WO2011113342A1 - 超低灰分水煤浆的制备方法 - Google Patents

超低灰分水煤浆的制备方法 Download PDF

Info

Publication number
WO2011113342A1
WO2011113342A1 PCT/CN2011/071791 CN2011071791W WO2011113342A1 WO 2011113342 A1 WO2011113342 A1 WO 2011113342A1 CN 2011071791 W CN2011071791 W CN 2011071791W WO 2011113342 A1 WO2011113342 A1 WO 2011113342A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
slurry
crushing
ultra
chamber
Prior art date
Application number
PCT/CN2011/071791
Other languages
English (en)
French (fr)
Inventor
张传忠
刘宏亮
汪景武
Original Assignee
钦州鑫能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2010101238678A external-priority patent/CN102189036B/zh
Priority claimed from CN201010123854.0A external-priority patent/CN102189031B/zh
Priority claimed from CN 201010124876 external-priority patent/CN102192520B/zh
Application filed by 钦州鑫能源科技有限公司 filed Critical 钦州鑫能源科技有限公司
Priority to US13/635,669 priority Critical patent/US20130061516A1/en
Priority to AU2011229688A priority patent/AU2011229688B2/en
Publication of WO2011113342A1 publication Critical patent/WO2011113342A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/02Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation
    • B03B5/10Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on jigs
    • B03B5/12Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on jigs using pulses generated mechanically in fluid
    • B03B5/18Moving-sieve jigs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/02Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation
    • B03B5/10Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on jigs
    • B03B5/12Washing granular, powdered or lumpy materials; Wet separating using shaken, pulsated or stirred beds as the principal means of separation on jigs using pulses generated mechanically in fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/005General arrangement of separating plant, e.g. flow sheets specially adapted for coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/326Coal-water suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/366Powders

Definitions

  • the invention relates to a preparation method of coal water slurry, and further relates to a preparation method of ultra low ash coal water slurry. Background technique
  • the principle is to add emulsified oil to the coal water slurry which is broken into fine particles, so that the surface hydrophobic coal particles are formed. Large agglomerates, while hydrophilic mineral particles do not agglomerate, and then ultra-low ash clean coal is selected by ordinary bubble flotation.
  • the disadvantage of this method is that it is less effective for coal containing more hydrophobic pyrite components and requires more chemicals to be consumed. The ash content of the final product is not easily controlled but generally depends on the nature of the raw coal. Summary of the invention
  • the present invention describes a process for the industrial preparation of ultra-low ash coal water slurry which is still suitable for coal containing more pyrite components without the need to consume chemicals.
  • the method includes the following steps:
  • the coal prepared in step A is sorted into tail coal, medium coal and clean coal according to the density from high to low, and the output ratio of the clean coal is adjusted according to the final product ash content standard, and the fine coal slurry and the output are output.
  • step B The coal produced in step B is broken by wet method; D. Reprocess the wet re-crushed product with step B.
  • step A of the above method is broken by wet method, the steps can also be adjusted to:
  • the coal prepared in step A is sorted into tail coal, medium coal and clean coal according to the density from high to low, and the output ratio of the clean coal is adjusted according to the final product ash content standard, and the fine coal slurry and the output are output.
  • step A Reprocess the resulting coal in step A.
  • the theoretical basis of the method is that most of the mineral components of coal are mineral particles that exist independently or are associated with coal organisms, independent mineral particles or continuums containing only a small number of organisms, because their specific gravity is higher than that of pure coal organisms. In the ordinary coal preparation process, it is separated in the form of vermiculite. The mineral particles which are adjacent to the coal biomass of a similar or higher proportion are not much different from the pure coal particles due to the overall particle size, and are difficult to be separated during the jigging process. After this part of the continuum is cyclically broken, the organism and mineral particles will eventually be dissociated and sorted into clean coal or tail coal products during the separation of the slurry particles.
  • inorganic mineral components entering the final product include non-particulate minerals present in the coal particles, minerals that are extremely fine and smallly dispersed in the coal particles, and finely adhered to the coal particles or small to the slurry. Mineral particles that cannot be separated by bulk particle separation equipment.
  • This method can significantly improve the yield of clean coal, and can also improve the particle size grading of coal slurry fuel, thereby improving the fluidity of the fuel or increasing the particle concentration of the fuel.
  • centrifugal jigging is a critical step.
  • the principle of the centrifugal jig is to place the ordinary jig in a force field with centrifugal force and gravity synthesis with at least tens of times the gravitational acceleration, so that the tiny coal particles can be settled quickly enough in the slurry, so it can be Fine coal slurry is selected.
  • the details of such a centering jig are described in detail in the Chinese patent application CN201010123867.
  • the upper limit of the particle size is 0. 2mm, the average particle size At about 0. 075 mm, other slurry particle separation equipment can be used.
  • the Falcon C series centrifugal concentrator produced by SEPRO SYSTEMS INTERNATIONAL (Canadian, Canada). The equipment can only separate two products, so if you want to divide the coal slurry into clean coal, medium coal and tail coal, you need to divide it into at least two steps.
  • the tail coal described in the method step refers to a high specific gravity sorting product containing a large amount of inorganic mineral components, which is sometimes referred to as vermiculite in the industry.
  • the final product described in the method step means that the target product clean coal slurry is obtained upon completion of all steps of the method.
  • the wet crushing described in the method step may be a commercially available ball mill, a rod mill, a stirring mill, or a jet crushing technique.
  • a slurry particle crushing apparatus that comprehensively utilizes the principles of jet crushing and agitating grinding is described in the Chinese patent application CN201010123854. 0, which is specifically applicable to the wet crushing described in this patent.
  • the dry crushing process described in the method step can be carried out using a commercially available dry ball mill, a column mill, and a vertical axis vortex fluidized bed dry refiner as described in U.S. Patent No. 5,695,130, issued Nov. 9, 1997. .
  • the appropriate concentration as described in the method step means that the concentration of the slurry is conveniently pumped and may be higher or lower than the concentration of the final product.
  • the upper limit of the size of the method described in the method step is different for the end product of different uses.
  • the end use is to replace the heavy oil as the boiler fuel, and the upper limit of the particle size may be 0.2 mm.
  • the upper limit may be below 0. 01mm, or even below 0. 001mm.
  • the ash content of the final product is not more than 0. 5 % or even more, if the ash content is not more than 5% or 1%. low.
  • the ash content refers to the percentage of the ash content measured by the slow ashing method to the mass of the dry coal base.
  • Adjusting the lean coal output ratio according to the final product ash content standard means adjusting the clean coal output during the separation of the slurry particles according to the nature of the raw coal and the ash content standard of the final product. If the raw material ash content is low and the final product ash content can be higher, the output of the clean coal is large, and the output ratio of the clean coal is high, whereas the output ratio of the clean coal is low.
  • This method has no special requirements on the specific varieties and sources of raw coal used, but considering the use and production efficiency of the final product, it is preferred to select low-ash, especially low-ash bituminous or anthracite containing less clay minerals. . Because the clay minerals tend to become very fine particles in the process of selection and adhere to the coal particles, increasing the ash content of the final product.
  • Figure 1 is a schematic view showing the preparation process of the ultra-low gray coal of the first embodiment of the present invention which is mainly based on dry fine crushing;
  • Figure 2 is a schematic view showing the preparation process of the ultra-low gray coal of the second embodiment of the present invention mainly based on wet fine crushing;
  • Figure 3 is a schematic cross-sectional view showing the basic structure of a centrifugal jig used in the present invention
  • Figure 4 is a schematic view showing the inclination angle of the jigging unit and the parabolic curved curved screen;
  • Figure 5 is an external perspective view of the main structure of the slurry particle breaking device used in the present invention;
  • Figure 6 is a slurry particle breaking device Top perspective view of the main structure;
  • Figure 7 is a front perspective view of the main structure of the slurry particle breaking device
  • Figure 8 is a cross-sectional perspective view showing the main structure of the slurry particle breaking device, wherein the cavity is cut along the broken line A-ArA - A' in Figure 6 and the front half is removed;
  • Figure 9 is a cross-sectional perspective view of the slurry particle breaking device in which the protrusions are provided in the crushing chamber. As seen from the front, the cavity is cut along the broken line A-AfA - A' in Figure 6 and the front half is removed;
  • Figure 10 is a cross-sectional perspective view of a slurry particle breaking device in which a projection is provided in a crushing chamber, in which the upper half is cut along the straight line B-B' in Fig. 7. detailed description
  • the fine coal is poured into the coal pit 100, and the coal is sent to the column mill 300 by the hoisting hoist 200, and the coal is crushed to a particle size of -0.1 mm by the column mill, and is sent by the belt conveyor 400.
  • the water pipe 1100 is mixed with water to mix to a concentration of about 65%, and the centrifugal jig 700 is input by the slurry pump 600 to adjust the yield of the clean coal so that the gray scale does not exceed 2%, and the fine coal slurry in the selected product is pumped into the fine
  • the coal slurry storage tank 800 or the subsequent process the tail coal slurry in the selected product is pumped into the tail coal storage tank 900 or dehydrated and transported, and the medium coal slurry in the selected product is pumped into the ball mill 1000 for wet grinding, and then pumped back.
  • the drum 500 is stirred.
  • the clean coal slurry in the selected product is pumped into the clean coal slurry tank 800 or into the subsequent process, and the tail coal slurry in the selected product is pumped into the tail coal storage tank 900 or dehydrated and transported, and the middle of the selected products
  • the centrifugal jig pump 700 and the slurry particle crushing device 1400 used in the present application are described below, and the structure thereof is the same as that of the Chinese patent application CN201010123867. 8 and CN201010123854. Machine and slurry particles The crushing device is the same.
  • the centrifugal jig 700 is comprised of a rotating device 1, at least one jigging unit 2, and a product receiving device 3.
  • the rotating device 1 includes a rotating body 11 and a base 12, and the rotating body 11 can be smoothly rotated along a center line 1111 of a vertical axis 111 under the driving of the power driving device 121.
  • the jigging unit 2 includes a lower screen chamber 21, an upper sieve chamber 22, a sieve plate 23, a feeding device 24, a discharge device 25 and a pulsation device 26, which are similar in structure and function to the common jig for separation. Particles of different density in the slurry material.
  • the jigging unit 2 is mounted on the rotating device 1 at a certain inclination angle a in the direction of material movement thereof, and the under-screen chamber 21 is located away from the vertical axis 111, and the inclination angle ⁇ is approximately the same as the hopping angle
  • the angle between the vector direction and the vertical direction of the resultant force Fr of the gravity G and the centripetal force Fc received by the unit 2 is the same. Considering that the centripetal acceleration at work can reach tens of times the acceleration of gravity, the angle is close to 90 degrees.
  • the jigging unit 2 operates in a resultant field of gravity and centrifugal force generated by the rotation of the rotating device 1.
  • the product receiving device 3 is fixed to the ground for receiving rotation
  • the discharge device 25 of the jig unit 2 does not adopt a sieve discharge method and uses a discharge port to discharge.
  • the discharge opening includes a heavy discharge opening 251 and a light discharge opening 252.
  • the upper screen chamber 22 is open in this embodiment and is also referred to as a screen tank.
  • a small amount of particulate material S entering the undersize chamber 21 through the sieve plate 23 during the jigging sorting process is discharged through the bottom discharge port 211 at the bottom of the lower sieve chamber 21 to enter the corresponding product receiving device 3.
  • the sieve plate 23 may be a 0. 2 mm aperture sieve plate and a feldspar artificial bed layer, and the suction force is controlled while the machine is working.
  • the material slurry S is received at the top end of the vertical shaft 111 from a delivery barrel 240 by a funnel-shaped receiving barrel 241 that rotates synchronously with the jigging unit 2, and is conveyed by a feeding tube 242 to the screen at the lower end of the sieve plate 23.
  • the pulverized layer edge of the material slurry S moves upward.
  • the light slurry SL and the heavy slurry SH enter the light material discharge port 251 and The heavy material discharge port 252 is then separated from the jig unit 2 into the corresponding light material receiving tank 31 and the heavy material receiving tank 32.
  • the pulsation device 26 uses a conventional diaphragm pulsation device 261, and the pulsation motor 2611 drives the diaphragm 2613 through the cam shaft 2612 to push the sifting water to generate pulsation.
  • a counterweight 112 is placed on the opposite side of the jig unit 2.
  • the screen 23 should be a curved surface formed by a parabola 231 extending in the direction of movement of the material along the center line 1111 of the vertical axis 111 relative to the screen plane of the conventional jig, so that the screen 23 can be operated. Keep parallel to the jigging fluid level.
  • the sieve plate 23 can adjust its inclination according to the manner in which the materials are adapted. In the case where the sieve plate is narrow and the centrifugal force is sufficiently large, the sieve plate 23 can also be simply a flat sieve plate.
  • the power supply to the jigging unit 2 in rotation can be connected to the power supply of the fixed base by a slip ring disposed on the vertical axis.
  • the high-power power supply slip ring technology has mature applications on medical spiral CT.
  • the monitoring signal communication of the jigging unit 2 can be connected to the ground by wireless communication or infrared serial communication technology.
  • the slurry particle disrupting apparatus 1400 includes a crushing portion that includes a rotating annular crushing chamber 141. At least one injection port 142 is located at an outer side wall of the crushing chamber 141, and a center line 1421 of the injection port 142 is tangent or oblique to the center line 1411 of the crushing chamber 141. In the present embodiment, a tangential manner is employed in which the high pressure nozzle 1422 is housed. Each of the injection ports 142 and the high pressure nozzles 1422 installed therein constitute a set of nozzle combinations. There may be a plurality of nozzle combinations of nozzles and high pressure nozzles, such as 2-20 sets, 6 sets in the drawing, and along the outer side wall of the crushing chamber 141.
  • the crushing portion further includes a discharge opening 143 that is located inside the crushing chamber 141 and communicates with the rotary annular crushing chamber.
  • the slewing ring is a geometry formed by rotating a cross-sectional shape about a non-intersecting axis that is in the same plane as the same, and the central axis is called the central axis of the slewing ring.
  • the center line of the crushing chamber refers to a geometric center point of the cross section or a circumferential line formed by the approximate center point rotating along the central axis of the crushing chamber.
  • the crushing chamber 141 is an integral structure made of a high-strength hard material (such as a hard alloy material), and may also be lined with a high-hardness material such as nylon, which is high-hardness-resistant (such as ceramic, corundum or artificial). Diamond) composite.
  • a plurality of protrusions 1412 may be provided on the outer side wall and the top side and bottom side walls of the crushing chamber 141.
  • the height and density distribution of the protrusions 1412 may be distributed according to the direction of the top side of the outer side wall and the inside of the top side and the bottom side wall of the bottom side wall, which are low, sparse, high, dense, low and dense.
  • the protrusions may be in the shape of a cone, a table or a column, or a combination of several shapes. In the present embodiment, a columnar shape is employed.
  • the ring body of the crushing chamber 141 may have a circular, elliptical shape, a teardrop shape with a pointed end pointing inward or a hanging drop with a long tail. This embodiment adopts this shape because the hanging drop shape with the long tail is most suitable for the working principle that the slurry in the crushing chamber is gradually decelerated and discharged.
  • the raw material slurry or mixture which is crushed to a predetermined particle size or lower is first pressurized to a pressure of 10-40 MP by a reciprocating pump, and is sprayed into the crushing chamber at a high speed through a high pressure nozzle. Strong shear, friction and cavitation are generated during the spraying to break up the solid particles supported by the liquid.
  • the initially crushed slurry still flows in a turbulent flow in the crushing chamber at a very high speed, and the crushing action between the slurry particles and the protrusions on the side wall of the crushing chamber and the slurry particles is strong, such as impact, friction and shear. , the slurry particles are further broken.
  • edges of the slurry particles are abraded in the flow so that their shape tends to be spherical, which improves the fluidity of the slurry.
  • the crushing pump is directly discharged from the discharge port of the crushing section to the crushing pump of the next stage, and the same crushing process is repeated.
  • the slurry obtained by pressurizing the high-pressure pump is tangentially or obliquely injected into the rotary annular crushing chamber through a high-pressure nozzle, and the material is rotated at a high speed in a turbulent flow in the crushing chamber, and the discharge is measured from the crushing chamber after being gradually decelerated.
  • the mouth is discharged.
  • the cross-sectional area of the rotary ring crushing chamber and the cross-sectional area of the discharge opening should be much larger than The sum of the cross-sectional areas of the nozzles is, for example, 10,000 times and 200 times, respectively, so that the pressure of the material in the crushing chamber is sufficiently low. There is enough pressure difference before and after the nozzle, and the moving speed of the material is sufficiently slowed down in the crushing chamber.

Description

超低灰分水煤浆的制备方法 技术领域
本发明涉及一种水煤浆的制备方法, 进一步涉及一种超低灰分水煤浆的 制备方法。 背景技术
现有制备可替代锅炉用重油燃料的煤基燃料水煤浆技术, 已成功地解决 了煤颗粒的破碎制浆问题, 并已得到广泛的工业应用。 但利用煤基燃料更直 接更广泛地替代石油产品, 如不改造燃油锅炉直接燃用煤基浆体燃料, 煤基 浆体燃料用于内燃机或燃气轮机, 需要进一步降低煤中灰分, 尤其是可能造 成设备磨损的无机颗粒成分。 现有的超洁净煤的制备方法可以参见 2003年 1 月 8日授权公告的发明专利 CN97116584, 其原理是在破碎成微细颗粒的水煤 浆中加入乳化油, 使得表面疏水的煤颗粒结成较大的团粒, 而亲水的矿物颗 粒不会结团, 然后用普通泡沬浮选法选出超低灰分精煤。 该方法的缺点是对 含有较多疏水的硫铁矿成分的煤效果较差, 需要消耗较多的药剂, 最终产品 的灰分含量不易控制而是总体上取决于原料煤的性质。 发明内容
本发明介绍了一种不需要消耗药剂, 对含较多硫铁矿成分煤种仍然适用 的工业化制备超低灰分的水煤浆的方法。
该方法包括以下步骤:
方法一
A. 用湿法或干法破碎将原料煤破碎至规定粒度上限以下并制成适当浓 度的浆体;
B. 用浆体颗粒分离设备将步骤 A制备的煤按密度从高到低分选为尾煤、 中煤和精煤, 根据最终产品灰分含量标准调整精煤输出比例, 输出精煤浆体 和尾煤浆体;
C. 对步骤 B产生的中煤用湿法再破碎; D. 用步骤 B重新处理处理湿法再破碎后的产物。
如果以上方法的步骤 A采用湿法破碎, 其步骤还可以调整为:
方法二
A. 用湿法破碎将原料煤破碎并分级至规定粒度上限以下并制成浓度适 当的浆体;
B. 用浆体颗粒分离设备将步骤 A制备的煤按密度从高到低分选为尾煤、 中煤和精煤, 根据最终产品灰分含量标准调整精煤输出比例, 输出精煤浆体 和尾煤浆体;
C. 用步骤 A重新处理所产生的中煤。
该方法的理论依据是煤的绝大部分矿物成分是独立存在或与煤的有机体 连生的矿物颗粒, 独立的矿物颗粒或仅含有少量有机体的连生体, 因其比重 高于煤纯净有机体, 在普通的选煤过程中以矸石的形式被分离出去, 与相近 或较高比例的煤有机体连生的矿物颗粒因颗粒整体的比重与纯煤颗粒相差不 大, 在跳汰过程中难以被分离。 在对这部分连生体进行循环破碎后, 有机体 和矿物颗粒最终会得到解离, 并在浆体颗粒分离过程中被分选到精煤或尾煤 产品中。 最后进入最终产品的少量无机矿物成分包括存在于煤颗粒内的非颗 粒形态的矿物质, 颗粒极细并少量分散于煤颗粒中的矿物质, 和颗粒极细黏 附在煤颗粒上或小至浆体颗粒分离设备不能分离的矿物颗粒。
这种方法可以明显提高精煤的产率, 同时还可以改善煤浆体燃料的粒度 级配, 从而改善燃料的流动性或提高燃料的颗粒浓度。
在这些步骤中, 离心跳汰是关键的步骤。 根据斯托克定律, 当煤颗粒破 碎到一定的粒度以下, 在普通重力场下的浆体中沉降速度非常慢, 甚至在颗 粒之间的微小作用力和浆体中的极微细颗粒物质的干扰下不发生沉降, 因此 普通跳汰设备不能对其进行分选。 离心跳汰机的原理是将普通跳汰机置于离 心力和重力合成的具有至少数十倍重力加速度的力场中, 使微小的煤颗粒得 以在浆体中发生足够快速的沉降, 因此可以对精细煤浆体进行汰选。 这种离 心跳汰机的详细情况在先于本专利公开的中国专利申请 CN201010123867. 8中 进行了详细说明。
在浆体产品粒度上限及平均粒度较大时, 如粒度上限为 0. 2mm,平均粒度 约 0. 075mm时, 可以使用其它的浆体颗粒分离设备。 如加拿大 SEPRO SYSTEMS INTERNATIONAL公司 (位于加拿大, 卑诗省) 生产的 Falcon C 系列离心选矿 机。 该设备只能分离出两种产品, 因此如果要将煤浆体分成精煤、 中煤和尾 煤至少需要分成两个步骤。
方法步骤中所述的尾煤是指含有较多无机矿物成分的高比重分选产物, 行业内有时也称其为矸石。
方法步骤中所述的最终产品是指本方法的所有步骤完成时获得目标产品 精煤浆体。
方法步骤中所述的湿法破碎可以采用市售的球磨机、 棒磨机、 搅拌磨, 也可以采用射流破碎技术。 先于本专利公开的中国专利 申请 CN201010123854. 0中介绍了一种综合利用射流破碎和搅拌磨原理的浆体颗粒 破碎装置, 特别适用于本专利所述的湿法破碎。
方法步骤中所述的干法破碎可使用市售的干式球磨机、 柱磨机, 还可参 考 1997年 11月 9日授权的美国专利 US 5695130介绍的垂直轴漩涡流化床干 式精磨机。
方法步骤中所述的适当浓度是指浆体的浓度便于用泵输送, 可以高于或 低于最终产品的浓度。
方法步骤中所述的粒度上限, 对于不同用途的最终产品是各不相同的, 比如最终用途是代替重油作为锅炉燃料,其粒度上限可以在 0. 2mm, 如果是代 替柴油作为内燃机燃料, 其粒度上限可能要在 0. 01mm以下, 甚至 0. 001mm以 下。
最终产品灰分含量标准根据不同的用途也不相同, 如用于生产增碳剂、 活性炭, 灰分含量不大于 2 %或 1 %, 如用于替代柴油, 则灰分需不大于 0. 5 %甚至更低。 灰分含量是指按缓慢灰化法测得的灰分占干燥煤基质量的百分 含量。
根据最终产品灰分含量标准调整精煤输出比例是指根据原料煤的性质和 最终产品的灰分含量标准来调整浆体颗粒分离过程中的精煤输出量。 如果原 料煤灰分含量低, 最终产品灰分可以较高, 则精煤输出量大, 精煤输出比例 高, 反之精煤输出比例低。 本方法对所用原料煤的具体品种、 来源并无特殊要求, 但考虑到最终产 品的用途和生产效率, 以选择低灰分、 尤其是含粘土矿物质成分较少的低灰 分的烟煤或无烟煤为优选。 因为粘土矿物质在精选过程中易成为极微细的颗 粒并与煤颗粒黏附在一起, 增加了最终产品的灰分含量。
对于原料煤的一般性处理如粗选、 初步破碎, 和对最终产品与脱灰无关 的处理如脱水、 浆体浓度调整或加入稳定剂等, 因其为行业常识, 故在本说 明书中从略。 附图说明
附图 1 是以干式精细破碎为主的本发明第一实施例的超低灰度煤的制备 流程示意图;
附图 2是以湿式精细破碎为主的本发明第二实施例的超低灰度煤的制备 流程示意图;
附图 3是本发明使用的离心跳汰机基本结构的剖面示意图;
附图 4是跳汰单元的倾斜角度和抛物线回转曲面形筛板的示意图; 附图 5是本发明使用的浆体颗粒破碎装置的主要结构的外观立体图; 附图 6是浆体颗粒破碎装置的主要结构的俯视透视图;
附图 7是浆体颗粒破碎装置的主要结构的正面透视图;
附图 8是浆体颗粒破碎装置的主要结构的剖面立体图, 其中沿附图 6中 折线 A-ArA -A' 剖开腔体并去除了前半部分;
附图 9是破碎腔内设置了突起的浆体颗粒破碎装置的剖面立体图, 如正 面所见, 沿附图 6中折线 A-AfA -A' 剖开腔体并去除了前半部分;
附图 10是破碎腔内设置了突起的浆体颗粒破碎装置的剖面立体图, 其中 沿附图 7中直线 B-B ' 剖开并去除了上半部分。 具体实施方式
实施例 1
参见附图 1, 将精粒煤倒入煤坑 100, 用卷扬料斗提升机 200将煤送入柱 磨机 300,煤经柱磨机破碎至粒度 -0. lmm,用皮带输送机 400送入搅拌桶 500, 由输水管 1100加水搅拌调配至浓度 65 %左右, 用浆泵 600输入离心跳汰机 700, 调节精煤产率, 使得灰度不超过 2 %, 汰选产品中的精煤浆体泵入精煤 浆储罐 800或进入后续工序, 汰选产品中的尾煤桨泵入尾煤储罐 900或进行 脱水外运, 汰选产品中的中煤浆泵入球磨机 1000进行湿式研磨, 然后泵回搅 拌桶 500。
实施例 2
参见附图 2, 将精粒煤倒入煤坑 100, 用卷扬料斗提升机 200将煤送入对 辊破碎机 1200, 煤经对辊破碎机破碎至粒度 -0. 5mm, 用皮带输送机 400送入 搅拌桶 500, 由输水管 1100加水搅拌调配至浓度 65 %左右, 用高压往复浆泵 1300加压至 10-40MPa, 注入浆体颗粒破碎装置 1400, 从浆体颗粒破碎装置 1400 中输出的粒度在 -0. 01mm 的合格浆体泵入离心跳汰机 700, 粒度在 +0. 01mm的浆体泵回搅拌桶 500, 调节精煤产率, 使得灰度不超过 0. 5 %, 汰 选产品中的精煤浆体泵入精煤浆储罐 800或进入后续工序, 汰选产品中的尾 煤浆体泵入尾煤储罐 900或进行脱水外运, 汰选产品中的中煤浆泵回搅拌桶 下面对本申请使用的离心跳汰机 700和浆体颗粒破碎装置 1400进行介 绍, 其结构与先于本专利公开的中国专利申请 CN201010123867. 8 和 CN201010123854. 0中记载的离心跳汰机和浆体颗粒破碎装置相同。
请参见图 3-4, 离心跳汰机 700由旋转装置 1、 至少一个跳汰单元 2和产 品接收装置 3构成。所述的旋转装置 1包括旋转体 11和基座 12,在动力驱动 装置 121的驱动下旋转体 11可以沿一根垂直轴 111的中线 1111平稳旋转。 所述的跳汰单元 2包括筛下室 21、 筛上室 22、 筛板 23、 给料装置 24、 排料 装置 25和脉动装置 26, 与普通跳汰机的结构和功能相似,用于分离浆体物料 中的密度不同的颗粒。 跳汰单元 2在其物料移动方向上按一定的倾斜角度 a 安装在所述的旋转装置 1上, 其筛下室 21位于远离垂直轴 111的位置, 所述 的倾斜角度 α 的大小大致与跳汰单元 2所受的重力 G与向心力 Fc的合力 Fr 的矢量方向与垂直方向的夹角相同。 考虑到工作时向心加速度可以达到重力 加速度的数十倍, 该角度接近 90度。 跳汰单元 2在重力和旋转装置 1旋转产 生的离心力的合力场中工作。 产品接收装置 3为固定在地面、 用于接收旋转 中的跳汰单元 2排出的已完成分离的物料的环形槽状收集输送装置。 所述的 跳汰单元 2的排料装置 25不采用透筛排料方式而采用排料口排料。所述的排 料口包括重料排料口 251和轻料排料口 252。 所述的筛上室 22在本实施例中 是开放的, 也称为筛槽。 在跳汰分选过程中通过筛板 23进入筛下室 21 的少 量颗粒物料 S, 通过筛下室 21底部的底料排出口 211排出, 进入相应的产品 接受装置 3。 筛板 23可以采用 0. 2mm孔径筛板加长石人工床层, 并在机器工 作时控制吸啜力。
工作时, 物料浆体 S在垂直轴 111顶端由一个漏斗状的、 与跳汰单元 2 同步转动的接收桶 241从输送管道 240接收, 并由一条给料管 242输送到筛 板 23下端的筛槽内, 在离心力和后续的物料的推动下, 物料浆体 S边脉动分 层边向上移动, 在筛板 23上端, 轻料浆体 SL、 重料浆体 SH分别进入轻料排 出口 251和重料排出口 252, 然后脱离跳汰单元 2进入相应的轻料接收槽 31 和重料接收槽 32。 所述的脉动装置 26使用普通的隔膜脉动装置 261, 由脉动 电机 2611通过凸轮轴 2612驱动隔膜 2613推动筛下水产生脉动。为使得所述 的旋转装置 1在旋转时保持平稳,在跳汰单元 2的对侧设置一个平衡重物 112。
理想的情况下, 相对于普通跳汰机的筛板平面, 筛板 23应为沿物料移动 方向延伸的一条抛物线 231沿垂直轴 111的中线 1111回转形成的曲面, 这样 可以使得筛板 23在工作时与跳汰流体液面保持平行。 在此基础上, 筛板 23 可以根据物料相适应的排矸方式调整其倾角。 在筛板较窄并且离心力足够大 的情况下, 筛板 23也可以简略地采用平直筛板。
对旋转中的跳汰单元 2 的供电可以采用设置在垂直轴上的滑环与固定基 座的电源连接, 大功率供电滑环技术在医用螺旋 CT上具有成熟应用。 跳汰单 元 2的监控信号通讯可采用无线通讯或红外线串口通讯技术与地面连通。
参见附图 5-10,浆体颗粒破碎装置 1400包括一个破碎部, 该破碎部包括 一个回转环状破碎腔 141。至少一个喷射口 142位于破碎腔 141的外侧壁, 该 喷射口 142的中心线 1421与破碎腔 141的中心线 1411相切或斜交。 在本实 施例中采用相切方式, 其中安装容纳了高压喷嘴 1422。 每个喷射口 142与安 装于其内部的高压喷嘴 1422组成一套喷嘴组合。可以有多套喷射口及高压喷 嘴构成的喷嘴组合, 如 2-20套, 在附图中为 6套, 并且沿破碎腔 141外侧壁 圆周均匀分布。 破碎部还包括位于破碎腔 141 的内侧与回转环状破碎腔连通 的排料口 143。所述的回转环状是指一个截面形状绕一条与其处于同一平面的 不相交的轴线回转一周形成的几何体, 该中轴线称为回转环的中轴线。 所述 的破碎腔的中心线是指其截面的几何中心点或近似中心点沿破碎腔中轴线回 转形成的圆周线。
破碎腔 141 是以高强度的硬质材料 (如硬合金材料) 制成的一体结构, 也可以用抗高压的高强度材料 (如尼龙) 内衬高硬度耐磨材料 (如陶瓷、 刚 玉或人造钻石) 复合而成。 为了增强破碎效果可以在破碎腔 141 的外侧壁和 顶侧、底侧壁设置多个突起 1412。突起 1412的高度和密度分布规律可以按照 外侧壁一顶侧和底侧壁外侧一顶侧和底侧壁内侧的方向, 以低而稀疏一 一高而密集一低而密集的规律分布。 所述的突起可以为锥状、 台状或柱状, 或几种形状组合设置。 在本实施例中采用柱状。
破碎腔 141 的环体截面可以为圆形、 椭圆形、 尖端指向内侧的水滴形或 带有长尾的悬滴形。 由于带有长尾的悬滴形最符合破碎腔内浆体逐渐减速并 排出的工作原理, 本实施例采用了这种形状。
该破碎装置在工作时, 先把破碎到规定粒度以下的原料浆或混合物用往 复泵加压到 10-40MP 的压力, 经高压喷嘴高速喷入破碎腔。 在喷射过程中产 生强烈的剪切、 摩擦和空穴作用, 使以液体为载体的固体颗粒得到破碎。 经 初步破碎的浆体仍以极高的速度在破碎腔内以湍流形式流动, 浆体颗粒与破 碎腔侧壁上的突起以及浆体颗粒之间产生强烈的撞击、 摩擦、 剪切等破碎作 用, 使得浆体颗粒得到进一步的破碎。 浆体颗粒的棱角在流动中被磨蚀因而 其外形趋向于球形, 这会改善浆体的流动性。 经过以上作用的浆体在从破碎 腔外侧旋转到内侧的过程中, 动能逐渐减小, 速度逐渐降低最后经排料口排 出破碎部。
如果经过一次破碎, 浆体的粒度总体上不能达到破碎要求, 则从破碎部 排料口直接进入下一级破碎的加压泵, 重复同样的破碎过程。
通过让经高压泵加压得到的物料浆体通过高压喷嘴切向或斜向喷入回转 环状破碎腔, 物料在破碎腔内以湍流形式高速旋转, 逐渐减速后从破碎腔内 测的排料口排出。 回转环状破碎腔的截面积和排料口的截面积均应远大于所 有喷嘴的截面积相加之和, 比如分别是 10000倍和 200倍, 以使得物料在破 碎腔内的压力足够低。 喷嘴前后有足够的压力差, 物料的运动速度在破碎腔 内充分减慢。 物料颗粒从喷嘴喷出时产生强烈的剪切和空穴作用, 在破碎腔 内物料颗粒与破碎腔壁、 物料颗粒之间发生剧烈碰撞、 摩擦、 剪切, 以上作 用均可导致物料颗粒的不断破碎, 并使得颗粒外形趋于呈球形。 用该装置对 煤基浆体燃料进行精细破碎时表现为产物颗粒更精细, 在同等浓度下流动性 更好和综合能耗更低。
虽然以上结合了较佳实施例对本发明的目的、 结构和效果作了进一步说 明, 但是本技术领域中的普通技术人员应当认识到, 上述示例仅是用来说明 的, 而不能作为对本发明的限制。 因此, 可以在权利要求书的实质精神范围 内对本发明进行变型。 这些变型都将落在本发明的权利要求书所要求的范围 之内。

Claims

权利要求
1. 一种超低灰分水煤浆的制备方法, 其特征是, 包括以下步骤: A. 用湿法或干法破碎将煤破碎至规定粒度上限以下并制成适当浓度的 浆体;
B. 用浆体颗粒分离设备将步骤 A制备的煤按密度从高到低分选为尾煤、 中煤和精煤, 根据最终产品灰分含量标准调整精煤输出比例, 输出精煤浆体 和尾煤浆体;
C. 对步骤 B产生的中煤用湿法再破碎;
D. 用步骤 B重新处理湿法再破碎后的产物。
2. 一种超低灰分水煤浆的制备方法, 其特征是, 包括以下步骤:
A. 用湿法破碎将煤破碎并分级至规定粒度上限以下并制成浓度适当的 浆体;
B. 用浆体颗粒分离设备将步骤 A制备的煤按密度从高到低分选为尾煤、 中煤和精煤, 根据最终产品灰分含量标准调整精煤输出比例, 输出精煤浆体 和尾煤浆体;
C. 用步骤 A重新处理所产生的中煤。
3. 如权利要求 1或 2所述的超低灰分水煤浆的制备方法, 其特征在于, 所述的规定粒度上限在 0. 2mm以下。
4. 如权利要求 1或 2所述的超低灰分水煤浆的制备方法, 其特征在于, 所述的规定粒度上限在 0. 01mm以下。
5. 如权利要求 1或 2所述的超低灰分水煤浆的制备方法, 其特征在于, 所述的规定粒度上限在 0. 001mm以下。
6. 如权利要求 1或 2所述的超低灰分水煤浆的制备方法, 其特征在于, 所述的最终产品灰分含量不大于 2 %。
7. 如权利要求 1或 2所述的超低灰分水煤浆的制备方法, 其特征在于, 所述的最终产品灰分含量不大于 1 %。
8. 如权利要求 1或 2所述的超低灰分水煤浆的制备方法, 其特征在于, 所述的最终产品灰分含不大于 0. 5 %。
9. 如权利要求 1或 2所述的超低灰分水煤浆的制备方法, 其特征在于, 所述的湿法破碎采用浆体颗粒破碎装置实施, 所述的浆体颗粒破碎装置包括 破碎部, 所述的破碎部包括回转环状破碎腔、 至少一套由喷射口和高压喷嘴 构成的喷嘴组合和排料口, 喷射口位于破碎腔的外侧壁, 其中心线与破碎腔 的中心线相切或斜交, 并在其中安装容纳高压喷嘴, 排料口位于破碎腔的内 侧并与回转环状破碎腔连通, 所述的回转环形破碎腔的截面积和排料口的截 面积均远大于所有高压喷嘴的截面积相加之和。
10. 如权利要求 1或 2所述的超低灰分水煤浆的制备方法, 其特征在于, 所述的浆体颗粒分离设备为离心跳汰机, 所述的离心跳汰机由旋转装置、 至 少一个跳汰单元和产品接收装置构成; 所述的旋转装置包括旋转体和基座, 所述的旋转体在动力驱动下绕垂直轴旋转; 所述的跳汰单元包括筛下室、 筛 上室、 筛板、 给料装置、 排料装置和脉动装置, 并且沿其物料移动方向按一 定的倾斜角度安装在所述的旋转体上, 所述的筛下室位于远离所述的垂直轴 的位置, 用于分离浆体物料中的密度不同的颗粒; 所述的产品接收装置用于 接收旋转中的跳汰单元排出的已完成分离物料; 所述的跳汰单元采用筛上排 料口排出已完成分离的主要物料。
PCT/CN2011/071791 2010-03-15 2011-03-15 超低灰分水煤浆的制备方法 WO2011113342A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/635,669 US20130061516A1 (en) 2010-03-15 2011-03-15 Preparation method for ultra low ash coal-water slurry
AU2011229688A AU2011229688B2 (en) 2010-03-15 2011-03-15 Preparation method for ultra low ash coal-water slurry

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201010123854.0 2010-03-15
CN2010101238678A CN102189036B (zh) 2010-03-15 2010-03-15 离心跳汰机
CN201010123867.8 2010-03-15
CN201010123854.0A CN102189031B (zh) 2010-03-15 2010-03-15 浆体颗粒破碎装置
CN201010124876.9 2010-03-16
CN 201010124876 CN102192520B (zh) 2010-03-16 2010-03-16 超低灰水煤浆的制备方法

Publications (1)

Publication Number Publication Date
WO2011113342A1 true WO2011113342A1 (zh) 2011-09-22

Family

ID=44648446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071791 WO2011113342A1 (zh) 2010-03-15 2011-03-15 超低灰分水煤浆的制备方法

Country Status (3)

Country Link
US (1) US20130061516A1 (zh)
AU (1) AU2011229688B2 (zh)
WO (1) WO2011113342A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388136A (zh) * 2014-11-18 2015-03-04 中国五环工程有限公司 热半焦冷却制备水煤浆的方法
CN104388137A (zh) * 2014-12-12 2015-03-04 湖南科技大学 一种城市污泥制备高浓度污泥煤浆的方法
CN105132051A (zh) * 2015-09-21 2015-12-09 中煤科工清洁能源股份有限公司 一种水煤浆及其制备方法
CN105542888A (zh) * 2015-12-21 2016-05-04 浙江煤科清洁能源有限公司 一种水煤浆的制备方法
CN105542887A (zh) * 2014-10-30 2016-05-04 中国石油化工股份有限公司 采用高含盐废水制备水煤浆

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103807867A (zh) * 2012-11-09 2014-05-21 西安三沅重工有限责任公司 高压辊磨制作水煤浆的方法
US9404055B2 (en) 2013-01-31 2016-08-02 General Electric Company System and method for the preparation of coal water slurries
CN104789285B (zh) * 2015-04-20 2016-06-29 陕西科技大学 一种松香基阴离子型水煤浆分散剂及其制备方法
CN105694943B (zh) * 2016-01-27 2017-04-26 中科合成油技术有限公司 一种多煤种联合转化的多联产方法
CN108264944B (zh) * 2017-12-21 2019-07-02 北京三聚环保新材料股份有限公司 一种提高生物质和煤在油中固含量的方法
CN109794349B (zh) * 2019-03-08 2020-03-17 中国矿业大学 一种井下选煤工艺
RU2743929C1 (ru) * 2020-08-19 2021-03-01 Игорь Нисонович Швецов Способ получения водоугольного топлива
CN114247343B (zh) * 2021-12-21 2024-03-01 太原理工大学 一种可溶缓释温敏阻化剂制造控制装置及控制系统
WO2023196926A2 (en) * 2022-04-06 2023-10-12 Superior Industries, Inc. Sand production systems, methods, and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2141135A (en) * 1983-05-21 1984-12-12 Electric Power Dev Co Preparation of deashed high solid concentration coal-water slurry
CN85109744A (zh) * 1984-11-20 1986-11-05 电源开发株式会社 除灰分的高固体浓度水煤泥的制备
CN86100898A (zh) * 1986-02-18 1987-09-02 洛旺(管理)有限公司 离心筛选机
CN1042670A (zh) * 1988-11-18 1990-06-06 沃尔特·埃利希 搅拌球磨机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966608A (en) * 1988-08-09 1990-10-30 Electric Power Research Institute, Inc. Process for removing pyritic sulfur from bituminous coals
US5295350A (en) * 1992-06-26 1994-03-22 Texaco Inc. Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas
KR101041275B1 (ko) * 2003-09-05 2011-06-14 닛신 엔지니어링 가부시키가이샤 제트밀

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2141135A (en) * 1983-05-21 1984-12-12 Electric Power Dev Co Preparation of deashed high solid concentration coal-water slurry
CN85109744A (zh) * 1984-11-20 1986-11-05 电源开发株式会社 除灰分的高固体浓度水煤泥的制备
CN86100898A (zh) * 1986-02-18 1987-09-02 洛旺(管理)有限公司 离心筛选机
CN1042670A (zh) * 1988-11-18 1990-06-06 沃尔特·埃利希 搅拌球磨机

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105542887A (zh) * 2014-10-30 2016-05-04 中国石油化工股份有限公司 采用高含盐废水制备水煤浆
CN105542887B (zh) * 2014-10-30 2017-12-08 中国石油化工股份有限公司 采用高含盐废水制备水煤浆
CN104388136A (zh) * 2014-11-18 2015-03-04 中国五环工程有限公司 热半焦冷却制备水煤浆的方法
CN104388136B (zh) * 2014-11-18 2016-04-27 中国五环工程有限公司 热半焦冷却制备水煤浆的方法
CN104388137A (zh) * 2014-12-12 2015-03-04 湖南科技大学 一种城市污泥制备高浓度污泥煤浆的方法
CN104388137B (zh) * 2014-12-12 2016-03-02 湖南科技大学 一种城市污泥制备高浓度污泥煤浆的方法
CN105132051A (zh) * 2015-09-21 2015-12-09 中煤科工清洁能源股份有限公司 一种水煤浆及其制备方法
CN105542888A (zh) * 2015-12-21 2016-05-04 浙江煤科清洁能源有限公司 一种水煤浆的制备方法

Also Published As

Publication number Publication date
AU2011229688A1 (en) 2012-11-01
US20130061516A1 (en) 2013-03-14
AU2011229688B2 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
WO2011113342A1 (zh) 超低灰分水煤浆的制备方法
CN1035362C (zh) 节能破碎方法和设备
CN105032623B (zh) 一种煤泥浮选入料预先处理设备
AU2016314139A1 (en) System, method and apparatus for froth flotation
CN101326011A (zh) 飞灰中未燃碳的去除装置及去除方法
CN107233957A (zh) 多级打散磨粉机
CN105170306B (zh) 一种针对高灰高泥高矸石煤的洗选工艺
CN202700631U (zh) 立式离心跳汰机
CN110152359A (zh) 一种无耙选尾矿浓密砂仓
CN88101496A (zh) 辊式粉碎机
WO2011113336A1 (zh) 浆体颗粒破碎装置
CN103240160A (zh) 一种矿浆分级装置
CN105950238A (zh) 用于制备水煤浆的系统
CN106040393A (zh) 水射流粉碎系统
US3710558A (en) Separator of fluid-solid mixtures
CN1105910A (zh) 喷旋式气流粉碎机
CN102192520B (zh) 超低灰水煤浆的制备方法
CN218222697U (zh) Atox立磨粗灰粉降阻回料装置
US2602595A (en) Fluid impact pulverizer
CN108906296B (zh) 一种超细粉体处理工艺及其制造设备
CN210631720U (zh) 一种具有流化放砂装置的深锥浓密砂仓
CN103785529B (zh) 一种针对高灰高泥高矸石煤的洗选设备
CN207567187U (zh) 一种煤泥浆生产系统
CN209049457U (zh) 一种块精煤环锤破碎机
CN203170436U (zh) 一种矿浆分级装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011229688

Country of ref document: AU

Date of ref document: 20110315

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13635669

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11755659

Country of ref document: EP

Kind code of ref document: A1