WO2013080395A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2013080395A1
WO2013080395A1 PCT/JP2012/002177 JP2012002177W WO2013080395A1 WO 2013080395 A1 WO2013080395 A1 WO 2013080395A1 JP 2012002177 W JP2012002177 W JP 2012002177W WO 2013080395 A1 WO2013080395 A1 WO 2013080395A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
distance
side end
stabilizer
air
Prior art date
Application number
PCT/JP2012/002177
Other languages
French (fr)
Japanese (ja)
Inventor
敬英 田所
池田 尚史
慎悟 濱田
代田 光宏
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201290001026.2U priority Critical patent/CN203926056U/en
Publication of WO2013080395A1 publication Critical patent/WO2013080395A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings

Definitions

  • the present invention relates to an air conditioner, and more particularly to a separate type air conditioner indoor unit having an indoor unit and an outdoor unit.
  • the indoor unit of an air conditioner is installed indoors (in a house, office, etc.) that performs air conditioning, and heat exchanges the indoor air sucked from the suction port with the refrigerant circulating in the refrigeration cycle circuit using a heat exchanger.
  • a heat exchanger In the case of heating operation, the room air is warmed, and in the case of cooling operation, the room air is cooled and blown into the room again from the outlet.
  • the blower and heat exchanger are provided inside the indoor unit body. Is housed.
  • cross-flow fans cross-flow fans, cross-flow fans, cross-flow fans, etc.
  • blowers for wall-hanging types with long and narrow outlets and ceiling-mounted types with one-way blowing. It is well known that it is also used.
  • a heat exchanger is arranged upstream of the once-through fan for the air flow from the inlet to the outlet of the indoor unit of the air conditioner, that is, a heat exchanger is arranged between the inlet and the once-through fan.
  • An air outlet is located on the downstream side.
  • the length in the longitudinal direction of the blowout port of the indoor unit is substantially the same as the overall length in the longitudinal direction (rotation axis direction) of the cross-flow fan, and the cross-flow fan is provided with a predetermined space on the outside in the longitudinal direction at both ends of the cross-flow fan.
  • a support portion and a drive motor for supporting the rotating shaft are arranged.
  • a cross-flow fan (hereinafter abbreviated as “fan”) is formed by inclining a plurality of blades whose transverse section is curved in a substantially arc shape on a support plate that is an annular (ring-shaped) flat plate having an outer diameter and an inner diameter by a predetermined angle.
  • a plurality of impellers fixed concentrically and annularly are connected in the rotational axis direction.
  • each impeller In the direction of the rotation axis, a disk-shaped fan end plate to which a rotation shaft supported by the bearing unit of the indoor unit body is attached is fixed to the blade tip of the impeller alone at one end, and the other end Unlike the other support plates, each impeller has a fan end plate with a boss provided with a boss portion at the center to which a motor rotation shaft of a drive motor is attached and fixed.
  • the fan rotates around the rotation axis that is the center of the rotation axis.
  • the blade is inclined so that its outer peripheral tip is located forward in the rotational direction.
  • a single impeller connected in the direction of the rotation axis is called a series of fans.
  • each of the impellers positioned at both ends of the fan in the rotation axis direction is referred to as an end portion series.
  • the room air With the rotation of the fan, the room air is sucked into the indoor unit body of the air conditioner from the suction port, becomes conditioned air whose temperature is adjusted as described above when passing through the heat exchanger, crosses the fan, Blows out in the direction of rotation from the fan. After that, the conditioned air flows through a gradually expanding blowing air passage formed between a stabilizer provided on the front side of the cross-flow fan and a rear guide portion provided on the rear side, and the blowing air formed at the lower portion of the indoor unit main body. It is blown out from the exit into the room.
  • the plurality of blades constituting the cross-flow fan pass through the suction area on the upstream side and the blow-out area on the downstream side of the cross-flow fan. Due to the structure of such a cross-flow fan, it is known that a vortex is generated in the vicinity of a stabilizer that is disposed on the front side with respect to the blow-out direction of the air flow of the cross-flow fan and divides the suction region and the blow-out region.
  • the air flow may be disturbed by friction with the side wall of the indoor unit, and the air flow may not flow smoothly toward the outlet.
  • the static pressure Ps in the vicinity of the air outlet in the indoor unit becomes lower than the atmospheric pressure P0, and a phenomenon occurs in which room air is sucked into the indoor unit from the air outlet due to the pressure difference between the two. This phenomenon is called reverse suction.
  • Fan end plates constituting a single impeller as a rotating body are provided at both ends in the rotation axis direction of the fan, and the fan end plate is provided outside the fan end plate in the indoor unit body.
  • the side wall which comprises the side surface of an air path is arrange
  • the fan end plate and the side wall of the indoor unit main body are separated by a distance of, for example, about 5 mm, thereby preventing both from coming into contact and causing rotational friction.
  • the space formed between the fan end plate and the side wall facing the fan end plate is located outside both ends of the fan in the rotation axis direction, and pressure loss occurs when the airflow passes through the heat exchanger. Therefore, the pressure atmosphere is lower than the atmospheric pressure P0. Therefore, it is considered that reverse suction is likely to occur near both ends of the air outlet due to a pressure difference from the atmospheric pressure P0 outside the indoor unit.
  • the side connected to the stabilizer at the outlet is the side connected to the rear guide portion because the static pressure Ps becomes the lowest due to the vortex generated in the vicinity of the stabilizer and the difference from the atmospheric pressure P0 becomes the largest. Rather than reverse sucking.
  • the fan As a configuration for improving the flow rate performance at both ends of the fan in the rotation axis direction, which is a portion where reverse suction is likely to occur as described above, the fan gradually moves from the fan blowing portion to the ventilation passage of the housing blowing portion.
  • the side wall shape is changed so as to reduce the ventilation path in the rotation axis direction (see, for example, Patent Document 1).
  • a backflow prevention plate is provided at both ends of the fan in the rotation axis direction so as to cover the blowout portion in the vicinity of the suction portion, and further, the draft resistance is reduced as a chamfered shape (for example, see Patent Document 2) .
  • JP-A-8-121395 (columns 0013 to 0023, FIG. 1)
  • Japanese Patent Laid-Open No. 2001-201078 (columns 0030 to 0035, FIG. 2)
  • a backflow prevention plate is provided at both ends in the rotation axis direction of the fan so as to cover the blowout part in the vicinity of the suction part, and the airflow resistance is reduced as a chamfered shape
  • a stabilizer that has a low pressure due to the vortex A chamfer is also provided on the side. For this reason, there is a problem that the space between the backflow prevention plate and the fan is widened by the chamfered portion, and the indoor air is easily sucked into the indoor unit from the outlet.
  • the present invention has been made in order to solve the above-described problems, and performs reverse suction at both ends in the longitudinal direction of the air outlet, particularly on the stabilizer side of the air outlet, which is the part where the pressure is the lowest due to the vortex.
  • An object of the present invention is to obtain an air conditioner that can prevent power consumption and noise.
  • An air conditioner includes an indoor unit main body having a suction port for sucking air, and a blowout port that is formed long in the left-right direction and blows out air.
  • an indoor unit main body having a suction port for sucking air, and a blowout port that is formed long in the left-right direction and blows out air.
  • fan extension portions Provided in the indoor unit main body so that the left-right direction of the indoor unit main body and the rotation axis coincide with each other, fan extension portions extending outward from the longitudinal end portion of the outlet are provided at both left and right end portions.
  • a stabilizer and a rear guide part that are arranged to face each other with the cross-flow fan interposed therebetween, and form a blowout air passage that guides indoor air blown out of the cross-flow fan to the blowout port;
  • the indoor unit main body provided outside the left and right ends of the air outlet, respectively, and substantially along a part of the outer periphery of the fan extension so as to face the airflow blown out from the fan extension.
  • a wall structure having opposite surfaces When the distance in the radial direction of the fan extension portion between the opposing surface and the outer peripheral portion of the fan extension portion in a cross section perpendicular to the rotation axis of the opposite surface and the fan extension portion is a distance M,
  • the distance M which is the distance M at the point a of the facing surface near the stabilizer, the distance M in at least a part of the region of the facing surface near the rear guide portion with respect to the point a is It is comprised so that it may become longer than the distance Ma.
  • the stagnation pressure higher than the atmospheric pressure at both ends in the longitudinal direction of the air outlet, particularly on the stabilizer side of the air outlet, which is the portion where the pressure is the lowest due to the vortex. For this reason, while being able to prevent reverse suction, the increase in the energy loss by a collision wall can be suppressed, and a reduction in power and noise can be realized.
  • FIG. 4 is a longitudinal sectional view taken along line QQ in FIG. 1 according to the first embodiment.
  • 3A and 3B are schematic views showing the cross-flow fan according to Embodiment 1, in which FIG. 3A is a side view of the cross-flow fan, and FIG. 3B is a cross-sectional view taken along the line U-U in FIG.
  • FIG. 4 is an enlarged perspective view showing a fan formed by fixing five impellers (units) in the rotation axis direction according to the first embodiment (FIG. 4A), and an explanatory view showing a support plate (FIG. 4 (b)).
  • FIG. 4 is a perspective view showing a collision wall according to Embodiment 1.
  • FIG. FIG. 6 is a cross-sectional view taken along the line WW in FIG. 5 according to the first embodiment.
  • FIG. 4 is a schematic diagram illustrating the internal configuration of the indoor unit in a simplified manner according to the first embodiment.
  • FIG. 9 is an explanatory diagram illustrating, in an enlarged manner, a vicinity of a collision wall at a right end portion in FIG. 8 according to the first embodiment. It is explanatory drawing which concerns on Embodiment 1 and shows the airflow in the indoor unit main body by a cross-flow fan.
  • FIG. 12 is a diagram illustrating a distance M between the facing surface of the collision wall and the outer peripheral portion of the fan according to the first embodiment
  • FIG. 12A is an explanatory diagram illustrating a cross section perpendicular to the rotation axis
  • FIG. Is a graph showing the position in the depth direction AY of the facing surface of the collision wall on the horizontal axis and the distance M between the facing surface and the fan outer peripheral portion on the vertical axis.
  • FIG. 10 is an explanatory diagram illustrating an operation of a collision wall at the rear guide side end portion according to the first embodiment.
  • FIG. 16 is a graph illustrating a collision pressure Pv (FIG. 15A) and a stagnation pressure Pst (FIG. 15A) at the position in the depth direction AY of the facing surface according to the first embodiment.
  • 10 is a graph showing the position in the depth direction AY on the horizontal axis and the stagnation pressure Pst on the vertical axis according to another configuration example of the first embodiment.
  • FIG. 10 is a graph showing the position in the depth direction AY of the facing surface of the collision wall on the horizontal axis and the distance M between the facing surface and the fan outer periphery on the vertical axis according to another configuration example of the first embodiment. It is a perspective view which shows the collision wall which concerns on Embodiment 2 of this invention.
  • FIG. 19 is a diagram illustrating a distance M between the facing surface of the collision wall and the outer periphery of the fan according to the second embodiment
  • FIG. 19A is a vertical cross-sectional view perpendicular to the rotation axis
  • FIG. 1 It is a graph which shows the position M of the depth direction AY on an axis
  • FIG. It is sectional drawing which concerns on Embodiment 3 of this invention, and shows the edge part vicinity when a collision wall is cut
  • FIG. 10 is a diagram illustrating a distance M between the facing surface of the collision wall in the rotation axis direction AX and the outer periphery of the fan according to the third embodiment, where the horizontal axis indicates the position in the rotation axis direction AX, and the vertical axis indicates the facing surface and the outer periphery of the fan. It is a graph which shows distance M.
  • FIG. 10 is an explanatory diagram illustrating an enlarged collision wall according to the third embodiment. FIG.
  • FIG. 14 is a diagram illustrating a distance M between the facing surface of the collision wall in the rotation axis direction AX and the outer periphery of the fan according to another configuration example of the third embodiment, where the horizontal axis represents the position in the rotation axis direction AX and the vertical axis represents It is a graph which shows the distance M of a surface and a fan outer peripheral part.
  • FIG. 10 is an explanatory diagram illustrating a shape of a facing surface in another configuration example according to the third embodiment.
  • FIG. Embodiment 1 of the present invention will be described below with reference to the drawings.
  • 1 is an external perspective view showing an indoor unit 1 of an air conditioner equipped with a cross-flow fan 8 according to Embodiment 1
  • FIG. 2 is a longitudinal sectional view taken along line QQ in FIG.
  • the airflow is indicated by a white arrow in FIG. 1 and indicated by a dotted arrow in FIG.
  • an air conditioner actually constitutes a refrigeration cycle circuit with an indoor unit and an outdoor unit
  • the present invention relates to the configuration of the indoor unit, and the description of the outdoor unit is omitted. As shown in FIGS.
  • an indoor unit (hereinafter referred to as an indoor unit) 1 of an air conditioner has an elongated, substantially rectangular parallelepiped shape extending in the left-right direction, and is installed on a wall surface of a room.
  • a suction grill 2 serving as a suction port for sucking indoor air
  • an electric dust collector 5 for electrostatically collecting dust contained in the sucked indoor air
  • a mesh-like filter 6 for removing dust is disposed.
  • a heat exchanger 7 having a configuration in which the pipe 7b penetrates through the plurality of aluminum fins 7a arranged in parallel is arranged on the front side and the upper side of the cross-flow fan 8 so as to surround the cross-flow fan 8, and this heat exchanger 7 Exchanges heat with the indoor air sucked from the suction grill 2.
  • the front surface of the indoor unit 1 main body is covered with the front panel 1b, and the blower outlet 3 is provided in the lower part of the indoor unit 1 main body, and the indoor air heat-exchanged by the heat exchanger 7 blows out into the room from the blower outlet 3. Is done.
  • the blower outlet 3 is comprised by the opening extended elongate considering the left-right direction of the indoor unit 1 main body as a longitudinal direction. That is, the air outlet 3 is provided so that the longitudinal direction of the air outlet 3 coincides with the left-right direction of the main body of the indoor unit 1.
  • the cross-flow fan 8 as a blower is provided between the heat exchanger 7 and the outlet 3 so that the left-right direction (longitudinal direction) of the main body of the indoor unit 1 is the direction in which the rotation axis extends (referred to as the rotation axis direction). And is driven to rotate by a motor 16 (see FIG. 3) to blow indoor air from the suction grill 2 to the outlet 3.
  • the interior of the main body of the indoor unit 1 includes a stabilizer 9 and a rear guide part 10 that separate the suction area E1 and the blowing area E2 from the cross-flow fan 8.
  • the stabilizer 9 constitutes the front side of the blowout air passage 11 that guides the room air blown from the cross-flow fan 8 to the blowout port 3, and the rear guide portion 10 is, for example, a spiral shape and constitutes the back side of the blowout air passage 11.
  • the rear guide portion 10 has a gentler curved surface than the stabilizer 9 on the front side of the blowout air passage 11, and the blowout air passage 11 has a shape that gradually widens toward the air outlet 3. Up and down wind direction vanes 4a and left and right wind direction vanes 4b are rotatably attached to the air outlet 3, and these change the direction of blowing air into the room.
  • O represents the rotation center of the once-through fan 8
  • E1 represents the suction area of the once-through fan 8
  • E2 represents the blowing area located on the opposite side of the rotation area O from the suction area E1.
  • the suction region E1 and the blowout region E2 of the cross-flow fan 8 are separated by the tongue 9a of the stabilizer 9 and the upstream end portion 10a of the airflow of the rear guide unit 10.
  • RO shows the rotation direction of the cross-flow fan 8
  • AY shows the depth direction of the indoor unit 1, and in the depth direction AY of the indoor unit 1 main body, the side where the outlet 3 is located is the front side, and the rear guide part 10 is located.
  • the side is referred to as the back side.
  • FIG. 3A and 3B are schematic views showing the cross-flow fan 8 according to the first embodiment.
  • FIG. 3A is a side view of the cross-flow fan
  • FIG. 3B is a cross-sectional view taken along the line UU in FIG. is there.
  • the lower half of FIG. 3B shows a state where a plurality of wings on the other side can be seen, and the upper half shows one wing 13.
  • 4A is an enlarged perspective view showing the cross-flow fan 8 formed by fixing the five impellers 14 according to the first embodiment in the rotation axis direction AX
  • FIG. 4B is a support plate.
  • FIG. In FIG. 4, the motor 16 and the motor shaft 16 a are omitted, and the impeller portion is shown as the cross-flow fan 8.
  • the number of impeller single bodies 14 constituting the cross-flow fan 8 and the number of blades 13 constituting one impeller single body 14 may be any number.
  • the cross-flow fan 8 has a plurality of, for example, five impellers 14 in the rotation axis direction AX (longitudinal direction).
  • the impeller single body 14 is provided with an annular support plate 12 at one end, and a plurality of blades 13 extending in the rotation axis direction AX are provided along the outer periphery of the support plate 12.
  • a single impeller 14 formed of a thermoplastic resin such as an AS resin or an ABS resin is provided in the rotation axis direction AX, and the side end of the blade 13 is arranged next to each other by ultrasonic welding or the like. Adhering to the plate 12, the impellers 14 are connected together.
  • a fan shaft 15a is provided at the center of a support plate 12a (hereinafter referred to as a fan end plate) located at one end in the rotational axis direction AX, and a fan boss 15b is provided at the center of the fan end plate 12b located at the other end.
  • the fan boss 15b and the motor shaft 16a of the motor 16 are fixed with screws or the like.
  • the fan end plates 12a and 12b located at both ends of the cross-flow fan 8 in the rotation axis direction AX have a disk shape, and the fan shaft 15a and the fan boss 15b are formed in the central portion where the rotation axis 17 is located.
  • the support plate 12 excluding both ends has an annular space at the center where the rotation axis 17 serving as the center of rotation is located, and has an inner diameter K1 and an outer diameter K2 as shown in FIG. 4B.
  • the alternate long and short dash line is a virtual rotation axis that connects the motor shaft 16a and the fan shaft 15a and indicates the rotation center O.
  • the rotation axis 17 is referred to as the rotation axis 17.
  • the direction in which is extended is the rotation axis direction AX.
  • a single impeller is referred to as a ream 14, and reams 14 positioned at both ends of the cross-flow fan 8 in the rotational axis direction AX are referred to as end reams 14 a.
  • FIG. 5 is a perspective view of the main body of the indoor unit 1 of the air conditioner according to this embodiment when viewed obliquely from below.
  • the vertical wind direction vane 4 a and the left and right wind direction vane 4 b are removed, and a part of the cross-flow fan 8 is visible through the outlet 3.
  • the length L2 of the cross flow fan 8 in the rotation axis direction AX is configured to be longer (L2> L1).
  • This blower outlet 3 is opened so that the longitudinal direction thereof coincides with the left-right direction of the main body of the indoor unit 1.
  • a part of end section 14a of once-through fan 8 is extended in the direction which axis of rotation 17 extends from both ends of the longitudinal direction of blower outlet 3, and this extension part is called fan extension part 8a. That is, the fan extension 8 a is a part of the end link 14 a located at each of both ends of the cross-flow fan 8, and protrudes outward in the longitudinal direction from the left and right ends of the outlet 3 and faces the outlet 3. It is a part that is not.
  • a side wall 30 is provided so as to extend substantially parallel to the surface facing the outside of the fan end plates 12a, 12b at a position away from the fan end plates 12a, 12b of the cross-flow fan 8 by a predetermined distance in the rotational axis direction AX.
  • the side wall 30 constitutes both left and right side surfaces of the air path from the suction grill 2 inside the indoor unit 1 to the blowout port 3.
  • the rear guide portion 10 is formed in a spiral shape from the upstream end 10 a of the rear guide portion 10 to the outlet 3, and the distance from the outer periphery of the impeller of the cross-flow fan 8 to the rear guide portion 10 is blown. It is the structure which becomes long gradually, so that the exit 3 is approached.
  • the front side of the blowout air passage 11 is composed of a stabilizer 9.
  • FIG. 6 is a perspective view showing collision walls 18 provided at both ends in the left-right direction inside the main body of the indoor unit 1 according to Embodiment 1, for example, arranged at the right end toward the outlet 3.
  • the collision wall 18 is shown enlarged.
  • the collision wall 18 disposed at the left end of the blower outlet 3 has the same shape, and the right collision wall may be reversed left and right.
  • FIG. 7 is a cross-sectional view taken along the line WW in FIG.
  • FIG. 5 shows a vertical cross section perpendicular to the rotation axis 17 of the indoor unit 1 in a portion including the collision wall 18 in the vicinity of the fan end plate 12b.
  • the rear guide part 10 in the cross section of the fan extension 8 a, the stabilizer 9, and the collision wall 18 constitute a wall against the airflow blown from the fan extension 8 a and are indicated by oblique lines.
  • the opposing surface 18a which is one surface of the collision wall 18, is a surface facing the fan extension 8a, and the airflow blown from the fan extension 8a is the opposing surface 18a. Collide with. Further, as shown in the cross section of FIG. 7, the rear surface of the blowout air passage 11 facing the fan extension 8 a is configured on the upstream side of the rear guide part 10 partway, but the rear guide part side end 19 b in the middle. It is comprised by the opposing surface 18a of the collision wall 18, and is not connected to opening like the blower outlet 3, but follows the stabilizer 9. FIG.
  • the collision wall 18 connects the stabilizer side end portion 19a disposed on the stabilizer 9 side and the rear guide portion side end portion 19b disposed on the rear guide portion 10 side of the fan extension portion 8a. It is provided surrounding the outer periphery.
  • the radial distance (the distance between the position 20a and the position 19a) between the fan outer peripheral portion 8b and the facing surface 18a at the stabilizer side end portion 19a is Ma
  • the fan outer peripheral portion 8b at the rear guide portion side end portion 19b is the facing surface.
  • a collision area where the blown air flow blown out from the fan extension 8a collides with the collision wall 18 is indicated by a region E3. That is, of the blowing area E2 (see FIG. 2) showing the area where the airflow is blown from the once-through fan 8, the area where the airflow blown from the fan extension 8a collides with the collision wall 18 is defined as a collision area E3. This collision area E3 becomes a part of the blowing area E2.
  • the collision wall 18 since the rear guide portion side end portion 19b of the collision wall 18 is smoothly connected to the rear guide portion 10, the collision wall 18 actually has a zero rise height from the rear guide portion 10 at the extreme end portion. It becomes.
  • the rear guide portion side end portion 19b is adjacent to the rear end portion adjacent to the end portion where the collision wall 18 is connected to the rear guide portion 10 when viewed in the rotation axis direction AX.
  • the facing surface 18a protrudes from the surface of the guide portion 10 with a slight step.
  • the distance M is the same at any position of the collision wall 18 in the rotation axis direction AX. That is, the facing surface 18 a of the collision wall 18 is configured to be parallel to the rotation axis 17 in the rotation axis direction AX.
  • FIG. 8 is a schematic diagram showing the internal configuration of the indoor unit 1 according to Embodiment 1 in a simplified manner, and the suction grill 2, the heat exchanger 7, the cross-flow fan 8, and the outlet according to the airflow direction (white arrow). 3 is shown in a simplified manner.
  • the end portions 14a disposed at both ends of the cross-flow fan 8 have fan extension portions 8a, respectively, and the fan extension portions 8a face the facing surface 18a of the collision wall 18 in the collision area E3.
  • the portion excluding the fan extension 8 a that is, the central portion of the cross-flow fan 8 in the rotational axis direction AX faces the outlet 3.
  • the collision walls 18 provided at the left and right ends are connected to the side walls 30 because they are integrally formed with the left and right side walls 30, for example, and extend inward in the left-right direction with the side walls 30 as one end. Since the side wall 30 may be uneven in the rotational axis direction AX for the convenience of the configuration, the length Na of the opposing surface 18a in the rotational axis direction AX is substantially parallel to the rotational axis 17 with respect to the fan extension 8a. The length of the facing surface 18a facing each other from the fan end plates 12a and 12b.
  • the positions of the fan end plates 12a and 12b in the rotational axis direction AX are the positions of the outward faces of the fan end plates 12a and 12b facing the outside of the main body of the indoor unit 1.
  • the outer diameter K2 (see FIG. 4) of the annular support plate 12 fixed to the blade 13 at the end of the impeller 14 is ⁇ 110 mm and the inner diameter K1 (see FIG. 4) is ⁇ 60 mm.
  • 35 wings 13 are fixed on the top.
  • the longitudinal length L1 of the outlet 3 is 610 mm
  • the total length L2 of the cross flow fan 8 in the rotation axis direction AX is 640 mm.
  • the length Na in the rotation axis direction AX of the facing surface 18a of the collision wall 18 is 15 mm. Further, in FIG.
  • a region denoted by S indicates a space formed between the fan end plates 12 a and 12 b at both ends of the cross-flow fan 8 and the side wall 30.
  • the length of the space S in the rotation axis direction AX is, for example, 10 mm. Further, the length of the end portion 14a in the rotation axis direction AX is 25 mm (left side in FIG. 8) at one end portion 14a and 70 mm (right side in FIG. 8) at the other end portion 14a.
  • the length AX of the other series 14 excluding the end series 14a is approximately 80 mm.
  • Distance Mb 25 mm
  • FIG. 9 is an explanatory view showing, in an enlarged manner, the vicinity of the collision wall 18 at the right end portion in FIG. Based on FIGS. 8 and 9, the airflow inside the indoor unit 1 and the action of the collision wall 18 at both ends in the longitudinal direction of the indoor unit 1 will be described.
  • the air conditioner is operated, and the cross flow fan 8 is rotated in the RO direction by the motor 16.
  • the cross-flow fan 8 rotates, the indoor air sucked from the suction grill 2 is heat-exchanged by the heat exchanger 7.
  • the heat-exchanged room air becomes an air flow A, which is blown by the once-through fan 8 and blown out from the blowout port 3 through the blowout area E2.
  • the static pressure Ps becomes Pe, which is lower than the atmospheric pressure P0.
  • the static pressure Ps indicating the atmospheric pressure in the indoor unit 1 is affected by the ventilation resistance, and thus shows various values at each location in the indoor unit 1.
  • the space S in the vicinity of the outward surface of the end plate 12b is a space that is continuous with the suction region E1 and has the same pressure atmosphere, and thus exhibits a static pressure Ps equivalent to that of the suction region E1, and is Pe ( ⁇ atmospheric pressure P0). .
  • the airflow Aa blown to a location facing the collision wall 18 collides with the facing surface 18a of the collision wall 18, and the energy of the wind speed is converted into pressure energy.
  • the stagnation pressure Pst is generated in the collision area E3.
  • the stagnation pressure Pst static pressure Ps + the collision pressure Pv.
  • the value of the stagnation pressure Pst becomes higher than the atmospheric pressure P0.
  • the wind speed Va when the stagnation pressure Pst becomes higher than the atmospheric pressure P0 varies depending on the pressure loss of the mounted heat exchanger or the like.
  • the space S outside the both ends of the cross-flow fan 8 is an area where the air flow by the cross-flow fan 8 does not act.
  • the static pressure Ps of the space S is Pe, which is lower than the atmospheric pressure P0, and there is almost no increase in pressure due to air blowing. Therefore, reverse suction due to the indoor air flowing into the space S through the outlet 3 is likely to occur.
  • a wall having a stagnation pressure Pst higher than the atmospheric pressure P0 is formed in the collision region E3 between the space S and the blowout air passage 11 leading to the blowout port 3, so that the outside of the indoor unit 1 is removed.
  • the reverse suction G into which room air flows in through the outlet 3 can be blocked.
  • the collision flow to the collision wall 18 does not become a blowing airflow to the outside of the indoor unit 1, it is a loss to make the stagnation pressure Pst higher than the atmospheric pressure P0 for the purpose of blowing air. That is, a collision wall 18 that forms a uniform collision pressure Pv is provided from the stabilizer-side end 19a to the rear guide-side end 19b in the depth direction AY, and the blown airflow collides with the collision wall 18. That increases the draft resistance.
  • the increase in ventilation resistance increases the load on the once-through fan 8, leading to an increase in energy loss and noise.
  • FIG. 10 is an explanatory diagram showing an air flow in the main body of the indoor unit 1 by the cross-flow fan 8 according to the first embodiment.
  • a vortex (circulation vortex) F ⁇ b> 1 is generated in the vicinity of the stabilizer 9 in the cross-flow fan 8 as the airflow passes.
  • the area E4 around the vortex F1 has the lowest static pressure Ps in the indoor unit 1 and the lowest value Pmin, and the difference from the atmospheric pressure P0 is the largest.
  • surroundings of the vortex F1 blows off is more static pressure Ps than the rear guide part side (Gb) which the airflow J2 which passes the part away from the vortex F1 blows. Decreases and the difference from the atmospheric pressure P0 increases.
  • FIG. 11 is a graph showing the static pressure Ps when the collision wall 18 is not provided on the blowout side of the cross-flow fan 8 at both ends in the left-right direction of the indoor unit 1 according to Embodiment 1, and the horizontal axis indicates the depth direction.
  • the position of AY is shown, and the static pressure Ps is shown on the vertical axis.
  • Pe indicates the static pressure Ps in the suction area E1 on the suction side of the cross-flow fan 8 in the indoor unit 1.
  • Ha is a pressure drop due to the airflow J1 passing through the cross-flow fan 8 near the stabilizer tongue 9a of the stabilizer 9
  • Hb is the airflow J2 passing through the cross-flow fan 8 near the upstream end 10a of the rear guide part 10. It shows the pressure drop by.
  • Psa indicates the static pressure Ps near the stabilizer side end 19a
  • Psb indicates the static pressure Ps near the rear guide side end 19b.
  • the pressure in the indoor unit 1 is lower than the atmospheric pressure P0, and the static pressure Ps in the suction region E1 of the cross-flow fan 8 is Pe (less than the atmospheric pressure P0). Low). Further, due to the vortex F1 generated inside the cross flow fan 8 when the indoor air flows across the cross flow fan 8, the pressure drop Ha at the stabilizer side end 19a is large, and the static pressure Ps at the stabilizer side end 19a is Psa. Thus, the lowest value Pmin in one indoor unit is shown.
  • the pressure drop Hb at the rear guide part side end 19b is smaller than the pressure drop Ha because the airflow passes through the part away from the vortex F1, and the static pressure Ps at the rear guide part side end 19b is higher than Psa. Psb.
  • a higher collision pressure Pv is required at the stabilizer-side end 19a than at the rear guide-side end 19b.
  • the stagnation pressure Pst higher than the atmospheric pressure P0 can be formed at the collision pressure Pv lower than the stabilizer side end 19a at the rear guide side end 19b.
  • the rear guide part side end 19b is configured to collide with the opposing surface 18a at least an airflow that provides the necessary collision pressure Pv, and airflow other than the airflow necessary for the collision pressure Pv is blown to the outlet 3.
  • FIG. 12 is a diagram showing the distance M between the facing surface 18a of the collision wall 18 according to the first embodiment and the fan outer peripheral portion 8b.
  • 12A is an explanatory view showing a cross section perpendicular to the rotation axis 17 (see FIG. 9) at both ends of the indoor unit 1 in the longitudinal direction
  • FIG. 12B is a horizontal axis showing the depth of the collision wall 18. It is a graph which shows the distance M of the opposing surface 18a of the collision wall 18, and the fan outer peripheral part 8b on the position of the direction AY, and a vertical axis
  • the radial distance Mb between the facing surface 18a that faces the cross-flow fan 8 and the fan outer peripheral portion 8b is made longer than the distance Ma in the stabilizer side end portion 19a.
  • the distance (Ma) at the stabilizer-side end 19a is the largest for the distance M between the facing surface 18a of the collision wall 18 and the fan outer peripheral portion 8b.
  • region from the increase start position 19c in the opposing surface 18a to the rear guide part side edge part 19b is comprised so that the distance M may increase smoothly toward the rear guide part side edge part 19b from the increase start position 19c.
  • the start of increase means the start of an increase in the radial distance M between the facing surface 18a and the fan outer peripheral portion 8b.
  • the increase start position 19c is provided in the middle of the opposing surface 18a between the stabilizer-side end 19a and the rear guide portion-side end 19b, and the stabilizer when increasing the distance M between the opposing surface 18a and the fan outer peripheral portion 8b. This is the start position on the 9th side.
  • an increase start position 19c is provided at a position that is about 10% of the total length and is away from the stabilizer side end 19a to the rear guide portion side end 19b.
  • FIG. 13 is an explanatory view showing the action of the collision wall 18 at the stabilizer side end 19a according to the first embodiment.
  • the static pressure Ps of the indoor unit 1 is caused by the vortex F ⁇ b> 1 generated in the cross-flow fan 8 at the stabilizer side end 19 a positioned on the front side in the depth direction AY.
  • the lowest value Pmin in the cabin is shown.
  • the airflow blown from the fan extension 8a collides with the facing surface 18a of the collision wall 18 that is separated from the fan outer periphery 8b by a distance Ma.
  • the distance Ma is the same as the distance between the tongue portion 9a of the stabilizer 9 disposed closest to the cross-flow fan 8 and the fan outer peripheral portion 8b, and is short. For this reason, the air flow blown out from the fan outer peripheral portion 8b flows toward the facing surface 18a as it is and collides with the facing surface 18a, so that the collision pressure Pva is applied, and the stagnation pressure Psta is applied to the collision region E3 of the stabilizer side end portion 19a. It is formed.
  • FIG. 14 is an explanatory diagram showing the action of the collision wall 18 at the rear guide side end 19b according to the first embodiment.
  • the side wall 30 side (right side in the figure) that is the end of the rotation axis direction AX of the indoor unit 1 and the center side of the indoor unit 1
  • the side wall 30 side spreads to both the blowout air passage 11 side (left side in the figure) leading to the blowout port 3.
  • the airflow toward the side wall 30 collides with the side wall 30 to apply pressure, and generates stagnation pressure on the side wall 30. Thereby, the pressure gradient that the side wall 30 side is high and the blowing air passage 11 side is low is generated.
  • FIG. 15 is a graph (FIG. 15A) showing the collision pressure Pv with respect to the position in the depth direction AY of the facing surface 18a according to the first embodiment (FIG. 15A) and a graph showing the stagnation pressure Pst with respect to the position in the depth direction AY (FIG. 15B). )).
  • the collision pressure Pva at the stabilizer side end 19a is compared with the collision pressure Pvb at the rear guide side end 19b, the air current that collides with the collision wall 18 at the rear guide side end 19b is more than the stabilizer side end 19a.
  • the collision pressure Pv becomes Pva> Pvb.
  • the collision pressure Pv shows substantially the same value as Pva from the stabilizer side end 19a to the increase start position 19c, and gradually decreases from Pva from the increase start position 19c to the rear guide side end 19b.
  • the static pressure Ps described in FIG. 11 is applied with the collision pressure Pva at the stabilizer side end 19a and the collision pressure Pvb at the rear guide side end 19b as shown in FIG. 15 (a). It shows the stagnation pressure Pst after.
  • the difference (Pva ⁇ Pvb) in the collision pressure Pv between the stabilizer-side end 19a and the rear guide-side end 19b in FIG. 15A is the difference (Ha) in the static pressure Ps shown in FIG. Same as -Hb). That is, when the distance M is adjusted so as to obtain such a collision pressure Pv, the difference (Psa ⁇ Psb) in the static pressure Ps is canceled, and the stagnation pressure Pst formed in the collision area E3 of the facing surface 18a is As shown by the straight line Pst1 in FIG. 15 (b), the entire pressure in the depth direction AY from the stabilizer-side end 19a to the rear guide-side end 19b is higher than the atmospheric pressure P0 and substantially constant. .
  • the airflow flowing toward the blowout air passage 11 on the center side of the indoor unit 1 blows out of the indoor unit 1 through the blowout air passage 11 and the blowout port 3.
  • the airflow flowing through the blowout air passage 11 acts on the air flow.
  • the distance M between the fan outer peripheral part 8b and the facing surface 18a of the collision wall 18 is configured to be longer than the stabilizer side end part 19a (Mb> Ma).
  • a stagnation pressure Pst that can prevent sucking can be formed in the collision area E3, and a blown airflow can be secured.
  • the increase in ventilation resistance by the collision wall 18 is increased. Can be kept small, and the power consumption required for the necessary air flow rate can be kept small. Furthermore, an increase in noise due to a collision can be reduced.
  • the cross-flow fan 8 mounted in the indoor unit 1 of the air conditioner is set to the number of rotations that is operated according to the operation mode such as weak cooling or strong cooling.
  • the operation mode such as weak cooling or strong cooling.
  • the stagnation pressure Psta higher than the atmospheric pressure P0 is obtained at the stabilizer side end 19a at the wind speed when operating at the lowest rotational speed among the operation modes of the once-through fan 8.
  • the radial distance Ma between the collision wall 18 and the outer peripheral portion 8b of the cross-flow fan 8 at the stabilizer side end 19a, and the length Na in the rotation axis direction AX are determined.
  • the distance Ma is set to about the distance between the fan outer peripheral portion 8b and the stabilizer 9, and the distance Ma (here, 5 mm) is set, so that a stagnation pressure Psta higher than the atmospheric pressure P0 can be obtained by testing or simulation. (Here, 15 mm) is determined. Furthermore, by assuming the change in the static pressure Ps in the depth direction AY in the vicinity of the facing surface 18a in the indoor unit 1, that is, the static pressure Ps at each position in the depth direction AY of the facing surface 18a, the atmospheric pressure P0 at each position. The minimum necessary collision pressure Pv for forming a higher stagnation pressure Pst can be set.
  • the expansion of the jet flow width of the jet fluid is proportional to the distance in which the fluid advances (here, the distance M from the fan outer peripheral portion 8b to the collision wall 18).
  • the distance M may be set in consideration of If the collision wall 18 is provided so as to have the dimensions determined in this way, during the operation of the indoor unit 1, that is, when the cross-flow fan 8 is rotating, the collision region E3 is made to be more than the atmospheric pressure P0 by the blown airflow from the fan extension 8a. A space having a high and almost constant stagnation pressure Pst can be obtained.
  • the same stagnation pressure Pst is formed in the entire collision area E3 from the stabilizer side end 19a to the rear guide side end 19b.
  • the distance between the fan outer peripheral portion 8b and the facing surface 18a was set.
  • the collision wall 18 is configured so that the stagnation pressure Pst of different magnitude is formed in the collision area E3 on the entire surface from the stabilizer side end 19a to the rear guide part side end 19b. Also good.
  • FIG. 16 is a graph showing the stagnation pressure Pst formed in the collision area E3 with respect to the position in the depth direction AY according to another configuration example of the first embodiment.
  • the horizontal axis indicates the position in the depth direction AY.
  • the stagnation pressure Pst is shown on the vertical axis. Even in the stagnation pressure Pst as shown by the straight line Pst2 in FIG. 16, the stagnation pressure Pst larger than the atmospheric pressure P0 over the entire surface from the stabilizer side end 19a to the rear guide side end 19b in the depth direction AY. Is shown. For this reason, reverse suction can be prevented.
  • the stagnation pressure Pst necessary for preventing reverse suction is the stabilizer side end portion 19a. May be lower.
  • the stagnation pressure Pst having a large difference from the atmospheric pressure P0 is formed at the stabilizer side end 19a where reverse suction is likely to occur, thereby reliably preventing reverse suction.
  • the atmospheric pressure can be increased by increasing the distance Mb from the fan outer peripheral portion 8b to the collision wall 18 as compared with the straight line Pst1 shown in FIG.
  • a stagnation pressure Pst that is about the same as P0 or slightly higher than the atmospheric pressure P0 is formed at the rear guide side end 19b, and the ratio of the air flow is increased compared to the straight line Pst1.
  • the collision pressure Pvb at the straight line Pst2 is smaller than the collision pressure Pvb at the straight line Pst1.
  • the same stagnation pressure Pst can be obtained from the stabilizer side end portion 19a to the rear guide portion side end portion 19b.
  • the change in the stagnation pressure Pst formed from the stabilizer side end 19a to the rear guide side end 19b in the depth direction AY of the collision wall 18 is represented by the straight line Pst1 and the straight line Pst2, it is not limited thereto. is not.
  • the change in the stagnation pressure Pst formed from the stabilizer side end portion 19a to the rear guide portion side end portion 19b may change in a curved line or may change in a step shape.
  • the fan outer peripheral portion is formed so that the stagnation pressure Pst necessary to prevent the occurrence of reverse suction at that position is formed.
  • the collision wall 18 may be configured in consideration of the radial distance M between 8b and the facing surface 18a.
  • the increase start position 19c is a position that is about 10% of the length of the collision wall 18 in the depth direction from the stabilizer side end 19a, but is not limited to this.
  • FIG. 1 shows that the increase start position 19c is a position that is about 10% of the length of the collision wall 18 in the depth direction from the stabilizer side end 19a, but is not limited to this.
  • the increase start position 19 c is such that the straight line Z connecting the rotation center O of the once-through fan 8 and Gb on the rear guide part 10 side of the outlet 3 intersects the facing surface 18 a of the collision wall 18. It is preferable that the position be closer to the rear guide portion side end 19b than the position (indicated by the increase start position 19c in FIG. 10). This is because the region from the stabilizer side end 19a to the crossing position of the straight line Z and the facing surface 18a is close to the region E4 where the pressure is low due to the vortex F1, and reverse suction is likely to occur.
  • the collision wall 18 is the start position on the side of the stabilizer 9 when the distance M between the fan outer peripheral portion 8 b and the facing surface 18 a is longer than the distance Ma.
  • a start position 19c is provided in the middle between the stabilizer-side end 19a and the rear guide-side end 19b. Then, with respect to the radial distance M between the fan outer peripheral portion 8b and the facing surface 18a, reverse suction occurs by making the distance M in the region from the stabilizer side end portion 19a to the increase start position 19c the same as the distance Ma. Since the stagnation pressure Pst sufficiently higher than the atmospheric pressure P0 is stably formed from the easy stabilizer side end 19a to the increase start position 19c, there is an effect that the reverse suction can be surely prevented.
  • FIG. 17 relates to another configuration example of the first embodiment.
  • the horizontal axis indicates the position in the depth direction AY of the facing surface 18a of the collision wall 18, and the vertical axis indicates the radial distance M between the facing surface 18a and the fan outer peripheral portion 8b. It is a graph which shows. Any distance change of ln2 to ln5 shown here may be used.
  • the straight line ln2 is an example in which, without providing the increase start position 19c, the shortest distance Ma is set at the stabilizer side end 19a, and the longest distance Mb is set at the rear guide side end 19b.
  • a curve ln3 is an example in which the distance Ma is the shortest at the stabilizer side end 19a, and the distance M is increased in about 2/3 of the entire portion near the rear guide side end 19b, and the rear guide side end 19b. It is suitable for the indoor unit 1 having a configuration in which reverse suction does not occur much in the vicinity.
  • the distance M is also set near the rear guide side end 19b as shown by curves ln4 and ln5.
  • the stagnation pressure Pst is formed by shortening and obtaining a high collision pressure Pv.
  • a stagnation pressure Psta sufficiently higher than the atmospheric pressure P0 can be formed at the stabilizer side end 19a.
  • the collision pressure Pvb is lower than the collision pressure Pva, but a level capable of forming a stagnation pressure Pstb higher than the atmospheric pressure P0 is obtained, Backwashing can be prevented by the stagnation pressure Pstb, and an airflow that contributes to blowing is obtained by spreading the airflow toward the center in the rotational axis direction AX.
  • an optimum shape can be obtained by considering the state of the static pressure Ps in the indoor unit 1 as shown in FIG. The collision wall 18 is obtained.
  • the suction grill 2 that is provided in the upper portion of the main body of the indoor unit 1 and sucks room air
  • the heat exchanger 7 that exchanges heat with the room air sucked from the suction grill 2
  • a blower outlet 3 provided at a lower portion of the main body of the indoor unit 1 so as to extend in the longitudinal direction in the left-right direction of the main body of the indoor unit 1, and blows out indoor air heat-exchanged by the heat exchanger 7 into the room;
  • the left-right direction of the main body of the indoor unit 1 and the direction AX in which the rotation axis 17 extends coincide with each other, and more than the longitudinal end of the blower outlet 3.
  • a cross-flow fan 8 having fan extension portions 8a extending to the outside at both left and right ends, a stabilizer 9 constituting the front side of a blow-out air passage 11 that guides indoor air to the blow-out port 3 on the downstream side of the cross-flow fan 8; Constructs the back side of the blowing air passage 11
  • the rear guide part 10 and the both ends of the main body of the indoor unit 1 are provided so as to connect the stabilizer 9 and the rear guide part 10 to the room air blown out from the fan extension 8a.
  • a collision wall 18 having a facing surface 18a provided substantially along a part of the outer peripheral portion of the fan extension 8a, and the facing surface 18a in the cross section perpendicular to the rotation axis 17 and the fan extension.
  • the rear guide part of the opposing surface 18a is more than the distance Ma at the stabilizer side end 19a connected to the stabilizer 9 of the opposing surface 18a.
  • the distance Mb at the rear guide part side end part 19b connected to 10 is configured to be long.
  • the radial distance M between the fan outer peripheral portion 8b and the facing surface 18a should be longer than the distance Ma at the stabilizer side end portion 19a.
  • a part of the airflow from the fan extension 8a is used as a blown airflow, and the airflow that blows out from the fan extension 8a and collides with the collision wall 18 is made smaller than that on the side of the stabilizer 9.
  • a stagnation pressure Pst lower than the atmospheric pressure P0 which is lower than the collision pressure Pv on the airflow in the vicinity of the vortex F1 but which can prevent reverse suction, is formed in the vicinity of the rear guide portion 10 to extend the fan. It is possible to suppress an increase in energy loss and noise due to the collision of all airflows blown out from the portion 8a with the collision wall 18, thereby realizing low power and low noise.
  • FIGS. 18 and 19 are explanatory views showing the indoor unit of the air conditioner according to this embodiment.
  • FIG. 18 is a perspective view showing the collision wall 18 on the right side of the indoor unit 1 according to this embodiment.
  • 19 is a diagram showing a distance M between the facing surface 18a of the collision wall 18 according to the second embodiment and the fan outer peripheral portion 8b
  • FIG. 19A is a longitudinal section perpendicular to the rotation axis 17 of the indoor unit 1.
  • 19B is a graph in which the horizontal axis indicates the position of the collision wall 18 in the depth direction AY, and the vertical axis indicates the distance M between the fan outer peripheral portion 8 b and the facing surface 18 a of the collision wall 18.
  • the rear guide portion side end portion 19b of the collision wall 18 is positioned at the upstream end portion of the air flow in the rear guide portion 10 with respect to the position in the first embodiment shown in FIG. It is characterized by being connected near 10a.
  • the same reference numerals as those in Embodiment 1 denote the same or corresponding parts.
  • FIG. 10 shows the relationship between the fan outer peripheral portion 8b and the blowout air passage 11 at the central portion in the left-right direction of the indoor unit 1, that is, the central portion where the collision wall 18 is not formed.
  • the vicinity of the upstream end portion 10a of the airflow of the rear guide portion 10 and the tongue portion 9a of the stabilizer 9 have a function of separating the suction region E1 and the blowing region E2.
  • the upstream end 10a and the tip of the tongue 9a of the stabilizer 9 are disposed closer to the fan outer peripheral portion 8b than the other components.
  • the distance Mb at the rear guide portion side end portion 19b is longer than the distance Ma at the stabilizer side end portion 19a.
  • the distances Ma and Mb at the stabilizer-side end 19a and the rear guide-side end 19b are shorter than the distance M at the facing surface 18a therebetween, for example, at the center in the depth direction AY.
  • the distance Md at the position 19d is the longest.
  • the distance M with respect to the position in the depth direction AY of the facing surface 18a is short from the stabilizer side end portion 19a to the increase start position 19c, as indicated by a curve ln6 in FIG. Ma, Mc). Then, it increases from the increase start position 19c, is longest at the center position 19d (Md), and is kept long for a predetermined time from the center position 19d toward the rear guide side end 19b. Thereafter, the distance gradually decreases toward the rear guide portion side end portion 19b, and becomes a distance Mb at the rear guide portion side end portion 19b.
  • the distance Mb is longer than the distance Ma and shorter than the distance Md.
  • Ventilation resistance varies depending on the internal configuration of the indoor unit 1 of the air conditioner, and a vortex F2 as shown in FIG. 19A may be generated in the vicinity of the upstream end portion 10a of the airflow of the rear guide portion 10.
  • the static pressure Ps in the indoor unit 1 is reduced due to the influence of the vortices F1 and F2.
  • the static pressure Ps with respect to the position in the depth direction AY is as shown in FIG. .
  • the collision wall 18 having the shape shown in FIG. 19B has distances Ma and Mb between the stabilizer tongue portion 9a and the fan outer peripheral portion 8b in the vicinity of the stabilizer side end portion 19a and the rear guide portion side end portion 19b.
  • the collision pressure Pv is lower than the stabilizer side end 19a and the rear guide side end 19b, but the static pressure Ps is high, so that a stagnation pressure Pst higher than the atmospheric pressure P0 is formed.
  • the stagnation pressure Pst is Pstd
  • the static pressure Ps is Psd
  • the collision pressure Pv is Pvd
  • the stagnation pressure Pstd static pressure Psd + the collision pressure Pvd
  • the stagnation pressure Pstd higher than the atmospheric pressure P0 can be formed similarly to the stagnation pressure Pstb at the rear guide portion side end 19b.
  • the distance M between the fan outer peripheral portion 8b and the collision wall 18 is uniform from the stabilizer side end portion 19a to the rear guide portion side end portion 19b.
  • the distance M is shortened to obtain a high collision pressure Pv
  • the distance M is set longer than a position where the static pressure Ps is low.
  • the distance M is changed according to the static pressure Ps so as to obtain a collision pressure Pv lower than the collision pressure Pv at the position where Ps becomes low.
  • the suction grill 2 that is provided in the upper portion of the main body of the indoor unit 1 and sucks room air
  • the heat exchanger 7 that exchanges heat with the room air sucked from the suction grill 2
  • a blower outlet 3 provided at the lower part of the main body of the indoor unit 1 so as to extend in the longitudinal direction in the left-right direction of the main body of the air conditioner 1, and blows out indoor air heat-exchanged by the heat exchanger 7 into the room;
  • the left-right direction of the main body of the indoor unit 1 coincides with the direction in which the rotation axis 17 extends, and is outside the longitudinal end of the air outlet 3.
  • a cross-flow fan 8 having fan extension portions 8a extending in the left and right ends, a stabilizer 9 constituting a front surface side of a blow-out air passage 11 that guides indoor air to the blow-out port 3 on the downstream side of the cross-flow fan 8; Constructs the back side of the air outlet 11
  • the rear guide part 10 and the both ends of the main body of the indoor unit 1 are provided so as to connect the stabilizer 9 and the rear guide part 10 to the room air blown out from the fan extension 8a.
  • a collision wall 18 having a facing surface 18a provided substantially along a part of the outer peripheral portion 8b of the fan extension 8a, and the facing surface 18a in the cross section perpendicular to the rotation axis 17 and the fan.
  • the stabilizer side is more than the distance Ma that is the distance M at the stabilizer side end portion 19a connected to the stabilizer 9 of the facing surface 18a.
  • At least a part of the distance M between the end portion 19a and the rear guide portion side end portion 19b connected to the rear guide portion 10 of the facing surface 18a is:
  • the change in the distance M with respect to the position in the depth direction AY is not limited to ln6 shown in FIG.
  • the distance M between the facing surface 18a and the fan outer peripheral portion 8b is constant from the stabilizer side end portion 19a to the increase start position 19c, but is not limited thereto.
  • the increase start position 19c when a sufficient stagnation pressure Pst that can prevent reverse suction is obtained at the stabilizer side end 19a, and the decrease in the static pressure Ps near the increase start position 19c is not as great as that at the stabilizer side end 19a, the increase start position 19c.
  • the distance M between the fan extension 8a and the facing surface 18a may be increased from the stabilizer side end 19a toward the central position 19d.
  • the configuration is not limited to the change indicated by ln6, and the configuration may be such that the distance M of the region from the stabilizer side end portion 19a to the rear guide portion side end portion 19b is changed stepwise, curved or linear, The shape may be changed. If the distance M at least part of any one of the stabilizer side end portion 19a to the rear guide portion side end portion 19b is configured to be longer than the distance Ma at the stabilizer side end portion 19a, all of the facing surface 18a is formed. It is possible to reduce power consumption and noise compared to the same configuration as the distance Ma.
  • the following can be said about the rear guide part side end part 19b.
  • the front side of the collision wall 18 is connected to the stabilizer 9 in a cross section perpendicular to the rotation axis 17, but the back side is from the upstream end 10 a to the rear guide part side Gb of the outlet 3.
  • the airflow and static pressure Ps inside the indoor unit 1 main body are taken into consideration, and the collision wall 18 according to the necessity / unnecessity of the collision pressure. What is necessary is just to determine the position of the rear guide part side edge part 19b.
  • the distance M between the fan outer peripheral portion 8b and the facing surface 18a may be determined in consideration of how much collision pressure is necessary.
  • FIG. 21 is a cross-sectional view showing the vicinity of the end portion 14 a inside the indoor unit 1 according to this embodiment, and shows a cross section when the collision wall 18 is cut along a plane including the rotation axis 17.
  • the right end of the cross-flow fan 8 in the left-right direction is shown, and the left end is horizontally reversed.
  • the same reference numerals as those in Embodiment 1 denote the same or corresponding parts.
  • the distance M between the fan outer peripheral portion 8b and the facing surface 18a on the facing surface 18a of the collision wall 18 is the same in the rotation axis direction AX.
  • the distance M is different in the rotation axis direction AX.
  • an end portion located on the end plate 12 b side of the cross-flow fan 8 is a side wall-side end portion 21 e, and the center side of the cross-flow fan 8, that is, Let the edge part which adjoins be the blowing wind path side edge part 21f.
  • the distance M between the fan outer peripheral portion 8b and the facing surface 18a is set such that the distance Me at the side wall side end portion 21e is smaller than the distance Mf at the blowout air passage side end portion 21f.
  • the cross section perpendicular to the rotation axis 17 is in the depth direction AY of the facing surface 18a as described in the first embodiment or the second embodiment. It is assumed that the relationship of the distance M at each position is satisfied.
  • FIG. 22 is a diagram showing the distance M between the facing surface of the collision wall in the rotation axis direction AX and the outer periphery of the fan according to Embodiment 3, the horizontal axis indicates the position in the rotation axis direction AX, and the vertical axis indicates the facing surface and the fan. It is a graph which shows the distance M with an outer peripheral part.
  • FIG. 22 is an explanatory view showing an air flow on the opposing surface 18a configured as described above.
  • the side wall side end portion 21e of the opposing surface 18a is adjacent to the space S where the static pressure Ps is low and the blown airflow does not flow directly, and the side wall side end portion 21e has a draft resistance due to the end plate 12b and the like. Due to the fact that the static pressure Ps is higher than that of the road side end portion 21f, reverse suction in which room air enters the machine through the outlet 3 is likely to occur.
  • the distance Me from the fan outer peripheral portion 8b is configured to be shorter than the distance Mf at the blowout air passage side end portion 21f at the side wall side end portion 21e.
  • the airflow spreading from the fan outer peripheral portion 8b in the side wall side end portion 21e having a short distance M spreads in the rotation axis direction AX before reaching the facing surface 18a.
  • the collision pressure Pve that is less than the collision pressure Pvf of the blowout air passage side end portion 21f is obtained.
  • the collision pressures Pve and Pvf are applied, and the opposing surface 18a
  • the stagnation pressure Pst formed at the side wall end 21e is Pste, which is higher than Pstf, which is the stagnation pressure Pst formed at the blowout air passage side end 21f (Pste> Pstf> P0).
  • the collision wall 18 is formed so that the stagnation pressures Pste and Pstf are both higher than the atmospheric pressure P0.
  • the distance Me is set such that a collision pressure Pve necessary to form a stagnation pressure Pste having a magnitude that reliably prevents reverse suction is obtained.
  • the distance Mf is set such that a collision pressure Pvf necessary for forming a stagnation pressure Pstf ( ⁇ P0) comparable to the atmospheric pressure P0 is obtained.
  • This distance Mf is longer than the distance Me, and the blowout air passage side end portion 21f of the facing surface 18a is configured to be further away from the fan outer peripheral portion 8b than the side wall side end portion 21e. It flows into the blowout air passage 11 and acts on the air flow.
  • the airflow does not collide perpendicularly to the facing surface 18a, but collides with the slope of the facing surface 18a, so that the airflow X and the airflow component Xa acting on the collision pressure as shown in FIG. It is decomposed into an airflow Xb that acts on the air flow. Due to the air flow component Xb acting on the air flow and the pressure difference due to the level of the stagnation pressure Pst in the rotation axis direction AX, an air flow Xc from the side wall side end portion 21e to the blowing air path side end portion 21f is generated on the facing surface 18a. For this reason, the airflow Xc comes to collide with the reverse suction airflow, and further reverse suction can be prevented.
  • the distance Mf between the air outlet side end portion 21f of the facing surface 18a and the outer peripheral portion 8b of the cross-flow fan 8 is the side wall-side end portion of the facing surface 18a located on the end side of the cross-flow fan 8.
  • the distance Me is longer than the distance Me between the fan outer peripheral portion 8b and 21e. That is, when viewed in the direction of the rotation axis 17, the blown air passage side end 21 f that is the end of the facing surface 18 a near the center of the cross-flow fan 8 is the side wall-side end that is the end near the end of the cross-flow fan 8. It was configured to be farther from the outer peripheral portion 8b of the fan extension 8a than 21e.
  • FIG. 25A shows the shape of the facing surface 18a configured to obtain the distance M indicated by the curve ln12 in FIG.
  • the fan outer peripheral portion 8b has a substantially constant distance M from the side wall end 21e to the position 21g as shown by the curve ln12 in FIG.
  • the distance M from the position 21g to the blowing air passage side end 21f may be changed so as to be longer than the position 21g and the side wall end 21e.
  • the pressure field of the stagnation pressure formed at the side wall end portion 21e can be formed widely from the side wall side end portion 21e to the position 21g in the rotation axis direction AX, and the reverse suction can be reliably prevented.
  • FIG. 25B shows the facing surface 18a when the distance M is changed corresponding to the position in the rotational axis direction AX as indicated by the curve ln13 in FIG.
  • the opposing surface 18a is formed with a smooth curved surface from the side wall side end portion 21e to the blowing air passage side end portion 21f. Form.
  • the flow of the airflow flowing on the facing surface 18a becomes smooth, and in particular, an airflow flowing smoothly in the blowout air passage 11 is obtained, and the ventilation resistance can be reduced.
  • the shape of the facing surface 18a is not limited to the change of the distance M such as ln11, ln12, and ln13, and the shape of the facing surface 18a may be changed in any way in the rotation axis direction AX.
  • the shape of the facing surface 18a viewed from the rotation axis direction AX may be linearly and smoothly changed from the side wall side end 21e to the blowout air channel side end 21f, or may be changed stepwise and curved. It's okay. However, at any position in the rotational axis direction AX, the distance M on the side closer to the blowout air passage side end 21f is longer or the same as that on the side closer to the side wall end 21e at that position.
  • the shape of the surface 18a may be changed.
  • the distance M from the fan outer peripheral portion 8b does not decrease from the side wall side end portion 21e toward the blowing air passage side end portion 21f.
  • the side wall side end portion 21e of the opposing surface 18a is configured to obtain a higher collision pressure than the blowout air passage side end portion 21f, the collision wall of the airflow blown from the fan extension 8a The airflow that does not collide with the air 18 flows smoothly toward the blowing air passage 11.
  • blowing air passage side end portion 21f is configured to have a round shape instead of a corner portion, the air flow is not disturbed or a vortex is formed by the corner portion, so that the air flow is smoothly downstream of the blowing air passage 11. Increase in flow and draft resistance can be prevented.
  • the shape of the facing surface 18a in the rotation axis direction AX may not be the same at each position in the depth direction AY.
  • a shape in which a large amount of airflow directed toward the blowout air passage 11 may be obtained, such as a straight line ln11 illustrated in FIG. 22 and a curve ln13 illustrated in FIG.
  • the collision wall 18 may be formed integrally with the housing constituting the container of the indoor unit 1 or as a separate body, for example, fixed to the inside of the side wall 30 by bonding, claw fixing, screw fixing, or the like. It may be configured. And the shape should just be comprised so that the airflow which blown off from the both ends of the left-right direction of the once-through fan 8 may collide, and the energy of a wind speed may be converted into the energy of a pressure.
  • the fan extension portion 8a is blown out by the end region of the stabilizer 9 facing the fan extension portion 8a, the end region of the rear guide portion 10, and the collision wall 18 connecting them.
  • the example which comprises the wall structure which has the opposing surface 18a provided substantially along the outer peripheral part of the fan extension part 8a so as to oppose the airflow to be performed was shown.
  • a wall structure may be configured by an integral member different from the stabilizer 9 and the rear guide portion 10.
  • the above-described wall structure provided in correspondence with the fan extension portion 8a in the first to third embodiments in which the left and right widths of the stabilizer 9 and the rear guide portion 10 are the same as the left and right widths of the air outlet 3
  • the structure corresponding to is configured by an integral member, and this is provided inside the side wall 30 of the indoor unit 1. Even in this case, the same effects as those shown in the first to third embodiments can be obtained.

Abstract

In order to provide an air conditioner with which it is possible to prevent the reverse flow of indoor air from indoors and through the discharge port into the interior of the air conditioner at both ends in the lengthwise direction of the discharge port of an indoor unit of the air conditioner, and with which it is possible to prevent an increase in energy loss, thereby reducing power consumption and reducing noise, the construction is such that the length of a crossflow fan (8) in the direction (AX) of the axis of rotation is greater than the lengthwise length of the discharge port (3), and the crossflow fan (8) has fan extensions (8a) that extend outward in the direction (AX) of the axis of rotation from both ends of the discharge port (3). Furthermore, the main body of the indoor unit is equipped with a collision wall (18) with which the flow of air discharged from the fan extensions (8a) collides. Furthermore, an opposing surface (18a) of the collision wall (18) is constructed such that, in a cross section perpendicular to the axis of rotation (17), the distance Mb between the rear-guide-side end part (19b) of the opposing surface (18a) and the outer circumferential part (8b) of the fan is greater than the distance Ma between the stabilizer-side end part (19a) of the opposing surface (18a) and the outer circumferential part (8b) of the fan.

Description

空気調和機Air conditioner
 本発明は空気調和機に関し、特に室内機と室外機を有するセパレート型の空気調和機の室内機に関するものである。 The present invention relates to an air conditioner, and more particularly to a separate type air conditioner indoor unit having an indoor unit and an outdoor unit.
 空気調和機の室内機は、空気調和を行う屋内(家屋や事務所等の室内)に設置され、吸込口から吸い込んだ室内空気を熱交換器にて冷凍サイクル回路を循環する冷媒と熱交換させ、暖房運転であればその室内空気を暖め、冷房運転であればその室内空気を冷やして、吹出口より再び室内へと送風するものであり、そのために室内機本体内部に、送風機と熱交換器を収納している。 The indoor unit of an air conditioner is installed indoors (in a house, office, etc.) that performs air conditioning, and heat exchanges the indoor air sucked from the suction port with the refrigerant circulating in the refrigeration cycle circuit using a heat exchanger. In the case of heating operation, the room air is warmed, and in the case of cooling operation, the room air is cooled and blown into the room again from the outlet. For this purpose, the blower and heat exchanger are provided inside the indoor unit body. Is housed.
 空気調和機の室内機には多様な形態が存在するが、吹出口が細長い壁掛けタイプや一方向吹き出しの天井埋め込みタイプなどには、送風機として、貫流ファン(クロスフローファンや横流ファン、横断流ファンとも呼ばれる)が用いられることがよく知られている。空気調和機の室内機の吸込口から吹出口に至る気流に対して、貫流ファンの上流側に熱交換器が配置され、即ち吸込口と貫流ファンの間に熱交換器が配置され、貫流ファンの下流側に吹出口が位置する。室内機の吹出口の長手方向の長さは貫流ファンの長手方向(回転軸線方向)の全長と略同様であり、貫流ファンの両端部の長手方向外側には、所定の空間を空けて貫流ファンの回転軸を支持する支持部及び駆動モータなどが配置される。 There are various types of air conditioner indoor units. However, cross-flow fans (cross-flow fans, cross-flow fans, cross-flow fans, etc.) are used as blowers for wall-hanging types with long and narrow outlets and ceiling-mounted types with one-way blowing. It is well known that it is also used. A heat exchanger is arranged upstream of the once-through fan for the air flow from the inlet to the outlet of the indoor unit of the air conditioner, that is, a heat exchanger is arranged between the inlet and the once-through fan. An air outlet is located on the downstream side. The length in the longitudinal direction of the blowout port of the indoor unit is substantially the same as the overall length in the longitudinal direction (rotation axis direction) of the cross-flow fan, and the cross-flow fan is provided with a predetermined space on the outside in the longitudinal direction at both ends of the cross-flow fan. A support portion and a drive motor for supporting the rotating shaft are arranged.
 貫流ファン(以下、ファンと略す)は、外径と内径を有する環状(リング状)の平板である支持板に、横断面が略円弧状に湾曲している複数の翼を所定角度傾斜させて同心環状に固着して成る羽根車単体を、回転軸線方向に複数連結して構成される。回転軸線方向で、一方の端部の羽根車単体の羽根先端には、室内機本体の軸受部に支持される回転軸が取り付けられた円板状のファン端板が固着され、他方の端部の羽根車単体は、他の部分の支持板とは異なり、駆動モータのモータ回転軸が取り付け固定されるボス部を中央に備えたボス付ファン端板を有している。駆動モータが回転駆動することで、ファンは回転軸の中心である回転軸線周りに回転する。翼は回転方向前方にその外周側先端が位置するように傾斜している。
 以下、説明のため回転軸線方向に連なる羽根車単体をファンの連と呼ぶ。また、回転軸線方向でファンの両端部に位置する羽根車単体をそれぞれ端部連と呼ぶ。
A cross-flow fan (hereinafter abbreviated as “fan”) is formed by inclining a plurality of blades whose transverse section is curved in a substantially arc shape on a support plate that is an annular (ring-shaped) flat plate having an outer diameter and an inner diameter by a predetermined angle. A plurality of impellers fixed concentrically and annularly are connected in the rotational axis direction. In the direction of the rotation axis, a disk-shaped fan end plate to which a rotation shaft supported by the bearing unit of the indoor unit body is attached is fixed to the blade tip of the impeller alone at one end, and the other end Unlike the other support plates, each impeller has a fan end plate with a boss provided with a boss portion at the center to which a motor rotation shaft of a drive motor is attached and fixed. When the drive motor is driven to rotate, the fan rotates around the rotation axis that is the center of the rotation axis. The blade is inclined so that its outer peripheral tip is located forward in the rotational direction.
Hereinafter, for the sake of explanation, a single impeller connected in the direction of the rotation axis is called a series of fans. In addition, each of the impellers positioned at both ends of the fan in the rotation axis direction is referred to as an end portion series.
 ファンの回転に伴い、室内空気が吸込口から空気調和機の室内機本体へ吸い込まれ、熱交換器を通過する際に上記のとおり温度調節された調和空気となって、ファンを横切った後、ファンから回転方向に吹き出される。その後、調和空気は、貫流ファンの前面側に設けられたスタビライザーと背面側に設けられたリアガイド部間に形成される徐々に広がる吹出風路を流れ、室内機本体の下部に形成される吹出口から室内へと吹き出される。 With the rotation of the fan, the room air is sucked into the indoor unit body of the air conditioner from the suction port, becomes conditioned air whose temperature is adjusted as described above when passing through the heat exchanger, crosses the fan, Blows out in the direction of rotation from the fan. After that, the conditioned air flows through a gradually expanding blowing air passage formed between a stabilizer provided on the front side of the cross-flow fan and a rear guide portion provided on the rear side, and the blowing air formed at the lower portion of the indoor unit main body. It is blown out from the exit into the room.
 貫流ファン回転時には、貫流ファンを構成する複数の翼は、貫流ファンの上流側の吸込領域と下流側の吹出領域とを通過する。このような貫流ファンの構成上、貫流ファンの気流の吹き出し方向に対して前面側に配置され、吸込領域と吹出領域とを分割するスタビライザー付近に、渦が発生することが知られている。 When the cross-flow fan rotates, the plurality of blades constituting the cross-flow fan pass through the suction area on the upstream side and the blow-out area on the downstream side of the cross-flow fan. Due to the structure of such a cross-flow fan, it is known that a vortex is generated in the vicinity of a stabilizer that is disposed on the front side with respect to the blow-out direction of the air flow of the cross-flow fan and divides the suction region and the blow-out region.
 吸い込まれた室内空気が熱交換器を通過する際に空気に通風抵抗(圧力損失)が働くことと、前述のようにファン回転時にファン内部に渦が発生することから、室内機の内部の気圧(以下、静圧Psと記す)は、大気圧P0よりも低くなる。これに対し、ファンは気流を加速させて風速のエネルギーから圧力のエネルギーに変換された圧力を静圧Psに加え、大気圧P0に打ち勝つエネルギーを与えた気流を吹出口から吹き出している。ところが、大気圧P0に打ち勝つだけの十分なエネルギーがファンから気流に供給されない場合があり、また、ファンが十分なエネルギーを気流に供給しても、吹出口に均等に気流が流れていくわけではなく、風路の端部では、室内機の側壁との摩擦によって気流が乱れ、吹出口に向かって気流が滑らかに流れない場合がある。これらの場合には、室内機内の吹出口付近での静圧Psが大気圧P0よりも低くなり、両者の圧力差によって、吹出口から室内機の内部に室内空気が吸い込まれる現象が生じる。この現象を逆吸いと称する。 When the sucked room air passes through the heat exchanger, air resistance (pressure loss) acts on the air, and vortex is generated inside the fan when the fan rotates as described above. (Hereinafter referred to as static pressure Ps) is lower than the atmospheric pressure P0. On the other hand, the fan accelerates the airflow, adds the pressure converted from the energy of the wind speed to the energy of the pressure, to the static pressure Ps, and blows out the airflow that gives the energy to overcome the atmospheric pressure P0 from the outlet. However, sufficient energy to overcome the atmospheric pressure P0 may not be supplied from the fan to the airflow, and even if the fan supplies sufficient energy to the airflow, the airflow does not flow evenly through the outlet. In addition, at the end of the air passage, the air flow may be disturbed by friction with the side wall of the indoor unit, and the air flow may not flow smoothly toward the outlet. In these cases, the static pressure Ps in the vicinity of the air outlet in the indoor unit becomes lower than the atmospheric pressure P0, and a phenomenon occurs in which room air is sucked into the indoor unit from the air outlet due to the pressure difference between the two. This phenomenon is called reverse suction.
 このような逆吸いは、左右方向に伸びる略長方形状の吹出口において、左右方向の両端部付近、及び上下方向の上側で発生しやすくなる。その理由は以下のとおりである。
 ファンの回転軸線方向の両端部には、回転体である羽根車単体を構成するファン端板(支持板)が設けられ、また、室内機本体には、このファン端板の外側でファン端板に対向するように、風路の側面を構成する側壁が配置されている。このファン端板と室内機本体の側壁との間は、例えば5mm程度の距離が離れており、これによって両者が接触し回転摩擦が生じてしまうことを防いでいる。ところが、ファン端板とこのファン端板に対向する側壁との間に形成される空間は、ファンの回転軸線方向の両端部の外側に位置し、気流が熱交換器を通過するときの圧力損失によって大気圧P0よりも低い圧力雰囲気となる。そのため、室内機の外部の大気圧P0との圧力差によって、吹出口の両端部付近で逆吸いが生じやすいと考えられる。また、吹出口においてスタビライザーに接続された側は、前述のスタビライザー付近に発生する渦によって静圧Psが最も低くなり、大気圧P0との差が最も大きくなるので、リアガイド部に接続された側よりも逆吸いが生じやすい。
Such reverse suction is likely to occur near both end portions in the left-right direction and on the upper side in the up-down direction at the substantially rectangular air outlet extending in the left-right direction. The reason is as follows.
Fan end plates (support plates) constituting a single impeller as a rotating body are provided at both ends in the rotation axis direction of the fan, and the fan end plate is provided outside the fan end plate in the indoor unit body. The side wall which comprises the side surface of an air path is arrange | positioned so that it may oppose. The fan end plate and the side wall of the indoor unit main body are separated by a distance of, for example, about 5 mm, thereby preventing both from coming into contact and causing rotational friction. However, the space formed between the fan end plate and the side wall facing the fan end plate is located outside both ends of the fan in the rotation axis direction, and pressure loss occurs when the airflow passes through the heat exchanger. Therefore, the pressure atmosphere is lower than the atmospheric pressure P0. Therefore, it is considered that reverse suction is likely to occur near both ends of the air outlet due to a pressure difference from the atmospheric pressure P0 outside the indoor unit. Further, the side connected to the stabilizer at the outlet is the side connected to the rear guide portion because the static pressure Ps becomes the lowest due to the vortex generated in the vicinity of the stabilizer and the difference from the atmospheric pressure P0 becomes the largest. Rather than reverse sucking.
 逆吸いが発生すると、逆流発生による気流の乱れによって、ファン全体として風量が減少してファン性能の低下を招いたり、騒音の増加を招いたりする。さらに冷房運転時に逆吸いが発生すると、逆吸いによって室内機内部に入り込んだ高湿度の室内空気が室内機内部の低温壁面に接触して結露し、その結露水がその後水滴となって室内に飛散する(これを露飛びと称する)恐れがある。また、吹き出しや吸い込みを繰り返す非定常現象が発生することもあり、騒音が増加する。
 特に、例えば吸込口にホコリが堆積するなどによって通風抵抗が大きくなると、ファンから空気に十分なエネルギーが供給されにくくなって逆吸いが発生しやすくなる。
When the reverse suction occurs, the airflow is reduced as a whole due to the turbulence of the airflow due to the backflow, leading to a decrease in fan performance or an increase in noise. Furthermore, if reverse suction occurs during cooling operation, high humidity indoor air that has entered the interior of the indoor unit due to reverse suction contacts the low-temperature wall surface inside the indoor unit to cause condensation, and the condensed water then becomes water droplets and splashes into the room. There is a risk of doing this (referred to as "dew jumping"). In addition, an unsteady phenomenon that repeatedly blows and sucks may occur, increasing noise.
In particular, if the ventilation resistance increases due to, for example, dust accumulated at the suction port, it is difficult to supply sufficient energy from the fan to the air, and reverse suction is likely to occur.
 上記のような逆吸いが発生しやすい部分である、ファンの回転軸線方向の両端部の流量性能の向上を図る構成として、ファンの吹き出し部から筐体の吹き出し部の通風路において徐々にファンの回転軸線方向の通風路を縮小するように側壁形状を変化させた事例がある(例えば、特許文献1参照)。また、ファンの回転軸線方向の両端部に、吸込部近傍の吹出部を覆うように逆流防止板を設け、さらに面取りした形状として通風抵抗の減少を図る事例がある(例えば、特許文献2参照)。 As a configuration for improving the flow rate performance at both ends of the fan in the rotation axis direction, which is a portion where reverse suction is likely to occur as described above, the fan gradually moves from the fan blowing portion to the ventilation passage of the housing blowing portion. There is an example in which the side wall shape is changed so as to reduce the ventilation path in the rotation axis direction (see, for example, Patent Document 1). In addition, there is an example in which a backflow prevention plate is provided at both ends of the fan in the rotation axis direction so as to cover the blowout portion in the vicinity of the suction portion, and further, the draft resistance is reduced as a chamfered shape (for example, see Patent Document 2) .
特開平8-121395号公報(0013~0023欄、図1)JP-A-8-121395 (columns 0013 to 0023, FIG. 1) 特開2001-201078号公報(0030~0035欄、図2)Japanese Patent Laid-Open No. 2001-201078 (columns 0030 to 0035, FIG. 2)
 ファンの吹き出し部から筐体の吹き出し部の吹出風路において徐々にファンの回転軸線方向の吹出風路を縮小するように側壁形状を変化させた事例では、吹出風路を縮小することにより著しい失速を防ぎ、さらには側壁から著しい剥離が発生するのを防ぎ、滑らかな流れ場を形成しようとしている。ところがファン端部と側壁との回転摩擦の発生をなくすためには、回転するファンと固定部である空気調和機の室内機本体の側壁との隙間をゼロにすることはできない。このため、室内空気が、吹出口と縮小された吹出風路とを通って室内機の内部に流入する逆吸いを防止することは困難であるという課題があった。また、渦によって最も低圧となる部分である吹出口のスタビライザーに接続された側に関しては、なんら考慮されていない。 In the case where the side wall shape is changed so as to gradually reduce the blowing air passage in the rotation axis direction of the fan in the blowing air passage from the fan blowing portion to the housing blowing portion, a significant stall is caused by reducing the blowing air passage. Furthermore, it is intended to prevent the occurrence of significant peeling from the side wall and to form a smooth flow field. However, in order to eliminate the occurrence of rotational friction between the fan end and the side wall, the gap between the rotating fan and the side wall of the indoor unit main body of the air conditioner that is the fixed part cannot be made zero. For this reason, there is a problem that it is difficult to prevent the reverse suction of the room air flowing into the interior of the indoor unit through the blowout port and the reduced blowout air passage. Further, no consideration is given to the side connected to the stabilizer of the outlet, which is the part where the pressure is the lowest due to the vortex.
 また、ファンの回転軸線方向の両端部に、吸込部近傍の吹出部を覆うように逆流防止板を設け、さらに面取りした形状として通風抵抗の減少を図る構成では、渦のために低圧になるスタビライザー側にも面取り部が設けられている。このため、逆流防止板とファンとの間が面取り分だけ広くなって、室内空気が吹出口から室内機の内部に吸い込まれやすくなるという課題があった。 In addition, in the configuration in which a backflow prevention plate is provided at both ends in the rotation axis direction of the fan so as to cover the blowout part in the vicinity of the suction part, and the airflow resistance is reduced as a chamfered shape, a stabilizer that has a low pressure due to the vortex A chamfer is also provided on the side. For this reason, there is a problem that the space between the backflow prevention plate and the fan is widened by the chamfered portion, and the indoor air is easily sucked into the indoor unit from the outlet.
 本発明は、上記のような課題を解決するためになされたものであり、吹出口の長手方向の両端部で、特に渦によって最も低圧となる部分である吹出口のスタビライザー側で、逆吸いを防止できると共に、低電力化及び低騒音化を実現できる空気調和機を得ることを目的とする。 The present invention has been made in order to solve the above-described problems, and performs reverse suction at both ends in the longitudinal direction of the air outlet, particularly on the stabilizer side of the air outlet, which is the part where the pressure is the lowest due to the vortex. An object of the present invention is to obtain an air conditioner that can prevent power consumption and noise.
 本発明に係る空気調和機は、空気を吸い込む吸込口、及び左右方向に長く形成され空気を吹き出す吹出口を有する室内機本体と、
 前記室内機本体の左右方向と回転軸線とが一致するようにして前記室内機本体内に設けられ、前記吹出口の長手方向の端部よりも外側に延びたファン延長部を左右両端部に有する貫流ファンと、
 前記貫流ファンを挟んで対向配置され、前記貫流ファンから吹き出される室内空気を前記吹出口に導く吹出風路を形成するスタビライザー及びリアガイド部と、
 前記室内機本体内において前記吹出口の左右両端部の外側にそれぞれ設けられ、前記ファン延長部から吹き出される気流と対向するように前記ファン延長部の外周部の一部に略沿って設けられた対向面を有する壁構造と、を備え、
 前記対向面及び前記ファン延長部の前記回転軸線に垂直な断面における、前記対向面と前記ファン延長部の外周部との、前記ファン延長部の半径方向の距離を距離Mとすると、
 前記対向面の前記スタビライザー寄りの点aにおける前記距離Mである距離Maに対し、前記対向面のうち前記点aに対して前記リアガイド部寄りの領域の少なくとも一部における前記距離Mが、前記距離Maよりも長くなるように構成されているものである。
An air conditioner according to the present invention includes an indoor unit main body having a suction port for sucking air, and a blowout port that is formed long in the left-right direction and blows out air.
Provided in the indoor unit main body so that the left-right direction of the indoor unit main body and the rotation axis coincide with each other, fan extension portions extending outward from the longitudinal end portion of the outlet are provided at both left and right end portions. With once-through fans,
A stabilizer and a rear guide part that are arranged to face each other with the cross-flow fan interposed therebetween, and form a blowout air passage that guides indoor air blown out of the cross-flow fan to the blowout port;
In the indoor unit main body, provided outside the left and right ends of the air outlet, respectively, and substantially along a part of the outer periphery of the fan extension so as to face the airflow blown out from the fan extension. A wall structure having opposite surfaces,
When the distance in the radial direction of the fan extension portion between the opposing surface and the outer peripheral portion of the fan extension portion in a cross section perpendicular to the rotation axis of the opposite surface and the fan extension portion is a distance M,
For the distance Ma, which is the distance M at the point a of the facing surface near the stabilizer, the distance M in at least a part of the region of the facing surface near the rear guide portion with respect to the point a is It is comprised so that it may become longer than the distance Ma.
 本発明によれば、吹出口の長手方向の両端部で、特に渦によって最も低圧となる部分である吹出口のスタビライザー側で、淀み圧を大気圧より高くすることができる。このため、逆吸いを防止できると共に、衝突壁によるエネルギー損失の増大を抑制し、低電力化及び低騒音化を実現することができる。 According to the present invention, it is possible to make the stagnation pressure higher than the atmospheric pressure at both ends in the longitudinal direction of the air outlet, particularly on the stabilizer side of the air outlet, which is the portion where the pressure is the lowest due to the vortex. For this reason, while being able to prevent reverse suction, the increase in the energy loss by a collision wall can be suppressed, and a reduction in power and noise can be realized.
本発明の実施の形態1に係る貫流ファンが搭載された空気調和機の室内機を示す外観斜視図である。It is an external appearance perspective view which shows the indoor unit of the air conditioner by which the cross-flow fan which concerns on Embodiment 1 of this invention is mounted. 実施の形態1に係り、図1のQ-Q線における縦断面図である。FIG. 4 is a longitudinal sectional view taken along line QQ in FIG. 1 according to the first embodiment. 実施の形態1に係る貫流ファンを示す概略図であり、図3(a)は貫流ファンの側面図、図3(b)は図3(a)のU-U線断面図である。3A and 3B are schematic views showing the cross-flow fan according to Embodiment 1, in which FIG. 3A is a side view of the cross-flow fan, and FIG. 3B is a cross-sectional view taken along the line U-U in FIG. 実施の形態1に係り、5個の羽根車単体(連)を回転軸線方向に固定してなるファンを拡大して示す斜視図(図4(a))、及び支持板を示す説明図(図4(b))である。FIG. 4 is an enlarged perspective view showing a fan formed by fixing five impellers (units) in the rotation axis direction according to the first embodiment (FIG. 4A), and an explanatory view showing a support plate (FIG. 4 (b)). 実施の形態1に係る空気調和機の室内機を斜め下方から見た斜視図である。It is the perspective view which looked at the indoor unit of the air conditioner which concerns on Embodiment 1 from diagonally downward. 実施の形態1に係る衝突壁を示す斜視図である。4 is a perspective view showing a collision wall according to Embodiment 1. FIG. 実施の形態1に係り、図5のW-W線断面図である。FIG. 6 is a cross-sectional view taken along the line WW in FIG. 5 according to the first embodiment. 実施の形態1に係り、室内機の内部構成を簡略化して示す模式図である。FIG. 4 is a schematic diagram illustrating the internal configuration of the indoor unit in a simplified manner according to the first embodiment. 実施の形態1に係り、図8の向かって右端部の衝突壁付近を拡大して示す説明図である。FIG. 9 is an explanatory diagram illustrating, in an enlarged manner, a vicinity of a collision wall at a right end portion in FIG. 8 according to the first embodiment. 実施の形態1に係り、貫流ファンによる室内機本体内の気流を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 and shows the airflow in the indoor unit main body by a cross-flow fan. 実施の形態1に係る貫流ファンの吹き出し側で、衝突壁を設けないときの奥行き方向AYの位置に対する静圧Psを示すグラフである。It is a graph which shows the static pressure Ps with respect to the position of the depth direction AY when not providing a collision wall in the blowing side of the once-through fan which concerns on Embodiment 1. FIG. 実施の形態1に係り、衝突壁の対向面とファン外周部との距離Mを示す図であり、図12(a)は回転軸線に垂直な断面を示す説明図であり、図12(b)は横軸に衝突壁の対向面の奥行き方向AYの位置、縦軸に対向面とファン外周部との距離Mを示すグラフである。FIG. 12 is a diagram illustrating a distance M between the facing surface of the collision wall and the outer peripheral portion of the fan according to the first embodiment, and FIG. 12A is an explanatory diagram illustrating a cross section perpendicular to the rotation axis, and FIG. Is a graph showing the position in the depth direction AY of the facing surface of the collision wall on the horizontal axis and the distance M between the facing surface and the fan outer peripheral portion on the vertical axis. 実施の形態1に係り、スタビライザー側端部における衝突壁の作用を示す説明図である。It is explanatory drawing which concerns on Embodiment 1 and shows an effect | action of the collision wall in a stabilizer side edge part. 実施の形態1に係り、リアガイド部側端部における衝突壁の作用を示す説明図である。FIG. 10 is an explanatory diagram illustrating an operation of a collision wall at the rear guide side end portion according to the first embodiment. 実施の形態1に係り、対向面の奥行き方向AYの位置における衝突圧Pv(図15(a))及び淀み圧Pst(図15(a))を示すグラフである。FIG. 16 is a graph illustrating a collision pressure Pv (FIG. 15A) and a stagnation pressure Pst (FIG. 15A) at the position in the depth direction AY of the facing surface according to the first embodiment. 実施の形態1の他の構成例に係り、横軸に奥行き方向AYの位置を示し、縦軸に淀み圧Pstを示すグラフである。10 is a graph showing the position in the depth direction AY on the horizontal axis and the stagnation pressure Pst on the vertical axis according to another configuration example of the first embodiment. 実施の形態1の他の構成例に係り、横軸に衝突壁の対向面の奥行き方向AYの位置、縦軸に対向面とファン外周部との距離Mを示すグラフである。FIG. 10 is a graph showing the position in the depth direction AY of the facing surface of the collision wall on the horizontal axis and the distance M between the facing surface and the fan outer periphery on the vertical axis according to another configuration example of the first embodiment. 本発明の実施の形態2に係る衝突壁を示す斜視図である。It is a perspective view which shows the collision wall which concerns on Embodiment 2 of this invention. 実施の形態2に係り、衝突壁の対向面とファン外周部との距離Mを示す図であり、図19(a)は回転軸線に垂直な縦断面図であり、図19(b)は横軸に奥行き方向AYの位置、縦軸に対向面とファン外周部との距離Mを示すグラフである。FIG. 19 is a diagram illustrating a distance M between the facing surface of the collision wall and the outer periphery of the fan according to the second embodiment, FIG. 19A is a vertical cross-sectional view perpendicular to the rotation axis, and FIG. It is a graph which shows the position M of the depth direction AY on an axis | shaft, and the distance M of an opposing surface and a fan outer peripheral part on a vertical axis | shaft. 実施の形態2に係る貫流ファンの吹き出し側で、衝突壁を設けないときの奥行き方向AYの位置に対する静圧Psを示すグラフである。It is a graph which shows the static pressure Ps with respect to the position of the depth direction AY when not providing a collision wall by the blowing side of the once-through fan which concerns on Embodiment 2. FIG. 本発明の実施の形態3に係り、回転軸線を含む平面で衝突壁を切断したときの端部連付近を示す断面図である。It is sectional drawing which concerns on Embodiment 3 of this invention, and shows the edge part vicinity when a collision wall is cut | disconnected by the plane containing a rotating shaft line. 実施の形態3に係り、回転軸線方向AXの衝突壁の対向面とファン外周部との距離Mを示す図であり、横軸に回転軸線方向AXの位置、縦軸に対向面とファン外周部との距離Mを示すグラフである。FIG. 10 is a diagram illustrating a distance M between the facing surface of the collision wall in the rotation axis direction AX and the outer periphery of the fan according to the third embodiment, where the horizontal axis indicates the position in the rotation axis direction AX, and the vertical axis indicates the facing surface and the outer periphery of the fan. It is a graph which shows distance M. 実施の形態3に係り、衝突壁を拡大して示す説明図である。FIG. 10 is an explanatory diagram illustrating an enlarged collision wall according to the third embodiment. 実施の形態3の他の構成例に係り、回転軸線方向AXの衝突壁の対向面とファン外周部との距離Mを示す図であり、横軸に回転軸線方向AXの位置、縦軸に対向面とファン外周部との距離Mを示すグラフである。FIG. 14 is a diagram illustrating a distance M between the facing surface of the collision wall in the rotation axis direction AX and the outer periphery of the fan according to another configuration example of the third embodiment, where the horizontal axis represents the position in the rotation axis direction AX and the vertical axis represents It is a graph which shows the distance M of a surface and a fan outer peripheral part. 実施の形態3に係り、他の構成例における対向面の形状を示す説明図である。FIG. 10 is an explanatory diagram illustrating a shape of a facing surface in another configuration example according to the third embodiment.
実施の形態1.
 以下、本発明の実施の形態1について、図に基づいて説明する。図1は実施の形態1に係る貫流ファン8が搭載された空気調和機の室内機1を示す外観斜視図、図2は図1のQ-Q線における縦断面図である。気流を、図1では白抜き矢印で示し、図2では点線矢印で示す。空気調和機は実際には室内機と室外機とで冷凍サイクル回路を構成するが、本発明は室内機の構成に関するものであり、室外機に関しては説明を省略する。図1及び図2に示すように、空気調和機の室内機(以下、室内機と記す)1は左右方向に伸びる細長い略直方体形状であり、部屋の壁面に設置される。室内機1本体の上部1aには、室内空気が吸い込まれる吸込口となる吸込グリル2、吸い込まれた室内空気中に含まれるホコリを静電させ集塵する電気集塵器5、同様なホコリを除塵する網目状のフィルタ6が配設される。さらに、並列される複数のアルミフィン7aに配管7bが貫通する構成の熱交換器7が、貫流ファン8の正面側と上部側に、貫流ファン8を囲むように配置され、この熱交換器7は吸込グリル2から吸い込まれた室内空気と熱交換する。また、室内機1本体の前面は前面パネル1bで覆われ、室内機1本体の下部には吹出口3が設けられ、熱交換器7で熱交換された室内空気が吹出口3から室内へ吹き出される。吹出口3は室内機1本体の左右方向を長手方向として細長く伸びる開口で構成される。即ち、吹出口3の長手方向が室内機1本体の左右方向と一致するように吹出口3が設けられる。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. 1 is an external perspective view showing an indoor unit 1 of an air conditioner equipped with a cross-flow fan 8 according to Embodiment 1, and FIG. 2 is a longitudinal sectional view taken along line QQ in FIG. The airflow is indicated by a white arrow in FIG. 1 and indicated by a dotted arrow in FIG. Although an air conditioner actually constitutes a refrigeration cycle circuit with an indoor unit and an outdoor unit, the present invention relates to the configuration of the indoor unit, and the description of the outdoor unit is omitted. As shown in FIGS. 1 and 2, an indoor unit (hereinafter referred to as an indoor unit) 1 of an air conditioner has an elongated, substantially rectangular parallelepiped shape extending in the left-right direction, and is installed on a wall surface of a room. In the upper part 1a of the indoor unit 1 main body, a suction grill 2 serving as a suction port for sucking indoor air, an electric dust collector 5 for electrostatically collecting dust contained in the sucked indoor air, and similar dust are provided. A mesh-like filter 6 for removing dust is disposed. Furthermore, a heat exchanger 7 having a configuration in which the pipe 7b penetrates through the plurality of aluminum fins 7a arranged in parallel is arranged on the front side and the upper side of the cross-flow fan 8 so as to surround the cross-flow fan 8, and this heat exchanger 7 Exchanges heat with the indoor air sucked from the suction grill 2. Moreover, the front surface of the indoor unit 1 main body is covered with the front panel 1b, and the blower outlet 3 is provided in the lower part of the indoor unit 1 main body, and the indoor air heat-exchanged by the heat exchanger 7 blows out into the room from the blower outlet 3. Is done. The blower outlet 3 is comprised by the opening extended elongate considering the left-right direction of the indoor unit 1 main body as a longitudinal direction. That is, the air outlet 3 is provided so that the longitudinal direction of the air outlet 3 coincides with the left-right direction of the main body of the indoor unit 1.
 送風機である貫流ファン8は、熱交換器7と吹出口3との間に、室内機1本体の左右方向(長手方向)を回転軸線の伸びる方向(回転軸線方向と称する)とするように設けられ、モータ16(図3参照)で回転駆動されて吸込グリル2から吹出口3へ室内空気を送風する。室内機1本体の内部には、貫流ファン8に対して吸込領域E1と吹出領域E2を分離するスタビライザー9及びリアガイド部10を有する。スタビライザー9は貫流ファン8から吹き出す室内空気を吹出口3に導く吹出風路11の前面側を構成し、リアガイド部10は、例えば渦巻状であり、吹出風路11の背面側を構成する。吹出風路11の前面側のスタビライザー9よりもリアガイド部10の方が緩やかな曲面であり、吹出風路11は吹出口3に向かって徐々に広がる形状である。吹出口3には上下風向ベーン4a、左右風向ベーン4bが回動自在に取り付けられ、これらは室内への送風方向を変化させる。図中、Oは貫流ファン8の回転中心を示し、E1は貫流ファン8の吸込領域、E2は回転中心Oに対して吸込領域E1と反対側に位置する吹出領域を示している。スタビライザー9の舌部9aとリアガイド部10の気流の上流側端部10aとで、貫流ファン8の吸込領域E1と吹出領域E2とが分離されている。また、ROは貫流ファン8の回転方向、AYは室内機1の奥行き方向を示し、室内機1本体の奥行き方向AYにおいて、吹出口3の位置する側を前面側、リアガイド部10の位置する側を背面側と称する。 The cross-flow fan 8 as a blower is provided between the heat exchanger 7 and the outlet 3 so that the left-right direction (longitudinal direction) of the main body of the indoor unit 1 is the direction in which the rotation axis extends (referred to as the rotation axis direction). And is driven to rotate by a motor 16 (see FIG. 3) to blow indoor air from the suction grill 2 to the outlet 3. The interior of the main body of the indoor unit 1 includes a stabilizer 9 and a rear guide part 10 that separate the suction area E1 and the blowing area E2 from the cross-flow fan 8. The stabilizer 9 constitutes the front side of the blowout air passage 11 that guides the room air blown from the cross-flow fan 8 to the blowout port 3, and the rear guide portion 10 is, for example, a spiral shape and constitutes the back side of the blowout air passage 11. The rear guide portion 10 has a gentler curved surface than the stabilizer 9 on the front side of the blowout air passage 11, and the blowout air passage 11 has a shape that gradually widens toward the air outlet 3. Up and down wind direction vanes 4a and left and right wind direction vanes 4b are rotatably attached to the air outlet 3, and these change the direction of blowing air into the room. In the figure, O represents the rotation center of the once-through fan 8, E1 represents the suction area of the once-through fan 8, and E2 represents the blowing area located on the opposite side of the rotation area O from the suction area E1. The suction region E1 and the blowout region E2 of the cross-flow fan 8 are separated by the tongue 9a of the stabilizer 9 and the upstream end portion 10a of the airflow of the rear guide unit 10. Moreover, RO shows the rotation direction of the cross-flow fan 8, AY shows the depth direction of the indoor unit 1, and in the depth direction AY of the indoor unit 1 main body, the side where the outlet 3 is located is the front side, and the rear guide part 10 is located. The side is referred to as the back side.
 空気調和機が運転され、貫流ファン8がRO方向に回転することにより、室内空気が室内機1本体の上部1aに設けられる吸込グリル2から吸い込まれる。フィルタ6及び電気集塵器5で混在している塵などが除かれた空気は、熱交換器7のフィン7aの間を通過する。ここで、冷凍サイクルを循環する冷媒が配管7b内を流れており、空気はこの冷媒と熱交換され、暖房運転であれば暖められ、冷房運転であれば冷やされて、調和される。その後、空気は、吸込領域E1から貫流ファン8に吸い込まれ、貫流ファン8内を横断して吹出領域E2を通って吹出口3から室内へ吹き出される。 When the air conditioner is operated and the cross-flow fan 8 rotates in the RO direction, indoor air is sucked from the suction grill 2 provided in the upper part 1a of the indoor unit 1 main body. The air from which dust and the like mixed in the filter 6 and the electrostatic precipitator 5 are removed passes between the fins 7 a of the heat exchanger 7. Here, the refrigerant circulating in the refrigeration cycle flows in the pipe 7b. The air is heat-exchanged with the refrigerant, warmed in the heating operation, cooled in the cooling operation, and harmonized. Thereafter, the air is sucked into the cross-flow fan 8 from the suction area E1, and blows into the room from the blow-out port 3 through the blow-out area E2 across the cross-flow fan 8.
 図3は実施の形態1に係る貫流ファン8を示す概略図であり、図3(a)は貫流ファンの側面図、図3(b)は図3(a)のU-U線断面図である。図3(b)の下半分は向こう側の複数枚の翼が見えている状態を示し、上半分は1枚の翼13を示している。また、図4(a)は実施の形態1に係る5個の羽根車単体14を回転軸線方向AXに固定してなる貫流ファン8を拡大して示す斜視図、図4(b)は支持板12を示す説明図である。図4では、モータ16やモータシャフト16aを省略して羽根車の部分を貫流ファン8として示す。貫流ファン8を構成する羽根車単体14の数や1つの羽根車単体14を構成する翼13の数はいくつでもよい。 3A and 3B are schematic views showing the cross-flow fan 8 according to the first embodiment. FIG. 3A is a side view of the cross-flow fan, and FIG. 3B is a cross-sectional view taken along the line UU in FIG. is there. The lower half of FIG. 3B shows a state where a plurality of wings on the other side can be seen, and the upper half shows one wing 13. 4A is an enlarged perspective view showing the cross-flow fan 8 formed by fixing the five impellers 14 according to the first embodiment in the rotation axis direction AX, and FIG. 4B is a support plate. FIG. In FIG. 4, the motor 16 and the motor shaft 16 a are omitted, and the impeller portion is shown as the cross-flow fan 8. The number of impeller single bodies 14 constituting the cross-flow fan 8 and the number of blades 13 constituting one impeller single body 14 may be any number.
 図3、図4に示すように、貫流ファン8は、回転軸線方向AX(長手方向)に複数、例えば5個の羽根車単体14を有する。羽根車単体14は、一端に環状の支持板12が配設され、回転軸線方向AXに伸びる複数の翼13が該支持板12の外周に沿って配設される。例えばAS樹脂やABS樹脂などの熱可塑性樹脂で成形された羽根車単体14を回転軸線方向AXに複数個備え、超音波溶着などによって翼13の側端を隣に配置する羽根車単体14の支持板12に固着して、羽根車単体14同士を連結する。そして円板形状であるファン端板12bを、最端部に連結された羽根車単体14の翼13に固着して、図4(a)に示す貫流ファン8の羽根車が構成される。回転軸線方向AXの一端に位置する支持板12a(以下、ファン端板と記す)の中心にファンシャフト15aが設けられ、他端に位置するファン端板12bの中心にファンボス15bが設けられる。そして、ファンボス15bとモータ16のモータシャフト16aがネジ等で固定される。即ち、貫流ファン8の回転軸線方向AXの両端に位置するファン端板12a、12bは円板形状であり、回転軸線17が位置する中央部分にファンシャフト15a、ファンボス15bが形成される。両端を除く支持板12は、回転中心となる回転軸線17が位置する中央部分が空間の環状で、図4(b)に示すように内径K1と外径K2を有する。ここで、図3(b)、図4(b)で、一点鎖線はモータシャフト16aとファンシャフト15aを結び、回転中心Oを示す仮想回転軸線であり、ここでは回転軸線17とし、回転軸線17の伸びる方向が回転軸線方向AXである。また、1つの羽根車単体を連14と称し、貫流ファン8の回転軸線方向AXの両端部に位置する連14をそれぞれ端部連14aと称する。 3 and 4, the cross-flow fan 8 has a plurality of, for example, five impellers 14 in the rotation axis direction AX (longitudinal direction). The impeller single body 14 is provided with an annular support plate 12 at one end, and a plurality of blades 13 extending in the rotation axis direction AX are provided along the outer periphery of the support plate 12. For example, a single impeller 14 formed of a thermoplastic resin such as an AS resin or an ABS resin is provided in the rotation axis direction AX, and the side end of the blade 13 is arranged next to each other by ultrasonic welding or the like. Adhering to the plate 12, the impellers 14 are connected together. And the fan end plate 12b which is disk shape is fixed to the blade | wing 13 of the impeller single-piece | unit 14 connected with the outermost end part, and the impeller of the cross-flow fan 8 shown to Fig.4 (a) is comprised. A fan shaft 15a is provided at the center of a support plate 12a (hereinafter referred to as a fan end plate) located at one end in the rotational axis direction AX, and a fan boss 15b is provided at the center of the fan end plate 12b located at the other end. The fan boss 15b and the motor shaft 16a of the motor 16 are fixed with screws or the like. That is, the fan end plates 12a and 12b located at both ends of the cross-flow fan 8 in the rotation axis direction AX have a disk shape, and the fan shaft 15a and the fan boss 15b are formed in the central portion where the rotation axis 17 is located. The support plate 12 excluding both ends has an annular space at the center where the rotation axis 17 serving as the center of rotation is located, and has an inner diameter K1 and an outer diameter K2 as shown in FIG. 4B. Here, in FIG. 3B and FIG. 4B, the alternate long and short dash line is a virtual rotation axis that connects the motor shaft 16a and the fan shaft 15a and indicates the rotation center O. Here, the rotation axis 17 is referred to as the rotation axis 17. The direction in which is extended is the rotation axis direction AX. A single impeller is referred to as a ream 14, and reams 14 positioned at both ends of the cross-flow fan 8 in the rotational axis direction AX are referred to as end reams 14 a.
 図5はこの実施の形態に係る空気調和機の室内機1本体を斜め下方から見た斜視図である。この図では説明をわかりやすくするために、上下風向ベーン4a及び左右風向ベーン4bは取り除いて示しており、吹出口3を通して貫流ファン8の一部が見えている。吹出口3の長手方向の長さL1に比べて、貫流ファン8の回転軸線方向AXの長さL2が長く構成される(L2>L1)。この吹出口3は、その長手方向が室内機1本体の左右方向と一致するように開口している。そして、貫流ファン8の端部連14aの一部は、吹出口3の長手方向の両端から回転軸線17が伸びる方向にそれぞれ延長され、この延長部をファン延長部8aと称する。即ち、ファン延長部8aは、貫流ファン8の両端部のそれぞれに位置する端部連14aの一部であって、吹出口3の左右両端部から長手方向外側にはみ出していて吹出口3に面していない部分である。また、貫流ファン8のファン端板12a、12bから回転軸線方向AXに所定の距離だけ離れた位置に、ファン端板12a、12bの外側に向いた面に略平行に伸びるように側壁30が設けられ、この側壁30は、室内機1の内部の吸込グリル2から吹出口3に至る風路の左右の両側面を構成している。 FIG. 5 is a perspective view of the main body of the indoor unit 1 of the air conditioner according to this embodiment when viewed obliquely from below. In this figure, for easy understanding, the vertical wind direction vane 4 a and the left and right wind direction vane 4 b are removed, and a part of the cross-flow fan 8 is visible through the outlet 3. Compared with the length L1 of the blower outlet 3 in the longitudinal direction, the length L2 of the cross flow fan 8 in the rotation axis direction AX is configured to be longer (L2> L1). This blower outlet 3 is opened so that the longitudinal direction thereof coincides with the left-right direction of the main body of the indoor unit 1. And a part of end section 14a of once-through fan 8 is extended in the direction which axis of rotation 17 extends from both ends of the longitudinal direction of blower outlet 3, and this extension part is called fan extension part 8a. That is, the fan extension 8 a is a part of the end link 14 a located at each of both ends of the cross-flow fan 8, and protrudes outward in the longitudinal direction from the left and right ends of the outlet 3 and faces the outlet 3. It is a part that is not. Further, a side wall 30 is provided so as to extend substantially parallel to the surface facing the outside of the fan end plates 12a, 12b at a position away from the fan end plates 12a, 12b of the cross-flow fan 8 by a predetermined distance in the rotational axis direction AX. The side wall 30 constitutes both left and right side surfaces of the air path from the suction grill 2 inside the indoor unit 1 to the blowout port 3.
 貫流ファン8の回転軸線方向AXで両端のファン延長部8aを除く部分、即ち貫流ファン8の回転軸線方向AXの中央部分では、図2に示すように、吹出風路11の背面側は吹出口3に至るまでリアガイド部10で構成され、リアガイド部10の上流側端部10aから吹出口3まで渦巻き形状をなし、貫流ファン8の羽根車の外周からリアガイド部10までの距離が吹出口3に近づくほど徐々に長くなるような構成である。吹出風路11の前面側はスタビライザー9で構成される。貫流ファン8の回転によって、貫流ファン8の前面側に加速されて吹き出された気流は、点線矢印で示すように、吹出風路11を曲線を描いて流れ、吹出口3から前面側に吹き出される。 In the portion excluding the fan extension portions 8a at both ends in the rotational axis direction AX of the cross-flow fan 8, that is, the central portion of the cross-flow fan 8 in the rotational axis direction AX, as shown in FIG. 3, the rear guide portion 10 is formed in a spiral shape from the upstream end 10 a of the rear guide portion 10 to the outlet 3, and the distance from the outer periphery of the impeller of the cross-flow fan 8 to the rear guide portion 10 is blown. It is the structure which becomes long gradually, so that the exit 3 is approached. The front side of the blowout air passage 11 is composed of a stabilizer 9. The air flow accelerated and blown to the front side of the cross-flow fan 8 by the rotation of the cross-flow fan 8 flows in a curve through the blowout air passage 11 and blown out from the blow-out port 3 to the front side, as shown by the dotted arrows. The
 ここで、室内機1本体内の両端部には、ファン延長部8aに対向する衝突壁18が設けられる。ファン延長部8aから吹き出される吹出気流がこの衝突壁18に衝突するように構成されている。図6は、実施の形態1に係る室内機1本体内部の左右方向両端部のそれぞれに設けられた衝突壁18を示す斜視図であり、例えば吹出口3の向かって右側の端部に配置する衝突壁18を拡大して示す。吹出口3の向かって左側の端部に配置する衝突壁18も同様の形状であり、この右側の衝突壁を左右反転させればよい。また、図7は図5のW-W線断面図であり、ファン端板12b近傍における衝突壁18を含む部分の室内機1の回転軸線17に垂直な縦断面を示す。図7において、ファン延長部8aにおける断面では、リアガイド部10、スタビライザー9、及び衝突壁18は、ファン延長部8aから吹き出す気流に対して壁を構成しており、斜線で示す。 Here, collision walls 18 facing the fan extension 8a are provided at both ends of the indoor unit 1 main body. The blown airflow blown out from the fan extension portion 8a is configured to collide with the collision wall 18. FIG. 6 is a perspective view showing collision walls 18 provided at both ends in the left-right direction inside the main body of the indoor unit 1 according to Embodiment 1, for example, arranged at the right end toward the outlet 3. The collision wall 18 is shown enlarged. The collision wall 18 disposed at the left end of the blower outlet 3 has the same shape, and the right collision wall may be reversed left and right. FIG. 7 is a cross-sectional view taken along the line WW in FIG. 5 and shows a vertical cross section perpendicular to the rotation axis 17 of the indoor unit 1 in a portion including the collision wall 18 in the vicinity of the fan end plate 12b. In FIG. 7, in the cross section of the fan extension 8 a, the rear guide part 10, the stabilizer 9, and the collision wall 18 constitute a wall against the airflow blown from the fan extension 8 a and are indicated by oblique lines.
 図6に示すように、室内機1本体内部の両端部では、衝突壁18の一面である対向面18aはファン延長部8aに向かい合う面であり、ファン延長部8aから吹き出す気流はこの対向面18aに衝突する。また、図7の断面で示すように、ファン延長部8aに対向する吹出風路11の背面は、途中までリアガイド部10の上流側で構成されるが、途中のリアガイド部側端部19bから衝突壁18の対向面18aで構成され、吹出口3のような開口に接続されず、スタビライザー9に続く。衝突壁18の対向面18aにおいて、スタビライザー9に接続する一端部をスタビライザー側端部19a、リアガイド部10に接続する他端部をリアガイド部側端部19bとする。即ち、衝突壁18は、スタビライザー9側に配設されるスタビライザー側端部19aとリアガイド部10側に配設されるリアガイド部側端部19bとを接続するように、ファン延長部8aの外周を囲んで設けられる。 As shown in FIG. 6, at both ends inside the indoor unit 1 main body, the opposing surface 18a, which is one surface of the collision wall 18, is a surface facing the fan extension 8a, and the airflow blown from the fan extension 8a is the opposing surface 18a. Collide with. Further, as shown in the cross section of FIG. 7, the rear surface of the blowout air passage 11 facing the fan extension 8 a is configured on the upstream side of the rear guide part 10 partway, but the rear guide part side end 19 b in the middle. It is comprised by the opposing surface 18a of the collision wall 18, and is not connected to opening like the blower outlet 3, but follows the stabilizer 9. FIG. On the facing surface 18a of the collision wall 18, one end connected to the stabilizer 9 is a stabilizer side end 19a, and the other end connected to the rear guide 10 is a rear guide side end 19b. That is, the collision wall 18 connects the stabilizer side end portion 19a disposed on the stabilizer 9 side and the rear guide portion side end portion 19b disposed on the rear guide portion 10 side of the fan extension portion 8a. It is provided surrounding the outer periphery.
 ここで、回転軸線17に垂直な断面において、貫流ファン8が回転中心Oを中心として回転した時に、回転中心Oから最も外周側にある翼部が描く軌跡(回転中心Oを中心とする円)の位置を外周部、ここではファン外周部8bとする。そして、図7に示す断面で、対向面18aの奥行き方向AYの各位置と貫流ファン8の回転中心Oとを結んだ直線がファン外周部8bと交差する各位置と、対向面18aの各位置とを結ぶ直線の長さを距離Mとする。即ち、距離Mは、ファン外周部8bと対向面18aとの、貫流ファン8の半径方向の距離である。例えば、スタビライザー側端部19aにおけるファン外周部8bと対向面18aとの半径方向の距離(位置20aと位置19aとの距離)をMa、リアガイド部側端部19bにおけるファン外周部8bと対向面18aとの半径方向の距離(位置20bと位置19bとの距離)をMbとすると、この実施の形態では、距離Maよりも距離Mbが長い(Ma<Mb)ことを特徴としている。 Here, in a cross section perpendicular to the rotation axis 17, when the cross-flow fan 8 rotates around the rotation center O, a trajectory drawn by a blade portion located on the outermost peripheral side from the rotation center O (a circle around the rotation center O). Is the outer peripheral portion, here the fan outer peripheral portion 8b. In the cross section shown in FIG. 7, each position where a straight line connecting each position in the depth direction AY of the facing surface 18a and the rotation center O of the cross-flow fan 8 intersects the fan outer peripheral portion 8b, and each position of the facing surface 18a. The distance M is the length of the straight line connecting That is, the distance M is the distance in the radial direction of the cross-flow fan 8 between the fan outer peripheral portion 8b and the facing surface 18a. For example, the radial distance (the distance between the position 20a and the position 19a) between the fan outer peripheral portion 8b and the facing surface 18a at the stabilizer side end portion 19a is Ma, and the fan outer peripheral portion 8b at the rear guide portion side end portion 19b is the facing surface. When the radial distance from 18a (the distance between the position 20b and the position 19b) is Mb, this embodiment is characterized in that the distance Mb is longer than the distance Ma (Ma <Mb).
 また、ファン延長部8aから吹き出される吹出気流が、衝突壁18に衝突する衝突領域を領域E3で示す。即ち、貫流ファン8から気流が吹き出される領域を示す吹出領域E2(図2参照)のうち、ファン延長部8aから吹き出される気流が、衝突壁18に衝突する領域を衝突領域E3とする。この衝突領域E3は吹出領域E2の一部となる。 Further, a collision area where the blown air flow blown out from the fan extension 8a collides with the collision wall 18 is indicated by a region E3. That is, of the blowing area E2 (see FIG. 2) showing the area where the airflow is blown from the once-through fan 8, the area where the airflow blown from the fan extension 8a collides with the collision wall 18 is defined as a collision area E3. This collision area E3 becomes a part of the blowing area E2.
 なお、衝突壁18のリアガイド部側端部19bでは、リアガイド部10に滑らかに接続するため、実際には、衝突壁18は最端部においてリアガイド部10からの立ち上がりの高さがゼロとなる。ここでは、説明をわかりやすくするために、リアガイド部側端部19bは、衝突壁18がリアガイド部10に接続する最端部近傍で、回転軸線方向AXに見た場合に、隣接するリアガイド部10の面から対向面18aがわずかな段差で突出している位置とする。
 また、距離Mは、回転軸線方向AXでは衝突壁18のいずれの位置においても同一とする。即ち、回転軸線方向AXにおいて、衝突壁18の対向面18aは回転軸線17に対して平行に構成されている。
In addition, since the rear guide portion side end portion 19b of the collision wall 18 is smoothly connected to the rear guide portion 10, the collision wall 18 actually has a zero rise height from the rear guide portion 10 at the extreme end portion. It becomes. Here, for easy understanding, the rear guide portion side end portion 19b is adjacent to the rear end portion adjacent to the end portion where the collision wall 18 is connected to the rear guide portion 10 when viewed in the rotation axis direction AX. The facing surface 18a protrudes from the surface of the guide portion 10 with a slight step.
The distance M is the same at any position of the collision wall 18 in the rotation axis direction AX. That is, the facing surface 18 a of the collision wall 18 is configured to be parallel to the rotation axis 17 in the rotation axis direction AX.
 図8は、実施の形態1に係る室内機1の内部構成を簡略化して示す模式図であり、気流方向(白抜き矢印)に従って、吸込グリル2、熱交換器7、貫流ファン8、吹出口3の関係を簡略化して示す。回転軸線方向AXで、貫流ファン8の両端部に配設される端部連14aはそれぞれファン延長部8aを有し、ファン延長部8aは、衝突領域E3では衝突壁18の対向面18aに対向する。一方、貫流ファン8の回転軸線方向AXで、ファン延長部8aを除く部分、即ち貫流ファン8の回転軸線方向AXの中央部分は、吹出口3に対向する。 FIG. 8 is a schematic diagram showing the internal configuration of the indoor unit 1 according to Embodiment 1 in a simplified manner, and the suction grill 2, the heat exchanger 7, the cross-flow fan 8, and the outlet according to the airflow direction (white arrow). 3 is shown in a simplified manner. In the rotation axis direction AX, the end portions 14a disposed at both ends of the cross-flow fan 8 have fan extension portions 8a, respectively, and the fan extension portions 8a face the facing surface 18a of the collision wall 18 in the collision area E3. To do. On the other hand, in the rotational axis direction AX of the cross-flow fan 8, the portion excluding the fan extension 8 a, that is, the central portion of the cross-flow fan 8 in the rotational axis direction AX faces the outlet 3.
 左右の両端部に設けられる衝突壁18は、例えば左右の側壁30と一体に成形されるため側壁30に接続しており、側壁30を一端として左右方向の内側に伸びている。なお、構成の都合上、側壁30が回転軸線方向AXに凹凸を成す場合もあるので、対向面18aの回転軸線方向AXの長さNaは、ファン延長部8aに対して回転軸線17と略平行に向かい合っている対向面18aのファン端板12a、12bからの長さとする。ここで、回転軸線方向AXにおける両ファン端板12a、12bの位置は、ファン端板12a、12bの室内機1本体の外側に向く外向面の位置である。 The collision walls 18 provided at the left and right ends are connected to the side walls 30 because they are integrally formed with the left and right side walls 30, for example, and extend inward in the left-right direction with the side walls 30 as one end. Since the side wall 30 may be uneven in the rotational axis direction AX for the convenience of the configuration, the length Na of the opposing surface 18a in the rotational axis direction AX is substantially parallel to the rotational axis 17 with respect to the fan extension 8a. The length of the facing surface 18a facing each other from the fan end plates 12a and 12b. Here, the positions of the fan end plates 12a and 12b in the rotational axis direction AX are the positions of the outward faces of the fan end plates 12a and 12b facing the outside of the main body of the indoor unit 1.
 以下、この実施の形態で用いた貫流ファン8の各長さの一例を示す。
 羽根車単体14の端部で翼13に固定されている環状の支持板12の外径K2(図4参照)をΦ110mm、内径K1(図4参照)をΦ60mmとし、この支持板12の円周上に例えば35枚の翼13が固定されている。また、回転軸線方向AXでは、吹出口3の長手方向長さL1=610mm、貫流ファン8の回転軸線方向AXの全長L2=640mmである。衝突壁18の対向面18aの回転軸線方向AXの長さNaは15mmである。また、図8において、Sと付された領域は、貫流ファン8の両端のファン端板12a、12bと側壁30の間にできる空間を示している。空間Sの回転軸線方向AXの長さは、例えば10mmである。さらに、端部連14aの回転軸線方向AXの長さは、一端の端部連14aで25mm(図8では左側)、他端の端部連14aで70mm(図8では右側)とし、2つの端部連14aを除く他の連14の回転軸線方向AX長さを略80mmとする。また、スタビライザー側端部19a及び増加開始位置19cにおいて、ファン外周部8bと対向面18aとの距離Ma=Mc=5mm、リアガイド部側端部19bにおいて、ファン外周部8bと対向面18aとの距離Mb=25mmとする
Hereinafter, an example of each length of the cross-flow fan 8 used in this embodiment will be shown.
The outer diameter K2 (see FIG. 4) of the annular support plate 12 fixed to the blade 13 at the end of the impeller 14 is Φ110 mm and the inner diameter K1 (see FIG. 4) is Φ60 mm. For example, 35 wings 13 are fixed on the top. Further, in the rotation axis direction AX, the longitudinal length L1 of the outlet 3 is 610 mm, and the total length L2 of the cross flow fan 8 in the rotation axis direction AX is 640 mm. The length Na in the rotation axis direction AX of the facing surface 18a of the collision wall 18 is 15 mm. Further, in FIG. 8, a region denoted by S indicates a space formed between the fan end plates 12 a and 12 b at both ends of the cross-flow fan 8 and the side wall 30. The length of the space S in the rotation axis direction AX is, for example, 10 mm. Further, the length of the end portion 14a in the rotation axis direction AX is 25 mm (left side in FIG. 8) at one end portion 14a and 70 mm (right side in FIG. 8) at the other end portion 14a. The length AX of the other series 14 excluding the end series 14a is approximately 80 mm. Further, at the stabilizer side end 19a and the increase start position 19c, the distance Ma = Mc = 5 mm between the fan outer peripheral portion 8b and the facing surface 18a, and at the rear guide portion side end 19b, the distance between the fan outer peripheral portion 8b and the facing surface 18a. Distance Mb = 25 mm
 図9は図8の向かって右端部の衝突壁18付近を拡大して示す説明図である。図8、図9に基づいて、室内機1内部の気流と、室内機1の長手方向の両端部における衝突壁18の作用について説明する。
 空気調和機が運転され、モータ16によって貫流ファン8がRO方向に回転する。貫流ファン8が回転することにより、吸込グリル2から吸い込まれた室内空気が熱交換器7で熱交換される。そして熱交換された室内空気は気流Aとなり、貫流ファン8で送風されて吹出領域E2を通って吹出口3から室内へ吹き出される。ここで、吸込グリル2から吸い込まれた室内空気が熱交換器7を通過する際に摩擦抵抗(圧力損失)が生じるため、図9に示すように、貫流ファン8に流入する時の吸込領域E1の静圧PsはPeとなり、大気圧P0よりも低くなる。室内機1の機内の気圧を示す静圧Psは、通風抵抗の影響を受けるため、室内機1内の各場所でさまざまな値を示す。端板12bの外向面付近の空間Sは、吸込領域E1と連続する空間であり、同じ圧力雰囲気であるので、吸込領域E1と同等の静圧Psを示し、Pe(<大気圧P0)である。また、ファン延長部8aの吹き出し側に着目すると、衝突壁18に対向する場所に吹き出した気流Aaは衝突壁18の対向面18aに衝突し、その風速のエネルギーが圧力のエネルギーに変換されて、衝突領域E3の静圧Psに加わることで、衝突領域E3に淀み圧Pstが発生する。この衝突領域E3において、静圧をPs、風速のエネルギーから変換される圧力を衝突圧Pvと称すると、淀み圧Pst=静圧Ps+衝突圧Pvとなる。貫流ファン8の回転が速くなるにつれて気流Aaの風速Vaが大きくなり、より大きな圧力エネルギーに変換され、衝突圧Pvが高くなって淀み圧Pstは高くなる。風速Vaが所定の値以上であれば、淀み圧Pstの値が大気圧P0よりも高くなる。この淀み圧Pstが大気圧P0より高くなるときの風速Vaは、搭載する熱交換器などの圧力損失に応じて異なる。
FIG. 9 is an explanatory view showing, in an enlarged manner, the vicinity of the collision wall 18 at the right end portion in FIG. Based on FIGS. 8 and 9, the airflow inside the indoor unit 1 and the action of the collision wall 18 at both ends in the longitudinal direction of the indoor unit 1 will be described.
The air conditioner is operated, and the cross flow fan 8 is rotated in the RO direction by the motor 16. As the cross-flow fan 8 rotates, the indoor air sucked from the suction grill 2 is heat-exchanged by the heat exchanger 7. Then, the heat-exchanged room air becomes an air flow A, which is blown by the once-through fan 8 and blown out from the blowout port 3 through the blowout area E2. Here, when the indoor air sucked from the suction grill 2 passes through the heat exchanger 7, a frictional resistance (pressure loss) is generated, so that the suction region E1 when flowing into the cross-flow fan 8 as shown in FIG. The static pressure Ps becomes Pe, which is lower than the atmospheric pressure P0. The static pressure Ps indicating the atmospheric pressure in the indoor unit 1 is affected by the ventilation resistance, and thus shows various values at each location in the indoor unit 1. The space S in the vicinity of the outward surface of the end plate 12b is a space that is continuous with the suction region E1 and has the same pressure atmosphere, and thus exhibits a static pressure Ps equivalent to that of the suction region E1, and is Pe (<atmospheric pressure P0). . Further, when focusing on the blowing side of the fan extension 8a, the airflow Aa blown to a location facing the collision wall 18 collides with the facing surface 18a of the collision wall 18, and the energy of the wind speed is converted into pressure energy. By adding to the static pressure Ps in the collision area E3, the stagnation pressure Pst is generated in the collision area E3. In this collision area E3, when the static pressure is referred to as Ps and the pressure converted from the wind speed energy is referred to as the collision pressure Pv, the stagnation pressure Pst = static pressure Ps + the collision pressure Pv. As the once-through fan 8 rotates faster, the wind speed Va of the airflow Aa increases and is converted into larger pressure energy, the collision pressure Pv increases and the stagnation pressure Pst increases. If the wind speed Va is equal to or higher than a predetermined value, the value of the stagnation pressure Pst becomes higher than the atmospheric pressure P0. The wind speed Va when the stagnation pressure Pst becomes higher than the atmospheric pressure P0 varies depending on the pressure loss of the mounted heat exchanger or the like.
 貫流ファン8の両端部の外側にある空間Sは、貫流ファン8による送風が作用しない領域である。空間Sの静圧PsはPeであり大気圧P0よりも低く、送風による圧力上昇はほとんどないので、室内空気が吹出口3を通って空間Sに流れ込むことによる逆吸いが起こりやすい。これに対して、空間Sと吹出口3に通じる吹出風路11との間の衝突領域E3に、大気圧P0よりも高い淀み圧Pstの壁が形成されることで、室内機1の機外から吹出口3を通って室内空気が流入する逆吸いGを遮断できる。 The space S outside the both ends of the cross-flow fan 8 is an area where the air flow by the cross-flow fan 8 does not act. The static pressure Ps of the space S is Pe, which is lower than the atmospheric pressure P0, and there is almost no increase in pressure due to air blowing. Therefore, reverse suction due to the indoor air flowing into the space S through the outlet 3 is likely to occur. On the other hand, a wall having a stagnation pressure Pst higher than the atmospheric pressure P0 is formed in the collision region E3 between the space S and the blowout air passage 11 leading to the blowout port 3, so that the outside of the indoor unit 1 is removed. The reverse suction G into which room air flows in through the outlet 3 can be blocked.
 ところが、衝突壁18への衝突流は、室内機1外への送風気流にならないため、淀み圧Pstを大気圧P0より過剰に高くすることは、送風する目的から考慮すると損失になる。即ち、奥行き方向AYでスタビライザー側端部19aからリアガイド部側端部19bに至るまで、一様の衝突圧Pvを形成するような衝突壁18を設けて、吹出気流を衝突壁18に衝突させることは、通風抵抗を大きくすることになる。通風抵抗が大きくなるということは、貫流ファン8にとって負荷が大きくなり、エネルギー損失や騒音の増加につながる。この実施の形態で示す室内機1では、衝突壁18の対向面18aの全面で、大気圧P0よりも高い淀み圧Pstを形成する際に、逆吸い防止と送風のバランスを考慮している。具体的には、リアガイド部側端部19b付近の衝突圧Pvbがスタビライザー側端部19a付近の衝突圧Pvaよりも低くなるように衝突壁18を構成することで、衝突によるエネルギー損失を最低限に抑えることを図っている。 However, since the collision flow to the collision wall 18 does not become a blowing airflow to the outside of the indoor unit 1, it is a loss to make the stagnation pressure Pst higher than the atmospheric pressure P0 for the purpose of blowing air. That is, a collision wall 18 that forms a uniform collision pressure Pv is provided from the stabilizer-side end 19a to the rear guide-side end 19b in the depth direction AY, and the blown airflow collides with the collision wall 18. That increases the draft resistance. The increase in ventilation resistance increases the load on the once-through fan 8, leading to an increase in energy loss and noise. In the indoor unit 1 shown in this embodiment, when the stagnation pressure Pst higher than the atmospheric pressure P0 is formed on the entire opposing surface 18a of the collision wall 18, consideration is given to the balance between prevention of reverse suction and blowing. Specifically, by configuring the collision wall 18 so that the collision pressure Pvb near the rear guide side end 19b is lower than the collision pressure Pva near the stabilizer side end 19a, energy loss due to the collision is minimized. I try to keep it down.
 次に、奥行き方向AYにおける室内機1内の静圧Psについて説明する。図10は実施の形態1に係る貫流ファン8による室内機1本体内の気流を示す説明図である。貫流ファン8の内部でスタビライザー9付近には、気流の通過に伴う渦(循環渦)F1が発生する。渦F1の周囲である領域E4は室内機1内で最も静圧Psが低くなって最低値Pminを示し、大気圧P0との差が最も大きくなる。このため、吹出口3において、渦F1周辺を通る気流J1が吹き出すスタビライザー側(Ga)の方が、渦F1から離れた部分を通る気流J2が吹き出すリアガイド部側(Gb)よりも静圧Psが低くなり、大気圧P0との差が大きくなる。 Next, the static pressure Ps in the indoor unit 1 in the depth direction AY will be described. FIG. 10 is an explanatory diagram showing an air flow in the main body of the indoor unit 1 by the cross-flow fan 8 according to the first embodiment. A vortex (circulation vortex) F <b> 1 is generated in the vicinity of the stabilizer 9 in the cross-flow fan 8 as the airflow passes. The area E4 around the vortex F1 has the lowest static pressure Ps in the indoor unit 1 and the lowest value Pmin, and the difference from the atmospheric pressure P0 is the largest. For this reason, in the blower outlet 3, the stabilizer side (Ga) which the airflow J1 which passes the circumference | surroundings of the vortex F1 blows off is more static pressure Ps than the rear guide part side (Gb) which the airflow J2 which passes the part away from the vortex F1 blows. Decreases and the difference from the atmospheric pressure P0 increases.
 図11は、実施の形態1に係る室内機1の左右方向の両端部における貫流ファン8の吹き出し側において、衝突壁18を設けない場合の静圧Psを示すグラフであり、横軸に奥行き方向AYの位置を示し、縦軸に静圧Psを示す。Peは室内機1の機内における貫流ファン8の吸込側である吸込領域E1の静圧Psを示す。また、Haは気流J1がスタビライザー9のスタビライザー舌部9a付近において貫流ファン8を通過することによる圧力低下、Hbは気流J2がリアガイド部10の上流側端部10a付近において貫流ファン8を通過することによる圧力低下を示す。また、奥行き方向AYで、Psaはスタビライザー側端部19a付近の静圧Psを示し、Psbはリアガイド部側端部19b付近の静圧Psを示す。 FIG. 11 is a graph showing the static pressure Ps when the collision wall 18 is not provided on the blowout side of the cross-flow fan 8 at both ends in the left-right direction of the indoor unit 1 according to Embodiment 1, and the horizontal axis indicates the depth direction. The position of AY is shown, and the static pressure Ps is shown on the vertical axis. Pe indicates the static pressure Ps in the suction area E1 on the suction side of the cross-flow fan 8 in the indoor unit 1. Further, Ha is a pressure drop due to the airflow J1 passing through the cross-flow fan 8 near the stabilizer tongue 9a of the stabilizer 9, and Hb is the airflow J2 passing through the cross-flow fan 8 near the upstream end 10a of the rear guide part 10. It shows the pressure drop by. In the depth direction AY, Psa indicates the static pressure Ps near the stabilizer side end 19a, and Psb indicates the static pressure Ps near the rear guide side end 19b.
 室内空気が熱交換器7を通過することによる通風抵抗によって、室内機1内では大気圧P0よりも圧力が低下し、貫流ファン8の吸込領域E1では静圧PsはPe(大気圧P0よりも低い)となる。さらに室内空気が貫流ファン8を横断して流れる際に貫流ファン8の内部に発生する渦F1のため、スタビライザー側端部19aにおける圧力低下Haは大きく、スタビライザー側端部19aにおける静圧PsはPsaとなって、室内機1機内で最も低い値Pminを示す。一方、リアガイド部側端部19bにおける圧力低下Hbは、渦F1から離れた部分を気流が通るので、圧力低下Haよりも小さく、リアガイド部側端部19bにおける静圧PsはPsaよりも高いPsbとなる。このため、大気圧P0以上の淀み圧Pstを衝突領域E3に形成するためには、スタビライザー側端部19aでリアガイド部側端部19bよりも高い衝突圧Pvが必要となる。言い替えれば、リアガイド部側端部19bではスタビライザー側端部19aよりも低い衝突圧Pvで大気圧P0よりも高い淀み圧Pstを形成できる。このため、リアガイド部側端部19bでは、少なくとも必要な衝突圧Pvが得られる気流を対向面18aに衝突させる構成とし、衝突圧Pvに必要な気流以外の気流は吹出口3に送風されるように構成する。 Due to the ventilation resistance due to the passage of indoor air through the heat exchanger 7, the pressure in the indoor unit 1 is lower than the atmospheric pressure P0, and the static pressure Ps in the suction region E1 of the cross-flow fan 8 is Pe (less than the atmospheric pressure P0). Low). Further, due to the vortex F1 generated inside the cross flow fan 8 when the indoor air flows across the cross flow fan 8, the pressure drop Ha at the stabilizer side end 19a is large, and the static pressure Ps at the stabilizer side end 19a is Psa. Thus, the lowest value Pmin in one indoor unit is shown. On the other hand, the pressure drop Hb at the rear guide part side end 19b is smaller than the pressure drop Ha because the airflow passes through the part away from the vortex F1, and the static pressure Ps at the rear guide part side end 19b is higher than Psa. Psb. For this reason, in order to form the stagnation pressure Pst equal to or higher than the atmospheric pressure P0 in the collision region E3, a higher collision pressure Pv is required at the stabilizer-side end 19a than at the rear guide-side end 19b. In other words, the stagnation pressure Pst higher than the atmospheric pressure P0 can be formed at the collision pressure Pv lower than the stabilizer side end 19a at the rear guide side end 19b. For this reason, the rear guide part side end 19b is configured to collide with the opposing surface 18a at least an airflow that provides the necessary collision pressure Pv, and airflow other than the airflow necessary for the collision pressure Pv is blown to the outlet 3. Configure as follows.
 図12は実施の形態1に係る衝突壁18の対向面18aとファン外周部8bとの距離Mを示す図である。図12(a)は室内機1の長手方向の両端部において、回転軸線17(図9参照)に垂直な断面を示す説明図であり、図12(b)は横軸に衝突壁18の奥行き方向AYの位置、縦軸に衝突壁18の対向面18aとファン外周部8bとの距離Mを示すグラフである。衝突壁18のリアガイド部側端部19bにおいて、貫流ファン8に向かい合う面である対向面18aとファン外周部8bの半径方向の距離Mbをスタビライザー側端部19aにおける距離Maよりも長くする。この実施の形態では、図12(b)において直線In1に示すように、衝突壁18の対向面18aとファン外周部8bとの距離Mについて、スタビライザー側端部19aでの距離(Ma)を最も短くし、リアガイド部側端部19bでの距離(Mb)を最も長くし、スタビライザー側端部19aから増加開始位置19cまでの距離MをMa=Mcとする。そして、対向面18aにおける増加開始位置19cからリアガイド部側端部19bまでの領域は、増加開始位置19cからリアガイド部側端部19bに向かって滑らかに距離Mが増加するように構成する。 FIG. 12 is a diagram showing the distance M between the facing surface 18a of the collision wall 18 according to the first embodiment and the fan outer peripheral portion 8b. 12A is an explanatory view showing a cross section perpendicular to the rotation axis 17 (see FIG. 9) at both ends of the indoor unit 1 in the longitudinal direction, and FIG. 12B is a horizontal axis showing the depth of the collision wall 18. It is a graph which shows the distance M of the opposing surface 18a of the collision wall 18, and the fan outer peripheral part 8b on the position of the direction AY, and a vertical axis | shaft. In the rear guide portion side end portion 19b of the collision wall 18, the radial distance Mb between the facing surface 18a that faces the cross-flow fan 8 and the fan outer peripheral portion 8b is made longer than the distance Ma in the stabilizer side end portion 19a. In this embodiment, as shown by a straight line In1 in FIG. 12B, the distance (Ma) at the stabilizer-side end 19a is the largest for the distance M between the facing surface 18a of the collision wall 18 and the fan outer peripheral portion 8b. The distance (Mb) at the rear guide side end 19b is the longest, and the distance M from the stabilizer side end 19a to the increase start position 19c is Ma = Mc. And the area | region from the increase start position 19c in the opposing surface 18a to the rear guide part side edge part 19b is comprised so that the distance M may increase smoothly toward the rear guide part side edge part 19b from the increase start position 19c.
 ここで、増加開始とは、対向面18aとファン外周部8bとの半径方向の距離Mの増加開始を意味する。増加開始位置19cは、対向面18aにおいて、スタビライザー側端部19aとリアガイド部側端部19bの間の途中に設けられ、対向面18aとファン外周部8bとの距離Mを長くするときのスタビライザー9側の開始位置である。例えば、対向面18aの奥行き方向AYで、全体の長さの10%程度、スタビライザー側端部19aからリアガイド部側端部19bへ離れた位置に増加開始位置19cを設けている。 Here, the start of increase means the start of an increase in the radial distance M between the facing surface 18a and the fan outer peripheral portion 8b. The increase start position 19c is provided in the middle of the opposing surface 18a between the stabilizer-side end 19a and the rear guide portion-side end 19b, and the stabilizer when increasing the distance M between the opposing surface 18a and the fan outer peripheral portion 8b. This is the start position on the 9th side. For example, in the depth direction AY of the facing surface 18a, an increase start position 19c is provided at a position that is about 10% of the total length and is away from the stabilizer side end 19a to the rear guide portion side end 19b.
 スタビライザー側端部19aにおける衝突壁18の作用は、図9における衝突壁18の一般的な作用説明と同様である。図13は実施の形態1に係るスタビライザー側端部19aにおける衝突壁18の作用を示す説明図である。前述のように、室内機1の長手方向の両端部において、奥行き方向AYの前面側に位置するスタビライザー側端部19aでは、貫流ファン8内に生じる渦F1によって、静圧Psが室内機1の機内で最も低い値Pminを示す。そして、ファン延長部8aから吹き出される気流が、ファン外周部8bから距離Maだけ離れた衝突壁18の対向面18aに衝突する。対向面18aと衝突することによって、風速のエネルギーから変換された衝突圧Pvaが加わって、衝突領域E3に淀み圧Psta=Psa(最低値Pminを示す)+Pvaが形成される。このとき、距離Maは、貫流ファン8の最も近くに配置されるスタビライザー9の舌部9aとファン外周部8bの間の距離と同様で、短い。このため、ファン外周部8bから吹き出した気流は、そのまま対向面18aに向かって流れ、対向面18aと衝突することで衝突圧Pvaが加わり、スタビライザー側端部19aの衝突領域E3に淀み圧Pstaが形成される。このとき、ファン外周部8bから吹き出した気流のほぼ全てが対向面18aに衝突して淀み圧Pstaを形成するので、逆吸いが生じることのない程度の、大気圧P0よりも十分に高い淀み圧Pstaが形成される。 The action of the collision wall 18 at the stabilizer side end 19a is the same as the general action description of the collision wall 18 in FIG. FIG. 13 is an explanatory view showing the action of the collision wall 18 at the stabilizer side end 19a according to the first embodiment. As described above, at both ends in the longitudinal direction of the indoor unit 1, the static pressure Ps of the indoor unit 1 is caused by the vortex F <b> 1 generated in the cross-flow fan 8 at the stabilizer side end 19 a positioned on the front side in the depth direction AY. The lowest value Pmin in the cabin is shown. Then, the airflow blown from the fan extension 8a collides with the facing surface 18a of the collision wall 18 that is separated from the fan outer periphery 8b by a distance Ma. By colliding with the opposing surface 18a, the collision pressure Pva converted from the energy of the wind speed is added, and the stagnation pressure Psta = Psa (indicating the minimum value Pmin) + Pva is formed in the collision region E3. At this time, the distance Ma is the same as the distance between the tongue portion 9a of the stabilizer 9 disposed closest to the cross-flow fan 8 and the fan outer peripheral portion 8b, and is short. For this reason, the air flow blown out from the fan outer peripheral portion 8b flows toward the facing surface 18a as it is and collides with the facing surface 18a, so that the collision pressure Pva is applied, and the stagnation pressure Psta is applied to the collision region E3 of the stabilizer side end portion 19a. It is formed. At this time, since almost all of the air flow blown out from the fan outer peripheral portion 8b collides with the opposing surface 18a to form the stagnation pressure Psta, the stagnation pressure is sufficiently higher than the atmospheric pressure P0 so that no reverse suction occurs. Psta is formed.
 次に、リアガイド部側端部19bにおける衝突壁18の作用を図14に基づいて説明する。図14は実施の形態1に係るリアガイド部側端部19bにおける衝突壁18の作用を示す説明図であり、貫流ファン8の運転開始直後ではなく、しばらく運転した後の定常状態での気流を示す。距離Mbはスタビライザー側端部19aにおける距離Maよりも長いため、ファン延長部8aから吹き出す気流は、貫流ファン8の対向面18aに到達する前に周囲に広がろうとする。回転軸線方向AXの広がりを見ると、貫流ファン8の運転開始直後は、室内機1の回転軸線方向AXの端部である側壁30側(図に向かって右側)と、室内機1の中央側で、吹出口3に通じる吹出風路11側(図に向かって左側)の両方に広がる。側壁30側に向かう気流は側壁30に衝突して圧力が加わり、側壁30に淀み圧を発生する。これにより、側壁30側が高く、吹出風路11側が低いという圧力勾配が発生する。その結果、定常状態になると、発生した圧力勾配によって、吹出風路11側に向かって広がろうとする気流は運転開始直後よりも多くなる。即ち、図14に示すように、対向面18aと向かい合うファン外周部8bから吹き出した気流は、そのまま対向面18aに向かって流れる気流と、室内機1の中央側の吹出風路11に向かって流れる気流となる。 Next, the action of the collision wall 18 at the rear guide part side end 19b will be described with reference to FIG. FIG. 14 is an explanatory diagram showing the action of the collision wall 18 at the rear guide side end 19b according to the first embodiment. The airflow in the steady state after operating for a while, not immediately after the operation of the once-through fan 8 is performed. Show. Since the distance Mb is longer than the distance Ma at the stabilizer side end 19a, the airflow blown from the fan extension 8a tends to spread to the periphery before reaching the facing surface 18a of the cross-flow fan 8. Looking at the spread of the rotation axis direction AX, immediately after the operation of the once-through fan 8 is started, the side wall 30 side (right side in the figure) that is the end of the rotation axis direction AX of the indoor unit 1 and the center side of the indoor unit 1 Thus, it spreads to both the blowout air passage 11 side (left side in the figure) leading to the blowout port 3. The airflow toward the side wall 30 collides with the side wall 30 to apply pressure, and generates stagnation pressure on the side wall 30. Thereby, the pressure gradient that the side wall 30 side is high and the blowing air passage 11 side is low is generated. As a result, in a steady state, due to the generated pressure gradient, the airflow that tends to spread toward the blowing air passage 11 side becomes larger than immediately after the start of operation. That is, as shown in FIG. 14, the air flow blown out from the fan outer peripheral portion 8 b facing the facing surface 18 a flows as it is toward the facing surface 18 a and the air blowing path 11 on the center side of the indoor unit 1. It becomes air current.
 そのまま対向面18aに向かって流れる気流は、対向面18aと衝突して、その衝突圧Pvbが対向面18aの静圧Psbに加わって、リアガイド部側端部19bの衝突領域E3に淀み圧Pstb=Psb+Pvbが形成される。
 図15は実施の形態1に係る対向面18aの奥行き方向AYの位置に対する衝突圧Pvを示すグラフ(図15(a))及び奥行き方向AYの位置に対する淀み圧Pstを示すグラフ(図15(b))である。スタビライザー側端部19aにおける衝突圧Pvaとリアガイド部側端部19bにおける衝突圧Pvbとを比較すると、リアガイド部側端部19bで衝突壁18と衝突する気流は、スタビライザー側端部19aよりも少なくなり、図15(a)に示すように衝突圧Pvは、Pva>Pvbとなる。そして、衝突圧Pvは、スタビライザー側端部19aから増加開始位置19cまではPvaとほぼ同じ値を示し、増加開始位置19cからリアガイド部側端部19bまでは、Pvaに対して徐々に小さくなる。図15(b)では、図11で説明した静圧Psに、図15(a)で示すような、スタビライザー側端部19aで衝突圧Pva、リアガイド部側端部19bで衝突圧Pvbが加わった後の淀み圧Pstを示す。
The airflow that flows toward the facing surface 18a directly collides with the facing surface 18a, and the collision pressure Pvb is applied to the static pressure Psb of the facing surface 18a, and the stagnation pressure Pstb is applied to the collision region E3 of the rear guide side end 19b. = Psb + Pvb.
FIG. 15 is a graph (FIG. 15A) showing the collision pressure Pv with respect to the position in the depth direction AY of the facing surface 18a according to the first embodiment (FIG. 15A) and a graph showing the stagnation pressure Pst with respect to the position in the depth direction AY (FIG. 15B). )). When the collision pressure Pva at the stabilizer side end 19a is compared with the collision pressure Pvb at the rear guide side end 19b, the air current that collides with the collision wall 18 at the rear guide side end 19b is more than the stabilizer side end 19a. As shown in FIG. 15A, the collision pressure Pv becomes Pva> Pvb. The collision pressure Pv shows substantially the same value as Pva from the stabilizer side end 19a to the increase start position 19c, and gradually decreases from Pva from the increase start position 19c to the rear guide side end 19b. . In FIG. 15 (b), the static pressure Ps described in FIG. 11 is applied with the collision pressure Pva at the stabilizer side end 19a and the collision pressure Pvb at the rear guide side end 19b as shown in FIG. 15 (a). It shows the stagnation pressure Pst after.
 ここで、図15(a)におけるスタビライザー側端部19aとリアガイド部側端部19bにおける衝突圧Pvの差(Pva-Pvb)を、図11で示した静圧Psの圧力低下の差(Ha-Hb)と同程度にする。即ち、距離Mを、そのような衝突圧Pvが得られるように調整すると、静圧Psの差(Psa-Psb)が打ち消されて、対向面18aの衝突領域E3に形成される淀み圧Pstは、図15(b)の直線Pst1で示すように、スタビライザー側端部19aからリアガイド部側端部19bまでの奥行き方向AYの全体に亘って、大気圧P0よりも高く、且つほぼ一定になる。 Here, the difference (Pva−Pvb) in the collision pressure Pv between the stabilizer-side end 19a and the rear guide-side end 19b in FIG. 15A is the difference (Ha) in the static pressure Ps shown in FIG. Same as -Hb). That is, when the distance M is adjusted so as to obtain such a collision pressure Pv, the difference (Psa−Psb) in the static pressure Ps is canceled, and the stagnation pressure Pst formed in the collision area E3 of the facing surface 18a is As shown by the straight line Pst1 in FIG. 15 (b), the entire pressure in the depth direction AY from the stabilizer-side end 19a to the rear guide-side end 19b is higher than the atmospheric pressure P0 and substantially constant. .
 一方、室内機1の中央側の吹出風路11に向かって流れる気流は、吹出風路11及び吹出口3を通って室内機1の外へ吹き出す。この吹出風路11に流れる気流は、送風に作用する。 On the other hand, the airflow flowing toward the blowout air passage 11 on the center side of the indoor unit 1 blows out of the indoor unit 1 through the blowout air passage 11 and the blowout port 3. The airflow flowing through the blowout air passage 11 acts on the air flow.
 このように、リアガイド部側端部19bでは、ファン外周部8bと衝突壁18の対向面18aとの距離Mを、スタビライザー側端部19aよりも長く構成する(Mb>Ma)ことで、逆吸いを防止できる淀み圧Pstを衝突領域E3に形成できると共に、送風気流を確保できる。このため、ファン外周部8bと対向面18aとの半径方向の距離を、スタビライザー側端部19aからリアガイド部側端部19bまで同一とした構成と比較して、衝突壁18による通風抵抗の増加を小さく抑えることができ、必要な送風量に要する消費電力を小さく抑えることができる。さらに、衝突による騒音の増加も低減できる。 Thus, in the rear guide part side end part 19b, the distance M between the fan outer peripheral part 8b and the facing surface 18a of the collision wall 18 is configured to be longer than the stabilizer side end part 19a (Mb> Ma). A stagnation pressure Pst that can prevent sucking can be formed in the collision area E3, and a blown airflow can be secured. For this reason, compared with the structure which made the radial distance of the fan outer peripheral part 8b and the opposing surface 18a the same from the stabilizer side edge part 19a to the rear guide part side edge part 19b, the increase in ventilation resistance by the collision wall 18 is increased. Can be kept small, and the power consumption required for the necessary air flow rate can be kept small. Furthermore, an increase in noise due to a collision can be reduced.
 なお、空気調和機の室内機1に搭載される貫流ファン8は、例えば弱冷房、強冷房などの運転モードに応じて運転する回転数が設定される。衝突壁18の寸法設定の方法としては、貫流ファン8の運転モードのうちで最も低い回転数で運転する時の風速で、スタビライザー側端部19aで大気圧P0より高い淀み圧Pstaが得られるように、スタビライザー側端部19aにおける衝突壁18と貫流ファン8の外周部8bとの半径方向距離Ma、及び回転軸線方向AXの長さNaを決定する。例えば、距離Maをファン外周部8bとスタビライザー9の間の距離程度として距離Ma(ここでは5mmとする)を設定し、試験又はシミュレーションによって大気圧P0よりも高い淀み圧Pstaが得られるようにNa(ここでは15mmとする)を決定する。さらに、室内機1内の対向面18a付近の奥行き方向AYの静圧Psの変化、即ち対向面18aの奥行き方向AYにおける各位置の静圧Psを想定することで、各位置において大気圧P0よりも高い淀み圧Pstを形成するための必要最低限の衝突圧Pvを設定できる。そして、設定された衝突圧Pvが得られるように、リアガイド部側端部19bにおける衝突壁18と貫流ファン8の外周部8bとの距離Mbや、スタビライザー側端部19aからリアガイド部側端部19bまでの奥行き方向AYの各位置における距離Mを設定すればよい。一般に、噴流流体の噴流幅の広がり(前述では回転軸方向AXの広がり)は、流体が前進する方向の距離(ここではファン外周部8bから衝突壁18までの距離M)に比例するので、これを考慮して距離Mを設定すればよい。こうして決定された寸法を有するように衝突壁18を設ければ、室内機1の運転中、即ち貫流ファン8の回転時には、ファン延長部8aからの吹出気流によって衝突領域E3を大気圧P0よりも高いほぼ一定の淀み圧Pstの空間とすることができる。 The cross-flow fan 8 mounted in the indoor unit 1 of the air conditioner is set to the number of rotations that is operated according to the operation mode such as weak cooling or strong cooling. As a method of setting the size of the collision wall 18, the stagnation pressure Psta higher than the atmospheric pressure P0 is obtained at the stabilizer side end 19a at the wind speed when operating at the lowest rotational speed among the operation modes of the once-through fan 8. Then, the radial distance Ma between the collision wall 18 and the outer peripheral portion 8b of the cross-flow fan 8 at the stabilizer side end 19a, and the length Na in the rotation axis direction AX are determined. For example, the distance Ma is set to about the distance between the fan outer peripheral portion 8b and the stabilizer 9, and the distance Ma (here, 5 mm) is set, so that a stagnation pressure Psta higher than the atmospheric pressure P0 can be obtained by testing or simulation. (Here, 15 mm) is determined. Furthermore, by assuming the change in the static pressure Ps in the depth direction AY in the vicinity of the facing surface 18a in the indoor unit 1, that is, the static pressure Ps at each position in the depth direction AY of the facing surface 18a, the atmospheric pressure P0 at each position. The minimum necessary collision pressure Pv for forming a higher stagnation pressure Pst can be set. In order to obtain the set collision pressure Pv, the distance Mb between the collision wall 18 and the outer peripheral portion 8b of the cross-flow fan 8 at the rear guide portion side end 19b, or from the stabilizer side end portion 19a to the rear guide portion side end. What is necessary is just to set the distance M in each position of the depth direction AY to the part 19b. In general, the expansion of the jet flow width of the jet fluid (in the above-described direction of the rotation axis direction AX) is proportional to the distance in which the fluid advances (here, the distance M from the fan outer peripheral portion 8b to the collision wall 18). The distance M may be set in consideration of If the collision wall 18 is provided so as to have the dimensions determined in this way, during the operation of the indoor unit 1, that is, when the cross-flow fan 8 is rotating, the collision region E3 is made to be more than the atmospheric pressure P0 by the blown airflow from the fan extension 8a. A space having a high and almost constant stagnation pressure Pst can be obtained.
 上記では、図15(b)の直線Pst1で示したように、スタビライザー側端部19aからリアガイド部側端部19bまでの全面の衝突領域E3で、同程度の淀み圧Pstが形成されるように、ファン外周部8bと対向面18aとの距離を設定した。これに対し、スタビライザー側端部19aからリアガイド部側端部19bまでの全面の衝突領域E3で、同程度ではなく異なる大きさの淀み圧Pstが形成されるように衝突壁18を構成してもよい。 In the above, as shown by the straight line Pst1 in FIG. 15B, the same stagnation pressure Pst is formed in the entire collision area E3 from the stabilizer side end 19a to the rear guide side end 19b. In addition, the distance between the fan outer peripheral portion 8b and the facing surface 18a was set. On the other hand, the collision wall 18 is configured so that the stagnation pressure Pst of different magnitude is formed in the collision area E3 on the entire surface from the stabilizer side end 19a to the rear guide part side end 19b. Also good.
 図16は、この実施の形態1の他の構成例に係り、奥行き方向AYの位置に対し、衝突領域E3に形成される淀み圧Pstを示すグラフであり、横軸に奥行き方向AYの位置を示し、縦軸に淀み圧Pstを示す。図16における直線Pst2で示したような淀み圧Pstであっても、奥行き方向AYのスタビライザー側端部19aからリアガイド部側端部19bに亘って、全面で大気圧P0よりも大きな淀み圧Pstを示している。このため、逆吸いを防止できる。リアガイド部側端部19bは、スタビライザー側端部19aと比較して、循環渦F1や吹出口3から離れているため、逆吸いを防止するために必要な淀み圧Pstはスタビライザー側端部19aよりも低くてもよい。この構成例では、逆吸いの起こりやすいスタビライザー側端部19aでは、大気圧P0との差が大きい淀み圧Pstを形成して確実に逆吸いを防止する。また、逆吸いの起こりにくいリアガイド部側端部19bでは、図15(b)に示した直線Pst1と比較すると、ファン外周部8bから衝突壁18までの距離Mbを長くすることで、大気圧P0と同程度か、大気圧P0よりもわずかに高い淀み圧Pstをリアガイド部側端部19bに形成し、直線Pst1のときよりも送風気流の割合を多くする。図15(b)における直線Pst1で示すような淀み圧Pstを形成する場合と比べると、直線Pst2のときの衝突圧Pvbは直線Pst1のときの衝突圧Pvbよりも小さい。この構成のように、リアガイド部側端部19bで直線Pst1のときよりも衝突圧Pvbを小さくすることで、衝突壁18による通風抵抗及び騒音の増加をさらに低減できる。 FIG. 16 is a graph showing the stagnation pressure Pst formed in the collision area E3 with respect to the position in the depth direction AY according to another configuration example of the first embodiment. The horizontal axis indicates the position in the depth direction AY. The stagnation pressure Pst is shown on the vertical axis. Even in the stagnation pressure Pst as shown by the straight line Pst2 in FIG. 16, the stagnation pressure Pst larger than the atmospheric pressure P0 over the entire surface from the stabilizer side end 19a to the rear guide side end 19b in the depth direction AY. Is shown. For this reason, reverse suction can be prevented. Since the rear guide portion side end portion 19b is farther from the circulation vortex F1 and the air outlet 3 than the stabilizer side end portion 19a, the stagnation pressure Pst necessary for preventing reverse suction is the stabilizer side end portion 19a. May be lower. In this configuration example, the stagnation pressure Pst having a large difference from the atmospheric pressure P0 is formed at the stabilizer side end 19a where reverse suction is likely to occur, thereby reliably preventing reverse suction. Further, at the rear guide portion side end portion 19b where reverse suction hardly occurs, the atmospheric pressure can be increased by increasing the distance Mb from the fan outer peripheral portion 8b to the collision wall 18 as compared with the straight line Pst1 shown in FIG. A stagnation pressure Pst that is about the same as P0 or slightly higher than the atmospheric pressure P0 is formed at the rear guide side end 19b, and the ratio of the air flow is increased compared to the straight line Pst1. Compared to the case where the stagnation pressure Pst as shown by the straight line Pst1 in FIG. 15B is formed, the collision pressure Pvb at the straight line Pst2 is smaller than the collision pressure Pvb at the straight line Pst1. As in this configuration, by reducing the collision pressure Pvb at the rear guide side end 19b as compared with the straight line Pst1, the increase in ventilation resistance and noise due to the collision wall 18 can be further reduced.
 このように、スタビライザー側端部19aからリアガイド部側端部19bまで、同様の淀み圧Pstが得られるように構成しなくてもよい。また、衝突壁18の奥行き方向AYで、スタビライザー側端部19aからリアガイド部側端部19bまでに形成される淀み圧Pstの変化を、直線Pst1や直線Pst2で表したが、これに限るものではない。例えば、スタビライザー側端部19aからリアガイド部側端部19bまでに形成される淀み圧Pstの変化は、曲線的に変化してもよく、階段状に変化してもよい。
 スタビライザー側端部19aからリアガイド部側端部19bまでの奥行き方向AYの各位置において、その位置で逆吸いの発生を防止するのに必要な淀み圧Pstが形成されるように、ファン外周部8bと対向面18aとの半径方向の距離Mを考慮して衝突壁18を構成すればよい。
Thus, it is not necessary to constitute so that the same stagnation pressure Pst can be obtained from the stabilizer side end portion 19a to the rear guide portion side end portion 19b. In addition, although the change in the stagnation pressure Pst formed from the stabilizer side end 19a to the rear guide side end 19b in the depth direction AY of the collision wall 18 is represented by the straight line Pst1 and the straight line Pst2, it is not limited thereto. is not. For example, the change in the stagnation pressure Pst formed from the stabilizer side end portion 19a to the rear guide portion side end portion 19b may change in a curved line or may change in a step shape.
At each position in the depth direction AY from the stabilizer side end portion 19a to the rear guide portion side end portion 19b, the fan outer peripheral portion is formed so that the stagnation pressure Pst necessary to prevent the occurrence of reverse suction at that position is formed. The collision wall 18 may be configured in consideration of the radial distance M between 8b and the facing surface 18a.
 また、回転軸線17に垂直な断面におけるファン外周部8bと衝突壁18の対向面18aとの距離Mについて、スタビライザー側端部19aから増加開始位置19cまでの距離を、Ma=Mcで一定にした。このため、逆吸いの発生しやすいスタビライザー9側で逆吸いが発生するのを確実に防止できる。
 なお、増加開始位置19cは、スタビライザー側端部19aから衝突壁18の奥行き方向の長さの10%程度の位置としたが、これに限るものではない。しかし、図10に示すように、増加開始位置19cは、貫流ファン8の回転中心Oと吹出口3のリアガイド部10側であるGbを結ぶ直線Zが衝突壁18の対向面18aと交差する位置(図10では増加開始位置19cで示している)よりも、リアガイド部側端部19bに近い位置とするのが好ましい。スタビライザー側端部19aから直線Zと対向面18aとの交差位置までの領域は、渦F1のために低圧になる領域E4に近く、逆吸いが起こりやすいためである。
Further, regarding the distance M between the fan outer peripheral portion 8b and the facing surface 18a of the collision wall 18 in the cross section perpendicular to the rotation axis 17, the distance from the stabilizer side end portion 19a to the increase start position 19c is constant at Ma = Mc. . For this reason, it is possible to reliably prevent reverse suction from occurring on the side of the stabilizer 9 where reverse suction is likely to occur.
The increase start position 19c is a position that is about 10% of the length of the collision wall 18 in the depth direction from the stabilizer side end 19a, but is not limited to this. However, as shown in FIG. 10, the increase start position 19 c is such that the straight line Z connecting the rotation center O of the once-through fan 8 and Gb on the rear guide part 10 side of the outlet 3 intersects the facing surface 18 a of the collision wall 18. It is preferable that the position be closer to the rear guide portion side end 19b than the position (indicated by the increase start position 19c in FIG. 10). This is because the region from the stabilizer side end 19a to the crossing position of the straight line Z and the facing surface 18a is close to the region E4 where the pressure is low due to the vortex F1, and reverse suction is likely to occur.
 以上のように、回転軸線17に垂直な断面にて、衝突壁18は、ファン外周部8bと対向面18aとの距離Mを距離Maよりも長くするときのスタビライザー9側の開始位置である増加開始位置19cを、スタビライザー側端部19aとリアガイド部側端部19bの間の途中に備えた。そして、ファン外周部8bと対向面18aとの半径方向の距離Mについて、スタビライザー側端部19aから増加開始位置19cまでの領域における距離Mを、距離Maと同じにしたことにより、逆吸いの起こりやすいスタビライザー側端部19aから増加開始位置19cにおいて、大気圧P0よりも十分に高い淀み圧Pstを安定して形成するので、確実に逆吸いを防止できる効果がある。 As described above, in the cross section perpendicular to the rotation axis 17, the collision wall 18 is the start position on the side of the stabilizer 9 when the distance M between the fan outer peripheral portion 8 b and the facing surface 18 a is longer than the distance Ma. A start position 19c is provided in the middle between the stabilizer-side end 19a and the rear guide-side end 19b. Then, with respect to the radial distance M between the fan outer peripheral portion 8b and the facing surface 18a, reverse suction occurs by making the distance M in the region from the stabilizer side end portion 19a to the increase start position 19c the same as the distance Ma. Since the stagnation pressure Pst sufficiently higher than the atmospheric pressure P0 is stably formed from the easy stabilizer side end 19a to the increase start position 19c, there is an effect that the reverse suction can be surely prevented.
 なお、この実施の形態に係り、回転軸線17に垂直な断面において、対向面18aの奥行き方向AYの位置に対する距離Mの他の構成例を図17のln2~ln5に示す。図17は実施の形態1の他の構成例に係り、横軸に衝突壁18の対向面18aの奥行き方向AYの位置、縦軸に対向面18aとファン外周部8bとの半径方向の距離Mを示すグラフである。ここで示すln2~ln5のいずれの距離変化で構成してもよい。直線ln2は、増加開始位置19cを設けずに、スタビライザー側端部19aで最短の距離Maとし、リアガイド部側端部19bで最長の距離Mbとして、その間を直線的に変化させた例である。曲線ln3は、スタビライザー側端部19aで最短の距離Maとし、リアガイド部側端部19bに近い全体の2/3程度の部分では距離Mを長くした例であり、リアガイド部側端部19bの近くでは逆吸いがあまり起こらない構成の室内機1に適している。 In addition, according to this embodiment, other configuration examples of the distance M with respect to the position in the depth direction AY of the facing surface 18a in a cross section perpendicular to the rotation axis 17 are shown as ln2 to ln5 in FIG. FIG. 17 relates to another configuration example of the first embodiment. The horizontal axis indicates the position in the depth direction AY of the facing surface 18a of the collision wall 18, and the vertical axis indicates the radial distance M between the facing surface 18a and the fan outer peripheral portion 8b. It is a graph which shows. Any distance change of ln2 to ln5 shown here may be used. The straight line ln2 is an example in which, without providing the increase start position 19c, the shortest distance Ma is set at the stabilizer side end 19a, and the longest distance Mb is set at the rear guide side end 19b. . A curve ln3 is an example in which the distance Ma is the shortest at the stabilizer side end 19a, and the distance M is increased in about 2/3 of the entire portion near the rear guide side end 19b, and the rear guide side end 19b. It is suitable for the indoor unit 1 having a configuration in which reverse suction does not occur much in the vicinity.
 また、逆にリアガイド部側端部19bの近くでも逆吸いが起こりやすい構成の室内機1の場合には、曲線ln4、ln5のように、リアガイド部側端部19bの近くでも距離Mを短くし、高い衝突圧Pvを得て淀み圧Pstを形成する。いずれの場合にも、少なくともスタビライザー側端部19aで距離Maを短く構成しているので、スタビライザー側端部19aにおいて大気圧P0よりも十分に高い淀み圧Pstaを形成できる。そして、リアガイド部側端部19bでは距離Mbを最も長く構成しているので、衝突圧Pvbは衝突圧Pvaよりも低いが、大気圧P0よりも高い淀み圧Pstbを形成できるレベルを得て、淀み圧Pstbにより逆吸いを防止でき、且つ気流が回転軸線方向AXの中央側に広がることによって送風に寄与する気流が得られる。特に、スタビライザー側端部19aとリアガイド部側端部19bの間の距離Mに関しては、図11に示すような室内機1内の静圧Psの状態を考慮して構成すれば、最適な形状の衝突壁18が得られる。 On the other hand, in the case of the indoor unit 1 configured so that reverse suction is likely to occur even near the rear guide side end 19b, the distance M is also set near the rear guide side end 19b as shown by curves ln4 and ln5. The stagnation pressure Pst is formed by shortening and obtaining a high collision pressure Pv. In any case, since the distance Ma is configured to be short at least at the stabilizer side end 19a, a stagnation pressure Psta sufficiently higher than the atmospheric pressure P0 can be formed at the stabilizer side end 19a. And since the distance Mb is configured to be the longest at the rear guide portion side end portion 19b, the collision pressure Pvb is lower than the collision pressure Pva, but a level capable of forming a stagnation pressure Pstb higher than the atmospheric pressure P0 is obtained, Backwashing can be prevented by the stagnation pressure Pstb, and an airflow that contributes to blowing is obtained by spreading the airflow toward the center in the rotational axis direction AX. In particular, with respect to the distance M between the stabilizer side end 19a and the rear guide portion side end 19b, an optimum shape can be obtained by considering the state of the static pressure Ps in the indoor unit 1 as shown in FIG. The collision wall 18 is obtained.
 以上のように、この実施の形態では、室内機1の本体の上部に設けられ室内空気を吸い込む吸込グリル2と、この吸込グリル2から吸い込まれた室内空気と熱交換する熱交換器7と、前記室内機1の本体の下部に該室内機1の本体の左右方向に長手方向を伸ばすように設けられ、前記熱交換器7にて熱交換された室内空気を室内へ吹き出す吹出口3と、前記熱交換器7と前記吹出口3の間に前記室内機1の本体の左右方向と回転軸線17が伸びる方向AXとが一致するように設けられ、吹出口3の長手方向の端部よりも外側に延びたファン延長部8aを左右両端部に有する貫流ファン8と、前記貫流ファン8の下流側で室内空気を前記吹出口3に導く吹出風路11の前面側を構成するスタビライザー9と、前記吹出風路11の背面側を構成するリアガイド部10と、前記室内機1の本体の両端部のそれぞれに前記スタビライザー9と前記リアガイド部10とを接続するように設けられ、前記ファン延長部8aから吹き出される室内空気と対向するようにファン延長部8aの外周部の一部に略沿って設けられた対向面18aを有する衝突壁18と、を備え、前記回転軸線17に垂直な断面における前記対向面18aと前記ファン延長部8aの外周部8bとの半径方向の距離を距離Mとすると、前記対向面18aの前記スタビライザー9と接続するスタビライザー側端部19aでの距離Maよりも、前記対向面18aの前記リアガイド部10と接続するリアガイド部側端部19bでの距離Mbが長く構成されていることを特徴とする。 As described above, in this embodiment, the suction grill 2 that is provided in the upper portion of the main body of the indoor unit 1 and sucks room air, the heat exchanger 7 that exchanges heat with the room air sucked from the suction grill 2, A blower outlet 3 provided at a lower portion of the main body of the indoor unit 1 so as to extend in the longitudinal direction in the left-right direction of the main body of the indoor unit 1, and blows out indoor air heat-exchanged by the heat exchanger 7 into the room; Between the heat exchanger 7 and the blower outlet 3, it is provided so that the left-right direction of the main body of the indoor unit 1 and the direction AX in which the rotation axis 17 extends coincide with each other, and more than the longitudinal end of the blower outlet 3. A cross-flow fan 8 having fan extension portions 8a extending to the outside at both left and right ends, a stabilizer 9 constituting the front side of a blow-out air passage 11 that guides indoor air to the blow-out port 3 on the downstream side of the cross-flow fan 8; Constructs the back side of the blowing air passage 11 The rear guide part 10 and the both ends of the main body of the indoor unit 1 are provided so as to connect the stabilizer 9 and the rear guide part 10 to the room air blown out from the fan extension 8a. A collision wall 18 having a facing surface 18a provided substantially along a part of the outer peripheral portion of the fan extension 8a, and the facing surface 18a in the cross section perpendicular to the rotation axis 17 and the fan extension. When the distance in the radial direction from the outer peripheral part 8b of the part 8a is a distance M, the rear guide part of the opposing surface 18a is more than the distance Ma at the stabilizer side end 19a connected to the stabilizer 9 of the opposing surface 18a. The distance Mb at the rear guide part side end part 19b connected to 10 is configured to be long.
 このように構成することで、吹出口3の長手方向の両端部付近において、渦が発生して静圧Psが低くなるスタビライザー9付近では、貫流ファン8のファン延長部8aからの吹出気流を衝突壁18に衝突させることで、高い衝突圧Pvを得て、衝突壁18の対向面18aに大気圧P0より高い淀み圧Pst(静圧Ps+衝突圧Pv)を形成する。この高い圧力場を形成することで、室内空気が室内機1の外部から吹出口3を通って室内機1の内部に進入する逆吸いを防止できる。さらに、渦F1から遠く、逆吸いが発生しにくいリアガイド部10側においては、ファン外周部8bと対向面18aの半径方向の距離Mをスタビライザー側端部19aでの距離Maよりも長くすることで、ファン延長部8aからの気流の一部を送風気流とし、ファン延長部8aから吹き出して衝突壁18に衝突する気流をスタビライザー9側よりも少なくする。これにより、渦F1の発生する付近の気流にの衝突圧Pvよりも低いが、逆吸いを防止できる程度の大気圧P0よりも高い淀み圧Pstをリアガイド部10付近に形成して、ファン延長部8aから吹き出した気流の全てが衝突壁18に衝突することによるエネルギー損失の増加及び騒音の増加を抑制し、低電力化及び低騒音化を実現することができる。 With this configuration, the airflow from the fan extension 8a of the cross-flow fan 8 collides with the vicinity of the stabilizer 9 where the vortex is generated and the static pressure Ps is lowered in the vicinity of both ends in the longitudinal direction of the outlet 3. By colliding with the wall 18, a high collision pressure Pv is obtained, and a stagnation pressure Pst (static pressure Ps + collision pressure Pv) higher than the atmospheric pressure P0 is formed on the opposing surface 18a of the collision wall 18. By forming this high pressure field, it is possible to prevent reverse suction of room air entering the interior of the indoor unit 1 from the outside of the indoor unit 1 through the outlet 3. Further, on the side of the rear guide portion 10 that is far from the vortex F1 and hardly generates reverse suction, the radial distance M between the fan outer peripheral portion 8b and the facing surface 18a should be longer than the distance Ma at the stabilizer side end portion 19a. Thus, a part of the airflow from the fan extension 8a is used as a blown airflow, and the airflow that blows out from the fan extension 8a and collides with the collision wall 18 is made smaller than that on the side of the stabilizer 9. Accordingly, a stagnation pressure Pst lower than the atmospheric pressure P0, which is lower than the collision pressure Pv on the airflow in the vicinity of the vortex F1 but which can prevent reverse suction, is formed in the vicinity of the rear guide portion 10 to extend the fan. It is possible to suppress an increase in energy loss and noise due to the collision of all airflows blown out from the portion 8a with the collision wall 18, thereby realizing low power and low noise.
実施の形態2.
 以下、本発明の実施の形態2について図に基づいて説明する。図18、図19はこの実施の形態に係る空気調和機の室内機を示す説明図であり、図18はこの実施の形態に係り、室内機1に向かって右側の衝突壁18を示す斜視図、図19は実施の形態2に係る衝突壁18の対向面18aとファン外周部8bとの距離Mを示す図であり、図19(a)は室内機1の回転軸線17に垂直な縦断面図、図19(b)は、横軸に衝突壁18の奥行き方向AYの位置、縦軸にファン外周部8bと衝突壁18の対向面18aとの距離Mを示すグラフである。この実施の形態では、図18に示すように、衝突壁18のリアガイド部側端部19bを、図6に示した実施の形態1における位置よりもリアガイド部10の気流の上流側端部10aの近くに接続したことを特徴とする。各図において、実施の形態1と同一符号は、同一、又は相当部分を示す。
Embodiment 2. FIG.
The second embodiment of the present invention will be described below with reference to the drawings. FIGS. 18 and 19 are explanatory views showing the indoor unit of the air conditioner according to this embodiment. FIG. 18 is a perspective view showing the collision wall 18 on the right side of the indoor unit 1 according to this embodiment. 19 is a diagram showing a distance M between the facing surface 18a of the collision wall 18 according to the second embodiment and the fan outer peripheral portion 8b, and FIG. 19A is a longitudinal section perpendicular to the rotation axis 17 of the indoor unit 1. FIG. 19B is a graph in which the horizontal axis indicates the position of the collision wall 18 in the depth direction AY, and the vertical axis indicates the distance M between the fan outer peripheral portion 8 b and the facing surface 18 a of the collision wall 18. In this embodiment, as shown in FIG. 18, the rear guide portion side end portion 19b of the collision wall 18 is positioned at the upstream end portion of the air flow in the rear guide portion 10 with respect to the position in the first embodiment shown in FIG. It is characterized by being connected near 10a. In each figure, the same reference numerals as those in Embodiment 1 denote the same or corresponding parts.
 室内機1の左右方向の中央部、即ち衝突壁18の形成されていない中央部において、ファン外周部8bと吹出風路11との関係は図10に示されている。貫流ファン8を搭載する際の構成上、リアガイド部10の気流の上流側端部10a付近とスタビライザー9の舌部9aは、吸込領域E1と吹出領域E2とを分離する働きがある。このため、上流側端部10aとスタビライザー9の舌部9aの先端部は、他の構成部分よりもファン外周部8bの近くに配設される。実施の形態1では、対向面18aとファン外周部8bの距離に関し、リアガイド部側端部19bでの距離Mbをスタビライザー側端部19aでの距離Maより長くする構成であった。これに対してこの実施の形態では、スタビライザー側端部19a及びリアガイド部側端部19bにおける距離Ma、Mbは、その間の対向面18aにおける距離Mよりも短く、例えば奥行き方向AYの中央部の位置19dでの距離Mdを最も長く構成する。 FIG. 10 shows the relationship between the fan outer peripheral portion 8b and the blowout air passage 11 at the central portion in the left-right direction of the indoor unit 1, that is, the central portion where the collision wall 18 is not formed. In the configuration when the cross-flow fan 8 is mounted, the vicinity of the upstream end portion 10a of the airflow of the rear guide portion 10 and the tongue portion 9a of the stabilizer 9 have a function of separating the suction region E1 and the blowing region E2. For this reason, the upstream end 10a and the tip of the tongue 9a of the stabilizer 9 are disposed closer to the fan outer peripheral portion 8b than the other components. In the first embodiment, with respect to the distance between the facing surface 18a and the fan outer peripheral portion 8b, the distance Mb at the rear guide portion side end portion 19b is longer than the distance Ma at the stabilizer side end portion 19a. On the other hand, in this embodiment, the distances Ma and Mb at the stabilizer-side end 19a and the rear guide-side end 19b are shorter than the distance M at the facing surface 18a therebetween, for example, at the center in the depth direction AY. The distance Md at the position 19d is the longest.
 対向面18aの奥行き方向AYの位置に対する距離Mは、前面側から背面側に向かって、図19(b)の曲線ln6に示すように、スタビライザー側端部19aから増加開始位置19cまでは短い(Ma,Mc)。そして、増加開始位置19cから増加し、中央部の位置19dで最も長く(Md)、中央部の位置19dからリアガイド部側端部19bに向かって所定の間は長いまま保持する。その後、リアガイド部側端部19bに向かって徐々に短くなり、リアガイド部側端部19bで距離Mbとなる。ここでは、距離Mbは距離Maよりも長く、距離Mdよりも短い構成とした。 The distance M with respect to the position in the depth direction AY of the facing surface 18a is short from the stabilizer side end portion 19a to the increase start position 19c, as indicated by a curve ln6 in FIG. Ma, Mc). Then, it increases from the increase start position 19c, is longest at the center position 19d (Md), and is kept long for a predetermined time from the center position 19d toward the rear guide side end 19b. Thereafter, the distance gradually decreases toward the rear guide portion side end portion 19b, and becomes a distance Mb at the rear guide portion side end portion 19b. Here, the distance Mb is longer than the distance Ma and shorter than the distance Md.
 空気調和機の室内機1の内部構成によって、通風抵抗が異なり、リアガイド部10の気流の上流側端部10a近傍に図19(a)に示すような渦F2が発生することがある。このように渦F1、F2が発生すると、渦F1、F2の影響で室内機1の機内の静圧Psが低下し、一例として奥行き方向AYの位置に対する静圧Psは図20に示すようになる。スタビライザー側端部19aでは渦F1の影響で気圧がHa低下して静圧PsはPsaとなり、リアガイド部側端部19bでは渦F2の影響で気圧がHb低下し静圧PsはPsbとなる。また、奥行き方向AYで中央部の位置19dでは気圧がHd(<Ha,Hb)下がるので、静圧PsはPsd(>Psa,Psb)となる。これに対し図19(b)に示した形状の衝突壁18は、スタビライザー側端部19aとリアガイド部側端部19b付近では、距離Ma、Mbがスタビライザー舌部9aとファン外周部8bとの距離と同程度に短いので、貫流ファン8から吹き出した気流はほとんどが衝突壁18に衝突し、高い衝突圧Pvが得られる。一方、中央部の位置19d付近では、距離Mdが距離Ma、Mbよりも長いので、貫流ファン8から吹き出した気流の一部は、衝突壁18に達するまでに回転軸方向AXの中央側に広がる。このため、貫流ファン8から吹き出した気流の一部は、吹出口3に至る吹出風路11に流れて送風気流になる。中央部の位置19dでは、スタビライザー側端部19aやリアガイド部側端部19bと比べて、衝突圧Pvは低いが、静圧Psが高いので、大気圧P0よりも高い淀み圧Pstが形成される。即ち、中央部の位置19dにおいて、淀み圧PstをPstd、静圧PsをPsd、衝突圧PvをPvdとすると、淀み圧Pstd=静圧Psd+衝突圧Pvdとなり、スタビライザー側端部19aにおける淀み圧Psta、リアガイド部側端部19bにおける淀み圧Pstbと同様に、大気圧P0よりも高い淀み圧Pstdを形成できる。 Ventilation resistance varies depending on the internal configuration of the indoor unit 1 of the air conditioner, and a vortex F2 as shown in FIG. 19A may be generated in the vicinity of the upstream end portion 10a of the airflow of the rear guide portion 10. When the vortices F1 and F2 are generated in this way, the static pressure Ps in the indoor unit 1 is reduced due to the influence of the vortices F1 and F2. As an example, the static pressure Ps with respect to the position in the depth direction AY is as shown in FIG. . At the stabilizer side end 19a, the atmospheric pressure drops Ha due to the influence of the vortex F1 and becomes the static pressure Ps, and at the rear guide part side end 19b, the atmospheric pressure drops Hb due to the influence of the vortex F2 and the static pressure Ps becomes Psb. Further, since the atmospheric pressure is lowered by Hd (<Ha, Hb) at the central position 19d in the depth direction AY, the static pressure Ps becomes Psd (> Psa, Psb). On the other hand, the collision wall 18 having the shape shown in FIG. 19B has distances Ma and Mb between the stabilizer tongue portion 9a and the fan outer peripheral portion 8b in the vicinity of the stabilizer side end portion 19a and the rear guide portion side end portion 19b. Since it is as short as the distance, most of the airflow blown out of the once-through fan 8 collides with the collision wall 18 and a high collision pressure Pv is obtained. On the other hand, since the distance Md is longer than the distances Ma and Mb in the vicinity of the central position 19d, a part of the airflow blown out of the cross-flow fan 8 spreads to the center side in the rotational axis direction AX before reaching the collision wall 18. . For this reason, a part of the airflow blown out from the once-through fan 8 flows into the blowout air passage 11 leading to the blowout port 3 and becomes a blown airflow. At the center position 19d, the collision pressure Pv is lower than the stabilizer side end 19a and the rear guide side end 19b, but the static pressure Ps is high, so that a stagnation pressure Pst higher than the atmospheric pressure P0 is formed. The That is, at the center position 19d, if the stagnation pressure Pst is Pstd, the static pressure Ps is Psd, and the collision pressure Pv is Pvd, the stagnation pressure Pstd = static pressure Psd + the collision pressure Pvd, and the stagnation pressure Psta at the stabilizer side end 19a The stagnation pressure Pstd higher than the atmospheric pressure P0 can be formed similarly to the stagnation pressure Pstb at the rear guide portion side end 19b.
 このように、室内機1の回転軸線17に垂直な縦断面で、スタビライザー側端部19aからリアガイド部側端部19bに亘って、ファン外周部8bと衝突壁18との距離Mを一様ではなく、静圧Psの低くなる位置では距離Mを短くして高い衝突圧Pvを得、静圧Psの高くなる位置では静圧Psの低くなる位置よりも距離Mを長くして、静圧Psの低くなる位置における衝突圧Pvよりも低い衝突圧Pvを得るように、静圧Psに応じて距離Mを変化させる。これにより、衝突壁18の対向面18aのスタビライザー側端部19aからリアガイド部側端部19bに亘って、大気圧P0以上の淀み圧を形成して逆吸いを防止できると共に、必要なだけの衝突圧Pvを得るように気流を衝突させる。そして、衝突圧に作用しない気流は、ファン外周部8bから対向面18aに流れる間に回転軸線方向AXの中央側に広がり、吹出風路11に流れて、送風気流として作用することができる。このため、衝突壁18を形成することで逆吸いを防止すると共に、衝突壁18を形成したことによる圧力損失及び騒音の増加を低減できる。 Thus, in the longitudinal section perpendicular to the rotation axis 17 of the indoor unit 1, the distance M between the fan outer peripheral portion 8b and the collision wall 18 is uniform from the stabilizer side end portion 19a to the rear guide portion side end portion 19b. Instead, at a position where the static pressure Ps is low, the distance M is shortened to obtain a high collision pressure Pv, and at a position where the static pressure Ps is high, the distance M is set longer than a position where the static pressure Ps is low. The distance M is changed according to the static pressure Ps so as to obtain a collision pressure Pv lower than the collision pressure Pv at the position where Ps becomes low. As a result, it is possible to prevent back suction by forming a stagnation pressure of atmospheric pressure P0 or higher from the stabilizer side end 19a to the rear guide side end 19b of the facing surface 18a of the collision wall 18 and only necessary. The air current is collided so as to obtain the collision pressure Pv. And the airflow which does not act on a collision pressure spreads to the center side of the rotation axis direction AX, while flowing from the fan outer peripheral part 8b to the opposing surface 18a, can flow into the blowing air path 11, and can act as a blowing airflow. For this reason, by forming the collision wall 18, reverse suction can be prevented, and the increase in pressure loss and noise due to the formation of the collision wall 18 can be reduced.
 以上のように、この実施の形態では、室内機1の本体の上部に設けられ室内空気を吸い込む吸込グリル2と、この吸込グリル2から吸い込まれた室内空気と熱交換する熱交換器7と、前記室内機1の本体の下部に該空気調和機1本体の左右方向に長手方向を伸ばすように設けられ、前記熱交換器7にて熱交換された室内空気を室内へ吹き出す吹出口3と、前記熱交換器7と前記吹出口3の間に前記室内機1の本体の左右方向と回転軸線17が伸びる方向とが一致するように設けられ、吹出口3の長手方向の端部よりも外側に延びたファン延長部8aを左右両端部に有する貫流ファン8と、前記貫流ファン8より下流側で室内空気を前記吹出口3に導く吹出風路11の前面側を構成するスタビライザー9と、前記吹出風路11の背面側を構成するリアガイド部10と、前記室内機1の本体の両端部のそれぞれに前記スタビライザー9と前記リアガイド部10とを接続するように設けられ、前記ファン延長部8aから吹き出される室内空気と対向するようにファン延長部8aの外周部8bの一部に略沿って設けられた対向面18aを有する衝突壁18と、を備え、前記回転軸線17に垂直な断面における前記対向面18aと前記ファン延長部8aの外周部8bとの半径方向の距離を距離Mとすると、前記対向面18aの前記スタビライザー9と接続するスタビライザー側端部19aでの前記距離Mである距離Maよりも、前記スタビライザー側端部19aから前記対向面18aの前記リアガイド部10と接続するリアガイド部側端部19bに至る間の前記距離Mの少なくとも一部が、前記距離Maより長く構成されていることを特徴とすることにより、逆吸いを防止でき、且つ吹出気流が衝突壁18に衝突することによるエネルギー損失の増加及び騒音の増加を抑制して、低電力化及び低騒音化を実現することができる。 As described above, in this embodiment, the suction grill 2 that is provided in the upper portion of the main body of the indoor unit 1 and sucks room air, the heat exchanger 7 that exchanges heat with the room air sucked from the suction grill 2, A blower outlet 3 provided at the lower part of the main body of the indoor unit 1 so as to extend in the longitudinal direction in the left-right direction of the main body of the air conditioner 1, and blows out indoor air heat-exchanged by the heat exchanger 7 into the room; Between the heat exchanger 7 and the air outlet 3, it is provided so that the left-right direction of the main body of the indoor unit 1 coincides with the direction in which the rotation axis 17 extends, and is outside the longitudinal end of the air outlet 3. A cross-flow fan 8 having fan extension portions 8a extending in the left and right ends, a stabilizer 9 constituting a front surface side of a blow-out air passage 11 that guides indoor air to the blow-out port 3 on the downstream side of the cross-flow fan 8; Constructs the back side of the air outlet 11 The rear guide part 10 and the both ends of the main body of the indoor unit 1 are provided so as to connect the stabilizer 9 and the rear guide part 10 to the room air blown out from the fan extension 8a. A collision wall 18 having a facing surface 18a provided substantially along a part of the outer peripheral portion 8b of the fan extension 8a, and the facing surface 18a in the cross section perpendicular to the rotation axis 17 and the fan. Assuming that the distance in the radial direction from the outer peripheral portion 8b of the extension portion 8a is a distance M, the stabilizer side is more than the distance Ma that is the distance M at the stabilizer side end portion 19a connected to the stabilizer 9 of the facing surface 18a. At least a part of the distance M between the end portion 19a and the rear guide portion side end portion 19b connected to the rear guide portion 10 of the facing surface 18a is: By being configured to be longer than the recording distance Ma, it is possible to prevent reverse suction, and to suppress an increase in energy loss and noise due to the blown airflow colliding with the collision wall 18, thereby reducing the power consumption. And noise reduction can be realized.
 なお、この実施の形態においても、奥行き方向AYの位置に対する距離Mの変化は、図19(b)に示したln6に限るものではない。ここでは、スタビライザー側端部19aから増加開始位置19cまでは、対向面18aとファン外周部8bとの距離Mを一定としたが、これに限るものではない。例えばスタビライザー側端部19aで逆吸いを防止できる十分な淀み圧Pstが得られ、増加開始位置19c付近における静圧Psの低下がスタビライザー側端部19aほどで大きくない場合には、増加開始位置19cを設けずに、スタビライザー側端部19aから中央部の位置19dに向かって、ファン延長部8aと対向面18aとの距離Mを増加させてもよい。距離Mを長くすることで、ファン延長部8aから吹き出す気流のうち送風作用に用いる割合を増加させることができるので、さらに低電力化及び低騒音化を実現することができる。また、ln6に示した変化に限らず、スタビライザー側端部19aからリアガイド部側端部19bに至る領域の距離Mを、階段状、曲線状や直線状に変化させる構成でもよいし、他の形状で変化させてもよい。スタビライザー側端部19aからリアガイド部側端部19bまでのいずれかの、少なくとも一部での距離Mを、スタビライザー側端部19aでの距離Maよりも長く構成すれば、対向面18aの全てを距離Maと同じに構成するよりも低電力化及び低騒音化することができる。 In this embodiment as well, the change in the distance M with respect to the position in the depth direction AY is not limited to ln6 shown in FIG. Here, the distance M between the facing surface 18a and the fan outer peripheral portion 8b is constant from the stabilizer side end portion 19a to the increase start position 19c, but is not limited thereto. For example, when a sufficient stagnation pressure Pst that can prevent reverse suction is obtained at the stabilizer side end 19a, and the decrease in the static pressure Ps near the increase start position 19c is not as great as that at the stabilizer side end 19a, the increase start position 19c. The distance M between the fan extension 8a and the facing surface 18a may be increased from the stabilizer side end 19a toward the central position 19d. By increasing the distance M, it is possible to increase the ratio of the airflow blown out from the fan extension 8a to be used for the air blowing action, so it is possible to further reduce power consumption and noise. In addition, the configuration is not limited to the change indicated by ln6, and the configuration may be such that the distance M of the region from the stabilizer side end portion 19a to the rear guide portion side end portion 19b is changed stepwise, curved or linear, The shape may be changed. If the distance M at least part of any one of the stabilizer side end portion 19a to the rear guide portion side end portion 19b is configured to be longer than the distance Ma at the stabilizer side end portion 19a, all of the facing surface 18a is formed. It is possible to reduce power consumption and noise compared to the same configuration as the distance Ma.
 また、リアガイド部側端部19bに関しては、以下のことが言える。
 図10に示すように、回転軸線17に垂直な断面で、衝突壁18の前面側はスタビライザー9と接続するが、背面側は、上流側端部10aから吹出口3のリアガイド部側Gbまでのいずれかのリアガイド部10に接続する。室内機1本体の内部構成に応じて内部を流れる気流や通風抵抗が異なるので、室内機1本体の内部の気流や静圧Psを考慮し、衝突圧の必要/不要に応じて、衝突壁18のリアガイド部側端部19bの位置を決定すればよい。また、ファン外周部8bと対向面18aとの距離Mは、どの程度衝突圧が必要であるかを考慮して決定すればよい。
Moreover, the following can be said about the rear guide part side end part 19b.
As shown in FIG. 10, the front side of the collision wall 18 is connected to the stabilizer 9 in a cross section perpendicular to the rotation axis 17, but the back side is from the upstream end 10 a to the rear guide part side Gb of the outlet 3. To any one of the rear guide portions 10. Since the airflow flowing through the interior and the ventilation resistance differ depending on the internal configuration of the indoor unit 1 main body, the airflow and static pressure Ps inside the indoor unit 1 main body are taken into consideration, and the collision wall 18 according to the necessity / unnecessity of the collision pressure. What is necessary is just to determine the position of the rear guide part side edge part 19b. The distance M between the fan outer peripheral portion 8b and the facing surface 18a may be determined in consideration of how much collision pressure is necessary.
実施の形態3.
 以下、本発明の実施の形態3による空気調和機について説明する。図21はこの実施の形態に係り、室内機1内部の端部連14a付近を示す断面図であり、回転軸線17を含む平面で衝突壁18を切断したときの断面を示す。ここでも貫流ファン8の左右方向の右側の端部を示し、左側の端部は左右逆転させた構成となる。図中、実施の形態1と同一符号は同一、又は相当部分を示す。実施の形態1及び実施の形態2では、衝突壁18の対向面18aにおいて、ファン外周部8bと対向面18aとの距離Mを、回転軸線方向AXで同一とした。これに対し、この実施の形態では、距離Mを、回転軸線方向AXで異なる構成とした。図21において、対向面18aを回転軸線方向AXで見て、貫流ファン8の端板12b側に位置する端部を側壁側端部21eとし、貫流ファン8の中央側、即ち吹出風路11に隣接している端部を吹出風路側端部21fとする。そして、ファン外周部8bと対向面18aとの距離Mは、側壁側端部21eにおける距離Me<吹出風路側端部21fにおける距離Mfとする。ただし、ファン延長部8aの回転軸線方向AXのいずれの位置においても、回転軸線17に垂直な断面について、実施の形態1または実施の形態2で説明したように、対向面18aの奥行き方向AYの各位置における距離Mの関係を満足しているものとする。
Embodiment 3 FIG.
Hereinafter, an air conditioner according to Embodiment 3 of the present invention will be described. FIG. 21 is a cross-sectional view showing the vicinity of the end portion 14 a inside the indoor unit 1 according to this embodiment, and shows a cross section when the collision wall 18 is cut along a plane including the rotation axis 17. Here, the right end of the cross-flow fan 8 in the left-right direction is shown, and the left end is horizontally reversed. In the figure, the same reference numerals as those in Embodiment 1 denote the same or corresponding parts. In the first and second embodiments, the distance M between the fan outer peripheral portion 8b and the facing surface 18a on the facing surface 18a of the collision wall 18 is the same in the rotation axis direction AX. On the other hand, in this embodiment, the distance M is different in the rotation axis direction AX. In FIG. 21, when the facing surface 18 a is viewed in the rotation axis direction AX, an end portion located on the end plate 12 b side of the cross-flow fan 8 is a side wall-side end portion 21 e, and the center side of the cross-flow fan 8, that is, Let the edge part which adjoins be the blowing wind path side edge part 21f. The distance M between the fan outer peripheral portion 8b and the facing surface 18a is set such that the distance Me at the side wall side end portion 21e is smaller than the distance Mf at the blowout air passage side end portion 21f. However, at any position in the rotation axis direction AX of the fan extension portion 8a, the cross section perpendicular to the rotation axis 17 is in the depth direction AY of the facing surface 18a as described in the first embodiment or the second embodiment. It is assumed that the relationship of the distance M at each position is satisfied.
 図21に示すように、対向面18aで、距離Me<距離Mfとし、側壁側端部21eと吹出風路側端部21fの間の距離Mを直線的に変化させている。例えば、側壁側端部21eの距離Me=20mmとし、吹出風路側端部21fの距離Mf=25mmとする。図22は実施の形態3に係る回転軸線方向AXの衝突壁の対向面とファン外周部との距離Mを示す図であり、横軸に回転軸線方向AXの位置、縦軸に対向面とファン外周部との距離Mを示すグラフである。図22中、図21に示す距離Mの変化は、直線ln11で示されている。図23はこの様に構成された対向面18aでの気流を示す説明図である。対向面18aの側壁側端部21eは、静圧Psが低く吹出気流が直接流れない空間Sに隣接していること、及び側壁側端部21eでは端板12bなどのために通風抵抗が吹出風路側端部21fよりも高く静圧Psが低くなること、などにより、室内空気が吹出口3を通って機内に入り込む逆吸いが起こりやすい。このため、側壁側端部21eでファン外周部8bとの距離Meを吹出風路側端部21fにおける距離Mfよりも短く構成する。距離Mが短い側壁側端部21eでは距離Mが長い吹出風路側端部21fと比較して、ファン外周部8bから吹き出した気流が対向面18aに到達する前に回転軸方向AXに広がる気流が少なく、吹出風路側端部21fの衝突圧Pvfよりも高い衝突圧Pveが得られる。 As shown in FIG. 21, the distance Me <distance Mf on the facing surface 18a, and the distance M between the side wall side end portion 21e and the blown air passage side end portion 21f is linearly changed. For example, the distance Me of the side wall side end portion 21e is set to 20 mm, and the distance Mf of the blowing air passage side end portion 21f is set to 25 mm. FIG. 22 is a diagram showing the distance M between the facing surface of the collision wall in the rotation axis direction AX and the outer periphery of the fan according to Embodiment 3, the horizontal axis indicates the position in the rotation axis direction AX, and the vertical axis indicates the facing surface and the fan. It is a graph which shows the distance M with an outer peripheral part. In FIG. 22, the change of the distance M shown in FIG. 21 is indicated by a straight line ln11. FIG. 23 is an explanatory view showing an air flow on the opposing surface 18a configured as described above. The side wall side end portion 21e of the opposing surface 18a is adjacent to the space S where the static pressure Ps is low and the blown airflow does not flow directly, and the side wall side end portion 21e has a draft resistance due to the end plate 12b and the like. Due to the fact that the static pressure Ps is higher than that of the road side end portion 21f, reverse suction in which room air enters the machine through the outlet 3 is likely to occur. For this reason, the distance Me from the fan outer peripheral portion 8b is configured to be shorter than the distance Mf at the blowout air passage side end portion 21f at the side wall side end portion 21e. Compared with the blown air passage side end portion 21f having a long distance M, the airflow spreading from the fan outer peripheral portion 8b in the side wall side end portion 21e having a short distance M spreads in the rotation axis direction AX before reaching the facing surface 18a. The collision pressure Pve that is less than the collision pressure Pvf of the blowout air passage side end portion 21f is obtained.
 例えば、側壁側端部21e付近の静圧PsをPseとし、吹出風路側端部21fの静圧PsをPsfとして、PseがPsfと同様だとすると、衝突圧Pve、Pvfが加わって、対向面18aの側壁側端部21eに形成される淀み圧PstはPsteとなり、吹出風路側端部21fに形成される淀み圧PstであるPstfよりも高くなる(Pste>Pstf>P0)。なお、この淀み圧Pste、Pstfはどちらも大気圧P0よりも高くなるように、衝突壁18を形成する。側壁側端部21eに大気圧P0よりも高い淀み圧Psteを形成することで、室内空気が吹出口3を通って機内に侵入するのを防止する圧力場を作ることができ、室内空気が空間Sへ流れ込む逆吸いを防止することができる。 For example, if the static pressure Ps in the vicinity of the side wall side end portion 21e is Pse and the static pressure Ps of the blowout air passage side end portion 21f is Psf, and Pse is the same as Psf, the collision pressures Pve and Pvf are applied, and the opposing surface 18a The stagnation pressure Pst formed at the side wall end 21e is Pste, which is higher than Pstf, which is the stagnation pressure Pst formed at the blowout air passage side end 21f (Pste> Pstf> P0). Note that the collision wall 18 is formed so that the stagnation pressures Pste and Pstf are both higher than the atmospheric pressure P0. By forming a stagnation pressure Pste higher than the atmospheric pressure P0 at the side wall side end portion 21e, a pressure field that prevents the room air from entering the machine through the blowout port 3 can be created. Reverse sucking into S can be prevented.
 また、前述のように、吹出風路側端部21fの静圧PsであるPsfが側壁側端部21eの静圧PsであるPseよりも高い場合には、静圧Psが同様の場合よりも吹出風路側端部21fにおける距離Mfをさらに長くできる。このように、吹出風路側端部21fにおける距離Mfをさらに長くしても、吹出風路側端部21fの淀み圧Pstfを側壁側端部21eの淀み圧Pstfと同程度に形成することができる。距離Mfを長く構成することで、衝突壁18に到達することなく吹出口3に至る吹出風路11に流れる気流が多くなり、さらに送風作用が得られてエネルギー損失及び騒音の増大を抑制できる。 In addition, as described above, when Psf, which is the static pressure Ps of the blowout air passage side end portion 21f, is higher than Pse, which is the static pressure Ps of the side wall side end portion 21e, the static pressure Ps is blown out as compared with the same case. The distance Mf at the air passage side end portion 21f can be further increased. In this way, even if the distance Mf at the blowout air passage side end portion 21f is further increased, the stagnation pressure Pstf at the blowout air passage side end portion 21f can be formed at the same level as the stagnation pressure Pstf at the side wall side end portion 21e. By configuring the distance Mf to be long, the airflow flowing in the blowout air passage 11 that reaches the blowout port 3 without reaching the collision wall 18 is increased, and a blowing action can be obtained to suppress an increase in energy loss and noise.
 即ち、側壁側端部21e付近では、逆吸いを確実に防止する大きさの淀み圧Psteを形成するのに必要な衝突圧Pveが得られるような距離Meとする。一方、吹出風路側端部21f付近では、大気圧P0と同程度の淀み圧Pstf(≧P0)を形成するのに必要な衝突圧Pvfが得られるような距離Mfとする。この距離Mfは距離Meよりも長く、対向面18aの吹出風路側端部21fは側壁側端部21eよりもファン外周部8bから離れて構成されるため、気流の一部が吹出口3に至る吹出風路11に流れ、送風に作用する。 That is, in the vicinity of the side wall side end portion 21e, the distance Me is set such that a collision pressure Pve necessary to form a stagnation pressure Pste having a magnitude that reliably prevents reverse suction is obtained. On the other hand, in the vicinity of the blowout air passage side end portion 21f, the distance Mf is set such that a collision pressure Pvf necessary for forming a stagnation pressure Pstf (≧ P0) comparable to the atmospheric pressure P0 is obtained. This distance Mf is longer than the distance Me, and the blowout air passage side end portion 21f of the facing surface 18a is configured to be further away from the fan outer peripheral portion 8b than the side wall side end portion 21e. It flows into the blowout air passage 11 and acts on the air flow.
 さらに以下のような効果もある。実施の形態3によれば、気流が対向面18aに垂直に衝突するのではなく、対向面18aの斜面に衝突するので、図23に示すように気流Xは衝突圧に作用する気流成分Xaと送風に作用する気流Xbとに分解される。送風に作用する気流成分Xb及び回転軸線方向AXでの淀み圧Pstの高低による圧力差によって、対向面18aには側壁側端部21eから吹出風路側端部21fへの気流Xcが生じる。このため、気流Xcが、逆吸いの気流と衝突するようになり、さらに逆吸いを防止できる。 Furthermore, there are the following effects. According to the third embodiment, the airflow does not collide perpendicularly to the facing surface 18a, but collides with the slope of the facing surface 18a, so that the airflow X and the airflow component Xa acting on the collision pressure as shown in FIG. It is decomposed into an airflow Xb that acts on the air flow. Due to the air flow component Xb acting on the air flow and the pressure difference due to the level of the stagnation pressure Pst in the rotation axis direction AX, an air flow Xc from the side wall side end portion 21e to the blowing air path side end portion 21f is generated on the facing surface 18a. For this reason, the airflow Xc comes to collide with the reverse suction airflow, and further reverse suction can be prevented.
 以上のように、対向面18aの吹出風路側端部21fと前記貫流ファン8の外周部8bとの距離Mfは、前記貫流ファン8の端部側に位置する前記対向面18aの側壁側端部21eと前記ファン外周部8bとの距離Meよりも長く構成した。すなわち、回転軸線17の方向に見て、対向面18aの貫流ファン8の中央寄りの端部である吹出風路側端部21fは、貫流ファン8の端部寄りの端部である側壁側端部21eよりも、ファン延長部8aの外周部8bから離れるように構成した。これにより、対向面18aに淀み圧を形成すると共に送風作用を行う気流を多くして、逆吸いを防止できると共に、衝突壁を形成することによる送風量の低減及び衝突音の増大を抑制し、必要送風量に対する消費電力を小さく抑え、低電力化及び低騒音化できる空気調和機が得られる効果がある。 As described above, the distance Mf between the air outlet side end portion 21f of the facing surface 18a and the outer peripheral portion 8b of the cross-flow fan 8 is the side wall-side end portion of the facing surface 18a located on the end side of the cross-flow fan 8. The distance Me is longer than the distance Me between the fan outer peripheral portion 8b and 21e. That is, when viewed in the direction of the rotation axis 17, the blown air passage side end 21 f that is the end of the facing surface 18 a near the center of the cross-flow fan 8 is the side wall-side end that is the end near the end of the cross-flow fan 8. It was configured to be farther from the outer peripheral portion 8b of the fan extension 8a than 21e. Thereby, while forming the stagnation pressure on the opposing surface 18a and increasing the airflow that performs the air blowing action, it is possible to prevent reverse suction, suppress the reduction of the air flow and the increase of the collision sound by forming the collision wall, There is an effect of obtaining an air conditioner that can reduce power consumption with respect to the required air blowing amount, reduce power consumption, and reduce noise.
 なお、上記では、対向面18aの回転軸線方向AXにおける形状を、直線ln11(図22参照)のように直線的に変化させる例について述べたが、これに限るものではない。例えば図24に示すように回転軸線方向AXの位置に対応して、距離Mを直線ln12のように変化させてもよい。図24に曲線ln12で示す距離Mが得られるように構成した対向面18aの形状を図25(a)に示す。図25(a)のように、側壁側端部21eに近い位置では、図24にて曲線ln12で示したように側壁側端部21eから位置21gまでは距離Mが略一定のファン外周部8bに対向する平面とし、位置21gから吹出風路側端部21fまでは距離Mが位置21g、側壁側端部21eよりも長くなるように変化させてもよい。この場合には、側壁側端部21eに形成される淀み圧の圧力場を、回転軸線方向AXに側壁側端部21eから位置21gまで幅広く形成でき、確実に逆吸いを防止できる。 In the above description, the example in which the shape of the facing surface 18a in the rotation axis direction AX is linearly changed like the straight line ln11 (see FIG. 22) has been described, but the present invention is not limited to this. For example, as shown in FIG. 24, the distance M may be changed like a straight line ln12 corresponding to the position in the rotation axis direction AX. FIG. 25A shows the shape of the facing surface 18a configured to obtain the distance M indicated by the curve ln12 in FIG. As shown in FIG. 25A, at the position close to the side wall end 21e, the fan outer peripheral portion 8b has a substantially constant distance M from the side wall end 21e to the position 21g as shown by the curve ln12 in FIG. The distance M from the position 21g to the blowing air passage side end 21f may be changed so as to be longer than the position 21g and the side wall end 21e. In this case, the pressure field of the stagnation pressure formed at the side wall end portion 21e can be formed widely from the side wall side end portion 21e to the position 21g in the rotation axis direction AX, and the reverse suction can be reliably prevented.
 また、距離Mを図24の曲線ln13で示すように回転軸線方向AXの位置に対応させて変化させたときの対向面18aを、図25(b)に示す。図25(b)に示すように、図24の曲線ln13に示すように距離Mを変化させる場合には、側壁側端部21eから吹出風路側端部21fまで、滑らかな曲面で対向面18aを形成する。この場合には、対向面18a上を流れる気流の流れが滑らかとなり、特に吹出風路11にスムーズに流れる気流が得られ、通風抵抗を低減できる。 FIG. 25B shows the facing surface 18a when the distance M is changed corresponding to the position in the rotational axis direction AX as indicated by the curve ln13 in FIG. As shown in FIG. 25 (b), when the distance M is changed as shown by the curve ln13 in FIG. 24, the opposing surface 18a is formed with a smooth curved surface from the side wall side end portion 21e to the blowing air passage side end portion 21f. Form. In this case, the flow of the airflow flowing on the facing surface 18a becomes smooth, and in particular, an airflow flowing smoothly in the blowout air passage 11 is obtained, and the ventilation resistance can be reduced.
 対向面18aの形状は、ln11、ln12、ln13のような距離Mの変化が得られるようなものに限らず、回転軸線方向AXにて対向面18aの形状をどのように変化させてもよい。回転軸線方向AXからみた対向面18aの形状は、側壁側端部21eから吹出風路側端部21fにかけて、直線的に滑らかに変化するものでもよく、また段階的に変化、曲線状に変化するものでよい。
 ただし、回転軸線方向AXのどの位置においても、その位置の側壁側端部21eに近い側よりも吹出風路側端部21fに近い側の距離Mの方が長い、又は同じになるように、対向面18aの形状を変化させるとよい。即ち、対向面18aにおいて、側壁側端部21eから吹出風路側端部21fに向かって、ファン外周部8bとの距離Mが減少しない方がよい。回転軸線方向AXにおいて、対向面18aの側壁側端部21eで吹出風路側端部21fよりも高い衝突圧が得られるように構成すれば、ファン延長部8aから吹き出された気流のうち、衝突壁18に衝突しない気流がスムーズに吹出風路11の方へと流れる。
The shape of the facing surface 18a is not limited to the change of the distance M such as ln11, ln12, and ln13, and the shape of the facing surface 18a may be changed in any way in the rotation axis direction AX. The shape of the facing surface 18a viewed from the rotation axis direction AX may be linearly and smoothly changed from the side wall side end 21e to the blowout air channel side end 21f, or may be changed stepwise and curved. It's okay.
However, at any position in the rotational axis direction AX, the distance M on the side closer to the blowout air passage side end 21f is longer or the same as that on the side closer to the side wall end 21e at that position. The shape of the surface 18a may be changed. That is, in the facing surface 18a, it is better that the distance M from the fan outer peripheral portion 8b does not decrease from the side wall side end portion 21e toward the blowing air passage side end portion 21f. In the rotational axis direction AX, if the side wall side end portion 21e of the opposing surface 18a is configured to obtain a higher collision pressure than the blowout air passage side end portion 21f, the collision wall of the airflow blown from the fan extension 8a The airflow that does not collide with the air 18 flows smoothly toward the blowing air passage 11.
 さらに吹出風路側端部21fを、角部ではなく丸みを有するような形状で構成すると、角部によって気流が乱れたり渦を形成することがないので、気流が吹出風路11の下流にスムーズに流れ、通風抵抗の増加を防止できる。 Further, if the blowing air passage side end portion 21f is configured to have a round shape instead of a corner portion, the air flow is not disturbed or a vortex is formed by the corner portion, so that the air flow is smoothly downstream of the blowing air passage 11. Increase in flow and draft resistance can be prevented.
 また、回転軸線方向AXの対向面18aの形状は、奥行き方向AYの各位置で同じでなくてもよい。例えば、スタビライザー側端部19a付近では、回転軸線方向AXにおいて図24に示した曲線ln12のように、回転軸線方向AXに幅広く比較的高い衝突圧Pvが形成されるような形状とし、リアガイド部側端部19b付近では、図22で示した直線ln11や図24で示した曲線ln13のように、吹出風路11に向かう気流が多く得られる形状としてもよい。 Further, the shape of the facing surface 18a in the rotation axis direction AX may not be the same at each position in the depth direction AY. For example, in the vicinity of the stabilizer side end 19a, a shape in which a relatively high collision pressure Pv is formed in the rotation axis direction AX in the rotation axis direction AX as shown by a curve ln12 shown in FIG. In the vicinity of the side end portion 19b, a shape in which a large amount of airflow directed toward the blowout air passage 11 may be obtained, such as a straight line ln11 illustrated in FIG. 22 and a curve ln13 illustrated in FIG.
 なお、衝突壁18は室内機1の容器を構成する筐体と一体に構成されていてもよいし、別体として、側壁30の内側に、例えば接着や爪固定、ねじ固定などで固定するように構成されていてもよい。そして、その形状は、貫流ファン8の左右方向の両端部から吹き出した気流がぶつかって、風速のエネルギーが圧力のエネルギーに変換されるように構成されていればよい。
 また、上記実施の形態1~3では、ファン延長部8aに対向するスタビライザー9の端部領域、リアガイド部10の端部領域、及びこれらを接続する衝突壁18によって、ファン延長部8aから吹き出される気流に対向するようにファン延長部8aの外周部に略沿って設けられた対向面18aを有する壁構造を構成する例を示した。しかし、このような壁構造を、スタビライザー9やリアガイド部10とは別の一体の部材で構成してもよい。具体的には、例えば、スタビライザー9及びリアガイド部10の左右幅を、吹出口3の左右幅と同じにし、実施の形態1~3においてファン延長部8aに対応して設けた上記の壁構造に相当する構成を、一体の部材で構成し、これを室内機1の側壁30の内側に設ける。このようにしても、実施の形態1~3で示したのと同様の効果を得ることができる。
The collision wall 18 may be formed integrally with the housing constituting the container of the indoor unit 1 or as a separate body, for example, fixed to the inside of the side wall 30 by bonding, claw fixing, screw fixing, or the like. It may be configured. And the shape should just be comprised so that the airflow which blown off from the both ends of the left-right direction of the once-through fan 8 may collide, and the energy of a wind speed may be converted into the energy of a pressure.
In the first to third embodiments, the fan extension portion 8a is blown out by the end region of the stabilizer 9 facing the fan extension portion 8a, the end region of the rear guide portion 10, and the collision wall 18 connecting them. The example which comprises the wall structure which has the opposing surface 18a provided substantially along the outer peripheral part of the fan extension part 8a so as to oppose the airflow to be performed was shown. However, such a wall structure may be configured by an integral member different from the stabilizer 9 and the rear guide portion 10. Specifically, for example, the above-described wall structure provided in correspondence with the fan extension portion 8a in the first to third embodiments in which the left and right widths of the stabilizer 9 and the rear guide portion 10 are the same as the left and right widths of the air outlet 3 The structure corresponding to is configured by an integral member, and this is provided inside the side wall 30 of the indoor unit 1. Even in this case, the same effects as those shown in the first to third embodiments can be obtained.
 1 室内機(空気調和機)、 2 吸込みグリル、 3 吹出口、 4 風向ベーン、 5 電気集塵器、 6 フィルタ、 7 熱交換器、 8 貫流ファン(羽根車)、 8a ファン延長部、 8b ファン外周部、 9 スタビライザー、 10 リアガイド部、 10a 上流側端部、 11 吹出風路、 12 支持板、 12a、12b ファン端板、 13 翼、 14 連(羽根車単体)、 14a 端部連、 15 ファンボス、 16 モータ、 17 回転軸線、 18 衝突壁、 18a 対向面、 19a スタビライザー側端部、 19b リアガイド部側端部、 19c 増加開始位置、 20 外周位置、 21e 側壁側端部、 21f 吹出風路側端部、 30 側壁。 1 indoor unit (air conditioner), 2 suction grille, 3 outlets, 4 wind vanes, 5 electrostatic precipitator, 6 filter, 7 heat exchanger, 8 once-through fan (impeller), 8a fan extension, 8b fan Peripheral part, 9 stabilizer, 10 rear guide part, 10a upstream end, 11 blowing air path, 12 support plate, 12a, 12b fan end plate, 13 blades, 14 stations (impeller alone), 14a end station, 15 Fan boss, 16 motor, 17 rotation axis, 18 collision wall, 18a facing surface, 19a stabilizer side end, 19b rear guide side end, 19c increase start position, 20 outer peripheral position, 21e side wall end, 21f blowout air Roadside end, 30 side walls.

Claims (7)

  1.  空気を吸い込む吸込口、及び左右方向に長く形成され空気を吹き出す吹出口を有する室内機本体と、
       前記室内機本体の左右方向と回転軸線とが一致するようにして前記室内機本体内に設けられ、前記吹出口の長手方向の端部よりも外側に延びたファン延長部を左右両端部に有する貫流ファンと、
     前記貫流ファンを挟んで対向配置され、前記貫流ファンから吹き出される室内空気を前記吹出口に導く吹出風路を形成するスタビライザー及びリアガイド部と、
     前記室内機本体内において前記吹出口の左右両端部の外側にそれぞれ設けられ、前記ファン延長部から吹き出される気流と対向するように前記ファン延長部の外周部の一部に略沿って設けられた対向面を有する壁構造と、を備え、
      前記対向面及び前記ファン延長部の前記回転軸線に垂直な断面における、前記対向面と前記ファン延長部の外周部との、前記ファン延長部の半径方向の距離を距離Mとすると、
     前記対向面の前記スタビライザー寄りの点aにおける前記距離Mである距離Maに対し、前記対向面のうち前記点aに対して前記リアガイド部寄りの領域の少なくとも一部における前記距離Mが、前記距離Maよりも長くなるように構成されている
     ことを特徴とする空気調和機。
    An indoor unit main body having a suction port for sucking air and a blowout port that is formed long in the left-right direction and blows out air;
    Provided in the indoor unit main body so that the left-right direction of the indoor unit main body and the rotation axis coincide with each other, fan extension portions extending outward from the longitudinal end portion of the outlet are provided at both left and right end portions. With once-through fans,
    A stabilizer and a rear guide part that are arranged to face each other with the cross-flow fan interposed therebetween, and form a blowout air passage that guides indoor air blown out of the cross-flow fan to the blowout port;
    In the indoor unit main body, provided outside the left and right ends of the air outlet, respectively, and substantially along a part of the outer periphery of the fan extension so as to face the airflow blown out from the fan extension. A wall structure having opposite surfaces,
    When the distance in the radial direction of the fan extension portion between the opposing surface and the outer peripheral portion of the fan extension portion in a cross section perpendicular to the rotation axis of the opposite surface and the fan extension portion is a distance M,
    For the distance Ma, which is the distance M at the point a of the facing surface near the stabilizer, the distance M in at least a part of the region of the facing surface near the rear guide portion with respect to the point a is An air conditioner configured to be longer than the distance Ma.
  2.  前記壁構造は、
     左右方向における前記スタビライザーの端部領域と、左右方向における前記リアガイド部の端部領域と、対向配置された前記スタビライザーの端部領域及び前記リアガイド部の端部領域を接続するように設けられ、前記対向面を有する衝突壁とで構成されている
     ことを特徴とする請求項1記載の空気調和機。
    The wall structure is
    An end region of the stabilizer in the left-right direction, an end region of the rear guide portion in the left-right direction, an end region of the stabilizer and an end region of the rear guide portion that are arranged to face each other are provided. The air conditioner according to claim 1, wherein the air conditioner is configured by a collision wall having the facing surface.
  3.  前記点aは、前記対向面の前記スタビライザーに連なる端部上の点であり、
     前記対向面の前記リアガイド部に連なる端部上の点bにおける前記距離Mである距離Mbは、前記距離Maよりも長く構成されている
     ことを特徴とする請求項2記載の空気調和機。
    The point a is a point on an end of the facing surface that is continuous with the stabilizer,
    The air conditioner according to claim 2, wherein a distance Mb that is the distance M at a point b on an end portion of the facing surface that is continuous with the rear guide portion is longer than the distance Ma.
  4.  前記対向面のうち、前記スタビライザー側からみて前記距離Mが前記距離Maよりも長くなる位置を増加開始位置とすると、
     前記点aから前記増加開始位置に至る領域の前記距離Mは、前記距離Maと同じである
     ことを特徴とする請求項1~請求項3のいずれか一項に記載の空気調和機。
    When the position where the distance M is longer than the distance Ma as viewed from the stabilizer side among the opposed surfaces is an increase start position,
    The air conditioner according to any one of claims 1 to 3, wherein the distance M in a region from the point a to the increase start position is the same as the distance Ma.
  5.  前記距離Ma及び前記距離Mbは、前記対向面の前記点aと前記点bとの間の領域における前記距離Mよりも短く構成されている
     ことを特徴とする請求項3記載の空気調和機。
    The air conditioner according to claim 3, wherein the distance Ma and the distance Mb are configured to be shorter than the distance M in a region between the point a and the point b on the facing surface.
  6.  前記回転軸線の方向に見て、前記対向面の前記貫流ファンの中央寄りの端部は、前記貫流ファンの端部寄りの端部よりも、前記ファン延長部の外周部から離れている
     ことを特徴とする請求項1~請求項5のいずれか一項に記載の空気調和機。
    When viewed in the direction of the rotation axis, the end of the facing surface near the center of the cross-flow fan is farther from the outer periphery of the fan extension than the end near the end of the cross-flow fan. The air conditioner according to any one of claims 1 to 5, wherein the air conditioner is characterized by the following.
  7.  前記吸込口から吸い込まれた室内空気と熱交換する熱交換器を、前記室内機本体の内部に備えたことを特徴とする請求項1~請求項6のいずれか一項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 6, further comprising a heat exchanger for exchanging heat with indoor air sucked from the suction port, inside the indoor unit main body. .
PCT/JP2012/002177 2011-12-02 2012-03-29 Air conditioner WO2013080395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201290001026.2U CN203926056U (en) 2011-12-02 2012-03-29 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011264476 2011-12-02
JP2011-264476 2011-12-02

Publications (1)

Publication Number Publication Date
WO2013080395A1 true WO2013080395A1 (en) 2013-06-06

Family

ID=48534905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002177 WO2013080395A1 (en) 2011-12-02 2012-03-29 Air conditioner

Country Status (2)

Country Link
CN (1) CN203926056U (en)
WO (1) WO2013080395A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145692A (en) * 2015-02-09 2016-08-12 シャープ株式会社 Air conditioner
EP3640548B1 (en) * 2017-12-08 2023-07-26 Gree Electric Appliances, Inc. of Zhuhai Air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7329969B2 (en) * 2019-06-06 2023-08-21 シャープ株式会社 air conditioner
JP7271356B2 (en) * 2019-07-19 2023-05-11 シャープ株式会社 Blower, air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487405U (en) * 1977-12-02 1979-06-20
JPS56139890U (en) * 1980-03-24 1981-10-22
JPS57182295U (en) * 1982-04-08 1982-11-18
JPS6127443A (en) * 1984-07-19 1986-02-06 Matsushita Electric Ind Co Ltd Flow direction control device
JPH08121396A (en) * 1994-10-28 1996-05-14 Matsushita Electric Ind Co Ltd Blower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487405U (en) * 1977-12-02 1979-06-20
JPS56139890U (en) * 1980-03-24 1981-10-22
JPS57182295U (en) * 1982-04-08 1982-11-18
JPS6127443A (en) * 1984-07-19 1986-02-06 Matsushita Electric Ind Co Ltd Flow direction control device
JPH08121396A (en) * 1994-10-28 1996-05-14 Matsushita Electric Ind Co Ltd Blower

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145692A (en) * 2015-02-09 2016-08-12 シャープ株式会社 Air conditioner
EP3640548B1 (en) * 2017-12-08 2023-07-26 Gree Electric Appliances, Inc. of Zhuhai Air conditioner

Also Published As

Publication number Publication date
CN203926056U (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5369141B2 (en) Air conditioner
US8100637B2 (en) Double suction type centrifugal fan
JP5143317B1 (en) Air conditioner indoor unit
JP5744209B2 (en) Air conditioner
TWI513908B (en) Cross flow fan, forming mold and fluid feeding device
JP6415741B2 (en) Blower and air conditioner equipped with the same
US9759220B2 (en) Cross flow fan and indoor unit of air-conditioning apparatus
JP4678327B2 (en) Air conditioner
WO2012002081A1 (en) Fan, mold for molding, and fluid feeding device
JP6377172B2 (en) Outdoor unit for propeller fan, propeller fan device and air conditioner
WO2017145275A1 (en) Blower and air conditioner employing same
KR102249794B1 (en) Outdoor unit of air conditioner
WO2013080395A1 (en) Air conditioner
JP2016121580A (en) Centrifugal blower
KR102321173B1 (en) Fan and air conditioner indoor unit having same
US20120175089A1 (en) Outdoor unit for air conditioner
JP2007205268A (en) Centrifugal fan
CN110506164B (en) Propeller fan and outdoor unit for air conditioner
KR101233538B1 (en) Cross-flow fan and air conditioner equipped with same
JP2009281215A (en) Air conditioner indoor unit
KR20140014409A (en) Indoor unit of air conditioner
WO2015064617A1 (en) Cross-flow fan and air conditioner
WO2015063851A1 (en) Cross-flow fan and air conditioner
CN114151858A (en) Indoor unit of air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290001026.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP