WO2015063851A1 - Cross-flow fan and air conditioner - Google Patents

Cross-flow fan and air conditioner Download PDF

Info

Publication number
WO2015063851A1
WO2015063851A1 PCT/JP2013/079217 JP2013079217W WO2015063851A1 WO 2015063851 A1 WO2015063851 A1 WO 2015063851A1 JP 2013079217 W JP2013079217 W JP 2013079217W WO 2015063851 A1 WO2015063851 A1 WO 2015063851A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
impeller
cross
flow fan
air
Prior art date
Application number
PCT/JP2013/079217
Other languages
French (fr)
Japanese (ja)
Inventor
池田 尚史
平川 誠司
代田 光宏
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP13896431.7A priority Critical patent/EP3064776B1/en
Priority to JP2015544651A priority patent/JPWO2015063851A1/en
Priority to PCT/JP2013/079217 priority patent/WO2015063851A1/en
Publication of WO2015063851A1 publication Critical patent/WO2015063851A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/665Sound attenuation by means of resonance chambers or interference

Definitions

  • the present invention relates to a cross-flow fan and an air conditioner using the cross-flow fan.
  • Patent Document 1 discloses a cross-flow fan in which each blade is inclined at a predetermined angle with respect to the fan shaft, and the blade mounting pitch is set at unequal intervals.
  • the blades are thin in the longitudinal direction of the impeller.
  • Patent Document 2 discloses an axial fan in which a blade cross section orthogonal to a rotation axis is formed so as to become smaller from a root portion of a blade portion continuously provided on a main surface toward a tip portion. Further, in such an axial fan, the center of the blade cross section orthogonal to the rotation axis is displaced toward the front side or the rear side in the rotation direction about the rotation axis as it goes from the root part of the blade part toward the tip part. Further, the blade cross section is curved outward in the radial direction.
  • Patent Document 3 discloses a fan configured by alternately stacking first component parts in which the blade tip is inclined in the rotation direction from the root and second component parts in the counter-rotation direction. Is disclosed.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a cross-flow fan that can alleviate uneven flow between a pair of support plates.
  • the cross-flow fan of the present invention is a cross-flow fan including an impeller and a shaft that rotatably supports the impeller, the impeller corresponding to a plurality of support plates.
  • a plurality of wings arranged at intervals in the circumferential direction between the pair of supporting plates, and each of the plurality of wings has an inner peripheral side end portion corresponding to the other supporting plate from the corresponding one supporting plate. It has a shape that retreats in the rotation direction and then moves forward again in the rotation direction toward the support plate, or a shape that moves forward in the rotation direction and then retreats again in the rotation direction.
  • the air conditioner of the present invention is disposed between a stabilizer that divides the suction side air passage and the blowout side air passage in the main body, and the suction side air passage and the blowout side air passage.
  • FIG. 4 is a view showing a side surface shape of a blade taken along line AA in FIG. 3 and a side surface shape of the blade taken along line BB. It is sectional drawing regarding the rotating shaft direction center part of a pair of ring in the blade
  • FIG. 1 is an installation schematic diagram when viewed from a room of an air conditioner equipped with a cross-flow fan according to Embodiment 1 of the present invention
  • FIG. 2 is a longitudinal sectional view of the air conditioner of FIG. 1
  • FIG. It is a figure which shows the front and side of the impeller of a once-through fan mounted in the air conditioner of FIG.
  • the air conditioner (indoor unit) 100 includes a main body 1 and a front panel 1 b provided on the front surface of the main body 1, so that an outline of the air conditioner 100 is configured.
  • the air conditioner 100 is installed in the wall 11a of the room 11 which is an air-conditioning target space. That is, FIG. 1 illustrates an example in which the air conditioner 100 is a wall-hanging type, but the present invention is not limited to such an embodiment, and may be, for example, a ceiling-embedded type.
  • the air conditioner 100 is not limited to being installed in the room 11, and may be installed in a room of a building or a warehouse, for example.
  • a suction grill 2 for sucking room air into the air conditioner 100 is formed in the upper part 1 a constituting the upper part of the main body 1.
  • An air outlet 3 for supplying the air to the room is formed, and a guide wall 10 for guiding air discharged from a cross-flow fan 8 described later to the air outlet 3 is formed.
  • the main body 1 generates conditioned air by transmitting to the air a filter (ventilation resistor) 5 that removes dust and the like in the air sucked from the suction grill 2 and the heat or cold of the refrigerant.
  • a filter (ventilation resistor) 5 that removes dust and the like in the air sucked from the suction grill 2 and the heat or cold of the refrigerant.
  • the stabilizer 9 that partitions the suction side air passage E1 and the blowout side air passage E2, and the suction side air passage E1 and the blowout side air passage E2
  • a cross-flow fan 8 that sucks in air and blows out air from the air outlet 3
  • a vertical wind vane 4 a and a left-right wind vane 4 b that adjust the direction of the air blown from the cross-flow fan 8 are provided.
  • the suction grill 2 is an opening for forcibly taking room air into the air conditioner 100 by the cross-flow fan 8.
  • the suction grill 2 has an opening formed on the upper surface of the main body 1.
  • the blower outlet 3 is an opening through which the air passes when the air sucked from the suction grill 2 and passed through the heat exchanger 7 is supplied into the room.
  • the blower outlet 3 is formed as an opening in the front panel 1b.
  • the guide wall 10 constitutes the blowing side air passage E2 in cooperation with the lower surface side of the stabilizer 9.
  • the guide wall 10 forms a spiral surface from the cross-flow fan 8 to the outlet 3.
  • the filter 5 is formed in a mesh shape, for example, and removes dust in the air sucked from the suction grill 2.
  • the filter 5 is provided on the downstream side of the suction grille 2 and on the upstream side of the heat exchanger 7 in the air path from the suction grille 2 to the air outlet 3 (center portion inside the main body 1).
  • the heat exchanger 7 (indoor heat exchanger) functions as an evaporator during cooling operation to cool air, and functions as a condenser (heat radiator) during heating operation to heat the air. is there.
  • the heat exchanger 7 is provided on the downstream side of the filter 5 and on the upstream side of the cross-flow fan 8 in the air path from the suction grill 2 to the blower outlet 3 (center portion inside the main body 1).
  • the shape of the heat exchanger 7 is a shape that surrounds the front surface and the upper surface of the cross-flow fan 8, but is merely an example and is not particularly limited.
  • the heat exchanger 7 is connected to an outdoor unit that may be a well-known embodiment having a compressor, an outdoor heat exchanger, a throttling device, and the like and constitutes a refrigeration cycle. Further, as the heat exchanger 7, for example, a cross fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins is used.
  • the stabilizer 9 divides the suction side air passage E1 and the blowout side air passage E2, and is provided on the lower side of the heat exchanger 7 as shown in FIG. Located on the upper surface side of the stabilizer 9, the blowing side air passage E ⁇ b> 2 is located on the lower surface side of the stabilizer 9.
  • the stabilizer 9 has a drain pan 6 that temporarily stores the condensed water adhering to the heat exchanger 7.
  • the cross-flow fan 8 is for sucking room air from the suction grill 2 and blowing air-conditioned air from the outlet 3.
  • the cross-flow fan 8 is provided on the downstream side of the heat exchanger 7 and on the upstream side of the air outlet 3 in the air path from the suction grill 2 to the air outlet 3 (the central portion inside the main body 1).
  • the cross-flow fan 8 includes an impeller 8a made of a thermoplastic resin such as AS resin (Styrene-AcryloNitrile copolymer) containing glass fiber, and a motor 12 for rotating the impeller 8a. And the motor shaft 12a for transmitting the rotation of the motor 12 to the impeller 8a, and the impeller 8a itself rotates to suck indoor air from the suction grill 2 and send conditioned air to the blowout port 3. .
  • AS resin Styrene-AcryloNitrile copolymer
  • the impeller 8a is configured by connecting a plurality of impeller units 8d, and each impeller unit 8d has a plurality of blades 8c and at least one ring fixed to the end side of the plurality of blades 8c. (Support plate) 8b. That is, in the impeller single unit 8d, each of the plurality of blades 8c extends from the outer peripheral side surface of the disk-shaped ring 8b so as to be substantially perpendicular to the side surface, and the plurality of blades 8c are connected to the ring 8b.
  • the impeller 8a is formed by welding a plurality of such impellers 8d and connecting them together.
  • the impeller 8a has a fan boss 8e protruding toward the inside (center) side of the impeller 8a.
  • the fan boss 8e is fixed to the motor shaft 12a with a screw or the like.
  • one side of the impeller 8a is supported by the motor shaft 12a via the fan boss 8e, and the other side of the impeller 8a is supported by the fan shaft 8f.
  • the impeller 8a rotates in the rotation direction RO around the impeller rotation center O of the impeller 8a in a state where both ends are supported, sucks room air from the suction grille 2, and conditioned air into the outlet 3 Can be sent in.
  • the impeller 8a will be described in detail later.
  • the up-and-down airflow direction vane 4a adjusts the vertical direction of the air blown from the cross-flow fan 8, and the left-right wind direction vane 4b adjusts the left-right direction of the air blown from the cross-flow fan 8. is there.
  • the up / down wind direction vane 4a is provided on the downstream side of the left / right wind direction vane 4b. Note that the vertical direction in the description corresponds to the vertical direction in FIG. 2, and the horizontal direction in the description corresponds to the front and back direction of the paper surface in FIG.
  • FIG. 4 is a perspective view of one blade of a cross-flow fan impeller viewed from the impeller rotation direction side surface (blade pressure surface).
  • FIG. 5 is a diagram showing the side shape of the wing taken along line AA in FIG. 3 and the side shape of the wing taken along line BB.
  • each of the plurality of blades 8 c has the inner peripheral side end portion 15 b retreated in the rotation direction from the corresponding one ring toward the corresponding other ring, and then again, It has a shape that advances in the rotational direction, and the outer peripheral side end portion 15a also moves backward from the corresponding one ring toward the other corresponding ring and then advances again in the rotational direction. It is comprised so that it may have a shape.
  • the plurality of blades 8 c when the pressure surface of the blade 8 c is projected, the plurality of blades 8 c have the inner peripheral end 15 b and the outer peripheral end 15 a respectively up and down. It has an inverted V shape.
  • the center part of the rotation axis direction of a pair of rings is most retracted in the rotation direction. Moving forward in the direction of rotation.
  • the blade 8c has a constant cross-section (cross-section in the direction orthogonal to the rotation axis) over the rotation axis direction, but faces the center portion of the rotation axis direction and the ring. It is deviated from the portion by an angle ⁇ .
  • each of the plurality of blades 8c has an outer diameter (a distance between an outer peripheral side end portion 15a described later and a rotation axis O) and an outer diameter (described later) over the rotation axis direction.
  • the distance between the inner peripheral side end 15b and the rotation axis O is kept the same, and the cross-sectional area shape of the blade 8c is also kept the same in the direction of the rotation axis. That is, each of the plurality of blades 8c is formed in a three-dimensional shape such that the blade cross section orthogonal to the impeller rotation axis remains the same, and moves forward or backward with respect to the impeller rotation direction.
  • FIG. 6 to FIG. 8 are cross-sectional views of the pair of rings in the central portion in the rotational axis direction of the blades of the cross-flow fan.
  • the outer peripheral end 15a and the inner peripheral end 15b of the blade 8c are each formed in an arc shape.
  • the blade 8c is formed so that the outer peripheral end 15a side is inclined forward in the impeller rotation direction RO with respect to the inner peripheral end 15b side. That is, when the blade 8c is viewed in a longitudinal section, the blade pressure surface 13a and the blade negative pressure surface 13b of the blade 8c are moved from the impeller rotation center (rotary axis) O of the impeller 8a toward the outside of the blade 8c. Curved in the vehicle rotation direction RO.
  • the center of the circle corresponding to the arc shape formed on the outer peripheral end 15a is P1 (also referred to as arc center P1), and the center of the circle corresponding to the arc shape formed on the inner peripheral end 15b is P2 (arc Also referred to as center P2. Further, if a line segment connecting the arc centers P1 and P2 is a chord line (chord) L, the chord line L has a length Lo as shown in FIG. 8 (hereinafter also referred to as a chord length Lo). ).
  • the blade 8c has a blade pressure surface 13a that is a surface on the rotational direction RO side of the impeller 8a and a blade negative pressure surface 13b that is a surface on the opposite side of the rotational direction RO of the impeller 8a.
  • the vicinity of the center of the line L has a concave shape curved in a direction from the blade pressure surface 13a toward the blade suction surface 13b.
  • the radius of the circle corresponding to the arc shape on the blade pressure surface 13a side is different between the outer peripheral side of the impeller 8a and the inner peripheral side of the impeller 8a. That is, as shown in FIG. 7, the surface on the blade pressure surface 13a side of the blade 8c has an outer peripheral curved surface Bp1 whose radius (arc radius) corresponding to the arc shape on the outer peripheral side of the impeller 8a is Rp1, and the impeller A radius (arc radius) corresponding to the arc shape on the inner peripheral side of 8a has an inner peripheral curved surface Bp2 whose radius is Rp2, and is a multiple arc curved surface. Further, the blade pressure surface 13a side surface of the blade 8c has a flat surface Qp that is connected to the inner peripheral end of the inner peripheral curved surface Bp2 and has a planar shape.
  • the surface on the blade pressure surface 13a side of the blade 8c is configured by continuously connecting the outer peripheral curved surface Bp1, the inner peripheral curved surface Bp2, and the plane Qp. Note that when the blade 8c is viewed in a longitudinal section, the straight line forming the plane Qp is a tangent line at a point where the straight line is connected to the arc forming the inner peripheral curved surface Bp2.
  • the surface on the blade suction surface 13b side of the blade 8c is a surface corresponding to the surface on the blade pressure surface 13a side.
  • the surface of the blade 8c on the blade suction surface 13b side includes an outer peripheral curved surface Bs1 whose radius (arc radius) corresponding to the arc shape on the outer peripheral side of the impeller 8a is Rs1, and the inner periphery of the impeller 8a.
  • an inner circumferential curved surface Bs2 whose radius (arc radius) corresponds to the arc shape on the side is Rs2.
  • the surface of the blade 8c on the blade suction surface 13b side has a flat surface Qs that is connected to the inner peripheral end of the end portions of the inner peripheral curved surface Bs2 and has a planar shape.
  • the surface on the blade suction surface 13b side of the blade 8c is configured by continuously connecting the outer circumferential surface curved surface Bs1, the inner circumferential surface curved surface Bs2, and the plane Qs. Note that when the blade 8c is viewed in a longitudinal section, the straight line that forms the plane Qs is a tangent line at the point that it is connected to the arc that forms the inner peripheral curved surface Bs2.
  • the blade thickness When the diameter of a circle inscribed in the blade surface when the blade 8c is viewed in a longitudinal section is a blade thickness (thickness) t, as shown in FIG. 7, the blade thickness (thickness) t1 of the outer peripheral end 15a is shown in FIG. Is thinner than the blade thickness (wall thickness) t2 of the inner peripheral end 15b.
  • the blade thickness t1 corresponds to the radius R1 ⁇ 2 of the circle that forms the arc of the outer peripheral side end portion 15a
  • the blade thickness t2 corresponds to the radius R2 ⁇ 2 of the circle that forms the arc of the inner peripheral side end portion 15b.
  • the blade thickness is smaller at the outer peripheral end 15a than at the inner peripheral end 15b. It is formed so as to gradually increase from the portion 15a toward the center, become maximum at a predetermined position near the center, gradually become thinner toward the inside, and have the same thickness at the straight portion Q.
  • the blade thickness t of the blade 8c is determined by the outer peripheral curved surface Bp1 and the inner peripheral curved surface formed by the blade pressure surface 13a and the blade negative pressure surface 13b, excluding the outer peripheral end 15a and the inner peripheral end 15b.
  • the outer peripheral curved surface Bs1, and the inner peripheral curved surface Bs2 it gradually increases from the outer peripheral end 15a toward the center of the blade 8c, and reaches the maximum thickness t3 at a predetermined position near the center of the chord line L. Then, the thickness gradually decreases toward the inner peripheral end 15b.
  • the blade thickness t is an inner peripheral side end thickness t2 that is a substantially constant value in the range of the straight portion Q, that is, the range between the plane Qp and the plane Qs.
  • a portion of the blade 8c having the planes Qp and Qs of the inner peripheral end 15b as the surface is referred to as a straight portion Q. That is, the blade negative pressure surface 13b of the blade 8c is formed by multiple arcs and straight portions Q from the outer peripheral side to the inner peripheral side of the impeller.
  • the vicinity of the pair of rings is also positive. Therefore, the flow can be directed and the flow can be made uniform between the pair of rings.
  • the negative pressure surface 13b of the blade 8c is formed of multiple arcs and straight portions Q from the outer peripheral side to the inner peripheral side of the impeller, the flow of the blade surface when the blade 8c passes through the suction side air passage E1. Is peeled off at the outer peripheral curved surface Bs1, the flow is reattached by the inner peripheral curved surface Bs2 having a different arc radius.
  • the blade thickness t does not increase rapidly toward the outer periphery of the impeller as compared with the curved surface, so that the frictional resistance can be suppressed.
  • the pressure surface 13a of the blade 8c is also formed by multiple arcs and straight portions (planes) from the outer peripheral side to the inner peripheral side of the impeller. For this reason, when the air flows from the outer peripheral curved surface Bp1 to the inner peripheral curved surface Bp2 having a different arc radius, the flow is gradually accelerated and a pressure gradient is generated on the negative pressure surface 13b. do not do.
  • the downstream plane Qp is tangent to the inner circumferential curved surface Bs2.
  • the blade 8c since the blade 8c has the downstream plane Qp, it has a shape bent by a predetermined angle with respect to the rotation direction RO. For this reason, compared with the case where there is no straight surface (plane Qp), even if the blade thickness t2 of the inner peripheral side end portion 15b is thick, the flow can be directed to the suction surface 13b. The wake vortex when flowing into the impeller from the end 15b can be suppressed.
  • the blade 8c has a thick inner end 15b and is difficult to separate in various inflow directions in the blowout air passage E2.
  • the blade 8c has the maximum thickness near the center of the chord, which is the downstream side of the plane Qs. For this reason, if the flow is about to peel after passing through the plane Qs, the blade thickness t gradually increases toward the center of the chord on the inner circumferential curved surface Bs2, and therefore the separation can be suppressed along the flow.
  • the blade 8c has the inner peripheral curved surface Bs1 having a different arc radius on the downstream side of the inner peripheral curved surface Bs2, the separation of the flow is suppressed, and the effective blowing side air passage from the impeller is expanded. It is possible to reduce and equalize the blown wind speed, and to reduce the load torque applied to the blade surface.
  • the blade 8c has the same blade cross section orthogonal to the impeller rotation axis, and the central portion between the blade rings in the impeller rotation direction with respect to the impeller rotation direction.
  • the clearance with the stabilizer 9 facing the impeller is the same, and the leakage flow caused by the circulating vortex g1 is increased due to the difference in the longitudinal direction, which was a problem in the conventional configuration. Therefore, the efficiency can be increased and the motor power to be driven can be reduced.
  • Embodiment 2 of the present invention will be described with reference to FIGS. 9 and FIG. 10 are views of the same mode as FIG. 3 and FIG. 5, respectively, regarding the second embodiment of the present invention.
  • the configuration of the second embodiment is the same as that of the first embodiment described above except for the parts described below.
  • each of the plurality of blades 108c has its inner peripheral side end portion 15b advanced in the rotational direction from the corresponding one ring toward the corresponding other ring, and then again in the rotational direction.
  • the outer peripheral side end portion 15a also has a shape that moves forward from the corresponding one ring toward the other corresponding ring and then moves back in the rotational direction again. It is configured to be.
  • each of the plurality of blades 8c has an inner peripheral end 15b and an outer peripheral end 15a each having a V shape.
  • the center part of the rotation axis direction of a pair of rings has advanced most in the rotation direction, and in the part of the both sides, as it approaches a ring, Retracted in the direction of rotation.
  • the same operation as that of the first embodiment is obtained with respect to the air flow. That is, when each of the plurality of blades 108c sucks air from the outside of the cross-flow fan 8 into the inside, the blade tip vortex having the outer end 15a as the end when the air flows through the outer end 15a. Therefore, the flow of the blade 108c flows as a flow in which separation is suppressed, and the maintenance of a uniform flow is promoted.
  • the air flowing out from the outer peripheral side end portion 15a toward the outside of the cross-flow fan 8 spreads toward the corresponding pair of rings 8b. The flow can be actively directed to the vicinity of the pair of rings, and the flow can be made uniform between the pair of rings.
  • FIG. 11 FIG. 12, and FIG. 11, FIG. 12 and FIG. 13 are views of the same mode as FIG. 3, FIG. 4 and FIG.
  • the configuration of the third embodiment is the same as that of the first embodiment described above except for the portions described below.
  • the third embodiment is a wing having a V-shaped configuration similar to that of the first embodiment described above, and further, a portion in the vicinity of the corresponding pair of rings in the wing (ring side portion). Extends along the direction of the axis of rotation (does not advance or retract in the direction of rotation). That is, as best shown in FIG. 12, each of the plurality of wings 208c is arranged in the vicinity of the corresponding pair of rings as a part in a predetermined range from the ring in the rotational axis direction without moving forward or backward in the rotational direction. It has a ring side portion 220 extending along.
  • each of the plurality of blades has a pair of ring side portions extending along the rotation axis direction without moving forward or backward in the rotation direction, and thus has the following advantages.
  • Embodiment 3 was illustrated as a combination with Embodiment 1, this Embodiment 3 can also be implemented in combination with Embodiment 2.
  • FIG. That is, in the wing 108c of the second embodiment, a ring side portion 220 extending along the rotation axis direction without moving forward or backward in the rotation direction is formed in the vicinity of the corresponding pair of rings. It may be carried out as described above.
  • FIG. 14 is a diagram of the same mode as FIG. 4 regarding the third embodiment of the present invention.
  • the configuration of the fourth embodiment is the same as that of the first embodiment described above except for the portions described below.
  • the inner end and the outer end of each of the plurality of blades may be set in such a manner that after retreating in the rotational direction and then moving forward again in the rotational direction,
  • the set mode of moving forward again in the rotation direction after retreating is provided, but the present invention is not limited to this, and one or both of the inner peripheral end and the outer peripheral end are provided.
  • a plurality of the above set aspects may be provided.
  • FIG. 14 is an example of such a fourth embodiment.
  • the inner peripheral side end portion 15b is provided with only one set mode in which it moves backward in the rotational direction and then moves forward again in the rotational direction. That is, it is formed in the same manner as the inner peripheral side end portion of the blade of the first embodiment.
  • the outer peripheral side end portion 15a of the wing 308c is provided with a plurality of the above set modes. Note that both the wings in the illustrated example of the fourth embodiment and the wings in the illustrated examples of the first to third embodiments are symmetrical on both sides with respect to the center in the rotational axis direction between the pair of rings. It is comprised so that it may become.
  • the illustrated example of the fourth embodiment has been described assuming that the features of the fourth embodiment are applied to the upside down V-shaped wing referred to in the first embodiment. It is also possible to apply the characteristics of the fourth embodiment to a wing shaped like a blade.

Abstract

An impeller (8a) in a cross-flow fan (8) has a plurality of support plates (8b) and a plurality of blades (8c). Each outer circumferential side end section (15a) and inner circumferential side end section (15b) in each blade (8c) have a shape whereby same retreat in the rotation direction, from one corresponding support plate towards the other corresponding support plate, then again advance in the rotation direction, or have a shape whereby same advance in the rotation direction, then retreat in the rotation direction again.

Description

貫流ファン及び空気調和機Cross-flow fan and air conditioner
 本発明は、貫流ファン及びそれを用いた空気調和機に関するものである。 The present invention relates to a cross-flow fan and an air conditioner using the cross-flow fan.
 特許文献1には、各翼をファン軸に対して所定角度傾斜させると共に、翼の取付ピッチを不等間隔に設定した横流ファンが開示されている。また、この横流ファンでは、翼が羽根車長手方向で薄肉になっている。 Patent Document 1 discloses a cross-flow fan in which each blade is inclined at a predetermined angle with respect to the fan shaft, and the blade mounting pitch is set at unequal intervals. In this cross flow fan, the blades are thin in the longitudinal direction of the impeller.
 特許文献2には、回転軸に直交する翼断面が、主表面に連設された羽根部の付け根部から先端部に向かうにつれ小さくなるように形成された軸流ファンが開示されている。また、かかる軸流ファンでは、回転軸に直交する翼断面の中心は、羽根部の付け根部から先端部に向かうに従って回転軸を中心に回転方向前方側または後方側に向けて変位している。さらに、翼断面は、径方向外方に向けて湾曲している。 Patent Document 2 discloses an axial fan in which a blade cross section orthogonal to a rotation axis is formed so as to become smaller from a root portion of a blade portion continuously provided on a main surface toward a tip portion. Further, in such an axial fan, the center of the blade cross section orthogonal to the rotation axis is displaced toward the front side or the rear side in the rotation direction about the rotation axis as it goes from the root part of the blade part toward the tip part. Further, the blade cross section is curved outward in the radial direction.
 さらに、特許文献3には、羽根の先端部を根元より回転方向に傾斜させた第1構成部品と、反回転方向に傾斜させた第2の構成部品とを交互に積層して構成されたファンが開示されている。 Furthermore, Patent Document 3 discloses a fan configured by alternately stacking first component parts in which the blade tip is inclined in the rotation direction from the root and second component parts in the counter-rotation direction. Is disclosed.
特許第3107711号公報Japanese Patent No. 3107711 特許第4549416号公報Japanese Patent No. 4549416 特開平9-158890号公報JP-A-9-158890
 しかしながら、貫流ファンでは、一対のリングの間に関してみると、一対のリングから離れた一対のリング間の中央付近から相対的に多くの流れが吹出す傾向がみられ、一対のリングの間で流れが不均一になる問題がある。また、上述した特許文献1~3に開示された従来のファンでは、一方のリングから他方のリングへと向かう流れの成分を発生することができるものの、上述した一対のリングの間で流れが不均一になる問題を緩和することが困難である。 However, in the cross-flow fan, when viewed between the pair of rings, a relatively large flow tends to be blown out from the vicinity of the center between the pair of rings apart from the pair of rings. There is a problem of non-uniformity. In addition, the conventional fans disclosed in Patent Documents 1 to 3 described above can generate a component of the flow from one ring to the other ring, but the flow between the pair of rings described above is not good. It is difficult to alleviate the problem of uniformity.
 本発明は、上記に鑑みてなされたものであり、一対の支持板の間で流れが不均一となることを緩和することができる、貫流ファンを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a cross-flow fan that can alleviate uneven flow between a pair of support plates.
 上述した目的を達成するため、本発明の貫流ファンは、羽根車と、該羽根車を回転可能に支持するシャフトとを備える貫流ファンであって、前記羽根車は、複数の支持板と、対応する一対の前記支持板の間に周方向に間隔をおいて配置された複数の翼とを有し、前記複数の翼はそれぞれ、内周側端部が、対応する一方の支持板から対応する他方の支持板に向けて、回転方向に後退した後、再度、回転方向に前進する形状か、あるいは、回転方向に前進した後、再度、回転方向に後退する形状を有しており、外周側端部が、対応する一方の支持板から対応する他方の支持板に向けて、回転方向に後退した後、再度、回転方向に前進する形状か、あるいは、回転方向に前進した後、再度、回転方向に後退する形状を有している。
 また、前記複数の翼はそれぞれ、回転方向に前進も後退もせずに回転軸方向に沿って延びる一対のリング側部分を有しているように構成してもよい。
 また、同目的を達成するため、本発明の空気調和機は、本体内における吸込側風路及び吹出側風路を区画するスタビライザーと、前記吸込側風路及び吹出側風路の間に配置された貫流ファンと、前記本体内に配置された通風抵抗体と、前記貫流ファンから放出された空気を前記本体の吹出口に導くガイドウォールとを備えており、前記貫流ファンは、上記の本発明に係る貫流ファンである。
In order to achieve the above-described object, the cross-flow fan of the present invention is a cross-flow fan including an impeller and a shaft that rotatably supports the impeller, the impeller corresponding to a plurality of support plates. A plurality of wings arranged at intervals in the circumferential direction between the pair of supporting plates, and each of the plurality of wings has an inner peripheral side end portion corresponding to the other supporting plate from the corresponding one supporting plate. It has a shape that retreats in the rotation direction and then moves forward again in the rotation direction toward the support plate, or a shape that moves forward in the rotation direction and then retreats again in the rotation direction. However, it may be configured so that it moves backward from the corresponding one support plate to the corresponding other support plate in the rotational direction and then advances again in the rotational direction, or advances forward in the rotational direction and then again in the rotational direction. It has a retreating shape.
Further, each of the plurality of blades may have a pair of ring side portions extending along the rotation axis direction without moving forward or backward in the rotation direction.
In order to achieve the same object, the air conditioner of the present invention is disposed between a stabilizer that divides the suction side air passage and the blowout side air passage in the main body, and the suction side air passage and the blowout side air passage. A cross flow fan, a ventilation resistor disposed in the main body, and a guide wall for guiding the air discharged from the cross flow fan to the outlet of the main body. This is a once-through fan.
 本発明によれば、一対の支持板の間で流れが不均一となることを緩和することができる。 According to the present invention, it is possible to mitigate the non-uniform flow between the pair of support plates.
本発明の実施の形態1を示す空気調和機に関し、部屋内から見たときの設置状態を示す図である。It is a figure which shows the installation state when it sees from the room regarding the air conditioner which shows Embodiment 1 of this invention. 図1の空気調和機の縦断面図である。It is a longitudinal cross-sectional view of the air conditioner of FIG. 図1の空気調和機に搭載される貫流ファンの羽根車の正面及び側面を示す図である。It is a figure which shows the front and side of the impeller of a once-through fan mounted in the air conditioner of FIG. 貫流ファンの羽根車の翼1枚に関する、羽根車回転方向側表面(翼圧力面)から見た斜視図である。It is the perspective view seen from the impeller rotation direction side surface (blade pressure surface) regarding one blade of the impeller of the once-through fan. 図3のA-A線による翼の側面形状と、B-B線による翼の側面形状とを示す図である。FIG. 4 is a view showing a side surface shape of a blade taken along line AA in FIG. 3 and a side surface shape of the blade taken along line BB. 貫流ファンの翼における、一対のリングの回転軸方向中央部に関する断面図である。It is sectional drawing regarding the rotating shaft direction center part of a pair of ring in the blade | wing of a crossflow fan. 貫流ファンの翼における、一対のリングの回転軸方向中央部に関する断面図である。It is sectional drawing regarding the rotating shaft direction center part of a pair of ring in the blade | wing of a crossflow fan. 貫流ファンの翼における、一対のリングの回転軸方向中央部に関する断面図である。It is sectional drawing regarding the rotating shaft direction center part of a pair of ring in the blade | wing of a crossflow fan. 本発明の実施の形態2に関する、図3と同態様の図である。It is a figure of the same aspect as FIG. 3 regarding Embodiment 2 of this invention. 本発明の実施の形態2に関する、図5と同態様の図である。It is a figure of the same aspect as FIG. 5 regarding Embodiment 2 of this invention. 本発明の実施の形態3に関する、図3と同態様の図である。It is a figure of the same aspect as FIG. 3 regarding Embodiment 3 of this invention. 本発明の実施の形態3に関する、図4と同態様の図である。It is a figure of the same aspect as FIG. 4 regarding Embodiment 3 of this invention. 本発明の実施の形態3に関する、図5と同態様の図である。It is a figure of the same aspect as FIG. 5 regarding Embodiment 3 of this invention. 本発明の実施の形態4に関する、図4と同態様の図である。It is a figure of the same aspect as FIG. 4 regarding Embodiment 4 of this invention.
 以下、本発明に係る空気調和機の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。 Hereinafter, embodiments of an air conditioner according to the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.
 実施の形態1.
 図1は、本発明の実施の形態1における貫流ファンを搭載した空気調和機の部屋から見たときの設置概要図、図2は、図1の空気調和機の縦断面図、図3は、図1の空気調和機に搭載される貫流ファンの羽根車の正面及び側面を示す図である。
Embodiment 1 FIG.
FIG. 1 is an installation schematic diagram when viewed from a room of an air conditioner equipped with a cross-flow fan according to Embodiment 1 of the present invention, FIG. 2 is a longitudinal sectional view of the air conditioner of FIG. 1, and FIG. It is a figure which shows the front and side of the impeller of a once-through fan mounted in the air conditioner of FIG.
 図1に図示されるように、空気調和機(室内機)100は、本体1及び本体1の前面に設けられる前面パネル1bによって、空気調和機100の外郭が構成されている。ここで、図1では、空気調和機100が空調対象空間である部屋11の壁11aに設置されている。すなわち、図1では、空気調和機100が壁掛け型である例を図示しているが、本発明は、かかる態様に限定されるものではなく、例えば、天井埋込型などでもよい。また、空気調和機100は、部屋11に設置されることに限定されるものではなく、たとえばビルの一室や倉庫などに設置されていてもよい。 As shown in FIG. 1, the air conditioner (indoor unit) 100 includes a main body 1 and a front panel 1 b provided on the front surface of the main body 1, so that an outline of the air conditioner 100 is configured. Here, in FIG. 1, the air conditioner 100 is installed in the wall 11a of the room 11 which is an air-conditioning target space. That is, FIG. 1 illustrates an example in which the air conditioner 100 is a wall-hanging type, but the present invention is not limited to such an embodiment, and may be, for example, a ceiling-embedded type. Moreover, the air conditioner 100 is not limited to being installed in the room 11, and may be installed in a room of a building or a warehouse, for example.
 図2に図示されるように、本体1の上部を構成する本体上部1aには室内空気を空気調和機100内に吸い込むための吸込グリル2が形成され、本体1の下側には空調空気を室内に供給するための吹出口3が形成され、さらに、後述の貫流ファン8から放出された空気を吹出口3に導くガイドウォール10が形成されている。 As shown in FIG. 2, a suction grill 2 for sucking room air into the air conditioner 100 is formed in the upper part 1 a constituting the upper part of the main body 1. An air outlet 3 for supplying the air to the room is formed, and a guide wall 10 for guiding air discharged from a cross-flow fan 8 described later to the air outlet 3 is formed.
 図2に示すように、本体1は、吸込グリル2から吸い込まれる空気中の塵埃などを除去するフィルタ(通風抵抗体)5と、冷媒の温熱又は冷熱を空気に伝達して空調空気を生成する熱交換器(通風抵抗体)7と、吸込側風路E1及び吹出側風路E2を区画するスタビライザー9と、吸込側風路E1及び吹出側風路E2の間に配置され、吸込グリル2から空気を吸い込み吹出口3から空気を吹き出す貫流ファン8と、貫流ファン8から吹き出された空気の方向を調整する上下風向ベーン4a及び左右風向ベーン4bとを有している。 As shown in FIG. 2, the main body 1 generates conditioned air by transmitting to the air a filter (ventilation resistor) 5 that removes dust and the like in the air sucked from the suction grill 2 and the heat or cold of the refrigerant. Arranged between the heat exchanger (ventilation resistor) 7, the stabilizer 9 that partitions the suction side air passage E1 and the blowout side air passage E2, and the suction side air passage E1 and the blowout side air passage E2, A cross-flow fan 8 that sucks in air and blows out air from the air outlet 3, and a vertical wind vane 4 a and a left-right wind vane 4 b that adjust the direction of the air blown from the cross-flow fan 8 are provided.
 吸込グリル2は、貫流ファン8によって強制的に室内空気を空気調和機100内部に取り込む開口である。吸込グリル2は本体1の上面に開口形成されている。吹出口3は、吸込グリル2から吸い込まれ、熱交換器7を通過した空気を室内に供給する際に、当該空気が通過する開口である。吹出口3は、前面パネル1bに開口形成されている。ガイドウォール10は、スタビライザー9の下面側と協働して、吹出側風路E2を構成するものである。ガイドウォール10は、貫流ファン8から吹出口3にかけて渦巻き面を形成している。 The suction grill 2 is an opening for forcibly taking room air into the air conditioner 100 by the cross-flow fan 8. The suction grill 2 has an opening formed on the upper surface of the main body 1. The blower outlet 3 is an opening through which the air passes when the air sucked from the suction grill 2 and passed through the heat exchanger 7 is supplied into the room. The blower outlet 3 is formed as an opening in the front panel 1b. The guide wall 10 constitutes the blowing side air passage E2 in cooperation with the lower surface side of the stabilizer 9. The guide wall 10 forms a spiral surface from the cross-flow fan 8 to the outlet 3.
 フィルタ5は、たとえば網目状に形成され、吸込グリル2から吸い込まれる空気中の塵埃などを除去するものである。フィルタ5は、吸込グリル2から吹出口3までの風路(本体1内部の中央部)のうち、吸込グリル2の下流側であって熱交換器7の上流側に設けられている。 The filter 5 is formed in a mesh shape, for example, and removes dust in the air sucked from the suction grill 2. The filter 5 is provided on the downstream side of the suction grille 2 and on the upstream side of the heat exchanger 7 in the air path from the suction grille 2 to the air outlet 3 (center portion inside the main body 1).
 熱交換器7(室内熱交換器)は、冷房運転時において、蒸発器として機能して空気を冷却し、暖房運転時において、凝縮器(放熱器)として機能して空気を加温するものである。この熱交換器7は、吸込グリル2から吹出口3までの風路(本体1内部の中央部)のうち、フィルタ5の下流側であって貫流ファン8の上流側に設けられている。なお、図2では、熱交換器7の形状は、貫流ファン8の前面及び上面を取り囲むような形状をしているが、あくまでも一例であり、特に限定されるものではない。 The heat exchanger 7 (indoor heat exchanger) functions as an evaporator during cooling operation to cool air, and functions as a condenser (heat radiator) during heating operation to heat the air. is there. The heat exchanger 7 is provided on the downstream side of the filter 5 and on the upstream side of the cross-flow fan 8 in the air path from the suction grill 2 to the blower outlet 3 (center portion inside the main body 1). In FIG. 2, the shape of the heat exchanger 7 is a shape that surrounds the front surface and the upper surface of the cross-flow fan 8, but is merely an example and is not particularly limited.
 熱交換器7は、圧縮機、室外熱交換器、及び絞り装置などを有する周知の態様でよい室外機に接続されて冷凍サイクルを構成しているものとする。また、熱交換器7には、例えば伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器が用いられている。 It is assumed that the heat exchanger 7 is connected to an outdoor unit that may be a well-known embodiment having a compressor, an outdoor heat exchanger, a throttling device, and the like and constitutes a refrigeration cycle. Further, as the heat exchanger 7, for example, a cross fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins is used.
 スタビライザー9は、吸込側風路E1と吹出側風路E2とを区画するもので、図2に図示されるように熱交換器7の下側に設けられており、吸込側風路E1は、スタビライザー9の上面側に位置し、吹出側風路E2は、スタビライザー9の下面側に位置している。スタビライザー9は、熱交換器7に付着した結露水を一時的に貯留するドレンパン6を有している。 The stabilizer 9 divides the suction side air passage E1 and the blowout side air passage E2, and is provided on the lower side of the heat exchanger 7 as shown in FIG. Located on the upper surface side of the stabilizer 9, the blowing side air passage E <b> 2 is located on the lower surface side of the stabilizer 9. The stabilizer 9 has a drain pan 6 that temporarily stores the condensed water adhering to the heat exchanger 7.
 貫流ファン8は、吸込グリル2から室内空気を吸い込み、吹出口3から空調空気を吹き出すためのものである。貫流ファン8は、吸込グリル2から吹出口3までの風路(本体1内部の中央部)のうち、熱交換器7の下流側であって吹出口3の上流側に設けられている。 The cross-flow fan 8 is for sucking room air from the suction grill 2 and blowing air-conditioned air from the outlet 3. The cross-flow fan 8 is provided on the downstream side of the heat exchanger 7 and on the upstream side of the air outlet 3 in the air path from the suction grill 2 to the air outlet 3 (the central portion inside the main body 1).
 貫流ファン8は、図3に示すように、たとえばガラス繊維入りのAS樹脂(Styrene-AcryloNitrile copolymer)などの熱可塑性樹脂で構成される羽根車8aと、羽根車8aを回転させるためのモータ12と、モータ12の回転を羽根車8aに伝達させるモータシャフト12aとを有し、羽根車8a自身が回転することで、吸込グリル2から室内空気を吸い込み、空調空気を吹出口3に送り込むものである。 As shown in FIG. 3, the cross-flow fan 8 includes an impeller 8a made of a thermoplastic resin such as AS resin (Styrene-AcryloNitrile copolymer) containing glass fiber, and a motor 12 for rotating the impeller 8a. And the motor shaft 12a for transmitting the rotation of the motor 12 to the impeller 8a, and the impeller 8a itself rotates to suck indoor air from the suction grill 2 and send conditioned air to the blowout port 3. .
 羽根車8aは、複数の羽根車単体8dが連結されて構成されており、羽根車単体8dそれぞれが、複数の翼8cと、それら複数の翼8cの端部側に固定される少なくとも一つのリング(支持板)8bとを有している。すなわち、羽根車単体8dにおいては、複数の翼8cのそれぞれが円板状のリング8bの外周部側面から当該側面と略垂直となるように延びており、且つ、それら複数の翼8cはリング8bの周方向に所定間隔で整列しており、羽根車8aは、そのような複数の羽根車単体8dを溶着し連結して一体としたものである。 The impeller 8a is configured by connecting a plurality of impeller units 8d, and each impeller unit 8d has a plurality of blades 8c and at least one ring fixed to the end side of the plurality of blades 8c. (Support plate) 8b. That is, in the impeller single unit 8d, each of the plurality of blades 8c extends from the outer peripheral side surface of the disk-shaped ring 8b so as to be substantially perpendicular to the side surface, and the plurality of blades 8c are connected to the ring 8b. The impeller 8a is formed by welding a plurality of such impellers 8d and connecting them together.
 羽根車8aは、羽根車8aの内部(中央)側に突出したファンボス8eを有している。ファンボス8eは、ネジ等でモータシャフト12aに固定される。そして、羽根車8aは、羽根車8aの一方側がファンボス8eを介してモータシャフト12aに支持され、羽根車8aの他方側がファンシャフト8fによって支持されている。これにより、羽根車8aは、両端側が支持された状態で、羽根車8aの羽根車回転中心Oを中心に回転方向ROに回転し、吸込グリル2から室内空気を吸い込み、吹出口3に空調空気を送り込むことができるようになっている。なお、羽根車8aについては、後ほど詳しく説明する。 The impeller 8a has a fan boss 8e protruding toward the inside (center) side of the impeller 8a. The fan boss 8e is fixed to the motor shaft 12a with a screw or the like. In the impeller 8a, one side of the impeller 8a is supported by the motor shaft 12a via the fan boss 8e, and the other side of the impeller 8a is supported by the fan shaft 8f. Thereby, the impeller 8a rotates in the rotation direction RO around the impeller rotation center O of the impeller 8a in a state where both ends are supported, sucks room air from the suction grille 2, and conditioned air into the outlet 3 Can be sent in. The impeller 8a will be described in detail later.
 上下風向ベーン4aは貫流ファン8から吹き出された空気の方向のうちの上下を調整するものであり、左右風向ベーン4bは貫流ファン8から吹き出された空気の方向のうちの左右を調整するものである。上下風向ベーン4aは、左右風向ベーン4bよりも下流側に設けられている。なお、説明における上下方向は、図2の上下方向に対応しており、説明における左右方向は、図2の紙面の表裏方向に対応している。 The up-and-down airflow direction vane 4a adjusts the vertical direction of the air blown from the cross-flow fan 8, and the left-right wind direction vane 4b adjusts the left-right direction of the air blown from the cross-flow fan 8. is there. The up / down wind direction vane 4a is provided on the downstream side of the left / right wind direction vane 4b. Note that the vertical direction in the description corresponds to the vertical direction in FIG. 2, and the horizontal direction in the description corresponds to the front and back direction of the paper surface in FIG.
 図4は、貫流ファンの羽根車の翼1枚に関する、羽根車回転方向側表面(翼圧力面)から見た斜視図である。図5は、図3のA-A線による翼の側面形状と、B-B線による翼の側面形状とを示す図である。 FIG. 4 is a perspective view of one blade of a cross-flow fan impeller viewed from the impeller rotation direction side surface (blade pressure surface). FIG. 5 is a diagram showing the side shape of the wing taken along line AA in FIG. 3 and the side shape of the wing taken along line BB.
 図4及び図5に示されるように、複数の翼8cはそれぞれ、内周側端部15bが、対応する一方のリングから対応する他方のリングに向けて、回転方向に後退した後、再度、回転方向に前進する形状を有しており、且つ、外周側端部15aも、対応する一方のリングから対応する他方のリングに向けて、回転方向に後退した後、再度、回転方向に前進する形状を有しているように構成されている。換言すると、図3及び図4に示されるように、翼8cの圧力面を投影的にみた場合、複数の翼8cはそれぞれ、内周側端部15b及び外周側端部15aのそれぞれが、上下逆V字状をなしている。よって、内周側端部15b及び外周側端部15aのそれぞれは、一対のリングの回転軸方向の中央の部分が最も回転方向に後退しており、その両側の部分では、リングに近づくにつれて、回転方向に前進している。また、図5に示されるように、翼8cは、回転軸方向にわたって一定の断面(回転軸と直交する方向の断面)を有しているものの、回転軸方向の中央の部分と、リングに面している部分とは、角度δだけずれている。 As shown in FIGS. 4 and 5, each of the plurality of blades 8 c has the inner peripheral side end portion 15 b retreated in the rotation direction from the corresponding one ring toward the corresponding other ring, and then again, It has a shape that advances in the rotational direction, and the outer peripheral side end portion 15a also moves backward from the corresponding one ring toward the other corresponding ring and then advances again in the rotational direction. It is comprised so that it may have a shape. In other words, as shown in FIG. 3 and FIG. 4, when the pressure surface of the blade 8 c is projected, the plurality of blades 8 c have the inner peripheral end 15 b and the outer peripheral end 15 a respectively up and down. It has an inverted V shape. Therefore, as for each of the inner peripheral side edge part 15b and the outer peripheral side edge part 15a, the center part of the rotation axis direction of a pair of rings is most retracted in the rotation direction. Moving forward in the direction of rotation. Further, as shown in FIG. 5, the blade 8c has a constant cross-section (cross-section in the direction orthogonal to the rotation axis) over the rotation axis direction, but faces the center portion of the rotation axis direction and the ring. It is deviated from the portion by an angle δ.
 また、複数の翼8cはそれぞれ、図5に示されるように、回転軸方向にわたって、翼の外径(後述の外周側端部15aと回転軸Oとの距離)と、の外径(後述の内周側端部15bと回転軸Oとの距離)とが同一に維持されており、また、翼8cの断面積形状も、回転軸方向にわたって、同一に維持されている。すなわち、複数の翼8cのそれぞれにおいては、羽根車回転軸に直交する翼断面が同一のまま、羽根車回転方向に対し前進又は後退するような立体形状に形成されている。 Further, as shown in FIG. 5, each of the plurality of blades 8c has an outer diameter (a distance between an outer peripheral side end portion 15a described later and a rotation axis O) and an outer diameter (described later) over the rotation axis direction. The distance between the inner peripheral side end 15b and the rotation axis O is kept the same, and the cross-sectional area shape of the blade 8c is also kept the same in the direction of the rotation axis. That is, each of the plurality of blades 8c is formed in a three-dimensional shape such that the blade cross section orthogonal to the impeller rotation axis remains the same, and moves forward or backward with respect to the impeller rotation direction.
 次に、翼8cに関する回転軸と直交する方向の断面形状の詳細について説明する。図6~図8はそれぞれ、貫流ファンの翼における、一対のリングの回転軸方向中央部に関する断面図である。 Next, details of the cross-sectional shape in the direction orthogonal to the rotation axis of the blade 8c will be described. FIG. 6 to FIG. 8 are cross-sectional views of the pair of rings in the central portion in the rotational axis direction of the blades of the cross-flow fan.
 図6~図8のように、翼8cの外周側端部15a及び内周側端部15bは、それぞれ円弧形状で形成されている。そして、翼8cは、外周側端部15a側が、内周側端部15b側に対して羽根車回転方向ROに前傾するように、形成されている。すなわち、翼8cを縦断面視した際において、翼8cの翼圧力面13a及び翼負圧面13bが、羽根車8aの羽根車回転中心(回転軸)Oから翼8cの外側に向かうにしたがって、羽根車回転方向ROに湾曲している。 As shown in FIGS. 6 to 8, the outer peripheral end 15a and the inner peripheral end 15b of the blade 8c are each formed in an arc shape. The blade 8c is formed so that the outer peripheral end 15a side is inclined forward in the impeller rotation direction RO with respect to the inner peripheral end 15b side. That is, when the blade 8c is viewed in a longitudinal section, the blade pressure surface 13a and the blade negative pressure surface 13b of the blade 8c are moved from the impeller rotation center (rotary axis) O of the impeller 8a toward the outside of the blade 8c. Curved in the vehicle rotation direction RO.
 外周側端部15aに形成される円弧形状に対応する円の中心をP1(円弧中心P1とも称する)とし、内周側端部15bに形成される円弧形状に対応する円の中心をP2(円弧中心P2とも称する)とする。また、円弧中心P1、P2を結ぶ線分を翼弦線(翼弦)Lとすると、図8に示すように、翼弦線Lの長さはLoとなる(以下、翼弦長Loとも称する)。 The center of the circle corresponding to the arc shape formed on the outer peripheral end 15a is P1 (also referred to as arc center P1), and the center of the circle corresponding to the arc shape formed on the inner peripheral end 15b is P2 (arc Also referred to as center P2. Further, if a line segment connecting the arc centers P1 and P2 is a chord line (chord) L, the chord line L has a length Lo as shown in FIG. 8 (hereinafter also referred to as a chord length Lo). ).
 翼8cは、羽根車8aの回転方向RO側の表面である翼圧力面13aと、羽根車8aの回転方向ROの反対側の表面である翼負圧面13bとを有し、翼8cは翼弦線Lの中央付近が、翼圧力面13aから翼負圧面13bに向かう方向に湾曲した凹形状をしている。 The blade 8c has a blade pressure surface 13a that is a surface on the rotational direction RO side of the impeller 8a and a blade negative pressure surface 13b that is a surface on the opposite side of the rotational direction RO of the impeller 8a. The vicinity of the center of the line L has a concave shape curved in a direction from the blade pressure surface 13a toward the blade suction surface 13b.
 また、翼8cは、翼圧力面13a側の円弧形状に対応する円の半径が、羽根車8aの外周側と、羽根車8aの内周側とで異なっている。すなわち、図7に示すように、翼8cの翼圧力面13a側の表面は、羽根車8aの外周側の円弧形状に対応する半径(円弧半径)がRp1である外周側曲面Bp1と、羽根車8aの内周側の円弧形状に対応する半径(円弧半径)がRp2である内周側曲面Bp2とを有しており、多重円弧曲面となっている。さらに、翼8cの翼圧力面13a側の表面は、内周側曲面Bp2の端部のうち内周側の端部に接続され、平面形状をしている平面Qpを有している。 In the blade 8c, the radius of the circle corresponding to the arc shape on the blade pressure surface 13a side is different between the outer peripheral side of the impeller 8a and the inner peripheral side of the impeller 8a. That is, as shown in FIG. 7, the surface on the blade pressure surface 13a side of the blade 8c has an outer peripheral curved surface Bp1 whose radius (arc radius) corresponding to the arc shape on the outer peripheral side of the impeller 8a is Rp1, and the impeller A radius (arc radius) corresponding to the arc shape on the inner peripheral side of 8a has an inner peripheral curved surface Bp2 whose radius is Rp2, and is a multiple arc curved surface. Further, the blade pressure surface 13a side surface of the blade 8c has a flat surface Qp that is connected to the inner peripheral end of the inner peripheral curved surface Bp2 and has a planar shape.
 このように、翼8cの翼圧力面13a側の表面は、外周側曲面Bp1、内周側曲面Bp2及び平面Qpが連続的に接続されて構成されている。なお、翼8cを縦断面視した際に、平面Qpを構成する直線は、内周側曲面Bp2を構成する円弧に接続される点において、接線となっている。 Thus, the surface on the blade pressure surface 13a side of the blade 8c is configured by continuously connecting the outer peripheral curved surface Bp1, the inner peripheral curved surface Bp2, and the plane Qp. Note that when the blade 8c is viewed in a longitudinal section, the straight line forming the plane Qp is a tangent line at a point where the straight line is connected to the arc forming the inner peripheral curved surface Bp2.
 一方、翼8cの翼負圧面13b側の表面は、翼圧力面13a側の表面と対応した表面となっている。具体的には、翼8cの翼負圧面13b側の表面は、羽根車8aの外周側の円弧形状に対応する半径(円弧半径)がRs1である外周側曲面Bs1と、羽根車8aの内周側の円弧形状に対応する半径(円弧半径)がRs2である内周側曲面Bs2とを有している。さらに、翼8cの翼負圧面13b側の表面は、内周側曲面Bs2の端部のうち内周側の端部に接続され、平面形状をしている平面Qsを有している。 On the other hand, the surface on the blade suction surface 13b side of the blade 8c is a surface corresponding to the surface on the blade pressure surface 13a side. Specifically, the surface of the blade 8c on the blade suction surface 13b side includes an outer peripheral curved surface Bs1 whose radius (arc radius) corresponding to the arc shape on the outer peripheral side of the impeller 8a is Rs1, and the inner periphery of the impeller 8a. And an inner circumferential curved surface Bs2 whose radius (arc radius) corresponds to the arc shape on the side is Rs2. Further, the surface of the blade 8c on the blade suction surface 13b side has a flat surface Qs that is connected to the inner peripheral end of the end portions of the inner peripheral curved surface Bs2 and has a planar shape.
 このように、翼8cの翼負圧面13b側の表面は、外周側曲面Bs1、内周側曲面Bs2及び平面Qsが連続的に接続されて構成されている。なお、翼8cを縦断面視した際に、平面Qsを構成する直線は、内周側曲面Bs2を構成する円弧に接続される点において、接線となっている。 As described above, the surface on the blade suction surface 13b side of the blade 8c is configured by continuously connecting the outer circumferential surface curved surface Bs1, the inner circumferential surface curved surface Bs2, and the plane Qs. Note that when the blade 8c is viewed in a longitudinal section, the straight line that forms the plane Qs is a tangent line at the point that it is connected to the arc that forms the inner peripheral curved surface Bs2.
 次に翼厚について説明する。翼8cを縦断面視した際に、その翼面に内接する円の直径を翼厚(肉厚)tとすると、図7に示すように、外周側端部15aの翼厚(肉厚)t1は、内周側端部15bの翼厚(肉厚)t2よりも薄い。なお、翼厚t1は、外周側端部15aの円弧を構成する円の半径R1×2に対応し、翼厚t2は、内周側端部15bの円弧を構成する円の半径R2×2に対応する。 Next, the blade thickness will be explained. When the diameter of a circle inscribed in the blade surface when the blade 8c is viewed in a longitudinal section is a blade thickness (thickness) t, as shown in FIG. 7, the blade thickness (thickness) t1 of the outer peripheral end 15a is shown in FIG. Is thinner than the blade thickness (wall thickness) t2 of the inner peripheral end 15b. The blade thickness t1 corresponds to the radius R1 × 2 of the circle that forms the arc of the outer peripheral side end portion 15a, and the blade thickness t2 corresponds to the radius R2 × 2 of the circle that forms the arc of the inner peripheral side end portion 15b. Correspond.
 つまり、翼8cの翼圧力面13a及び翼負圧面13bに内接する円の直径を翼厚としたとき、翼厚は、外周側端部15aが内周側端部15bよりも小さく、外周側端部15aから中央へ向け徐々に増加し、中央付近の所定位置で最大となり、内側に向け徐々に薄肉となり、直線部Qで略同一の肉厚となるように形成されている。 That is, when the diameter of a circle inscribed in the blade pressure surface 13a and the blade suction surface 13b of the blade 8c is defined as the blade thickness, the blade thickness is smaller at the outer peripheral end 15a than at the inner peripheral end 15b. It is formed so as to gradually increase from the portion 15a toward the center, become maximum at a predetermined position near the center, gradually become thinner toward the inside, and have the same thickness at the straight portion Q.
 より詳細には、翼8cの翼厚tは、外周側端部15a及び内周側端部15bを除く、翼圧力面13aと翼負圧面13bで形成される外周側曲面Bp1、内周側曲面Bp2、外周側曲面Bs1、内周側曲面Bs2の範囲において、外周側端部15aから翼8cの中央へ向けて徐々に増加し、翼弦線Lの中央付近の所定位置で最大肉厚t3となり、内周側端部15bに向けて徐々に薄肉化する。そして、翼厚tは、直線部Qの範囲、すなわち、平面Qpと平面Qsとの間の範囲において、略一定値である内周側端部肉厚t2となっている。 More specifically, the blade thickness t of the blade 8c is determined by the outer peripheral curved surface Bp1 and the inner peripheral curved surface formed by the blade pressure surface 13a and the blade negative pressure surface 13b, excluding the outer peripheral end 15a and the inner peripheral end 15b. In the range of Bp2, the outer peripheral curved surface Bs1, and the inner peripheral curved surface Bs2, it gradually increases from the outer peripheral end 15a toward the center of the blade 8c, and reaches the maximum thickness t3 at a predetermined position near the center of the chord line L. Then, the thickness gradually decreases toward the inner peripheral end 15b. The blade thickness t is an inner peripheral side end thickness t2 that is a substantially constant value in the range of the straight portion Q, that is, the range between the plane Qp and the plane Qs.
 ここで、翼8cのうち内周側端部15bの平面Qp、Qsを表面として有する部分を直線部Qと称する。すなわち、翼8cの翼負圧面13bは、羽根車外周側から内周側にかけて多重円弧と直線部Qで形成されている。 Here, a portion of the blade 8c having the planes Qp and Qs of the inner peripheral end 15b as the surface is referred to as a straight portion Q. That is, the blade negative pressure surface 13b of the blade 8c is formed by multiple arcs and straight portions Q from the outer peripheral side to the inner peripheral side of the impeller.
 以上のような構成を有する貫流ファン、及び、それを搭載した空気調和機においては、次のような効果が得られる。 In the cross-flow fan having the above configuration and the air conditioner equipped with the same, the following effects can be obtained.
 まず、複数の翼8cはそれぞれ、貫流ファン8の外側から内部へと空気を吸い込む場合(すなわち貫流ファン8において図2の紙面でいう上部左寄りの位置にある翼8cでの流れの場合、つまり吸込側風路E1側に位置したときの翼8cにおける流れの場合)には、図4で、点線矢印で示すように、外周側端部15aから内周側端部15bに向けて、空気が流れる。よって、内周側端部15bから、貫流ファン8の内部に向けて流出する空気は、対応する一対のリング8bに向けて広がるように流れる。よって、一対のリングの間に関してみると、一対のリングから離れた一対のリング間の中央付近から相対的に多くの流れが吹出す傾向がみられる貫流ファンにおいて、一対のリングの近傍にも積極的に流れを振り向けることができ、一対のリングの間で流れを均一することができる。 First, when each of the plurality of blades 8c sucks air from the outside to the inside of the cross-flow fan 8 (that is, in the case of the flow in the blade 8c at the upper left side in FIG. In the case of the flow in the blade 8c when located on the side air passage E1 side, air flows from the outer peripheral side end portion 15a toward the inner peripheral side end portion 15b as shown by a dotted arrow in FIG. . Therefore, the air flowing out from the inner peripheral end 15b toward the inside of the cross-flow fan 8 flows so as to spread toward the corresponding pair of rings 8b. Therefore, in the cross-flow fan in which a relatively large amount of flow tends to be blown out from the vicinity of the center between the pair of rings apart from the pair of rings when viewed between the pair of rings, the vicinity of the pair of rings is also positive. Therefore, the flow can be directed and the flow can be made uniform between the pair of rings.
 一方、貫流ファン8の内部から外側へと空気を吹出す場合(すなわち貫流ファン8において図2の紙面でいう下部右寄りの位置にある翼8cでの流れの場合、つまり吹出側風路E2側に位置したときの翼8cにおける流れの場合)には、図4で、実線矢印で示すように、内周側端部15bから外周側端部15aに向けて、空気が流れる。よって、空気は、内周側端部15bを流れる際、内周側端部15bを端部とする翼端渦を伴い、はく離が抑制された流れとして翼8cを流れる。このようにはく離が抑制されることで、均一な流れの維持が促進される。 On the other hand, when air is blown from the inside of the once-through fan 8 to the outside (that is, in the case of the flow at the blade 8c located at the lower right side of the cross-flow fan 8 in FIG. In the case of the flow in the blade 8c when positioned, air flows from the inner peripheral side end portion 15b toward the outer peripheral side end portion 15a as shown by a solid arrow in FIG. Therefore, when the air flows through the inner peripheral side end 15b, the air flows along the blade 8c as a flow with a blade tip vortex having the inner peripheral side end 15b as an end and the separation is suppressed. By suppressing the separation in this way, the maintenance of a uniform flow is promoted.
 加えて、次のような作用効果が得られる。
 (1)翼8cの負圧面13bは、羽根車外周側から内周側にかけて多重円弧と直線部Qで形成されているため、翼8cが吸込側風路E1を通過する時、翼表面の流れが外周側曲面Bs1で剥離しかけた時に次の円弧半径が異なる内周側曲面Bs2により流れが再付着する。
In addition, the following effects can be obtained.
(1) Since the negative pressure surface 13b of the blade 8c is formed of multiple arcs and straight portions Q from the outer peripheral side to the inner peripheral side of the impeller, the flow of the blade surface when the blade 8c passes through the suction side air passage E1. Is peeled off at the outer peripheral curved surface Bs1, the flow is reattached by the inner peripheral curved surface Bs2 having a different arc radius.
 (2)また、翼8cが平面Qsを有し、負圧が生成さるため、内周側曲面Bs2で流れが剥離しかけたとしても再付着する。 (2) Further, since the blade 8c has a flat surface Qs and a negative pressure is generated, even if the flow starts to peel off on the inner peripheral curved surface Bs2, it reattaches.
 (3)また、翼厚tが羽根車外周側に比べて羽根車内周側が増加するため、隣り合う翼8cとの間の距離が縮小する。 (3) Further, since the blade thickness t increases on the inner peripheral side of the impeller compared to the outer peripheral side of the impeller, the distance between the adjacent blades 8c is reduced.
 (4)さらに、平面Qsが平坦なので、曲面の場合に比べ翼厚tが羽根車外周に向け急激に増加しないので摩擦抵抗が抑制できる。 (4) Furthermore, since the flat surface Qs is flat, the blade thickness t does not increase rapidly toward the outer periphery of the impeller as compared with the curved surface, so that the frictional resistance can be suppressed.
 (5)翼8cの圧力面13aも、羽根車外周側から内周側にかけて多重円弧と直線部(平面)で形成されている。このため、空気が外周側曲面Bp1から円弧半径の異なる内周側曲面Bp2へ流れる際、流れが徐々に加速され、負圧面13bへ圧力勾配を生成するため、剥離を抑制し流体異常音が発生しない。 (5) The pressure surface 13a of the blade 8c is also formed by multiple arcs and straight portions (planes) from the outer peripheral side to the inner peripheral side of the impeller. For this reason, when the air flows from the outer peripheral curved surface Bp1 to the inner peripheral curved surface Bp2 having a different arc radius, the flow is gradually accelerated and a pressure gradient is generated on the negative pressure surface 13b. do not do.
 (6)また、下流側の平面Qpは、内周側曲面Bs2に対する接線となっている。言い換えれば、翼8cは、下流側の平面Qpを有するため、回転方向ROに対して所定角度屈曲した形状となっている。このため、直線表面(平面Qp)がない場合と比較すると、内周側端部15bの翼肉厚t2が厚肉であったとしても、負圧面13bへ流れを向けることができ、内周側端部15bから羽根車内部へ流入する時の後流渦を抑制できる。 (6) Further, the downstream plane Qp is tangent to the inner circumferential curved surface Bs2. In other words, since the blade 8c has the downstream plane Qp, it has a shape bent by a predetermined angle with respect to the rotation direction RO. For this reason, compared with the case where there is no straight surface (plane Qp), even if the blade thickness t2 of the inner peripheral side end portion 15b is thick, the flow can be directed to the suction surface 13b. The wake vortex when flowing into the impeller from the end 15b can be suppressed.
 (7)翼8cは、内周側端部15bが厚肉となっており、吹出側風路E2でのさまざまな流入方向に対し剥離しづらくなっている。 (7) The blade 8c has a thick inner end 15b and is difficult to separate in various inflow directions in the blowout air passage E2.
 (8)また、翼8cは、平面Qsの下流側である翼弦中央付近で最大肉厚をもつ。このため、流れが平面Qsを通過後に剥離しそうとなると、内周側曲面Bs2で翼弦中央付近へ向け翼厚tが徐々に厚くなるため流れが沿い剥離が抑制できる。 (8) Further, the blade 8c has the maximum thickness near the center of the chord, which is the downstream side of the plane Qs. For this reason, if the flow is about to peel after passing through the plane Qs, the blade thickness t gradually increases toward the center of the chord on the inner circumferential curved surface Bs2, and therefore the separation can be suppressed along the flow.
 (9)さらに、翼8cは、内周側曲面Bs2の下流側に、円弧半径の異なる内周側曲面Bs1を有するため、流れの剥離が抑制され、羽根車からの有効吹出側風路が拡大でき、吹出風速の低減及び均一化が図れ、翼面にかかる負荷トルクが減少できる。 (9) Furthermore, since the blade 8c has the inner peripheral curved surface Bs1 having a different arc radius on the downstream side of the inner peripheral curved surface Bs2, the separation of the flow is suppressed, and the effective blowing side air passage from the impeller is expanded. It is possible to reduce and equalize the blown wind speed, and to reduce the load torque applied to the blade surface.
 さらに、本実施の形態においては、前述した特許文献1~3に開示された従来の構成に対しても、有利な効果が得られている。まず、特許文献1に開示の構成では、翼が、羽根車の回転軸方向の位置に応じて、翼が薄肉化する構成となっている。また、特許文献2に開示の構成では、翼のリング側の付け根から延びるにつれて、外径が縮小すると共に内径が拡大する先細りの形状に構成され、さらに翼端部が回転軸方向で傾斜し、翼外径が羽根車長手方向で変化している。このため、一方のリングから他方のリングに向かう羽根車回転軸方向の流れが発生してしまう。また、羽根車に対向するスタビライザーやケーシングとの隙間が回転軸方向で拡大するので、流れの漏れ損失が増加するとともに、羽根車回転軸方向で隙間が変化することで、隙間が狭い領域から広い領域へ流れが流出し、さらに漏れ損失が増加する。さらに、効率悪化によりモータ消費電力が増加してしまう。さらに、特許文献3に開示の構成では、2つの構成部品が必要となる。また、羽根車単体ごとに翼の傾斜の向きが交代で変更されているので、流れがリング近傍に集中する領域とリング近傍から離脱する領域とがリングごとに交互に生成され、吹出風速分布の粗密が一つ飛びのリングごとと広い間隔となり、空気調和機の吸込口に設置されたフィルタにホコリなど堆積し圧力損失が増大すると粗密が顕著となり広い粗の領域に最悪逆流が生じる。そのため、冷房時高湿空気が逆流することで結露し、外部へ結露水が放出される恐れある。 Furthermore, in the present embodiment, advantageous effects are obtained even with respect to the conventional configurations disclosed in Patent Documents 1 to 3 described above. First, in the configuration disclosed in Patent Document 1, the blade is thinned according to the position of the impeller in the rotation axis direction. Further, in the configuration disclosed in Patent Document 2, the outer diameter is reduced and the inner diameter is increased as it extends from the root of the blade on the ring side, and the blade tip is further inclined in the rotation axis direction. The blade outer diameter changes in the longitudinal direction of the impeller. For this reason, the flow of the impeller rotating shaft direction which goes to the other ring from one ring will generate | occur | produce. In addition, since the gap between the stabilizer and the casing facing the impeller is enlarged in the direction of the rotation axis, the leakage loss of the flow increases, and the gap changes in the direction of the impeller rotation axis, so that the gap is wide from a narrow region. The flow flows out into the area and leakage loss increases. Furthermore, the motor power consumption increases due to the deterioration of efficiency. Furthermore, the configuration disclosed in Patent Document 3 requires two components. In addition, since the direction of the blade inclination is changed alternately for each impeller, a region where the flow is concentrated near the ring and a region where the flow is separated from the vicinity of the ring are alternately generated for each ring. Roughness becomes wide with every single ring, and dust accumulates on the filter installed at the air inlet of the air conditioner and pressure loss increases, resulting in conspicuous density and the worst reverse flow in a wide rough area. For this reason, condensation occurs when high-humidity air flows backward during cooling, and condensed water may be discharged to the outside.
 (10)これらの問題に関連し、本実施の形態では、翼8cが、羽根車回転軸と直交する翼断面が同じまま、羽根車回転方向に対し翼リング間中央部が羽根車回転方向に対し後退(又は前進)した形態であるので、羽根車に対向するスタビライザー9との隙間が同一となり、上記従来構成では問題であった隙間が長手方向で異なることで循環渦g1による漏れ流れが増大することを抑制できるので高効率化が図れ、駆動するモータ電力が低減できる。 (10) In relation to these problems, in the present embodiment, the blade 8c has the same blade cross section orthogonal to the impeller rotation axis, and the central portion between the blade rings in the impeller rotation direction with respect to the impeller rotation direction. In contrast, the clearance with the stabilizer 9 facing the impeller is the same, and the leakage flow caused by the circulating vortex g1 is increased due to the difference in the longitudinal direction, which was a problem in the conventional configuration. Therefore, the efficiency can be increased and the motor power to be driven can be reduced.
 (11)また、翼が羽根車回転方向に対し後退し、かつ翼端部が羽根車回転軸に対し傾斜する領域を有するので、羽根車に対向するスタビライザー9周辺を翼が通過するとき、羽根車長手方向で翼端部全領域に圧力変動を受けず分散されるので、回転数と翼枚数に起因する耳障りな回転音(NZ音)が低減し、低騒音化が図れる。その結果、羽根車吸込側、吹出側で翼面での流れの剥離を抑制できるので低騒音化が図れ、またファンモータの消費電力が低減できる。つまり、静粛で省エネな貫流ファン8を搭載した室内機100を得ることができる。 (11) Since the blade has a region where the blade moves backward with respect to the rotation direction of the impeller and the blade end portion is inclined with respect to the rotation shaft of the impeller, when the blade passes around the stabilizer 9 facing the impeller, the blade Since it is dispersed without being subjected to pressure fluctuations in the entire region of the blade tip in the longitudinal direction of the vehicle, an annoying rotational sound (NZ sound) resulting from the rotational speed and the number of blades can be reduced, and noise can be reduced. As a result, since flow separation on the blade surface can be suppressed on the impeller suction side and the blowout side, noise can be reduced, and power consumption of the fan motor can be reduced. That is, the indoor unit 100 equipped with the quiet and energy-saving once-through fan 8 can be obtained.
 実施の形態2.
 次に、図9及び図10を参照しながら、本発明の実施の形態2について説明する。図9及び図10はそれぞれ、本発明の実施の形態2に関する、図3及び図5と同態様の図である。本実施の形態2は、以下に説明する部分以外の構成は、上述した実施の形態1と同様であるものとする。
Embodiment 2. FIG.
Next, Embodiment 2 of the present invention will be described with reference to FIGS. 9 and FIG. 10 are views of the same mode as FIG. 3 and FIG. 5, respectively, regarding the second embodiment of the present invention. The configuration of the second embodiment is the same as that of the first embodiment described above except for the parts described below.
 端的には、本実施の形態2は、上述した実施の形態1と前述のV字で示す形態が逆の関係にあるものである。本実施の形態2においては、複数の翼108cはそれぞれ、内周側端部15bが、対応する一方のリングから対応する他方のリングに向けて、回転方向に前進した後、再度、回転方向に後退する形状を有しており、且つ、外周側端部15aも、対応する一方のリングから対応する他方のリングに向けて、回転方向に前進した後、再度、回転方向に後退する形状を有しているように構成されている。換言すると、翼8cの圧力面を投影的にみた場合、複数の翼8cはそれぞれ、内周側端部15b及び外周側端部15aのそれぞれが、V字状をなしている。よって、内周側端部15b及び外周側端部15aのそれぞれは、一対のリングの回転軸方向の中央の部分が最も回転方向に前進しており、その両側の部分では、リングに近づくにつれて、回転方向に後退している。 In short, in the present second embodiment, the above-described first embodiment and the above-described V-shaped form are opposite to each other. In the second embodiment, each of the plurality of blades 108c has its inner peripheral side end portion 15b advanced in the rotational direction from the corresponding one ring toward the corresponding other ring, and then again in the rotational direction. The outer peripheral side end portion 15a also has a shape that moves forward from the corresponding one ring toward the other corresponding ring and then moves back in the rotational direction again. It is configured to be. In other words, when the pressure surface of the blade 8c is viewed in a projection manner, each of the plurality of blades 8c has an inner peripheral end 15b and an outer peripheral end 15a each having a V shape. Therefore, as for each of the inner peripheral side edge part 15b and the outer peripheral side edge part 15a, the center part of the rotation axis direction of a pair of rings has advanced most in the rotation direction, and in the part of the both sides, as it approaches a ring, Retracted in the direction of rotation.
 このように構成された本実施の形態2においても、空気の流れに関し、実施の形態1と同様な作用が得られている。すなわち、複数の翼108cはそれぞれ、貫流ファン8の外側から内部へと空気を吸い込む場合には、空気は、外周側端部15aを流れる際、外周側端部15aを端部とする翼端渦を伴い、はく離が抑制された流れとして翼108cを流れ、均一な流れの維持が促進される。また、貫流ファン8の内部から外側へと空気を吹出す場合には、外周側端部15aから、貫流ファン8の外側に向けて流出する空気は、対応する一対のリング8bに向けて広がるように流れ、一対のリングの近傍にも積極的に流れを振り向けることができ、一対のリングの間で流れを均一することができる。 In the second embodiment configured as described above, the same operation as that of the first embodiment is obtained with respect to the air flow. That is, when each of the plurality of blades 108c sucks air from the outside of the cross-flow fan 8 into the inside, the blade tip vortex having the outer end 15a as the end when the air flows through the outer end 15a. Therefore, the flow of the blade 108c flows as a flow in which separation is suppressed, and the maintenance of a uniform flow is promoted. In addition, when air is blown from the inside of the cross-flow fan 8 to the outside, the air flowing out from the outer peripheral side end portion 15a toward the outside of the cross-flow fan 8 spreads toward the corresponding pair of rings 8b. The flow can be actively directed to the vicinity of the pair of rings, and the flow can be made uniform between the pair of rings.
 実施の形態3.
 次に、図11、図12及び図13を参照しながら、本発明の実施の形態3について説明する。図11、図12及び図13はそれぞれ、本発明の実施の形態3に関する、図3、図4及び図5と同態様の図である。本実施の形態3は、以下に説明する部分以外の構成は、上述した実施の形態1と同様であるものとする。
Embodiment 3 FIG.
Next, Embodiment 3 of the present invention will be described with reference to FIG. 11, FIG. 12, and FIG. 11, FIG. 12 and FIG. 13 are views of the same mode as FIG. 3, FIG. 4 and FIG. The configuration of the third embodiment is the same as that of the first embodiment described above except for the portions described below.
 端的には、本実施の形態3は、上述した実施の形態1と同じ態様のV字で示す形態を有する翼であって、さらに、翼における対応する一対のリングの近傍部分(リング側部分)は、回転軸方向に沿って延びている(回転方向に前進も後退もしていない)。すなわち、図12に最もよく示されるように、複数の翼208cはそれぞれ、対応する一対のリングの近傍部分として、リングから所定範囲の部分に、回転方向に前進も後退もせずに回転軸方向に沿って延びるリング側部分220を有している。 Briefly, the third embodiment is a wing having a V-shaped configuration similar to that of the first embodiment described above, and further, a portion in the vicinity of the corresponding pair of rings in the wing (ring side portion). Extends along the direction of the axis of rotation (does not advance or retract in the direction of rotation). That is, as best shown in FIG. 12, each of the plurality of wings 208c is arranged in the vicinity of the corresponding pair of rings as a part in a predetermined range from the ring in the rotational axis direction without moving forward or backward in the rotational direction. It has a ring side portion 220 extending along.
 このように構成された本実施の形態3においても、空気の流れに関し、実施の形態1と同様な作用が得られている。さらに、本実施の形態3では、複数の翼はそれぞれ、回転方向に前進も後退もせずに回転軸方向に沿って延びる一対のリング側部分を有していることにより、次のような利点が得られている。すなわち、複数の羽根車単体を積層する時、一つの羽根車単体の翼が積層する別の羽根車単体のリングに溶着される時、翼端が直立なのでリング表面に直立で接するため、組立の作業性がよく、溶着性も向上している。また、両端の翼平行部(リング側部分)で傾斜がなくなることで、リング表面への流れの集中または分散が抑制され、リング付近の流れが安定する。これにより、空気調和機の吸込口に設置されたフィルタにホコリなどが堆積し圧力損失が増大しても、風速分布が均一化され、逆流が防止できる。そのため、冷房時でも結露することなく高品質な空気調和機が得られる。 In the third embodiment configured as described above, the same operation as that of the first embodiment is obtained with respect to the air flow. Further, in the third embodiment, each of the plurality of blades has a pair of ring side portions extending along the rotation axis direction without moving forward or backward in the rotation direction, and thus has the following advantages. Has been obtained. That is, when laminating a plurality of impellers, when the blades of one impeller are welded to the ring of another impeller, the blade tip is upright so that it touches the ring surface upright. Workability is good and weldability is also improved. Further, since the inclination is eliminated at the blade parallel portions (ring side portions) at both ends, the concentration or dispersion of the flow on the ring surface is suppressed, and the flow near the ring is stabilized. As a result, even if dust or the like accumulates on the filter installed at the suction port of the air conditioner and the pressure loss increases, the wind speed distribution is made uniform and backflow can be prevented. Therefore, a high-quality air conditioner can be obtained without condensation even during cooling.
 なお、本実施の形態3における上記説明は、実施の形態1との組み合わせとして例示したが、本実施の形態3は、実施の形態2と組み合わせて実施することも可能である。すなあち、上記実施の形態2の翼108cにおいて、その対応する一対のリングの近傍部分に、回転方向に前進も後退もせずに回転軸方向に沿って延びるリング側部分220が形成されているようにして実施してもよい。 In addition, although the said description in this Embodiment 3 was illustrated as a combination with Embodiment 1, this Embodiment 3 can also be implemented in combination with Embodiment 2. FIG. That is, in the wing 108c of the second embodiment, a ring side portion 220 extending along the rotation axis direction without moving forward or backward in the rotation direction is formed in the vicinity of the corresponding pair of rings. It may be carried out as described above.
 実施の形態4.
 次に、図14を参照しながら、本発明の実施の形態4について説明する。図14は、本発明の実施の形態3に関する、図4と同態様の図である。本実施の形態4は、以下に説明する部分以外の構成は、上述した実施の形態1と同様であるものとする。
Embodiment 4 FIG.
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 14 is a diagram of the same mode as FIG. 4 regarding the third embodiment of the present invention. The configuration of the fourth embodiment is the same as that of the first embodiment described above except for the portions described below.
 上述した実施の形態1~3では、複数の翼の内周側端部及び外周側端部のそれぞれにおいて、回転方向に後退した後、再度、回転方向に前進するというセット態様か、転方向に後退した後、再度、回転方向に前進するというセット態様が、設けられていたが、本発明は、これに限定されるものではなく、内周側端部及び外周側端部の一方または双方に、上記のセット態様が複数設けられていてもよい。図14は、そのような本実施の形態4の一例である。 In the above-described first to third embodiments, the inner end and the outer end of each of the plurality of blades may be set in such a manner that after retreating in the rotational direction and then moving forward again in the rotational direction, The set mode of moving forward again in the rotation direction after retreating is provided, but the present invention is not limited to this, and one or both of the inner peripheral end and the outer peripheral end are provided. A plurality of the above set aspects may be provided. FIG. 14 is an example of such a fourth embodiment.
 本実施の形態4の一例である図14の翼308cにおいては、内周側端部15bは、回転方向に後退した後、再度、回転方向に前進するというセット態様が、一つだけ設けられており、すなわち、上記実施の形態1の翼の内周側端部と同様に形成されている。一方、翼308cの外周側端部15aは、上記のセット態様が、複数設けられている。なお、本実施の形態4の図示例の翼も、上記実施の形態1~3の図示例の翼もすべて、一対のリング間において回転軸方向の中央を境にその両側が対称的な形態となるように構成されている。 In the wing 308c of FIG. 14 which is an example of the fourth embodiment, the inner peripheral side end portion 15b is provided with only one set mode in which it moves backward in the rotational direction and then moves forward again in the rotational direction. That is, it is formed in the same manner as the inner peripheral side end portion of the blade of the first embodiment. On the other hand, the outer peripheral side end portion 15a of the wing 308c is provided with a plurality of the above set modes. Note that both the wings in the illustrated example of the fourth embodiment and the wings in the illustrated examples of the first to third embodiments are symmetrical on both sides with respect to the center in the rotational axis direction between the pair of rings. It is comprised so that it may become.
 このような本実施の形態4においても、翼の内周側端部及び外周側端部の該当部それぞれにおいて、上述した実施の形態1~3と同様な作用効果が得られる。 Also in the fourth embodiment, the same effects as those of the first to third embodiments described above can be obtained at the corresponding portions at the inner peripheral side end and the outer peripheral side end of the blade.
 なお、本実施の形態4の図示例は、実施の形態1でいう上下逆V字状の翼に、実施の形態4の特徴を適用したものとして説明したが、実施の形態2でいうV字状の翼に、実施の形態4の特徴を適用して実施することも可能である。 The illustrated example of the fourth embodiment has been described assuming that the features of the fourth embodiment are applied to the upside down V-shaped wing referred to in the first embodiment. It is also possible to apply the characteristics of the fourth embodiment to a wing shaped like a blade.
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。 Although the contents of the present invention have been specifically described with reference to the preferred embodiments, various modifications can be made by those skilled in the art based on the basic technical idea and teachings of the present invention. It is self-explanatory.
 1 本体、8 貫流ファン、8a 羽根車、8b リング(支持板)、8c、108c、208c、308c 翼、9 スタビライザー、15a 外周側端部、15b 内周側端部、100 空気調和機。 1 body, 8 cross-flow fan, 8a impeller, 8b ring (support plate), 8c, 108c, 208c, 308c wing, 9 stabilizer, 15a outer peripheral end, 15b inner peripheral end, 100 air conditioner.

Claims (3)

  1.  羽根車と、該羽根車を回転可能に支持するシャフトとを備える貫流ファンであって、
     前記羽根車は、複数の支持板と、対応する一対の前記支持板の間に周方向に間隔をおいて配置された複数の翼とを有し、
     前記複数の翼はそれぞれ、内周側端部が、対応する一方の支持板から対応する他方の支持板に向けて、回転方向に後退した後、再度、回転方向に前進する形状か、あるいは、回転方向に前進した後、再度、回転方向に後退する形状を有しており、外周側端部が、対応する一方の支持板から対応する他方の支持板に向けて、回転方向に後退した後、再度、回転方向に前進する形状か、あるいは、回転方向に前進した後、再度、回転方向に後退する形状を有している、
    貫流ファン。
    A cross-flow fan comprising an impeller and a shaft that rotatably supports the impeller,
    The impeller has a plurality of support plates, and a plurality of blades arranged in the circumferential direction between a pair of corresponding support plates,
    Each of the plurality of blades has a shape in which the inner peripheral side end portion retreats in the rotation direction from one corresponding support plate toward the other support plate, and then advances again in the rotation direction, or After moving forward in the rotational direction, it has a shape that retreats again in the rotational direction, and after the outer peripheral side end retreats in the rotational direction from the corresponding one support plate to the other corresponding support plate , Again having a shape that advances in the rotational direction, or after moving forward in the rotational direction, again has a shape that retreats in the rotational direction,
    Cross-flow fan.
  2.  前記複数の翼はそれぞれ、回転方向に前進も後退もせずに回転軸方向に沿って延びる一対のリング側部分を有している、
    請求項1の貫流ファン。
    Each of the plurality of blades has a pair of ring side portions extending along the rotation axis direction without moving forward or backward in the rotation direction.
    The once-through fan according to claim 1.
  3.  本体内における吸込側風路及び吹出側風路を区画するスタビライザーと、
     前記吸込側風路及び吹出側風路の間に配置された貫流ファンと、
     前記本体内に配置された通風抵抗体と、
     前記貫流ファンから放出された空気を前記本体の吹出口に導くガイドウォールとを備えた空気調和機であって、
     前記貫流ファンは、請求項1又は2の貫流ファンである、
    空気調和機。
    A stabilizer that partitions the suction-side air passage and the blow-out air passage in the body,
    A once-through fan disposed between the suction side air passage and the outlet side air passage;
    A ventilation resistor disposed in the body;
    An air conditioner comprising a guide wall for guiding the air discharged from the cross-flow fan to the outlet of the main body,
    The cross-flow fan is the cross-flow fan according to claim 1 or 2.
    Air conditioner.
PCT/JP2013/079217 2013-10-29 2013-10-29 Cross-flow fan and air conditioner WO2015063851A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13896431.7A EP3064776B1 (en) 2013-10-29 2013-10-29 Cross-flow fan and air conditioner
JP2015544651A JPWO2015063851A1 (en) 2013-10-29 2013-10-29 Cross-flow fan and air conditioner
PCT/JP2013/079217 WO2015063851A1 (en) 2013-10-29 2013-10-29 Cross-flow fan and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/079217 WO2015063851A1 (en) 2013-10-29 2013-10-29 Cross-flow fan and air conditioner

Publications (1)

Publication Number Publication Date
WO2015063851A1 true WO2015063851A1 (en) 2015-05-07

Family

ID=53003502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079217 WO2015063851A1 (en) 2013-10-29 2013-10-29 Cross-flow fan and air conditioner

Country Status (3)

Country Link
EP (1) EP3064776B1 (en)
JP (1) JPWO2015063851A1 (en)
WO (1) WO2015063851A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962275B2 (en) 2018-01-25 2021-03-30 Johnson Controls Technology Company Condenser unit with fan

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144294U (en) * 1985-02-28 1986-09-05
JPH09158890A (en) 1995-12-08 1997-06-17 Fujitsu General Ltd Air conditioner
JPH09250493A (en) * 1996-03-12 1997-09-22 Hitachi Ltd Cross flow fan
JP3107711B2 (en) 1994-08-09 2000-11-13 株式会社東芝 Cross flow fan
US20090104017A1 (en) * 2007-10-23 2009-04-23 Park Jeong Taek Cross-flow fan and air conditioner
JP4549416B2 (en) 2008-10-22 2010-09-22 シャープ株式会社 Cross-flow fan, blower and impeller molding machine
JP2011122522A (en) * 2009-12-10 2011-06-23 Mitsubishi Electric Corp Crossflow fan and air conditioner equipped with the same
EP2345814A2 (en) * 2010-01-13 2011-07-20 LG Electronics Inc. Cross-flow fan and air conditioner equipped therewith
JP2012255628A (en) * 2011-06-10 2012-12-27 Mitsubishi Electric Corp Air conditioner
WO2013150673A1 (en) * 2012-04-06 2013-10-10 三菱電機株式会社 Indoor unit for air conditioning device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1603631A (en) * 2004-10-29 2005-04-06 吴劲松 Inclined interference noise reduction type centrifugal fan

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144294U (en) * 1985-02-28 1986-09-05
JP3107711B2 (en) 1994-08-09 2000-11-13 株式会社東芝 Cross flow fan
JPH09158890A (en) 1995-12-08 1997-06-17 Fujitsu General Ltd Air conditioner
JPH09250493A (en) * 1996-03-12 1997-09-22 Hitachi Ltd Cross flow fan
US20090104017A1 (en) * 2007-10-23 2009-04-23 Park Jeong Taek Cross-flow fan and air conditioner
JP4549416B2 (en) 2008-10-22 2010-09-22 シャープ株式会社 Cross-flow fan, blower and impeller molding machine
JP2011122522A (en) * 2009-12-10 2011-06-23 Mitsubishi Electric Corp Crossflow fan and air conditioner equipped with the same
EP2345814A2 (en) * 2010-01-13 2011-07-20 LG Electronics Inc. Cross-flow fan and air conditioner equipped therewith
JP2012255628A (en) * 2011-06-10 2012-12-27 Mitsubishi Electric Corp Air conditioner
WO2013150673A1 (en) * 2012-04-06 2013-10-10 三菱電機株式会社 Indoor unit for air conditioning device

Also Published As

Publication number Publication date
JPWO2015063851A1 (en) 2017-03-09
EP3064776A1 (en) 2016-09-07
EP3064776A4 (en) 2017-07-19
EP3064776B1 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP5143317B1 (en) Air conditioner indoor unit
JP6041895B2 (en) Air conditioner
US9759220B2 (en) Cross flow fan and indoor unit of air-conditioning apparatus
JP6058242B2 (en) Air conditioner
JP6415741B2 (en) Blower and air conditioner equipped with the same
EP2192354B1 (en) Indoor unit for air conditioning apparatus
JP2007010259A (en) Air conditioner
KR102249794B1 (en) Outdoor unit of air conditioner
KR102321173B1 (en) Fan and air conditioner indoor unit having same
WO2017077564A1 (en) Axial fan and air-conditioning device having said axial fan
JP6472625B2 (en) Air conditioner
WO2015064617A1 (en) Cross-flow fan and air conditioner
WO2013080395A1 (en) Air conditioner
WO2015063851A1 (en) Cross-flow fan and air conditioner
JP5774206B2 (en) Air conditioner indoor unit
CN110914550B (en) Indoor unit of air conditioner
JP6625213B2 (en) Multi-blade fan and air conditioner
JPWO2019123743A1 (en) Indoor unit of air conditioner
JP6000454B2 (en) Air conditioner indoor unit
WO2023223383A1 (en) Cross flow fan, blowing device, and refrigeration cycle device
WO2020026373A1 (en) Cross-flow fan and air conditioner
WO2020136750A1 (en) Impeller, blower, and air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013896431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013896431

Country of ref document: EP