WO2011111366A1 - 記録方法、記録装置および情報記録媒体 - Google Patents

記録方法、記録装置および情報記録媒体 Download PDF

Info

Publication number
WO2011111366A1
WO2011111366A1 PCT/JP2011/001335 JP2011001335W WO2011111366A1 WO 2011111366 A1 WO2011111366 A1 WO 2011111366A1 JP 2011001335 W JP2011001335 W JP 2011001335W WO 2011111366 A1 WO2011111366 A1 WO 2011111366A1
Authority
WO
WIPO (PCT)
Prior art keywords
mark
recording
pulse
length
space
Prior art date
Application number
PCT/JP2011/001335
Other languages
English (en)
French (fr)
Inventor
清貴 伊藤
泰守 日野
直康 宮川
敦史 中村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012504321A priority Critical patent/JPWO2011111366A1/ja
Priority to US13/318,722 priority patent/US20120057448A1/en
Publication of WO2011111366A1 publication Critical patent/WO2011111366A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00456Recording strategies, e.g. pulse sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/006Overwriting
    • G11B7/0062Overwriting strategies, e.g. recording pulse sequences with erasing level used for phase-change media

Definitions

  • the present invention relates to a method and apparatus for recording information on an information recording medium, and an information recording medium.
  • An apparatus for recording and reproducing information on an information recording medium is widely used as a means for recording a large amount of information.
  • An optical disc is a well-known information recording medium.
  • the optical disks include CD-R / RW, DVD ⁇ R / RW, DVD-RAM, Blu-ray Disc (hereinafter referred to as “BD”)-R / RE, HD DVD-R / RW / RAM, and the like.
  • BD Blu-ray Disc
  • the recording film of the rotating optical disc is irradiated with the narrowed laser beam.
  • the recording film is changed by heat energy generated by irradiation with light having strong energy to form a recording mark.
  • Information is recorded by making each of the formed recording marks and recording marks (a space) correspond to either digital “0” or “1”.
  • information may be recorded with the switching point between the recording mark and the space as "0" or "1".
  • the recording pulse forming one recording mark is composed of a plurality of parameters according to the length of the recording mark and the recording speed.
  • the above-mentioned recording pulse is called a write strategy (sometimes described as “WS”).
  • the simplest recording pulse is composed of a single rectangular pulse.
  • the single rectangular pulse when recording a long mark whose recording mark length is several times T (T is the channel clock cycle), the single rectangular pulse has a thin front edge and a thick rear edge. It becomes a recording mark.
  • the recording mark changes the recording film by thermal energy, the change in the recording film hardly occurs in the cooled state at the beginning of recording, and the recording mark becomes thin.
  • the excessive heat storage causes deterioration of the recording film, which increases the possibility of deterioration of the recording quality.
  • a multi-pulse type formed from a plurality of short pulses, or a laser power lower than the two pulses between two pulses, in which the thermal energy is not excessively accumulated at the end of recording, in the recording pulse
  • a castle type that irradiates at the level, and an L-shape type without pulse on the end side of the castle type.
  • Non-Patent Document 1 there is a description as shown in FIG. 1 as an example of the multi-pulse type in BD-RE.
  • FIGS. 1A and 1B show the irradiation intensity of a laser beam and the pulse width and pulse position in the time axis direction as an example of parameters for forming the shape of a recording pulse.
  • Parameters relating to the irradiation intensity of the laser light in FIG. 1 are the recording power Pw (101), the erasing power Pe (102), the cooling power Pc (103), and the bottom power Pb (104).
  • the erasing power Pe (102) represents the laser power for forming the space portion in a rewritable information recording medium such as BD-RE, but as in BD-R, information is recorded only once from an unrecorded state.
  • a rewritable information recording medium such as BD-RE
  • BD-R information is recorded only once from an unrecorded state.
  • the recordable information recording medium which can not be used, it may be called space power Ps.
  • the parameters relating to the time axis direction in FIG. 1 can change values for each mark length, start pulse width Ttop (105, 108, 112), start pulse position dTtop (106, 109, 113), end pulse width The width Tlp (110, 114), the cooling pulse end position dTe (107, 111, 115), and the width Tmp (116) of the multi-pulse present above 4T (T is a channel clock).
  • the parameters relating to the recording pulse are described in the information recording medium, some or all of the parameters relating to the laser power, the pulse width, and the pulse position are recorded in the permitted area in the information recording medium. Or may be held in an internal memory of the recording / reproducing apparatus or the like.
  • the resolution depending on the detection system refers to the optical resolution according to the size of the light spot which has collected the laser light.
  • FIG. 2 (a) shows an example of a 25 GB BD.
  • the wavelength of the laser 201 is 405 nm
  • the numerical aperture (Numeric Aperture; NA) of the objective lens 202 is 0.85.
  • the recording data is recorded on the track 200 of the optical disk as the mark rows 203 and 204 of physical change.
  • the shortest one of the mark lines is called the "shortest mark”.
  • the mark 204 is the shortest mark.
  • the physical length of the shortest mark 204 is 0.149 um. This corresponds to about 1 / 2.7 of DVD, and the light beam identifies the recording mark even if the laser resolution is increased by changing the wavelength parameter (405 nm) and the NA parameter (0.85) of the optical system. It is approaching the limit of optical resolution which is the limit that can be done.
  • FIG. 3 shows a state in which the light beam is irradiated to the mark row recorded on the track.
  • the light spot 205 is about 0.39 um due to the above optical system parameters.
  • the recording mark becomes relatively smaller than the spot diameter of the light spot 205, so that the resolution of reproduction is deteriorated.
  • FIG. 2 (b) shows an example of an optical disc having a recording density higher than that of a 25 GB BD.
  • the wavelength of the laser 201 is 405 nm
  • the numerical aperture (numerical aperture; NA) of the objective lens 202 is 0.85.
  • the physical length of the shortest mark 206 is 0.1115 um.
  • the spot diameter is about 0.39 um, but the recording mark becomes relatively small and the mark interval becomes narrow, so that the resolution of reproduction becomes worse.
  • the amplitude of the reproduction signal when the recording mark is reproduced by the light beam decreases as the recording mark becomes shorter, and becomes zero at the limit of the optical resolution.
  • the reciprocal of the period of the recording mark is called a spatial frequency.
  • the transfer function of spatial frequency is called OTF (Optical Transfer Function).
  • a function representing the amplitude dependency of the OTF on the spatial frequency is called MTF (Modulation Transfer Function).
  • the signal amplitude indicated by MTF decreases approximately linearly as the spatial frequency increases.
  • P ⁇ / (4 ⁇ NA).
  • FIG. 4 is a graph showing the relationship between the MTF and the shortest recording mark in the case of a BD having a recording capacity of 25 GB per recording surface.
  • the spatial frequency of the shortest mark of BD is lower than the MTF cutoff, and is about 80% of the cutoff main fraction. It can be seen that the amplitude of the reproduction signal of the shortest mark is as small as about 10% of the amplitude of the long mark even in the BD of the recording density of 25 GB.
  • the spatial frequency of the shortest mark of the BD is very close to the OTF cutoff, that is, when the reproduction amplitude hardly appears, the recording capacity of the BD corresponds to about 31.3 GB.
  • FIG. 2 schematically shows the light beam and the recording mark when the recording mark row is recorded on the optical disk using the light beam.
  • FIG. 2A shows the case where the shortest recording mark is 149 nm, and all the recording marks are recorded within the range not exceeding the MTF cutoff frequency.
  • FIG. 2B shows an example where the recording density of the optical disc is further improved.
  • FIG. 5 shows the case where the spatial frequency of the shortest mark (2T) is higher than the MTF cut-off frequency and lower than the MTF cut-off frequency except for 2T.
  • the recording density is the same as BD. It will be about 33.3 GB in size.
  • a recording pulse Stability is also required against various stresses such as the variation in the time axis direction of the laser light, the focusing state of the laser beam, and the state of tracking control.
  • the 2T mark 602 is formed by the 2T recording pulse 601.
  • the 3T mark 603 which is a 1T long mark is shown for comparison.
  • the 2T recording pulse 601 represents the duration of the recording power Pw (101), the recording power Pw (101), the erasing power Pe (102), the cooling power Pc (103), and the recording power Pw (101). ), 2T-dTe (107) representing the end position of the cooling power Pc (103) period.
  • xT-Ttop indicates Ttop corresponding to the xT mark
  • xT-dTe indicates dTe corresponding to the xT mark. The same applies to other dTtop, Tlp, etc.
  • the recording power Pw (101) gives the amount of heat that changes on the recording surface of the information recording medium.
  • the write-once type information recording medium it is common that a change occurs and information is recorded only by giving a heat amount.
  • Rewritable media generally have a recording mark formed by being rapidly cooled by a cooling power.
  • the conventional method described above is a method on the premise that the length of the recording mark does not reach the limit of the optical resolution of the laser beam, and recording of a mark having a length shorter than the limit of the optical resolution Not assumed. Therefore, it is very difficult to properly record a mark of short length beyond the limit of optical resolution. In order to properly record marks of short length above the optical resolution limit, another method is required.
  • the present invention has been made to solve the above-mentioned conventional problems, and it is possible to stably record a mark of a length shorter than the limit of optical resolution in a high density information recording medium. Recording method, recording apparatus, and information recording medium on which such recording conditions are recorded.
  • the recording method of the present invention is a recording method of condensing a laser beam with a lens and recording a data string in which a mark and a space are combined on an information recording medium, wherein the optical resolution of the laser beam is exceeded It is characterized in that the condition of the cooling pulse when forming the mark of short length and the condition of the cooling pulse when forming the mark of length not reaching the limit of the optical resolution of the laser light are different. Do.
  • the length of the mark is P
  • the wavelength of the laser light is ⁇
  • the numerical aperture of the lens is NA
  • the length of the light beam is shorter than the optical resolution limit of the laser light.
  • the mark is a mark satisfying P ⁇ ⁇ / 4NA
  • the mark having a length not reaching the optical resolution limit of the laser light is a mark satisfying P> ⁇ / 4NA.
  • the width of the cooling pulse when forming the mark satisfying P ⁇ ⁇ / 4NA is set to zero, and the cooling pulse when forming the mark satisfying P> ⁇ / 4NA. Set the width to other than zero.
  • the width of the cooling pulse when forming the mark satisfying P ⁇ ⁇ / 4NA, is set to zero regardless of the length of the space before and after the mark, and P> ⁇ / 4NA.
  • the width of the cooling pulse is set to other than zero according to at least one of the length of the space before and after the mark.
  • a recording apparatus includes an optical head unit having a lens for condensing a laser beam, and a control unit for controlling the pulse shape of a recording signal, and uses a data string combining marks and spaces as an information recording medium.
  • the control unit is provided with a cooling pulse condition for forming a mark having a length shorter than the limit of the optical resolution of the laser light, and the optical resolution of the laser light. It is characterized in that the condition of the cooling pulse when forming a mark of a length which does not reach the limit is made different.
  • the length of the mark is P
  • the wavelength of the laser light is ⁇
  • the numerical aperture of the lens is NA
  • the length of the light beam is shorter than the optical resolution limit of the laser light.
  • the mark is a mark satisfying P ⁇ ⁇ / 4NA
  • the mark having a length not reaching the optical resolution limit of the laser light is a mark satisfying P> ⁇ / 4NA.
  • control unit sets the width of the cooling pulse when forming the mark satisfying P ⁇ ⁇ / 4NA to zero and forms the mark satisfying P> ⁇ / 4NA.
  • the width of the cooling pulse of is set to other than zero.
  • the control unit when forming the mark satisfying P ⁇ ⁇ / 4NA, sets the width of the cooling pulse to zero regardless of the length of the space before and after the mark.
  • the width of the cooling pulse is set to other than zero according to at least one of the length of the space before and after the mark.
  • An information recording medium is an information recording medium on which a data string in which a mark and a space are combined is recorded by being irradiated with a laser beam collected by a lens, and the optical of the laser beam If the conditions of the cooling pulse when forming a mark of a short length beyond the limit of resolution and the conditions of a cooling pulse when forming a mark of a length not reaching the limit of the optical resolution of the laser light are different. It is characterized by comprising a disc information area in which the recording condition which has been made to be recorded is recorded.
  • the condition of the cooling pulse when forming a mark having a length shorter than the optical resolution limit of the laser light, and the mark having a length not reaching the optical resolution limit of the laser light are made different.
  • it is possible to stably record a mark having a short length beyond the limit of the optical resolution of laser light, and to record information on an information recording medium having a very high recording density and the information recording medium A recording method and a recording apparatus can be realized. Further, by recording such recording conditions in advance in the information recording medium, it is possible to realize an information recording medium with high compatibility, which can be stably recorded and reproduced even when used in various devices.
  • the space before and after the mark when forming a mark of a short length (a mark satisfying P ⁇ ⁇ / 4NA) beyond the limit of the optical resolution of the laser light, the space before and after the mark When setting the width of the cooling pulse to zero regardless of the length and forming a mark with a length that does not reach the optical resolution limit (a mark that satisfies P> ⁇ / 4NA), the space before and after the mark Depending on at least one of the lengths, the width of the cooling pulse is set to other than zero. As a result, it is possible to realize stable recording while avoiding thermal interference in the space before and after.
  • (A) And (b) is a figure which shows an example of the parameter of a recording pulse, and a recording pulse shape.
  • (A) is a figure which shows the example of 25 GB BD
  • (b) is a figure which shows the example of the optical disk of recording density higher than 25 GB BD. It is a figure which shows a mode that the light beam is irradiated to the mark row recorded on the track
  • FIG. 1 is a view showing an optical disc apparatus according to Embodiment 1 of the present invention. It is a figure which shows an example of N / 2 type
  • FIG. 1 is a view showing an optical disc apparatus according to Embodiment 1 of the present invention. It is a figure which shows an example of N / 2 type
  • FIG. 10 is a diagram showing an example of the N / 2 type write strategy, and is a diagram showing an example of 4T recording pulse and 5T recording pulse.
  • FIG. 16 is a diagram showing an example of the N / 2 type write strategy, and is a diagram showing an example of a 6T recording pulse and a 7T recording pulse. It is a figure which shows an example of the pulse width of a recording pulse of N / 2 type
  • FIG. 7 is a diagram showing an example of the pulse width of the recording pulse of the N ⁇ 1 type write strategy and parameters of the pulse position. It is a figure which shows an example of a castle type
  • FIG. 7 is a diagram showing an N ⁇ 1 type write strategy according to Embodiment 2 of the present invention.
  • FIG. 7 is a diagram showing an N / 2 write strategy according to Embodiment 3 of the present invention. It is a figure which shows the information recording medium by embodiment of this invention. It is a figure which shows the information recording medium by embodiment of this invention.
  • FIG. 7 is a view showing an optical disc apparatus 700 according to the present embodiment.
  • the optical disc apparatus 700 is a recording apparatus for recording information on the loaded information recording medium 701.
  • the optical disc apparatus 700 may also reproduce information from the information recording medium 701.
  • the information recording medium 701 is a rewritable recording medium, and in this embodiment, a phase change rewritable optical disc is used.
  • the optical disk apparatus 700 includes an optical head unit 702, a laser control unit 703, a recording pulse generation unit 704, a reproduction signal processing unit 705, a data processing unit 706, a controller unit 707, and a memory unit 708.
  • the optical head unit 702 converges the laser beam having passed through the objective lens on the recording layer of the information recording medium 701, receives the reflected light, and generates an analog reproduction signal indicating the information recorded on the information recording medium 701. .
  • the analog reproduction signal reproduced from the information recording medium 701 is subjected to signal processing by the reproduction signal processing unit 705.
  • the reproduction signal processing unit 705 passes the binarized signal to the data processing unit 706.
  • the data processing unit 706 generates reproduction data from the received binarized signal and passes it to the controller unit 707.
  • the controller unit 707 passes the recording data and the recording pulse parameter to the recording pulse generation unit 704.
  • This recording pulse parameter is recorded on the information recording medium 701.
  • the recording pulse generation unit 704 generates a recording signal based on the received recording data and recording pulse parameters (adjusts the pulse shape of the recording signal).
  • the recording pulse generation unit 704 passes the recording signal to the laser control unit 703.
  • the laser control unit 703 that has received the generated recording signal controls the light emission of the laser mounted on the optical head unit 702 based on the recording signal, and forms a mark on the information recording medium 701.
  • the lens of the optical head unit 702 condenses the laser beam on the information recording medium 701, and a data string in which the mark and the space are combined is recorded on the information recording medium 701.
  • the wavelength of the laser is 405 nm
  • the numerical aperture of the lens is 0.85
  • a 1-7 code system is used as a code of recording modulation
  • the track pitch is 320 nm.
  • the shortest mark size 2T 111.6 nm
  • the 2T mark is shorter than P, and the 3T mark or more is longer than P.
  • the track pitch is 320 nm, so a disk of the same size as the 12 cm BD can realize a capacity of about 33.4 GB per surface. This is about 1.3 times the recording density of 25 GB, which is a BD, and a recording method for realizing such a high recording density will be specifically described below.
  • the condition of the cooling pulse of 2T is realized by making it different from other recording marks.
  • the width of the cooling pulse is made zero regardless of the length of the space before and after the mark.
  • the cooling pulse width is zeroed according to at least one of the length of the space before and after the mark.
  • 8A to 8C show a write strategy called N / 2 type.
  • RLL (1, 7) when used as a recording code, it is used for a Sync pattern for detecting timings such as data start position from 2T mark (T is a channel clock) to 8T mark which is the shortest mark.
  • a recording mark with the 9T mark added is formed.
  • 8A to 8C show the recording pulse shapes of the 2T mark to the 8T mark among them.
  • the 2T mark of the N / 2 type write strategy shown in FIG. 8A has a start time of 2T-dTtop 806 and a top pulse for emitting laser light with the recording power Pw 801 and a rise of the top pulse for the time defined by 2T-Top 805.
  • a cooling pulse for emitting laser light with the cooling power Pc 803 is provided between the falling time and the rising time from the cooling power Pc 803 defined by 2T-dTe 807 to the erasing power Pe 802.
  • the 3T mark of the N / 2 type write strategy shown in FIG. 8A has a start time of 3T-dTtop 809 and a top pulse for emitting laser light with the recording power Pw 801 and a rise of the top pulse for the time defined by 3T-Top 808. Between the fall time and the rise time from the cooling power Pc 803 defined by 3T-dTe 810 to the erasing power Pe 802, there is a cooling pulse that emits laser light with the cooling power Pc 803.
  • the 4T mark of the N / 2 type write strategy shown in FIG. 8B has a start time of 4T-dTtop 831 as a start time, and a top pulse for emitting laser light with recording power Pw 801 and a fall of NRZI for a time defined by 4T-Top 830
  • the 5T mark of the N / 2 type write strategy shown in FIG. 8B has a start time of 5T-dTtop 836 as the start time, and a top pulse for emitting laser light with recording power Pw 801 and a fall of NRZI for a time defined by 5T-Top 835
  • the last pulse is defined by 5T-dTlp 837 based on 2T before, and the last pulse for laser emission with recording power Pw 801 and the last pulse from the falling time of the top pulse Until the rise time of the bottom power Pb804, and from the last pulse fall time to the rise time from the cooling power Pc 803 to the erasing power Pe 802 defined by 5T-dTe 839, the cooling power Laser emission at Pc 803 With a Nguparusu.
  • the 6T mark of the N / 2 type write strategy shown in FIG. 8C has a start time of 6T-dTtop819 as the start time and a top pulse for emitting laser light with the recording power Pw801 and a fall of NRZI for the time defined by 6T-Top818.
  • the time defined by 6T-dTlp 822 with 1T before the start as the start time, and the time defined by 6T-Tlp 821 is defined by Tmp 813 as the last pulse for laser emission with recording power Pw 801 and 3T after the rise of NRZI
  • the time to be recorded is from multi-pulse emitting laser at recording power 801, from the falling time of top pulse to the rising time of multi-pulse, and from the falling time of multi-pulse to the rising time of last pulse, Bottom emitting laser with bottom power Pb804 Having a pulse, the last pulse fall time, between the cooling power PC 803 defined by 6T-dTe823 until the rise time of the erasing power Pe802, and a cooling pulse of laser emission at a cooling power PC 803.
  • the 7T mark of the N / 2 type write strategy shown in FIG. 8C has a start time of 7T-dTtop 825 as the start time, and a top pulse for emitting laser light with recording power Pw 801 and a fall of NRZI for a time defined by 7T-Top 824
  • the start time is the time defined by 7T-dTlp 828 based on 2T before and the last pulse for laser emission with recording power Pw 801 and the time defined by 7T-Tlp 827 and 3T after the rise of NRZI
  • the time defined by 7T-dTmp 826 is a start time
  • the time defined by Tmp 813 is a multipulse that emits laser light at recording power 801, the fall time of the top pulse to the rise time of the multipulse, and the multipulse Of the last pulse from the fall time of The time until the time is from the bottom pulse that emits laser at bottom power Pb804 and the last pulse fall time to the rise time from cooling power Pc
  • the 8T mark of the N / 2 type write strategy shown in FIG. 8A has an 8T-dTtop 812 time point as the start time, and the time defined by the 8T-Top 811 is the top pulse for laser emission with the recording power Pw 801 and the falling edge of NRZI
  • the start time is defined by 8T-dTlp 816 based on 1T before, and the last pulse for emitting laser light with recording power Pw 801 and the time defined by 8T-Tlp 815, and after 3T and 5T after rising of NRZI
  • the time defined by Tmp 813 is from multi-pulse emitting laser at recording power 801, from the falling time of top pulse to the rising time of multi pulse, from the falling time of multi pulse to the rising time of multi pulse Interval and the fall time of the multipulse, Until the rise time of the bottom pulse, and from the last pulse fall time to the rise time from the cooling power Pc 803 defined by 8T-dTe 817 to the erasing power Pe
  • bottom power Pb 804 ⁇ cooling power Pc 803 the present invention is not limited to this.
  • Pb Pc or Pb> Pc may be satisfied.
  • FIG. 9A shows an example of the pulse width of the recording pulse of the N / 2 type write strategy and parameters of the pulse position.
  • the pulse width indicates a value of 0 or more, and the pulse position indicates a positive direction (closer to the start) as shown in FIGS. 8A to 8C. .
  • the start position dTtop and top pulse width Ttop of the top pulse of each T are divided into 2T marks, 3T marks, even T marks of 4T or more, and odd T marks of 5T or more, and have parameters.
  • dTtop and Ttop classify each mark in the front space length of 2T space, 3T space, 4T space, 5T space or more, and further, for the 2T mark, the back space length is 2T space, 3T space It is classified into the above and has parameters.
  • the cooling pulse end position dTe of each T is divided into 2T marks, 3T marks, even T marks of 4T or more, and odd T marks of 5T or more, and has parameters.
  • dTe classifies each mark with a back space length of 2T space, 3T space, 4T space, 5T space or more, and for a 2T mark, the front space length is 2T space or 3T space or more Classify and have parameters.
  • the last pulse start position dTlp and last pulse width Tlp of the 4T or more mark having the last pulse are divided into even T marks of 4T or more and odd T marks of 5T or more and have parameters.
  • dTlp and Tlp have parameters that are classified by the back space length of each mark by 2T space, 3T space, 4T space, 5T space or more.
  • the multipulse start position dTmp of the 6T or more mark having multipulses is divided into even T marks of 6T or more and odd T marks of 7T or more, and the multipulse width Tmp is common to the 6T or more marks.
  • the relationship between dTtop, Ttop and dTe of the 2T mark is set so as to satisfy the following equation (2) in relation to all the front and back spaces.
  • 1T [ns]-Ttop [ns] + dTtop [ns]-dTe [ns] 0 [ns] ...
  • the equation (2) does not have to be a calculation in ns unit, and each parameter takes, for example, the time of dividing T equally by k (k is an integer) as one step, and the pulse width and pulse position number of steps.
  • k [step]-Ttop [step] + dTtop [step]-dTe [step] 0 [step] ... (3) It may be
  • dTtop of 4T space-2T mark-3T or more is represented.
  • FIG. 9B is a diagram specifically showing, for each pattern, a calculation formula that satisfies the formula (2) in the patterns of all the front and back spaces related to the 2T mark, using the symbols of FIG. 9A.
  • the top pulse fall time determined by 2T-dTtop 806 and 2T-Top 805 is the same as the rise time from cooling power Pc 803 to erase power Pe 802 determined by 2T-dTe 807. Therefore, only the 2T recording pulse has no cooling pulse for emitting laser light with the cooling power Pc 803, and recording using only the top pulse is performed.
  • the temperature of the recording medium can be stably obtained with a wide pulse width by widening Ttop which is the pulse width at the time of recording and eliminating the cooling pulse of 2T which is the minimum recording mark.
  • Ttop which is the pulse width at the time of recording
  • 2T which is the minimum recording mark.
  • the present embodiment As described above, this problem is overcome by making the cooling pulse conditions different from 2T and 2T.
  • the recording density is increased, the recording mark is not stably recorded, and the jitter is increased.
  • the jitter can be reduced by about 30% and the power margin is also greatly improved.
  • the recording conditions of the cooling pulse are made different from 2T and 2T, which are recording marks exceeding the optical resolution, so that the change in the length of the recording mark when the power changes becomes uniform. doing.
  • the present invention can be applied to the N-1 type write strategy shown in FIGS. 11 and 12 and the write strategy called the castle type shown in FIGS. 13 and 14.
  • the effect of the present embodiment is most remarkable when recording is performed under the recording conditions in which no cooling pulse is provided for all the recording marks exceeding the optical resolution. This is also derived from the recording principle of the minimum recording mark described above.
  • the classification of the recording pulse parameter with respect to the front and back spaces of the recording mark is classified as 2T space, 3T space, 4T space, 5T or more space, but the present invention is not limited thereto.
  • the classification may be further classified as 2T space, 3T space, 4T space, 5T space, 6T or more space, or the classification may be reduced as 2T space, 3T space, 4T or more space.
  • the recording mark having the optical resolution or less the best effect as the recording performance can be obtained when the recording without the cooling pulse is performed uniformly.
  • the mark length variation due to thermal interference can be corrected by adjusting the cooling pulse length according to the front and back space or front space or back space of the recording mark. Since correction is possible, higher density recording is possible.
  • the 2T mark of the recording pulse parameter is classified by the combination of the front and back spaces, but the present invention is not limited to this.
  • classification may be performed based on only the length of the space before dTtop or Ttop, or classification based on only the length of the space after dTe.
  • RLL (1, 7) is used as the recording code, but the present invention is not limited to this.
  • the shortest mark is not limited to 2T. Further, in the present embodiment, the recording density was obtained when the 2T mark exceeded the optical resolution, but according to the recording density, even the 3T mark and higher marks become less than the optical resolution. It is not necessarily limited to only 2T.
  • the erasing power Pe is described as a rewritable information recording medium, but the present invention is not limited to this.
  • the erase power Pe can be applied to the write-once information storage medium as the space power Ps.
  • the recording pulse parameter is described in the information recording medium, but the present invention is not limited to this.
  • it may be stored in the memory unit of the optical disk apparatus.
  • the configuration of the optical disk apparatus according to the present embodiment is the same as the configuration of the optical disk apparatus 700 shown in FIG. Therefore, in describing the optical disk apparatus according to the present embodiment, reference will be continued to FIG.
  • FIG. 7 is a view showing an optical disc apparatus 700 according to Embodiment 2 of the present invention.
  • FIG. 11 shows a write strategy called N-1 type.
  • RLL (1, 7) when used as a recording code, it is used for a Sync pattern for detecting timings such as data start position from 2T mark (T is a channel clock) to 8T mark which is the shortest mark.
  • the recording pulse shape at the time of forming the recording mark to which the 9T mark is added is shown.
  • the 2T mark of the N-1 write strategy shown in FIG. 11 has a start time of 2T-dTtop 1106 and a top pulse for emitting laser light with peak power Pw 1101 and a rise of the top pulse for the time defined by 2T-Top 1105.
  • a cooling pulse for emitting laser light with cooling power Pc 1103 is provided between the down time and the rise time from cooling power Pc 1103 defined by 2T-dTs 1107 to space power Ps 1102.
  • the 3T mark of the N-1 type write strategy shown in FIG. 11 has a start time of 3T-dTtop 1109 as the start time, and the time defined by 3T-Top 1108 is a top pulse that emits laser light with peak power Pw1101 and 2T after NRZI Is the start time, and the laser beam is emitted with bottom power Pb1104 from the last pulse which makes the laser emission with the peak power Pw1101 the time defined by 3T-Tlp1110 and the fall time of the top pulse to the rise time of the last pulse. It has a bottom pulse and a cooling pulse for emitting laser light at Pc 1103 from the last pulse falling time to the rising time from cooling power Pc 1103 to space power Ps 1102 defined by 3T-dTs 1111.
  • the nT mark (here, n represents an integer of 4 to 9) of the N-1 write strategy shown in FIG. 11 uses the time of nT-dTtop 1113 as the start time, and the time defined by nT-Top 1112 is
  • the start pulse is the time synchronized with the NRZI channel clock from the 2T after NRZI to the (n-1) T of NRZI as the start time, and the time defined by Tmp1116 is the peak power Pw1101
  • the bottom power Pb1104 is the time until the next peak power Pw is emitted, the multipulse for laser emission and the (n-1) T after NRZI start time, and the time defined by nT-Tlp1114 is the peak power From the last pulse that emits laser at Pw1101 and the fall time of the last pulse, nT- Between cooling power Pc1103 defined in Ts1115 until the rise time of the space power Ps1102, and a cooling pulse of laser emission at Pc1103.
  • bottom power Pb1104 ⁇ cooling power Pc1103, but the present invention is not limited to this.
  • Pb Pc or Pb> Pc may be satisfied.
  • FIG. 12 shows an example of the pulse width of the recording pulse of the N-1 write strategy and the parameters of the pulse position.
  • the value representing the pulse width takes a value of 0 or more, and the value representing the pulse position is expressed with the direction in which the time is earlier (the side closer to the start end) as positive as shown in FIG.
  • the start position dTtop and top pulse width Ttop of the top pulse of each T are divided into 2T marks, 3T marks, 4T marks, and 5T or more marks and have parameters.
  • dTtop and Ttop classify each mark in the front space length of 2T space, 3T space, 4T space, 5T space or more, and further, for the 2T mark, the back space length is 2T space, 3T space It is classified into the above and has parameters.
  • the cooling pulse end position dTe of each T is divided into 2T marks, 3T marks, 4T marks, 5T or more marks, and has parameters.
  • dTe classifies each mark with a back space length of 2T space, 3T space, 4T space, 5T space or more, and for a 2T mark, the front space length is 2T space or 3T space or more Classify and have parameters.
  • Last pulse start position dTlp and last pulse width Tlp of 3T or more mark having last pulse are divided into 3T mark, 4T mark, 5T or more mark and have parameters.
  • dTlp and Tlp have parameters that are classified by the back space length of each mark by 2T space, 3T space, 4T space, 5T space or more.
  • the multi-pulse width Tmp of 4 T or more marks having multi-pulses has a common parameter for 4 T or more marks.
  • FIG. 15 is a diagram specifically showing, for each pattern, a calculation formula that satisfies the formula (2) in the patterns of all the front and back spaces related to the 2T mark, using the symbols of FIG.
  • the 2T recording pulse forming the 2T mark is as shown in FIG.
  • the top pulse fall time determined by 2T-dTtop 1106 and 2T-Top 1105 is the same as the rise time from cooling power Pc 1103 to erase power Pe 1102 determined by 2T-dTe 1107.
  • the 2T recording pulse has no cooling pulse for emitting laser light with the cooling power Pc 1103, and recording using only the top pulse is performed. Also in the present embodiment, as in the first embodiment, the cooling pulse condition of the recording mark exceeding the optical resolution can be made different from that of the other recording marks, so that the same effect can be obtained.
  • the classification of the recording pulse parameter to the recording mark is classified into 2T mark, 3T mark, 4T mark, 5T or more mark, but the present invention is not limited to this.
  • classification may be further performed such as 2T mark, 3T mark, 4T mark, 5T mark, 6T or more mark, or 2T mark, 3T mark, 4T or more mark and classification may be reduced.
  • the best effect as the recording performance can be obtained when the recording without the cooling pulse is uniformly performed.
  • the classification of the recording pulse parameter with respect to the front and back spaces of the recording mark is classified as 2T space, 3T space, 4T space, 5T or more space, but the present invention is not limited thereto.
  • the classification may be further classified as 2T space, 3T space, 4T space, 5T space, 6T or more space, or the classification may be reduced as 2T space, 3T space, 4T or more space.
  • the 2T mark of the recording pulse parameter is classified by the combination of the front and back spaces, but the present invention is not limited to this.
  • classification may be performed based on only the length of the space before dTtop or Ttop, or classification based on only the length of the space after dTe.
  • RLL (1, 7) is used as the recording code, but the present invention is not limited to this.
  • the shortest mark is not limited to 2T.
  • the erasing power Pe is described as a rewritable information recording medium, but the present invention is not limited to this.
  • the erase power Pe can be applied to the write-once information storage medium as the space power Ps.
  • the recording pulse parameter is described in the information recording medium, but the present invention is not limited to this.
  • it may be stored in the memory unit of the optical disk apparatus.
  • the configuration of the optical disk apparatus according to the present embodiment is the same as the configuration of the optical disk apparatus 700 shown in FIG. Therefore, in describing the optical disk apparatus according to the present embodiment, reference will be continued to FIG.
  • the optical disk apparatus according to the present embodiment is different from the optical disk apparatus 700 shown in FIG. 7 in part of its processing.
  • the different processes will be described below.
  • the description of the processing procedures applied similarly in the present embodiment will be omitted.
  • the controller unit 707 passes the recording data and the recording pulse parameter to the recording pulse generation unit 704.
  • This recording pulse parameter is recorded on the information recording medium 701.
  • the recording pulse generation unit 704 generates a recording signal based on the received recording data and recording pulse parameters.
  • the recording pulse generation unit 704 detects a flag in the recording pulse parameter, and when the flag is OFF, generates a recording signal according to the recording pulse parameter, and when the flag is ON, the recording data is generated. Is 2T and has a polarity for forming a recording mark, a 2T recording pulse as shown in FIG. 17 is generated.
  • FIG. 17 will be described.
  • the recording signal is generated such that the period defined by 2T-dTe 807 is not the cooling power Pc 803 but the erasing power Pe 802 from the falling time of the 2T top pulse.
  • the recording pulse generation unit 704 passes the generated recording signal to the laser control unit 703.
  • the laser control unit 703 that has received the generated recording signal controls light emission of the laser mounted on the optical head unit based on the recording signal, and forms a mark on the information recording medium 701. Data is recorded by this.
  • the present invention has been described using the N / 2 type write strategy in FIG. 17, the present invention is not limited to the N / 2 type write strategy.
  • the present invention can be applied to the N-1 type write strategy shown in FIGS. 11 and 12 and the write strategy called the castle type shown in FIGS. 13 and 14.
  • FIG. 18 shows an information recording medium 1800 having three recording layers as an example of the information recording medium of the embodiment of the present invention.
  • the L0 layer 1802 and the L2 layer 1803 are provided as the L0 layer 1801 is the recording layer farthest from the incident direction 1810 of the laser beam, and the L1 layer 1802 approaches the incident direction of the laser beam.
  • FIG. 19 shows an area configuration on a plane of at least one recording layer of the information recording medium.
  • An inner circumference area (Inner Zone) 1901, a data area (Data Zone) 1902, and an outer circumference area (Outer Zone) 1903 are arranged from the inner circumference side of the information recording medium.
  • Disc management information called DI (Disc Information) is recorded in a disc management information area 1904 in the inner circumferential area 1901.
  • the recording pulse parameters are included in this DI.
  • Such disc management information is pre-recorded at the time of medium manufacture. For example, in the three-layer information recording medium shown in FIG. 18, the disc management information is recorded in at least the L0 layer 1801.
  • the disc management information of all the recording layers from the L0 layer to the L2 layer can be read at once, and the start time can be shortened.
  • the information recording medium of 3 layers was demonstrated here, it is not limited to this.
  • the present invention can also be applied to an information recording medium of one or two layers or an information recording medium of four or more layers.
  • an n-layer information recording medium (n is an integer of 1 or more) has n recording layers L0, L1,.
  • Disc management information may be recorded in at least one of the n recording layers.
  • the write strategy according to the embodiment of the present invention may be applied to any recording layer of the information recording medium.
  • the write strategy according to the embodiment of the present invention satisfies the equations (2) and (3).
  • the 2T recording pulse has a shape having no cooling power as shown in FIG. Because there is no cooling power, it is necessary to consider the heat dissipation characteristics of the recording layer in order to form the mark.
  • heat dissipation characteristics for example, when applied to the L0 layer 1801 of the three-layer information recording medium shown in FIG. 18, there is no recording layer on the opposite side to the laser light incident side as viewed from the L0 layer. Therefore, it is possible to thicken the film that affects the heat radiation characteristics of the L0 layer without worrying about the transmission of light.
  • the present invention is not limited to this, and the present invention can be applied to one-layer or two-layer information recording medium or four or more-layer information recording medium.
  • classification of recording pulse parameters for recording marks is classified into 2T marks, 3T marks, even marks of 4T or more, and odd marks of 5T or more, but the present invention is not limited to this. .
  • it may be classified as 2T mark, 3T mark, 4T mark, even mark of 6T or more, and odd mark of 5T or more.
  • it may be classified into 2T mark, 3T mark, 4T mark, 5T mark, even mark of 6T or more, and odd mark of 7T or more.
  • the present invention is not limited to the N / 2 type write strategy.
  • the present invention can be applied to the N-1 type write strategy shown in FIGS. 11 and 12 and the write strategy called the castle type shown in FIGS. 13 and 14.
  • the classification of the recording pulse parameter with respect to the front and back spaces of the recording mark is classified as 2T space, 3T space, 4T space, 5T or more space, but the present invention is not limited thereto.
  • the classification may be further classified as 2T space, 3T space, 4T space, 5T space, 6T or more space, or the classification may be reduced as 2T space, 3T space, 4T or more space.
  • the 2T mark of the recording pulse parameter is classified by the combination of the front and back spaces, but the present invention is not limited to this.
  • classification may be performed based on only the length of the space before dTtop or Ttop, or classification based on only the length of the space after dTe.
  • the present invention is particularly useful in the technical field of high density recording on an information recording medium. Further, according to the present invention, it is possible to perform recording with a higher SNR on a high density information recording medium and to reduce an error rate at the time of reproduction. Useful for realization.
  • optical disk apparatus 701 information recording medium 702 optical head unit 703 laser control unit 704 recording pulse generation unit 705 reproduction signal processing unit 706 data processing unit 707 controller unit 708 memory unit

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

 本発明は、レーザ光をレンズで集光させてマークとスペースとを組み合わせたデータ列を情報記録媒体に記録する記録方法において、レーザ光の光学的な分解能の限界以上に短い長さのマークを形成するときのクーリングパルスの条件と、レーザ光の光学的な分解能の限界に達しない長さのマークを形成するときのクーリングパルスの条件とを異ならせることを特徴とする。

Description

記録方法、記録装置および情報記録媒体
 本発明は、情報記録媒体への情報の記録方法および記録装置、情報記録媒体に関する。
 情報記録媒体に、情報を記録再生する装置は、大容量の情報を記録する手段として広く利用されている。
 情報記録媒体として、よく知られているものに光ディスクがある。
 光ディスクには、CD-R/RW、DVD±R/RW、DVD-RAM、Blu-rayDisc(以後、「BD」とする)-R/RE、HD DVD-R/RW/RAMなどがある。
 光ディスクへ情報の記録を行なうには、回転する光ディスクの記録膜に、絞ったレーザ光を照射させる。
 強いエネルギーを持った光を照射させることで発生する熱エネルギーによって、記録膜を変化させ、記録マークを形成する。形成された記録マークと記録マーク間(スペースという)のそれぞれに、デジタルの“0”と“1”のどちらかを対応させて、情報を記録する。
 または、記録マークとスペースの切り替わり点を、“0”または“1”として、情報を記録する場合もある。
 1つの記録マークを形成する記録パルスは、記録マークの長さや記録速度に応じて、複数のパラメータから成り立っている。
 上記、記録パルスのことをライトストラテジ(Write Strategy;「WS」と記述されることもある。)と呼ぶ。
 最も簡単な記録パルスは、単一の矩形型パルスで構成されるものである。
 しかし、記録マークの長さがT(Tはチャンネルクロック周期)の数倍になるような長いマークを記録する際に、単一の矩形型パルスでは、前エッジが細く、後エッジが太く歪んだ記録マークになってしまう。
 前述したように、記録マークは熱エネルギーによって、記録膜を変化させるので、記録始めの冷えた状態では、記録膜の変化が起こりにくく、記録マークが細くなる。
 また、記録終わりはそれまでの熱エネルギーが伝搬して蓄積されているので、熱エネルギーが過剰になり、記録膜の変化が起こりやすくなっており、記録マークが太くなる。
 このように記録マークが歪むと、再生信号の波形も歪み、エラーが増加してしまう。
 また、過剰な蓄熱によって、記録膜の劣化が起こり、記録品質が劣化する可能性も高くなる。
 そこで、前記記録パルスには、記録終わりで熱エネルギーが過剰に蓄積されないようにした、複数の短いパルスから形成されるマルチパルス型や、2つのパルスの間に前記2つのパルスよりも低いレーザーパワーレベルで照射するキャッスル型、キャッスル型の終端側のパルスがないL-Shape型などがある。
 例えば、非特許文献1によれば、BD-REでのマルチパルス型の例として、図1のような記載がある。
 図1(a)および(b)は、記録パルスの形状を作るパラメータの一例として、レーザ光の照射強度と、時間軸方向に関するパルス幅やパルス位置を示している。
 BDのような高密度記録においては、短いマークになるほど微妙な熱量の違いによるマーク形状への影響を受けやすいため、特に、時間軸方向に関するパラメータは、マーク長さに応じて変えることができるようになっている。
 図1内のレーザ光の照射強度に関するパラメータは、記録パワーPw(101)、消去パワーPe(102)、冷却パワーPc(103)、ボトムパワーPb(104)である。
 なお、消去パワーPe(102)は、BD-REのような書き換え型の情報記録媒体でスペース部を形成するレーザパワーを表すが、BD-Rのように未記録状態から1度しか情報を記録できない追記型の情報記録媒体では、スペースパワーPsと呼ぶこともある。
 図1内の時間軸方向に関するパラメータは、マーク長さごとに値を変えることが可能な、始端パルス幅Ttop(105、108、112)、始端パルス位置dTtop(106、109、113)、終端パルス幅Tlp(110、114)、冷却パルス終了位置dTe(107、111、115)と、4T(Tはチャネルクロック)以上に存在するマルチパルスの幅Tmp(116)である。
 前述したような記録パルスに関するパラメータは、情報記録媒体にあらかじめ記載されている。
 また、記録パルスに関するパラメータが情報記録媒体に記載されている場合でも、レーザパワーや、パルス幅、パルス位置に関するパラメータの一部または全部が、情報記録媒体内の許可された領域に、情報記録媒体の記録再生装置によって記録されている場合、または、記録再生装置の内部メモリなどに保持される場合がある。
図解 ブルーレイディスク読本 オーム社
 近年では、情報記録媒体の高密度化により、記録マークの最短マーク長が検出系に依存する分解能の限界に近づいている。
 例えば、情報記録媒体が光ディスク媒体である場合では、検出系に依存する分解能とはレーザ光を集光した光スポットの大きさによる光学的な分解能を指す。
 その分解能の限界のため、符号間干渉の増大およびSNR(Signal Noise Ratio)の劣化がより顕著となってくる。
 次に、記録密度について、図2、図3および図4を用いて説明する。
 図2(a)は25GBのBDの例を示す。BDでは、レーザ201の波長は405nm、対物レンズ202の開口数(Numerical Aperture;NA)は0.85である。
 DVD同様、BDにおいても、記録データは光ディスクのトラック200上に物理変化のマーク列203、204として、記録される。このマーク列の中で最も長さの短いものを「最短マーク」という。図では、マーク204が最短マークである。
 25GB記録容量の場合、最短マーク204の物理的長さは0.149umとなっている。これは、DVDの約1/2.7に相当し、光学系の波長パラメータ(405nm)とNAパラメータ(0.85)を変えて、レーザの分解能を上げても、光ビームが記録マークを識別できる限界である光学的な分解能の限界に近づいている。
 図3は、トラック上に記録されたマーク列に光ビームを照射させている様子を示す。BDでは、上記光学系パラメータにより光スポット205は、約0.39um程度となる。光学系の構造は変えないで記録線密度向上させる場合、光スポット205のスポット径に対して記録マークが相対的に小さくなるため、再生の分解能は悪くなる。
 たとえば図2(b)は、25GBのBDよりも高記録密度の光ディスクの例を示す。このディスクでも、レーザ201の波長は405nm、対物レンズ202の開口数(Numerical Aperture;NA)は0.85である。このディスクのマーク列206、207のうち、最短マーク206の物理的長さは0.1115umとなっている。図2(a)と比較すると、スポット径は同じ約0.39umである一方、記録マークが相対的に小さくなり、かつ、マーク間隔も狭くなるため、再生の分解能は悪くなる。
 光ビームで記録マークを再生した際の再生信号の振幅は記録マークが短くなるに従って低下し、光学的な分解能の限界でゼロとなる。この記録マークの周期の逆数を空間周波数という。空間周波数の伝達関数をOTF(Optical Transfer Function)という。OTFの空間周波数に対する振幅依存性を表す関数をMTF(Modulation Transfer Function)という。記録されるマークの長さをP、レンズの開口数をNA、波長をλとして、x=λ/(4×P×NA)とすると、
Figure JPOXMLDOC01-appb-M000001
の近似関数で表すことができる。
 MTFで示される信号振幅は、空間周波数が高くになるに従ってほぼ直線的に低下する。信号振幅がゼロとなる再生の限界周波数(x=1)を、MTFカットオフ(cutoff)といい、P=λ/(4×NA)となる。BDの場合は、波長λ=405nm、NA=0.85であるのでPは約119nmとなる。
 図4は、記録面あたり25GB記録容量を持つBDの場合のMTFと最短記録マークとの関係を示すグラフである。BDの最短マークの空間周波数は、MTFカットオフより低く、カットオフ主端数の80%程度となっている。25GBの記録密度のBDにおいても、最短マークの再生信号の振幅は長いマークの振幅の約10%程度と非常に小さくなっていることが分かる。BDの最短マークの空間周波数が、OTFカットオフに非常に近い場合、すなわち、再生振幅がほとんど出ない場合の記録容量は、BDでは、約31.3GBに相当する。最短マークの再生信号の周波数が、MTFカットオフ周波数付近である、または、それを超える周波数であると、レーザの分解能の限界、もしくは超えていることもあり、光ディスクへの記録マークの形成、形成された記録マークの再生共に非常に困難となる。図2に光ビームを用いて記録マーク列を光ディスクに記録する際の光ビームと記録マークを模式的に示す。図2(a)は、最短の記録マークが149nmである場合であり、全ての記録マークはMTFのカットオフ周波数を超えない範囲で記録される。図2(b)は光ディスクの記録密度を更に向上させた場合の例を示す。このケースでは、一部の記録マークは光学的な分解能を示すMTFカットオフ周波数を超えた長さのマークとなるために光学的な分解能以下の記録マークと、光学的な分解能以上の記録マークが混在して記録されることになる。図5は、最短マーク(2T)の空間周波数がMTFカットオフ周波数よりも高く、2T以外はMTFカットオフ周波数より低い場合を示しており、この場合の記録密度はBDと同一のトラックピッチ、ディスクサイズでは約33.3GBとなる。上記のような高密度化が進むと、ディスク上に記録が必要な所定のマーク以下の記録マークを、光学的な空間周波数を超えたサイズで記録することが必要となり領域記録となり従来と同様の記録方法では、安定に記録マークを形成することが困難となってくる。そのため、空間周波数がMTFカットオフ周波数以上になるような記録マークを形成する際に、安定に記録ができる記録方法が必要となる。
 また、MTFカットオフ以上の領域でも安定に記録されると共に、実用的に、このような光ディスクを情報記録媒体として用いるためには、情報記録媒体の固体ばらつき、面内ばらつきの他に、記録パルスの時間軸方向のばらつき、レーザ光のフォーカス状態やトラッキング制御の状態などさまざまなストレスに対しても安定が求められることになる。
 例えば、図6を用いて、2T長さの記録マーク形成の一例を説明する。図6では、2T記録パルス601によって、2Tマーク602を形成する。比較のために1T長いマークである3Tマーク603を表しておく。
 2T記録パルス601は、記録パワーPw(101)、消去パワーPe(102)、冷却パワーPc(103)の3つのレーザ光照射強度と、記録パワーPw(101)の期間を表す2T-Ttop(105)、冷却パワーPc(103)期間の終了位置を表す2T-dTe(107)で表される。ここで、xT-Ttopは、xTマークに対応したTtopを示しており、xT-dTeは、xTマークに対応したdTeを示している。他のdTtop、Tlp等でも同様に表記する。
 記録パワーPw(101)によって、情報記録媒体の記録面に変化が起こる熱量が与えられる。追記型の情報記録媒体は、熱量を与えるだけで、変化が起こって、情報が記録されるものが一般的である。書き換え型メディアは、冷却パワーによって、急激に冷やすことで、記録マークが形成されるものが一般的である。
 しかしながら、光ディスクの記録密度を向上させ光ビームの空間周波数を超えたサイズの記録マークを形成するには、601の記録パルス幅を狭くして、形成される記録マークの幅を狭くする必要がある。しかし、一定以上にパルス幅を狭くすると記録媒体を加熱する熱量が不足して、記録マークの形成が困難となる。しかも、光ビームの空間周波数を超えた分解能を持つ記録マークを形成する際には、次の記録マークとの光学的な干渉が大きくなり従来の記録方法では、このような微小な記録マークを安定に形成することは非常に困難であった。
 上述してきた従来の方法は、記録マークの長さがレーザ光の光学的な分解能の限界に達しないことを前提とした方法であり、光学的な分解能の限界以上に短い長さのマークの記録を想定していない。そのため、光学的な分解能の限界以上に短い長さのマークを適切に記録することは非常に困難である。光学的な分解能の限界以上に短い長さのマークを適切に記録するためには、別の方法が必要である。
 本発明は上記従来の課題を解決するためになされたものであり、高密度化した情報記録媒体において、光学的な分解能の限界以上に短い長さのマークを安定的に記録することを可能とする記録方法、記録装置、およびそのような記録条件が記録された情報記録媒体を提供する。
 本発明の記録方法は、レーザ光をレンズで集光させてマークとスペースとを組み合わせたデータ列を情報記録媒体に記録する記録方法であって、前記レーザ光の光学的な分解能の限界以上に短い長さのマークを形成するときのクーリングパルスの条件と、前記レーザ光の光学的な分解能の限界に達しない長さのマークを形成するときのクーリングパルスの条件とを異ならせることを特徴とする。
 ある実施形態によれば、マークの長さをP、前記レーザ光の波長をλ、前記レンズの開口数をNAとしたとき、前記レーザ光の光学的な分解能の限界以上に短い長さの前記マークは、P≦λ/4NAを満たすマークであり、前記レーザ光の光学的な分解能の限界に達しない長さの前記マークは、P>λ/4NAを満たすマークである。
 ある実施形態によれば、P≦λ/4NAを満たす前記マークを形成するときの前記クーリングパルスの幅をゼロに設定し、P>λ/4NAを満たす前記マークを形成するときの前記クーリングパルスの幅をゼロ以外に設定する。
 ある実施形態によれば、P≦λ/4NAを満たす前記マークを形成するときは、前記マークの前後のスペースの長さに関係なく前記クーリングパルスの幅をゼロに設定し、P>λ/4NAを満たす前記マークを形成するときは、前記マークの前後のスペースの長さの少なくとも一方に応じて、前記クーリングパルスの幅をゼロ以外に設定する。
 本発明の記録装置は、レーザ光を集光させるレンズを有する光ヘッド部と、記録用信号のパルス形状を制御する制御部とを備え、マークとスペースとを組み合わせたデータ列を情報記録媒体に記録する記録装置であって、前記制御部は、前記レーザ光の光学的な分解能の限界以上に短い長さのマークを形成するときのクーリングパルスの条件と、前記レーザ光の光学的な分解能の限界に達しない長さのマークを形成するときのクーリングパルスの条件とを異ならせることを特徴とする。
 ある実施形態によれば、マークの長さをP、前記レーザ光の波長をλ、前記レンズの開口数をNAとしたとき、前記レーザ光の光学的な分解能の限界以上に短い長さの前記マークは、P≦λ/4NAを満たすマークであり、前記レーザ光の光学的な分解能の限界に達しない長さの前記マークは、P>λ/4NAを満たすマークである。
 ある実施形態によれば、前記制御部は、P≦λ/4NAを満たす前記マークを形成するときの前記クーリングパルスの幅をゼロに設定し、P>λ/4NAを満たす前記マークを形成するときの前記クーリングパルスの幅をゼロ以外に設定する。
 ある実施形態によれば、前記制御部は、P≦λ/4NAを満たす前記マークを形成するときは、前記マークの前後のスペースの長さに関係なく前記クーリングパルスの幅をゼロに設定し、P>λ/4NAを満たす前記マークを形成するときは、前記マークの前後のスペースの長さの少なくとも一方に応じて、前記クーリングパルスの幅をゼロ以外に設定する。
 本発明の情報記録媒体は、レンズで集光されたレーザ光が照射されることにより、マークとスペースとを組み合わせたデータ列が記録される情報記録媒体であって、前記レーザ光の光学的な分解能の限界以上に短い長さのマークを形成するときのクーリングパルスの条件と、前記レーザ光の光学的な分解能の限界に達しない長さのマークを形成するときのクーリングパルスの条件とを異ならせた記録条件が記録されたディスク情報領域を備えることを特徴とする。
 本発明によれば、レーザ光の光学的な分解能の限界以上に短い長さのマークを形成するときのクーリングパルスの条件と、レーザ光の光学的な分解能の限界に達しない長さのマークを形成するときのクーリングパルスの条件とを異ならせる。これにより、レーザ光の光学的な分解能の限界以上に短い長さのマークを安定に記録することが可能となり、非常に高い記録密度を有する情報記録媒体、およびその情報記録媒体に情報を記録する記録方法および記録装置を実現できる。また、この様な記録条件を情報記録媒体に予め記録しておくことで、様々な装置で使用されても安定した記録および再生が可能な互換性の高い情報記録媒体を実現することができる。
 また、本発明のある実施形態によれば、レーザ光の光学的な分解能の限界以上に短い長さのマーク(P≦λ/4NAを満たすマーク)を形成するときは、マークの前後のスペースの長さに関係なくクーリングパルスの幅をゼロに設定し、光学的な分解能の限界に達しない長さのマーク(P>λ/4NAを満たすマーク)を形成するときは、マークの前後のスペースの長さの少なくとも一方に応じて、クーリングパルスの幅をゼロ以外に設定する。これにより、前後のスペースの熱干渉を避けて安定な記録を実現することができる。
(a)および(b)は、記録パルスのパラメータと記録パルス形状の一例を示す図である。 (a)は25GBのBDの例を示す図であり、(b)は25GBのBDよりも高記録密度の光ディスクの例を示す図である。 トラック上に記録されたマーク列に光ビームを照射させている様子を示す図である。 25GB記録容量の場合のOTFと最短記録マークとの関係を示す図である。 最短マーク(2Tマーク)の空間周波数がOTFカットオフ周波数よりも高く、かつ、2Tマークの再生信号の振幅が0であるときの、信号振幅と空間周波数との関係の一例を示したグラフである。 2Tマークを形成する記録パルスと記録マークの関係を示す図である。 本発明の実施形態1による光ディスク装置を示す図である。 N/2型ライトストラテジの一例を示す図であって、2T記録パルス、3T記録パルス、8T記録パルスの一例を示す図である。 N/2型ライトストラテジの一例を示す図であって、4T記録パルス、5T記録パルスの一例を示す図である。 N/2型ライトストラテジの一例を示す図であって、6T記録パルス、7T記録パルスの一例を示す図である。 本発明の実施形態1によるN/2型ライトストラテジの記録パルスのパルス幅とパルス位置のパラメータの一例を示す図である。 本発明の実施形態1による2T記録パルスのパラメータが満たす条件の一覧を示す図である。 本発明の実施形態1によるN/2型ライトストラテジを示す図である。 N-1型ライトストラテジの一例を示す図である。 N-1型ライトストラテジの記録パルスのパルス幅とパルス位置のパラメータの一例を示す図である。 キャッスル型ライトストラテジの一例を示す図である。 キャッスル型ライトストラテジの記録パルスのパルス幅とパルス位置のパラメータの一例を示す図である。 本発明の実施形態2によるN-1型ライトストラテジの2T記録パルスのパラメータが満たす条件の一覧である。 本発明の実施形態2によるN-1型ライトストラテジを示す図である。 本発明の実施形態3によるN/2型ライトストラテジを示す図である。 本発明の実施形態による情報記録媒体を示す図である。 本発明の実施形態による情報記録媒体を示す図である。
 以下、図面を参照しながら本発明の実施形態を説明する。同様の構成要素には同様の参照符号を付し、同様の説明の繰り返しは省略する。
 (実施形態1)
 はじめに、第1の実施形態にかかる情報記録媒体に情報を記録する光ディスク装置を説明する。図7は、本実施形態による光ディスク装置700を示す図である。光ディスク装置700は、搭載された情報記録媒体701へ情報の記録を行う記録装置である。光ディスク装置700は、情報記録媒体701からの情報の再生も行ってもよい。情報記録媒体701は、書き換え型の記録媒体であり、本実施例では相変化型の書き換え可能な光ディスクを用いている。光ディスク装置700は、光ヘッド部702と、レーザ制御部703と、記録パルス生成部704と、再生信号処理部705と、データ処理部706と、コントローラ部707と、メモリ部708とを備える。
 まず、光ディスク装置700の再生動作を説明する。光ヘッド部702は、対物レンズを通過したレーザ光を情報記録媒体701の記録層に収束させ、その反射光を受光して、情報記録媒体701に記録された情報を示すアナログ再生信号を生成する。情報記録媒体701から再生されたアナログ再生信号は、再生信号処理部705にて信号処理される。再生信号処理部705は、2値化信号をデータ処理部706に渡す。データ処理部706は、受け取った2値化信号から再生データを生成してコントローラ部707に渡す。
 次に、光ディスク装置700の記録動作を説明する。コントローラ部707は、記録データと記録パルスパラメータを記録パルス生成部704に渡す。この記録パルスパラメータは、情報記録媒体701に記録されている。記録パルス生成部704は、受け取った記録データと記録パルスパラメータに基づいて、記録信号を生成する(記録用信号のパルス形状を調整する)。記録パルス生成部704は記録信号をレーザ制御部703に渡す。生成された記録信号を受け取ったレーザ制御部703は、記録信号をもとに、光ヘッド部702に搭載されたレーザの発光を制御して、情報記録媒体701にマークを形成する。光ヘッド部702のレンズがレーザ光を情報記録媒体701に集光させ、マークとスペースとを組み合わせたデータ列が情報記録媒体701に記録される。
 本実施例では、レーザの波長は405nmであり、レンズの開口数は0.85であり、記録変調の符号として1-7符号系を用い、トラックピッチは320nmとした。1-7変調符号でディスクに記録した場合には、チャンネルクロックの長さをTとすると最短の記録マークは2Tとなる。また、NAとλで決まるMTFカットオフとなるマークサイズはP=λ/(4×NA)=119nmとなる。本実施例では、最短のマークサイズ2T=111.6nmとしたので、2TマークはPより短く、3Tマーク以上はPより長くなっている。この2Tのマークサイズが111.5nmの場合、トラックピッチが320nmなので、12cmのBDと同じサイズのディスクに1面あたり約33.4GBの容量を実現出来る。これは、BDの記録密度である25GBの約1.3倍であり、このような高い記録密度実現するための記録方法について、以下具体的に説明をする。
 本実施例のような高い記録密度を実現する際には、記録されるマークが光学的な分解能であるMTFカットオフ周波数より高いマークを記録することが必要となる。本実施例では、1-7変調で出現する3T~9TマークはMTFカットオフ以下となるが、2TマークはMTFカットオフを超えてしまう。本実施形態では、この様な光学分解能を超えた2Tマークを記録するために、2Tのクーリングパルスの条件を、他の記録マークと異ならせることで実現に至った。レーザ光の光学的な分解能の限界以上に短い長さのマーク(P≦λ/4NAを満たすマーク)を形成するときは、マークの前後のスペースの長さに関係なくクーリングパルスの幅をゼロに設定する。光学的な分解能の限界に達しない長さのマーク(P>λ/4NAを満たすマーク)を形成するときは、マークの前後のスペースの長さの少なくとも一方に応じて、クーリングパルスの幅をゼロ以外に設定する。以下、このような記録パルスの生成方法の一例を具体的に説明する。
 図8Aから図8Cは、N/2型と呼ばれるライトストラテジを示す。一例として、記録符号にRLL(1,7)を用いたとき、最短マークとなる2Tマーク(Tはチャネルクロック)から8Tマークまでと、データ開始位置などのタイミングを検出するためのSyncパターンに用いる9Tマークを加えた記録マークが形成される。図8Aから図8Cは、それらのうちの2Tマークから8Tマークの記録パルス形状を示している。
 図8Aに示すN/2型ライトストラテジの2Tマークは、2T-dTtop806の時点を開始時間とし、2T-Top805で定義される時間を、記録パワーPw801でレーザ発光するトップパルスと、トップパルスの立ち下がり時間から、2T-dTe807で定義される冷却パワーPc803から消去パワーPe802への立ち上がり時間までの間、冷却パワーPc803でレーザ発光するクーリングパルスとを有する。
 図8Aに示すN/2型ライトストラテジの3Tマークは、3T-dTtop809の時点を開始時間とし、3T-Top808で定義される時間を、記録パワーPw801でレーザ発光するトップパルスと、トップパルスの立ち下がり時間から、3T-dTe810で定義される冷却パワーPc803から消去パワーPe802への立ち上がり時間までの間、冷却パワーPc803でレーザ発光するクーリングパルスとを有する。
 図8Bに示すN/2型ライトストラテジの4Tマークは、4T-dTtop831の時点を開始時間とし、4T-Top830で定義される時間を、記録パワーPw801でレーザ発光するトップパルスと、NRZIの立ち下がりの1T前を基準とした4T-dTlp832で定義された時間を開始時間とし、4T-Tlp833で定義される時間を記録パワーPw801でレーザ発光するラストパルスと、トップパルスの立ち下り時間から、ラストパルスの立ち上がり時間までの間を、ボトムパワーPb804でレーザ発光するボトムパルスと、ラストパルス立ち下り時間から、4T-dTe834で定義される冷却パワーPc803から消去パワーPe802への立ち上がり時間までの間、冷却パワーPc803でレーザ発光するクーリングパルスとを有する。
 図8Bに示すN/2型ライトストラテジの5Tマークは、5T-dTtop836の時点を開始時間とし、5T-Top835で定義される時間を、記録パワーPw801でレーザ発光するトップパルスと、NRZIの立ち下がりの2T前を基準とした5T-dTlp837で定義された時間を開始時間とし、5T-Tlp838で定義される時間を記録パワーPw801でレーザ発光するラストパルスと、トップパルスの立ち下り時間から、ラストパルスの立ち上がり時間までの間を、ボトムパワーPb804でレーザ発光するボトムパルスと、ラストパルス立ち下り時間から、5T-dTe839で定義される冷却パワーPc803から消去パワーPe802への立ち上がり時間までの間、冷却パワーPc803でレーザ発光するクーリングパルスを有する。
 図8Cに示すN/2型ライトストラテジの6Tマークは、6T-dTtop819の時点を開始時間とし、6T-Top818で定義される時間を、記録パワーPw801でレーザ発光するトップパルスと、NRZIの立ち下がりの1T前を基準とした6T-dTlp822で定義された時間を開始時間とし、6T-Tlp821で定義される時間を記録パワーPw801でレーザ発光するラストパルスと、NRZIの立ち上がりの3T後からTmp813で定義される時間を記録パワー801でレーザ発光するマルチパルスと、トップパルスの立ち下り時間から、マルチパルスの立ち上がり時間までの間およびマルチパルスの立ち下り時間から、ラストパルスの立ち上がり時間までの間を、ボトムパワーPb804でレーザ発光するボトムパルスと、ラストパルス立ち下り時間から、6T-dTe823で定義される冷却パワーPc803から消去パワーPe802への立ち上がり時間までの間、冷却パワーPc803でレーザ発光するクーリングパルスとを有する。
 図8Cに示すN/2型ライトストラテジの7Tマークは、7T-dTtop825の時点を開始時間とし、7T-Top824で定義される時間を、記録パワーPw801でレーザ発光するトップパルスと、NRZIの立ち下がりの2T前を基準とした7T-dTlp828で定義された時間を開始時間とし、7T-Tlp827で定義される時間を記録パワーPw801でレーザ発光するラストパルスと、NRZIの立ち上がりの3T後を基準とした7T-dTmp826で定義された時間を開始時間とし、Tmp813で定義される時間を記録パワー801でレーザ発光するマルチパルスと、トップパルスの立ち下り時間から、マルチパルスの立ち上がり時間までの間およびマルチパルスの立ち下り時間から、ラストパルスの立ち上がり時間までの間を、ボトムパワーPb804でレーザ発光するボトムパルスと、ラストパルス立ち下り時間から、7T-dTe829で定義される冷却パワーPc803から消去パワーPe802への立ち上がり時間までの間、冷却パワーPc803でレーザ発光するクーリングパルスを有する。
 図8Aに示すN/2型ライトストラテジの8Tマークは、8T-dTtop812の時点を開始時間とし、8T-Top811で定義される時間を、記録パワーPw801でレーザ発光するトップパルスと、NRZIの立ち下がりの1T前を基準とした8T-dTlp816で定義された時間を開始時間とし、8T-Tlp815で定義される時間を記録パワーPw801でレーザ発光するラストパルスと、NRZIの立ち上がりの3T後および5T後からTmp813で定義される時間を記録パワー801でレーザ発光するマルチパルスと、トップパルスの立ち下り時間から、マルチパルスの立ち上がり時間までの間、マルチパルスの立ち下り時間から、マルチパルスの立ち上がり時間までの間と、マルチパルスの立ち下り時間から、ラストパルスの立ち上がり時間までの間を、ボトムパワーPb804でレーザ発光するボトムパルスと、ラストパルス立ち下り時間から、8T-dTe817で定義される冷却パワーPc803から消去パワーPe802への立ち上がり時間までの間、冷却パワーPc803でレーザ発光するクーリングパルスとを有する。
 なお、図8A、図8B、図8Cでは、ボトムパワーPb804<クーリングパワーPc803となっているが、本発明はこれに限定されない。例えば、Pb=PcやPb>Pcとなってもよい。
 図9Aに、N/2型ライトストラテジの記録パルスのパルス幅とパルス位置のパラメータの一例を示す。
 パルス幅を表すものは、0以上の値をとり、パルス位置を表すものは、図8Aから図8Cにも示したように時間が早くなる方向(始端に近づく側)を正として、表される。
 各Tのトップパルスの開始位置dTtopおよびトップパルス幅Ttopを、2Tマーク、3Tマーク、4T以上の偶数Tマーク、5T以上の奇数Tマークに分けてパラメータを持つ。
 また、dTtopおよびTtopは、各マークの、前スペースの長さが2Tスペース、3Tスペース、4Tスペース、5Tスペース以上で分類し、さらに2Tマークに関しては、後ろスペースの長さが2Tスペース、3Tスペース以上に分類してパラメータを持つ。
 各Tのクーリングパルス終了位置dTeを、2Tマーク、3Tマーク、4T以上の偶数Tマーク、5T以上の奇数Tマークに分けてパラメータを持つ。
 また、dTeは、各マークの、後ろスペースの長さが2Tスペース、3Tスペース、4Tスペース、5Tスペース以上で分類し、さらに2Tマークに関しては、前スペースの長さが2Tスペース、3Tスペース以上に分類してパラメータを持つ。
 ラストパルスを持つ4T以上マークのラストパルス開始位置dTlpおよびラストパルス幅Tlpを、4T以上の偶数Tマーク、5T以上の奇数Tマークに分けてパラメータを持つ。
 また、dTlpおよびTlpは、各マークの、後ろスペースの長さが2Tスペース、3Tスペース、4Tスペース、5Tスペース以上で分類してパラメータを持つ。
 マルチパルスを持つ6T以上マークのマルチパルス開始位置dTmpは、6T以上の偶数Tマーク、7T以上の奇数Tマークに分けてパラメータを持ち、マルチパルス幅Tmpは6T以上マークで共通のパラメータを持つ。
 このとき、2TマークのdTtop、Ttop、dTeの関係が、全ての前後スペースとの関係で、以下の式(2)を満たすように設定をする。
 1T[ns] - Ttop[ns] + dTtop[ns] - dTe[ns] = 0[ns]   ・・・(2)
なお、式(2)は、ns単位での計算である必要はなく、それぞれのパラメータが、例えば、Tをk(kは整数)等分した時間を1stepとして、パルス幅やパルス位置がstep数で表される場合は、
 k[step] - Ttop[step] + dTtop[step] - dTe[step] = 0[step]  ・・・(3)
としてもよい。
 図9A内の記号について説明する。
 dTtopの表の中に、「AXY」という記号があるが、「A」はdTtopを表し、「XY」はXTスペース-2Tマーク-YTスペースのように2Tマークの前後スペースの長さを表している。
 例えば、A43であれば、4Tスペース-2Tマーク-3T以上スペースのdTtopを表している。
 図9Bは、図9Aの記号を用いて、2Tマークに関する全ての前後スペースのパターンにおいて、式(2)を満たす計算式をパターンごとに具体的に表したものである。
 これにより、2Tマークを形成する2T記録パルスは、図10のようになる。
 図10では、2T-dTtop806と2T-Top805で決定されるトップパルス立ち下がり時間と、2T-dTe807で決定される冷却パワーPc803から消去パワーPe802への立ち上がり時間とが同一となる。よって、2T記録パルスのみが、冷却パワーPc803でレーザ発光するクーリングパルスがなくなり、トップパルスのみによる記録が行われる。
 このように、光学的な分解能を超えたマークである2Tマークと、光学的な分解能を超えないマークである3T以上のマークのクーリングパルスの条件を異ならせることで、非常に安定な記録が実現可能となる。以下、この記録原理について説明を行う。前述したように、短いマークを記録する際には記録パルスを狭くすると与える熱量を小さくできるために、ある程度までは記録マークのサイズを小さくすることは可能となる。しかしながら、パルス幅を小さくすると記録媒体に与える熱量が小さくなり温度が上昇しないために記録が困難となる。特に、光学的な分解能を超えるような記録マークを形成する際には、この問題が非常に深刻になる。この問題を解決するために、本実施例では、記録時のパルス幅であるTtopを広げると共に最小の記録マークである2Tのクーリングパルスをなくすことで、広いパルス幅で安定に記録媒体の温度を上昇させて安定な記録マークを一旦形成した後に、クーリングパルスによる冷却区間を持たずに一気に消去パワーとすることで、記録マークの一部を消去することが可能となる。これによって、短いマークでも温度を安定に上昇させて記録することが可能となる。しかしながら光学的な分解能を超えていない2Tマーク以外に、この様なクーリングパルスパワーを持たない記録モードを持ち込むと、消去パワーによってマークの一部が消去されるために所定の長さの記録マークが形成されなくなり記録密度の向上は不可能となる。本実施例では前述したように、2Tと2T以外でクーリングパルスの条件を異ならせることで、この課題を克服した。従来、記録密度を上げると記録マークが安定に記録されずにジッタが増加していたが、本実施例ではジッタを約30%程度減らせるとともにパワーマージンも大幅に改善した。これは、光学分解能を超えた記録マークである2Tと2T以外でクーリングパルスの記録条件を異ならせたことで、パワーが変化した際の記録マークの長さ変化が一様となったことに起因している。例えば、図11と図12に示すN-1型のライトストラテジや、図13と図14に示すキャッスル型と呼ばれるライトストラテジにも適用可能である。本実施例の効果は、光学分解能を超えた記録マークに対して全てクーリングパルスを持たない記録条件で記録を行った際に最も顕著な効果が得られる。このことは、前述した最小の記録マークの記録原理からも導かれる。
 なお、本実施形態では、記録パルスパラメータの記録マークの前後スペースに対する分類を、2Tスペース、3Tスペース、4Tスペース、5T以上スペースと分類したが、本発明はこれに限定されるものではない。例えば、2Tスペース、3Tスペース、4Tスペース、5Tスペース、6T以上スペースのようにさらに分類してもよいし、2Tスペース、3Tスペース、4T以上スペースのように分類を縮小してもよい。この場合も、光学分解能以下の記録マークに対しては、均一にクーリングパルスをなくす記録を行った場合が記録性能として最善の効果が得られる。また、この場合も、光学分解能より長い記録マークについては、記録マークの前後スペースもしくは前スペース、もしくは後スペースに応じてクーリングパルスの長さを調整することで、熱干渉によるマーク長さの変動を補正できるためにより高密度の記録が可能となる。
 なお、本実施形態では、記録パルスパラメータの2Tマークに対して、前後スペースの組み合わせで分類しているが、本発明はこれに限定されるものではない。例えば、dTtop、Ttop前スペースの長さのみでの分類や、dTeは後ろスペースの長さのみでの分類としてもよい。
 なお、本実施形態では、記録符号にRLL(1,7)を用いているが、本発明はこれに限定されるものではない。最短マークが2Tであることに限定されない。また、本実施例では2Tマークが光学的な分解能を超えた場合の記録密度であったが、記録される密度に応じては3Tマーク以上のマークにおいても、光学的な分解能以下となるため、かならずしも2Tのみに限定されるものでもない。
 なお、本実施形態では、消去パワーPeとして、書き換え型情報記録媒体として説明しているが、本発明はこれに限定されるものではない。消去パワーPeをスペースパワーPsとして、追記型情報記録媒体に適用可能である。
 なお、本実施形態では、記録パルスパラメータは情報記録媒体に記載されていると説明したが、本発明はこれに限定されるものではない。例えば、光ディスク装置のメモリ部に格納されていても良い。
 (実施形態2)
 次に、本実施形態2にかかる光ディスク装置を説明する。
 本実施形態にかかる光ディスク装置の構成は、図7に示す光ディスク装置700の構成と同じである。したがって、本実施形態による光ディスク装置を説明するに当たっては、図7を引き続き参照する。
 実施形態1に関連して説明した光ディスク装置の処理手順のうち、本実施形態においても同様に適用される処理手順の説明は省略する。 図7は、本発明の実施形態2による光ディスク装置700を示す図である。
 図11は、N-1型と呼ばれるライトストラテジを示す。一例として、記録符号にRLL(1,7)を用いたとき、最短マークとなる2Tマーク(Tはチャネルクロック)から8Tマークまでと、データ開始位置などのタイミングを検出するためのSyncパターンに用いる9Tマークを加えた記録マークを形成する際の記録パルス形状が示されている。
 図11に示すN-1型ライトストラテジの2Tマークは、2T-dTtop1106の時点を開始時間とし、2T-Top1105で定義される時間を、ピークパワーPw1101でレーザ発光するトップパルスと、トップパルスの立ち下り時間から、2T-dTs1107で定義されるクーリングパワーPc1103からスペースパワーPs1102への立ち上がり時間までの間、クーリングパワーPc1103でレーザ発光するクーリングパルスとを有する。
 図11に示すN-1型ライトストラテジの3Tマークは、3T-dTtop1109の時点を開始時間とし、3T-Top1108で定義される時間を、ピークパワーPw1101でレーザ発光するトップパルスと、NRZIの2T後を開始時間とし、3T-Tlp1110で定義される時間をピークパワーPw1101でレーザ発光するラストパルスと、トップパルスの立ち下り時間から、ラストパルスの立ち上がり時間までの間を、ボトムパワーPb1104でレーザ発光するボトムパルスと、ラストパルス立ち下り時間から、3T-dTs1111で定義されるクーリングパワーPc1103からスペースパワーPs1102への立ち上がり時間までの間、Pc1103でレーザ発光するクーリングパルスを有する。
 図11に示すN-1型ライトストラテジのnTマーク(ここでのnは4以上9以下の整数を表す)は、nT-dTtop1113の時点を開始時間とし、nT-Top1112で定義される時間を、ピークパワーPw1101でレーザ発光するトップパルスと、NRZIの2T後からNRZIの(n-1)Tまで、NRZIのチャネルクロックに同期した時間を開始時間とし、Tmp1116で定義される時間をピークパワーPw1101で、次のピークパワーPwでの発光までの間をボトムパワーPb1104で、レーザ発光するマルチパルスと、NRZIの(n-1)T後を開始時間とし、nT-Tlp1114で定義される時間をピークパワーPw1101でレーザ発光するラストパルスと、ラストパルス立ち下り時間から、nT-dTs1115で定義されるクーリングパワーPc1103からスペースパワーPs1102への立ち上がり時間までの間、Pc1103でレーザ発光するクーリングパルスとを有する。なお、nTマークを形成する各パラメータは、nが4から9までそれぞれで異なる値でも、nがある数以上は同じ値としてもよい。
 なお、図11では、ボトムパワーPb1104<クーリングパワーPc1103となっているが、本発明はこれに限定されない。例えば、Pb=PcやPb>Pcとなってもよい。
 図12に、N-1型ライトストラテジの記録パルスのパルス幅とパルス位置のパラメータの一例を示す。
 パルス幅を表すものは、0以上の値をとり、パルス位置を表すものは、図8にも示したように時間が早くなる方向(始端に近づく側)を正として、表される。
 各Tのトップパルスの開始位置dTtopおよびトップパルス幅Ttopを、2Tマーク、3Tマーク、4Tマーク、5T以上マークに分けてパラメータを持つ。
 また、dTtopおよびTtopは、各マークの、前スペースの長さが2Tスペース、3Tスペース、4Tスペース、5Tスペース以上で分類し、さらに2Tマークに関しては、後ろスペースの長さが2Tスペース、3Tスペース以上に分類してパラメータを持つ。
 各Tのクーリングパルス終了位置dTeを、2Tマーク、3Tマーク、4Tマーク、5T以上マークに分けてパラメータを持つ。
 また、dTeは、各マークの、後ろスペースの長さが2Tスペース、3Tスペース、4Tスペース、5Tスペース以上で分類し、さらに2Tマークに関しては、前スペースの長さが2Tスペース、3Tスペース以上に分類してパラメータを持つ。
 ラストパルスを持つ3T以上マークのラストパルス開始位置dTlpおよびラストパルス幅Tlpを、3Tマーク、4Tマーク、5T以上マークに分けてパラメータを持つ。
 また、dTlpおよびTlpは、各マークの、後ろスペースの長さが2Tスペース、3Tスペース、4Tスペース、5Tスペース以上で分類してパラメータを持つ。
 マルチパルスを持つ4T以上マークのマルチパルス幅Tmpは4T以上マークで共通のパラメータを持つ。
 このとき、2TマークのdTtop、Ttop、dTeの関係が、全ての前後スペースとの関係で、式(2)を満たす。
 1T[ns] - Ttop[ns] + dTtop[ns] - dTe[ns] = 0[ns]   ・・・(2)
 図15は、図12の記号を用いて、2Tマークに関する全ての前後スペースのパターンにおいて、式(2)を満たす計算式をパターンごとに具体的に表したものである。
 これにより、2Tマークを形成する2T記録パルスは、図16のようになる。
 図16では、2T-dTtop1106と2T-Top1105で決定されるトップパルス立ち下がり時間と、2T-dTe1107で決定される冷却パワーPc1103から消去パワーPe1102への立ち上がり時間とが同一となる。
 よって、2T記録パルスのみが、冷却パワーPc1103でレーザ発光するクーリングパルスがなくなり、トップパルスのみによる記録が行われる。本実施例においても実施例1と同様に、光学分解能を超える記録マークのクーリングパルス条件を、他の記録マークと異ならせることが可能となるので同じ効果を得ることができる。
 なお、本実施形態では、記録パルスパラメータの記録マークに対する分類を、2Tマーク、3Tマーク、4Tマーク、5T以上マークと分類したが、本発明はこれに限定されるものではない。例えば、2Tマーク、3Tマーク、4Tマーク、5Tマーク、6T以上マークのようにさらに分類してもよいし、また、2Tマーク、3Tマーク、4T以上マークと分類を縮小してもよい。この際も、光学分解能以下の記録マークに対しては、均一にクーリングパルスをなくす記録を行った場合が記録性能として最善の効果が得られる。
 なお、本実施形態では、記録パルスパラメータの記録マークの前後スペースに対する分類を、2Tスペース、3Tスペース、4Tスペース、5T以上スペースと分類したが、本発明はこれに限定されるものではない。例えば、2Tスペース、3Tスペース、4Tスペース、5Tスペース、6T以上スペースのようにさらに分類してもよいし、2Tスペース、3Tスペース、4T以上スペースのように分類を縮小してもよい。
 なお、本実施形態では、記録パルスパラメータの2Tマークに対して、前後スペースの組み合わせで分類しているが、本発明はこれに限定されるものではない。例えば、dTtop、Ttop前スペースの長さのみでの分類や、dTeは後ろスペースの長さのみでの分類としてもよい。
 なお、本実施形態では、記録符号にRLL(1,7)を用いているが、本発明はこれに限定されるものではない。最短マークが2Tであることに限定されない。
 なお、本実施形態では、消去パワーPeとして、書き換え型情報記録媒体として説明しているが、本発明はこれに限定されるものではない。消去パワーPeをスペースパワーPsとして、追記型情報記録媒体に適用可能である。
 なお、本実施形態では、記録パルスパラメータは情報記録媒体に記載されていると説明したが、本発明はこれに限定されるものではない。例えば、光ディスク装置のメモリ部に格納されていても良い。
 (実施形態3)
 次に、本実施形態3にかかる光ディスク装置を説明する。
 本実施形態にかかる光ディスク装置の構成は、図7に示す光ディスク装置700の構成と同じである。したがって、本実施形態による光ディスク装置を説明するに当たっては、図7を引き続き参照する。
 本実施形態にかかる光ディスク装置は、その処理の一部において、図7に示す光ディスク装置700と異なっている。以下、その異なる処理を説明する。実施形態1に関連して説明した光ディスク装置の処理手順のうち、本実施形態においても同様に適用される処理手順の説明は省略する。
 次に、本実施形態での光ディスク装置700の記録動作を説明する。
 コントローラ部707は、記録データと記録パルスパラメータを記録パルス生成部704に渡す。
 この記録パルスパラメータは、情報記録媒体701に記録されている。
 記録パルス生成部704は、受け取った記録データと記録パルスパラメータに基づいて、記録信号を生成する。
 記録パルス生成部704では、記録パルスパラメータ内のフラグを検出して、フラグがOFFであった場合は、記録パルスパラメータにしたがって記録信号を生成し、フラグがONで合った場合には、記録データが2Tであり、記録マークを形成する極性であった場合に、図17で示すような2T記録パルスを生成する。
 図17について、説明する。記録データが2Tであった場合に、2Tのトップパルスの立ち下がり時間から、2T-dTe807で定義される期間を、冷却パワーPc803ではなく、消去パワーPe802となるような記録信号を生成する。
 記録パルス生成部704は生成した記録信号を、レーザ制御部703に渡す。
 生成された記録信号を受け取ったレーザ制御部703は、記録信号をもとに、光ヘッド部に搭載されたレーザの発光を制御して、情報記録媒体701にマークを形成する。これによりデータが記録される。
 なお、本実施形態では、図17において、N/2型ライトストラテジを用いて説明したが、本発明はN/2型ライトストラテジに限定されるものではない。例えば、図11と図12に示すN-1型のライトストラテジや、図13と図14に示すキャッスル型と呼ばれるライトストラテジにも適用可能である。
 (実施形態4)
 次に、本実施形態にかかる情報記録媒体を説明する。
 本実施形態の情報記録媒体には、図9Aに示すようなN/2型ライトストラテジの記録パルスパラメータが記載されている。
 このとき、2TマークのdTtop、Ttop、dTeの関係が、全ての前後スペースとの関係で、以下の式(2)を満たす。
 1T[ns] - Ttop[ns] + dTtop[ns] - dTe[ns] = 0[ns]   ・・・(2)
なお、式(2)は、ns単位での計算である必要はなく、それぞれのパラメータが、例えば、Tをk(kは整数)等分した時間を1stepとして、パルス幅やパルス位置がstep数で表される場合は、
 k[step] - Ttop[step] + dTtop[step] - dTe[step] = 0[step]  ・・・(3)
としてもよい。
 次に本発明の実施形態による情報記録媒体の一例である多層光ディスクを説明する。図18に本発明の実施形態の情報記録媒体の一例として、記録層を3層有する情報記録媒体1800を示す。レーザ光の入射方向1810から一番奥の記録層をL0層1801として、レーザ光の入射方向に近づくに従いL1層1802、L2層1803がある。
 図19は、情報記録媒体の少なくとも1つの記録層の平面上の領域構成を示す。情報記録媒体の内周側から内周領域(Inner Zone)1901、データ領域(Data Zone)1902、外周領域(Outer Zone)1903が配置されている。内周領域1901内のディスク管理情報領域1904には、DI(Disc Information)と呼ばれるディスク管理情報が記録されている。このDIの中に、記録パルスパラメータは含まれている。このようなディスク管理情報は、媒体製造時にあらかじめ記録されている。例えば、図18に示した3層情報記録媒体においては、少なくともL0層1801にディスク管理情報を記録しておく。こうすることで、光ディスク装置においては、L0層1801のDIを再生することで、L0層~L2層までの全ての記録層のディスク管理情報を一括して読み出すことができ、起動時間を短縮できる。なお、ここでは3層の情報記録媒体について説明したが、これに限定されない。1層や2層の情報記録媒体や4層以上の情報記録媒体にも適用できる。例えば、n層情報記録媒体(nは1以上の整数)では、L0、L1、、、Ln-1というn個の記録層を有している。n個の記録層のうち少なくとも1つの層にディスク管理情報を記録しておけばよい。
 また、本発明の実施形態のライトストラテジは、情報記録媒体のどの記録層に適用させてもかまわない。なお、本発明の実施形態のライトストラテジは、式(2)、式(3)を満たす。このとき2T記録パルスは、図10に示したような冷却パワーがない形状になる。冷却パワーがないため、マークを形成するためには、記録層の放熱特性を考慮する必要がある。放熱特性ということに関して言えば、例えば、図18に示した3層の情報記録媒体のL0層1801に適用させる場合、L0層から見て、レーザ光入射側とは反対側には記録層がないため、光の透過を気にすることなく、L0層の放熱特性に影響のある膜を厚くすることができる。こうすることで、L0層は、放熱特性を大きくすることが比較的容易であり、本発明の効果が特に期待できる。また、L0層以外の層についても、放熱特性を確保できれば、本発明の効果が期待できる。なお、ここでは3層の情報記録媒体について説明したが、これに限定されず、1層や2層の情報記録媒体や4層以上の情報記録媒体にも適用できる。
 なお、本実施形態では、記録パルスパラメータの記録マークに対する分類を、2Tマーク、3Tマーク、4T以上の偶数マーク、5T以上の奇数マークと分類したが、本発明はこれに限定されるものではない。例えば、2Tマーク、3Tマーク、4Tマーク、6T以上の偶数マーク、5T以上の奇数マークと分類してもよい。また、2Tマーク、3Tマーク、4Tマーク、5Tマーク、6T以上の偶数マーク、7T以上の奇数マークと分類してもよい。
 なお、本実施形態では、N/2型ライトストラテジを用いて説明したが、本発明はN/2型ライトストラテジに限定されるものではない。例えば、図11と図12に示すN-1型のライトストラテジや、図13と図14に示すキャッスル型と呼ばれるライトストラテジにも適用可能である。
 なお、本実施形態では、記録パルスパラメータの記録マークの前後スペースに対する分類を、2Tスペース、3Tスペース、4Tスペース、5T以上スペースと分類したが、本発明はこれに限定されるものではない。例えば、2Tスペース、3Tスペース、4Tスペース、5Tスペース、6T以上スペースのようにさらに分類してもよいし、2Tスペース、3Tスペース、4T以上スペースのように分類を縮小してもよい。
 なお、本実施形態では、記録パルスパラメータの2Tマークに対して、前後スペースの組み合わせで分類しているが、本発明はこれに限定されるものではない。例えば、dTtop、Ttop前スペースの長さのみでの分類や、dTeは後ろスペースの長さのみでの分類としてもよい。
 本発明は、情報記録媒体に高密度の記録を行う技術分野において特に有用である。また、本発明によると、高密度化した情報記録媒体にSNRがより良い記録を行うことが可能であり、再生時のエラーレートを低減することが可能であるため、高密度の情報記録媒体の実現に有用である。
 700 光ディスク装置
 701 情報記録媒体
 702 光ヘッド部
 703 レーザ制御部
 704 記録パルス生成部
 705 再生信号処理部
 706 データ処理部
 707 コントローラ部
 708 メモリ部

Claims (9)

  1.  レーザ光をレンズで集光させてマークとスペースとを組み合わせたデータ列を情報記録媒体に記録する記録方法であって、
     前記レーザ光の光学的な分解能の限界以上に短い長さのマークを形成するときのクーリングパルスの条件と、前記レーザ光の光学的な分解能の限界に達しない長さのマークを形成するときのクーリングパルスの条件とを異ならせる、記録方法。
  2.  マークの長さをP、前記レーザ光の波長をλ、前記レンズの開口数をNAとしたとき、
     前記レーザ光の光学的な分解能の限界以上に短い長さの前記マークは、P≦λ/4NAを満たすマークであり、
     前記レーザ光の光学的な分解能の限界に達しない長さの前記マークは、P>λ/4NAを満たすマークである、請求項1に記載の記録方法。
  3.  P≦λ/4NAを満たす前記マークを形成するときの前記クーリングパルスの幅をゼロに設定し、
     P>λ/4NAを満たす前記マークを形成するときの前記クーリングパルスの幅をゼロ以外に設定する、請求項2に記載の記録方法。
  4.  P≦λ/4NAを満たす前記マークを形成するときは、前記マークの前後のスペースの長さに関係なく前記クーリングパルスの幅をゼロに設定し、
     P>λ/4NAを満たす前記マークを形成するときは、前記マークの前後のスペースの長さの少なくとも一方に応じて、前記クーリングパルスの幅をゼロ以外に設定する、請求項2に記載の記録方法。
  5.  レーザ光を集光させるレンズを有する光ヘッド部と、記録用信号のパルス形状を制御する制御部とを備え、マークとスペースとを組み合わせたデータ列を情報記録媒体に記録する記録装置であって、
     前記制御部は、前記レーザ光の光学的な分解能の限界以上に短い長さのマークを形成するときのクーリングパルスの条件と、前記レーザ光の光学的な分解能の限界に達しない長さのマークを形成するときのクーリングパルスの条件とを異ならせる、記録装置。
  6.  マークの長さをP、前記レーザ光の波長をλ、前記レンズの開口数をNAとしたとき、
     前記レーザ光の光学的な分解能の限界以上に短い長さの前記マークは、P≦λ/4NAを満たすマークであり、
     前記レーザ光の光学的な分解能の限界に達しない長さの前記マークは、P>λ/4NAを満たすマークである、請求項5に記載の記録装置。
  7.  前記制御部は、
     P≦λ/4NAを満たす前記マークを形成するときの前記クーリングパルスの幅をゼロに設定し、
     P>λ/4NAを満たす前記マークを形成するときの前記クーリングパルスの幅をゼロ以外に設定する、請求項6に記載の記録装置。
  8.  前記制御部は、
     P≦λ/4NAを満たす前記マークを形成するときは、前記マークの前後のスペースの長さに関係なく前記クーリングパルスの幅をゼロに設定し、
     P>λ/4NAを満たす前記マークを形成するときは、前記マークの前後のスペースの長さの少なくとも一方に応じて、前記クーリングパルスの幅をゼロ以外に設定する、請求項6に記載の記録装置。
  9.  レンズで集光されたレーザ光が照射されることにより、マークとスペースとを組み合わせたデータ列が記録される情報記録媒体であって、
     前記レーザ光の光学的な分解能の限界以上に短い長さのマークを形成するときのクーリングパルスの条件と、前記レーザ光の光学的な分解能の限界に達しない長さのマークを形成するときのクーリングパルスの条件とを異ならせた記録条件が記録されたディスク情報領域を備えた、情報記録媒体。
PCT/JP2011/001335 2010-03-08 2011-03-07 記録方法、記録装置および情報記録媒体 WO2011111366A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012504321A JPWO2011111366A1 (ja) 2010-03-08 2011-03-07 記録方法、記録装置および情報記録媒体
US13/318,722 US20120057448A1 (en) 2010-03-08 2011-03-07 Recording method, recording device and information recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-050001 2010-03-08
JP2010050001 2010-03-08

Publications (1)

Publication Number Publication Date
WO2011111366A1 true WO2011111366A1 (ja) 2011-09-15

Family

ID=44563200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001335 WO2011111366A1 (ja) 2010-03-08 2011-03-07 記録方法、記録装置および情報記録媒体

Country Status (3)

Country Link
US (1) US20120057448A1 (ja)
JP (1) JPWO2011111366A1 (ja)
WO (1) WO2011111366A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113088A (ja) * 2017-01-12 2018-07-19 株式会社東芝 記憶装置、コントローラ回路、及び記録再生方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298348A (ja) * 2001-04-03 2002-10-11 Matsushita Electric Ind Co Ltd 光学的情報記録再生方法及び光学的情報記録再生装置
JP2004134052A (ja) * 2002-08-15 2004-04-30 National Institute Of Advanced Industrial & Technology 光記録再生装置、光記録再生方法及び光記録媒体
JP2005243234A (ja) * 1998-07-23 2005-09-08 Samsung Electronics Co Ltd 高密度光記録機器のための適応的な記録方法
WO2009054196A1 (ja) * 2007-10-26 2009-04-30 Sharp Kabushiki Kaisha 記録パラメータ設定装置、情報記録媒体、プログラム、該プログラムを記録したコンピュータ読取り可能な記録媒体、及び記録パラメータ設定方法
WO2009157584A2 (ja) * 2008-06-24 2009-12-30 太陽誘電株式会社 データ記録方法及ぴ光ディスク記録再生装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220264A (ja) * 2006-02-20 2007-08-30 Tdk Corp 超界像光記録媒体への情報記録方法及び情報記録装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243234A (ja) * 1998-07-23 2005-09-08 Samsung Electronics Co Ltd 高密度光記録機器のための適応的な記録方法
JP2002298348A (ja) * 2001-04-03 2002-10-11 Matsushita Electric Ind Co Ltd 光学的情報記録再生方法及び光学的情報記録再生装置
JP2004134052A (ja) * 2002-08-15 2004-04-30 National Institute Of Advanced Industrial & Technology 光記録再生装置、光記録再生方法及び光記録媒体
WO2009054196A1 (ja) * 2007-10-26 2009-04-30 Sharp Kabushiki Kaisha 記録パラメータ設定装置、情報記録媒体、プログラム、該プログラムを記録したコンピュータ読取り可能な記録媒体、及び記録パラメータ設定方法
WO2009157584A2 (ja) * 2008-06-24 2009-12-30 太陽誘電株式会社 データ記録方法及ぴ光ディスク記録再生装置

Also Published As

Publication number Publication date
US20120057448A1 (en) 2012-03-08
JPWO2011111366A1 (ja) 2013-06-27

Similar Documents

Publication Publication Date Title
JP4540736B2 (ja) 光ディスク媒体への光記録方法、光ディスク媒体、光ディスクの再生方法
JP4324230B2 (ja) データ記録装置、データ記録方法、および記録媒体
US8085638B2 (en) Test-write method, information recording method, and information recording apparatus
WO2010103742A1 (ja) 光学的情報記録媒体、情報記録装置、情報再生装置、情報記録方法、情報再生方法、および、光学的情報記録媒体の製造方法
JP4539615B2 (ja) 記録ストラテジ決定方法、光ディスク記録方法、光ディスク及び光ディスク装置
KR100607948B1 (ko) 광 기록매체에 데이터를 기록하는 방법
JP5204239B2 (ja) 光学的情報記録媒体、情報記録装置、情報再生装置、情報記録方法、情報再生方法、および、光学的情報記録媒体の製造方法
WO2011111366A1 (ja) 記録方法、記録装置および情報記録媒体
KR100608030B1 (ko) 광 기록매체에 데이터를 기록하는 방법 및 장치
KR100607973B1 (ko) 광 기록매체에 데이터를 기록하는 장치
JP4530090B2 (ja) 試し書き方法、情報記録方法及び情報記録装置
JP5455523B2 (ja) 記録再生制御情報を持った情報記録媒体およびその記録再生装置
JP4692657B2 (ja) 試し書き方法及び情報記録装置
US20110228658A1 (en) Information recording method, optical information recording/reproducing device, and optical information recording medium used for the same
JP2009170020A (ja) 相変化型光記録媒体の記録方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13318722

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012504321

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753031

Country of ref document: EP

Kind code of ref document: A1