WO2011113856A1 - Verfahren und vorrichtung zur zuglängenerkennung - Google Patents

Verfahren und vorrichtung zur zuglängenerkennung Download PDF

Info

Publication number
WO2011113856A1
WO2011113856A1 PCT/EP2011/053950 EP2011053950W WO2011113856A1 WO 2011113856 A1 WO2011113856 A1 WO 2011113856A1 EP 2011053950 W EP2011053950 W EP 2011053950W WO 2011113856 A1 WO2011113856 A1 WO 2011113856A1
Authority
WO
WIPO (PCT)
Prior art keywords
main air
air line
train
pressure
line
Prior art date
Application number
PCT/EP2011/053950
Other languages
German (de)
English (en)
French (fr)
Inventor
Walter Schlosser
Christoph Strasser
Götz WIEDMANN
Original Assignee
Knorr-Bremse Systeme für Schienenfahrzeuge GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knorr-Bremse Systeme für Schienenfahrzeuge GmbH filed Critical Knorr-Bremse Systeme für Schienenfahrzeuge GmbH
Priority to AU2011229236A priority Critical patent/AU2011229236B2/en
Priority to CN201180014614.XA priority patent/CN102822032B/zh
Priority to EP11710157.6A priority patent/EP2547568B1/de
Priority to ES11710157.6T priority patent/ES2586578T3/es
Priority to RU2012144281/11A priority patent/RU2561481C2/ru
Publication of WO2011113856A1 publication Critical patent/WO2011113856A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0054Train integrity supervision, e.g. end-of-train [EOT] devices

Definitions

  • the present invention relates to a method and a device for
  • the main air line HL in train assemblies is used primarily for triggering the pneumatically operated brake, which come in the sense of a signal transmission by reducing the pressure in the braking position and are released when pressure increases.
  • Main air line HL which runs along all the wagons of a train, can also be used to obtain information about train-specific characteristics. It is thus possible to monitor the main air line HL with regard to train separation.
  • a check of the nachgespeisten volume flow and the pressure conditions during driving with brakes released, during braking and during the release is performed.
  • Threshold values and gradients for the flow values and pressure values are defined, which allow conclusions to be drawn about the train length or the continuity of the main air line HL via signal engineering processing. For example, if it is found that the continuity of the main air line HL is not given, it can be inferred as a disturbing cause of this on a closed shut-off valve within the main air line HL between two cars.
  • Flow meter to determine the volume flow in the main air line HL gives a message about the condition of the train.
  • the main air line of the train usually passes through all connected cars and can be monitored by sensors, for example, the relay valve on the traction unit, with the direction and amount of the volume flow of compressed air are measured by sensors known per se.
  • sensors for example, the relay valve on the traction unit, with the direction and amount of the volume flow of compressed air are measured by sensors known per se.
  • the incoming compressed air replaces only the leakage of air leakage from the brake system, which emerges over the entire length of the main air line HL. If it is braked, the air pressure in the main air line HL defined in most braking stages is lowered.
  • the measured values of the sensors monitoring the main air line HL are supplied to an electronic evaluation unit, which compares the detected measured values with predetermined values of the respective operating variables for a corresponding operating state of the train. Depending on the result of the comparison, it is concluded that the train is complete.
  • the evaluation and acquisition of the measured values to determine the train completion information takes place only at a single point of the train, preferably in the train
  • volume and pressure signals in the main air line HL are determined by sensor technology, wherein in particular a timely transmission of information about the last car of the train follows the power tool.
  • an evaluation device checks whether the volume and pressure signals and physical variables derived therefrom are known to a known setpoint range stored in the evaluation unit for the train length correspond. Depending on this, a signal is output which provides the information as to whether the measured values lie within the stored setpoint ranges. It is also proposed to determine the stored in the evaluation unit of the traction unit length of the train to be measured train of a Switzerlanddorfnmesser and to the
  • the train length can also be measured by an axle counter when starting or when leaving a station and transmitted to the locomotive.
  • a stationary measuring device is activated here on the track for Switzerlandinntician.
  • DE 100 09 324 AI shows a method for engine-based determination of the train length of a train, in which only the physical state variables pressure, flow and temperature of the air in the main air line HL are measured in the field of the traction unit, from a defined sequence of the
  • the invention includes the solution that the sensor-technical measured variable detection is carried out only from the stationary state of an existing brake stage I during the execution of the next brake stage II, until a stationary state within this braking stage II is reached again.
  • the volume of the main air line HL is calculated. From the volume calculated in this way, it is finally possible, in a manner known per se, to conclude the length of the main air line HL and thus the length of the train L given a known line cross-section.
  • the volume can be determined concretely via the following formulaic relationship:
  • the line length can thus be checked for each brake request which does not take place from the released state. This can be the
  • Continuity of the main air line HL checked and a closed shut-off valve can be detected. If the cable length determination is integrated into the brake sample before the start of the journey, the system can issue a warning about a different train length in the
  • the leakage must be considered in the above procedure.
  • the main air line HL is vented completely, except for the leakage, via the driver's brake system, and thus detected by the flow measurement.
  • the leakage rate must be added in addition to the volume flow. The following relationship applies:
  • pi corresponds to the absolute pressure before, p 2 the absolute pressure after the nozzle and T the
  • the constant nozzle cross-section A can thus be determined by the formal relationship [III] as a function of
  • VN Lectage can thus be calculated approximately from the measured pressure curve in the main air line HL.
  • the advantage of the solution according to the invention results, in particular, from the measure that the air flowing in the main air line HL is ignored during the initial filling of the brake system. Because when first filling the air flows not only in the Main air line HL, but also in the working chambers of the control valves and in various reservoirs of the car. In this case, the volume of the storage container of the individual carriages can vary, so that in practice a calculation-related correction of this disturbance variable is not possible. In addition, most of the initial state of the working chamber of the control valves and the reservoir is not known. The solution according to the invention completely excludes the measurement errors resulting therefrom.
  • the solution according to the invention provides, in principle, the flow rate of the air only in the filled state, for example, after first filling while driving or in any stationary state of the main air line HL, in which the pressure P HL is constant, is detected.
  • the solution according to the invention avoids an unknown flow size, which leads to a more accurate measurement result.
  • Determining the train length during the ventilation of the main air line HL the sensor-related measured value acquisition is only carried out until the pressure of the supply air tank connected to the main air line is reached.
  • the cross-section of the line cross-section which is used with the determined volume of the main air line HL for calculating the train length be both the cross section of the main air line HL passing through the individual carriages and the cross section the interposed line couplings is taken into account.
  • the Tensile length L results - as stated above - from dividing the determined volume of the main air line HL through the line cross-section Q.
  • the volume flow induced thereby in the stationary state is additionally measured within the main air line HL, so that this measured variable can be used as a correction value in determining the train length for the computational elimination of the disturbance. The necessary for the calculation
  • the flow coefficient Y can be set in a simplified manner in the range 0.45 to 0.5, if the pressure ratio p2 to pl is greater than the value 0.528 +/- 10%. Also at one
  • Ratio greater than this value the error remains relatively low, since with decreasing pressure in the main air line HL and the leakage decreases. If the leakage of the pneumatic brake system is calculated or fixed, a better quality result can be obtained by including it in the calculation of the train length.
  • Correction value the air volume, which is lost by brake acceleration losses of the individual control valves associated with the brake cylinder from the dissolved state of the brake system, to eliminate computationally when determining the train length.
  • the inventive method is based on the fact that the acceleration effect of
  • Brake requirements can be checked from the released state to detect the demolition of a tensile part or a closed stopcock.
  • the should Implementation of this measure at least a pressure of about 0, lbar be vented through a nozzle until the acceleration effect responds in the individual control valves.
  • the acceleration effect takes about a pressure of 0,3bar locally from the
  • the volume determination of the main air line HL can also take place in the so-called two-line mode.
  • Two-line operation are reservoir, which can vary in size, and other compressed air consumers via a separate compressed air line, the main reservoir line HB filled.
  • the main tank line HB runs along the train in parallel to the main air line HL.
  • the filling of the main air line HL can be between any two stationary
  • V Total V Nmess V Nleckage Determining the volume via the dissolving and filling process in two-pipe operation is only possible without error if the air from the main air line HL is only routed via the
  • Figure 1 is a schematic representation of one consisting of several cars
  • FIG. 2 shows a flowchart for illustrating the individual method steps for
  • a train consists of many juxtaposed car la to lc.
  • a pneumatic brake system brakes the train in accordance with the pressure in one of carriage la to wagon lb and finally wagon lc coupled main air line HL in one or more braking stages to a standstill.
  • sensors 2a to 2c monitor the
  • the second sensor 2b and 2b ' for determining the flow ⁇ provided. While the first sensor 2b is used during the changeover between the stationary states, ie during the transition from one braking stage to the next higher braking stage, the second sensor 2b 'is used only in the steady state for the purpose of leakage measurement. Because the change between stationary
  • the first sensor 2b is larger sized than the second sensor 2b ', which in contrast only very small flows
  • a sensor that measures both leakage and ventilation processes or two sensors with the same cross-section in series may be sufficient in the case of ventilation.
  • the leakage sensor requires a smaller measuring range and can therefore achieve greater accuracy.
  • the electronic evaluation unit 4 takes into account both the cross section of the running through the individual carriages la to lc main air line HL and the cross section of the interposed line couplings 5 in determining the train length with respect to the line cross section to achieve more accurate calculation results.
  • each individual car la to lc is at least one control valve 6 with this
  • pneumatic brake cylinder 7 arranged to actuate the brakes.
  • braking acceleration also escapes air volume from the control valves 6, which can be detected as a correction value in order to consider this computationally when determining the train length.
  • the Switzerlanddorfnerkennung preferably takes place by starting from a stationary state of the brake system, which is formed by the applied brake I.
  • a sensor-technical measured variable detection of the physical values pressure p HL , flow V of the main air line HL and the ambient temperature T takes place, namely during the execution of the next brake stage II.
  • a stationary state is set again.
  • Main air line HL whose length calculated, which corresponds to the train length L.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
PCT/EP2011/053950 2010-03-18 2011-03-16 Verfahren und vorrichtung zur zuglängenerkennung WO2011113856A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2011229236A AU2011229236B2 (en) 2010-03-18 2011-03-16 Method and device for train length detection
CN201180014614.XA CN102822032B (zh) 2010-03-18 2011-03-16 用于进行列车长度检测的方法和设备
EP11710157.6A EP2547568B1 (de) 2010-03-18 2011-03-16 Verfahren und vorrichtung zur zuglängenerkennung
ES11710157.6T ES2586578T3 (es) 2010-03-18 2011-03-16 Procedimiento y dispositivo para la detección de la longitud de un tren
RU2012144281/11A RU2561481C2 (ru) 2010-03-18 2011-03-16 Способ и устройство для определения длины поезда

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010011949 DE102010011949A1 (de) 2010-03-18 2010-03-18 Verfahren und Vorrichtung zur Zuglängenerkennung
DE102010011949.0 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011113856A1 true WO2011113856A1 (de) 2011-09-22

Family

ID=44064679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/053950 WO2011113856A1 (de) 2010-03-18 2011-03-16 Verfahren und vorrichtung zur zuglängenerkennung

Country Status (7)

Country Link
EP (1) EP2547568B1 (zh)
CN (1) CN102822032B (zh)
AU (1) AU2011229236B2 (zh)
DE (1) DE102010011949A1 (zh)
ES (1) ES2586578T3 (zh)
RU (1) RU2561481C2 (zh)
WO (1) WO2011113856A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230037919A1 (en) * 2019-02-26 2023-02-09 Cattron North America, Inc. Remote Control Locomotive Systems and Methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103697330A (zh) * 2013-12-06 2014-04-02 中南大学 一种列车超长管路泄露监测方法
EP3476678B1 (en) * 2017-10-26 2020-04-22 KNORR-BREMSE Systeme für Schienenfahrzeuge GmbH Brake pipe length estimation
CN112550375B (zh) * 2020-11-24 2022-08-30 卡斯柯信号有限公司 一种基于卫星定位的列车车长识别方法及系统
GB2606014A (en) * 2021-04-22 2022-10-26 Siemens Mobility Ltd Train integrity proving device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828906C1 (de) * 1998-06-18 2000-05-04 Abb Daimler Benz Transp Verfahren zur fahrzeugautonomen Feststellung und Überprüfung der Vollständigkeit eines Zuges ohne durchgehende elektrische Leitung
DE19902777A1 (de) 1999-01-25 2000-07-27 Ge Harris Railway Electronics Zugvollständigkeits-Überwachungsvorrichtung
DE19933798A1 (de) 1999-07-19 2001-03-01 Siemens Ag Vorrichtung und Verfahren zur Abgasnachbehandlung bei einer Brennkraftmaschine
DE10009324A1 (de) 2000-02-22 2001-09-06 Daimler Chrysler Ag Verfahren zur lokbasierten Bestimmung der Zuglänge
DE10112920A1 (de) * 2001-03-13 2002-09-19 Siemens Ag Verfahren zur Zugvollständigkeitsüberwachung und Einrichtung zur Durchführung dieses Verfahrens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2241627C2 (ru) * 2002-07-19 2004-12-10 Государственное унитарное предприятие Российский научно-исследовательский и проектно-конструкторский институт информатизации, автоматизации и связи МПС Устройство для определения длины поезда
CN101554878B (zh) * 2009-05-20 2012-05-30 北京交通大学 一种实现列车完整性远程监控的系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828906C1 (de) * 1998-06-18 2000-05-04 Abb Daimler Benz Transp Verfahren zur fahrzeugautonomen Feststellung und Überprüfung der Vollständigkeit eines Zuges ohne durchgehende elektrische Leitung
DE19902777A1 (de) 1999-01-25 2000-07-27 Ge Harris Railway Electronics Zugvollständigkeits-Überwachungsvorrichtung
DE19933798A1 (de) 1999-07-19 2001-03-01 Siemens Ag Vorrichtung und Verfahren zur Abgasnachbehandlung bei einer Brennkraftmaschine
DE10009324A1 (de) 2000-02-22 2001-09-06 Daimler Chrysler Ag Verfahren zur lokbasierten Bestimmung der Zuglänge
DE10112920A1 (de) * 2001-03-13 2002-09-19 Siemens Ag Verfahren zur Zugvollständigkeitsüberwachung und Einrichtung zur Durchführung dieses Verfahrens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230037919A1 (en) * 2019-02-26 2023-02-09 Cattron North America, Inc. Remote Control Locomotive Systems and Methods

Also Published As

Publication number Publication date
RU2561481C2 (ru) 2015-08-27
RU2012144281A (ru) 2014-04-27
ES2586578T3 (es) 2016-10-17
CN102822032A (zh) 2012-12-12
CN102822032B (zh) 2016-03-02
EP2547568B1 (de) 2016-05-11
AU2011229236B2 (en) 2015-01-29
DE102010011949A1 (de) 2011-09-22
EP2547568A1 (de) 2013-01-23
AU2011229236A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
DE19636431B4 (de) Verfahren und Vorrichtung zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage
EP2870039B1 (de) Verfahren zur detektion von leckagen in einer bremsdruck führenden bremsdruckleitung eines schienenfahrzeugs
DE3501179A1 (de) Elektrische bremsanlage
EP2465744B1 (de) Verfahren und Vorrichtung zum Erkennen von Lecks in Bremszylinderkreisen
EP2547568B1 (de) Verfahren und vorrichtung zur zuglängenerkennung
DE102007025835B4 (de) Diagnose von Leckagen an Druckluftsystemen, insbesondere in Nutzfahrzeugen
WO2013034715A1 (de) Verfahren zum überwachen einer sandungsvorrichtung
EP1995140B1 (de) Verfahren zum Überwachen der Dichtheit eines Druckluftsystems und hierfür vorgesehene elektronische Vorrichtung
DE102018123750A1 (de) Elektropneumatische Anhängersteuerventileinheit für Nordamerika
WO2017029084A1 (de) Prüfeinrichtung und verfahren zur überprüfung eines definierten profils von einem zugverband aus fahrzeugen, insbesondere schienenfahrzeugen
DE102004057545A1 (de) Verfahren zum automatischen Erkennen einer Zugtrennung
DE102008049224A1 (de) Verfahren und Vorrichtung zum Überprüfen mindestens eines Laufwerks eines auf einem Gleis fahrbaren Schienenfahrzeugs auf einen Defekt
EP4196376A1 (de) Überwachungs- und messvorrichtung und verfahren zur überwachung und zur messung von kenngrössen eines luftversorgungssystems von fahrzeugen, insbesondere schienenfahrzeugen
DE102009039145A1 (de) Verfahren und Vorrichtung zur Überwachung des Füllstandes zumindest eines Betriebsmittels eines Fahrzeugs
EP1404561A1 (de) Verfahren und anordnung zur dichtheitsprobe der hauptluftleitung an selbsttätigen druckluftbremsen von eisenbahnfahrzeugen
EP1164067A1 (de) Alarmeinrichtung für eine druckluftgesteuerte Bremsanlage eines Fahrzeugs
DE10147906A1 (de) Verfahren zur Dichtigkeitsmessung von Wagen, insbesondere Zugwagen, und Vorrichtung zur Durchfüchrung des Messverfahrens
DE102005040504B3 (de) Verfahren und Vorrichtung zur Detektion von Störungen in Fahrwerken von durch Luftfedereinrichtungen gefederten Fahrzeugen
EP2323882B1 (de) Verfahren zur funktionsprüfung eines bremssystems in einem fahrzeug
DE102011080754B4 (de) Vorrichtung zur Erfassung des Aufpralls eines Objekts auf ein Fahrzeug
CH715634A2 (de) Verfahren zur Leckageortung bei Fahrzeugen sowie dafür ausgestattetes Fahrzeug.
DE10009324A1 (de) Verfahren zur lokbasierten Bestimmung der Zuglänge
DE10010221A1 (de) Verfahren zum Testen der Bremsen eines Schienenfahrzeugs und Schienenfahrzeug
CH712296B1 (de) Schienenfahrzeug mit einem System zur Bremsdrucküberwachung und Verfahren zur Bremsdrucküberwachung.
DE19503250B4 (de) Niveauregelvorrichtung für Radaufhängungen von Kraftfahrzeugen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014614.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11710157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011710157

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011229236

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2785/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011229236

Country of ref document: AU

Date of ref document: 20110316

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012144281

Country of ref document: RU