、を備えたことを特徴とする空気調和機。 A cross-flow fan according to claim 1, and a heat exchanger disposed in a suction-side flow path formed by the cross-flow fan and exchanging heat with the sucked air. An air conditioner characterized by that.
PCT/JP2010/001945 2010-03-18 2010-03-18 Cross-flow fan and air conditioner WO2011114375A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080065532.3A CN102812253B (en) 2010-03-18 2010-03-18 Cross flow fan and air conditioner
EP10847797.7A EP2549114B1 (en) 2010-03-18 2010-03-18 Cross-flow fan and air conditioner
ES10847797.7T ES2690196T3 (en) 2010-03-18 2010-03-18 Tangential flow fan and air conditioner
PCT/JP2010/001945 WO2011114375A1 (en) 2010-03-18 2010-03-18 Cross-flow fan and air conditioner
AU2010348684A AU2010348684B2 (en) 2010-03-18 2010-03-18 Cross-flow fan and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001945 WO2011114375A1 (en) 2010-03-18 2010-03-18 Cross-flow fan and air conditioner

Publications (1)

Publication Number Publication Date
WO2011114375A1 true WO2011114375A1 (en) 2011-09-22

Family

ID=44648514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001945 WO2011114375A1 (en) 2010-03-18 2010-03-18 Cross-flow fan and air conditioner

Country Status (5)

Country Link
EP (1) EP2549114B1 (en)
CN (1) CN102812253B (en)
AU (1) AU2010348684B2 (en)
ES (1) ES2690196T3 (en)
WO (1) WO2011114375A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108087329A (en) * 2017-09-08 2018-05-29 广东顺威精密塑料股份有限公司 A kind of noise reduction through-flow fan blade

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179819B2 (en) * 2012-12-21 2017-08-16 パナソニックIpマネジメント株式会社 Air conditioner
WO2015146371A1 (en) * 2014-03-25 2015-10-01 京セラドキュメントソリューションズ株式会社 Cross-flow fan, electronic device, and impeller
CN107401517B (en) * 2016-05-20 2023-12-05 阿美德格工业技术(上海)有限公司 Air path structure of air flow device and air flow device
CN108612668A (en) * 2016-12-09 2018-10-02 镇江立中机械设备有限公司 Low pressure centrifugal fan
CN106640752B (en) * 2016-12-19 2023-08-18 宁波方太厨具有限公司 Kitchen ventilator impeller
CN109538514A (en) * 2019-01-21 2019-03-29 湖北工程职业学院 A kind of crossflow fan of damping noise reduction
JP7357054B2 (en) * 2019-07-03 2023-10-05 ギガフォトン株式会社 Laser chamber and electronic device manufacturing method
CN110397606A (en) * 2019-07-09 2019-11-01 京马电机有限公司 A kind of ducting assembly device and its installation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152096U (en) * 1988-04-11 1989-10-19
JPH03210093A (en) 1990-01-11 1991-09-13 Matsushita Electric Ind Co Ltd Cross flow fan
JPH09280196A (en) * 1996-04-11 1997-10-28 Daikin Ind Ltd Blower
JP2007010259A (en) * 2005-07-01 2007-01-18 Hitachi Appliances Inc Air conditioner
JP2009293616A (en) * 2008-05-09 2009-12-17 Daikin Ind Ltd Cross-flow fan and air conditioner equipped with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021931A1 (en) * 1995-12-12 1997-06-19 Roche Ulrich Process for forming a surface for contact with a flowing fluid and body with such surface regions
JP4832498B2 (en) * 2008-11-28 2011-12-07 三菱電機株式会社 Cross-flow fan and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152096U (en) * 1988-04-11 1989-10-19
JPH03210093A (en) 1990-01-11 1991-09-13 Matsushita Electric Ind Co Ltd Cross flow fan
JPH09280196A (en) * 1996-04-11 1997-10-28 Daikin Ind Ltd Blower
JP2007010259A (en) * 2005-07-01 2007-01-18 Hitachi Appliances Inc Air conditioner
JP2009293616A (en) * 2008-05-09 2009-12-17 Daikin Ind Ltd Cross-flow fan and air conditioner equipped with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108087329A (en) * 2017-09-08 2018-05-29 广东顺威精密塑料股份有限公司 A kind of noise reduction through-flow fan blade

Also Published As

Publication number Publication date
AU2010348684B2 (en) 2013-11-07
CN102812253B (en) 2016-08-03
AU2010348684A1 (en) 2012-09-13
CN102812253A (en) 2012-12-05
EP2549114B1 (en) 2018-08-29
ES2690196T3 (en) 2018-11-19
EP2549114A1 (en) 2013-01-23
EP2549114A4 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
WO2011114375A1 (en) Cross-flow fan and air conditioner
JP4840343B2 (en) Cross-flow fan and air conditioner
AU2008330649B2 (en) Centrifugal fan
WO2007114090A1 (en) Multi-blade fan
WO2010104083A1 (en) Crossflow fan and air conditioner provided with same
JP5289554B2 (en) Air conditioner
JP5269060B2 (en) Cross-flow fan and air conditioner indoor unit
TW201200738A (en) Electric blower and electric vacuum cleaner with the same
JP4832498B2 (en) Cross-flow fan and air conditioner
JP5269036B2 (en) Cross-flow fan and air conditioner equipped with the same
JP2008223741A (en) Centrifugal blower
KR20200096721A (en) Fan and air conditioner indoor unit having the same
JP5263335B2 (en) Cross-flow fan and air conditioner
JP5361944B2 (en) Cross-flow fan and air conditioner
JP2004011423A (en) Air flow control structure of air blowing section
WO2009136585A1 (en) Cross‑flow fan and air conditioner equipped with same
JP5631429B2 (en) Air conditioner
JP2001280288A (en) Impeller structure of multiblade blower
JP4872997B2 (en) Blower and air conditioner equipped with the blower
AU2014200103B2 (en) Cross-flow fan and air conditioner
WO2015064617A1 (en) Cross-flow fan and air conditioner
JP5575288B2 (en) Cross-flow fan and air conditioner
JP5264960B2 (en) Cross-flow fan and air conditioner
JP6625213B2 (en) Multi-blade fan and air conditioner
WO2015063851A1 (en) Cross-flow fan and air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065532.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847797

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010348684

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010847797

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010348684

Country of ref document: AU

Date of ref document: 20100318

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004752

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: JP