JP4840343B2 - Cross-flow fan and air conditioner - Google Patents

Cross-flow fan and air conditioner Download PDF

Info

Publication number
JP4840343B2
JP4840343B2 JP2007310773A JP2007310773A JP4840343B2 JP 4840343 B2 JP4840343 B2 JP 4840343B2 JP 2007310773 A JP2007310773 A JP 2007310773A JP 2007310773 A JP2007310773 A JP 2007310773A JP 4840343 B2 JP4840343 B2 JP 4840343B2
Authority
JP
Japan
Prior art keywords
blade
groove
outer peripheral
flow
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007310773A
Other languages
Japanese (ja)
Other versions
JP2009133271A (en
Inventor
尚史 池田
敬英 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007310773A priority Critical patent/JP4840343B2/en
Publication of JP2009133271A publication Critical patent/JP2009133271A/en
Application granted granted Critical
Publication of JP4840343B2 publication Critical patent/JP4840343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、送風手段として用いられる貫流ファン、及び貫流ファンを搭載した空気調和機に関するものである。   The present invention relates to a once-through fan used as a blowing means and an air conditioner equipped with the once-through fan.

従来の空気調和機などに搭載される貫流ファンは、各ブレードの負圧側面の外周側周辺に、回転方向に沿った溝や、小窪み、または小突起を設けたものがあった(例えば、特許文献1参照。)。
また、各ブレードの外周側の先端に、各ブレードの長手方向に間隔をおいて断続的に切欠き状の溝部を設け、この溝部である切欠きの深さを、ブレードにおける溝部との断続箇所の肉厚よりも大きくした貫流ファンもあった(例えば、特許文献2参照。)。
Cross-flow fans mounted on conventional air conditioners and the like have been provided with grooves, small depressions, or small protrusions along the rotation direction around the periphery of the suction side surface of each blade (for example, (See Patent Document 1).
In addition, a notch-shaped groove is intermittently provided at the tip of the outer peripheral side of each blade at intervals in the longitudinal direction of each blade. Some cross-flow fans have a thickness greater than the thickness (see, for example, Patent Document 2).

特開平3−210093号公報(第2〜3頁、第1図)Japanese Patent Laid-Open No. 3-210093 (pages 2 and 3, FIG. 1) 特開平3−249400号公報(第2〜3頁、第1図)JP-A-3-249400 (pages 2 and 3, FIG. 1)

特許文献1に掲載されている貫流ファンは、高い広帯域騒音を発生しているのは吐出部であるとし、翼を通過する流れが後縁部に近づいて剥離する際に生じる圧力変動を、溝や、小窪み、または小突起を形成することで吸収して広帯域騒音を抑制しようとしている。しかし、貫流ファンは一回転する際に、翼での流れの通過方向が羽根車吸込側及び吹出側で正逆反転する。羽根車吸込側では翼の前縁部で剥離が生じる。前記溝、小窪み、小突起が流れに対し前縁部となる場合、即ち羽根車吸込側に翼が位置したときには、小さな溝部への流れの集中による翼長手方向での大きな流速差の生成や、小窪み側面での流れの剥離、小突起による翼長手方向への流れの生成による不安定化により、逆に圧力変動を生じて広帯域騒音が悪化することになる。また、羽根車吸込側に配置されるフィルタへのホコリ付着等により通風抵抗が増加すると、翼に対する流れの迎角変化に対し剥離しやすくなり、吹出流れが不安定となる。さらには吐出流れが不安定になることで吹出側から貫流ファンへの逆流が起こると、冷房運転時などに羽根車に結露して外部に結露水が放出され、空気調和機が設置されている室内の床が湿ってしまう可能性がある。   In the once-through fan disclosed in Patent Document 1, it is assumed that a high-bandwidth noise is generated in the discharge part, and pressure fluctuations that occur when the flow passing through the blade approaches the trailing edge and peels off are Or it is trying to suppress broadband noise by absorbing by forming small depressions or small protrusions. However, when the once-through fan makes one revolution, the flow direction of the flow through the blades is reversed reversely between the impeller suction side and the blowout side. On the impeller suction side, separation occurs at the leading edge of the blade. When the grooves, small depressions, and small projections become the leading edge with respect to the flow, that is, when the blade is located on the impeller suction side, a large flow velocity difference in the longitudinal direction of the blade due to the concentration of the flow in the small groove portion or On the other hand, the flow separation at the side of the small depression and the instability due to the generation of the flow in the longitudinal direction of the blade by the small protrusions cause pressure fluctuations and worsen the broadband noise. Further, when the ventilation resistance increases due to dust adhesion to the filter disposed on the impeller suction side, the air flow becomes unstable due to a change in the angle of attack of the flow with respect to the blade, and the blowout flow becomes unstable. Furthermore, if the discharge flow becomes unstable and a reverse flow from the outlet side to the cross-flow fan occurs, condensation occurs on the impeller during cooling operation, etc., and condensed water is discharged to the outside, and an air conditioner is installed. Indoor floors may get wet.

また、特許文献2に示された貫流ファンでは、羽根車外周側の翼先端部に翼を切り欠いた溝部を形成し、前記溝部に生じる微小な変動流や渦によって、剥離の緩和及び回転音や広帯域騒音の低減を図っている。通常、貫流ファンは、羽根車吸込領域と吹出領域を分離し羽根車内部に生成される循環渦の位置を規定させるスタビライザーを有する。切り欠いた溝部を有する構成では、羽根車が回転してスタビライザーを翼が通過する時、溝部における漏れ流れが大きくなる。即ち、翼外周側先端部に設けられた溝部では、全圧の高い羽根車吹出側から全圧の低い羽根車吸込側への漏れ流れが、翼先端部に溝部がない部分に比べて大きくなる。さらに羽根車吹出側領域でも溝部で翼圧力面から負圧面へ漏れ流れが生じ、損失が高くなる。その結果、同一送風量に対して必要なモータトルクが高くなり、消費電力が増加する。特にフィルタにホコリが付着し通風抵抗が高い状態では顕著となる。   Further, in the once-through fan disclosed in Patent Document 2, a groove portion in which a blade is notched is formed in the blade tip portion on the outer peripheral side of the impeller, and separation fluctuations and rotation noise are generated by minute fluctuation flow and vortex generated in the groove portion. And broadband noise reduction. Usually, the once-through fan has a stabilizer that separates the impeller suction region and the blowout region and defines the position of the circulating vortex generated inside the impeller. In the configuration having the notched groove portion, when the impeller rotates and the blade passes through the stabilizer, the leakage flow in the groove portion increases. That is, in the groove provided at the tip of the blade outer peripheral side, the leakage flow from the impeller outlet side having a high total pressure to the impeller suction side having a low total pressure is larger than that in the portion having no groove at the tip of the blade. . Further, in the impeller outlet side region, a leakage flow occurs from the blade pressure surface to the suction surface at the groove portion, and the loss increases. As a result, the motor torque required for the same amount of air flow increases, and the power consumption increases. This is particularly noticeable when dust is attached to the filter and the ventilation resistance is high.

また、溝部である切り欠きの翼先端部に面する角部が鋭利な形状であり、空気調和機の吹出口から風向ベーンを取り外して容易に手が貫流ファンに届く形態の場合、安全性に問題が生じる。例えば、貫流ファンを雑巾や布で掃除するために翼に触れると、角部に雑巾や布が引っかかり、布が切裂けたり、さらには指をケガする可能性もあった。   Also, if the corners facing the blade tip of the notch, which is a groove, have a sharp shape, and the wind vane is removed from the air conditioner outlet, the hand can easily reach the cross-flow fan. Problems arise. For example, if the cross-flow fan is touched with a wing to clean it with a rag or cloth, the rag or cloth may get caught at the corners, causing the cloth to tear or even injure the finger.

また、貫流ファンの羽根車の材料に翼の強度確保のためガラス繊維を含む熱可塑性樹脂を用いる場合、羽根車表面はガラス繊維により微細な凹凸が生じる。この羽根車表面の凹凸部分に、フィルタ5や電気集塵器6で除去しきれなかった細かなホコリが付着し、カビが発生したり部屋のニオイを吸着してしまう原因となることがあった。従来その対策として、羽根車の材料である熱可塑性樹脂に防カビ材を練り込み成形することもあるが、翼面に微小な凹凸は残るため完全には対策できていなかった。特に、翼面に段差や切欠き部、突起など凹凸面を有する場合、その角部に細かなホコリが引っかかりやすく、これを核にして翼先端部及び翼表面にさらに粉塵やホコリが付着し、さらにカビが発生しやすかった。そこで、空気調和機の吹出口から手を挿入し雑巾等で翼に付着したホコリを掃除すると、貫流ファンの羽根車の翼外周側先端部や翼負圧面などの外部表面は拭取れるが、内部の翼内周側先端部や翼圧力面には指が届かず十分に掃除できないため、ホコリが残っていた。   In addition, when a thermoplastic resin containing glass fibers is used as the material for the impeller of the cross-flow fan to ensure the strength of the blades, fine irregularities are generated on the impeller surface by the glass fibers. Fine dust that could not be removed by the filter 5 or the electrostatic precipitator 6 adheres to the uneven portion of the impeller surface, which may cause mold or absorb odors in the room. . Conventionally, as a countermeasure, a mold prevention material is sometimes kneaded and molded into a thermoplastic resin, which is a material of an impeller, but since a minute unevenness remains on the blade surface, it has not been completely countered. In particular, when the wing surface has uneven surfaces such as steps, notches, and protrusions, fine dust is easily caught at the corners, and dust and dust further adhere to the wing tip and wing surface with this as the core, Furthermore, mold was easy to occur. So, if you insert a hand from the air conditioner outlet and clean the dust attached to the blades with a rag, etc., the outer surface of the cross-flow fan impeller blade outer peripheral surface and the blade suction surface can be wiped off. As the finger did not reach the tip of the blade's inner periphery and the blade's pressure surface, it could not be cleaned sufficiently, so dust remained.

本発明は、上記のような課題を解決するためになされたもので、広帯域騒音や回転音を低減でき低騒音で、通風抵抗の変化に対しても動作を安定化できる貫流ファンを得ることを目的とする。
さらに、動作音が静かな貫流ファンを搭載して、静粛で品質の高い空気調和機を得ることを目的とする。
The present invention has been made in order to solve the above-described problems. It is an object of the present invention to obtain a cross-flow fan that can reduce wide-band noise and rotational noise, is low-noise, and can stabilize operation against changes in ventilation resistance. Objective.
Furthermore, it aims at obtaining a quiet and high-quality air conditioner by installing a once-through fan with quiet operation noise.

本発明に係る貫流ファンは、所定の間隔をあけて配置される少なくとも2つの円板状の支持板と、前記支持板の中心を通り回転軸となるシャフトと、両端が前記支持板の外周部に固定され前記回転軸方向に伸び、前記回転軸に垂直な断面で翼外周側端部と翼内周側端部との間で円弧状である複数の翼と、前記翼の回転方向に対して後面となる翼負圧面の前記翼外周側端部及び前記翼内周側端部の少なくとも一方の端部に設けた前記回転軸方向に伸びる凹部と、を備え、前記凹部は、上記端部の先端から前記翼負圧面に沿った距離が徐々に増加又は減少するように斜めに伸びる段差形状であることを特徴とするものである。   A cross-flow fan according to the present invention includes at least two disc-shaped support plates arranged at predetermined intervals, a shaft that passes through the center of the support plate and serves as a rotation shaft, and both ends of the support plate are outer peripheral portions of the support plate. A plurality of blades that are arc-shaped between the blade outer peripheral side end and the blade inner peripheral side end in a cross section perpendicular to the rotation shaft and extending in the direction of the rotation axis, and with respect to the rotation direction of the blade A recess extending in the direction of the rotation axis provided at at least one end of the blade outer peripheral side end and the blade inner peripheral side end of the blade suction surface serving as a rear surface, and the recess includes the end portion It is characterized by a step shape extending obliquely so that the distance along the blade suction surface from the tip of the blade gradually increases or decreases.

また、本発明に係る貫流ファンは、所定の間隔をあけて配置される少なくとも2つの円板状の支持板と、前記支持板の中心を通り回転軸となるシャフトと、両端が前記支持板の外周部に固定され前記回転軸方向に伸び、前記回転軸に垂直な断面で翼外周側端部と翼内周側端部との間で円弧状である複数の翼と、前記翼の回転方向に対して後面となる翼負圧面の前記翼外周側端部及び前記翼内周側端部の少なくとも一方の端部に設けられ、前記端部の先端側を底辺とする略三角形状または前記端部の先端側を下底とする略台形形状の凹部で構成して凹側が向かい合う段差を有する複数の溝部と、を備えたものである。   The cross-flow fan according to the present invention includes at least two disc-shaped support plates arranged at a predetermined interval, a shaft that passes through the center of the support plate and serves as a rotation axis, and both ends of the support plate. A plurality of blades that are fixed to the outer periphery and extend in the direction of the rotation axis, and are arc-shaped between the blade outer peripheral end and the blade inner peripheral end in a cross section perpendicular to the rotation axis; and the rotation direction of the blade With respect to the blade suction surface of the blade, the blade outer peripheral side end and the blade inner peripheral side end at least one of the ends, the substantially triangular shape with the tip side of the end as a base or the end And a plurality of groove portions each having a step formed by a substantially trapezoidal concave portion having a lower end at the front end side of the portion and facing the concave side.

また、本発明に係る貫流ファンは、所定の間隔をあけて配置される少なくとも2つの円板状の支持板と、前記支持板の中心を通り回転軸となるシャフトと、両端が前記支持板の外周部に固定され前記回転軸方向に伸び、前記回転軸に垂直な断面で翼外周側端部と翼内周側端部との間で円弧状である複数の翼と、前記翼の回転方向に対して後面となる翼負圧面の前記翼外周側端部に前記回転軸方向に複数設けた前記翼負圧面から突出する突起部と、を備え、前記突起部は、前記翼外周側端部側から前記翼内周側端部側へ向かって高さが増加する翼外周側傾斜面と、前記翼内周側端部側から前記翼外周端部側へ向かって高さが増加する翼内周側傾斜面を有すると共に、前記回転軸に垂直な断面で回転中心を中心として前記翼外周側端部の先端を通る翼外周円の内側に設けられ、さらに前記断面で前記翼外周側端部と前記翼内周側端部を結ぶ翼弦線と平行で前記翼負圧面に接する直線よりも前記翼負圧面側に設けたものである。   The cross-flow fan according to the present invention includes at least two disc-shaped support plates arranged at a predetermined interval, a shaft that passes through the center of the support plate and serves as a rotation axis, and both ends of the support plate. A plurality of blades that are fixed to the outer periphery and extend in the direction of the rotation axis, and are arc-shaped between the blade outer peripheral end and the blade inner peripheral end in a cross section perpendicular to the rotation axis; and the rotation direction of the blade A plurality of protrusions projecting from the blade suction surface provided in the direction of the rotation axis at the blade outer periphery side end of the blade suction surface serving as a rear surface, and the protrusion includes the blade outer periphery end portion A blade outer peripheral side inclined surface whose height increases from the blade side toward the blade inner peripheral end portion side, and a blade inner portion whose height increases from the blade inner peripheral end portion side toward the blade outer peripheral end portion side The tip of the blade outer peripheral side end portion is centered on the rotation center in a cross section perpendicular to the rotation axis and having a circumferential inclined surface. Provided inside the blade outer periphery circle, and further on the blade suction surface side than the straight line in contact with the blade suction surface in parallel with the chord line connecting the blade outer periphery side end and the blade inner periphery end in the cross section. It is provided.

また、本発明に係る貫流ファンは、所定の間隔をあけて配置される少なくとも2つの円板状の支持板と、両端が前記支持板の外周部に固定され回転軸方向に伸びる複数の翼と、を有する羽根車単体を前記回転軸方向に複数有する貫流ファンであって、前記支持板と前記翼は、ガラス繊維を含有する熱可塑性樹脂材と、前記熱可塑性樹脂材を覆うホコリ付着防止材で構成したものである。   Further, the cross-flow fan according to the present invention includes at least two disc-shaped support plates arranged at a predetermined interval, and a plurality of blades whose both ends are fixed to the outer peripheral portion of the support plate and extend in the rotation axis direction. , Wherein the support plate and the blades are made of a thermoplastic resin material containing glass fibers, and a dust adhesion preventive material covering the thermoplastic resin material. It is composed of

また、本発明に係る空気調和機は、騒音を低減できる貫流ファンを用い、前記貫流ファンで形成される吸込側流路に配設され、吸い込んだ空気と熱交換する熱交換器と、を備えたものである。   In addition, an air conditioner according to the present invention includes a heat exchanger that uses a cross-flow fan that can reduce noise and is disposed in a suction-side flow path formed by the cross-flow fan and that exchanges heat with the sucked air. It is a thing.

本発明によれば、段差または溝部または突起部によって、剥離渦を拡散したり周囲の流れを翼負圧面へ誘引することで、翼負圧面からの剥離を抑制して広帯域騒音や回転音を低減し、聴感が良く低騒音で静粛な貫流ファンが得られる。   According to the present invention, the separation vortex is diffused or the surrounding flow is attracted to the blade suction surface by the step, the groove, or the protrusion, thereby suppressing the separation from the blade suction surface and reducing the broadband noise and the rotating sound. In addition, a quiet once-through fan with good hearing and low noise can be obtained.

また、本発明によれば、低騒音の貫流ファンを搭載することで、騒音が低減し静粛な空気調和機が得られる。
以下、具体的な実施の形態について図を用いて説明する。但し、実施の形態1、3は本発明が適用された形態を示し、実施の形態2、4、5は参考例である形態を示したものである。
Further, according to the present invention, a quiet air conditioner with reduced noise can be obtained by mounting a low-noise cross-flow fan.
Hereinafter, specific embodiments will be described with reference to the drawings. However, Embodiments 1 and 3 show embodiments to which the present invention is applied, and Embodiments 2, 4, and 5 show embodiments that are reference examples.

実施の形態1.
以下、本発明の実施の形態1について、図に基づいて説明する。図1は本実施の形態に係る貫流ファン8を搭載した空気調和機を示す外観斜視図、図2は図1のM−M線における縦断面図である。図1及び図2において、空気調和機本体1は空調される部屋の壁に設置される。空気調和機本体上部1aには、室内空気の吸込口となる吸込グリル2、ホコリを静電させ集塵する電気集塵器6、ホコリを除塵する網目状のフィルタ5を配設している。さらに、複数のアルミフィン7aに配管7bが貫通する構成の熱交換器7を、羽根車8aの正面側と上部側に、羽根車8を囲むように配置している。また、空気調和機本体前面1bは前面パネルで覆われ、その下側に吹出口3が開口している。送風機である貫流ファン8は、羽根車8aに対して吸込側流路と吹出側流路を分離すると共に、熱交換器7から滴下される水滴を一時貯水するスタビライザー9を有し、羽根車8aの吹出側には吹出側流路の背面を構成するため、渦巻状のガイドウォール10を有する。さらに吹出口3には上下風向ベーン4a、左右風向ベーン4bが回動自在に取り付けられ、室内への送風方向を変化させる。図中、Oは羽根車8aの回転中心を示し、C1は羽根車8aの吸込領域、C2は羽根車8aの吹出領域である。また、ROは羽根車8aの回転方向を示す。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is an external perspective view showing an air conditioner equipped with a cross-flow fan 8 according to the present embodiment, and FIG. 2 is a longitudinal sectional view taken along line MM in FIG. In FIG.1 and FIG.2, the air conditioner main body 1 is installed in the wall of the room air-conditioned. The air conditioner main body upper portion 1a is provided with a suction grill 2 that serves as a suction port for room air, an electric dust collector 6 that electrostatically collects dust and collects dust, and a mesh-like filter 5 that removes dust. Furthermore, the heat exchanger 7 having a configuration in which the pipe 7b passes through the plurality of aluminum fins 7a is arranged on the front side and the upper side of the impeller 8a so as to surround the impeller 8. Moreover, the air conditioner main body front surface 1b is covered with the front panel, and the blower outlet 3 is opened on the lower side. The cross-flow fan 8 which is a blower has a stabilizer 9 for temporarily storing water droplets dripped from the heat exchanger 7 while separating the suction-side flow path and the blow-off-side flow path from the impeller 8a, and the impeller 8a. The blowout side has a spiral guide wall 10 for constituting the back side of the blowout side flow path. Further, an up / down wind direction vane 4a and a left / right wind direction vane 4b are rotatably attached to the air outlet 3 to change the blowing direction into the room. In the figure, O indicates the rotation center of the impeller 8a, C1 is a suction region of the impeller 8a, and C2 is a blowout region of the impeller 8a. RO indicates the rotation direction of the impeller 8a.

図3は本実施の形態に係る貫流ファン8の羽根車8aを示す概略図であり、図3(a)は貫流ファン8の側面図、図3(b)は図3(a)のN−N線断面図を示し、下半分は向こう側の複数枚の翼が見えている状態を示し、上半分は1枚の翼8cを示している。   FIG. 3 is a schematic view showing the impeller 8a of the cross-flow fan 8 according to the present embodiment, FIG. 3 (a) is a side view of the cross-flow fan 8, and FIG. 3 (b) is N- in FIG. N-line sectional view is shown, the lower half shows a state in which a plurality of wings on the other side can be seen, and the upper half shows one wing 8c.

図3において、貫流ファン8の羽根車8aは、回転軸方向AXに複数の羽根車単体8dを有する。羽根車単体8dは、所定の間隔をあけて配置される少なくとも2つの円板状の支持板、ここでは例えばリング8bと、両端がリング8bの外周部に固定され回転軸方向AXに伸びる複数の翼8cとで構成される。羽根車単体8dは、例えばAS樹脂やABS樹脂などの熱可塑性樹脂で成形され、回転軸方向AXに複数個溶着などによって連結され、羽根車8aを形成する。そして、一端のリング8bの中心にファンシャフト8f、他端のリング8bの中心にファンボス8eとモータ12のモータシャフト12aがネジ等で固定される。また、羽根車8aの回転軸に垂直な断面において、翼8cは、翼外周側先端部13aの近傍である翼外周側端部と翼内周側先端部13bの近傍である翼内周側端部との間で円弧状であり、1枚の翼の中心線は、翼外周側先端部13aの近傍である翼外周側端部で回転方向ROに前傾するような曲線を成す。モータ12によってモータシャフト12aを回転中心として回転すると、羽根車8aがRO方向に回転し、送風される。ここで、翼外周側先端部13aとは翼外周側端部の先端とその近傍を含んだ部分を示し、翼内周側先端部13bとは翼内周側端部の先端とその近傍を含んだ部分を示す。また、翼外周側端部とは翼中央部から翼外周側先端部13aを含む部分を示し、翼内周側端部とは翼中央部から翼内周側先端部13aを含む部分を示す。   In FIG. 3, the impeller 8a of the once-through fan 8 has a plurality of impellers 8d in the rotation axis direction AX. The impeller unit 8d includes at least two disc-shaped support plates arranged at a predetermined interval, for example, a ring 8b, and a plurality of ends that are fixed to the outer periphery of the ring 8b and extend in the rotation axis direction AX. It is comprised with the wing | blade 8c. The impeller single unit 8d is formed of a thermoplastic resin such as AS resin or ABS resin, for example, and is connected to the rotation axis direction AX by welding or the like to form the impeller 8a. The fan shaft 8f is fixed to the center of the ring 8b at one end, and the fan boss 8e and the motor shaft 12a of the motor 12 are fixed to the center of the ring 8b at the other end with screws or the like. In the cross section perpendicular to the rotational axis of the impeller 8a, the blade 8c includes a blade outer peripheral end near the blade outer peripheral tip 13a and a blade inner peripheral end near the blade inner peripheral tip 13b. The center line of one blade forms a curve that leans forward in the rotational direction RO at the blade outer peripheral end near the blade outer peripheral tip 13a. When the motor 12 rotates about the motor shaft 12a as the rotation center, the impeller 8a rotates in the RO direction and is blown. Here, the blade outer peripheral tip 13a indicates a portion including the tip of the blade outer peripheral end and the vicinity thereof, and the blade inner peripheral tip 13b includes the tip of the blade inner peripheral end and the vicinity thereof. Indicates the part. Further, the blade outer peripheral side end portion indicates a portion including the blade outer peripheral side tip portion 13a from the blade central portion, and the blade inner peripheral side end portion indicates a portion including the blade inner peripheral side tip portion 13a from the blade central portion.

翼8cの翼外周側端部及び翼内周側端部の少なくとも一方の端部には、回転軸方向AXに伸びる段差形状の凹部を設けており、図4に基づいて段差11の構成を詳しく説明する。図4は本実施の形態に係る翼8cを示す説明図であり、図4(a)は翼8cの回転方向ROに対して後面となる翼負圧面13dを示し、図4(b)は図4(a)のV−V線断面図である。翼8cがRO方向に回転すると、翼8cの回転方向ROに対して前面は翼圧力面13cとなり、後面は翼負圧面13dとなる。   At least one end of the blade outer peripheral side end and the blade inner peripheral side end of the blade 8c is provided with a step-shaped recess extending in the rotation axis direction AX, and the configuration of the step 11 will be described in detail with reference to FIG. explain. FIG. 4 is an explanatory view showing a blade 8c according to the present embodiment. FIG. 4 (a) shows a blade suction surface 13d as a rear surface with respect to the rotation direction RO of the blade 8c, and FIG. It is the VV sectional view taken on the line 4 (a). When the blade 8c rotates in the RO direction, the front surface becomes the blade pressure surface 13c and the rear surface becomes the blade negative pressure surface 13d with respect to the rotation direction RO of the blade 8c.

翼負圧面13dの例えば翼外周側端部に設けた段差11は、翼外周側先端部13a側を凹とし、翼外周側先端部13aの先端から段差前縁部11aまたは段差後縁部11bまでの翼負圧面13dに沿った距離が徐々に増加又は減少するように斜めに伸びる形状である。図中、Haは翼外周側先端部13aに平行な線で、最も翼外周側先端部13aに近い段差前縁部11aを通る線であり、Hbは翼外周側先端部13aに平行な線で、最も翼外周側先端部13aに近い段差後縁部11bを通る線である。即ち、段差前縁部11aと段差後縁部11bは平行であるが、共に翼外周側先端部13aに対して斜め角度を有する方向に伸びている。翼外周側先端部13aの先端から段差後縁部11bまでの凹部の翼肉厚は、翼中央部の翼肉厚よりも薄くなる。   The step 11 provided, for example, at the blade outer peripheral end of the blade suction surface 13d is concave on the blade outer peripheral tip 13a side, from the tip of the blade outer peripheral tip 13a to the step leading edge 11a or the step trailing edge 11b. This is a shape that extends obliquely so that the distance along the blade suction surface 13d gradually increases or decreases. In the figure, Ha is a line parallel to the blade outer peripheral tip portion 13a and passes through the step leading edge portion 11a closest to the blade outer peripheral tip portion 13a, and Hb is a line parallel to the blade outer peripheral tip portion 13a. , A line passing through the step trailing edge 11b closest to the blade outer circumferential tip 13a. That is, the step leading edge 11a and the step trailing edge 11b are parallel, but both extend in a direction having an oblique angle with respect to the blade outer circumferential tip 13a. The blade thickness of the concave portion from the tip of the blade outer peripheral side tip portion 13a to the step trailing edge portion 11b is thinner than the blade thickness of the blade center portion.

このように構成された空気調和機本体1において、モータ12が電源基板より通電されると貫流ファン8の羽根車8aがRO方向に回転する。すると本体上部1aに設けられた吸込口2より部屋の空気が吸込まれ、電気集塵器6及びフィルタ5でホコリが除去された後、熱交換器7で空気は加熱され暖房、または冷却され冷房、除湿のいずれかがされ、貫流ファン8の羽根車8aへ吸込まれる。その後、羽根車8aから吹出された気流はガイドウォール10に誘導され吹出口3へ向かい、吹出口3から部屋へ吹出すことで空気調和される。この際、上下風向ベーン4a、左右風向ベーン4bにより吹出空気を上下、左右方向へ風向制御することで、部屋全体に風を流し温度ムラの抑制を図っている。   In the air conditioner body 1 configured in this way, when the motor 12 is energized from the power supply board, the impeller 8a of the cross-flow fan 8 rotates in the RO direction. Then, the air in the room is sucked in from the suction port 2 provided in the upper part 1a of the main body, dust is removed by the electric dust collector 6 and the filter 5, and then the air is heated and heated or cooled by the heat exchanger 7 to be cooled. The dehumidification is performed, and the air is sucked into the impeller 8a of the cross-flow fan 8. After that, the airflow blown out from the impeller 8a is guided to the guide wall 10 and directed to the blowout port 3, and is blown into the room from the blowout port 3 to be air conditioned. At this time, by controlling the direction of the blown air in the vertical and horizontal directions by the vertical wind direction vanes 4a and the horizontal wind direction vanes 4b, wind is caused to flow through the entire room to suppress temperature unevenness.

ここで、翼8cが吸込領域C1にあるとする。羽根車8aがRO方向に回転することで、気流E0が翼負圧面13dに流れ、翼外周側端部の翼形状が曲がっている部分で剥離が起ころうとする。本実施の形態ではこの部分に斜めに設けた段差11によって、剥離の翼外周側先端部13aからの距離が回転軸方向AXで少しずつずれる。このため、剥離渦の発生位相が変化し拡散されることで、回転音を低減できる。
また、翼8cが吹出領域C2にある時には、気流は図4のE0と逆になって流れる。この場合も同様であり、翼外周側端部の翼形状が曲がっている部分で流れが離脱しようとするが、翼8cを流れが離脱する位相が回転軸方向AXで少しずつずれる。このため、流れの離脱する位相が変化し拡散されて、低騒音化を図ることができる。
Here, it is assumed that the blade 8c is in the suction region C1. As the impeller 8a rotates in the RO direction, the air flow E0 flows to the blade suction surface 13d, and separation tends to occur at a portion where the blade shape of the blade outer peripheral end is bent. In the present embodiment, the step 11 provided obliquely at this portion causes the distance from the tip end portion 13a of the peeling blade to be slightly shifted in the rotation axis direction AX. For this reason, a rotation sound can be reduced because the generation | occurrence | production phase of peeling vortex changes and is spread | diffused.
Further, when the blade 8c is in the blowing area C2, the airflow flows in the direction opposite to E0 in FIG. The same is true in this case, and the flow tends to be separated at a portion where the blade shape at the blade outer peripheral end is bent, but the phase at which the flow separates from the blade 8c is slightly shifted in the rotation axis direction AX. For this reason, the phase from which the flow separates is changed and diffused, and noise can be reduced.

図5は、本実施の形態に係る翼8cの他の構成例を示す説明図であり、翼8cの回転方向ROに対して後面となる翼負圧面13dを示す。翼8cの断面は図4(b)と同様である。この構成例では、翼負圧面13dに、回転軸方向AXに複数、例えば2つの段差11a、11bを形成した例である。2つの段差11a、11bは、翼外周側先端部13aに対して異なる角度を有し、中央付近で2本の段差11を連結している。このため、2つの段差11a、11bは回転軸方向AXの中央部分で凹側が互いに向かい合うように構成される。図4の段差11と同様、斜めに設けた段差11によって、剥離の位置や離脱する位置が回転軸方向AXで少しずつずれる。このため、剥離渦や離脱の発生位相が変化し拡散されることで、回転音が低減でき、低騒音化を図ることができる。さらに、2本の段差11の凹側が互いに向かい合うように配設したことで、吸込領域C1では気流を羽根車単体8dの中央部分に集める一方、段差11を乗り越える渦は羽根車単体8dの端、即ちリング8bに向かう方向成分を有する。このため、気流が翼負圧面13dから剥離するのを抑制でき、広帯域騒音を低減することができる。   FIG. 5 is an explanatory view showing another configuration example of the blade 8c according to the present embodiment, and shows a blade negative pressure surface 13d which is a rear surface with respect to the rotation direction RO of the blade 8c. The cross section of the wing 8c is the same as that shown in FIG. In this configuration example, a plurality of, for example, two steps 11a and 11b are formed in the blade suction surface 13d in the rotation axis direction AX. The two steps 11a and 11b have different angles with respect to the blade outer peripheral side tip portion 13a, and connect the two steps 11 near the center. For this reason, the two steps 11a and 11b are configured such that the concave sides face each other at the central portion in the rotation axis direction AX. Similar to the step 11 in FIG. 4, the step 11 provided obliquely shifts the separation position and the separation position little by little in the rotation axis direction AX. For this reason, the generation phase of the separation vortex and separation changes and is diffused, so that the rotational sound can be reduced and the noise can be reduced. Furthermore, by arranging the concave sides of the two steps 11 so as to face each other, in the suction region C1, the air flow is collected at the central portion of the impeller unit 8d, while the vortex over the step 11 is the end of the impeller unit 8d, That is, it has a direction component toward the ring 8b. For this reason, it can suppress that an air current peels from the blade negative pressure surface 13d, and can reduce broadband noise.

また図6は、本実施の形態に係る翼8cのさらに他の構成例を示す説明図であり、翼8cの回転方向ROに対して後面となる翼負圧面13dを示す。翼8cの断面は図4(b)と同様である。この構成例でも、翼外周側先端部13aに対して異なる角度を有する2本の段差11を翼負圧面13dに形成すると共に、中央部分で2本の段差11を連結している。図5とは2本の段差11の翼外周側先端部13aに対する角度を逆にしたものである。この構成の効果も図5と同様である。即ち、斜めに設けた段差11によって、剥離の位置や流れが離脱する位置が回転軸方向AXで少しずつずれる。このため、剥離渦や離脱の発生位相が変化し拡散されることで、回転音が低減でき、低騒音化を図ることができる。   FIG. 6 is an explanatory diagram showing still another configuration example of the blade 8c according to the present embodiment, and shows a blade suction surface 13d that is a rear surface with respect to the rotation direction RO of the blade 8c. The cross section of the wing 8c is the same as that shown in FIG. Also in this configuration example, two steps 11 having different angles with respect to the blade outer peripheral tip portion 13a are formed on the blade suction surface 13d, and the two steps 11 are connected at the central portion. In FIG. 5, the angles of the two steps 11 with respect to the blade outer peripheral tip 13a are reversed. The effect of this configuration is the same as in FIG. In other words, the step 11 provided obliquely shifts the separation position and the position where the flow is separated little by little in the rotation axis direction AX. For this reason, the generation phase of the separation vortex and separation changes and is diffused, so that the rotational sound can be reduced and the noise can be reduced.

図4〜図6では翼外周側端部の翼負圧面13dに段差11を設けて低騒音化を図っている。即ち、吸込領域C1では気流の翼8cへの流入側部分で翼外周側端部で発生する剥離渦の位相を変化させ、吹出領域C2では逆に翼外周側端部からの流出側部分で翼外周側端部で発生する流れの離脱の位相を変化させて、騒音を低減している。これに対し、翼内周側先端部13b側の翼内周側端部の翼負圧面13dに段差11を設けてもよい。翼内周側端部は吸込領域C1では翼内周側端部からの流出側部分となるので、段差を設けることで翼内周側端部で発生する流れの離脱の位相を変化させる。一方、吹出領域C2では逆に気流の翼8cへの流入側部分となるので、段差を設けることによって翼内周側端部で発生する剥離渦の位相を変化させて、騒音を低減する構成でもよい。また、翼外周側端部及び翼内周側端部の翼負圧面13dの両方に段差11を設けてもよい。この場合には、吸込領域C1と吹出領域C2のどちらの位置でも翼内周側端部及び翼外周側端部の両方で低騒音化を図ることができる。   4 to 6, a step 11 is provided on the blade suction surface 13d at the outer peripheral end of the blade to reduce noise. That is, in the suction region C1, the phase of the separation vortex generated at the outer peripheral edge of the blade is changed at the inflow side portion of the air flow into the blade 8c, and conversely in the outlet region C2, the blade is discharged at the outflow side portion from the outer peripheral edge of the blade. Noise is reduced by changing the phase of separation of the flow generated at the outer peripheral end. On the other hand, the step 11 may be provided on the blade negative pressure surface 13d at the blade inner circumferential end on the blade inner circumferential tip 13b side. Since the blade inner peripheral end is an outflow side portion from the blade inner peripheral end in the suction region C1, the step of providing a step changes the separation phase of the flow generated at the blade inner peripheral end. On the other hand, in the blowout region C2, the airflow side portion of the airflow into the blade 8c is conversely provided, so that by providing a step, the phase of the separation vortex generated at the blade inner peripheral end is changed to reduce noise. Good. Further, the step 11 may be provided on both the blade outer pressure side 13d at the blade outer peripheral side end and the blade inner peripheral side end. In this case, noise reduction can be achieved at both the blade inner peripheral end and the blade outer peripheral end at either the suction region C1 or the blowout region C2.

また、翼負圧面13dと翼外周側端部及び翼内周側端部の両方に段差11を設ける場合、翼外周側先端部13aと翼外周側段差との斜めの方向と、翼内周側先端部13bと内周側段差との斜めの方向とが、逆になるように段差を設けるのが好ましい。図7は翼内周側端部と翼外周側端部の両方に段差11を設けた構成を示す説明図であり、翼負圧面13dを平面的に示している。図7(a)は図4、図7(b)は図5、図7(c)は図6の構成に対応している。このように翼外周側端部に設けた段差(外周側段差)と翼内周側端部に設けた段差(内周側段差)とが平行に近くなるのではなく、翼8cの回転軸方向AXで段差11が互いに近づくまたは離れるように逆方向に斜めになるように構成したほうがよい。
このように構成すると、翼8cの回転軸方向AXで、外周側段差と内周側段差との距離が異なる。即ち、一方の段差で影響を受けた流れが、他方の段差で影響を受けるまでの距離が、回転軸方向AXで異なることになる。このため、一方の段差11で剥離渦の発生位相を変化し、他方の段差11で流れの離脱する位相を変化する効果をより大きく得ることができる。また、外周側段差と内周側段差とが同様の段差で構成されていなくても、段差によって騒音を低減できる。例えば外周側段差を図4で示すものとし、内周側段差を図5で示すものとするなど、他の組み合わせの構成でもよい。
Further, when the step 11 is provided on both the blade suction surface 13d and the blade outer peripheral end and the blade inner peripheral end, the oblique direction between the blade outer tip 13a and the blade outer step, and the blade inner peripheral side It is preferable to provide a step so that the tip portion 13b and the oblique direction between the inner peripheral side step are opposite to each other. FIG. 7 is an explanatory view showing a configuration in which a step 11 is provided at both the blade inner peripheral end and the blade outer peripheral end, and shows the blade negative pressure surface 13d in a plan view. 7A corresponds to the configuration of FIG. 4, FIG. 7B corresponds to the configuration of FIG. 5, and FIG. 7C corresponds to the configuration of FIG. Thus, the step provided on the blade outer peripheral end (outer peripheral step) and the step provided on the blade inner peripheral end (inner peripheral step) are not nearly parallel, but the direction of the rotation axis of the blade 8c. It is better to configure the step 11 to be inclined in the opposite direction so that the steps 11 approach or separate from each other.
If comprised in this way, the distance of an outer peripheral side level | step difference and an inner peripheral side level | step difference differs in the rotating shaft direction AX of the blade | wing 8c. That is, the distance until the flow affected by one step is affected by the other step differs in the rotation axis direction AX. For this reason, it is possible to obtain a greater effect of changing the phase at which the separation vortex is generated at one step 11 and changing the phase at which the flow is separated at the other step 11. Further, even if the outer peripheral side step and the inner peripheral side step are not configured with the same step, noise can be reduced by the step. For example, the outer peripheral side step is shown in FIG. 4, and the inner peripheral step is shown in FIG.

また、図4〜図6では、段差前縁部11aと段差後縁部11bとが平行になるように構成したが、平行でなくてもよい。段差前縁部11aと段差後縁部11bの少なくとも一方が、翼外周側先端部13aまたは翼内周側先端部13bに平行ではなく、ある程度の角度を成すように斜めであればよい。少なくとも先端部13a、13bに対して斜めに段差が構成されていれば、流れの剥離渦の発生する位相や離脱する位相がずれることで、ある程度の効果は期待できる。他の構成例として、例えば図4の斜めが逆であっても同様である。また、図5、図6には回転軸方向AXに2本の段差を有する構成を示したが、さらに多くの段差を形成してもよい。   4 to 6, the step front edge portion 11a and the step rear edge portion 11b are configured to be parallel to each other, but may not be parallel to each other. At least one of the step leading edge 11a and the step trailing edge 11b is not parallel to the blade outer circumferential tip 13a or the blade inner circumferential tip 13b, but may be oblique so as to form a certain angle. If a step is formed obliquely with respect to at least the tip portions 13a and 13b, a certain degree of effect can be expected by shifting the phase in which the flow separation vortex is generated and the phase in which it is separated. As another configuration example, for example, the same applies even if the diagonal in FIG. 4 is reversed. 5 and 6 show the configuration having two steps in the rotation axis direction AX, but more steps may be formed.

また、段差前縁部11aと段差後縁部11bで構成される段差11の翼厚さ方向の立ち上がり角度については、90°(垂直)以下で流れが段差11に沿って流れるような角度にするのが好ましい。また、段差11の段差前縁部11aでは、翼肉厚は薄くなるが、翼8cの強度が保持できる程度の厚みや成形時に熱可塑性樹脂を型に流し入れる際の流れに影響しない程度の厚みがあったほうがよい。翼肉厚は翼外周側先端部13aと翼内周側先端部13bで薄く、翼中央部で厚い形状である。このため、段差11を、翼外周側先端部13aと翼内周側先端部13bよりも翼中央部側で、翼肉厚が翼外周側先端部13aと翼内周側先端部13bより厚い部分に形成すれば、段差前縁部11aでの翼肉厚が翼外周側先端部13aと翼内周側先端部13bでの翼肉厚と同程度に維持できる。   The rising angle in the blade thickness direction of the step 11 constituted by the step leading edge portion 11a and the step trailing edge portion 11b is an angle at which the flow flows along the step 11 at 90 ° (vertical) or less. Is preferred. Further, at the step leading edge portion 11a of the step 11, the blade thickness is thin, but the thickness is such that the strength of the blade 8c can be maintained, and the thickness does not affect the flow when the thermoplastic resin is poured into the mold at the time of molding. You should have it. The blade thickness is thin at the blade outer circumferential tip 13a and the blade inner circumferential tip 13b, and thick at the blade center. For this reason, the step 11 is a portion closer to the blade central portion than the blade outer peripheral tip portion 13a and the blade inner peripheral tip portion 13b, and the blade thickness is thicker than the blade outer peripheral tip portion 13a and the blade inner peripheral tip portion 13b. In this way, the blade thickness at the step leading edge portion 11a can be maintained at the same level as the blade thickness at the blade outer peripheral tip portion 13a and the blade inner peripheral tip portion 13b.

以上のように、所定の間隔をあけて配置される少なくとも2つの円板状の支持板8bと、支持板8bの中心を通り回転軸となるシャフト8fと、両端が支持板8bの外周部に固定され回転軸方向AXに伸び、回転軸に垂直な断面で翼外周側端部と翼内周側端部との間で円弧状である複数の翼8cと、翼8cの回転方向ROに対して後面となる翼負圧面13dの翼外周側端部及び翼内周側端部の少なくとも一方の端部に設けた回転軸方向AXに伸びる凹部と、を備え、凹部は、端部の先端13a、13bから翼負圧面13dに沿った距離が徐々に増加又は減少するように斜めに伸びる段差11形状であることを特徴とすることにより、翼負圧面13dで発生する剥離渦や気流の離脱の位相を回転軸方向AXでずらして変化させ、騒音を低減できる効果がある。
また、回転軸方向AXに複数の段差11を設け、少なくとも2つの隣り合う段差11を凹側が互いに向かい合うように構成したことにより、さらに効果的に翼負圧面13dで発生する剥離渦や気流の離脱の位相を回転軸方向AXでずらして変化させ、騒音を低減できる効果がある。
As described above, at least two disc-shaped support plates 8b arranged at a predetermined interval, the shaft 8f passing through the center of the support plate 8b and serving as a rotation axis, and both ends thereof on the outer peripheral portion of the support plate 8b. A plurality of blades 8c that are fixed and extend in the rotational axis direction AX and are arc-shaped between the blade outer peripheral end and the blade inner peripheral end in a cross section perpendicular to the rotational axis, and the rotational direction RO of the blade 8c And a recess extending in the rotation axis direction AX provided at at least one end of the blade outer peripheral side end and the blade inner peripheral end of the blade suction surface 13d as the rear surface, and the recess has a tip 13a at the end. , 13b from the blade suction surface 13d gradually increases or decreases in a step 11 shape that obliquely extends so that separation vortices generated on the blade suction surface 13d and airflow can be separated. Noise can be reduced by shifting the phase in the rotational axis direction AX. There is an effect.
Further, by providing a plurality of steps 11 in the rotation axis direction AX and configuring the at least two adjacent steps 11 so that the concave sides face each other, the separation vortices and airflows that are generated more effectively on the blade suction surface 13d can be separated. There is an effect that noise can be reduced by shifting the phase of the motor in the rotational axis direction AX.

実施の形態2.
以下、本発明の実施の形態2に係る貫流ファンについて、図に基づいて説明する。図8は本実施の形態に係る貫流ファン8の羽根車8aを示す概略図であり、図8(a)は貫流ファン8の側面図、図8(b)は図8(a)のH−H線断面図を示し、下半分は向こう側の複数枚の翼が見えている状態を示し、上半分は1枚の翼8cを詳しく示している。また、図9は図8の翼1枚を拡大して示す斜視図であり、図10は翼負圧面13dに形成される溝部を含む翼8cの一部を拡大して示す説明図である。図中、実施の形態1と同一符号は同一、又は相当部分を示す。
Embodiment 2. FIG.
Hereinafter, a cross-flow fan according to Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 8 is a schematic view showing an impeller 8a of the cross-flow fan 8 according to the present embodiment, FIG. 8 (a) is a side view of the cross-flow fan 8, and FIG. 8 (b) is an H- in FIG. The H line sectional view is shown, the lower half shows a state in which a plurality of wings on the other side are visible, and the upper half shows one wing 8c in detail. 9 is an enlarged perspective view showing one blade of FIG. 8, and FIG. 10 is an explanatory view showing an enlarged part of the blade 8c including a groove formed on the blade suction surface 13d. In the figure, the same reference numerals as those in Embodiment 1 denote the same or corresponding parts.

翼8cの羽根車8aの回転方向ROに対して後面となる翼負圧面13dにおいて、翼外周側端部及び翼内周側端部の少なくとも一方の端部に、回転軸方向AXに複数の溝部14を形成した。図8に示すように、翼負圧面13dの例えば翼外周側端部に設けた溝部14の数は、羽根車単体8dの回転軸方向の長さに応じて異なる数とした。複数の溝部14の回転軸方向AXの中点間の距離F2をほぼ同一とし、例えば、羽根車単体8dの回転軸方向長さBが75mm程度のとき、溝部14の翼外周側先端部13aに最も近い回転軸方向AXの長さA1を5mm程度とし、F2を7mm程度とする。   In the blade negative pressure surface 13d which is the rear surface with respect to the rotation direction RO of the impeller 8a of the blade 8c, a plurality of grooves in the rotational axis direction AX are provided at at least one of the blade outer peripheral side end and the blade inner peripheral end. 14 was formed. As shown in FIG. 8, the number of the groove portions 14 provided on, for example, the blade outer peripheral end of the blade suction surface 13d is different depending on the length of the impeller single unit 8d in the rotation axis direction. When the distance F2 between the midpoints of the rotation axis direction AX of the plurality of groove portions 14 is substantially the same, for example, when the rotation axis direction length B of the impeller single body 8d is about 75 mm, the blade outer peripheral side tip portion 13a of the groove portion 14 The length A1 of the closest rotation axis direction AX is set to about 5 mm, and F2 is set to about 7 mm.

また、図9の翼8cの回転軸側の側面に示すように、翼8cの側面における中心線は、外周側で回転方向に前傾するような曲線である。その両端部である翼外周側先端部13aと翼内周側先端部13bを結ぶ直線を翼弦線Lとし、翼弦線Lの中点に相当する翼8cの位置を翼弦中央部13eとする。回転軸方向に所定間隔F2で配置された溝部14は、図10に示すように正面視で例えば略台形形状であり、翼外周側先端部13a側を下底とし、翼外周側先端部13a側から翼弦中央部13eに向かって回転軸方向AXの溝幅A1を徐々に小さくする。略台形形状の溝部14の上底に該当する溝内端部14aは、翼外周先端部13aと平行な段差を形成している。また、溝側部14bは翼外周先端部13aに対して斜めの段差を形成しており、凹側が互いに向かい合う形状である。向かい合う溝側部14bの傾きθ1は、例えば30°程度とする。翼肉厚方向では、溝部14の内部が翼外周先端部13aから滑らかに傾斜するような凹部を形成している。   Further, as shown on the side surface of the blade 8c in FIG. 9 on the side of the rotation axis, the center line on the side surface of the blade 8c is a curve that is inclined forward in the rotation direction on the outer peripheral side. A straight line connecting the blade outer circumferential tip 13a and the blade inner circumferential tip 13b, which are both ends thereof, is a chord line L, and the position of the blade 8c corresponding to the midpoint of the chord line L is a chord central portion 13e. To do. As shown in FIG. 10, the grooves 14 arranged at a predetermined interval F2 in the rotational axis direction have, for example, a substantially trapezoidal shape when viewed from the front, with the blade outer peripheral tip portion 13a side as the bottom and the blade outer peripheral tip portion 13a side. The groove width A1 in the rotation axis direction AX is gradually reduced from the chord toward the chord center 13e. A groove inner end portion 14a corresponding to the upper base of the substantially trapezoidal groove portion 14 forms a step parallel to the blade outer peripheral tip portion 13a. Moreover, the groove side part 14b forms the diagonal level | step difference with respect to the wing | blade outer periphery front-end | tip part 13a, and a concave side is a shape which faces each other. The inclination θ1 of the facing groove side portion 14b is, for example, about 30 °. In the blade thickness direction, a recess is formed so that the inside of the groove portion 14 is smoothly inclined from the blade outer peripheral tip portion 13a.

図11は図10におけるP−P線断面図を示す。翼負圧面13dの溝部14によって凹部となった面を溝部表面14cとし、翼負圧面13dの溝部以外の面と溝部表面14cとの段差が一番大きい部分を溝部最深部A2とし、溝部最深部A2を通る翼弦線Lに垂直な直線との交点の翼弦線溝部最深点A2Lとする。また、この翼断面で、翼圧力面13cと翼負圧面13dに内接する円の直径である翼肉厚tのうちで、最大肉厚tmを示す内接円の中心を通り翼弦線Lに垂直な直線との交点を最大肉厚点Tmとし、溝部14が形成される翼先端部側、ここでは翼外周側先端部13a側の翼外周側先端部円弧中心13acから翼弦線溝部最深点A2Lまでの距離を溝最深部翼弦距離F1とし、翼外周側先端部13aの肉厚をt1とする。本実施の形態では、溝部最深部A2における翼肉厚tを、翼外周側先端部13aの肉厚t1以上で、且つ最大肉厚tm以下となるように溝部14を形成する。   FIG. 11 is a cross-sectional view taken along the line PP in FIG. The surface that is recessed by the groove 14 of the blade suction surface 13d is defined as a groove surface 14c, and the portion where the step between the surface other than the groove of the blade suction surface 13d and the groove surface 14c is the largest is defined as the groove deepest portion A2, and the groove deepest portion. A chord line groove deepest point A2L at the intersection with a straight line perpendicular to the chord line L passing through A2. In the blade cross section, the blade chord line L passes through the center of the inscribed circle indicating the maximum thickness tm among the blade thicknesses t which are the diameters of the circles inscribed in the blade pressure surface 13c and the blade suction surface 13d. The intersecting point with the vertical straight line is the maximum thickness point Tm, and the blade tip side where the groove 14 is formed, here the blade outer peripheral tip 13a side of the blade outer peripheral tip arc center 13ac and the chord line groove deepest point The distance up to A2L is the deepest groove chord distance F1, and the thickness of the blade outer peripheral tip 13a is t1. In the present embodiment, the groove portion 14 is formed so that the blade thickness t in the deepest groove portion A2 is equal to or greater than the thickness t1 of the blade outer peripheral tip portion 13a and equal to or less than the maximum thickness tm.

本実施の形態では、例えば羽根車8aの半径を100mm程度、翼弦線Lの長さである翼弦長L1を10mm程度、翼外周側先端部13aの肉厚t1を0.5mm程度、最大肉厚tmを1.1mm程度、溝最深部翼弦距離F1を2.5mm程度で構成している。   In the present embodiment, for example, the radius of the impeller 8a is about 100 mm, the chord length L1 that is the length of the chord line L is about 10 mm, and the wall thickness t1 of the blade outer peripheral tip portion 13a is about 0.5 mm. The wall thickness tm is about 1.1 mm and the deepest groove chord distance F1 is about 2.5 mm.

貫流ファン8において、翼8cが熱交換器7側の羽根車吸込領域C1を通過する時、気流E0は図10に示すように翼外周側先端部13aから翼内周側先端部13bへ流れる。翼外周側先端部13aから流れ込む気流は、溝内端部14aへ直接向かって下流側の翼弦中央部13eへ通過する流れE1と、溝側部14bに流れて翼外周側先端部13aに対して斜めの角度を有する段差を乗り越え翼負圧面13dへ回り込む渦流れE2が生成される。溝側部14bで生成される渦流れE2により、周囲の流れが翼負圧面13dへ誘引され、翼負圧面13dから剥離しようとする気流が抑制される。ここで、溝側部14bが回転軸に直交する平面に平行である場合には、溝部に流れが集中し、溝部が無い場所とで速度差が大きくなってせん断力が働き、流れが乱れて騒音悪化の恐れがある。これに対し、本実施の形態では、溝側部14bは角度θ1のように、翼外周側先端部13aの回転軸方向に対して平行でも垂直でもない角度を有する斜めの段差を形成している。この構成によって、渦流れE2を生成することができ、周囲の流れが翼負圧面13dへ誘引されることで剥離を抑制でき、広帯域騒音の発生を低減できる。   In the once-through fan 8, when the blade 8c passes through the impeller suction region C1 on the heat exchanger 7 side, the air flow E0 flows from the blade outer peripheral tip portion 13a to the blade inner peripheral tip portion 13b as shown in FIG. The airflow flowing from the blade outer peripheral tip portion 13a flows to the blade chord center portion 13e directly downstream of the blade inner end portion 14a and flows to the groove side portion 14b and flows to the blade outer peripheral tip portion 13a. Thus, a vortex flow E2 is generated that goes over the step having an oblique angle and wraps around the blade suction surface 13d. Due to the vortex flow E2 generated in the groove side portion 14b, the surrounding flow is attracted to the blade suction surface 13d, and the air flow that is about to separate from the blade suction surface 13d is suppressed. Here, when the groove side portion 14b is parallel to a plane orthogonal to the rotation axis, the flow concentrates on the groove portion, the speed difference becomes large from the place where there is no groove portion, the shear force works, and the flow is disturbed. There is a risk of noise deterioration. On the other hand, in the present embodiment, the groove side portion 14b forms an oblique step having an angle that is neither parallel nor perpendicular to the rotation axis direction of the blade outer peripheral side tip portion 13a, such as the angle θ1. . With this configuration, the vortex flow E2 can be generated, and the surrounding flow is attracted to the blade suction surface 13d, so that separation can be suppressed and generation of broadband noise can be reduced.

さらに、翼外周側先端部13a付近の翼負圧面13dに周期的に生成される強い渦が回転音の原因となっていた。これに対して、翼外周側端部に溝部14を形成したことで、翼外周側端部に凹凸ができ、発生する渦の周期性が拡散され、ピーク性の回転音が低減される。   In addition, strong vortices periodically generated on the blade suction surface 13d near the blade outer peripheral tip 13a cause rotation noise. On the other hand, by forming the groove portion 14 at the blade outer peripheral end, irregularities are formed at the blade outer peripheral end, the periodicity of the generated vortex is diffused, and peak rotating sound is reduced.

一方、貫流ファン8の翼8cがガイドウォール10側の羽根車8aの吹出領域C2を通過する時は、図12に示すように、気流E0は翼内周側先端部13bから翼外周側先端部13aに向かって流れる。この時、翼外周側端部に設けた溝14周辺では、翼弦中央部13eから翼外周側先端部13aへ流れる。翼弦中央部13eから溝内端部14aへの流れE3及び翼弦中央部13eから溝側部14bへの流れE4は、溝部14が上流の翼弦中央部13eより凹形状となることで負圧となって翼負圧面13dに誘引される。このように吹出領域C2でも剥離が抑制され、広帯域騒音の発生を低減できる。   On the other hand, when the blade 8c of the cross-flow fan 8 passes through the blowing region C2 of the impeller 8a on the guide wall 10 side, as shown in FIG. 12, the airflow E0 flows from the blade inner peripheral tip portion 13b to the blade outer peripheral tip portion. It flows toward 13a. At this time, in the vicinity of the groove 14 provided at the outer peripheral end portion of the blade, it flows from the chord central portion 13e to the outer peripheral tip portion 13a. The flow E3 from the chord central portion 13e to the groove inner end portion 14a and the flow E4 from the chord central portion 13e to the groove side portion 14b are negative because the groove portion 14 has a concave shape from the upstream chord central portion 13e. Pressure is attracted to the blade suction surface 13d. In this way, separation is suppressed even in the blowing area C2, and the generation of broadband noise can be reduced.

以上のように、翼8cの翼負圧面13dにおいて、溝部14を設けることで、羽根車吸込領域C1、吹出領域C2共に剥離が抑制され広帯域騒音を低減でき、また発生する渦の周期性を拡散して回転音を低減できる。また、この貫流ファン8を空気調和機やエアーカーテンなどに搭載した場合には、通常室内のホコリを除去するために吸い込み側にフィルタ5を有するが、フィルタ5にホコリが付着してくると通風抵抗が増加する。通風抵抗が増加すると、翼8cへの流入角度が変化して剥離がおこりやすくなっていた。本実施の形態ではこのように通風抵抗が増加した状態でも、溝部14によって渦流れE2を生成することで剥離をある程度抑制でき、広帯域騒音を低減できる。さらに吹出領域でも翼負圧面13dの凹凸形状による回転音の低減が可能である。その結果、静粛な空気調和機が実現できる。   As described above, by providing the groove portion 14 on the blade suction surface 13d of the blade 8c, separation of both the impeller suction region C1 and the blowout region C2 can be suppressed and broadband noise can be reduced, and the periodicity of the generated vortex can be diffused. And rotating sound can be reduced. In addition, when this cross-flow fan 8 is mounted on an air conditioner, an air curtain, or the like, it usually has a filter 5 on the suction side in order to remove dust in the room, but if dust adheres to the filter 5, ventilation will occur. Resistance increases. When the ventilation resistance increased, the inflow angle to the blade 8c changed, and peeling was likely to occur. In the present embodiment, even when the ventilation resistance is increased in this manner, the vortex flow E2 is generated by the groove portion 14 so that separation can be suppressed to some extent, and broadband noise can be reduced. Further, it is possible to reduce the rotational noise due to the uneven shape of the blade suction surface 13d even in the blowing region. As a result, a quiet air conditioner can be realized.

また、溝部最深部A2における翼肉厚tを、翼外周側先端部の肉厚t1以上で、且つ最大肉厚tm以下となるように溝部14を形成している。これによって、翼8cの回転軸に垂直な方向の長さである翼肉厚tが翼外周側先端部の肉厚t1よりも薄くなることはない。このため、貫流ファン8を射出成形する際、熱可塑性樹脂を型に流し込んで成形するのであるが、この成形時に樹脂の湯回りを阻害することなく、滑らかに樹脂を流し込むことができる。   Further, the groove portion 14 is formed so that the blade thickness t in the deepest groove portion A2 is equal to or greater than the thickness t1 of the blade outer peripheral side tip and equal to or less than the maximum thickness tm. As a result, the blade thickness t, which is the length in the direction perpendicular to the rotation axis of the blade 8c, does not become thinner than the thickness t1 of the blade outer peripheral tip. For this reason, when the once-through fan 8 is injection-molded, the thermoplastic resin is poured into the mold and molded, but the resin can be poured smoothly without obstructing the hot water around the resin.

次に、溝部14の形状で、特に1つの溝部14の向かい合う溝側部14bの傾斜角度について説明する。ここで、溝側部14bの回転軸方向AXの溝幅A1は、翼外周側先端部13aから翼弦中央部13eに向かって、徐々に短くし、凹部が向かい合う溝側部14bのなす角度をθ1とする。溝側部14bは、翼外周側先端部13aの回転軸方向AXに伸びる直線に対して、斜めに交差する段差を構成しており、実施の形態1に示すように騒音の低減効果がある。さらにここでは向かい合う角度θ1で構成した溝側部14bの騒音低減効果について説明する。   Next, the inclination angle of the groove side portion 14b facing each other in the shape of the groove portion 14 will be described. Here, the groove width A1 in the rotational axis direction AX of the groove side portion 14b is gradually shortened from the blade outer peripheral side tip portion 13a toward the chord center portion 13e, and the angle formed by the groove side portion 14b facing the concave portion is made. Let θ1. The groove side portion 14b constitutes a step which obliquely intersects the straight line extending in the rotation axis direction AX of the blade outer peripheral tip portion 13a, and has an effect of reducing noise as shown in the first embodiment. Furthermore, the noise reduction effect of the groove side part 14b comprised by the angle (theta) 1 which faces is demonstrated here.

図13に溝部14の両溝側部14bがなす角度である溝側部角度θ1と騒音値の関係を示す。これは、空気調和機において貫流ファンの翼外周側端部に溝部14を設け、この溝側部14bの角度θ1を変化させて、吹出口3近傍の室内で騒音値を計測したものである。図13において、横軸は溝側部14bの角度θ1(°)であり、縦軸は騒音低減値{dB(A)}を示す。θ1=0°とは溝部14を設けていない構成であり、これを基準の騒音値とし、この騒音値からの低減値をグラフ化している。   FIG. 13 shows the relationship between the groove side angle θ1, which is the angle formed by both groove side portions 14b of the groove portion 14, and the noise value. In the air conditioner, a groove portion 14 is provided at the blade outer peripheral side end portion of the cross-flow fan, and the noise value is measured in a room near the outlet 3 by changing the angle θ1 of the groove side portion 14b. In FIG. 13, the horizontal axis represents the angle θ1 (°) of the groove side portion 14b, and the vertical axis represents the noise reduction value {dB (A)}. θ1 = 0 ° is a configuration in which the groove portion 14 is not provided, and this is used as a reference noise value, and a reduction value from this noise value is graphed.

溝側部14bの角度θ1が30°程度のときに騒音低減値が最も大きくなり、10°より小さい構成及び45°よりも大きい構成の時にはそれほど騒音が低減されていない。溝側部角度θ1が10°より小さいと、溝側部14bが回転軸に直交する角度に近くなり、渦流れE2がそれほど生成されなくなる。このため、気流が剥離し騒音低減作用が小さい。即ち、溝側部角度θ1が10°以上であると、渦流れE2が生成され、気流が剥離するのを防止するように作用して騒音を低減できるので、好ましい。   The noise reduction value is greatest when the angle θ1 of the groove side portion 14b is about 30 °, and the noise is not reduced so much when the configuration is smaller than 10 ° and larger than 45 °. When the groove side angle θ1 is smaller than 10 °, the groove side part 14b is close to an angle orthogonal to the rotation axis, and the vortex flow E2 is not generated so much. For this reason, an air current peels and the noise reduction effect is small. That is, it is preferable that the groove side angle θ1 is 10 ° or more because the vortex flow E2 is generated and the airflow can be prevented from being separated to reduce noise.

一方、溝側部角度θ1が45°より大きいと、溝側部14bを乗り越える際にできる渦E2の渦中心が回転軸方向に向き、周囲の流れの方向から離れる向きになる。このため、剥離を抑制する効果が小さくなるので、騒音低減値が小さくなる。逆に、溝側部角度θ1が45°以下である場合には、溝側部14bを乗り越える際にできる渦E2の渦中心が周囲の流れに近い方向になる。このため、剥離を効果的に抑制でき、大きな騒音低減値が得られる。さらに、溝幅A1が広くなると、隣り合う溝部14の溝側部14bから生成される渦流れE2同士が干渉して騒音が悪化する。
即ち、溝側部角度θ1が45°以下であると、渦流れE2によって気流が剥離するのを防止することができ、騒音を低減できるので、好ましい。ただし、溝側部角度θ1が45°より大きくても、隣り合う溝部14との距離などを変化させることで、隣り合う溝部14の溝側部14bでの渦流れE2同士の干渉をある程度改善することができる。
On the other hand, when the groove side angle θ1 is larger than 45 °, the vortex center of the vortex E2 generated when getting over the groove side part 14b is directed in the direction of the rotation axis and away from the direction of the surrounding flow. For this reason, since the effect which suppresses peeling becomes small, a noise reduction value becomes small. On the other hand, when the groove side angle θ1 is 45 ° or less, the vortex center of the vortex E2 formed when getting over the groove side part 14b is close to the surrounding flow. For this reason, peeling can be suppressed effectively and a big noise reduction value is obtained. Further, when the groove width A1 is widened, the vortex flows E2 generated from the groove side portions 14b of the adjacent groove portions 14 interfere with each other and noise is deteriorated.
That is, it is preferable that the groove side angle θ1 is 45 ° or less, because it is possible to prevent the airflow from being separated by the vortex flow E2 and to reduce noise. However, even if the groove side angle θ1 is larger than 45 °, the interference between the vortex flows E2 at the groove side part 14b of the adjacent groove part 14 is improved to some extent by changing the distance to the adjacent groove part 14 and the like. be able to.

以上のことから、図10に示したような構成では、図13に示されるように、10°≦溝側部角度θ1で構成するのが好ましく、広帯域騒音を低減でき、静粛な貫流ファンが得られる。さらには溝側部角度θ1≦45°で構成するのが好ましく、広帯域騒音を低減でき、静粛な貫流ファンが得られる。   From the above, in the configuration as shown in FIG. 10, as shown in FIG. 13, it is preferable to configure at 10 ° ≦ groove side angle θ1, which can reduce broadband noise and obtain a quiet cross-flow fan. It is done. Furthermore, it is preferable that the groove side portion angle θ1 ≦ 45 ° is configured, and broadband noise can be reduced, and a quiet cross-flow fan can be obtained.

次に、溝部14の形状で、特に図11に示す翼8cの回転軸に垂直な断面において、翼外周側先端部円弧中心13acから翼弦線溝部最深点A2Lまでの距離である溝最深部翼弦距離F1と、翼外周側先端部13aと翼内周側先端部13bを結ぶ翼弦線Lの長さL1の比F1/L1について説明する。図14は、横軸に溝最深部翼弦距離F1と翼弦線Lの長さL1の比F1/L1を示し、縦軸に騒音低減値{dB(A)}を示す。これは、空気調和機において貫流ファンの翼外周側端部に溝部14を設け、この溝最深部翼弦距離F1を変化させて、吹出口3近傍の室内で騒音値を計測したものである。F1/L1=0とは溝部14を設けていない構成であり、これを基準の騒音値とし、この騒音値からの低減値をグラフ化している。ここで、溝側部角度θ1は30°として構成した。   Next, in the shape of the groove portion 14, particularly in a cross section perpendicular to the rotation axis of the blade 8 c shown in FIG. 11, the deepest groove blade having a distance from the blade outer peripheral tip arc center 13 ac to the chord line groove deepest point A2L. The chord distance F1 and the ratio F1 / L1 of the length L1 of the chord line L connecting the blade outer peripheral tip portion 13a and the blade inner peripheral tip portion 13b will be described. In FIG. 14, the horizontal axis indicates the ratio F1 / L1 between the deepest groove chord distance F1 and the length L1 of the chord line L, and the vertical axis indicates the noise reduction value {dB (A)}. In the air conditioner, a groove portion 14 is provided at the blade outer peripheral side end portion of the once-through fan, and a noise value is measured in a room near the outlet 3 by changing the groove deepest chord distance F1. F1 / L1 = 0 is a configuration in which the groove portion 14 is not provided, and this is used as a reference noise value, and a reduction value from the noise value is graphed. Here, the groove side portion angle θ1 is 30 °.

F1/L1が0.2程度のときに騒音低減値が最も大きくなり、0.1より小さい構成及び0.3よりも大きい構成の時にはそれほど騒音が低減されていない。溝最深部翼弦距離F1が大きく、即ちF1/L1が0.3より大きいと、溝部14の翼弦中央部13e側において、渦流れE2の渦が発達しすぎる。そして、隣りの溝部14による渦流れ同士で干渉しあって逆に周囲の流れを乱すことになり、騒音が悪化してしまう。即ち、F1/L1が0.3以下であると、溝側部14bで生成される渦流れE2によって効果的に周囲空気が誘引され、広帯域騒音を低減できるので、好ましい。ただし、F1/L1が0.3より大きくても、隣り合う溝部14との距離などを変化させることで、ある程度改善することはできる。   When F1 / L1 is about 0.2, the noise reduction value becomes the largest, and when the configuration is smaller than 0.1 and larger than 0.3, the noise is not reduced so much. If the groove deepest chord distance F1 is large, that is, if F1 / L1 is greater than 0.3, the vortex of the vortex flow E2 develops too much on the chord central portion 13e side of the groove portion 14. Then, the vortex flows by the adjacent groove portions 14 interfere with each other and conversely disturb the surrounding flow, and the noise becomes worse. That is, it is preferable that F1 / L1 is 0.3 or less because ambient air is effectively attracted by the vortex flow E2 generated in the groove side portion 14b, and broadband noise can be reduced. However, even if F1 / L1 is larger than 0.3, it can be improved to some extent by changing the distance between the adjacent groove portions 14 and the like.

一方、F1/L1が0.1より小さいと、渦流れE2が十分に生成されないので、効果がない。このため、F1/L1が0.1以上であると、渦流れE2を十分に生成して騒音を低減できるので、好ましい。   On the other hand, if F1 / L1 is smaller than 0.1, the vortex flow E2 is not sufficiently generated, so that there is no effect. For this reason, it is preferable that F1 / L1 is 0.1 or more because the vortex flow E2 can be sufficiently generated to reduce noise.

以上のことから、0.1≦F1/L1で構成するのが好ましく、広帯域騒音を低減でき、静粛な貫流ファンが得られる。さらにはF1/L1≦0.3で構成するのが好ましく、隣り合う溝部14の翼弦中央部13e側で渦流れの渦が発達しすぎず、溝側部14bで生成される渦流れE2と周囲空気の誘引が干渉ないため、広帯域騒音を低減でき、静粛な貫流ファンが得られる。   From the above, it is preferable to configure with 0.1 ≦ F1 / L1, and it is possible to reduce broadband noise and obtain a quiet once-through fan. Further, it is preferable that F1 / L1 ≦ 0.3, and the vortex of the vortex flow does not develop too much on the chord center portion 13e side of the adjacent groove portion 14, and the vortex flow E2 generated on the groove side portion 14b Since the attraction of ambient air does not interfere, broadband noise can be reduced, and a quiet cross-flow fan can be obtained.

次に、溝部14の形状で、特に図8に示す羽根車8aの軸方向両端を除く羽根車単体8dにおいて、隣り合うリング8b間の翼長さBと溝部14の回転軸方向の中点間距離F2の比F2/Bについて説明する。図15は、横軸に溝中点間距離F2とリング間翼長さBの比F2/Bを示し、縦軸に騒音低減値{dB(A)}を示す。これは、空気調和機において貫流ファンの翼外周側端部に溝部14を設け、隣の溝14との間隔である溝中点間距離F2を変化させて、吹出口3近傍の室内で騒音値を計測したものである。F2/B=0とは溝部14を設けていない構成であり、これを基準の騒音値とし、この騒音値からの低減値をグラフ化している。ここで、溝側部角度θ1は30°とし、F1/Lは0.2として構成した。   Next, in the shape of the groove portion 14, particularly in the impeller unit 8 d excluding both axial ends of the impeller 8 a shown in FIG. 8, the distance between the blade length B between the adjacent rings 8 b and the midpoint in the rotation axis direction of the groove portion 14. The ratio F2 / B of the distance F2 will be described. FIG. 15 shows the ratio F2 / B between the groove center point distance F2 and the inter-ring blade length B on the horizontal axis, and the noise reduction value {dB (A)} on the vertical axis. This is because, in the air conditioner, a groove portion 14 is provided at the blade outer peripheral side end of the once-through fan, and a groove center-to-groove distance F2 that is an interval between the adjacent grooves 14 is changed, so that the noise value in the room near the outlet 3 is increased. Is measured. F2 / B = 0 is a configuration in which the groove portion 14 is not provided, and this is used as a reference noise value, and a reduction value from this noise value is graphed. Here, the groove side angle θ1 was 30 °, and F1 / L was 0.2.

F2/Bが0.2程度のときに騒音低減値が最も大きくなり、0.1より小さい構成及び0.3よりも大きい構成の時にはそれほど騒音が低減されていない。溝最深部翼弦距離F2が小さく、即ちF2/Bが0.1より小さいと、距離Bに形成される溝部14の数が多くなって隣り合う溝部14同士の距離が近くなり、回転軸方向の溝側部14bを短かくしなければならなくなる。このため、渦流れE2を十分に生成できず、十分な低騒音効果が得られない。また、従って、F2/Bが0.1以上であると、溝側部14bで渦流れE2を十分に生成することができ、広帯域騒音を低減できるので、好ましい。   When F2 / B is about 0.2, the noise reduction value is the largest, and when the configuration is smaller than 0.1 and larger than 0.3, the noise is not reduced so much. When the groove deepest chord distance F2 is small, that is, when F2 / B is smaller than 0.1, the number of the groove portions 14 formed at the distance B increases, and the distance between the adjacent groove portions 14 becomes close, and the rotation axis direction It is necessary to shorten the groove side portion 14b. For this reason, the vortex flow E2 cannot be sufficiently generated, and a sufficient low noise effect cannot be obtained. Therefore, it is preferable that F2 / B is 0.1 or more, because the vortex flow E2 can be sufficiently generated at the groove side portion 14b, and broadband noise can be reduced.

一方、F2/Bが0.3より大きいと、隣り合う溝側部14bにおける渦流れE2が離れすぎ、周囲流れが翼負圧面13dへ誘引される効果が薄れる。また、翼外周側先端部13a側の翼負圧面13dで溝部14がない領域が増加するので、翼外周側先端部13aでの剥離が生じ、回転音が大きくなる。従って、F2/Bが0.3以下であると、渦流れE2を十分に発生でき、剥離を低減でき、回転音を小さくでき、広帯域騒音を低減できるので、好ましい。ただし、F2/Bが0.3より大きくても、溝部14の軸方向長さA1や溝側部角度θ1などを変化させることで、ある程度改善することはできる。   On the other hand, if F2 / B is greater than 0.3, the vortex flow E2 in the adjacent groove side portion 14b is too far away, and the effect of attracting the surrounding flow to the blade suction surface 13d is reduced. Moreover, since the area | region which does not have the groove part 14 increases in the blade | wing negative pressure surface 13d of the blade outer peripheral side front-end | tip part 13a side, peeling in the blade outer peripheral side front-end | tip part 13a arises, and a rotation sound becomes large. Therefore, it is preferable that F2 / B is 0.3 or less because vortex flow E2 can be sufficiently generated, separation can be reduced, rotational noise can be reduced, and broadband noise can be reduced. However, even if F2 / B is greater than 0.3, it can be improved to some extent by changing the axial length A1 of the groove 14 and the groove side angle θ1.

以上のことから、0.1≦F2/Bで構成するのが好ましく、回転音が小さく、広帯域騒音も低減でき、聴感が良く静粛な貫流ファンが得られる。さらにはF2/B≦0.3で構成するのが好ましく、回転音が小さく、広帯域騒音を低減でき、聴感が良く静粛な貫流ファンが得られる。   In view of the above, it is preferable that 0.1 ≦ F2 / B be configured, a rotating sound is small, broadband noise can be reduced, and a quiet once-through fan with good audibility can be obtained. Furthermore, it is preferable that F2 / B ≦ 0.3, and it is possible to obtain a quiet once-through fan with a low rotational noise, reduced wide-band noise, and good audibility.

また、溝部14の他の構成例として、図16は本実施の形態に係る貫流ファン8の1枚の翼8cを示す斜視図である。図16に示すように、翼負圧面13dの翼外周側端部側に設けた溝部14は、隣の溝部14との間をあけずに隣接して複数設けた構成である。溝部14の形状は図9の構成例と同様、翼外周側先端部13a側を下底とする略台形形状であり、翼外周側先端部13aから翼弦中央部13eへ向け、徐々に回転軸方向AXの溝幅A1が小さくなる溝側部14bを有する。隣り合う溝部14の間は、翼外周側先端部13a側に略三角形状に突出した翼負圧面13dを構成している。   FIG. 16 is a perspective view showing one blade 8c of cross-flow fan 8 according to the present embodiment as another configuration example of groove 14. As shown in FIG. 16, a plurality of groove portions 14 provided on the blade outer peripheral side end portion side of the blade negative pressure surface 13 d are provided adjacent to each other without leaving a gap with the adjacent groove portion 14. As in the configuration example of FIG. 9, the shape of the groove portion 14 is a substantially trapezoidal shape with the blade outer peripheral tip portion 13a side as the bottom, and gradually rotates from the blade outer peripheral tip portion 13a toward the chord center portion 13e. A groove side portion 14b having a groove width A1 in the direction AX is reduced. Between adjacent groove portions 14, a blade negative pressure surface 13 d that protrudes in a substantially triangular shape on the blade outer peripheral side tip portion 13 a side is formed.

このように溝部14の下底が隣接するように形成することにより、隣り合う溝部14の溝側部14b同士により形成される突出部は、先端が鋭角の三角形状となる。このため、溝内端部14aでは羽根車8aが吸込領域C1を通過する時、斜め形状の溝側部14bを乗り越えて翼面へ回り込む渦流れE2を強く発生できる。渦流れE2が強くなることで、周囲の流れが翼負圧面13dへさらに誘引されやすくなり、周囲の流れが抑え込まれる。従って、剥離が抑制され、広帯域騒音を低減できる。また、翼外周側先端部13a側から流入する流れを、溝部14の内側に集め、その流れの勢いで溝部14の内側にできようとする境界層を溝部14外に流出させる。このため、翼外周側端部における境界層が発達しにくくなり、さらに剥離を抑制できる。   Thus, by forming so that the bottom bottom of the groove part 14 may adjoin, the protrusion part formed of the groove side parts 14b of the adjacent groove part 14 becomes a triangular shape with a sharp tip. For this reason, when the impeller 8a passes through the suction region C1 at the groove inner end portion 14a, it is possible to generate a strong vortex flow E2 that crosses the slanted groove side portion 14b and goes around the blade surface. As the vortex flow E2 becomes stronger, the surrounding flow is more easily attracted to the blade suction surface 13d, and the surrounding flow is suppressed. Therefore, peeling is suppressed and broadband noise can be reduced. Further, the flow flowing in from the blade outer peripheral tip portion 13a side is collected inside the groove portion 14, and the boundary layer that is supposed to be formed inside the groove portion 14 is caused to flow out of the groove portion 14 by the momentum of the flow. For this reason, it becomes difficult to develop the boundary layer in the blade outer peripheral side end, and further, peeling can be suppressed.

また、吹出領域C2では翼外周側端部の翼負圧面13dに生成される強い渦が、回転音の原因となっていた。図16のような溝部14の構成でも図9の構成と同様、溝部14によって翼外周側端部に形成される凹凸形状により、周期性が拡散されピーク性の回転音が低減される。   In addition, in the blowing region C2, strong vortices generated on the blade suction surface 13d at the blade outer peripheral end cause rotation noise. In the configuration of the groove portion 14 as shown in FIG. 16, similar to the configuration of FIG. 9, the periodicity is diffused and the peak rotational noise is reduced by the uneven shape formed by the groove portion 14 at the blade outer peripheral side end portion.

なお、図9及び図16に基づいて説明した溝部14は、翼外周側端部に設けたが、これに限るものではなく、翼内周側端部に設けてもよい。また、溝部14を翼8cの外周側端部及び内周側端部の両方に形成した場合、羽根車吸込領域C1、吹出領域C2でのそれぞれの流れ現象が翼1枚の中で生じることでさらに低騒音化が図れる。   In addition, although the groove part 14 demonstrated based on FIG.9 and FIG.16 was provided in the blade outer peripheral side edge part, it is not restricted to this, You may provide in a blade inner peripheral side edge part. Moreover, when the groove part 14 is formed in both the outer peripheral side edge part and inner peripheral side edge part of the blade | wing 8c, each flow phenomenon in the impeller suction area | region C1 and the blowing area | region C2 arises in one blade. Furthermore, noise can be reduced.

また、図9及び図16において、溝部14は翼外周側先端部13aや翼内周側先端部13bの端部の先端側を下底とする略台形形状の凹部として説明したが、これに限るものではない。例えば、翼外周側先端部13aや翼内周側先端部13bの先端側を底辺とする略三角形状の凹部で構成しても、同様の効果を奏する。   9 and 16, the groove portion 14 has been described as a substantially trapezoidal concave portion with the tip end side of the end portion of the blade outer periphery side tip portion 13a or the blade inner periphery side tip portion 13b as a bottom, but is not limited thereto. It is not a thing. For example, the same effect can be obtained even when the wing outer peripheral tip portion 13a and the wing inner peripheral tip portion 13b are configured by a substantially triangular recess having the bottom side as a base.

以上のように、本実施の形態では、所定の間隔をあけて配置される少なくとも2つの円板状の支持板8bと、支持板8bの中心を通り回転軸となるシャフト12aと、両端が支持板8bの外周部に固定され回転軸方向AXに伸び、回転軸に垂直な断面で翼外周側端部と翼内周側端部との間で円弧状である複数の翼8cと、翼8cの回転方向に対して後面となる翼負圧面13dの翼外周側端部及び翼内周側端部の少なくとも一方の端部に設けられ、前記端部の先端13a、13b側を底辺とする略三角形状または前記端部の先端13a、13b側を下底とする略台形形状の凹部で構成して凹側が向かい合う段差14bを有する複数の溝部14と、を備えたことにより、流れの剥離を抑制し低騒音な貫流ファンを得ることができる。   As described above, in the present embodiment, at least two disc-shaped support plates 8b arranged at a predetermined interval, the shaft 12a passing through the center of the support plate 8b and serving as a rotation axis, and both ends are supported. A plurality of blades 8c fixed to the outer peripheral portion of the plate 8b and extending in the rotation axis direction AX and having an arc shape between the blade outer peripheral end and the blade inner peripheral end in a cross section perpendicular to the rotation axis; Is provided at at least one of the blade outer peripheral side end and the blade inner peripheral side end of the blade negative pressure surface 13d which is the rear surface with respect to the rotational direction of the blade, and the tip 13a, 13b side of the end is a base. It is provided with a plurality of grooves 14 having a stepped portion 14b that is formed of a triangular shape or a substantially trapezoidal concave portion with the tip 13a, 13b side of the end as the bottom, and facing the concave side, thereby suppressing flow separation. Therefore, a low noise cross-flow fan can be obtained.

また、向かい合う段差14bが成す角度θ1を10°以上とし、向かい合う段差14bの段差間距離A1を端部の先端13a、13b側で広くしたことにより、効果的に流れの剥離を抑制でき、低騒音な貫流ファンを得ることができる。
また、向かい合う段差14bが成す角度θ1を45°以下としたことにより、効果的に流れの剥離を抑制でき、低騒音な貫流ファンを得ることができる。
Further, the angle θ1 formed by the facing step 14b is set to 10 ° or more, and the distance A1 between the facing steps 14b is widened at the end portions 13a and 13b, so that the separation of the flow can be effectively suppressed and low noise can be achieved. Can be obtained.
Further, by setting the angle θ1 formed by the step 14b facing each other to be 45 ° or less, it is possible to effectively suppress the separation of the flow and obtain a low-noise cross-flow fan.

また、翼8cの回転軸に垂直な断面で、翼外周側端部の先端13aと翼内周側端部の先端13bを結ぶ直線を翼弦線Lとし、溝部14の内部で溝部14の周囲との段差が最も大きくなる部分を溝部最深部A2とし、溝部最深部A2を通り翼弦線Lに垂直な直線との交点を翼弦線溝部最深点A2Lとし、溝部14が形成される端部の円弧状の先端の円弧中心から翼弦線溝部最深点A2Lまでの距離を溝最深部翼弦距離F1とし、翼弦線Lの長さを翼弦長L1とし、最深部翼弦距離F1と翼弦長L1の比を0.1≦F1/L1≦0.3となるように構成したことにより、効果的に流れの剥離を抑制でき、低騒音な貫流ファンを得ることができる。   Further, in a cross section perpendicular to the rotation axis of the blade 8c, a straight line connecting the tip 13a of the blade outer peripheral end and the tip 13b of the blade inner peripheral end is defined as a chord line L, and the groove 14 is surrounded by the inside of the groove 14. The portion where the step is formed is the groove deepest portion A2, and the intersection with the straight line passing through the groove deepest portion A2 and perpendicular to the chord line L is the chord line groove deepest point A2L. The distance from the arc center of the arcuate tip to the chord line groove deepest point A2L is the deepest groove chord distance F1, the chord line L is the chord length L1, and the deepest chord distance F1. By configuring the ratio of the chord length L1 to be 0.1 ≦ F1 / L1 ≦ 0.3, flow separation can be effectively suppressed, and a low-noise cross-flow fan can be obtained.

また、回転軸方向AXの翼8cの長さを翼長Bとし、複数の溝部14を回転軸方向AXに略等間隔で配置し、溝間隔F2と翼長Bの比を0.1≦F2/B≦0.3となるように構成したことにより、効果的に流れの剥離を抑制でき、低騒音な貫流ファンを得ることができる。   The length of the blade 8c in the rotation axis direction AX is the blade length B, the plurality of grooves 14 are arranged at substantially equal intervals in the rotation axis direction AX, and the ratio of the groove interval F2 to the blade length B is 0.1 ≦ F2. By configuring so that /B≦0.3, separation of the flow can be effectively suppressed, and a low-noise cross-flow fan can be obtained.

実施の形態3.
以下、本発明の実施の形態3に係る貫流ファンについて、図に基づいて説明する。図17は本実施の形態に係る貫流ファン8の1枚の翼8cを拡大して示す斜視図である。また、図18はこの羽根車8aを空気調和機に搭載した場合で、翼8cが吸込領域C1に位置する際の翼負圧面13dの一部を拡大して示す説明図であり、図19は空気調和機における吹出領域C2に位置する際の翼負圧面13dの一部を拡大して示す説明図である。なお、本実施の形態における主な構成については、実施の形態1及び実施の形態2と同様であり、同一符号は同一又は相当部分を示し、ここでは説明を省略する。
Embodiment 3 FIG.
Hereinafter, a cross-flow fan according to Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 17 is an enlarged perspective view showing one blade 8c of the cross-flow fan 8 according to the present embodiment. FIG. 18 is an explanatory diagram showing an enlarged part of the blade negative pressure surface 13d when the impeller 8a is mounted on an air conditioner and the blade 8c is positioned in the suction region C1, and FIG. It is explanatory drawing which expands and shows a part of blade | wing negative pressure surface 13d at the time of being located in the blowing area | region C2 in an air conditioner. The main configuration in the present embodiment is the same as that in the first and second embodiments, and the same reference numerals indicate the same or corresponding parts, and the description thereof is omitted here.

図17に示す翼8cは、実施の形態2における図16に示した溝部14を有し、さらに各溝部14に切欠部15を設けた構成である。切欠部15は、翼8cの翼内周側端部と前記翼外周側端部の少なくとも一方の端部に設けられ、端部の先端13a、13bから翼8cの内側に向かって切り欠いた構成であり、回転軸方向AXに複数配設している。特に本実施の形態では、複数の溝部14が形成する凹部の全てに切欠部15を設け、それぞれ切欠部15を溝部14が形成する凹部の中央に位置したものである。   A blade 8c shown in FIG. 17 has a configuration in which the groove portion 14 shown in FIG. 16 in the second embodiment is provided and a notch portion 15 is further provided in each groove portion 14. The notch 15 is provided at at least one end of the blade inner peripheral end and the blade outer peripheral end of the blade 8c, and is cut out from the tip 13a, 13b of the end toward the inside of the blade 8c. And a plurality of them are arranged in the rotation axis direction AX. In particular, in the present embodiment, notches 15 are provided in all of the recesses formed by the plurality of grooves 14, and the notches 15 are respectively positioned at the centers of the recesses formed by the grooves 14.

図18に示すように、回転軸方向AXの溝幅A1の中点付近に設けた切欠部15は、例えば略三角形に開口し、その三角形状の底辺は、翼端部である翼外周側先端部13aに面している。その底辺の両端に相当する切欠部角部15a、並びに三角形状の二辺に相当する切欠部側部15bの翼圧力面13c及び翼負圧面13dとの角部は、丸くした円弧形状で形成している。   As shown in FIG. 18, the notch 15 provided in the vicinity of the midpoint of the groove width A1 in the rotation axis direction AX opens, for example, in a substantially triangular shape, and the base of the triangular shape is the tip of the blade outer peripheral side that is the blade tip. It faces the part 13a. The corners of the cutout corner 15a corresponding to both ends of the bottom side and the blade pressure surface 13c and the blade suction surface 13d of the cutout side 15b corresponding to the two sides of the triangle are formed in a rounded arc shape. ing.

翼8cが吸込領域C1を通過する際には、気流E0が矢印方向から流れる。この時、翼外周側先端部13aに対して斜め形状である溝側部14bを乗り越えて、翼面へ回り込む渦流れE2が強く発生し、周囲の流れが翼負圧面13dへ誘引されやすくなる。このため、周囲の流れが抑え込まれて気流が翼負圧面13dから剥離するのを抑制する。
さらに、翼外周側先端部13a及び負圧面13dの翼外周側先端部13a側に生成される強い剥離渦が回転音の原因となることは周知のことであるが、翼外周側先端部13aに切欠部15を設けていることで、剥離渦が拡散される。即ち、切欠部15によって翼圧力面13cから翼負圧面13dに向かって渦が発生し、さらにこの渦が翼負圧面13dに沿って流れていく。この渦によって翼負圧面13d上の流れが誘引され、翼負圧面13dに抑えこまれる。このため、剥離渦が拡散される。さらに溝部14によって形成される斜めの段差により、剥離渦の周期性が拡散される。このため、回転音が低減される。
When the blade 8c passes through the suction region C1, the air flow E0 flows from the direction of the arrow. At this time, the vortex flow E2 that crosses the groove-side portion 14b that is slanted with respect to the blade outer peripheral tip portion 13a and circulates to the blade surface is strongly generated, and the surrounding flow is easily attracted to the blade negative pressure surface 13d. For this reason, the surrounding flow is suppressed and the airflow is prevented from being separated from the blade suction surface 13d.
Furthermore, it is well known that strong separation vortices generated on the blade outer peripheral tip 13a and the blade outer peripheral tip 13a side of the suction surface 13d cause rotation noise. By providing the notch 15, the separation vortex is diffused. That is, a vortex is generated by the notch 15 from the blade pressure surface 13c toward the blade suction surface 13d, and this vortex flows along the blade suction surface 13d. This vortex attracts the flow on the blade suction surface 13d and is restrained by the blade suction surface 13d. For this reason, the separation vortex is diffused. Furthermore, the periodicity of the separation vortex is diffused by the oblique step formed by the groove 14. For this reason, a rotation sound is reduced.

また、図19に示すように、翼8cが吹出領域C2を通過する際には、気流E0が矢印方向から流れる。この時、翼弦中央部13eから溝内端部14aへの流れE3及び溝側部14bへの流れE4は、溝部14が上流の翼弦中央部13eより凹形状となっており負圧となり誘引されることで剥離が抑制される。この時の切欠部15の作用は吸込領域と同様、切欠部15に生じる微小な変動流や渦により、剥離が緩和され回転音や広帯域騒音がさらに低減される。   Further, as shown in FIG. 19, when the blade 8c passes through the blowing region C2, the air flow E0 flows from the arrow direction. At this time, the flow E3 from the chord central portion 13e to the groove inner end portion 14a and the flow E4 to the groove side portion 14b are attracted by the groove portion 14 having a concave shape from the upstream chord central portion 13e and becoming negative pressure. Peeling is suppressed. The action of the notch 15 at this time is the same as that of the suction region, and the minute fluctuation flow and vortices generated in the notch 15 relieve the separation and further reduce the rotational noise and broadband noise.

さらに、翼外周側先端部13aに溝部14がなくて切欠部15のみが形成された場合には、切欠部15で漏れ流れが生じることで損失が大きくなっていた。これに対し本実施の形態では溝部14を設けているので、切欠部15における翼圧力面13cから翼負圧面13dへの漏れ流れが溝部14を通過する流れで抑制される。このため、漏れ流れによって生じていた損失が低減でき、消費電力の低減が可能である。特にフィルタ5にホコリが付着し通風抵抗が増加した時の消費電力の低減効果が大きい。
このように、溝部14と切欠部15とを組み合わせることで、切欠部15のみの構成の場合に問題であった翼面積減少に伴う空気出力の低下を防止でき、両者の騒音低減効果を相乗して発揮できる。
Further, in the case where only the notch portion 15 is formed without the groove portion 14 at the blade outer peripheral tip portion 13a, a leakage flow is generated at the notch portion 15 and the loss is increased. On the other hand, since the groove portion 14 is provided in the present embodiment, the leakage flow from the blade pressure surface 13 c to the blade negative pressure surface 13 d in the notch portion 15 is suppressed by the flow passing through the groove portion 14. For this reason, the loss caused by the leakage flow can be reduced, and the power consumption can be reduced. In particular, the effect of reducing power consumption is great when dust adheres to the filter 5 and the ventilation resistance increases.
Thus, by combining the groove 14 and the notch 15, it is possible to prevent a decrease in air output due to a reduction in the blade area, which was a problem in the case of the configuration of only the notch 15, and synergizes the noise reduction effect of both. Can demonstrate.

さらに、本実施の形態では、切欠部角部15a及び切欠部側部15bは、角部を丸くして円弧形状で形成している。例えば羽根車8aにホコリが付着し、雑巾等で羽根車8aの翼外周側先端部3aを直接拭く時など、回転軸方向へ拭いても雑巾が切れたり、指をケガを防止でき、安全な貫流ファンが得られる。
このように、通風抵抗が増加しても回転音が抑制され、広帯域騒音が低減されることで低騒音で、聴感も良く、省エネで、清掃時も安全を確保した品質のよい貫流ファンが得られる。
Further, in the present embodiment, the cutout corner 15a and the cutout side 15b are formed in an arc shape with rounded corners. For example, when dust adheres to the impeller 8a and the wing outer peripheral side tip 3a of the impeller 8a is wiped directly with a rag or the like, the rag can be cut off or the finger can be prevented from being injured even if wiped in the direction of the rotation axis. A cross-flow fan is obtained.
In this way, even if the ventilation resistance increases, rotating noise is suppressed and broadband noise is reduced, resulting in a low-noise, good audibility, energy saving, and a good quality once-through fan that ensures safety during cleaning. It is done.

なお、本実施の形態では、溝部14及び切欠部15を翼外周側先端部13aに設けた構成例について説明したが、翼内周側先端部13bに設けてもよい。また、翼外周側先端部13aと翼内周側先端部13bの両方に設けると、さらに大きな騒音低減効果が得られる。
また、切欠部15を全ての溝部14の内側に設けているが、これに限るものではなく、切欠部15を設けていない部分があってもよく、ある程度の効果を奏する。ただし、羽根車8aの回転軸方向の中央を通る線に対して、線対称になるように配置すれば、気流が安定した貫流ファンが得られる。
また、ここでは図16の構成の溝部14にさらに切欠部15を設けているが、実施の形態1における図4、図5、図6に示した構成の段差11を有する構成に、さらに切欠部15を設けてもよい。また、実施の形態2における図9に示した溝部14を有する構成に、さらに切欠部15を設けてもよい。段差11又は溝部14と、切欠部15を設けることで、さらに騒音を低減できる効果を奏する。
In the present embodiment, the configuration example in which the groove portion 14 and the notch portion 15 are provided in the blade outer peripheral side tip portion 13a has been described, but may be provided in the blade inner peripheral side tip portion 13b. Further, if the blade is provided at both the blade outer peripheral tip portion 13a and the blade inner peripheral tip portion 13b, an even greater noise reduction effect can be obtained.
Moreover, although the notch part 15 is provided in the inside of all the groove parts 14, it is not restricted to this, There may be a part which does not provide the notch part 15, and there exists a certain amount of effect. However, if it arrange | positions so that it may become line symmetrical with respect to the line which passes along the center of the rotating shaft direction of the impeller 8a, the cross-flow fan with which the airflow was stabilized is obtained.
Here, the notch 15 is further provided in the groove 14 having the configuration shown in FIG. 16, but the notch is further added to the configuration having the step 11 having the configuration shown in FIGS. 4, 5, and 6 in the first embodiment. 15 may be provided. Further, a notch portion 15 may be further provided in the configuration having the groove portion 14 shown in FIG. 9 in the second embodiment. Providing the step 11 or the groove 14 and the notch 15 has an effect of further reducing noise.

以上のように、本実施の形態によれば、翼8cの翼内周側端部と翼外周側端部の少なくとも一方の端部に設けられ、端部の先端13a、13bから翼8cの内側に向かって切り欠いた切欠部15を回転軸方向AXに複数有することにより、回転音及び広帯域騒音を低減でき、静粛な貫流ファンが得られる。
また、切欠部15の先端15aの角部を丸くしたことにより、掃除がしやすくなることで清潔に保つことができ、安全な貫流ファンが得られる。
As described above, according to the present embodiment, the blade 8c is provided at at least one end of the blade inner peripheral end and the blade outer peripheral end, and from the tip 13a, 13b of the end to the inside of the blade 8c. By providing a plurality of cutout portions 15 in the direction of the rotation axis AX, rotational noise and broadband noise can be reduced, and a quiet cross-flow fan can be obtained.
Moreover, since the corner | angular part of the front-end | tip 15a of the notch part 15 was rounded, it can maintain cleanly by becoming easy to clean, and a safe once-through fan is obtained.

実施の形態4.
以下、本発明の実施の形態4に係る貫流ファンについて、図に基づいて説明する。図20は本実施の形態に係る羽根車8aの1枚の翼8cを示す斜視図である。また、図21はこの羽根車8aを空気調和機に搭載した場合で、翼8cが吸込領域C1に位置する際の翼負圧面13dの一部を拡大して示す説明図であり、図22は空気調和機における吹出領域C2に位置する際の翼負圧面13dの一部を拡大して示す説明図である。また、図23は図21のQ−Q線における断面図、図24は図21のR−R線における断面図を示す。なお、本実施の形態における主な構成については、実施の形態1又は実施の形態2と同様であり、同一符号は同一、又は相当部分を示し、ここでは説明を省略する。
Embodiment 4 FIG.
Hereinafter, a cross-flow fan according to Embodiment 4 of the present invention will be described with reference to the drawings. FIG. 20 is a perspective view showing one blade 8c of the impeller 8a according to the present embodiment. FIG. 21 is an explanatory diagram showing an enlarged part of the blade negative pressure surface 13d when the impeller 8a is mounted on an air conditioner and the blade 8c is positioned in the suction region C1, and FIG. It is explanatory drawing which expands and shows a part of blade | wing negative pressure surface 13d at the time of being located in the blowing area | region C2 in an air conditioner. 23 is a cross-sectional view taken along the line QQ in FIG. 21, and FIG. 24 is a cross-sectional view taken along the line RR in FIG. Note that the main configuration in this embodiment is the same as that in Embodiment 1 or Embodiment 2, and the same reference numerals indicate the same or corresponding parts, and description thereof is omitted here.

図20及び図21に示すように、羽根車8aの回転方向ROに対して後面となる翼負圧面13dにおいて、翼外周側端部に、翼負圧面13dから翼弦中央部13eの方向へ突出する突起部16を有する。図21に拡大して示すように所定間隔G1で回転軸方向AXに複数、例えばリング8b間に3個の突起部16を有する。1つの突起部16の翼負圧面13dに接する底面は、回転軸方向AXに短く回転方向ROに長い多角形であり、回転方向ROに対して前方の翼外周側傾斜面16a及び後方の翼内周側傾斜面16b、回転方向ROに沿った2つの側面16c、突出した上面16dを有する。   As shown in FIGS. 20 and 21, in the blade suction surface 13d that is the rear surface with respect to the rotational direction RO of the impeller 8a, the blade outer peripheral end projects from the blade suction surface 13d toward the blade chord center portion 13e. It has the projection part 16 to do. As shown in an enlarged view in FIG. 21, a plurality of, for example, three protrusions 16 are provided between the rings 8b in the rotation axis direction AX at a predetermined interval G1. The bottom surface of one protrusion 16 in contact with the blade suction surface 13d is a polygon that is short in the rotation axis direction AX and long in the rotation direction RO, and is a front blade outer peripheral inclined surface 16a and a rear blade in the rotation direction RO. It has a peripheral inclined surface 16b, two side surfaces 16c along the rotation direction RO, and a protruding upper surface 16d.

翼外周側傾斜面16aは翼外周側端部側から翼内周側端部側へ向かって高さが増加する傾斜面であり、翼内周側傾斜面16bは翼内周側端部側から翼外周端部側へ向かって高さが増加する翼内周側傾斜面である。また、図23に示す回転軸に垂直な翼断面において、突起部16は回転中心Oを中心とし翼外周側先端部13aを通る翼外周円Dよりも外側に突出しないように、翼外周円Dよりも内側で、翼負圧面13dから突出する形状とする。また、翼外周側先端部13aの円弧中心13acと翼内周側先端部13bの円弧中心13bcを結ぶ翼弦線Lに平行で、翼負圧面13dに接する直線Lsから突出しないように、直線Lsよりも翼負圧面13d側に収まるように形成する。   The blade outer peripheral inclined surface 16a is an inclined surface whose height increases from the blade outer peripheral end portion side toward the blade inner peripheral end portion side, and the blade inner peripheral inclined surface 16b is formed from the blade inner peripheral end portion side. It is a blade inner peripheral side inclined surface whose height increases toward the blade outer peripheral end side. In addition, in the blade cross section perpendicular to the rotation axis shown in FIG. 23, the protrusion 16 does not protrude outwardly beyond the blade outer circle D passing through the blade outer peripheral tip 13a with the rotation center O as the center. Further, the shape protrudes from the blade suction surface 13d. The straight line Ls is parallel to the chord line L that connects the arc center 13ac of the blade outer circumferential tip 13a and the arc center 13bc of the blade inner circumferential tip 13b and does not protrude from the straight line Ls that contacts the blade suction surface 13d. Rather than the blade suction surface 13d side.

また、図24に示すように、回転方向ROに沿った突起部16の2つの側面16cは、翼負圧面13dから離れるにつれて、突起部16の内側に傾いた先細り形状となる傾斜面で形成され、両傾斜面で成す角を傾斜角θ2とする。さらに、突起部16の角部16eは丸く構成している。   Further, as shown in FIG. 24, the two side surfaces 16c of the protrusion 16 along the rotation direction RO are formed with inclined surfaces that are tapered toward the inside of the protrusion 16 as they are separated from the blade negative pressure surface 13d. An angle formed by both inclined surfaces is defined as an inclination angle θ2. Further, the corner 16e of the protrusion 16 is rounded.

このように形成された貫流ファン8において、図21に示すように、翼8cが吸込領域C1に位置する際、気流E0は翼外周側端部13aから翼内周側端部13bに向かい、回転方向ROと逆の方向になる。このため、気流E0は翼外周側端部13aから翼負圧面13dに流れ、突起部16の翼外周側傾斜面16aに流れる。翼外周側傾斜面16aは翼外周側先端部13a側から翼弦中央部13e側へ向け徐々に翼負圧面13dからの高さが増加する傾斜面である。このため、気流は翼外周側傾斜面16aに乗りあがりながら下流側に流れようとし、図21や図24に示すように、側面16cへ沿う縦渦E5が生成され、側面16cに沿って下流へ流れていく。このとき周囲空気が縦渦E5に誘引され、気流が翼負圧面13dから剥離しようとするのを抑制する。この気流の剥離が抑制されることで、貫流ファンの回転音を低減できる。   In the cross-flow fan 8 formed in this way, as shown in FIG. 21, when the blade 8c is located in the suction region C1, the airflow E0 rotates from the blade outer peripheral end 13a toward the blade inner peripheral end 13b. The direction is opposite to the direction RO. For this reason, the airflow E0 flows from the blade outer peripheral side end portion 13a to the blade negative pressure surface 13d, and flows to the blade outer peripheral side inclined surface 16a of the protrusion 16. The blade outer peripheral inclined surface 16a is an inclined surface whose height from the blade negative pressure surface 13d gradually increases from the blade outer peripheral tip portion 13a side toward the chord central portion 13e side. Therefore, the airflow tends to flow downstream while climbing on the blade outer peripheral inclined surface 16a, and as shown in FIGS. 21 and 24, the vertical vortex E5 along the side surface 16c is generated, and downstream along the side surface 16c. It will flow. At this time, ambient air is attracted by the vertical vortex E5, and airflow is prevented from being separated from the blade suction surface 13d. By suppressing the separation of the airflow, the rotational noise of the cross-flow fan can be reduced.

ここで、縦渦とは翼負圧面13dに垂直な面を形成するような渦を称し、横渦とは翼負圧面13dに平行な面を形成するような渦を称する。もし翼外周側傾斜面16aが翼負圧面13dに直立するように構成されていると、気流が翼外周側傾斜面16aにぶつかって横方向に流れようとするので横渦が生成される。ところが、横渦ができると翼内周側傾斜面16bの付近で後流渦が生じ、気流に悪影響を及ぼす。突起部16によって縦渦E5が発生することで、気流が翼負圧面13dから剥離しようとするのを抑制できる。   Here, the vertical vortex refers to a vortex that forms a surface perpendicular to the blade suction surface 13d, and the horizontal vortex refers to a vortex that forms a surface parallel to the blade suction surface 13d. If the blade outer peripheral inclined surface 16a is configured to stand upright on the blade negative pressure surface 13d, an air current strikes the blade outer peripheral inclined surface 16a and tends to flow in the lateral direction, so that a horizontal vortex is generated. However, when a horizontal vortex is formed, a wake vortex is generated in the vicinity of the blade inner peripheral inclined surface 16b, which adversely affects the airflow. By generating the vertical vortex E5 by the protrusion 16, the airflow can be prevented from being separated from the blade suction surface 13d.

一方、図22に示すように、翼8cが吹出領域C2に位置する際、気流E0は翼内周側先端部13bから翼外周側先端部13aに向かい、回転方向ROと同方向になる。この時、気流E0は翼内周側先端部13bから翼負圧面13dに流れ、翼弦中央部13eを越えたあたりから境界層が発達し始める。突起部16は翼弦中央部13eの下流側に位置し、突起部16の翼内周側傾斜面16bは、翼弦中央部13e側から翼外周側先端部13a側へ向かって、徐々に翼負圧面13dからの高さが増加する傾斜面である。このため、翼弦中央部13eを越えて流れてきた境界層の発達しだす流れは、翼内周側傾斜面16bに乗りあがりながら下流側流れようとし、側面16cに沿う縦渦E6が生成され、側面16cに沿って下流へ流れていく。この縦渦E6によって周囲に発生している剥離渦を拡散して剥離を抑制し、広帯域騒音を低減できる。   On the other hand, as shown in FIG. 22, when the blade 8c is located in the blowing region C2, the airflow E0 is directed from the blade inner peripheral tip portion 13b to the blade outer peripheral tip portion 13a and in the same direction as the rotational direction RO. At this time, the airflow E0 flows from the blade inner peripheral side tip 13b to the blade suction surface 13d, and the boundary layer starts to develop from the point where it exceeds the chord central portion 13e. The protrusion 16 is located on the downstream side of the chord central portion 13e, and the blade inner peripheral inclined surface 16b of the protrusion 16 gradually moves from the chord central portion 13e side toward the blade outer peripheral end portion 13a side. The inclined surface increases in height from the negative pressure surface 13d. For this reason, the flow that develops the boundary layer that has flowed beyond the chord central portion 13e tends to flow downstream while climbing on the blade inner circumferential inclined surface 16b, and a vertical vortex E6 is generated along the side surface 16c. It flows downstream along the side surface 16c. The vertical vortex E6 diffuses the separation vortex generated in the surrounding area to suppress the separation and reduce broadband noise.

また、図23に基づいて説明したように、回転軸に垂直な断面において、突起部16は、回転中心Oを中心とし、翼外周側先端部13aに接する翼外周円Dより突出することなく、翼外周円Dの内側に収まるような形状とした。このため、突起部16が羽根車8aの回転による軌跡から外側に突出しないので、突起部16が羽根車8aの外部の流れを乱すのを防止できる。ここで、翼外周側傾斜面16aが、翼外周円Dの円周とほぼ一致するように形成すれば、吸込領域C1において流れ込む気流に対し、スムーズに縦渦E5を発生することができる。   Further, as described based on FIG. 23, in the cross section perpendicular to the rotation axis, the protrusion 16 is centered on the rotation center O and does not protrude from the blade outer periphery circle D in contact with the blade outer peripheral side tip portion 13a. The shape is such that it fits inside the blade outer periphery circle D. For this reason, since the projection part 16 does not protrude outside from the locus | trajectory by rotation of the impeller 8a, it can prevent that the projection part 16 disturbs the flow outside the impeller 8a. Here, if the blade outer peripheral inclined surface 16a is formed so as to substantially coincide with the circumference of the blade outer periphery circle D, the vertical vortex E5 can be generated smoothly with respect to the airflow flowing in the suction region C1.

さらに、突起部16の回転方向ROの長さは、回転軸方向AXの長さよりも長い形状である。このため、羽根車吸込領域C1及び吹出領域C2共に、翼負圧面13dでの流れが、隣り合う突起部16によって回転方向ROに流れるように強制される。即ち突起部16によって流れが整流されて安定する。   Furthermore, the length of the protrusion 16 in the rotation direction RO is longer than the length in the rotation axis direction AX. For this reason, in both the impeller suction region C1 and the blowout region C2, the flow on the blade suction surface 13d is forced to flow in the rotational direction RO by the adjacent protrusions 16. That is, the flow is rectified and stabilized by the protrusion 16.

また、本実施の形態ではリング8b間の羽根車回転軸方向で、中央位置に1つの突起部16を配置すると共に、この中央に線対称になるように2つの突起部16を配置した。このように羽根車単体8dで、突起部16を線対称に配置すると、流れの対称性が図れるので、流れが安定する。その結果、貫流ファン8で流れが安定し、フィルタ5に通風抵抗が付加されても安定して送風できる。   Further, in the present embodiment, in the direction of the impeller rotation axis between the rings 8b, one protrusion 16 is disposed at the center position, and two protrusions 16 are disposed at the center so as to be line symmetric. In this way, if the protrusions 16 are arranged in line symmetry in the impeller single unit 8d, the flow can be symmetrical, so that the flow is stabilized. As a result, the flow is stabilized by the once-through fan 8, and even if ventilation resistance is added to the filter 5, the air can be stably blown.

また、側面16cは突起部16の内側に傾斜する先細り形状の傾斜面とし、両側面16c間の傾斜角度θ2を例えば10°≦θ2≦90°とした。即ち、1つの側面16cで、翼負圧面13dに垂直な面からの角度はθ2/2であり、5°〜45°程度とした。この角度をあまり小さくすると側面16cが垂直に近い立ち上がりとなって、翼外周側傾斜面16aや翼内周側傾斜面16bで生成した縦渦E5、E6を滑らかに下流へ流すことができなくなる。また、この角度をあまり大きくすると突起部16の高さが低くなって、翼外周側傾斜面16aや翼内周側傾斜面16bで縦渦E5、E6を十分に生成することができず、剥離を十分に抑制できなくなる。   Further, the side surface 16c is a tapered inclined surface inclined inward of the protrusion 16, and the inclination angle θ2 between the side surfaces 16c is set to 10 ° ≦ θ2 ≦ 90 °, for example. That is, the angle from the surface perpendicular to the blade suction surface 13d on one side surface 16c is θ2 / 2, which is about 5 ° to 45 °. If this angle is too small, the side surface 16c rises to be nearly vertical, and the vertical vortices E5 and E6 generated on the blade outer peripheral side inclined surface 16a and the blade inner peripheral side inclined surface 16b cannot flow smoothly downstream. Further, if this angle is too large, the height of the protrusion 16 is lowered, and the vertical vortices E5 and E6 cannot be sufficiently generated on the blade outer peripheral side inclined surface 16a and the blade inner peripheral side inclined surface 16b, and peeling occurs. Cannot be sufficiently suppressed.

また、突起部16の角部16eを丸く曲面で形成したので、気流が滑らかに流れると共に、清潔に保つことができ清掃時の安全性も確保できる。例えば翼8cを雑巾等の布で羽根車回転軸方向AXに拭く時、側面16cから丸みを帯びた上面16dと通過して側面16cへ滑らかに布を滑らせることができ、翼負圧面13dの付け根付近も掃除できる。さらに、角部16eが尖っていないので、引っ掛かってケガをしたりする心配がなく、安全である。   In addition, since the corner 16e of the protrusion 16 is formed in a rounded curved surface, the airflow flows smoothly and can be kept clean and secure safety during cleaning. For example, when the blade 8c is wiped with a cloth such as a rag in the impeller rotation axis direction AX, the cloth can be smoothly slid to the side surface 16c through the rounded upper surface 16d from the side surface 16c. You can also clean the root area. Furthermore, since the corner portion 16e is not sharp, there is no worry of being caught and injured, which is safe.

なお、突起部16の形状は、この実施の形態に限るものではない。例えば、上面16dは平らでなく略球面の一部のように丸い形状でもよい。また、翼外周側傾斜面16a、翼内周側傾斜面16b、2つの側面16cもそれぞれ平面に限るものではなく、丸みを帯びた傾斜面でもよく、また多少角部を有する傾斜面で構成されていてもよい。例えば、底面形状が回転方向ROに長い楕円である円錐形状や、回転方向ROに沿った2つの側面16cが半円形状で翼外周側傾斜面16aと翼内周側傾斜面16bとで側面16cを接続する面を構成するような、円柱を縦に切断した形状などでもよい。   In addition, the shape of the protrusion part 16 is not restricted to this embodiment. For example, the upper surface 16d may not be flat but may be round like a part of a substantially spherical surface. Further, the blade outer peripheral side inclined surface 16a, the blade inner peripheral side inclined surface 16b, and the two side surfaces 16c are not limited to planes, respectively, and may be rounded inclined surfaces, or may be formed by inclined surfaces having some corners. It may be. For example, a conical shape whose bottom surface shape is an ellipse long in the rotational direction RO, or two side surfaces 16c along the rotational direction RO are semicircular, and the side surface 16c is composed of the blade outer peripheral inclined surface 16a and the blade inner peripheral inclined surface 16b. The shape which cut | disconnected the cylinder vertically etc. which comprise the surface which connects can be sufficient.

また、図23の翼断面図で、突起部16は、直線Lsよりも翼負圧面13d側で翼外周円Dよりも翼負圧面13d側に収まるように構成すればよく、回転方向ROの長さがもっと長くてもよい。また、回転軸方向AXの長さがもっと短くてもよい。ただし、側面16cと翼負圧面13dに垂直な面との角度がある程度、例えば5°以上の角度で構成すれば、縦渦E5、E6を発生させることができ、上記と同様の効果を奏する。また、突起部16の数は本実施の形態に限定されるものではなく、回転軸方向AXに2個または4個以上であってもよい。   Further, in the blade cross-sectional view of FIG. 23, the protrusion 16 may be configured so as to be located on the blade suction surface 13d side with respect to the straight line Ls and on the blade suction surface 13d side with respect to the blade outer circumference circle D. May be longer. Further, the length in the rotation axis direction AX may be shorter. However, if the angle between the side surface 16c and the surface perpendicular to the blade suction surface 13d is set to a certain degree, for example, an angle of 5 ° or more, the longitudinal vortices E5 and E6 can be generated, and the same effect as described above can be obtained. Further, the number of the protrusions 16 is not limited to the present embodiment, and may be two or four or more in the rotation axis direction AX.

また、突起部16は、翼8cを射出成形するときに一体として製造してもよいし、別に成形した突起部16を翼8cに固着して製造してもよい。   The protrusion 16 may be manufactured as an integral part when the wing 8c is injection-molded, or may be manufactured by fixing the separately formed protrusion 16 to the wing 8c.

以上のように、本実施の形態によれば、所定の間隔をあけて配置される少なくとも2つの円板状の支持板8bと、支持板8bの中心を通り回転軸となるシャフト12aと、両端が支持板8bの外周部に固定され回転軸方向AXに伸び、回転軸に垂直な断面で翼外周側端部と翼内周側端部との間で円弧状である複数の翼8cと、翼8cの回転方向ROに対して後面となる翼負圧面13dの翼外周側端部に回転軸方向AXに複数設けた翼負圧面13dから突出する突起部16と、を備え、突起部16は、翼外周側端部側から翼内周側端部側へ向かって高さが増加する翼外周側傾斜面16aと、翼内周側端部側から翼外周端部側へ向かって高さが増加する翼内周側傾斜面16bを有すると共に、回転軸に垂直な断面で回転中心Oを中心として翼外周側端部の先端13aを通る翼外周円Dの内側に設けられ、さらに断面で翼外周側端部の先端13aと翼内周側端部の先端13bを結ぶ翼弦線Lと平行で翼負圧面13dに接する直線Lsよりも翼負圧面13d側に設けたことにより、回転音及び広帯域騒音を低減できる貫流ファンが得られる。   As described above, according to the present embodiment, at least two disc-shaped support plates 8b arranged at a predetermined interval, the shaft 12a that passes through the center of the support plate 8b and serves as a rotation axis, and both ends Is fixed to the outer peripheral portion of the support plate 8b and extends in the rotational axis direction AX, and a plurality of blades 8c having an arc shape between the blade outer peripheral end and the blade inner peripheral end in a cross section perpendicular to the rotational axis; A plurality of protrusions 16 projecting from the blade suction surface 13d provided in the rotation axis direction AX at the blade outer peripheral side end portion of the blade suction surface 13d as a rear surface with respect to the rotation direction RO of the blade 8c. The blade outer peripheral side inclined surface 16a whose height increases from the blade outer peripheral end portion side toward the blade inner peripheral end portion side, and the height from the blade inner peripheral end portion side toward the blade outer peripheral end side. The blade outer peripheral side inclined surface 16b is increased, and the blade outer periphery is centered on the rotation center O in a cross section perpendicular to the rotation axis. The blade suction surface is provided on the inner side of the blade outer periphery circle D passing through the tip 13a of the end, and is parallel to the chord line L connecting the tip 13a of the blade outer peripheral end and the tip 13b of the blade inner peripheral end in cross section. By providing the blade suction surface 13d side with respect to the straight line Ls in contact with 13d, a cross-flow fan that can reduce rotational noise and broadband noise is obtained.

さらに、突起部16によって気流の流れを整流することもでき、フィルタの目詰まりなどによって通風抵抗が大きくなっても送風効率の低減を抑制できる。   Furthermore, the flow of the airflow can be rectified by the protrusions 16, and the reduction of the blowing efficiency can be suppressed even if the ventilation resistance increases due to clogging of the filter or the like.

また、突起部16の回転方向ROに沿った側面16cは、翼負圧面13dから離れるにつれて突起部16の内側に傾く傾斜面で構成されたことにより、縦渦を発生させることができ、回転音及び広帯域騒音を低減できる貫流ファンが得られる。   Further, the side surface 16c along the rotation direction RO of the protrusion 16 is formed by an inclined surface that inclines toward the inner side of the protrusion 16 as it moves away from the blade suction surface 13d, so that a vertical vortex can be generated. And a once-through fan capable of reducing broadband noise.

また、突起部16の角部16eを丸く構成したことにより、突起部16の凹凸面の角部は滑りやすくなるのでホコリが引っかかりにくくなり、貫流ファンを清潔に保つことができる。また、安全に掃除がしやすく衛生面が保てる貫流ファンを得ることができる。   Further, since the corner portion 16e of the projection portion 16 is configured to be round, the corner portion of the uneven surface of the projection portion 16 becomes slippery, so that dust is not easily caught and the cross-flow fan can be kept clean. In addition, it is possible to obtain a cross-flow fan that can be safely cleaned and can maintain hygiene.

実施の形態5.
以下、本発明の実施の形態5に係る貫流ファンについて、図に基づいて説明する。図25は本実施の形態に係る羽根車8aの1枚の翼8cを拡大して示す斜視図である。また、図26はこの羽根車8aを空気調和機に搭載した場合で、翼8cが吸込領域C1に位置する際の翼負圧面13dの一部を拡大して示す説明図であり、図27は翼8cが吹出領域C2に位置する際の翼負圧面13dの一部を拡大して示す説明図である。また、図28は図26のT−T線における断面図、図29は図26のS−S線における断面図を示す。なお、本実施の形態における主な構成については、実施の形態1〜実施の形態4と同様であり、同一符号は同一、又は相当部分を示し、ここでは説明を省略する。
Embodiment 5 FIG.
Hereinafter, a cross-flow fan according to Embodiment 5 of the present invention will be described with reference to the drawings. FIG. 25 is an enlarged perspective view showing one blade 8c of the impeller 8a according to the present embodiment. FIG. 26 is an explanatory diagram showing an enlarged part of the blade suction surface 13d when the impeller 8a is mounted on an air conditioner and the blade 8c is positioned in the suction region C1, and FIG. It is explanatory drawing which expands and shows a part of blade | wing negative pressure surface 13d at the time of the blade | wing 8c being located in the blowing area | region C2. FIG. 28 is a cross-sectional view taken along line TT in FIG. 26, and FIG. 29 is a cross-sectional view taken along line SS in FIG. In addition, about the main structure in this Embodiment, it is the same as that of Embodiment 1-Embodiment 4, the same code | symbol shows the same or an equivalent part, and abbreviate | omits description here.

図に示すように、羽根車の回転方向ROに対して後面となる翼負圧面13dにおいて、翼8cの翼外周側端部に、翼負圧面13dから突出し、回転方向ROの長さが回転軸方向AXの長さよりも長い底面形状を有する突起部16を設けた。1つの羽根車単体8dで回転軸方向AXに複数、例えば3個の突起部16を所定間隔G1で配置する。この突起部16の構成は実施の形態4と同様である。
さらに、突起部16の近傍には溝部14を有する。この溝部14は、実施の形態2における溝部14と同様の構成であるが、翼外周側先端部13a側に突起部16が形成されているので、実施の形態2の構成よりも翼弦中央部13eの方にずれた位置に設けている。翼負圧面13dに設けた溝部14は、突起部16と所定の間隔をあけて配置され、突起部16の少なくとも翼内周側傾斜面16bの一部を囲むように略U字状に設ける。そして、突起部16を設けた側を凹部とする。
As shown in the drawing, in the blade suction surface 13d which is the rear surface with respect to the rotation direction RO of the impeller, the blade outer surface side end of the blade 8c protrudes from the blade suction surface 13d, and the length of the rotation direction RO is the rotation axis. The protrusion 16 having a bottom shape longer than the length in the direction AX is provided. A plurality of, for example, three protrusions 16 are arranged at a predetermined interval G1 in the rotation axis direction AX by one impeller 8d. The configuration of the protrusion 16 is the same as that of the fourth embodiment.
Further, a groove 14 is provided in the vicinity of the protrusion 16. The groove portion 14 has the same configuration as that of the groove portion 14 in the second embodiment, but since the protrusion 16 is formed on the blade outer peripheral side tip portion 13a side, the central portion of the chord is more than in the configuration of the second embodiment. It is provided at a position shifted toward 13e. The groove portion 14 provided on the blade negative pressure surface 13d is disposed at a predetermined distance from the projection portion 16, and is provided in a substantially U shape so as to surround at least a part of the blade inner peripheral inclined surface 16b. The side on which the protrusion 16 is provided is defined as a recess.

以下、略U字状の溝部14について詳しく説明する。溝部14は、溝内端部14aと溝側部14bを有する略U字状である。溝側部14bは回転軸方向AXに対して角度を有し、翼外周側端部の先端13a側に伸びる段差を形成しており、2つの対向する溝側部14bは、翼内周側先端部13b側から翼外周側先端部13a側へ向かって回転軸方向AXの距離である幅A1が徐々に大きくなる構成である。溝側部14bの傾きは、図に示すように、羽根車回転軸に直交する平面に対して所定角度θ3である。この角度θ3は、実施の形態2における角度θ1と同程度、または突起部16を設けているので角度θ1よりも若干広く形成する。   Hereinafter, the substantially U-shaped groove portion 14 will be described in detail. The groove portion 14 has a substantially U shape having a groove inner end portion 14a and a groove side portion 14b. The groove side portion 14b has an angle with respect to the rotation axis direction AX, and forms a step extending toward the tip 13a side of the blade outer peripheral end, and the two opposing groove side portions 14b are the blade inner peripheral tip. The width A1, which is the distance in the rotational axis direction AX, gradually increases from the portion 13b side toward the blade outer peripheral side tip portion 13a side. As shown in the figure, the inclination of the groove side portion 14b is a predetermined angle θ3 with respect to a plane orthogonal to the impeller rotation axis. This angle θ3 is formed to be substantially the same as the angle θ1 in the second embodiment or slightly wider than the angle θ1 because the protrusion 16 is provided.

また、溝内端部14aは、突起部16の翼内周側傾斜面16bに対向し、回転軸方向AXに伸びる段差である。溝内端部14aの段差の両端に溝側部14bが接続される。また、隣り合う突起部16の間には、回転軸方向AXに伸びる溝部接続段差14dを形成し、隣り合う溝部14は溝部接続段差14dで接続されている。翼部接続段差14dは、突起部16の翼内周側傾斜面16bが翼負圧面13dに交わる位置よりも翼外周側先端部13a側に位置する。即ち、翼内周側傾斜面16bの翼負圧面13d上の立ち上がり部分は、溝内端部14aと溝側部14bで囲まれている。本実施の形態では、すべての突起部16の少なくとも翼内周側傾斜面16bの一部が溝部14で囲まれており、溝部14の幅A1方向の中心線上に突起部16を配置する。
また、図28に示すように、突起部16の回転方向ROに沿った2つの側面16cは、翼負圧面13dから離れるにつれて突起部16の内側に傾く先細り形状の傾斜面であり、その傾斜角をθ2とし、かつ突起部16の角部16eは丸い曲面で形成されている。
Further, the groove inner end portion 14a is a step which faces the blade inner peripheral side inclined surface 16b of the projection portion 16 and extends in the rotation axis direction AX. The groove side portion 14b is connected to both ends of the step of the groove inner end portion 14a. Further, a groove connection step 14d extending in the rotation axis direction AX is formed between the adjacent protrusions 16, and the adjacent groove portions 14 are connected by the groove connection step 14d. The blade connection step 14d is located closer to the blade outer circumferential tip 13a than the position where the blade inner circumferential inclined surface 16b of the protrusion 16 intersects the blade negative pressure surface 13d. That is, the rising portion on the blade negative pressure surface 13d of the blade inner peripheral inclined surface 16b is surrounded by the groove inner end portion 14a and the groove side portion 14b. In the present embodiment, at least a part of the blade inner peripheral inclined surface 16b of all the protrusions 16 is surrounded by the groove 14, and the protrusions 16 are arranged on the center line of the groove 14 in the width A1 direction.
Further, as shown in FIG. 28, the two side surfaces 16c along the rotation direction RO of the protrusion 16 are tapered inclined surfaces that incline toward the inside of the protrusion 16 as the distance from the blade negative pressure surface 13d increases. Is θ2, and the corner 16e of the protrusion 16 is formed as a round curved surface.

このように形成された貫流ファン8の羽根車8aにおいて、図26に示すように、翼8cが吸込領域C1に位置する場合、気流E0は翼外周側先端部13aから翼内周側先端部13bに流れ、回転方向ROと逆の方向になる。このため、実施の形態4で述べたように、突起部16の側面16cに沿って縦渦E5が生成されて側面16cに沿って下流へ流れていく。このとき周囲空気が縦渦E5に誘引され、気流が翼負圧面13dから剥離しようとするのを抑制するので、回転音を低減できる。   In the impeller 8a of the cross-flow fan 8 formed in this way, as shown in FIG. 26, when the blade 8c is located in the suction region C1, the airflow E0 is changed from the blade outer peripheral tip portion 13a to the blade inner peripheral tip portion 13b. In the direction opposite to the rotational direction RO. For this reason, as described in the fourth embodiment, the vertical vortex E5 is generated along the side surface 16c of the protrusion 16, and flows downstream along the side surface 16c. At this time, the ambient air is attracted to the vertical vortex E5, and the airflow is prevented from separating from the blade suction surface 13d, so that the rotational noise can be reduced.

さらに、突起部16の翼内周側傾斜面16bの近傍には溝側部14bが形成されている。実施の形態2と同様、溝側部14bの段差で渦流れE2が生成され周囲空気が誘引されることで、剥離が抑制される。また、向かい合う溝側部14bの段差は翼弦中央部13e側へ向かうにつれて溝幅A1が小さく狭まり、翼内周側傾斜面16bを囲むような形状である。これによって、翼内周側傾斜面16bの後流渦の発生を抑制して乱れ流れをさらに抑制し、側面16cに沿って発生する縦渦E5を有効に作用させることができる。即ち、縦渦E5による周囲空気の誘引効果がさらに得られ、広帯域騒音を大幅に低減できる。   Furthermore, a groove side portion 14b is formed in the vicinity of the blade inner peripheral side inclined surface 16b of the projection portion 16. As in the second embodiment, the vortex flow E2 is generated at the step of the groove side portion 14b and the surrounding air is attracted, so that separation is suppressed. Further, the step of the facing groove side portion 14b has a shape such that the groove width A1 becomes narrower toward the chord center portion 13e side and surrounds the blade inner circumferential inclined surface 16b. Thereby, the generation of the wake vortex on the blade inner peripheral inclined surface 16b can be suppressed to further suppress the turbulent flow, and the vertical vortex E5 generated along the side surface 16c can be effectively acted. That is, the effect of attracting ambient air by the vertical vortex E5 is further obtained, and the broadband noise can be greatly reduced.

一方、図27に示すように、翼8cが吹出領域C2に位置する際、気流は翼内周側先端部13bから翼外周側先端部13aに流れ、回転方向ROと同方向となる。この時、突起部16の翼内周側傾斜面16bは翼弦中央部13eの下流側に位置し、翼弦中央部13e側から翼外周側先端部13a側へ向かって、徐々に翼負圧面13dからの突起部16の高さが増加する傾斜面である。このため、翼弦中央部13eから流れてきた境界層の発達しだす流れは、翼内周側傾斜面16bに乗りあがりながら下流側に流れようとし、側面16cに沿う縦渦E6が生成されて側面16cに沿って下流へ流れていく。この縦渦E6によって周囲に発生している剥離渦を拡散して剥離を抑制することで、広帯域騒音を低減できる。   On the other hand, as shown in FIG. 27, when the blade 8c is located in the blowing region C2, the airflow flows from the blade inner peripheral tip portion 13b to the blade outer peripheral tip portion 13a, and is in the same direction as the rotational direction RO. At this time, the blade inner peripheral inclined surface 16b of the protrusion 16 is located downstream of the chord central portion 13e, and gradually decreases from the blade chord central portion 13e toward the blade outer peripheral tip 13a. It is an inclined surface in which the height of the protrusion 16 from 13d increases. For this reason, the flow generated by the development of the boundary layer flowing from the chord central portion 13e tends to flow downstream while climbing on the blade inner peripheral inclined surface 16b, and the vertical vortex E6 along the side surface 16c is generated to generate the side surface. It flows downstream along 16c. Broadband noise can be reduced by diffusing the separation vortex generated around the vertical vortex E6 to suppress the separation.

さらに、突起部16の翼内周側傾斜面16bの近傍には角度θ3で向かい合う溝側部14bが形成されている。このため、翼弦中央部13eから溝内端部14aへの流れE3及び溝側部14bへの流れE4は、溝部14が上流の翼弦中央部13eより凹形状となることで負圧となり誘引されることで剥離が抑制される。さらに、突起部16の翼外周側傾斜面16aの後流渦を抑制して乱れ流れをさらに抑制し、側面16cに沿って流れる縦渦E6を有効に作用させることができる。即ち、縦渦E6によって剥離を拡散する効果がさらに得られるため、さらに広帯域騒音を低減できる。   Further, a groove side portion 14b facing at an angle θ3 is formed in the vicinity of the inclined surface 16b on the blade inner peripheral side of the projection portion 16. For this reason, the flow E3 from the chord central portion 13e to the groove inner end portion 14a and the flow E4 to the groove side portion 14b become negative pressure and attracted when the groove portion 14 has a concave shape from the upstream chord central portion 13e. Peeling is suppressed. Further, the vortex flow can be further suppressed by suppressing the wake vortex on the blade outer peripheral side inclined surface 16a of the protrusion 16, and the vertical vortex E6 flowing along the side surface 16c can be effectively applied. That is, since the effect of diffusing the separation by the vertical vortex E6 can be further obtained, the broadband noise can be further reduced.

また、図28に示すように突起部16の側面16cが構成されており、側面16cが翼負圧面13dに対して垂直ではないので、翼8cを雑巾等の布で回転軸方向AXに拭く時、側面16cの翼負圧面13dと交わる付け根付近も掃除できるので、清潔に保つことができる。さらに、角部16eを丸い形状としたので、布が角部16eにひっかかることもなく、また指を怪我することもなく安全である。   Further, as shown in FIG. 28, the side surface 16c of the protrusion 16 is configured, and the side surface 16c is not perpendicular to the blade suction surface 13d. Therefore, when the blade 8c is wiped in the rotation axis direction AX with a cloth such as a rag. Further, the vicinity of the root that intersects the blade suction surface 13d of the side surface 16c can be cleaned, so that it can be kept clean. Furthermore, since the corner portion 16e has a round shape, the cloth does not get caught in the corner portion 16e, and the finger is not injured.

以下、突起部16の2つの向かい合う側面16cのなす角θ2について説明する。図28に示した突起部16の側面16cのなす角度θ2と騒音値の関係を図30に示す。これは、空気調和機において図26のように翼外周側先端部13aに突起部16及び溝部14を設け、側面16cのなす角度θ2を変化させて、吹出口3近傍の室内で騒音値を計測したものである。図30において、横軸は側面16cのなす角度θ2(°)であり、縦軸は騒音低減値{dB(A)}を示す。θ1=0°とは突起部16を設けていない構成であり、これを基準の騒音値とし、この騒音値からの低減値をグラフ化している。   Hereinafter, the angle θ2 formed by the two opposing side surfaces 16c of the protrusion 16 will be described. FIG. 30 shows the relationship between the angle θ2 formed by the side surface 16c of the protrusion 16 shown in FIG. 28 and the noise level. This is because, in the air conditioner, as shown in FIG. 26, the protrusion 16 and the groove 14 are provided at the blade outer peripheral tip 13a, and the angle θ2 formed by the side surface 16c is changed to measure the noise value in the room near the outlet 3 It is a thing. In FIG. 30, the horizontal axis represents the angle θ2 (°) formed by the side surface 16c, and the vertical axis represents the noise reduction value {dB (A)}. θ1 = 0 ° is a configuration in which the protrusion 16 is not provided, and this is used as a reference noise value, and a reduction value from this noise value is graphed.

側面角度θ2が20°程度のときに最も騒音低減値が大きくなり、側面角度θ2が10°より小さい構成及び30°よりも大きい構成の時にはそれほど騒音が低減されていない。側面角度θ2が10°より小さいと、側面16cが翼負圧面13dから垂直に近い角度で立ち上がることになる。この構成では、縦渦E5、E6がうまく生成されず、突起部16の高さ方向に回転軸をもつ横渦が強くなる。このため、突起部16の後流が大きく発生することで騒音悪化してしまう。即ち、角度θ2が10°以上であると、縦渦E5、E6がうまく生成され、縦渦E5、E6によって気流が剥離するのを防止でき、騒音を小さくすることができる。また、上記で記載したが、側面角度θ2を10°以上として、側面16cの翼負圧面13dからの立ち上がりをなだらかにすれば、掃除がしやすく、立ち上がり部を清潔に保つことができる。   When the side surface angle θ2 is about 20 °, the noise reduction value is the largest, and when the side surface angle θ2 is smaller than 10 ° and larger than 30 °, the noise is not reduced so much. When the side surface angle θ2 is smaller than 10 °, the side surface 16c rises from the blade suction surface 13d at an angle close to perpendicular. In this configuration, the vertical vortices E5 and E6 are not generated well, and the horizontal vortex having the rotation axis in the height direction of the protrusion 16 becomes strong. For this reason, noise will deteriorate due to the large wake of the protrusion 16. That is, when the angle θ2 is 10 ° or more, the vertical vortices E5 and E6 are well generated, and the air currents can be prevented from being separated by the vertical vortices E5 and E6, and the noise can be reduced. Further, as described above, if the side surface angle θ2 is set to 10 ° or more and the rising of the side surface 16c from the blade negative pressure surface 13d is made smooth, cleaning is easy and the rising portion can be kept clean.

一方、側面角度θ2が10°よりも大きくなるにつれて、側面16cが翼負圧面13dから立ち上がる角度がゆるやかになる。この場合には、側面16cに流れる気流は溝側部14bにおける渦流れE2と同様となる。即ち、突起部16によって縦渦E5、E6がうまく生成されないので、低騒音効果が小さい。このため、側面角度θ2を30°以下とすると、側面16cに縦渦E5、E6がうまく生成され、縦渦E5、E6によって気流が剥離するのを防止でき、騒音を低減できる。   On the other hand, as the side surface angle θ2 becomes larger than 10 °, the angle at which the side surface 16c rises from the blade suction surface 13d becomes gentler. In this case, the airflow flowing through the side surface 16c is the same as the vortex flow E2 in the groove side portion 14b. That is, since the vertical vortices E5 and E6 are not generated well by the protrusion 16, the low noise effect is small. For this reason, when the side surface angle θ2 is set to 30 ° or less, the vertical vortices E5 and E6 are successfully generated on the side surface 16c, and the air current can be prevented from being separated by the vertical vortices E5 and E6, and noise can be reduced.

以上のことから、図28に示した構成では、図30に示されるように、10°≦側面角度θ2で構成するのが好ましく、広帯域騒音を低減でき、静粛な貫流ファンが得られる。さらには側面角度θ2≦30°で構成するのが好ましく、広帯域騒音を低減でき、静粛な貫流ファンが得られる。   From the above, in the configuration shown in FIG. 28, it is preferable that 10 ° ≦ side angle θ2 as shown in FIG. 30, and it is possible to reduce broadband noise and obtain a quiet cross-flow fan. Furthermore, it is preferable that the side surface angle θ2 ≦ 30 ° is configured, and broadband noise can be reduced, and a quiet cross-flow fan can be obtained.

本実施の形態では、突起部16及び溝部14を形成するで両効果がさらに拡大し、貫流ファンから発生する回転音および広帯域騒音をさら低減でき、掃除しやすく、聴感の良く静粛で、衛生面が保てる貫流ファンを得ることができる。   In the present embodiment, both the effects are further expanded by forming the protrusions 16 and the grooves 14, the rotational sound and the broadband noise generated from the cross-flow fan can be further reduced, easy to clean, audible and quiet, and hygienic. Can maintain a once-through fan.

なお、上記の構成では、突起部16を囲む溝部14を略U字形状としたが、突起部16と所定の間隔をあけて、突起部16の少なくとも翼内周側傾斜面16bの一部を囲むように構成されていればよい。例えば略V字形状や略コの字形状や円弧形状などの形状で溝部14を構成しても、上記と同様の効果を奏する。
また、図25で示した構成では、すべての突起部16が溝部14に囲まれた構成であるが、これに限るものではない。すべての突起部16が溝部14に囲まれていなくてもよく、例えば3つの突起部16を設けた場合、両端の2つの突起部16は溝部14で囲まれるような溝部の形状でもよい。また、逆に、すべての溝部14の溝内端部14aの翼外周先端部13a側に突起部16が形成されていなくてもよい。
In the above configuration, the groove 14 surrounding the protrusion 16 is substantially U-shaped, but at least a part of the blade inner peripheral inclined surface 16b of the protrusion 16 is spaced apart from the protrusion 16 by a predetermined distance. What is necessary is just to be comprised so that it may surround. For example, even if the groove portion 14 is formed in a shape such as a substantially V shape, a substantially U shape, or an arc shape, the same effect as described above can be obtained.
Further, in the configuration shown in FIG. 25, all the protrusions 16 are surrounded by the grooves 14, but the present invention is not limited to this. All the protrusions 16 do not have to be surrounded by the groove part 14. For example, when three protrusion parts 16 are provided, the two protrusion parts 16 at both ends may have a groove part shape surrounded by the groove part 14. Conversely, the protrusions 16 do not have to be formed on the blade outer peripheral end portion 13a side of the groove inner end portions 14a of all the groove portions 14.

図25では、隣り合う突起部16の間における溝部接続段差14dを回転軸方向AXに平行な段差で構成したが、これに限るものではない。溝部接続段差14dの部分を、溝部14の溝側部14b及び溝内端部14aと同様の形状とした構成例を図31に示す。即ち、翼負圧面13dにおいて、溝内端部14aと、溝内端部14aの両端に接続され向かい合う溝側部14bとで構成される溝部14と同様、溝内端部17aと、溝内端部17aの両端に接続され向かい合う溝側部17bとで構成される溝部17を溝部14の隣に配置する。   In FIG. 25, the groove connection step 14d between the adjacent protrusions 16 is configured as a step parallel to the rotation axis direction AX, but is not limited thereto. FIG. 31 shows a configuration example in which the groove connecting step 14d has the same shape as the groove side portion 14b and the groove inner end portion 14a of the groove portion 14. That is, in the blade negative pressure surface 13d, the groove inner end portion 17a and the groove inner end portion are similar to the groove portion 14 formed by the groove inner end portion 14a and the groove side portion 14b connected to both ends of the groove inner end portion 14a. A groove portion 17 constituted by groove side portions 17b connected to both ends of the portion 17a and facing each other is arranged next to the groove portion.

この構成では、図26及び図27で示したものと同様の効果が得られることに加え、溝側部17bによる効果が得られる。即ち、羽根車8aの吸込領域C1では図10における溝側部14bと同様の構成となって、渦流れE2が生成され翼負圧面13dでの剥離を防止できる。一方、吹出領域C2でも図12における溝側部14bと同様、負圧生成によって剥離を抑制ができ、図25の構成と比較して、さらに騒音低減が可能である。   In this configuration, in addition to the same effect as that shown in FIGS. 26 and 27, the effect by the groove side portion 17b can be obtained. That is, in the suction area C1 of the impeller 8a, the configuration is the same as that of the groove side portion 14b in FIG. 10, and a vortex flow E2 is generated, and separation at the blade negative pressure surface 13d can be prevented. On the other hand, in the blowing region C2, as in the case of the groove side portion 14b in FIG. 12, peeling can be suppressed by generating negative pressure, and noise can be further reduced as compared with the configuration in FIG.

また、溝部接続段差14dを回転軸方向AXに平行に構成する代わりに、溝部接続段差14dの少なくとも一部で回転軸方向AXに対して傾斜した段部を有する構成でもよい。この場合には実施の形態1で示したように、斜めの段差となる溝部接続段差14dによって、吸込領域C1では剥離渦の発生位相を変化させることができ、吹出領域C2では流れの離脱する位相を変化させることができるので、騒音を低減できる。   Further, instead of configuring the groove connecting step 14d in parallel with the rotation axis direction AX, a configuration may be adopted in which at least a part of the groove connecting step 14d includes a step portion inclined with respect to the rotation axis direction AX. In this case, as shown in the first embodiment, the generation phase of the separation vortex can be changed in the suction region C1 and the phase from which the flow is separated in the blowing region C2 by the groove connection step 14d that is an oblique step. The noise can be reduced.

また、本実施の形態では翼外周側端部に溝部14と突起部16とを設けた構成について記載したが、さらに実施の形態4で示した切欠部15を設けてもよい。翼外周側先端部13aと翼内周側先端部13bの少なくとも一方の翼先端部に切欠部15を設けると、溝部14や突起部16の騒音低減効果に加え、さらに翼先端部付近の翼負圧面13d上の乱れを低減でき、低騒音化できる。ここで、突起部16の場合には翼外周側端部に設けるのが効果的であり、溝部14及び切欠部15の場合には翼外周側端部及び翼内周側端部のどちらか一方または両方に設けても騒音低減効果を期待できる。   Further, in the present embodiment, the configuration in which the groove portion 14 and the projection portion 16 are provided at the blade outer peripheral side end portion is described, but the notch portion 15 described in the fourth embodiment may be further provided. When the notch 15 is provided in at least one blade tip of the blade outer circumferential tip 13a and the blade inner circumferential tip 13b, in addition to the noise reduction effect of the groove 14 and the protrusion 16, the blade negative near the blade tip is further increased. Turbulence on the pressure surface 13d can be reduced, and noise can be reduced. Here, in the case of the protrusion 16, it is effective to provide at the blade outer peripheral end, and in the case of the groove 14 and the notch 15, either the blade outer peripheral end or the blade inner peripheral end. Alternatively, noise reduction effects can be expected even if both are provided.

以上のように、本実施の形態によれば、翼負圧面13dに突起部16と所定の間隔をあけて配置され、突起部16の少なくとも翼内周側傾斜面16bの一部を囲むように略U字状に設けられ、突起部16側を凹部とする溝部14を有することにより、突起部16で発生した縦渦を有効に作用させて、広帯域騒音を低減できる貫流ファンが得られる。   As described above, according to the present embodiment, the blade suction surface 13d is disposed at a predetermined distance from the protrusion 16 so as to surround at least a part of the blade inner peripheral inclined surface 16b. By providing the groove portion 14 having a substantially U shape and having the concave portion on the protruding portion 16 side, a longitudinal vortex generated in the protruding portion 16 can be effectively applied to obtain a cross-flow fan capable of reducing broadband noise.

また、溝部14は、突起部16の翼内周側傾斜面16bに対向し回転軸方向AXに伸びる溝内端部14aの段差と、溝内端部14aの段差の両端に接続しそれぞれ回転軸方向AXに対して角度を有して翼外周側端部の先端13a側に伸びる溝側部14bの段差を有することにより、溝内端部14aと溝側部14bによって、突起部16で発生した縦渦を有効に作用させて、広帯域騒音を低減できる貫流ファンが得られる。   Further, the groove portion 14 is connected to the step of the groove inner end portion 14a facing the blade inner peripheral inclined surface 16b of the projection portion 16 and extending in the rotation axis direction AX, and to both ends of the step of the groove inner end portion 14a. Due to the step of the groove side portion 14b extending at the tip 13a side of the blade outer peripheral end portion at an angle with respect to the direction AX, the groove inner end portion 14a and the groove side portion 14b generate the protrusion 16 A cross-flow fan that can effectively reduce the broadband noise by using the vertical vortex is obtained.

また、回転軸方向AXで翼負圧面13dに垂直な突起部16の断面で、向かい合う側面16cのなす角度をθ2とし、10≦θ2≦30°となるように構成したことにより、側面16cで縦渦を強く生成でき、突起部16の後流が大きく発生するのを抑制でき、低騒音な貫流ファンが得られる。   In addition, in the cross section of the protrusion 16 perpendicular to the blade suction surface 13d in the rotation axis direction AX, the angle formed by the facing side surfaces 16c is θ2, and 10 ≦ θ2 ≦ 30 °. A strong vortex can be generated, a large wake of the protrusion 16 can be suppressed, and a low-noise cross-flow fan can be obtained.

実施の形態1〜実施の形態3及び実施の形態5において、翼8cの翼負圧面13dに段差11や溝部14を形成しているため、回転軸に垂直な断面における翼8cの肉厚を見ると、段差11や溝部14が設けられていない部分の肉厚よりも小さくなる。ここで、翼8cの全体の肉厚は図11に示すように翼外周側先端部13aの肉厚が最も小さく、翼弦中央部13e側に向かって肉厚が厚くなるように構成する。そこで、翼外周側先端部13aの肉厚が最も小さくなるように、翼負圧面13dに段差11や溝部14を形成するのが好ましい。即ち、翼外周側先端部13aよりも肉厚の厚くなった部分に、段差11や溝部14を形成し、その凹部側の肉厚が翼外周側先端部13aの肉厚以上になるようにすればよい。このように構成することで、成形時の樹脂の湯周りを阻害することなく、低騒音な貫流ファンが得られる。   In the first to third embodiments and the fifth embodiment, since the step 11 and the groove 14 are formed on the blade suction surface 13d of the blade 8c, the thickness of the blade 8c in the cross section perpendicular to the rotation axis is seen. And it becomes smaller than the thickness of the part in which the level | step difference 11 and the groove part 14 are not provided. Here, as shown in FIG. 11, the overall thickness of the blade 8c is configured such that the thickness of the blade outer peripheral side tip portion 13a is the smallest and the thickness increases toward the blade chord central portion 13e. Therefore, it is preferable to form the step 11 and the groove 14 on the blade suction surface 13d so that the thickness of the blade outer peripheral tip portion 13a is minimized. That is, the step 11 and the groove 14 are formed in a portion thicker than the blade outer peripheral tip portion 13a, and the thickness of the concave portion is set to be equal to or greater than the thickness of the blade outer peripheral tip portion 13a. That's fine. By comprising in this way, a low-noise cross-flow fan can be obtained without obstructing the hot water around the resin during molding.

実施の形態1〜実施の形態5のいずれの実施の形態においても、通常、例えば空気調和機に搭載される貫流ファン8の羽根車8aの翼8cや支持板であるリング8bは、ガラス繊維を含有する熱可塑性樹脂で射出成形される。即ち成形型にガラス繊維を含有する熱可塑性樹脂を注入して固めた後に成形型から取り出す。この成形時に注入する樹脂と成形型との接触面において、成形物である翼8cやリング8bの表面に微小な凹部ができてしまう。室内空気に含まれるホコリや塵は吸入口2から吸い込まれてフィルタ5に引っ掛かって除去される。ところが、フィルタ5を通過してしまったホコリや塵は、熱交換器7で空気調和されて貫流ファン8に入り、翼8cやリング8bの表面に流れていく。この時、翼8cやリング8bの表面に微小な凹部があると、凹部にホコリや塵が付着して、カビの発生や悪臭の原因となる。そこで、羽根車8aやリング8bの表面を例えばシリコンやフッ素素材などのホコリ付着防止材による保護膜で覆う。このホコリ付着防止材による保護膜は、例えば表面の微小な凹部を覆うことで、翼8cやリング8bの表面にできている微小な凹部を円滑にし、表面を均一化してホコリが付着しにくい表面とする。ホコリ付着防止材による保護膜は、ホコリ付着防止材を、例えば塗布や散布すればよい。   In any of the first to fifth embodiments, for example, the blade 8c of the impeller 8a of the cross-flow fan 8 mounted on the air conditioner or the ring 8b that is a support plate is made of glass fiber. It is injection molded with the thermoplastic resin it contains. That is, a thermoplastic resin containing glass fibers is poured into a mold and hardened, and then removed from the mold. In the contact surface between the resin to be injected at the time of molding and the mold, a minute recess is formed on the surface of the wing 8c or the ring 8b that is a molded product. Dust and dust contained in the room air are sucked from the suction port 2 and caught by the filter 5 to be removed. However, dust and dust that have passed through the filter 5 are conditioned by the heat exchanger 7 and enter the once-through fan 8 and flow to the surfaces of the blades 8c and the ring 8b. At this time, if there are minute recesses on the surface of the wing 8c or the ring 8b, dust or dust adheres to the recesses, causing mold generation or offensive odor. Therefore, the surfaces of the impeller 8a and the ring 8b are covered with a protective film made of a dust adhesion preventing material such as silicon or a fluorine material. The protective film made of this dust adhesion preventing material covers, for example, minute concave portions on the surface, thereby smoothing the minute concave portions formed on the surfaces of the wings 8c and the ring 8b, making the surface uniform and preventing dust from adhering to the surface. And The protective film made of the dust adhesion preventing material may be applied or sprayed with the dust adhesion preventing material, for example.

この保護層は翼8cとリング8b共に、その全体を覆うように形成されていてのよいし、どちらか一方に保護層を設ける構成でもよいし、その一部のホコリが付きやすい部分のみを保護層で覆うように構成してよい。   This protective layer may be formed so as to cover both the wing 8c and the ring 8b, or may be provided with a protective layer on either one of them, or only a part where dust is easily attached is protected. You may comprise so that it may be covered with a layer.

ただし、ホコリが付着しやすい翼8c表面の段差、切欠部、突起部などの凹凸面の角部は滑りやすくなるので、ホコリが引っかかるのを防止できる効果は大きい。即ち、羽根車8aの翼8cやリング8b表面にできている微小な凹部をなくし円滑にし、フィルタ5で取り切れない微小なホコリの付着やニオイの吸着やカビの発生やニオイ放出を抑制できる。特にホコリが付着しやすい翼8c表面の段差11や切欠部15、突起部16などの凹凸面の角部は滑りやすくなるのでホコリが引っかからず効果が大きい。その結果、羽根車8aの内部側である翼内周側先端部13bや翼圧力面13d側も清潔に保て、衛生的な貫流ファンを得ることができる。   However, the step on the surface of the wing 8c to which dust easily adheres, the corners of the uneven surface such as the notch and the protrusion are easy to slip, so that the effect of preventing dust from being caught is great. That is, the minute concave portions formed on the surfaces of the blades 8c and the ring 8b of the impeller 8a can be eliminated and smooth, and adhesion of fine dust that cannot be removed by the filter 5, adsorption of odor, generation of mold, and odor release can be suppressed. In particular, the step 11 on the surface of the wing 8c where the dust easily adheres, the corners of the concave and convex surfaces such as the notch 15 and the protrusion 16 are easy to slip, so that the dust is not caught and the effect is great. As a result, the blade inner circumferential tip 13b and the blade pressure surface 13d, which are the inner side of the impeller 8a, can be kept clean, and a hygienic cross-flow fan can be obtained.

このように、所定の間隔をあけて配置される少なくとも2つの円板状の支持板8bと、両端が支持板8bの外周部に固定され回転軸方向AXに伸びる複数の翼8cと、を有する羽根車単体8dを回転軸方向AXに複数有する貫流ファン8であって、支持板8bと翼8cは、ガラス繊維を含有する熱可塑性樹脂材と、熱可塑性樹脂材を覆うホコリ付着防止材で構成したことにより、羽根車8の内部側を綺麗に保つことができ、衛生的な貫流ファンを得ることができる。さらにこの貫流ファンを搭載して、衛生的な空気調和機を得ることができる。   Thus, it has at least two disk-shaped support plates 8b arranged at a predetermined interval, and a plurality of blades 8c whose both ends are fixed to the outer peripheral portion of the support plate 8b and extend in the rotation axis direction AX. The cross-flow fan 8 has a plurality of impellers 8d in the rotation axis direction AX, and the support plate 8b and the blades 8c are composed of a thermoplastic resin material containing glass fiber and a dust adhesion preventing material covering the thermoplastic resin material. As a result, the inner side of the impeller 8 can be kept clean, and a hygienic cross-flow fan can be obtained. Furthermore, a hygienic air conditioner can be obtained by installing this cross-flow fan.

なお、実施の形態3及び実施の形態4ではすでに述べたが、他の実施の形態における突起部16を有する場合の他に、他の実施の形態で示した溝部14、溝部14と切欠部15を有する場合も、リング間8b間の羽根車軸方向で中点位置に対称に形成されれば、同様の効果が得られる。即ち、羽根車単体8dにおける流れの対称性が図れ流れが安定する。その結果、貫流ファン8で流れが安定し、フィルタ5に通風抵抗が付加されても安定して送風できる。   Although already described in the third embodiment and the fourth embodiment, in addition to the case where the projection portion 16 in the other embodiment is provided, the groove portion 14, the groove portion 14, and the notch portion 15 described in the other embodiments. The same effect can be obtained if it is formed symmetrically at the midpoint position in the impeller shaft direction between the rings 8b. That is, the flow is symmetrical in the impeller single unit 8d and the flow is stabilized. As a result, the flow is stabilized by the once-through fan 8, and even if ventilation resistance is added to the filter 5, the air can be stably blown.

このように、翼8cの回転軸方向AXにおける中央部を通り回転軸方向AXに垂直な中心線に対して略線対称となるように、翼8cの段差11や溝部14や切欠部15や突起部16を構成したことで、羽根車単体8dにおける流れの対称性が図れ流れが安定する。その結果、貫流ファン8全体で流れが安定し、フィルタに通風抵抗が付加されても安定し送風できる。よって、安定した送風可能な貫流ファンが得られる。   As described above, the step 11, the groove 14, the notch 15, and the protrusion of the blade 8 c are substantially line symmetric with respect to the center line that passes through the center of the blade 8 c in the rotation axis direction AX and is perpendicular to the rotation axis direction AX. By configuring the portion 16, the flow symmetry in the impeller single body 8d can be achieved and the flow can be stabilized. As a result, the flow is stabilized in the cross-flow fan 8 as a whole, and even if ventilation resistance is added to the filter, stable air can be blown. Therefore, a cross-flow fan capable of stable air blowing is obtained.

また、実施の形態3で述べた切欠部15を実施の形態4及び実施の形態5に示した構成の翼8cに設けてもよい。翼8cの翼内周側端部と翼外周側端部の少なくとも一方の端部に設けられ、前記端部の先端13a、13bから翼8cの内側に向かって切り欠いた切欠部15を回転軸方向AXに複数設けることで、それぞれの構成における効果に加え、回転音をさらに低減できる。この切欠部15の形状はV字状の略三角形に限るものではなく、U字状やコの字状でもよい。   Further, the notch 15 described in the third embodiment may be provided in the blade 8c having the configuration shown in the fourth and fifth embodiments. A rotating shaft is provided with a notch 15 provided at at least one end of the blade inner peripheral end and the blade outer peripheral end of the blade 8c and notched from the tip 13a, 13b of the end toward the inside of the blade 8c. By providing a plurality in the direction AX, in addition to the effects of the respective configurations, the rotational sound can be further reduced. The shape of the notch 15 is not limited to a V-shaped substantially triangle, and may be U-shaped or U-shaped.

また、切欠部15の先端の切欠部角部15aを丸くすれば、掃除がしやすく安全な貫流ファンが得られる。即ち、羽根車8aにホコリが付着し、雑巾等で羽根車の翼外周側先端部を直接拭く時、回転軸方向AXへ拭いても雑巾が切れるなど指がケガをするようなことがなく、安全を確保した品質のよい貫流ファンが得られる。   Moreover, if the notch part corner | angular part 15a of the front-end | tip of the notch part 15 is rounded, it will be easy to clean and a safe once-through fan will be obtained. That is, dust adheres to the impeller 8a, and when wiping the tip of the blade outer peripheral side of the impeller directly with a rag or the like, the finger is not injured such as the rag being cut even if wiping in the rotation axis direction AX, A high-quality cross-flow fan that ensures safety can be obtained.

実施の形態1〜実施の形態5で示したいずれかの貫流ファン8と、貫流ファン8で形成される吸込側流路C1に配設され、吸い込んだ空気と熱交換する熱交換器7と、を備えたことにより、騒音を低減できる空気調和機を得ることができる。即ち、貫流ファン8の羽根車8aの翼端部の翼負圧面13d側に、突起部16や溝部14や段差11を形成することで、聴感が良く静粛な空気調和機を得ることができる。さらに、翼先端部に切欠部15を設けることで、聴感が良く静粛な空気調和機を得ることができる。また、ガラス繊維を含有した熱可塑性樹脂を覆うホコリ付着防止材を備えた貫流ファン8を用いて、ホコリが付着しにくく衛生的な空気調和機を得ることができる。   Any one of the once-through fans 8 shown in the first to fifth embodiments, and the heat exchanger 7 that is disposed in the suction-side flow path C1 formed by the once-through fan 8 and exchanges heat with the sucked air; By providing this, it is possible to obtain an air conditioner that can reduce noise. That is, by forming the protrusion 16, the groove 14, and the step 11 on the blade negative pressure surface 13 d side of the blade end of the impeller 8 a of the cross-flow fan 8, it is possible to obtain an air conditioner with a good audibility and a quietness. Further, by providing the notch 15 at the tip of the blade, it is possible to obtain an air conditioner that is audible and quiet. In addition, using the cross-flow fan 8 provided with a dust adhesion preventing material that covers the thermoplastic resin containing glass fibers, a sanitary air conditioner that is difficult to adhere dust can be obtained.

また、実施の形態1〜実施の形態5では、貫流ファン8を例えば空気調和機に搭載した構成例について説明したが、これに限るものではない。例えば、エアーカーテンなど他の装置に搭載される貫流ファンに適用することもできる。騒音を低減化できる貫流ファンを用いることで、これを搭載した装置の騒音を低減できる効果がある。   Moreover, although Embodiment 1-Embodiment 5 demonstrated the structural example which mounted the cross-flow fan 8 in the air conditioner, for example, it does not restrict to this. For example, the present invention can be applied to a cross-flow fan mounted on another device such as an air curtain. By using a cross-flow fan that can reduce noise, there is an effect that the noise of a device equipped with the fan can be reduced.

本発明の実施の形態1に係る貫流ファンを搭載した空気調和機を示す外観斜視図である。It is an external appearance perspective view which shows the air conditioner carrying the cross-flow fan which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係り、図1のM−M線における縦断面図である。FIG. 5 is a longitudinal sectional view taken along line MM in FIG. 1 according to the first embodiment of the present invention. 本発明の実施の形態1に係る貫流ファンの羽根車を示す概略図であり、図3(a)は貫流ファンの側面図、図3(b)は図3(a)のN−N線断面図である。It is the schematic which shows the impeller of the crossflow fan which concerns on Embodiment 1 of this invention, Fig.3 (a) is a side view of a crossflow fan, FIG.3 (b) is the NN sectional view taken on the line of Fig.3 (a). FIG. 本発明の実施の形態1に係る翼を示す説明図であり、図4(a)は翼の回転方向ROに対して後面となる翼負圧面を示し、図4(b)は図4(a)のV−V線断面図である。It is explanatory drawing which shows the blade | wing which concerns on Embodiment 1 of this invention, Fig.4 (a) shows the blade negative pressure surface used as the back surface with respect to the rotation direction RO of a blade, FIG.4 (b) shows FIG.4 (a). It is a VV line sectional view of). 本発明の実施の形態1に係る翼の他の構成例を示す説明図である。It is explanatory drawing which shows the other structural example of the wing | blade which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る翼のさらに他の構成例を示す説明図である。It is explanatory drawing which shows the further another structural example of the wing | blade which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係り、翼内周側端部と翼外周側端部の両方に段差を設けた構成を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 of this invention and shows the structure which provided the level | step difference in both the blade inner peripheral side edge part and a blade outer peripheral side edge part. 本発明の実施の形態2に係る貫流ファンの羽根車を示す概略図であり、図8(a)は貫流ファンの側面図、図8(b)は図8(a)のH−H線断面図である。It is the schematic which shows the impeller of the crossflow fan which concerns on Embodiment 2 of this invention, Fig.8 (a) is a side view of a crossflow fan, FIG.8 (b) is the HH sectional view taken on the line of Fig.8 (a). FIG. 本発明の実施の形態2に係る翼を拡大して示す斜視図である。It is a perspective view which expands and shows the wing | blade which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る翼負圧面の一部を拡大して示す説明図である。It is explanatory drawing which expands and shows a part of blade negative pressure surface which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係り、図10におけるP−P線断面図である。FIG. 11 is a cross-sectional view taken along the line PP in FIG. 10 according to the second embodiment of the present invention. 本発明の実施の形態2に係る翼負圧面の一部を拡大して示す説明図である。It is explanatory drawing which expands and shows a part of blade negative pressure surface which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係り、溝部の両溝側部がなす角度である溝側部角度θ1(°)と騒音低減値{dB(A)}の関係を示すグラフである。6 is a graph showing a relationship between a groove side angle θ1 (°) that is an angle formed by both groove side portions of the groove portion and a noise reduction value {dB (A)} according to the second embodiment of the present invention. 本発明の実施の形態2に係り、溝最深部翼弦距離F1と翼弦線Lの長さL1の比F1/L1と騒音低減値{dB(A)}の関係を示すグラフである。11 is a graph showing a relationship between a ratio F1 / L1 of a groove deepest chord distance F1 and a chord line L length L1 and a noise reduction value {dB (A)} according to the second embodiment of the present invention. 本発明の実施の形態2に係り、溝中点間距離F2とリング間翼長さBの比F2/Bと騒音低減値{dB(A)}の関係を示すグラフである。12 is a graph showing a relationship between a groove center point distance F2 and an inter-ring blade length B ratio F2 / B and a noise reduction value {dB (A)} according to the second embodiment of the present invention. 本発明の実施の形態2に係る翼の他の構成例を拡大して示す斜視図である。It is a perspective view which expands and shows the other structural example of the wing | blade which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る翼を拡大して示す斜視図である。It is a perspective view which expands and shows the wing | blade which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る翼負圧面の一部を拡大して示す説明図である。It is explanatory drawing which expands and shows a part of blade negative pressure surface which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る翼負圧面の一部を拡大して示す説明図である。It is explanatory drawing which expands and shows a part of blade negative pressure surface which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る翼を拡大して示す斜視図である。It is a perspective view which expands and shows the wing | blade which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る翼負圧面の一部を拡大して示す説明図である。It is explanatory drawing which expands and shows a part of blade negative pressure surface which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る翼負圧面の一部を拡大して示す説明図である。It is explanatory drawing which expands and shows a part of blade negative pressure surface which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係り、図21のQ−Q線断面図である。FIG. 22 is a cross-sectional view taken along the line QQ in FIG. 21 according to the fourth embodiment of the present invention. 本発明の実施の形態4に係り、図21のR−R線断面図である。FIG. 22 is a cross-sectional view taken along line RR in FIG. 21 according to the fourth embodiment of the present invention. 本発明の実施の形態5に係る翼を拡大して示す斜視図である。It is a perspective view which expands and shows the wing | blade which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る翼負圧面の一部を拡大して示す説明図である。It is explanatory drawing which expands and shows a part of blade negative pressure surface which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る翼負圧面の一部を拡大して示す説明図である。It is explanatory drawing which expands and shows a part of blade negative pressure surface which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係り、図26のT−T線断面図である。FIG. 27 is a cross-sectional view taken along the line TT in FIG. 26 according to the fifth embodiment of the present invention. 本発明の実施の形態5に係り、図26のS−S線断面図である。FIG. 27 is a sectional view taken along the line SS of FIG. 26 according to the fifth embodiment of the present invention. 本発明の実施の形態5に係り、突起部の両溝側部がなす角度である溝側部角度θ2(°)と騒音低減値{dB(A)}の関係を示すグラフである。It is a graph which concerns on Embodiment 5 of this invention and shows the relationship between groove side part angle | corner (theta) 2 (degree) which is an angle which both groove side parts of a projection part make, and noise reduction value {dB (A)}. 本発明の実施の形態5に係り、他の構成例の翼負圧面の一部を拡大して示す説明図である。It is explanatory drawing which expands and shows a part of blade | wing negative pressure surface of the other structural example concerning Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 空気調和機本体
2 吸込口
3 吹出口
7 熱交換器
8 貫流ファン
8a 羽根車
8b 支持板
8c 翼
8d 羽根車単体
8f ファンシャフト
9 スタビライザー
10 ガイドウォール
11 段差
11a 段差前縁部
11b 段差後縁部
12 モータ
12a モータシャフト
13a 翼外周側先端部
13b 翼内周側先端部
13c 翼圧力面
13d 翼負圧面
13e 翼弦中央部
14 溝部
14a 溝内端部
14b 溝側部
14d 溝部接続段差
15 切欠部
15a 切欠部角部
15b 切欠部側部
16 突起部
16a 翼外周側傾斜面
16b 翼内周側傾斜面
16c 側面
16e 角部
17 溝部
17a 溝内端部
17b 溝側部
AX 回転軸方向
L 翼弦線
L1 翼弦線Lの長さ
Ls 翼弦線Lに平行で翼負圧面に接する直線
RO 回転方向
O 回転中心
C1 吸込領域
C2 吹出領域
DESCRIPTION OF SYMBOLS 1 Air conditioner main body 2 Suction port 3 Outlet 7 Heat exchanger 8 Cross-flow fan 8a Impeller 8b Support plate 8c Blade 8d Impeller single 8f Fan shaft 9 Stabilizer 10 Guide wall 11 Step 11a Step front edge 11b Step rear edge 12 motor 12a motor shaft 13a blade outer peripheral tip 13b blade inner peripheral tip 13c blade pressure surface 13d blade negative pressure surface 13e chord central portion 14 groove 14a groove inner end 14b groove side 14d groove connection step 15 notch 15a Cutout corner portion 15b Cutout portion side portion 16 Projection portion 16a Blade outer peripheral side inclined surface 16b Blade inner peripheral side inclined surface 16c Side surface 16e Corner portion 17 Groove portion 17a Groove inner end portion 17b Groove side portion AX Rotating shaft direction L Blade chord line L1 Length of chord line Ls Straight line parallel to chord line L and in contact with blade suction surface RO Rotation direction O Rotation center C1 Suction Frequency C2 blow-out area

Claims (7)

所定の間隔をあけて配置される少なくとも2つの円板状の支持板と、前記支持板の中心を通り回転軸となるシャフトと、両端が前記支持板の外周部に固定され前記回転軸方向に伸び、前記回転軸に垂直な断面で翼外周側端部と翼内周側端部との間で円弧状である複数の翼と、前記翼の回転方向に対して後面となる翼負圧面の前記翼外周側端部及び前記翼内周側端部の少なくとも一方の端部に設けた前記回転軸方向に伸びる凹部と、を備え、前記凹部は、上記端部の先端から前記翼負圧面に沿った距離が徐々に増加又は減少するように斜めに伸びる段差形状であることを特徴とする貫流ファン。 At least two disc-shaped support plates arranged at a predetermined interval, a shaft that passes through the center of the support plate and serves as a rotation shaft, and both ends are fixed to the outer peripheral portion of the support plate, and in the direction of the rotation shaft A plurality of blades extending in a cross section perpendicular to the rotation axis and having an arc shape between the blade outer circumferential end and the blade inner circumferential end, and a blade suction surface that is a rear surface with respect to the rotation direction of the blade. A recess extending in the direction of the rotation axis provided at at least one end of the blade outer peripheral end and the blade inner peripheral end, and the recess extends from the tip of the end to the blade suction surface. A once-through fan characterized in that it has a stepped shape extending obliquely so that the distance along it gradually increases or decreases. 前記回転軸方向に複数の段差を設け、2つの隣り合う前記段差が前記翼の端部先端に対して異なる角度を有して結合されていることを特徴とする請求項1記載の貫流ファン。 2. The cross-flow fan according to claim 1, wherein a plurality of steps are provided in the direction of the rotation axis, and two adjacent steps are coupled to each other at different angles with respect to a tip end of the blade . 前記翼の前記翼内周側端部と前記翼外周側端部の少なくとも一方の端部に設けられ、前記端部の先端から前記翼の内側に向かって切り欠いた切欠部を前記回転軸方向に複数有することを特徴とする請求項1または請求項2に記載の貫流ファン。 Provided at at least one end of the blade inner peripheral end and the blade outer peripheral end of the blade, and a notch formed by cutting out from the tip of the end toward the inside of the blade The cross-flow fan according to claim 1 , wherein a plurality of the cross-flow fans are provided. 前記切欠部の前記先端の角部を丸くしたことを特徴とする請求項3記載の貫流ファン。 4. The once-through fan according to claim 3 , wherein a corner of the tip of the notch is rounded. 前記翼の前記回転軸方向における中央部を通り前記回転軸方向に垂直な中心線に対して略線対称となるように、前記翼を構成したことを特徴とする請求項1乃至請求項4のいずれか1項に記載の貫流ファン。 5. The blade according to claim 1 , wherein the blade is configured so as to be substantially line symmetric with respect to a center line perpendicular to the rotation axis direction through a central portion of the blade in the rotation axis direction. The once-through fan according to any one of the preceding claims. 記支持板と前記翼は、ガラス繊維を含有する熱可塑性樹脂材と、前記熱可塑性樹脂材を覆うホコリ付着防止材で構成したことを特徴とする請求項1乃至請求項5のいずれか1項に記載の貫流ファン。 Wherein the front Symbol support plate wing has a thermoplastic resin material containing glass fiber, any of claims 1 to 5, characterized in that configured in dust adhesion preventing member covering the thermoplastic resin material 1 The once-through fan according to item. 請求項1乃至請求項6の少なくともいずれか1項に記載の貫流ファンと、前記貫流ファンで形成される吸込側流路に配設され、吸い込んだ空気と熱交換する熱交換器と、を備えたことを特徴とする空気調和機。 A cross-flow fan according to any one of claims 1 to 6 , and a heat exchanger disposed in a suction-side flow passage formed by the cross-flow fan and exchanging heat with the sucked air. An air conditioner characterized by that.
JP2007310773A 2007-11-30 2007-11-30 Cross-flow fan and air conditioner Active JP4840343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007310773A JP4840343B2 (en) 2007-11-30 2007-11-30 Cross-flow fan and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007310773A JP4840343B2 (en) 2007-11-30 2007-11-30 Cross-flow fan and air conditioner

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2011113558A Division JP5263335B2 (en) 2011-05-20 2011-05-20 Cross-flow fan and air conditioner
JP2011113557A Division JP5264960B2 (en) 2011-05-20 2011-05-20 Cross-flow fan and air conditioner

Publications (2)

Publication Number Publication Date
JP2009133271A JP2009133271A (en) 2009-06-18
JP4840343B2 true JP4840343B2 (en) 2011-12-21

Family

ID=40865382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007310773A Active JP4840343B2 (en) 2007-11-30 2007-11-30 Cross-flow fan and air conditioner

Country Status (1)

Country Link
JP (1) JP4840343B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208608A1 (en) 2013-06-28 2014-12-31 三菱電機株式会社 Indoor unit for air-conditioning device
WO2020233229A1 (en) * 2019-05-22 2020-11-26 宁波奥克斯电气股份有限公司 Cross-flow fan, bearing fixing base, fan assembly, and air conditioner

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279651B2 (en) * 2009-08-03 2013-09-04 京楽産業.株式会社 Island equipment pedestal equipment
JP5189044B2 (en) * 2009-08-05 2013-04-24 京楽産業.株式会社 Island equipment pedestal equipment
JP5189047B2 (en) * 2009-08-07 2013-04-24 京楽産業.株式会社 Island equipment pedestal equipment
JP2011064360A (en) * 2009-09-15 2011-03-31 Hitachi Appliances Inc Air conditioner
KR101649379B1 (en) * 2010-01-13 2016-08-30 엘지전자 주식회사 Crossflow fan and air conditioner equipped therewith
JP5187353B2 (en) * 2010-06-22 2013-04-24 パナソニック株式会社 Cross-flow fan and air conditioner equipped with the same
JP2012112640A (en) * 2010-11-05 2012-06-14 Daikin Industries Ltd Air conditioner
JP5269036B2 (en) * 2010-11-08 2013-08-21 三菱電機株式会社 Cross-flow fan and air conditioner equipped with the same
WO2012140690A1 (en) 2011-04-12 2012-10-18 三菱電機株式会社 Turbofan and air conditioner
JP5143317B1 (en) 2012-04-06 2013-02-13 三菱電機株式会社 Air conditioner indoor unit
JP5627731B2 (en) * 2013-03-18 2014-11-19 三菱電機株式会社 Cross-flow fan and air conditioner equipped with the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124899A (en) * 1986-11-14 1988-05-28 Hitachi Ltd Blade for cross fan
JPH0264300A (en) * 1988-08-31 1990-03-05 Hitachi Ltd Blade for fan
JPH02267400A (en) * 1989-04-07 1990-11-01 Matsushita Electric Ind Co Ltd Blowing fan
JPH03199698A (en) * 1989-12-27 1991-08-30 Toshiba Corp Cross flow fan
JPH03210093A (en) * 1990-01-11 1991-09-13 Matsushita Electric Ind Co Ltd Cross flow fan
JPH03210094A (en) * 1990-01-11 1991-09-13 Matsushita Electric Ind Co Ltd Cross flow fan
JPH03249400A (en) * 1990-02-28 1991-11-07 Matsushita Electric Ind Co Ltd Impeller for multiblade fan
JPH09126190A (en) * 1995-10-30 1997-05-13 Sanyo Electric Co Ltd Centrifugal type blower
JP2000009083A (en) * 1998-06-29 2000-01-11 Matsushita Electric Ind Co Ltd Impeller
JP2002048093A (en) * 2000-08-04 2002-02-15 Matsushita Electric Ind Co Ltd Blower impeller and air conditioner using it
JP2006002691A (en) * 2004-06-18 2006-01-05 Calsonic Kansei Corp Blower
JP4972877B2 (en) * 2005-05-27 2012-07-11 ダイキン工業株式会社 Cross flow fan
JP3995010B2 (en) * 2005-09-28 2007-10-24 ダイキン工業株式会社 Impeller of multiblade blower and method of manufacturing the same
JP4973249B2 (en) * 2006-03-31 2012-07-11 ダイキン工業株式会社 Multi-wing fan

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208608A1 (en) 2013-06-28 2014-12-31 三菱電機株式会社 Indoor unit for air-conditioning device
WO2020233229A1 (en) * 2019-05-22 2020-11-26 宁波奥克斯电气股份有限公司 Cross-flow fan, bearing fixing base, fan assembly, and air conditioner

Also Published As

Publication number Publication date
JP2009133271A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
JP4840343B2 (en) Cross-flow fan and air conditioner
JP3872012B2 (en) Air conditioner
JP4396775B2 (en) Centrifugal fan
KR100985958B1 (en) Multi-blade fan
JP5575332B2 (en) Turbo fan and air conditioner
JP5289554B2 (en) Air conditioner
WO2011114375A1 (en) Cross-flow fan and air conditioner
JP2008002379A (en) Centrifugal fan
JP2007120880A (en) Cross flow fan
JP5263335B2 (en) Cross-flow fan and air conditioner
JP2009203897A (en) Multi-blade blower
JP4014887B2 (en) Centrifugal fan and cooking device equipped with the centrifugal fan
WO2015029245A1 (en) Propeller fan, air-blowing device, and outdoor unit
JP4832498B2 (en) Cross-flow fan and air conditioner
JP5357492B2 (en) Propeller fan
WO2012063404A1 (en) Circulating fan and air-conditioner equipped with same
JP2002005090A (en) Centrifugal fan
JP3649157B2 (en) Centrifugal fan and air conditioner equipped with the centrifugal fan
JP5575288B2 (en) Cross-flow fan and air conditioner
JP5264960B2 (en) Cross-flow fan and air conditioner
JP4371171B2 (en) Cross flow fan and air conditioner equipped with the same
JP2009174541A (en) Centrifugal fan
JP4665472B2 (en) Blower
JP5361944B2 (en) Cross-flow fan and air conditioner
JPH10196591A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R151 Written notification of patent or utility model registration

Ref document number: 4840343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250