WO2011111395A1 - Magnetron and microwave-using device - Google Patents

Magnetron and microwave-using device Download PDF

Info

Publication number
WO2011111395A1
WO2011111395A1 PCT/JP2011/001419 JP2011001419W WO2011111395A1 WO 2011111395 A1 WO2011111395 A1 WO 2011111395A1 JP 2011001419 W JP2011001419 W JP 2011001419W WO 2011111395 A1 WO2011111395 A1 WO 2011111395A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetron
anode cylinder
peripheral surface
outer peripheral
anode
Prior art date
Application number
PCT/JP2011/001419
Other languages
French (fr)
Japanese (ja)
Inventor
悦扶 齋藤
なぎさ 桑原
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2011800133474A priority Critical patent/CN102792415A/en
Publication of WO2011111395A1 publication Critical patent/WO2011111395A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
    • H01J25/52Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode
    • H01J25/58Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode having a number of resonators; having a composite resonator, e.g. a helix
    • H01J25/587Multi-cavity magnetrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/005Cooling methods or arrangements

Definitions

  • the present invention relates to a magnetron and a microwave using device, and more particularly to a magnetron used for a microwave using device such as a microwave oven.
  • FIG. 8 is a diagram showing a part of the configuration of the conventional magnetron 10 described in Patent Document 1.
  • a plurality of heat dissipating fins 13a and 13b bent at a certain height (height B or height C in FIG. 8) are formed on the outer peripheral surface 11a of the anode cylindrical body 11 of the magnetron 10 as anodes having a height H.
  • the cylindrical bodies 11 are press-fitted so as to be in close contact with each other along the longitudinal direction (X direction in the figure), and are laminated.
  • it is wider than the heat radiation area by the heat radiation fin 13b (height B) attached to the outer part. Therefore, when the magnetron 10 is operated, high heat at the center of the anode cylindrical body 11 can be radiated quickly.
  • the plurality of heat radiation fins 13a and 13b are press-fitted and laminated so as to be in close contact with each other along the longitudinal direction of the anode cylindrical body 11 (X direction in the figure). Therefore, there is no gap between the radiation fins 13a and 13b adjacent to each other along the longitudinal direction (X direction in the drawing) of the anode cylindrical body 11. Therefore, most of the outer peripheral surface 11a of the anode cylindrical body 11 is covered with the radiation fins 13a and 13b, and the cooling air passing between the radiation fins 13a and 13b is directly applied to the outer peripheral surface 11a of the anode cylindrical body 11. I won't win. Therefore, the cooling efficiency of the magnetron 10 is not good.
  • FIG. 9 is a view showing the air layer 16 formed when the radiating fins are press-fitted.
  • the radiation fins 13 a and 13 b adjacent to each other along the longitudinal direction (X direction in the drawing) of the anode cylindrical body 11 and the outer periphery of the anode cylindrical body 11.
  • An air layer 16 is formed along the outer peripheral surface 11a of the anode cylindrical body 11 between the surface 11a. Due to the air layer 16, the cooling effect due to heat conduction to the radiation fins 13a and 13b is reduced.
  • An object of the present invention is to provide a magnetron and a magnetron-utilizing device that can improve the cooling efficiency of the magnetron without reducing the cooling effect due to heat conduction to the radiating fin.
  • the present invention relates to an anode cylinder having permanent magnets at both ends, a contact part that contacts the outer peripheral surface of the anode cylinder, and an extension part that is continuous with the contact part and extends from one end of the contact part in a substantially horizontal direction.
  • a plurality of radiating fins disposed at predetermined intervals along the longitudinal direction of the anode cylinder, and from the gaps between the plurality of radiating fins along the longitudinal direction of the anode cylinder, A magnetron is provided in which an outer peripheral surface of the anode cylinder is exposed.
  • the outer peripheral surface of the anode cylinder is exposed from a part of the notch in the contact portion.
  • the outer peripheral surface of the anode cylinder body is exposed from a plurality of through holes in a part of the contact portion.
  • the present invention also provides a magnetron-using device including the magnetron.
  • the cooling efficiency of the magnetron can be improved without deteriorating the cooling effect due to the heat conduction to the radiating fin.
  • FIG. 1 is an overall configuration diagram of a magnetron 1 according to an embodiment of the present invention.
  • the perspective view of the radiation fin 5 The figure which shows a mode that the anode cylinder 2 was inserted in the radiation fin 5.
  • FIG. The figure which shows the contact part of the cylindrical part 5e and the outer peripheral surface 2a of the anode cylinder 2
  • the figure which shows the modification (1) of the cylindrical part 5e The figure which shows the modification (2) of the cylindrical part 5e
  • the figure which shows the modification (3) of the cylindrical part 5e The figure which shows a part of structure of the conventional magnetron 10
  • FIG. 1 is an overall configuration diagram of a magnetron 1 according to an embodiment of the present invention.
  • the magnetron 1 includes an anode cylinder 2 having permanent magnets 4 at both ends in the major axis direction, and the longitudinal direction of the anode cylinder 2 along the periphery and the outer peripheral surface 2a of the anode cylinder 2 (see FIG. 1, a magnetic yoke 3 including a plurality of heat radiation fins 5 arranged at substantially equal intervals along the X direction), a plurality of permanent magnets 4, an anode cylinder 2, and a plurality of heat radiation fins 5. And having. In order to air-cool the magnetron 1 that is at a high temperature during operation, cooling air flows in the magnetic yoke 3 from the front side in the drawing to the depth direction or from the back side to the front side in the drawing.
  • the plurality of radiating fins 5 are arranged at substantially equal intervals along the longitudinal direction of the anode cylinder 2 (X direction in FIG. 1).
  • the plurality of radiating fins 5 have a function of cooling the magnetron 1 that becomes high temperature during operation.
  • the three radiating fins 5 are arranged at predetermined intervals along the longitudinal direction of the anode cylinder 2 (X direction in FIG. 3). They are spaced apart by D1 and are arranged on the outer peripheral surface 2a of the anode cylinder 2 at equal intervals. Therefore, the outer peripheral surface 2a (shaded portion in FIG. 3) of the anode cylinder 2 is exposed in the gap (predetermined distance D1) between the heat radiating fins 5 adjacent to each other. Therefore, the cooling air that flows to air-cool the magnetron 1 that is hot during operation hits the outer peripheral surface 2a of the anode cylinder 2 that is directly exposed in the magnetic yoke 3.
  • FIG. 2 is a perspective view of one radiating fin 5.
  • the radiation fin 5 shown in FIG. 2 is an aluminum thin plate.
  • the heat radiating fin 5 shown in FIG. 2 includes a main body portion 5c into which the anode cylinder 2 is inserted into a hole 5d provided therein, a cylindrical portion 5e provided along the hole 5d of the main body portion 5c, and a main body portion. It comprises a plurality of fins 5a and 5b formed by cutting a part of 5c.
  • the cylindrical part 5 e is formed in a shape along the outer shape of the anode cylinder 2.
  • the main body portion 5c excluding the cylindrical portion 5e and the plurality of fins 5a and 5b may be referred to as extending portions extending in a substantially horizontal direction from the cylindrical portion 5e.
  • the cylindrical portion 5e is sometimes called a rising portion because it forms (burring) a part of the main body portion 5c.
  • the plurality of fins 5a and 5b are a part of the main body part 5c and constitute a part of the extending part extending from the cylindrical part 5e.
  • the plurality of fins 5a and 5b are formed by cutting in parallel with each other by a predetermined distance from a pair of sides of the heat radiating fin 5 and bending the cut portions at a plurality of locations.
  • a plurality of bent heat radiation fins 5 are prepared. Each radiating fin 5 is placed between the outer peripheral surface 2a of the anode cylinder 2 and the inner surface of the magnetic yoke 3 by a predetermined distance D1 so that the anode cylinder 2 enters the hole 5d of each radiating fin 5. Separate and press fit. The ends of the plurality of radiating fins 5 bent at a predetermined angle (ends of the fins 5a and 5b) are fixed in a state of being pressed into the yoke 3, and the inner peripheral surface 5j of the cylindrical portion 5e is It contacts the outer peripheral surface 2 a of the anode cylinder 2.
  • FIG. 3 is a diagram illustrating a state where the anode cylinder 2 is inserted into the heat radiation fin 5
  • FIG. 4 is a diagram illustrating a contact portion between the cylindrical portion 5 e and the outer peripheral surface 2 a of the anode cylinder 2.
  • the plurality of radiating fins 5 are arranged at a predetermined interval D1. Therefore, the outer peripheral surface 2a of the anode cylinder 2 is formed along a longitudinal direction of the anode cylinder 2 (X direction in FIG. 3) from a gap of a predetermined distance D1 provided between the radiating fins 5 adjacent to each other. Exposed. Therefore, during the operation of the magnetron 1, the cooling air flowing in the yoke 3 directly hits the outer peripheral surface 2 a of the anode cylinder 2. Therefore, the cooling efficiency of the magnetron 1 can be improved.
  • the inner peripheral surface 5 j of the cylindrical portion 5 e of the plurality of radiating fins 5 is in contact with the outer peripheral surface 2 a of the anode cylinder 2. Therefore, when the magnetron 1 is in operation, the radiating fin 5 can efficiently cool the inside of the anode cylinder 2. Further, since the plurality of heat dissipating fins 5 adjacent to each other are separated by a predetermined distance D1, the air layer with the outer peripheral surface 2a of the anode cylinder 2 is reduced, and the cooling effect by heat conduction is not lowered.
  • the radiating fins 5 are separated by the predetermined distance D1 along the longitudinal direction of the anode cylinder 2 (X direction in FIG. 3), and the outer periphery of the anode cylinder 2 It is disposed on the surface 2a. Therefore, the outer peripheral surface 2a of the anode cylinder 2 is exposed in the gap between the radiating fins 5 adjacent to each other. Therefore, the cooling air for cooling the magnetron 1 that becomes high temperature during operation directly hits the exposed outer peripheral surface 2a of the anode cylinder 2 in the magnetic yoke 3, and the cooling efficiency of the magnetron 1 is good.
  • the radiating fins 5 are separated by a predetermined distance D1 along the longitudinal direction of the anode cylinder 2 (X direction in FIG. 3), and the outer periphery of the anode cylinder 2 Since it is arrange
  • modified examples (1) to (3) of the cylindrical portion 5e of the magnetron 1 will be described with reference to FIGS.
  • the cylindrical portion 5e in order to further enhance the cooling effect of the magnetron 1, is provided with a notch or a through hole so that the outer peripheral surface 2a of the anode cylinder 2 is It exposes from the notch provided in the cylindrical part 5e, or a through-hole.
  • FIG. 5 is a view showing a modification (1) of the cylindrical portion 5e with the anode cylinder 2 inserted therein. For explanation, only the left half of the anode cylinder 2 is shown.
  • a plurality of rectangular cutout portions 5k are provided in the cylindrical portions 5e of the plurality of heat radiating fins 5 at a predetermined interval D2.
  • the outer peripheral surface 2a of the anode cylinder 2 is exposed from the plurality of notches 5k provided in the cylindrical portion 5e.
  • the cooling effect of the magnetron 1 according to the present embodiment can be further enhanced by the modification (1) of the cylindrical portion 5e.
  • FIG. 6 is a view showing a modification (2) of the cylindrical portion 5e with the anode cylinder 2 inserted therein. For explanation, only the left half of the anode cylinder 2 is shown.
  • a plurality of rectangular through holes 5l are provided in the cylindrical portions 5e of the plurality of radiating fins 5 at a predetermined interval D3.
  • the outer peripheral surface 2a of the anode cylinder 2 is exposed from the plurality of rectangular through holes 5l provided in the cylindrical portion 5e. Therefore, the cooling effect of the magnetron 1 according to the present embodiment can be further enhanced by the modification (2) of the cylindrical portion 5e.
  • FIG. 7 is a view showing a modification (3) of the cylindrical portion 5e with the anode cylinder 2 inserted therein. For explanation, only the left half of the anode cylinder 2 is shown.
  • a plurality of circular through holes 5m are provided at predetermined intervals D4 in the cylindrical portions 5e of the plurality of radiating fins 5.
  • the outer peripheral surface 2a of the anode cylinder 2 is exposed from a plurality of circular through holes 5m provided in the cylindrical portion 5e. Therefore, the cooling effect of the magnetron 1 according to the present embodiment can be further enhanced by the modification (3) of the cylindrical portion 5e.
  • the shape of the notch of the cylindrical part 5e was demonstrated as a rectangular shape, it is not restricted to this. You may form the notch of arbitrary shapes.
  • the shape of the through-hole of the cylindrical part 5e was demonstrated as a rectangle or a circle, it is not restricted to this.
  • a through hole having an arbitrary shape may be formed.
  • the magnetron and the magnetron using device according to the present invention have the effect that the cooling efficiency of the magnetron can be improved without deteriorating the cooling effect due to the heat conduction to the radiating fin, and are useful as a magnetron for a microwave oven, etc. It is.

Landscapes

  • Microwave Tubes (AREA)

Abstract

Disclosed are a magnetron and a microwave-using device which does not reduce the cooling effect of heat being conducted to heat dissipation fins, and which is capable of improving the cooling efficiency of the magnetron. The disclosed magnetron is provided with: an anode cylindrical body having a permanent magnet on each end; and multiple heat dissipation fins which, disposed at a prescribed interval along the length direction of the aforementioned anode cylindrical body, have a contact portion contacting the outer peripheral surface of the aforementioned anode cylindrical body and an extended portion connected to the aforementioned contact portion and extending substantially horizontally from one end of the aforementioned contact portion. The outer peripheral surface of the aforementioned anode cylindrical body is exposed at the gaps between the heat dissipation fins along the length direction of the aforementioned anode cylindrical body.

Description

マグネトロン及びマイクロ波利用機器Magnetron and microwave equipment
 本発明は、マグネトロン及びマイクロ波利用機器に関し、特に、電子レンジ等のマイクロ波利用機器に用いるマグネトロンに関する。 The present invention relates to a magnetron and a microwave using device, and more particularly to a magnetron used for a microwave using device such as a microwave oven.
 図8は、特許文献1に記載の従来のマグネトロン10の構成の一部を示す図である。マグネトロン10の陽極筒状体11の外周面11aに、一定の高さ(図8中、高さB又は高さC)だけ折り曲げ加工された複数の放熱フィン13a、13bを、高さHの陽極筒状体11の長手方向(図中、X方向)に沿って互いに密接するように圧入し、積層配設する。 FIG. 8 is a diagram showing a part of the configuration of the conventional magnetron 10 described in Patent Document 1. In FIG. A plurality of heat dissipating fins 13a and 13b bent at a certain height (height B or height C in FIG. 8) are formed on the outer peripheral surface 11a of the anode cylindrical body 11 of the magnetron 10 as anodes having a height H. The cylindrical bodies 11 are press-fitted so as to be in close contact with each other along the longitudinal direction (X direction in the figure), and are laminated.
 ここで、放熱フィン13aの高さCが放熱フィン13bの高さBよりも低いため、ベーン15が位置する陽極筒状体11の外周面11aの中心部に付着される放熱フィン13aによる放熱面積が、外方部に付着される放熱フィン13b(高さB)による放熱面積より広い。そのため、マグネトロン10の動作時に、陽極筒状体11の中心部の高熱を早く放熱させることができる。 Here, since the height C of the radiating fin 13a is lower than the height B of the radiating fin 13b, the radiating area by the radiating fin 13a attached to the central portion of the outer peripheral surface 11a of the anode cylindrical body 11 where the vane 15 is located. However, it is wider than the heat radiation area by the heat radiation fin 13b (height B) attached to the outer part. Therefore, when the magnetron 10 is operated, high heat at the center of the anode cylindrical body 11 can be radiated quickly.
日本国特開平5-151903号公報Japanese Laid-Open Patent Publication No. 5-151903
 しかしながら、複数の放熱フィン13a、13bは、陽極筒状体11の長手方向(図中、X方向)に沿って互いに密接するように、圧入、積層配設されている。そのため、陽極筒状体11の長手方向(図中、X方向)に沿って隣接する放熱フィン13a、13b同士の間に隙間がない。したがって、陽極筒状体11の外周面11aのほとんどは、放熱フィン13a、13bによって覆われており、放熱フィン13a、13b間を通る冷却風が、陽極筒状体11の外周面11aに、直接当たらない。そのため、マグネトロン10の冷却効率が良くない。 However, the plurality of heat radiation fins 13a and 13b are press-fitted and laminated so as to be in close contact with each other along the longitudinal direction of the anode cylindrical body 11 (X direction in the figure). Therefore, there is no gap between the radiation fins 13a and 13b adjacent to each other along the longitudinal direction (X direction in the drawing) of the anode cylindrical body 11. Therefore, most of the outer peripheral surface 11a of the anode cylindrical body 11 is covered with the radiation fins 13a and 13b, and the cooling air passing between the radiation fins 13a and 13b is directly applied to the outer peripheral surface 11a of the anode cylindrical body 11. I won't win. Therefore, the cooling efficiency of the magnetron 10 is not good.
 また、一般的に、互いに隣接する放熱フィンを密着させて、陽極筒体を支持する継鉄と陽極筒体との間に圧入する方法をとっている。図9は、放熱フィン圧入時に形成される空気層16を示す図である。例えば、図9に示すように、マグネトロン10においても、陽極筒状体11の長手方向(図中、X方向)に沿って、互いに隣接する放熱フィン13a、13bと、陽極筒状体11の外周面11aとの間には、陽極筒状体11の外周面11aに沿って空気層16が形成される。この空気層16により、放熱フィン13a、13bへの熱伝導による冷却効果が低下してしまう。 Further, generally, a method is adopted in which heat radiation fins adjacent to each other are brought into close contact with each other and press-fitted between the yoke supporting the anode cylinder and the anode cylinder. FIG. 9 is a view showing the air layer 16 formed when the radiating fins are press-fitted. For example, as shown in FIG. 9, also in the magnetron 10, the radiation fins 13 a and 13 b adjacent to each other along the longitudinal direction (X direction in the drawing) of the anode cylindrical body 11 and the outer periphery of the anode cylindrical body 11. An air layer 16 is formed along the outer peripheral surface 11a of the anode cylindrical body 11 between the surface 11a. Due to the air layer 16, the cooling effect due to heat conduction to the radiation fins 13a and 13b is reduced.
 本発明の目的は、放熱フィンへの熱伝導による冷却効果を低下させず、マグネトロンの冷却効率を向上させることができるマグネトロン及びマグネトロン利用機器を提供することである。 An object of the present invention is to provide a magnetron and a magnetron-utilizing device that can improve the cooling efficiency of the magnetron without reducing the cooling effect due to heat conduction to the radiating fin.
 本発明は、両端に永久磁石を有する陽極筒体と、前記陽極筒体の外周面に接触する接触部、及び前記接触部と連続し、前記接触部の一端から略水平方向に延びる延出部を有し、前記陽極筒体の長手方向に沿って所定の間隔で配設される複数の放熱フィンと、を備え、前記陽極筒体の長手方向に沿った複数の放熱フィン間の隙間から、前記陽極筒体の外周面が露出する、ことを特徴とするマグネトロンを提供する。 The present invention relates to an anode cylinder having permanent magnets at both ends, a contact part that contacts the outer peripheral surface of the anode cylinder, and an extension part that is continuous with the contact part and extends from one end of the contact part in a substantially horizontal direction. A plurality of radiating fins disposed at predetermined intervals along the longitudinal direction of the anode cylinder, and from the gaps between the plurality of radiating fins along the longitudinal direction of the anode cylinder, A magnetron is provided in which an outer peripheral surface of the anode cylinder is exposed.
 上記マグネトロンでは、前記複数の放熱フィン間の隙間に加えて、前記接触部の一部の切り欠きから前記陽極筒体の外周面が露出する。 In the magnetron, in addition to the gaps between the plurality of heat dissipating fins, the outer peripheral surface of the anode cylinder is exposed from a part of the notch in the contact portion.
 上記マグネトロンでは、前記複数の放熱フィン間の隙間に加えて、前記接触部の一部に複数の貫通孔から前記陽極筒体の外周面が露出する。 In the magnetron, in addition to the gaps between the plurality of radiating fins, the outer peripheral surface of the anode cylinder body is exposed from a plurality of through holes in a part of the contact portion.
 また、本発明は、上記マグネトロンを備えるマグネトロン利用機器を提供する。 The present invention also provides a magnetron-using device including the magnetron.
 本発明に係るマグネトロン及びマイクロ波利用機器によれば、放熱フィンへの熱伝導による冷却効果を低下させず、マグネトロンの冷却効率を向上させることができる。 According to the magnetron and the microwave utilization device according to the present invention, the cooling efficiency of the magnetron can be improved without deteriorating the cooling effect due to the heat conduction to the radiating fin.
本発明の実施の形態に係るマグネトロン1の全体構成図1 is an overall configuration diagram of a magnetron 1 according to an embodiment of the present invention. 放熱フィン5の斜視図The perspective view of the radiation fin 5 放熱フィン5内に陽極筒体2が挿入された様子を示す図The figure which shows a mode that the anode cylinder 2 was inserted in the radiation fin 5. FIG. 円筒部5eと陽極筒体2の外周面2aの接触部分を示す図The figure which shows the contact part of the cylindrical part 5e and the outer peripheral surface 2a of the anode cylinder 2 円筒部5eの変形例(1)を示す図The figure which shows the modification (1) of the cylindrical part 5e 円筒部5eの変形例(2)を示す図The figure which shows the modification (2) of the cylindrical part 5e 円筒部5eの変形例(3)を示す図The figure which shows the modification (3) of the cylindrical part 5e 従来のマグネトロン10の構成の一部を示す図The figure which shows a part of structure of the conventional magnetron 10 放熱フィン13a、13b圧入時に形成される空気層16を示す図The figure which shows the air layer 16 formed at the time of press-fitting of the radiation fin 13a, 13b
 以下、本発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1、3を参照して、本発明の実施の形態に係るマグネトロン1の構成について説明する。図1は、本発明の実施の形態マグネトロン1の全体構成図である。 1 and 3, the configuration of the magnetron 1 according to the embodiment of the present invention will be described. FIG. 1 is an overall configuration diagram of a magnetron 1 according to an embodiment of the present invention.
 本実施の形態に係るマグネトロン1は、長軸方向の両端に永久磁石4を有する陽極筒体2と、陽極筒体2の周囲、外周面2aに沿って、陽極筒体2の長手方向(図1中、X方向)に沿ってほぼ等間隔に配置された複数の放熱フィン5と、複数の永久磁石4、陽極筒体2、及び複数の放熱フィン5とを、その内部に備える磁気ヨーク3と、を有する。磁気ヨーク3内には動作時に高温となるマグネトロン1を空冷するため、図中紙面手前から奥行方向又は、図中紙面奥方向から手前方向に向かって冷却風が流れる。 The magnetron 1 according to the present embodiment includes an anode cylinder 2 having permanent magnets 4 at both ends in the major axis direction, and the longitudinal direction of the anode cylinder 2 along the periphery and the outer peripheral surface 2a of the anode cylinder 2 (see FIG. 1, a magnetic yoke 3 including a plurality of heat radiation fins 5 arranged at substantially equal intervals along the X direction), a plurality of permanent magnets 4, an anode cylinder 2, and a plurality of heat radiation fins 5. And having. In order to air-cool the magnetron 1 that is at a high temperature during operation, cooling air flows in the magnetic yoke 3 from the front side in the drawing to the depth direction or from the back side to the front side in the drawing.
 複数の放熱フィン5は、陽極筒体2の長手方向(図1中、X方向)に沿ってほぼ等間隔に配置されている。複数の放熱フィン5は、動作時に高温となるマグネトロン1を冷却する機能を有する。 The plurality of radiating fins 5 are arranged at substantially equal intervals along the longitudinal direction of the anode cylinder 2 (X direction in FIG. 1). The plurality of radiating fins 5 have a function of cooling the magnetron 1 that becomes high temperature during operation.
 ここで、図3に示すように、本実施の形態に係るマグネトロン1では、3枚の放熱フィン5が、陽極筒体2の長手方向(図3中、X方向)に沿って、所定の間隔D1だけ離間し、陽極筒体2の外周面2aに等間隔で配置されている。そのため、互いに隣接する放熱フィン5の間の隙間(所定の間隔D1)では、陽極筒体2の外周面2a(図3中、網掛け部分)が露出している。したがって、磁気ヨーク3内には動作時に高温となるマグネトロン1を空冷するために流れる冷却風が直接露出する陽極筒体2の外周面2aに当たる。 Here, as shown in FIG. 3, in the magnetron 1 according to the present embodiment, the three radiating fins 5 are arranged at predetermined intervals along the longitudinal direction of the anode cylinder 2 (X direction in FIG. 3). They are spaced apart by D1 and are arranged on the outer peripheral surface 2a of the anode cylinder 2 at equal intervals. Therefore, the outer peripheral surface 2a (shaded portion in FIG. 3) of the anode cylinder 2 is exposed in the gap (predetermined distance D1) between the heat radiating fins 5 adjacent to each other. Therefore, the cooling air that flows to air-cool the magnetron 1 that is hot during operation hits the outer peripheral surface 2a of the anode cylinder 2 that is directly exposed in the magnetic yoke 3.
 次に、図2を参照して、放熱フィン5の構成について説明する。図2は、1枚の放熱フィン5の斜視図である。図2に示す放熱フィン5は、アルミニウムの薄板である。図2に示す放熱フィン5は、その内部に設けられた穴5dに陽極筒体2が挿入される本体部5cと、本体部5cの穴5dに沿って設けられた円筒部5eと、本体部5cの一部に切り込みを入れて形成される複数のフィン5a、5bとから構成される。円筒部5eは、陽極筒体2の外形に沿った形に形成されている。 Next, the configuration of the heat radiating fins 5 will be described with reference to FIG. FIG. 2 is a perspective view of one radiating fin 5. The radiation fin 5 shown in FIG. 2 is an aluminum thin plate. The heat radiating fin 5 shown in FIG. 2 includes a main body portion 5c into which the anode cylinder 2 is inserted into a hole 5d provided therein, a cylindrical portion 5e provided along the hole 5d of the main body portion 5c, and a main body portion. It comprises a plurality of fins 5a and 5b formed by cutting a part of 5c. The cylindrical part 5 e is formed in a shape along the outer shape of the anode cylinder 2.
 なお、以下、円筒部5eを除く本体部5c、及び複数のフィン5a、5bは、円筒部5eから略水平方向に延びる延出部と呼ぶことがある。また、円筒部5eは、本体部5cの一部を立ち上げて形成(バーリング)するため、立ち上がり部と呼ぶことがある。 In addition, hereinafter, the main body portion 5c excluding the cylindrical portion 5e and the plurality of fins 5a and 5b may be referred to as extending portions extending in a substantially horizontal direction from the cylindrical portion 5e. The cylindrical portion 5e is sometimes called a rising portion because it forms (burring) a part of the main body portion 5c.
 複数のフィン5a、5bは、本体部5cの一部であり、円筒部5eから延びる延出部の一部を構成する。複数のフィン5a、5bは、放熱フィン5の一対の辺から所定の距離だけ、互いに平行に切り込みを入れて、切り込みが入った部分を複数個所、曲げ加工して形成される。 The plurality of fins 5a and 5b are a part of the main body part 5c and constitute a part of the extending part extending from the cylindrical part 5e. The plurality of fins 5a and 5b are formed by cutting in parallel with each other by a predetermined distance from a pair of sides of the heat radiating fin 5 and bending the cut portions at a plurality of locations.
 次に、マグネトロン1への放熱フィン5の取り付け方法について説明する。曲げ加工した放熱フィン5を複数枚用意する。そして、各放熱フィン5の穴5dの中に陽極筒体2が入るように、各放熱フィン5を陽極筒体2の外周面2aと磁気ヨーク3の内面との間に、所定の間隔D1だけ離間し圧入する。所定の角度で曲げ加工された複数の放熱フィン5の端部(フィン5a、5bの端部)は、ヨーク3内に押し当てられた状態で固定され、円筒部5eの内周面5jは、陽極筒体2の外周面2aと接触する。 Next, a method for attaching the radiating fins 5 to the magnetron 1 will be described. A plurality of bent heat radiation fins 5 are prepared. Each radiating fin 5 is placed between the outer peripheral surface 2a of the anode cylinder 2 and the inner surface of the magnetic yoke 3 by a predetermined distance D1 so that the anode cylinder 2 enters the hole 5d of each radiating fin 5. Separate and press fit. The ends of the plurality of radiating fins 5 bent at a predetermined angle (ends of the fins 5a and 5b) are fixed in a state of being pressed into the yoke 3, and the inner peripheral surface 5j of the cylindrical portion 5e is It contacts the outer peripheral surface 2 a of the anode cylinder 2.
 次に、図3、4を参照して放熱フィン5の取り付け状態について説明する。図3は、放熱フィン5内に陽極筒体2が挿入された様子を示す図であり、図4は、円筒部5eと陽極筒体2の外周面2aの接触部分を示す図ある。 Next, the attachment state of the radiation fin 5 will be described with reference to FIGS. FIG. 3 is a diagram illustrating a state where the anode cylinder 2 is inserted into the heat radiation fin 5, and FIG. 4 is a diagram illustrating a contact portion between the cylindrical portion 5 e and the outer peripheral surface 2 a of the anode cylinder 2.
 図3に示すように、複数の放熱フィン5は、所定の間隔D1で配設されている。そのため、陽極筒体2の長手方向(図3中、X方向)に沿って、互いに隣接する放熱フィン5の間に設けられた所定の間隔D1の隙間から、陽極筒体2の外周面2aが露出している。そのため、マグネトロン1の動作時に、ヨーク3内に流れる冷却風が、陽極筒体2の外周面2aに直接当たる。したがって、マグネトロン1の冷却効率を向上させることができる。 As shown in FIG. 3, the plurality of radiating fins 5 are arranged at a predetermined interval D1. Therefore, the outer peripheral surface 2a of the anode cylinder 2 is formed along a longitudinal direction of the anode cylinder 2 (X direction in FIG. 3) from a gap of a predetermined distance D1 provided between the radiating fins 5 adjacent to each other. Exposed. Therefore, during the operation of the magnetron 1, the cooling air flowing in the yoke 3 directly hits the outer peripheral surface 2 a of the anode cylinder 2. Therefore, the cooling efficiency of the magnetron 1 can be improved.
 図4に示すように、複数の放熱フィン5の円筒部5eの内周面5jは、陽極筒体2の外周面2aと接触する。そのため、マグネトロン1の動作時、放熱フィン5は陽極筒体2の内部を効率良く冷却することができる。また、互いに隣接する複数の放熱フィン5は所定の間隔D1だけ離間しているので、陽極筒体2の外周面2aとの空気層が減少し、熱伝導による冷却効果が低下することもない。 As shown in FIG. 4, the inner peripheral surface 5 j of the cylindrical portion 5 e of the plurality of radiating fins 5 is in contact with the outer peripheral surface 2 a of the anode cylinder 2. Therefore, when the magnetron 1 is in operation, the radiating fin 5 can efficiently cool the inside of the anode cylinder 2. Further, since the plurality of heat dissipating fins 5 adjacent to each other are separated by a predetermined distance D1, the air layer with the outer peripheral surface 2a of the anode cylinder 2 is reduced, and the cooling effect by heat conduction is not lowered.
 以上、本実施の形態に係るマグネトロン1では、放熱フィン5が、陽極筒体2の長手方向(図3中、X方向)に沿って、所定の間隔D1だけ離間し、陽極筒体2の外周面2aに配設されている。そのため、互いに隣接する放熱フィン5の間の隙間では、陽極筒体2の外周面2aが露出している。したがって、磁気ヨーク3内には動作時に高温となるマグネトロン1を空冷するための冷却風が、露出する陽極筒体2の外周面2aに直接当たり、マグネトロン1の冷却効率が良い。 As described above, in the magnetron 1 according to the present embodiment, the radiating fins 5 are separated by the predetermined distance D1 along the longitudinal direction of the anode cylinder 2 (X direction in FIG. 3), and the outer periphery of the anode cylinder 2 It is disposed on the surface 2a. Therefore, the outer peripheral surface 2a of the anode cylinder 2 is exposed in the gap between the radiating fins 5 adjacent to each other. Therefore, the cooling air for cooling the magnetron 1 that becomes high temperature during operation directly hits the exposed outer peripheral surface 2a of the anode cylinder 2 in the magnetic yoke 3, and the cooling efficiency of the magnetron 1 is good.
 さらに、本実施の形態に係るマグネトロン1では、放熱フィン5が、陽極筒体2の長手方向(図3中、X方向)に沿って、所定の間隔D1だけ離間し、陽極筒体2の外周面2aに配設されているので、互いに隣り合う放熱フィン5が圧入時に接触することがない。そのため、陽極筒体2の長手方向(図3中、X方向)に沿って、互いに隣接する放熱フィン5と、陽極筒体2の外周面2aとの間の空気層が減少する。したがって、図8に示す従来のマグネトロン10に比して、放熱フィン5への熱伝導による冷却効果を低下させることはない。 Furthermore, in the magnetron 1 according to the present embodiment, the radiating fins 5 are separated by a predetermined distance D1 along the longitudinal direction of the anode cylinder 2 (X direction in FIG. 3), and the outer periphery of the anode cylinder 2 Since it is arrange | positioned at the surface 2a, the mutually adjacent radiation fin 5 does not contact at the time of press injection. Therefore, the air layer between the radiation fins 5 adjacent to each other and the outer peripheral surface 2a of the anode cylinder 2 decreases along the longitudinal direction of the anode cylinder 2 (X direction in FIG. 3). Therefore, as compared with the conventional magnetron 10 shown in FIG. 8, the cooling effect due to heat conduction to the radiating fin 5 is not lowered.
 次に、図5~図7を参照して、マグネトロン1の円筒部5eの変形例(1)~(3)について説明する。円筒部5eの変形例(1)~(3)では、マグネトロン1の冷却効果をより高めるために、円筒部5eに切り欠き、又は貫通穴を設けて、陽極筒体2の外周面2aを、円筒部5eに設けられた切り欠き、又は貫通穴から露出させる。 Next, modified examples (1) to (3) of the cylindrical portion 5e of the magnetron 1 will be described with reference to FIGS. In the modified examples (1) to (3) of the cylindrical portion 5e, in order to further enhance the cooling effect of the magnetron 1, the cylindrical portion 5e is provided with a notch or a through hole so that the outer peripheral surface 2a of the anode cylinder 2 is It exposes from the notch provided in the cylindrical part 5e, or a through-hole.
(変形例1:円筒部5e)
 次に、図5を参照して、本実施の形態における円筒部5eの変形例(1)について説明する。図5は陽極筒体2を内部に挿入した状態の円筒部5eの変形例(1)を示す図である。説明のため、陽極筒体2の左半分のみを示す。
(Modification 1: Cylindrical part 5e)
Next, with reference to FIG. 5, the modification (1) of the cylindrical part 5e in this Embodiment is demonstrated. FIG. 5 is a view showing a modification (1) of the cylindrical portion 5e with the anode cylinder 2 inserted therein. For explanation, only the left half of the anode cylinder 2 is shown.
 図5に示すように、複数の放熱フィン5の円筒部5eに所定の間隔D2で、矩形状の複数の切り欠き部5kを設ける。これにより、陽極筒体2の外周面2aが、円筒部5eに設けられた複数の切り欠き部5kから露出する。そのため、円筒部5eの変形例(1)により、本実施の形態に係るマグネトロン1の冷却効果をより一層高めることができる。 As shown in FIG. 5, a plurality of rectangular cutout portions 5k are provided in the cylindrical portions 5e of the plurality of heat radiating fins 5 at a predetermined interval D2. Thereby, the outer peripheral surface 2a of the anode cylinder 2 is exposed from the plurality of notches 5k provided in the cylindrical portion 5e. For this reason, the cooling effect of the magnetron 1 according to the present embodiment can be further enhanced by the modification (1) of the cylindrical portion 5e.
(変形例2:円筒部5e)
 次に、図6を参照して、本実施の形態における円筒部5eの変形例(2)について説明する。図6は陽極筒体2を内部に挿入した状態の円筒部5eの変形例(2)を示す図である。説明のため、陽極筒体2の左半分のみを示す。
(Modification 2: Cylindrical portion 5e)
Next, with reference to FIG. 6, the modification (2) of the cylindrical part 5e in this Embodiment is demonstrated. FIG. 6 is a view showing a modification (2) of the cylindrical portion 5e with the anode cylinder 2 inserted therein. For explanation, only the left half of the anode cylinder 2 is shown.
 図6に示すように、複数の放熱フィン5の円筒部5eに所定の間隔D3で、矩形状の複数の貫通穴5lを設ける。これにより、陽極筒体2の外周面2aが、円筒部5eに設けられた矩形状の複数の貫通穴5lから露出する。そのため、円筒部5eの変形例(2)により、本実施の形態に係るマグネトロン1の冷却効果をより一層高めることができる。 As shown in FIG. 6, a plurality of rectangular through holes 5l are provided in the cylindrical portions 5e of the plurality of radiating fins 5 at a predetermined interval D3. Thereby, the outer peripheral surface 2a of the anode cylinder 2 is exposed from the plurality of rectangular through holes 5l provided in the cylindrical portion 5e. Therefore, the cooling effect of the magnetron 1 according to the present embodiment can be further enhanced by the modification (2) of the cylindrical portion 5e.
(変形例3:円筒部5e)
 次に、図7を参照して、本実施の形態における円筒部5eの変形例(3)について説明する。図7は陽極筒体2を内部に挿入した状態の円筒部5eの変形例(3)を示す図である。説明のため、陽極筒体2の左半分のみを示す。
(Modification 3: Cylindrical part 5e)
Next, a modification (3) of the cylindrical portion 5e in the present embodiment will be described with reference to FIG. FIG. 7 is a view showing a modification (3) of the cylindrical portion 5e with the anode cylinder 2 inserted therein. For explanation, only the left half of the anode cylinder 2 is shown.
 図7に示すように、複数の放熱フィン5の円筒部5eに所定の間隔D4で、円形状の複数の貫通穴5mを設ける。これにより、陽極筒体2の外周面2aが、円筒部5eに設けられた円形状の複数の貫通穴5mから露出する。そのため、円筒部5eの変形例(3)により、本実施の形態に係るマグネトロン1の冷却効果をより一層高めることができる。 As shown in FIG. 7, a plurality of circular through holes 5m are provided at predetermined intervals D4 in the cylindrical portions 5e of the plurality of radiating fins 5. Thereby, the outer peripheral surface 2a of the anode cylinder 2 is exposed from a plurality of circular through holes 5m provided in the cylindrical portion 5e. Therefore, the cooling effect of the magnetron 1 according to the present embodiment can be further enhanced by the modification (3) of the cylindrical portion 5e.
 なお、上記実施の形態において、円筒部5eの切り欠きの形状は、矩形状として説明したが、これに限らない。任意の形状の切り欠きを形成しても良い。 In addition, in the said embodiment, although the shape of the notch of the cylindrical part 5e was demonstrated as a rectangular shape, it is not restricted to this. You may form the notch of arbitrary shapes.
 なお、上記実施の形態において、円筒部5eの貫通穴の形状は、矩形又は円形として説明したが、これに限らない。任意の形状の貫通穴を形成しても良い。 In addition, in the said embodiment, although the shape of the through-hole of the cylindrical part 5e was demonstrated as a rectangle or a circle, it is not restricted to this. A through hole having an arbitrary shape may be formed.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 本出願は、2010年3月11日出願の日本特許出願(特願2010-054644)、に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on March 11, 2010 (Japanese Patent Application No. 2010-054644), the contents of which are incorporated herein by reference.
 本発明に係るマグネトロン及びマグネトロン利用機器は、放熱フィンへの熱伝導による冷却効果を低下させず、マグネトロンの冷却効率を向上させることができる、という効果を有し、電子レンジ用のマグネトロン等として有用である。 The magnetron and the magnetron using device according to the present invention have the effect that the cooling efficiency of the magnetron can be improved without deteriorating the cooling effect due to the heat conduction to the radiating fin, and are useful as a magnetron for a microwave oven, etc. It is.
1     マグネトロン
2     陽極筒体
2a    外周面
3     磁気ヨーク
4     永久磁石
5     放熱フィン
5a、5b フィン
5e    円筒部
5k    切り欠き部
5l、5m 貫通穴
DESCRIPTION OF SYMBOLS 1 Magnetron 2 Anode cylinder 2a Outer peripheral surface 3 Magnetic yoke 4 Permanent magnet 5 Radiation fin 5a, 5b Fin 5e Cylindrical part 5k Notch part 5l, 5m Through-hole

Claims (4)

  1.  両端に永久磁石を有する陽極筒体と、
     前記陽極筒体の外周面に接触する接触部、及び前記接触部と連続し、前記接触部の一端から略水平方向に延びる延出部を有し、前記陽極筒体の長手方向に沿って所定の間隔で配設される複数の放熱フィンと、を備え、
     前記陽極筒体の長手方向に沿った複数の放熱フィン間の隙間から、前記陽極筒体の外周面が露出する、
     ことを特徴とするマグネトロン。
    An anode cylinder having permanent magnets at both ends;
    A contact portion that contacts the outer peripheral surface of the anode cylinder, and an extending portion that is continuous with the contact portion and extends in a substantially horizontal direction from one end of the contact portion, and is predetermined along the longitudinal direction of the anode cylinder A plurality of heat dissipating fins arranged at intervals of
    From the gap between the plurality of heat radiation fins along the longitudinal direction of the anode cylinder, the outer peripheral surface of the anode cylinder is exposed,
    Magnetron characterized by that.
  2.  請求項1に記載のマグネトロンであって
     前記複数の放熱フィン間の隙間に加えて、
     前記接触部の一部の切り欠きから前記陽極筒体の外周面が露出する、
     ことを特徴とするマグネトロン。
    The magnetron according to claim 1, in addition to the gaps between the plurality of radiation fins,
    The outer peripheral surface of the anode cylinder is exposed from a notch in a part of the contact portion.
    Magnetron characterized by that.
  3.  請求項1に記載のマグネトロンであって
     前記複数の放熱フィン間の隙間に加えて、
     前記接触部の一部に複数の貫通孔から前記陽極筒体の外周面が露出する、
     ことを特徴とするマグネトロン。
    The magnetron according to claim 1, in addition to the gaps between the plurality of radiation fins,
    The outer peripheral surface of the anode cylinder is exposed from a plurality of through holes in a part of the contact portion.
    Magnetron characterized by that.
  4.  請求項1から請求項3のいずれか一項に記載のマグネトロンを備えるマグネトロン利用機器。 A magnetron using device comprising the magnetron according to any one of claims 1 to 3.
PCT/JP2011/001419 2010-03-11 2011-03-10 Magnetron and microwave-using device WO2011111395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800133474A CN102792415A (en) 2010-03-11 2011-03-10 Magnetron and microwave-using device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-054644 2010-03-11
JP2010054644A JP2011187421A (en) 2010-03-11 2010-03-11 Magnetron and microwave-utilizing equipment

Publications (1)

Publication Number Publication Date
WO2011111395A1 true WO2011111395A1 (en) 2011-09-15

Family

ID=44563226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001419 WO2011111395A1 (en) 2010-03-11 2011-03-10 Magnetron and microwave-using device

Country Status (3)

Country Link
JP (1) JP2011187421A (en)
CN (1) CN102792415A (en)
WO (1) WO2011111395A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252182A (en) * 2016-09-14 2016-12-21 南京三乐微波技术发展有限公司 A kind of continuous wave magnetron waveguide excitation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152855A (en) * 1978-05-23 1979-12-01 Nec Home Electronics Ltd Magnetron
JPS5759617B2 (en) * 1974-09-24 1982-12-15 Hitachi Ltd
JPS62200240U (en) * 1986-06-12 1987-12-19
JPH11167875A (en) * 1997-12-03 1999-06-22 Matsushita Electric Ind Co Ltd Magnetron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759617B2 (en) * 1974-09-24 1982-12-15 Hitachi Ltd
JPS54152855A (en) * 1978-05-23 1979-12-01 Nec Home Electronics Ltd Magnetron
JPS62200240U (en) * 1986-06-12 1987-12-19
JPH11167875A (en) * 1997-12-03 1999-06-22 Matsushita Electric Ind Co Ltd Magnetron

Also Published As

Publication number Publication date
CN102792415A (en) 2012-11-21
JP2011187421A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
KR101376288B1 (en) Light module and light component thereof
WO2014020748A1 (en) Heat dissipation plate
US20120073794A1 (en) Heat dissipation device with multiple heat conducting pipes
US8490680B2 (en) Plate cooling fin with slotted projections
WO2011111395A1 (en) Magnetron and microwave-using device
JP2012004454A (en) Air cooling heat dissipation device
JP6917230B2 (en) Dissipator and liquid-cooled cooling device using it
JP2015050287A (en) Cold plate
JP2020027946A (en) Outer frame device of iron core of stationary motor having radiating wing and/or radiating hole extending outward
KR20130121333A (en) Heat sink and repeater having the same
WO2017187898A1 (en) Heat sink and housing
JP2008066641A (en) Electronic apparatus and heatsink
JP5177794B2 (en) Radiator
EP2509094B1 (en) Magnetron and apparatus that uses microwaves
JP2010219085A (en) Heat sink for natural air cooling
JP2012104592A (en) Heat sink
JP6636397B2 (en) Cooling fin structure
JP2006237366A (en) Heat sink
JP2020061395A (en) Heat sink
TW201414980A (en) Heat sink
JP2015103538A (en) Transformer core cooling structure
CN216253725U (en) Heat radiation structure
JP2004319822A (en) Packaging structure of semiconductor
JP6044157B2 (en) Cooling parts
JP3081986U (en) Heat dissipation structure of central processing unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013347.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753058

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753058

Country of ref document: EP

Kind code of ref document: A1