WO2011110075A1 - 流体处理单元、流体处理组件以及流体处理装置 - Google Patents

流体处理单元、流体处理组件以及流体处理装置 Download PDF

Info

Publication number
WO2011110075A1
WO2011110075A1 PCT/CN2011/071525 CN2011071525W WO2011110075A1 WO 2011110075 A1 WO2011110075 A1 WO 2011110075A1 CN 2011071525 W CN2011071525 W CN 2011071525W WO 2011110075 A1 WO2011110075 A1 WO 2011110075A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
wall
passage
unit
fluid treatment
Prior art date
Application number
PCT/CN2011/071525
Other languages
English (en)
French (fr)
Inventor
周耀周
Original Assignee
Chau Yiuchau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chau Yiuchau filed Critical Chau Yiuchau
Priority to US13/582,904 priority Critical patent/US9527015B2/en
Publication of WO2011110075A1 publication Critical patent/WO2011110075A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • B01D24/10Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
    • B01D24/14Downward filtration, the container having distribution or collection headers or pervious conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/38Feed or discharge devices
    • B01D24/40Feed or discharge devices for feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • B01D24/4631Counter-current flushing, e.g. by air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/026Column or bed processes using columns or beds of different ion exchange materials in series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Definitions

  • Fluid processing unit fluid processing assembly, and fluid processing device
  • the present invention relates to a fluid processing unit, and a fluid processing assembly and fluid processing apparatus employing the fluid processing unit. Background technique
  • Fluid treatment devices typically utilize one or more fluid treatment media to treat various fluids, such as water, and typically include one or more fluid treatment units that contain fluid treatment media. As the fluid passes through the fluid treatment medium, impurities and contaminants therein are removed by physical and chemical interaction with the treatment medium.
  • a typical example of such a fluid treatment device is a device for purifying and softening water by which, on the one hand, chemical pollutants such as chlorine, heavy metals, sulfides, and the like, and particulate contaminants are removed, and on the other hand, calcium in water is removed. Magnesium and the like soften the water.
  • Such water treatment devices can provide households with purified water and washing water suitable for direct drinking, and are now an important item in family life, especially for Chinese families.
  • Chinese Patent Application Publication No. CN1232790A also discloses a can processing assembly for treating water.
  • water flows through the various processing units by gravity and pressure, each processing unit having a chamber containing a fluid processing medium, the chamber having a substantially annular cross section, from which the water to be treated is The top enters the chamber, and the water after being treated by the treatment medium flows out of the chamber from the bottom of the annular chamber; in the processing unit, since the water flows substantially along the diagonal of the chamber, the flow path is long, in the chamber The residence time in the room is also long, which improves the processing efficiency.
  • a first aspect of the invention provides an improved fluid processing unit.
  • the fluid processing unit of the present invention has a chamber in which a fluid treatment medium is contained, the chamber having an inlet for the fluid to be treated to enter and an outlet for the treated fluid to flow out, and the inlet is disposed at the chamber
  • the lower portion of the chamber is disposed at an upper portion of the chamber.
  • the fluid to be treated flows from the bottom to the chamber of the fluid processing unit; at this time, the generally granular processing medium in the chamber generally has an upward irregular motion tendency under impact. And colliding with each other, thereby efficiently cleaning the dirt adhered by itself, thus effectively ensuring that the surface of the treatment medium particles can directly contact and remove certain chemicals in the fluid. Since no dirt is filled between the gaps of the medium particles, the fluid can smoothly flow through the medium particles without causing a large pressure drop. In addition, since the treatment medium particles tend to move upward under the action of the fluid from the bottom to the top, the medium particles are uniformly distributed in the chamber of the treatment unit and have the same thickness, so that the fluid can be uniformly treated.
  • the processing medium in the processing unit does not fill the entire chamber of the processing unit, thus on the one hand to provide ample space for the processing medium to be active, and on the other hand to avoid excessive pressure drop across the processing unit.
  • the fluid processing unit of the present invention can be used to treat water, but it is also apparent that it can be used for the treatment of other fluids, such as gasoline, ethanol, and the like.
  • the chamber of the fluid processing unit of the present invention may be of any suitable shape, such as a cylindrical shape, a spherical shape, a parallelepiped shape, or the like.
  • the chamber is a ring-shaped cylinder having a cylindrical inner wall, a cylindrical outer wall surrounding the inner wall and spaced apart therefrom, and an upper wall between the inner and outer walls And a lower wall, wherein the upper wall is located above the lower wall And separated from each other.
  • the arrangement of the inlet and the outlet is set according to the principle that the inlet is at the bottom and the outlet is at the upper, for example: the inlet is disposed at a lower portion and/or a lower wall of the inner wall, and the outlet is disposed at an upper portion of the outer wall And/or an upper wall; or, the inlet is disposed at a lower portion and/or a lower wall of the outer wall, and the outlet is disposed at an upper portion and/or an upper wall of the inner wall.
  • a fluid processing assembly employing the fluid processing unit described above.
  • the fluid treatment assembly has a component inlet for fluid to be treated and a component outlet for discharging treated fluid, the fluid treatment assembly including a plurality of fluid processing units stacked one on top of the other, each fluid processing unit having a cavity a chamber containing at least one fluid treatment medium having a unit inlet for the fluid to be treated to enter and a unit outlet for the treated fluid to flow out, the fluid treatment assembly further having an introduction passage and a discharge passage that directs fluid from the assembly inlet to a unit inlet of each of the fluid processing units, the discharge passage directing fluid from the unit outlet to the assembly outlet, wherein each of the fluids Processing Unit
  • the unit inlet is disposed at a lower portion of the chamber, and the unit outlet is disposed at an upper portion of the chamber.
  • the fluid processing assembly of the present invention further includes an outer cylinder surrounding the outer walls of the processing units stacked one on top of the other; the inner walls of the plurality of fluid processing units stacked one on top of the other form a first passage, in the outer cylinder Forming a second passage between the outer wall of each processing unit, and if there is no outer cylinder, the upper portion and/or the upper wall opening of the outer wall of each processing unit constitutes a second passage; the first passage is an introduction passage, The second channel is the discharge channel.
  • the first channel as the discharge channel and the second channel as the introduction channel.
  • the outer cylinder can be used as an outer casing for accommodating the respective units, so that the entire assembly can be used alone or in combination with other components as a whole, and on the other hand, it helps to more securely The individual units of the component are grouped together.
  • the fluid processing assembly of the present invention may further include an inner cylinder extending in a space formed by the inner walls of the processing units stacked one above another, the first being formed between the inner cylinder and the inner wall of each processing unit aisle.
  • the fluid treatment device of the present invention employs at least one fluid treatment unit or fluid treatment assembly as described above, which has a can body as an outer casing, and an introduction port for introducing a fluid and a discharge port for discharging a fluid are opened on the can body.
  • the tank contains a fluid handling unit or fluid Management component.
  • the number of fluid processing units or processing components can be determined according to the actual situation, and the parallel or series relationship of the fluid processing units or processing components, and the combination of the upper and lower stacked or side by side arrangements can also be determined according to actual conditions.
  • FIG. 1 is a schematic cross-sectional view of a fluid processing apparatus according to a first embodiment of the present invention, the apparatus including a fluid processing assembly having a plurality of fluid processing units;
  • Figure 1A is a partial enlarged view of Figure 1 showing the state of the bypass universal check valve when the device is in normal operation;
  • Figure 1B is a view showing the state of the check valve shown in Figure 1A at the time of recoil;
  • Figure 2 is a schematic view of a fluid processing apparatus according to a second embodiment of the present invention.
  • Figure 3 is a schematic view of a fluid processing apparatus according to a third embodiment of the present invention.
  • Figure 4 is a schematic view of a fluid processing apparatus according to a fourth embodiment of the present invention.
  • Figure 5 is a schematic view of a fluid processing apparatus according to a fifth embodiment of the present invention.
  • Figure 6 is a schematic view of a fluid processing apparatus according to a sixth embodiment of the present invention.
  • Figure 7 is a schematic view of a fluid processing apparatus according to a seventh embodiment of the present invention.
  • Figure 7A is an exploded perspective view of the adapter unit employed in the fluid processing apparatus of Figure 7;
  • Figure 7B is an assembled cross-sectional view of the adapter unit of Figure 7A;
  • Figure 8 is a schematic view of a fluid processing apparatus according to an eighth embodiment of the present invention.
  • Figure 9 is a schematic view of a fluid processing apparatus according to a ninth embodiment of the present invention.
  • Figure 10 is a schematic view of a fluid processing apparatus according to a tenth embodiment of the present invention.
  • Figure 11 is a perspective view of a baffle that can be employed with the fluid processing unit of the present invention.
  • Processing unit 1 transfer outer wall 32
  • FIG. 1 is a schematic cross-sectional view of a water treatment apparatus according to a first embodiment of the present invention, taken as an example of a water treatment unit, an assembly, and a device.
  • the water treatment device of the present invention is generally indicated by reference numeral 100, which generally includes an elongated can body 101 that houses a processing assembly 10 that is stacked up and down by a plurality of processing units 1 and stacked in a canister Finely divided fluid treatment medium in the body.
  • the can body also includes an opening at the top, at which a control unit is mounted, the control unit being conventionally included in the device
  • a control valve (not shown) for introducing water into the tank for handling and discharging the treated water during operation.
  • the control unit typically also includes a timing mechanism or other mechanism (not shown) for backflushing the device for regeneration and/or washing.
  • the opening of the can body mainly includes an introduction port 102 for introducing water into the can body during normal operation of the device, and a discharge port 103 for discharging water from the can body.
  • the introduction port 102 and the discharge port 103 may be disposed in any suitable cross-sectional shape, arrangement.
  • the discharge port 103 is provided in a circular shape
  • the introduction port 102 is provided in a circular shape surrounding the discharge port 103 and concentric therewith.
  • the water treatment apparatus of the present embodiment exemplarily shows a processing assembly 10 having four processing units 1 stacked one above another.
  • the four processing units shown in the figure are cylinders having a circular cross section.
  • the axial direction of the cylinder is the same as the axial direction of the can body, and is usually in the up and down direction during normal use.
  • the shape of the processing unit of the present invention is not limited thereto, and any suitable shape may be employed by those skilled in the art, such as a solid cylindrical shape, a rectangular parallelepiped shape, a spherical shape, and the like.
  • each processing unit has a cylindrical inner wall 11, a cylindrical outer wall 12 that surrounds the inner wall 11 and is concentrically spaced, and an upper wall 13 between the inner wall 11 and the outer wall 12.
  • the lower wall 14 is formed, wherein the upper wall 13 is located above and spaced apart from the lower wall 14.
  • the inner wall 11, the outer wall 12, the upper wall 13 and the lower wall 14 together form a chamber in which the water treatment medium is contained.
  • the fluid treatment medium is preferably a particulate material, irregularly shaped particles (for example, KDF-55, KDF-85 of KDF®, activated carbon particles) or spherical particles of uniform size (for example, various ion exchange resin particles, etc.) ) Yes.
  • the processing medium does not fill the entire chamber, which on the one hand provides ample space for the processing medium to act, and on the other hand prevents excessive pressure drop before and after the water passes through the processing unit.
  • the chamber has a unit inlet 15 for the water to be treated to enter and a unit outlet 16 for the treated water to flow out.
  • the inlet 15 is disposed at the lower portion of the inner wall 11, and the outlet 16 is disposed at the upper wall 13.
  • Both the inlet 15 and the outlet 16 of the processing unit are elongated slits, the purpose of which is to block the media particles and avoid clogging by the media particles.
  • the unit inlet 15 and unit outlet 16 of the processing unit may use a filter screen, a filter cotton or a suitable filtration method or material in addition to the elongated slit.
  • Each unit in the present embodiment is stacked on top of each other to form a processing unit.
  • the processing assembly has the cylinder axis of the processing unit as its own axis and extends in the up and down direction.
  • the inner wall 11 of the lower unit is higher than the upper wall 13-segment distance, and extends radially outward from the upper end of the inner wall 11 to form an annular flange.
  • the flange is located above the upper wall 13 and spaced apart from the upper wall 13, and extends upwardly on the radially outer side of the flange to form a cylindrical projection.
  • the inner cylinder of the upper unit When assembled, the inner cylinder of the upper unit is fitted to the radially inner side of the annular flange of the lower unit, and the outer cylinder is sealingly engaged with the cylindrical protrusion of the lower unit, thereby forming an annular convexity of the lower unit of the upper unit
  • the edge serves as the lower wall 14.
  • a separate support plate 19 is provided below the lowermost unit, and the flange of the support plate 19 serves as the lower wall 14 of the lowermost unit.
  • the present embodiment is provided with an inner cylinder in the cylindrical space formed by the inner wall 11 of each processing unit, and the inner wall 11 of the inner cylinder and each unit A passage for guiding water to each of the processing units (hereinafter referred to as a first passage) is formed, and water entering the tank from the introduction port 102 flows along the first passage to the respective processing units.
  • One end of the inner cylinder communicates with the discharge port 103 of the can body, and the other end optionally connects the finely divided fluid treatment medium located in the can body, so that the inside of the inner cylinder forms a fluid for discharging the treated fluid out of the can body.
  • the third channel (hereinafter referred to as the third channel).
  • An outer cylinder is disposed around each unit outside the processing unit, the upper portion of the outer cylinder is open and the bottom is sealed, so that an allowable space is formed between the outer cylinder and the outer wall 12 of the unit and between the outer cylinder and the can body.
  • the passage through which water flows (the two are collectively referred to as the second passage). If there is no outer cylinder, the upper and/or upper wall opening of the outer wall of each processing unit constitutes a second passage.
  • the water flowing out of each processing unit passes through the outer cylinder and the single The passage between the outer outer walls 12 flows out from the upper opening of the outer cylinder and then flows through the passage between the outer cylinder and the can body into the can body.
  • the water reaching the tank enters the inner cylinder after being filtered through the finely divided fluid treatment medium located in the tank, and is then discharged from the discharge port 103.
  • the channel configuration described above is merely exemplary, and those skilled in the art will readily appreciate that any other form of channel may be utilized in accordance with the teachings of the present invention.
  • a tube may be used as the first channel to supply water to each processing unit. It is also possible to use the tank directly or without the tube to receive the water discharged from each processing unit and deliver the water to the finely divided fluid treatment medium located in the tank. It is also not necessary for the finely divided fluid treatment medium itself located in the tank.
  • the present invention can direct water from the treatment unit directly to the discharge port 103 of the tank through a passage.
  • the four processing units shown in Figure 1 form a processing assembly in parallel, with water flowing through each processing unit in parallel (or untreated water flow simultaneously to each processing unit), thereby achieving an optimized minimum pressure drop.
  • a processing component at least two processing units are arranged in series, BP, the outlet 16 of one processing unit is in communication with the inlet 15 of another processing unit, and the water flow passes through the two processing units in sequence.
  • Such a unit arranged in series ensures that the water is more sufficiently purified; and, different processing media can be placed in the chambers of two or more processing units arranged in series to achieve full processing efficiency.
  • the arrows in Figure 1 indicate the direction of water flow when the water treatment device is operating normally.
  • untreated water enters the apparatus from the inlet 102 of the canister under a certain pressure.
  • the water flows along the first passage between the inner cylinder and the outer wall 12 of the unit, and enters the respective units from the inlet 15 at the lower portion of the inner wall 11 of each unit.
  • water flows from the bottom to the typically granular water treatment medium in the cell chamber, and chlorine, heavy metals and sulfides in the water are removed by the medium.
  • the water flowing out of the processing unit rises along the second passage between the outer cylinder and the outer wall 12 of the unit, and flows out of the outer cylinder from the upper opening of the outer cylinder.
  • Water flowing from the outer cylinder flows along the second passage between the can body and the outer cylinder to the finely divided fluid treatment medium located in the tank body, thereby being filtered.
  • the water passing through the finely divided fluid treatment medium in the tank flows along the third passage formed by the inner cylinder to the discharge port 103 of the tank, and is finally discharged.
  • the fluid treatment device After the fluid treatment device has been in operation for a period of time, it may be necessary to backflush the device.
  • the control unit located at the opening of the can introduces the recoil water into the discharge port 103, which flows substantially against the direction of the arrow shown in Fig. 1 and is finally discharged from the introduction port 102.
  • the recoil water carries the washed away dirt, such as dirt that is washed away by the finely divided fluid treatment medium located in the tank. If the backwash water carrying the dirt completely flows through the processing unit, the dirt in the water will at least partially deposit on the media particles in the processing unit.
  • the present invention provides a bypass valve between the second passage and the first passage. 1A and 1B are partial enlarged views of Fig. 1 showing the state of the bypass valve during normal operation and during recoil.
  • the bypass valve is disposed above the processing assembly, substantially facing the inlet port 102, and within the outer diameter of the outer cylinder.
  • the bypass valve thus provided does not increase the radial dimension of the process assembly.
  • the bypass valve preferably employs a one-way valve that opens when the water pressure in the second passage is greater than the water pressure in the first passage to allow water to flow from the second passage to the first passage.
  • the check valve in the case of backflushing, the water flows from the third passage to the second passage through the finely divided fluid treatment medium located in the tank, and a part of the water in the second passage enters the first passage through the processing unit. A portion enters the first passage through the open check valve.
  • the check valve in this embodiment is preferably a differential pressure open type check valve having a simple configuration, and the check valve is opened when the pressure difference between the second passage and the first passage exceeds a threshold. Additionally, it is preferred that the opening threshold of the one-way valve can be adjusted whereby the ratio of fluid passing through the one-way valve to fluid passing through the processing unit can be adjusted. In general, to avoid contamination of the treatment medium, the opening threshold of the check valve should be set as low as possible so that most of the water flow is discharged through the check valve, even allowing all of the water to flow through the check valve.
  • FIG. 2 is a schematic view of a fluid treatment device according to a second embodiment of the present invention.
  • This embodiment is similar to the first embodiment, and the same configuration as that of FIG. 1 in FIG. 2 will not be described herein.
  • the arrangement of the inlet 15 and the outlet 16 of the processing unit in this embodiment is different from that of the first embodiment.
  • the inlet 15 of each processing unit is disposed on the lower and bottom walls of the inner wall 11, and the outlet 16 is disposed at the upper portion of the outer wall 12 and the upper wall 13.
  • the amount of water passing through the processing unit per unit time increases under the same pressure. That is, the processing capacity of the unit is increased.
  • each unit in order to realize the superimposing of the units, each unit has an annular flange extending from the inner wall 11, which is located above the upper wall 13 and spaced apart from the upper wall 13. And also has a cylindrical extension extending downwardly from the outer wall 12.
  • the annular flange is integrally formed with the inner wall 11 so as to have the same inner diameter as the inner cylinder and has the same outer diameter as the outer cylinder; the radially outer side of the annular flange is integrally connected with the upwardly extending cylindrical protrusion
  • the cylindrical protrusion can be sealingly engaged with the downwardly extending extension of the outer wall 12.
  • Fig. 3 is a schematic view of a fluid processing apparatus according to a third embodiment of the present invention.
  • the configuration of the processing assembly and the direction of water flow in this embodiment are different from those of the first and second embodiments.
  • the processing assembly in this embodiment illustratively includes four processing units in which the upper portion of the inner wall 11 of the top processing unit is sealed.
  • the treatment assembly has only an outer cylinder and does not have an inner cylinder.
  • the discharge port 103 in the can opening is a circular opening
  • the introduction port 102 is an annular opening that surrounds and is spaced apart from the discharge port 103. As indicated by the arrows in Fig.
  • each processing unit forms a second passage, each processing unit, a third passage between the outer cylinder and the outer wall 12 of each processing unit, a pipe joint connected to the outer wall 12, and a circular pipe connected to the discharge port 103.
  • the fourth passage formed is finally discharged through the discharge port 103.
  • the water is first filtered by a finely divided fluid treatment medium located within the tank and then processed by the processing unit.
  • the dirt is blocked by the finely divided fluid treatment medium located in the can body and does not enter the treatment unit.
  • the flushing water flowing in the direction opposite to the arrow in the figure smoothly flows out of the tank through the first passage after flushing off the dirt deposited on the surface of the finely divided fluid treatment medium in the tank. Therefore, in this embodiment, even if a recoilable filter is employed, the bypass valve may not be provided because the dirt leaving the finely divided fluid treatment medium located in the can body is directly discharged out of the can body.
  • the stacked connection structure of each processing unit is similar to that of the first embodiment. That is, in the upper and lower units of the stack, the lower unit has an annular flange integrally connected to the inner wall 11, which is located above the upper wall 13 and spaced apart from the upper wall 13, thereby allowing Water flows out from the outlet 16 formed on the upper wall 13; the annular flange is integrally connected at its radially outer side with an upwardly extending cylindrical projection.
  • the upper unit has a cylindrical extension that extends downwardly from the outer wall 12.
  • the cylindrical projection of the lower unit can be sealingly engaged with the extension of the upper unit.
  • the outlet 16 of the uppermost unit leads directly to the pipe joint, while the lowermost unit is sealingly connected to the support plate 19 below it.
  • Fig. 4 is a schematic view of a fluid processing apparatus according to a fourth embodiment of the present invention.
  • the basic configuration of the processing apparatus and the water flow path are the same as those in the third embodiment described above (as shown in Fig. 3), and the same contents will not be described herein.
  • the difference between this embodiment and the third embodiment is that the arrangement of the inlet 15 and the outlet 16 of the processing unit is different.
  • the inlets 15 of the respective processing units are disposed on the lower and bottom walls of the inner wall 11, and the outlets 16 are disposed at the upper portion of the outer wall 12 and the upper wall 13.
  • the processing capacity of the unit is increased under the same pressure as compared with the third embodiment.
  • each unit other than the uppermost unit has an annular flange extending from the inner wall 11 above the upper wall 13 and spaced apart from the upper wall 13, and also having an outer wall 12 A downwardly extending cylindrical extension.
  • the annular flange is integrally formed with the inner wall 11 so as to have the same inner diameter as the inner cylinder and has the same outer diameter as the outer cylinder; the radially outer side of the annular flange is integrally connected with the upwardly extending cylindrical protrusion The cylindrical protrusion can be sealingly engaged with the downwardly extending extension of the outer wall 12.
  • the two units can be stacked together.
  • the uppermost unit has an extension that cooperates with the lower unit, but does not have an annular flange and extension, and the outlet 16 of the unit leads directly to the pipe joint. Since the annular flange and extension of the uppermost unit are omitted, it is advantageous to reduce the height of the processing assembly, thereby facilitating the deployment of more processing units within the limited space within the can.
  • Fig. 5 is a schematic view of a fluid processing apparatus according to a fifth embodiment of the present invention.
  • the processing assembly in this embodiment illustratively includes four processing units in which the bottom of the inner wall 11 of the lowermost processing unit is sealed.
  • the treatment assembly has only an outer cylinder and does not have an inner cylinder.
  • the water flows from the annular inlet 102 into the tank, in turn through the first passage between the outer cylinder and the tank, preferably the finely divided fluid treatment medium located in the tank, superposed on top of each other.
  • the inlet 15 of each processing unit is disposed at the lower and lower walls 14 of the outer wall 12, and the outlet 16 is disposed at the upper portion of the inner wall 11 and the upper wall 13.
  • the water flows through the processing unit from the outside to the inside and from the bottom to the top.
  • the outer wall 12 of the lower unit extends upward beyond the upper wall 13-segment distance, and extends inwardly at the upper end to form a first annular flange, the first ring
  • the flange is located above the upper wall 13 and spaced apart from the upper wall 13 to allow water to flow out from the outlet 16 formed on the upper wall 13;
  • the first annular flange extends upwardly on the radially inner side to form a first cylinder a protrusion having the same inner diameter as the inner cylinder;
  • a second annular flange extending outwardly from the upper end of the first cylindrical protrusion, the second annular flange being located above the first annular flange And spaced apart from each other, and an opening, such as a slit, is formed in the second annular flange as an inlet 15, and the second annular flange is formed with a second cylindrical protrusion extending upward in the radial direction.
  • the inner wall of the upper unit is sealingly engaged with the first cylindrical protrusion of the lower unit, and the outer wall 12 of the upper unit is sealingly engaged with the second cylindrical protrusion of the lower unit, so that the upper unit
  • the second annular flange of the lower square unit serves as the lower wall 14.
  • the overall design concept on which these embodiments are based is that at least two process components are combined in the can body, and the water introduced by the inlet port 102 of the canister is discharged from the discharge port 103 of the canister after being treated by the internal treatment component.
  • Those skilled in the art can freely determine the number of processing components according to actual conditions under the guidance of such a design concept, select the parallel, series relationship of the processing components, and determine whether two or more components are stacked one on top of the other or side by side.
  • Fig. 6 is a schematic view of a fluid processing apparatus according to a sixth embodiment of the present invention.
  • a set of processing components consisting of two processing components are disposed in a stacked series, and a finely divided fluid located in the can body is optionally disposed below the set of processing components.
  • Processing media The processing component located above is substantially the same as the processing component shown in FIG. 1, and the same content is not described herein again; the processing component located below is basically the same as the processing component shown in FIG. 3, and the same content is no longer the same. Narration.
  • the upper processing component and the lower processing component have the same axis (i.e., the cylinder axis of each processing unit), and the stacked two processing components are generally elongated in shape and are adapted to be loaded into the elongated can body.
  • the arrows in Figure 6 indicate the direction of water flow during normal operation of the device.
  • the water entering the tank first flows through the first passage of the upper assembly, the various processing units, the second passage, and then reaches the finely divided ones located in the tank.
  • the fluid treatment medium; the water after passing through the finely divided fluid treatment medium located in the tank sequentially flows through the second passage of the lower assembly, the processing units, the third passage, and the fourth passage, and finally discharges the tank through the discharge port 103.
  • the water can be further purified, that is, the enhanced treatment effect can be obtained.
  • the two components can be suitably combined such that water entering the can first passes through the component located below and then passes through the upper component.
  • a suitable number of processing components such as three, four or more, can be connected in series depending on the needs of use.
  • a bypass valve is provided similarly to the first embodiment, and the bypass valve is disposed above the upper processing unit as shown in Figs. 6A and 6B.
  • the recoil water In backwashing, the recoil water first passes through the underlying processing assembly and the finely divided fluid handling medium located within the tank, and then the recoil water is directed from the second passage of the upper processing unit directly through the bypass valve to the first passage.
  • Fig. 7 is a schematic view of a fluid processing apparatus according to a seventh embodiment of the present invention.
  • four processing assemblies are exemplarily assembled in the can body of the fluid processing apparatus, each processing assembly exemplarily having four processing units.
  • the four processing components are divided into two groups of left and right.
  • Each group of processing components is the same as the group of processing components shown in FIG. 6, and each group of processing components is optionally provided with a finely divided body located inside the can body.
  • Fluid treatment medium The arrows in Figure 7 indicate the direction of water flow. It can be seen that the flow direction of each group of treatment components is shown in Figure 6. The direction of the water flow is also basically the same.
  • the present embodiment employs an adapter and a connector, both of which can be used alone, and are preferably used in combination as a switching unit; and, the switching units are preferably combined with each other.
  • Fig. 7A is an exploded perspective view of the adapter unit
  • Fig. 7B is an assembled sectional view of the adapter unit shown in Fig. 7A.
  • the upper portion of Figure 7A is an adapter for distributing water flow from the canister inlet 102 or the upstream adapter unit to a plurality of channels, and pooling water from a plurality of channels inside or downstream of the canister And output.
  • the adapter has a cylindrical adapter outer wall and a transition spacer located in the adapter outer wall.
  • the main passage portion is formed on the upper side of the transfer spacer.
  • a cylindrical transfer inner wall is provided on the transfer spacer, and the transfer inner wall and the transfer outer wall are preferably disposed concentrically.
  • a first transfer passage is formed between the transfer inner wall and the transfer outer wall
  • a second transfer passage is formed inside the transfer inner wall.
  • the first transfer passage is for directing water into the processing assembly, the second transfer passage for directing the water out of the process assembly.
  • the first transfer channel for directing water out of the processing assembly
  • the second transfer channel for directing water into the processing assembly.
  • a branch passage portion is formed on the lower side of the transfer spacer.
  • two first branch channels and two second branch channels are disposed under the transfer spacer, and each of the first branch channels communicates with the first transfer channel through a corresponding opening on the transfer spacer.
  • Each of the second branch passages communicates with the second transfer passage through a corresponding opening in the transfer spacer.
  • Each of the branch passages is preferably in the shape of a circular tube, and more preferably, the diameters of the first and second branch passages are different, thereby avoiding confusion.
  • the first and second branch passages may be more than two, for example, may be provided to have three, four or more.
  • the number of the first branch channel and the second branch channel are preferably equal, but not necessarily equal.
  • one first branch channel and one second branch channel form a pair of branch channels, and the entire adapter has two pairs of branch channels, that is, one water flow introduced by the first transfer channel is two The channels are divided into two streams that flow out.
  • the lower portion of Figure 7A is a connector for introducing a stream of water from one of the two separate water tubes into the processing assembly of the present invention and discharging water from the processing assembly through the other of the two separate water tubes.
  • the connecting member has an upper portion and a lower portion separated by a connecting partition, and the upper portion is connected from the connecting partition
  • the first port tube and the second port tube extending side by side are both tubular; the lower portion is a cylindrical connecting inner wall extending downward from the connecting partition and a cylindrical connecting outer wall surrounding the same, and both are preferably arranged concentrically.
  • first connecting passage between the connecting inner wall and the connecting outer wall, the first connecting passage communicating with the first connecting pipe through an opening on the connecting partition; forming a second connecting passage in the connecting inner wall, the second connecting The passage communicates with the second port by an opening in the connecting partition; in the connecting member, the connecting outer wall is adapted to sealingly engage with the component inlet of the processing assembly in the embodiment, and the connecting inner wall is adapted to be in the embodiment The component of the processing assembly exits the sealing fit.
  • each of the first branch passages of the adapter is adapted to cooperate with the first interface tube of the connector to be sealingly connected to form a single water flow passage; and each second of the adapter The branch channel is adapted to cooperate with the second port tube of the connector to enable a sealed connection, thereby also forming a separate water flow channel.
  • one adapter can be connected with two connectors as shown in Figure 7B.
  • two connectors can be connected.
  • the adapter inner wall of the adapter is preferably adapted to cooperate (preferably insert fit) with the connecting inner wall of the connector for sealing connection, the adapter outer wall of the adapter preferably being adapted to cooperate with the connecting outer wall of the connector (Preferably insert fit) to achieve a sealed connection.
  • the adapter of one of the transfer units is adapted to be coupled to the connection of the other of the adapter units, and such further expansion/sink can be achieved by such further expansion.
  • an adapter unit is employed to supply water to the two sets of processing components, and the transfer unit receives water from the processing assembly.
  • Fig. 8 is a schematic view of a fluid processing apparatus according to an eighth embodiment of the present invention.
  • two processing assemblies are arranged side by side in parallel in the tank, and preferably each of the processing assemblies is connected to a finely divided fluid treatment medium located within the tank.
  • the configuration of each processing component is the same as that of the processing component shown in FIG. 2, and therefore the same content will not be described herein.
  • This embodiment employs a processing unit as shown in Figure 7B, wherein each processing component is coupled to one of the processing units On the connector, the adapter of the processing unit is connected to the inlet 102 and the discharge port 103 on the can. Since the two processing components are arranged side by side in the horizontal direction instead of being stacked one on top of the other, it is advantageous to reduce the height of the occupied space.
  • Fig. 9 is a schematic view of a fluid processing apparatus according to a ninth embodiment of the present invention.
  • two processing assemblies are disposed in parallel within the can, and preferably each of the processing components is coupled to a finely divided fluid treatment medium located within the can.
  • the construction of each processing component is the same as that of the processing component shown in Fig. 3, and therefore the same content will not be described herein.
  • This embodiment also employs a processing unit as shown in FIG. 7B in which each processing component is coupled to a connector of the processing unit, and the adapter of the processing unit and the inlet 102 and the discharge port 103 on the can body Connected.
  • FIG 10 is a schematic view of a fluid processing apparatus according to a tenth embodiment of the present invention.
  • two processing assemblies are placed in series within the can body.
  • the processing component on the left side of the figure is the upstream processing component
  • the processing component on the right side of the figure is the downstream processing component.
  • the upstream processing component is coupled to one of the connectors of one of the adapter units (i.e., the upstream connector)
  • the downstream processing component is coupled to the other connector of the adapter unit (i.e., the downstream connector).
  • water enters the passage formed by the inner wall 11 of each processing unit from the first connecting passage of the connecting member, and then flows through the respective processing units.
  • the second connecting channel (or the second porting tube) that connects the upstream connector of the upstream processing assembly is blocked from allowing water to pass through because the water flowing through each unit does not need to be second.
  • the connection channel is exhausted.
  • the water flowing from the upstream processing assembly enters the downstream processing assembly after passing through the finely divided fluid processing medium located below the downstream processing assembly.
  • Water enters the units via passages formed by the inner wall 11 of the downstream processing assembly, and the water after the unit treatment is discharged through the second connection passage of the downstream connection.
  • the first port (or first connecting channel) of the downstream connector is blocked from allowing water to pass therethrough.
  • the two processing units thus arranged are arranged side by side so as not to increase the height, and thus are suitable for a tank having a smaller height.
  • FIG 11 is a perspective view of a baffle that can be employed with the fluid processing unit of the present invention.
  • the present invention employs a baffle to force the water flow path to turn.
  • a spiral baffle is disposed between the inner wall 11 and the outer wall 12 of the processing unit, the spiral baffle having substantially horizontal upper and lower edges, and spirally located in the radial direction.
  • the diversion The inner edge of the plate preferably contacts the inner wall 11, and the outer edge preferably contacts the outer wall 12.
  • the chance of the water contacting the inner wall 11 and the outer wall 12 is reduced, and finally the chance of the water contacting the fine fluid treatment medium in the fluid treatment unit increases. Achieve the best filtering results. Due to the presence of the baffles, the water entering from the unit inlet 15 does not flow directly upwards toward the unit outlet 16, but flows in the spiral direction under the forced guidance of the baffles, thereby increasing the flow path and increasing the processing time. .
  • a plurality of helical baffles having the same pitch and spaced apart.
  • four identical spiral baffles may be provided between the inner wall 11 and the outer wall 12, and these baffles are preferably equally spaced.
  • the spiral shapes are the same, and their helix angles and heights can be easily determined by those skilled in the art in accordance with the present invention.
  • the height or number of the flow guiding units can be set by the person skilled in the art depending on the use, for example, one, two or more flow guiding units are provided within the height of the entire unit lumen. Although it is preferred that the flow guiding unit occupy the entire chamber of the unit, this need not be the case, for example, the flow guiding unit may be provided only in the lower half of the unit. If two or more flow guiding units are provided in one unit chamber, the spiral directions of the flow guiding units may be the same, but the arrangement in which the spiral directions of the adjacent flow guiding units are opposite may also be employed.
  • the present invention employs four flow guiding units in one processing unit, wherein each flow guiding unit has four baffles having a height of about one quarter of the height of the unit cavity; Moreover, the spiral directions of the adjacent flow guiding units are opposite, and the lower edge of the upper baffle and the upper edge of the lower baffle are in the same upper and lower plane.
  • the spacer ring is located between the inner wall 11 and the outer wall 12 of the processing unit, and the width in the radial direction of the processing unit is smaller than the radial width of the annular chamber of the processing unit, thereby placing the upper and lower adjacent two without blocking the water flow as much as possible.
  • the flow guiding units are separated.
  • the flow directing unit is also capable of enhancing the self-cleaning effect of the finely divided fluid treatment medium within the unit chamber. This is because the media particles will hit the baffle under the action of the upward flow, and the number and intensity of impacts between the media particles will also increase, thereby being able to more effectively clean the dirt on the surface of the particles.
  • the baffle in the present invention is not strictly limited to a spiral shape, and may be a flat plate inclined with respect to the cylinder axis of the unit, or a generally inclined stepped plate as long as the water flow can be guided along the unit with respect to the unit It is sufficient that the axis of the cylinder flows in an oblique direction. Further, the inclination of the deflector relative to the axial direction of the processing unit may be set according to actual conditions, and is preferably about 45 degrees.
  • a baffle integral with the inner wall 11 may be provided, the baffle protruding outward from the inner wall 11; a baffle may be provided integrally with the outer wall 12, the diversion The plate projects inwardly from the outer wall 12.
  • a spiral baffle is provided on both the inner wall 11 and the outer wall 12, and the inner wall 11 and the outer wall 12 are assembled by relative rotation, and the baffles are spaced apart from each other after the inner wall 11 and the outer wall 12 are assembled. Therefore, the effect of the above-described flow guiding unit can also be achieved.
  • the outer cylinder is not required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)

Description

流体处理单元、 流体处理组件以及流体处理装置 技术领域
本发明涉及一种流体处理单元, 以及采用该流体处理单元的流体处 理组件和流体处理装置。 背景技术
流体处理装置通常利用一种或几种流体处理介质来处理诸如水之类 的各种流体, 并且通常包括容纳有流体处理介质的一个或更多个流体处 理单元。 流体穿过流体处理介质时, 其中的杂质及污染物通过与处理介 质发生物理及化学作用而被去除。 这种流体处理装置的典型示例是对水 进行净化以及软化的装置, 通过该装置一方面去除水中的例如氯、 重金 属、 硫化物等化学污染物以及颗粒污染物等, 另一方面去除水中的钙镁 等而使水软化。 这样的水处理装置可以为家庭提供适于直接饮用的净化 水及洗涤用水, 目前已经是家庭生活的重要用品, 并且对中国的家庭来 说尤其如此。
现有技术公开了这样的装置。 例如在美国专利 US 5 415 770中公开 了在使水经受水软化离子交换介质之前的水预处理中, 使用细碎的铜锌 合金去除例如氯这样的化学污染物, 借此延长离子交换介质的寿命, 或 者也可以使用细碎的铜锌合金用来对水进行后处理。
中国发明专利申请公开文献 CN1232790A也公开了一种用于对水进 行处理的罐子处理组件。 在所公开的罐子处理组件中, 水依靠重力和压 力流过各处理单元, 各处理单元具有容纳流体处理介质的腔室, 该腔室 的截面基本为环形, 待处理的水从该环形腔室的顶部进入腔室, 被处理 介质处理之后的水从该环形腔室的底部流出腔室; 在该处理单元中, 由 于水基本沿着腔室的对角线流动, 因此流动路线长, 在腔室内的停留时 间也长, 从而提高了处理效力。
对于这样的处理单元和采用该处理单元的处理装置来说, 必须经常 进行反冲洗涤, 这是因为水中的污物会沉积并粘附在处理介质表面。 当 污物在处理介质的表面积累得足够多的时候, 一方面会使处理介质丧失 效力, 另一方面会使流体因流过处理单元的压降过大而被"堵塞"。 另外, 在水流从上向下流过处理介质时, 如果处理介质在处理单元内的厚度不 均匀, 那么大部分水流倾向于从处理介质厚度较小的区域通过, 也就是 说, 处理介质只能部分地发挥其处理效力。 发明内容
本发明的目的在于, 避免并消除前述缺点。
为此, 本发明的第一方面提供了一种改进的流体处理单元。 本发明 的流体处理单元具有一腔室, 在该腔室内容纳有流体处理介质, 该腔室 具有供待处理的流体进入的入口和供处理后的流体流出的出口, 并且所 述入口设置在所述腔室的下部, 所述出口设置在所述腔室的上部。
在这样的流体处理单元中, 待处理的流体从下向上流过流体处理单 元的腔室; 此时, 腔室内的通常呈颗粒状的处理介质在冲击作用下总体 上呈向上的不规则运动趋势并且相互碰撞, 从而高效地清洁掉自身所粘 附的污物, 这样就有效地保证处理介质颗粒的表面能够直接接触并去除 流体中的某些化学物质。 由于没有污物填充在介质颗粒缝隙间, 所以流 体能够顺利地流过这些介质颗粒而不会产生较大的压降。 另外, 由于处 理介质颗粒在从下向上的流体作用下而呈向上运动的趋势, 因此介质颗 粒在处理单元的腔室内均匀分布而厚度一致, 从而使流体能够被均匀地 处理。 通常情况下, 处理单元内的处理介质不会填满处理单元的整个腔 室, 这样一方面为了提供充裕的空间供处理介质活动, 另一方面能够避 免水通过处理单元前后的压降过大。 但是在某些必要的情况下, 也可以 在腔室内充满处理介质。
本发明的流体处理单元可用于处理水, 但很明显, 也可以用于其他 流体的处理, 例如汽油、 乙醇等流体。
本发明的流体处理单元的腔室可以为任意合适的形状, 如柱形、 球 形、 平行六面体形等。 在一个优选的实施方式中, 所述腔室为环柱形, 其由筒形的内壁、 围绕该内壁并与之间隔开的筒形的外壁、 以及在所述 内壁和外壁之间的上壁和下壁构成, 其中所述上壁位于所述下壁的上方 并与之间隔开。 在该腔室中, 入口和出口的设置依据入口在下、 出口在 上的原则设置, 例如: 所述入口设置于所述内壁的下部和 /或下壁, 所述 出口设置于所述外壁的上部和 /或上壁; 或者, 所述入口设置于所述外壁 的下部和 /或下壁, 所述出口设置于所述内壁的上部和 /或上壁。
根据本发明的第二方面提供了一种采用上述流体处理单元的流体处 理组件。 所述流体处理组件具有用于待处理流体进入的组件入口和排出 已处理流体的组件出口, 所述流体处理组件包括多个上下叠置的流体处 理单元, 每个所述流体处理单元具有一腔室, 在该腔室内容纳有至少一 种流体处理介质, 所述腔室具有供待处理的流体进入的单元入口和供处 理后的流体流出的单元出口, 所述流体处理组件还具有引入通道和排出 通道, 所述引入通道将流体从所述组件入口引导至各所述流体处理单元 的单元入口, 所述排出通道将流体从所述单元出口引导至所述组件出口, 其中, 各所述流体处理单元所述单元入口设置在所述腔室的下部, 所述 单元出口设置在所述腔室的上部。
优选地, 本发明的流体处理组件还包括一个外筒, 该外筒环绕上下 叠置的各处理单元的外壁; 上下叠置的多个流体处理单元的内壁形成第 一通道, 在所述外筒与各处理单元的外壁之间形成第二通道, 若在没有 外筒情况下, 各处理单元的外壁的上部和 /或上壁开口组成第二通道; 所 述第一通道为引入通道, 所述第二通道为排出通道。 当然, 也可以采用 第一通道作为排出通道, 并采用第二通道作为引入通道。
通过设置外筒, 一方面能够以所述外筒作为容纳各个单元的外部壳 体而使得整个组件可以作为一个整体来单独使用或与其他组件组合使 用, 另一方面有助于更加牢固地将该组件的各个单元组合在一起。
本发明的流体处理组件还可以包括一个内筒, 所述内筒在上下叠置 的各处理单元的内壁所形成空间内延伸, 在该内筒与各处理单元的内壁 之间形成所述第一通道。
本发明的流体处理装置采用至少一个如上所述的流体处理单元或流 体处理组件, 该装置以一个罐体作为外壳, 在罐体上开设用于引入流体 的引入口和排出流体的排出口, 在该罐体内容纳流体处理单元或流体处 理组件。 流体处理单元或处理组件的数量可以根据实际情确定, 流体处 理单元或处理组件的并联或串联关系、 以及上下叠置或并排设置的组合 形式也都可以根据实际情况确定。 附图说明
下文将参照附图描述本发明的优选实施方式。 其中:
图 1是本发明第一实施方式的流体处理装置的示意剖视图, 该装置 包括具有多个流体处理单元的流体处理组件;
图 1A是图 1的局部放大视图,示出了旁通用单向阀在装置正常工作 时的状态;
图 1B是图 1A所示的单向阀在反冲时的状态;
图 2是本发明第二实施方式的流体处理装置的示意图;
图 3是本发明第三实施方式的流体处理装置的示意图;
图 4是本发明第四实施方式的流体处理装置的示意图;
图 5是本发明第五实施方式的流体处理装置的示意图;
图 6是本发明第六实施方式的流体处理装置的示意图;
图 7是本发明第七实施方式的流体处理装置的示意图;
图 7A是图 7所示的流体处理装置所采用的转接单元的分解透视图; 图 7B是图 7A所示转接单元的装配剖视图;
图 8是本发明第八实施方式的流体处理装置的示意图;
图 9是本发明第九实施方式的流体处理装置的示意图;
图 10是本发明第十实施方式的流体处理装置的示意图;
图 11是本发明的流体处理单元可采用的导流板的透视图。
附图标记:
水处理装置 100 转接件 3
罐体 101 转接隔板 31
处理单元 1 转接外壁 32
处理组件 10 转接内壁 33
引入口 102 第一分支通道 34 排出口 103 第二分支通道 35 内壁 11 连接件 4
外壁 12 连接隔板 41
上壁 13 第一接口管 42
下壁 14 第二接口管 43
单元入口 15 连接内壁 44
单元出口 16 连接外壁 45
支撑板 19 导流板 5
内筒 17
Figure imgf000007_0001
外筒 18 导流单元 50
旁通阀 V 分隔环 52
环状凸缘 21
突起部 22
延伸部 23
第一环状凸缘 24
第一筒状突起部 25
第二环状凸缘 26
第二筒状突起部 27 具体实施方式
参照上文说明可知, 本发明的流体处理单元及包含其的组件和装置 可用于水的处理, 但并不局限于此; 在最佳用途中, 其用于水的处理; 并且为了表述的方便, 下文以水处理单元、 组件和装置为例来介绍本发 图 1是本发明第一实施方式的水处理装置的示意剖视图。 本发明的 水处理装置总体上以附图标记 100表示, 该装置通常包括一个细长的罐 体 101, 该罐体容纳由多个处理单元 1上下叠置而组成的处理组件 10以 及堆放在罐体内的细碎的流体处理介质等。 罐体还包括一个在顶部处的 开口, 在该开口处安装有控制单元, 该控制单元常规上包括在装置正常 工作时用来把水引进罐体以便处理和把已经处理过的水排出的控制阀 (未示出)。控制单元通常还包括用来对该装置进行反冲以便再生和 /或洗 涤的定时机构或其他机构 (未示出)。 罐体的开口主要包括用于在装置正 常工作时向罐体内引入水的引入口 102 和用于从罐体排出水的排出口 103。 引入口 102和排出口 103可以以任何合适的截面形状、 排列方式设 置。 在本实施方式中, 排出口 103设置成圆形, 而引入口 102设置成围 绕该排出口 103并与之同心的圆环形。
如图 1所示, 本实施方式的水处理装置示例性地示出了具有由上下 叠置的四个处理单元 1组成的处理组件 10。 应该理解到, 本领域技术人 员可以采用任意合适数量的处理组件和处理单元。 图中所示的四个处理 单元均为截面为圆环形的柱体, 柱体的轴线方向与罐体的轴线方向相同, 在正常使用时通常为上下方向。 还应该理解到的是, 本发明的处理单元 的形状并不局限于此, 本领域技术人员可以采用任意合适的形状, 例如 实心圆柱形、 长方体形、 球形, 等等。 如图所示, 各处理单元均具有圆 筒形的内壁 11、 围绕该内壁 11并与同心地之间隔开的圆筒形外壁 12、 以及在所述内壁 11和外壁 12之间的上壁 13和下壁 14构成, 其中所述 上壁 13位于所述下壁 14的上方并与之间隔开。 内壁 11、 外壁 12、 上壁 13以及下壁 14共同形成一腔室, 在该腔室内容纳有水处理介质。
在本发明中, 流体处理介质优选颗粒状材料, 不规则形状颗粒 (例 如, KDF®的 KDF-55、 KDF-85 ,活性炭颗粒)或大小均匀的球状颗粒(例 如各种离子交换树脂颗粒等等) 均可。 通常情况下, 处理介质不会填满 整个腔室, 这样一方面为了提供充裕的空间供处理介质活动, 另一方面 能够避免水通过处理单元前后的压降过大。
该腔室具有供待处理的水进入的单元入口 15 和供处理后的水流出 的单元出口 16, 如图 1所示, 入口 15设置在内壁 11的下部, 而出口 16 设置在上壁 13。 当然, 入口和出口的其他设置方式也是本领域技术人员 根据本发明的教导容易想到的, 只要能够保证入口在出口的下方就能够 实现本发明的基本目的。 处理单元的入口 15和出口 16均为细长的狭缝, 这样设置的目的是阻挡介质颗粒并且避免被介质颗粒堵塞。 本领域技术 人员据此容易想到设置其他形状的入口 15和出口 16, 例如椭圆形、 曲线 形、 栅格状等等。 处理单元的单元入口 15和单元出口 16除使用细长的 狭缝外, 使用过滤网、 过滤绵或适当的过滤方法或材料均可。
本实施方式中的各单元上下叠置而形成处理组件。 处理组件以处理 单元的圆筒轴线作为自身轴线并沿上下方向延伸。 如图 1 所示, 在叠置 相邻的两个单元中, 下方单元的内壁 11高出上壁 13—段距离, 从该内 壁 11 的上端径向向外延伸形成一环状凸缘, 该凸缘位于上壁 13的上方 并与上壁 13间隔开, 并且在该凸缘的径向外侧向上延伸形成筒状的突起 部。 在组装时, 上方单元的内筒与下方单元的环状凸缘的径向内侧配合 安装, 其外筒与下方单元的筒状突起部密封配合, 由此该上方单元以下 方单元的环状凸缘作为下壁 14。 在最下方的单元的下方设置单独的支撑 板 19, 由该支撑板 19的凸缘作为最下方单元的下壁 14。 这些单元可以 很容易地彼此分开并且可以依次把每个单元叠加到前一个元件上, 以便 使用一组类似的单元组合成合适大小的处理组件, 这样使得制造和装配 都得到简化。现采用卡口接头式方法来实现本发明各单元的可拆卸连接。 应该理解到, 本发明各单元的可以采用任意可行的结构如螺纹式和或对 开扣压式接头来实现可拆地连接叠置, 甚至可以通过将各单元安放在一 个支架的不同位置上实现上下叠置。
为了形成由罐体的引入口 102至各处理单元入口 15的通道,本实施 方式在各处理单元内壁 11形成的圆柱形空间内设置有一个内筒, 在该内 筒与各单元的内壁 11之间形成了向各处理单元引导水的通道(以下称为 第一通道),由引入口 102进入罐体的水沿着该第一通道流向各处理单元。 该内筒的一端与罐体的排出口 103 相连通, 另一端可选地连接位于罐体 内的细碎的流体处理介质, 从而该内筒的内部形成了用于将处理之后的 流体排出罐体的通道(下文称之为第三通道)。 在各处理单元的外部围绕 各单元设置有一个外筒, 该外筒的上部开口而底部密封, 这样, 在该外 筒和单元外壁 12之间以及该外筒和罐体之间均形成了允许水流过的通道 (二者合称为第二通道)。 若在没有外筒情况下, 各处理单元的外壁的上 部和 /或上壁开口组成第二通道。 由各处理单元流出的水通过该外筒和单 元外壁 12之间的通道由该外筒的上部开口流出, 随后经过该外筒和罐体 之间的通道流至罐体内。 达到罐体内的水在经过位于罐体内的细碎的流 体处理介质的过滤之后进入内筒, 并随后由排出口 103 排出。 以上所述 的通道构造仅为示例性说明, 本领域技术人员根据本发明的教导容易想 到, 可以采用任何其他形式的通道, 例如, 可以采用一根管子作为第一 通道向各处理单元供水, 也可以采用一根管子或不用管子而直接利用罐 体来接收从各处理单元排出的水并将水送至位于罐体内的细碎的流体处 理介质。 就位于罐体内的细碎的流体处理介质本身而言, 其也并非是必 须的, 本发明可以将来自处理单元的水经过一个通道直接导向罐体的排 出口 103。
另外, 图 1所示的四个处理单元以并联方式构成一个处理组件, 水 流以平行地通过各个处理单元 (或者说未处理的水流同时流到各处理单 元), 借此实现优化的最小压力降。 但是本领域技术人员据此也容易想到 其他的组合方式。 例如, 在个处理组件中, 至少有两个处理单元串联设 置, BP , —个处理单元的出口 16和另一处理单元的入口 15相连通, 水 流依次经过这两个处理单元。 这样的串联设置的单元能够保证水得到更 充分的净化; 并且, 可以在这样串联设置的两个或更多个处理单元的腔 室内放置不同的处理介质, 以实现全面的处理效力。
图 1中的箭头表示当水处理装置正常工作时的水流方向。如图所示, 未经处理的水在一定的压力作用下从罐体的引入口 102进入该装置。 水 流沿着内筒和单元外壁 12之间的第一通道流动,并且从各单元的内壁 11 下部的入口 15进入各个单元。 水在压力的作用下, 从下向上流过单元腔 室内的典型为颗粒状的水处理介质, 水中的氯、 重金属、 硫化物被介质 去除。从处理单元流出的水沿着外筒与单元外壁 12之间的第二通道上升, 并从外筒的上部开口流出外筒。 从外筒流出的水沿着罐体和外筒之间的 第二通道流到位于罐体内的细碎的流体处理介质, 从而被过滤。 经过位 于罐体内的细碎的流体处理介质的水沿着由内筒形成的第三通道流至罐 体的排出口 103, 并最终被排出。
在流体处理装置工作一段时间之后,可能需要对装置进行反冲洗涤。 特别是当该装置设置有位于罐体内的细碎的流体处理介质需要定期进行 反冲洗涤。 在反冲时, 位于罐体开口处的控制单元将反冲用水导入排出 口 103, 该反冲用水基本上逆着图 1所示的箭头方向流动, 并最终从引入 口 102排出。
在该反冲过程中, 反冲用水会携带冲掉的污物, 例如由位于罐体内 的细碎的流体处理介质冲掉的污物。 如果携带有污物的反冲用水完全流 过处理单元, 则水中的污物至少部分会沉积在处理单元内的介质颗粒上。 为了减小或消除处理单元被污物污染的可能性, 本发明在第二通道和第 一通道之间设置了旁通阀。 图 1A和图 1B是图 1的局部放大视图, 示出 了该旁通阀在正常工作时以及在反冲时的状态。
如图 1所示, 该旁通阀设置在处理组件的上方, 基本上面对引入口 102, 并且处于外筒的外径范围内。 这样设置的旁通阀不会增加处理组件 的径向尺寸。 该旁通阀优选采用单向阀, 该单向阀在第二通道内的水压 大于第一通道内的水压时开启, 以便使水流从第二通道流向第一通道。 当采用上述单向阀时, 在反冲的情况下, 水流从第三通道经位于罐体内 的细碎的流体处理介质到达第二通道, 第二通道内的水一部分通过处理 单元进入第一通道, 一部分通过开启的单向阀进入第一通道。 本实施方 式中的单向阀优选为构造简单的压差开启式单向阀, 当第二通道和第一 通道的压差超过一阈值时, 该单向阀开启。 另外, 优选该单向阀的开启 阈值能够调节, 借此能够调节通过单向阀的流体和通过处理单元的流体 的比例。 一般来说, 为了避免污染处理介质, 应将单向阀的开启阈值设 置得尽可能低, 以便使大部分水流通过单向阀排出, 甚至使全部水流通 过单向阀排出。
图 2是本发明第二实施方式的流体处理装置的示意图。 该实施方式 与第一实施方式相似, 关于图 2中的与图 1相同的构造在此不再赘述。 与第一实施方式相比, 该实施方式中的处理单元的入口 15和出口 16的 设置有所不同。 如图所示, 各处理单元的入口 15设置在内壁 11 的下部 和底壁上, 而出口 16设置在外壁 12的上部和上壁 13。 这样, 与第一实 施方式相比, 在同样压力下, 单位时间内通过处理单元的水量有所增加, 也就是单元的处理能力增大。
另外, 在本实施方式中, 为了实现单元的上下叠置, 各单元均具有 由内壁 11延伸出的环状凸缘, 该环状凸缘位于上壁 13的上方且与上壁 13相隔开, 并且还具有由外壁 12向下延伸的筒状延伸部。上述环状凸缘 与内壁 11一体形成, 从而具有与内筒相同的内径, 并且具有与外筒相同 的外径; 该环状凸缘的径向外侧一体地连接有向上延伸的筒形突起部, 该筒形突起部能够与外壁 12的向下延伸的延伸部密封配合。 这样, 通过 将上方单元的延伸部与下方单元的突起部相配合, 就可以将两个单元叠 置在一起。 在叠置的上下两个单元中, 下方单元的出口 16和上方单元的 入口 15通过环状凸缘以及密封配合的突起部和延伸部而隔开, 从而不会 使水流发生混淆。
图 3是本发明第三实施方式的流体处理装置的示意图。 该实施方式 中的处理组件的构造以及水流方向与第一和第二实施方式均有所不同。 如图所示, 本实施方式中的处理组件示例性地包括四个处理单元, 其中 顶部处理单元的内壁 11上部被密封。 该处理组件仅具有外筒, 并不具备 内筒。 此时, 罐体开口中的排出口 103为圆形开口, 而引入口 102为环 绕排出口 103并与之隔开的环形开口。 如图 3中的箭头所示, 水流从引 入口 102进入罐体, 依次流经外筒与罐体之间的第一通道、 优选设置位 于罐体内的细碎的流体处理介质、 由上下叠置的各处理单元的内壁 11形 成第二通道、各处理单元、外筒与各处理单元的外壁 12之间的第三通道、 由与外壁 12相连接的管接头和与排出口 103相连接的圆管构成的第四通 道, 最后经排出口 103排出。
在该实施方式中,水首先被位于罐体内的细碎的流体处理介质过滤, 然后被处理单元处理。 在如上所述构造的处理装置中, 污物被位于罐体 内的细碎的流体处理介质阻挡, 不会进入处理单元。 在反冲洗涤时, 逆 向于图中箭头所示方向流动的发冲用水在冲掉位于罐体内的细碎的流体 处理介质表面沉积的污物之后, 经过第一通道顺利地流出罐体。 因此, 在该实施方式中, 即使采用可反冲式过滤器, 也可以不设置旁通阀, 因 为离开位于罐体内的细碎的流体处理介质的污物被直接排出罐体。 在本实施方式中,各处理单元的叠置连接结构与第一实施方式相似。 也就是说, 在叠置的上下两个单元中, 下方单元均具有与内壁 11一体相 连的环状凸缘, 该环状凸缘位于上壁 13的上方并与上壁 13间隔开, 从 而允许水从形成在上壁 13上的出口 16流出; 该环状凸缘在其径向外侧 一体地连接有向上延伸的筒形突起部。 上方单元具有从外壁 12向下延伸 的筒状延伸部。 在此, 下方单元的筒形突起部能够与上方单元的的延伸 部密封配合。 在本实施方式中, 最上方单元的出口 16直接通向管接头, 而最下方的单元与其下方的支撑板 19密封连接。
图 4是本发明第四实施方式的流体处理装置的示意图。 在该实施方 式中, 处理装置的基本构造以及水流路径与上述第三实施方式中(如图 3 所示) 的相同, 并且相同的内容在此不再赘述。 本实施方式与第三实施 方式的区别在于, 处理单元的入口 15和出口 16的设置有所不同。 如图 所示, 各处理单元的入口 15设置在内壁 11的下部和底壁上, 而出口 16 设置在外壁 12的上部和上壁 13。这样, 与第三实施方式相比, 在同样压 力下, 单元的处理能力增大。
另外, 本实施方式中的各单元的构造与第二实施方式(如图 2所示) 中的单元构造相似。 如图 4所示, 除最上方的单元之外的各单元具有由 内壁 11延伸出的在上壁 13的上方且与上壁 13相隔开的环状凸缘, 并且 还具有从外壁 12向下延伸的筒状延伸部。 上述环状凸缘与内壁 11一体 形成, 从而具有与内筒相同的内径, 并且具有与外筒相同的外径; 该环 状凸缘的径向外侧一体地连接有向上延伸的筒形突起部, 该筒形突起部 能够与外壁 12的向下延伸的延伸部密封配合。 这样, 通过将上方单元的 延伸部与下方单元的突起部相配合, 就可以将两个单元叠置在一起。 位 于最上方的单元具有与下方单元相配合的延伸部, 但并不具有环状凸缘 和延伸部, 该单元的出口 16直接通向管接头。 由于省去了最上方单元的 环状凸缘和延伸部, 因此有利于减小处理组件的高度, 从而便于在罐体 内的有限空间内配置更多的处理单元。
图 5是本发明第五实施方式的流体处理装置的示意图。 该实施方式 的与之前实施方式相同的构造在此不再赘述。 如图所示, 本实施方式中的处理组件示例性地包括四个处理单元, 其中最下方处理单元的内壁 11底部被密封。 该处理组件仅具有外筒, 并 不具备内筒。 如图中的箭头所示, 水流从环形的引入口 102进入罐体, 依次流经外筒与罐体之间的第一通道、 优选设置位于罐体内的细碎的流 体处理介质、 上下叠置的各处理单元的外壁 12与外筒之间的第二通道、 各处理单元、 由各处理单元的内筒形成的第三通道、 由与外壁 12相连接 的管接头和与排出口 103 相连接的圆管构成的第四通道, 最后经排出口 103排出。
在本实施方式中, 各处理单元的入口 15设置在外壁 12下部和下壁 14, 而出口 16设置在内壁 11上部和上壁 13。 水流从外向内、 从下向上 地流过处理单元。
在本实施方式的叠置相邻的两个处理单元中,下方单元的外壁 12向 上延伸超过上壁 13—段距离,并且在上端向内延伸形成有第一环状凸缘, 该第一环状凸缘位于上壁 13的上方并与上壁 13间隔开, 从而允许水从 形成在上壁 13上的出口 16流出; 该第一环状凸缘在径向内侧向上延伸 形成有第一筒状突起部, 其具有与内筒相同的内径; 在第一筒状突起部 的上端向外延伸形成有第二环状凸缘, 该第二环状凸缘位于第一环状凸 缘的上方并与之间隔开, 并且在该第二环状凸缘上开设有作为入口 15的 开口, 例如狭缝; 该第二环状凸缘在径向外侧向上延伸形成有第二筒状 突起部。 在叠置相邻的两个处理单元中, 上方单元的内壁与下方单元的 第一筒状突起部密封配合, 上方单元的外壁 12与下方单元的第二筒状突 起部密封配合, 从而上方单元以下方单元的第二环状凸缘作为下壁 14。
以下将介绍组合使用处理组件的几个实施方式。 这几个实施方式所 依据的总体设计构思为, 在罐体内组合至少两个处理组件, 由罐体的引 入口 102 引入的水经过内部处理组件的处理之后, 由罐体的排出口 103 排出。 本领域技术人员能够这样的设计构思的指导下, 能够根据实际情 况自由确定处理组件的数量, 选择处理组件的并联、 串联关系, 以及确 定两个或更多个组件是上下叠置还是并排设置。
图 6是本发明第六实施方式的流体处理装置的示意图。 在该实施方式的流体处理装置中, 以叠置串联的方式设置有由两个 处理组件组成的一组处理组件, 并且在这组处理组件的下方可选地设置 有位于罐体内的细碎的流体处理介质。其中, 位于上方的处理组件与图 1 所示的处理组件基本相同, 相同的内容在此不再赘述; 位于下方的处理 组件与图 3所示的处理组件基本相同, 并且相同的内容也不再赘述。 在 此, 上方处理组件和下方处理组件具有同一轴线 (即各处理单元的圆筒 轴线),叠置后的两个处理组件整体上呈细长形状,适于装入细长的罐体。
图 6中的箭头表示装置正常工作时的水流方向, 如图所示, 进入罐 体的水首先流过上方组件的第一通道、 各处理单元、 第二通道, 随后到 达位于罐体内的细碎的流体处理介质; 通过位于罐体内的细碎的流体处 理介质之后的水依次流经下方组件的第二通道、 各处理单元、 第三通道 和第四通道, 最后经排出口 103排出罐体。
经过上述组合的两个处理组件的处理, 水能够得到进一歩的净化, 也就是能够得到加强的处理效果。 另外, 本领域技术人员据此容易想到, 可以合适地组合这两个组件, 使得进入罐体的水首先经过位于下方的组 件, 然后经过上方组件。 此外, 本领域技术人员也容易想到, 可以根据 使用需要串联合适数量的处理组件, 例如三个、 四个或更多个。
在本实施方式中, 与第一实施方式相似地设置有旁通阀, 该旁通阀 设置在上方处理单元之上, 如图 6A和图 6B所示。 在反冲洗涤时, 反冲 用水首先经过位于下方的处理组件和位于罐体内的细碎的流体处理介 质, 随后将反冲用水从上方处理单元的第二通道经旁通阀直接导入第一 通道。
图 7是本发明第七实施方式的流体处理装置的示意图。 在本实施方 式中, 在流体处理装置的罐体内示例性地组装有四个处理组件, 每个处 理组件示例性地具有四个处理单元。 在此, 本领域技术人员根据需要容 易想到设置其他数量的处理组件和处理单元。 如图 7所示, 四个处理组 件分为左右两组, 每组处理组件与图 6所示的一组处理组件相同, 并且 每组处理组件的下方可选地设置有位于罐体内的细碎的流体处理介质。 图 7中的箭头表示水流方向, 可以看出, 各组处理组件的水流方向与图 6 中的水流方向也基本相同。
为了组合这些处理组件, 本实施方式采用了转接件和连接件, 二者 均可单独使用, 并且优选组合在一起作为转接单元使用; 并且, 转接单 元优选可以互相组合。 图 7A是转接单元的分解透视图, 图 7B是图 7A 所示转接单元的装配剖视图。
图 7A的上部为转接件,其用于将来自罐体引入口 102或上游转接单 元的水流分配给多个通道, 并且将来自罐体内部或下游转接单元的多个 通道的水流汇集并输出。 如图所示, 该转接件具有筒状的转接外壁和位 于转接外壁中的一个转接隔板。 在图中转接隔板的上侧形成主流通道部 分, 具体来说, 在转接隔板上设置有筒状的转接内壁, 该转接内壁和转 接外壁优选同心地设置。 这样, 在转接内壁和转接外壁之间形成第一转 接通道, 在转接内壁内部形成第二转接通道。 在本实施方式中, 该第一 转接通道用于引导水流入处理组件, 该第二转接通道用于引导水流出处 理组件。 但是也可以将该第一转接通道用于引导水从处理组件流出, 将 第二转接通道用于引导水流入处理组件。
在转接隔板的下侧形成有分支通道部分。 具体来说, 在转接隔板的 下方设置有两个第一分支通道和两个第二分支通道, 每个第一分支通道 通过转接隔板上的相应开口与第一转接通道连通, 每个第二分支通道通 过转接隔板上的相应开口与第二转接通道连通。 各个分支通道均优选为 圆管形, 并且更优选地, 第一和第二分支通道的直径有所不同, 借此避 免混淆。 在此, 第一和第二分支通道可以不止两个, 例如, 可以设置成 具有三个、 四个或更多个。 所述第一分支通道和第二分支通道的数量优 选相等, 但并非必须相等。 在本实施方式中, 一个第一分支通道和一个 第二分支通道组成一对分支通道, 整个转接件共有两对分支通道, 也就 是说, 由第一转接通道引入的一股水流被两个通道分为两股水流流出。
图 7A的下部为连接件,其用于将来自两个独立水管之一的水流引入 本发明的处理组件, 并且将来自处理组件的水流通过上述两个独立水管 中的另一个排出。
该连接件具有被连接隔板分开的上部和下部, 上部为从连接隔板向 上并排延伸的第一接口管和第二接口管, 二者均为管状; 下部为从连接 隔板向下延伸的筒状连接内壁和围绕其的筒状连接外壁, 二者优选同心 设置。 在连接内壁和连接外壁之间形成第一连接通道, 该第一连接通道 通过连接隔板上的开口与第一接口管相连通; 在所述连接内壁内形成第 二连接通道, 该第二连接通道通过连接隔板上的开口与第二接口管相连 通; 在该连接件中, 连接外壁适于与本实施方式中的处理组件的组件入 口密封配合, 连接内壁适于与本实施方式中的处理组件的组件出口密封 配合。
一个以上所述的转接件和多个以上所述的连接件优选具有相配合的 尺寸而能够组合为一个转接单元。 在本实施方式中, 转接件的每个第一 分支通道适于与连接件的第一接口管相配合而能够密封连接, 从而形成 一个单独的水流通道; 而转接件的每个第二分支通道适于与连接件的第 二接口管相配合而能够密封连接, 从而也形成一个单独水流通道。 这样, 一个转接件可以连接有两个连接件, 如图 7B所示。在此, 如果转接件的 第一和第二分支通道均多于两个, 则可以连接多于两个的连接件。
另一方面, 转接件的转接内壁优选适于与连接件的连接内壁相配合 (优选插入配合) 而实现密封连接, 转接件的转接外壁优选适于与连接 件的连接外壁相配合 (优选插入配合) 而实现密封连接。 这样, 一个转 接单元的转接件适于与另一个转接单元的连接件相连接, 通过这样的进 一歩扩展能够实现进一歩的分流 /汇流。
在图 7所示的实施方式中, 采用了一个转接单元为两组处理组件供 水, 并且以此转接单元接收来自处理组件的水。 借助这样的转接单元, 即使在罐体开口细小的情况下, 也能够在罐体内设置尽可能多的处理组 件, 由此可以充分利用管罐内空间并提高处理能力。
图 8是本发明第八实施方式的流体处理装置的示意图。 在该实施方 式中, 在罐体内并排地并联设置有两个处理组件, 每个处理组件下方优 选连接有位于罐体内的细碎的流体处理介质。 各处理组件的构造与图 2 中所示的处理组件相同, 因此相同的内容在此不再赘述。 该实施方式采 用了图 7B所示的一个处理单元,其中每个处理组件连接在处理单元的一 个连接件上, 而处理单元的转接件与罐体上的引入口 102和排出口 103 相连。 由于两个处理组件沿水平方向并排设置而不是上下叠置, 因此有 利于减小所占用空间的高度。
图 9是本发明第九实施方式的流体处理装置的示意图。 在该实施方 式中, 在罐体内并联设置有两个处理组件, 每个处理组件下方优选连接 有位于罐体内的细碎的流体处理介质。 各处理组件的构造与图 3 中所示 的处理组件相同, 因此相同的内容在此不再赘述。 该实施方式采也用了 图 7B所示的一个处理单元,其中每个处理组件连接在处理单元的一个连 接件上, 而处理单元的转接件与罐体上的引入口 102和排出口 103相连。
图 10是本发明第十实施方式的流体处理装置的示意图。在该实施方 式中, 在罐体内串联设置有两个处理组件。 其中, 图中左侧的处理组件 为上游处理组件, 而图中右侧的处理组件为下游处理组件。 上游处理组 件连接至一个转接单元的连接件之一(即上游连接件), 而下游处理组件 连接该转接单元的另一连接件(即下游连接件)。 在上游处理组件中, 水 从连接件的第一连接通道进入由各处理单元的内壁 11形成的通道, 随后 流过各处理单元。 如图所示, 连接上游处理组件的上游连接件的第二连 接通道 (或第二接口管) 被封堵而不允许水通过, 这是因为流过各单元 的水并不需要由该第二连接通道排出。 由上游处理组件流出的水经过位 于下游处理组件下方的位于罐体内的细碎的流体处理介质之后进入该下 游处理组件。 水经由下游处理组件的内壁 11形成的通道进入各单元, 经 过单元处理之后的水通过下游连接件的第二连接通道排出。 该下游连接 件的第一接口管 (或第一连接通道) 被封堵而不允许水流通过。
与图 6所示的实施方式相比,这样设置的两个处理组件为并排设置, 从而并不增加高度, 因此适用于高度较小的罐体。
图 11是本发明的流体处理单元可采用的导流板的透视图。在该改进 的处理单元中, 为了增长水流路线并借此增强处理效果, 本发明采用了 导流板强制水流路线发生转折。 如图所示, 在处理单元的内壁 11和外壁 12之间设置螺旋形的导流板, 该螺旋形的导流板具有大致水平的上缘和 下缘, 以及呈螺旋线状分别位于径向内侧和外侧的内缘和外缘。 该导流 板的内缘优选接触内壁 11, 外缘优选接触外壁 12。 水接触到内缘令水改 向外流, 水接触到外缘令水改向内流, 结果水接触内壁 11和外壁 12机 会减少, 最终水接触流体处理单元内的细碎的流体处理介质机会增加, 达到最佳过滤效果。 由于导流板的存在, 从单元入口 15进入的水不会直 接向上流向单元出口 16, 而是在导流板的强制引导下沿螺旋方向流动, 从而增成了流动路线并增长了被处理时间。
为了使进入单元内的水得到均匀的处理,优选采用多个螺旋导流板, 这些螺旋导流板具有相同的螺距并且间隔开布置。 例如, 可以在内壁 11 和外壁 12之间设置 4个相同的螺旋形导流板, 这些导流板优选等间距布 置。 当然, 无论采用一个螺旋导流板还是多个螺旋导流板, 螺旋形状相 同还是各异, 它们的螺旋角以及高度都是可以由本领域技术人员根据本 发明容易确定的。
为了制造和装配的方便, 优选通过环状的连接件将多个导流板连接 成一体, 从而组成一个导流单元。 该导流单元的高度或数量可以由本领 域技术人员根据使用情况来设定, 例如, 在整个单元内腔的高度内设置 一个, 两个或更多个导流单元。 尽管优选导流单元占据单元整个腔室, 但也并非必须如此, 例如, 可以仅在单元的下半部设置导流单元。 如果 一个单元腔室内设置有两个或更多个导流单元, 这些导流单元的螺旋方 向可以是相同, 但也可以采用相邻导流单元的螺旋方向相反的布置。
如图 11所示,本发明在一个处理单元内采用了四个导流单元,其中, 每个导流单元均具有四个导流板, 其高度大约为单元内腔高度的四分之 一; 并且, 相邻导流单元的螺旋方向相反, 上方导流板的下缘与下方导 流板的上缘在同一上下延伸的平面内。 借助如此构造处理单元, 水流从 下向上沿着折线流动。
为了避免各个导流单元在上下方向上交错重叠, 优选在相邻的导流 单元之间设置分隔环。 该分隔环位于处理单元的内壁 11和外壁 12之间, 其沿处理单元径向的宽度小于处理单元的环形腔室的径向宽度, 由此在 尽量不阻挡水流的情况下将上下相邻两个导流单元分隔开。
除了能够延长流动路线和处理时间之外, 如上所述设置的导流板或 导流单元还能够增强单元腔室内细碎的流体处理介质的自清洁效果。 这 是因为介质颗粒在向上水流的作用下会撞击导流板, 并且介质颗粒之间 的撞击次数和强度也会增加, 由此能够更有效地清洁掉颗粒表面的污物。
本发明中的导流板并不严格限定为螺旋形, 其可以为相对于单元的 圆筒轴线倾斜的平板、 或总体上倾斜的带有台阶的板, 只要能够引导水 流沿着相对于单元的圆筒轴线倾斜的方向流动即可。 并且, 导流板相对 于处理单元的轴线方向倾斜也可以根据实际情况设定,优选大约为 45度。 另外, 本领域技术人员也容易想到的是, 可以设置与内壁 11一体的导流 板, 该导流板从内壁 11向外突出; 也可以设置与外壁 12—体的导流板, 该导流板从外壁 12向内突出。 优选的是, 在内壁 11和外壁 12上均设置 螺旋形的导流板, 内壁 11和外壁 12通过相对旋转而组装在一起, 并且 使这些导流板在内壁 11和外壁 12组装之后相互间隔开, 从而也能够达 到上述导流单元的效果。 此外, 若罐体内是空的, 该外筒是不需要的。

Claims

权利 要 求 书
1. 一种流体处理单元, 该流体处理单元具有一腔室, 在该腔室内容 纳有至少一种细碎的流体处理介质, 该腔室具有供待处理的流体进入的 入口和供处理后的流体流出的出口, 其特征在于: 所述入口设置在所述 腔室的下部, 所述出口设置在所述腔室的上部。
2. 如权利要求 1所述的流体处理单元, 其特征在于: 所述腔室由筒 形的内壁、 围绕该内壁并与之间隔开的筒形的外壁、 以及在所述内壁和 外壁之间的上壁和下壁构成, 其中所述上壁位于所述下壁的上方并与之 间隔开。
3. 如权利要求 2所述的流体处理单元, 其特征在于: 所述入口设置 于所述内壁的下部和 /或下壁, 所述出口设置于所述外壁的上部和 /或上 壁。
4. 如权利要求 2所述的流体处理单元, 其特征在于: 所述入口设置 于所述外壁的下部和 /或下壁, 所述出口设置于所述内壁的上部和 /或上 壁。
5. 如权利要求 2-4之一所述的流体处理单元, 其特征在于: 所述腔 室的内壁界定至少一个供流体流动用的通道。
6. 如权利要求 5所述的流体处理单元, 其特征在于: 至少一个所述 通道包括向所述流体处理单元的所述入口供应流体的通道。
7. 如权利要求 5所述的流体处理单元, 其特征在于: 至少一个所述 通道包括用于引导从所述流体处理单元的所述出口排出的流体的通道。
8. 一种流体处理组件, 所述流体处理组件具有用于待处理流体进入 的组件入口和排出已处理流体的组件出口, 所述流体处理组件包括多个 上下叠置并且彼此可被拆地连接的流体处理单元, 每个所述流体处理单 元具有一腔室, 在该腔室内容纳有至少一种细碎的流体处理介质, 所述 腔室具有供待处理的流体进入的单元入口和供处理后的流体流出的单元 出口,
所述流体处理组件还具有弓 I入通道和排出通道, 所述引入通道将流 体从所述组件入口引导至各所述流体处理单元的单元入口, 所述排出通 道将流体从所述单元出口引导至所述组件出口,
其特征在于: 各所述流体处理单元所述单元入口设置在所述腔室的 下部, 所述单元出口设置在所述腔室的上部。
9. 如权利要求 8所述的流体处理组件, 其特征在于: 各所述处理单 元的所述腔室均由筒形的内壁、 围绕该内壁并与之间隔开的筒形的外壁、 以及在所述内壁和外壁之间的上壁和下壁构成, 其中所述上壁位于所述 下壁的上方并与之间隔开。
10. 如权利要求 9所述的流体处理组件, 其特征在于:
所述流体处理组件还包括一个外筒, 该外筒环绕上下叠置的各处理 单元的外壁;
上下叠置的多个流体处理单元的内壁形成第一通道;
在所述外筒与各处理单元的外壁之间形成第二通道, 若在没有外筒 情况下, 各处理单元的外壁的上部和 /或上壁开口组成第二通道;
所述第一通道为引入通道, 所述第二通道为排出通道。
11. 如权利要求 10所述的流体处理组件, 其特征在于:
所述流体处理组件还包括一个内筒, 所述内筒在上下叠置的各处理 单元的内壁所形成空间内延伸, 在该内筒与各处理单元的内壁之间形成 所述第一通道。
12. 如权利要求 9-11之一所述的流体处理组件, 其特征在于: 所述 单元入口设置于所述内壁的下部和 /或下壁, 所述单元出口设置于所述外 壁的上部和 /或上壁。
13. 如权利要求 9所述的流体处理组件, 其特征在于:
所述流体处理组件还包括一个外筒, 该外筒环绕上下叠置的各处理 单元的外壁;
上下叠置的多个流体处理单元的内壁内部形成第一通道
在所述外筒与各处理单元的外壁之间形成第二通道, 若在没有外筒 情况下, 各处理单元的外壁的上部和 /或上壁开口组成第二通道;
所述第一通道为排出通道, 所述第二通道为引入通道。
14. 如权利要求 13所述的流体处理组件, 其特征在于: 所述流体处理组件还包括一个内筒, 所述内筒在上下叠置的各处理 单元的内壁所形成空间内延伸, 在该内筒与各处理单元的内壁之间形成 所述第一通道。
15. 如权利要求 9、 13或 14所述的流体处理组件, 其特征在于: 所 述单元入口设置于所述外壁的下部和 /或下壁, 所述单元出口设置于所述 内壁的上部和 /或上壁。
16. 一种流体处理装置, 该流体处理装置包括罐体, 该罐体具有用 于向罐体内引入流体的引入口和用于从罐体排出流体的排出口,
在所述罐体内部设置有至少一个对引入的流体进行处理的流体处理 单元, 所述流体处理单元具有一腔室, 在该腔室内容纳有至少一种细碎 的流体处理介质; 所述腔室具有单元入口和单元出口, 待处理的流体经 由所述单元入口进入所述腔室并且经过流体处理介质处理后, 由所述单 元出口离开所述腔室;
其特征在于: 所述单元入口设置在所述腔室的下部, 所述单元出口 设置在所述腔室的上部。
17. 如权利要求 16所述的流体处理装置, 其特征在于, 所述腔室由 筒形的内壁、 围绕该内壁并与之间隔开的筒形的外壁、 以及在所述内壁 和外壁之间的上壁和下壁构成, 其中所述上壁位于所述下壁的上方并与 之间隔开。
18. 如权利要求 17所述的流体处理装置, 其特征在于: 所述入口设 置于所述内壁的下部和 /或下壁, 所述出口设置于所述外壁的上部和 /或上 壁。
19. 如权利要求 17所述的流体处理装置, 其特征在于: 所述入口设 置于所述外壁的下部和 /或下壁, 所述出口设置于所述内壁的上部和 /或上 壁。
20. 如权利要求 16-19之一所述的流体处理装置, 其特征在于, 该流 体处理装置具有设置在罐体内的上下叠置并且可拆卸地连接在一起作为 一组的多个所述流体处理单元。
21. 如权利要求 20所述的流体处理装置, 其特征在于, 由所述引入口引入的流体分别由各个流体处理单元的单元入口进入 各流体处理单元并接受处理, 然后分别由各个处理单元的单元出口离开 各处理单元。
22. 如权利要求 20所述的流体处理装置, 其特征在于,
多个所述流体处理单元中至少有两个相邻的流体处理单元如此布 置, BP , 由一个流体处理单元的出口流出的流体进入另一个流体处理单 元的入口。
23. 如权利要求 20所述的流体处理装置, 其特征在于, 在所述罐体 还设置有一个内筒和一个外筒, 所述内筒在上下叠置的各流体处理单元 的内壁所形成的空间内延伸, 在所述内筒与各流体处理单元的内壁之间 形成第一通道; 所述外筒围绕各流体处理单元, 在所述外筒与各流体处 理单元的外壁之间形成第二通道, 在所述外筒和所述罐体之间形成第三 通道, 在所述内筒内部形成第四通道;
其中, 经所述引入口引入所述罐体的流体按顺序流经第一通道、 各 流体处理单元、 第二通道、 第三通道以及第四通道, 然后经所述排出口 排出所述罐体。
24. 如权利要求 23所述的流体处理装置, 其特征在于, 在所述第四 通道和第三通道之间设置有位于罐体内的细碎的流体处理介质, 所述流 体从第三通道经过上述位于罐体内的细碎的流体处理介质之后进入第四 通道。
25. 如权利要求 20所述的流体处理装置, 其特征在于, 在所述罐体 内还设置有一个外筒, 该外筒环绕上下叠置的所述多个流体处理单元; 在所述罐体和所述外筒之间形成第一通道, 上下叠置的多个流体处理单 元的内壁内部形成第二通道, 在所述外筒与各处理单元的外壁之间形成 第三通道;
经所述引入口引入所述罐体的流体依次经过第一通道、 第二通道、 处理单元、 第三通道, 然后由所述排出口排出所述罐体。
26. 如权利要求 25所述的流体处理装置, 其特征在于, 在所述第一 通道和所述第二通道之间设置有位于罐体内的细碎的流体处理介质, 所 述流体从第一通道经过上述位于罐体内的细碎的流体处理介质之后进入 所述第二通道。
27. 如权利要求 20 所述的流体处理装置, 其特征在于, 在所述罐 体内还设置有一个外筒, 该外筒环绕上下叠置的所述多个流体处理单元; 在所述罐体和所述外筒之间形成第一通道, 上下叠置的多个流体处理单 元的内壁内部形成第三通道, 在所述外筒与各处理单元的外壁之间形成 第二通道;
经所述引入口引入所述罐体的流体依次经过第一通道、 第二通道、 处理单元、 第三通道, 然后由所述排出口排出所述罐体。
28. 如权利要求 27所述的流体处理装置, 其特征在于, 在所述第一 通道和所述第二通道之间, 所述流体从第一通道经过所述位于罐体内的 细碎的流体处理介质之后进入所述第二通道。
29. 一种流体处理装置, 该流体处理装置包括罐体, 该罐体具有用 于向罐体内引入流体的引入口和用于从罐体排出流体的排出口,
在所述罐体内部设置有至少一个如权利要求 8-15之一所述的流体处 理组件, 所述流体处理组件对从引入口引入的流体进行处理, 并且将处 理后的流体由所述排出口排出。
30. 如权利要求 29所述的流体处理装置, 其特征在于: 至少有两个 流体处理组件串联设置, gp, 从其中一个流体处理组件流出的流体进入 另一个流体处理组件。
31. 如权利要求 30所述的流体处理装置, 其特征在于: 串联的至少 两个流体处理组件上下叠置在一起。
32. 如权利要求 30所述的流体处理装置, 其特征在于: 串联的至少 两个流体处理组件并排设置。
33. 如权利要求 31或 32所述的流体处理装置, 其特征在于: 在所 述另一个流体处理组件的下方设置有位于罐体内的细碎的流体处理介 质, 从所述一个流体处理组件流出的流体通过所述位于罐体内的细碎的 流体处理介质进入所述另一个流体处理组件。
34. 如权利要求 29所述的流体处理装置, 其特征在于: 至少有两个 流体处理组件并联设置, gp, 相同的流体同时到达各流体处理组件并受 到处理。
35. 如权利要求 34所述的流体处理装置, 其特征在于: 并联的至少 两个流体处理组件上下叠置在一起。
36. 如权利要求 34所述的流体处理装置, 其特征在于: 并联的至少 两个流体处理组件并排设置。
37. 一种用于流体处理装置的转接件, 该转接件具有筒状的转接内 壁和围绕该内壁的筒状的转接外壁;
在所述转接内壁内部形成第一流体通道;
在所述转接内壁和转接外壁之间形成第二流体通道;
所述转接件还具有与所述第一流体通道连通的多个第一分支通道, 以及与所述第二流体通道连通的多个第二分支通道, 所述第一分支通道 和第二分支通道的数量相等, 从而形成多对分支通道, 每对分支通道具 有一个第一分支通道和与之对应的一个第二分支通道;
在每对分支通道中, 所述第一分支通道与所述流体处理装置的一个 流体处理单元的单元入口或单元出口之一相连通, 第二分支通道与所述 流体处理单元的单元入口和单元出口中的另一个相连通。
38. 如权利要求 37所述的转接件, 其特征在于:
所述转接内壁和所述转接外壁为两个同心的圆筒形壁。
39. 如权利要求 38所述的转接件, 其特征在于:
所述第一分支通道和所述第二分支通道均为管状通道。
40. 如权利要求 37-39之一所述的转接件, 其特征在于: 所述转接件 具有一转接隔板, 该转接隔板将所述转接件分为主流通道部分和分支通 道部分, 所述主流通道部分具有转接内壁和转接外壁, 所述分支通道部 分具有所述多个第一分支通道和所述多个第二分支通道, 每个所述第一 分支通道和所述第二分支通道均通过转接隔板上的相应开口与所述第一 流体通道或第二流体通道相连通。
41. 一种用于流体处理装置的连接件, 所述连接件具有并排设置的 所述连接件还具有筒状的连接内壁和围绕该连接内壁设置的筒状的 连接外壁, 在所述连接内壁内形成与所述第一接口管相连通的第一连接 通道, 在所述连接内壁和所述连接外壁之间形成与第二接口管相连通的 第二连接通道;
所述连接内壁具有能够与所述流体处理装置的流体处理单元的入口 或出口之一相配合的截面尺寸, 所述连接外壁具有能够与所述流体处理 单元的入口和出口中的另一个相配合的截面尺寸。
42. 如权利要求 41所述的连接件, 其特征在于:
所述连接内壁和所述连接外壁为两个同心的圆筒形壁。
43. 如权利要求 42所述的连接件, 其特征在于: 所述连接件具有一 连接隔板, 该连接隔板将所述连接件分为第一部分和第二部分, 所述第 一部分具有并排设置的第一接口管和第二接口管, 所述第二部分具有所 述连接内壁和所述连接外壁; 所述第一接口管通过所述连接隔板上的一 个开口与所述第一连接通道相连通, 所述第二接口管通过所述连接隔板 上的另一个开口与所述第二连接通道相连通。
44. 一种用于流体处理装置的转接单元, 所述转接单元包括一个如 权利要求 37-40之一所述转接件和多个如权利要求 41-43之一所述的连接 件, 其中, 每个所述连接件的第一接口管与转接件的一对分支通道中的 第一分支通道相配合而连通, 每个所述连接件的第二接口管与转接件的 该对分支通道中的第二分支通道相配合而连通。
45. 根据权利要求 44所述的转接单元, 其特征在于: 至少一个所述 连接件的连接内壁与所述转接件的转接内壁具有相配合的尺寸, 从而能 够通过插入而连接; 所述至少一个连接件的连接外壁与所述转接件的转 接外壁具有相配合的尺寸, 从而能够通过插入而连接。
46. 根据权利要求 45所述的转接单元, 其特征在于: 该转接单元的 多个连接件的任一个连接件都具有能够与所述转接件的连接内壁相连接 的转接内壁, 以及能够与所述转接件的转接外壁相连接的连接外壁。
47. 一种流体处理装置, 该流体处理装置包括罐体, 该罐体具有用 于向罐体内引入流体的引入口和用于从罐体排出流体的排出口, 在所述 罐体内部设置有:
对引入的流体进行处理的前处理流体处理组件和用于过滤流体的位 于罐体内细碎的流体处理介质; 以及
连通所述引入口和所述前处理流体处理组件的第一通道、 由所述前 处理流体处理组件通向所述位于罐体内细碎的流体处理介质的第二通 道、 由所述位于罐体内细碎的流体处理介质通向所述排出口的第三通道, 其特征在于,
在所述第二通道和所述第一通道之间设置有单向阀, 流体只能够从 第二通道通过单向阀进入第一通道。
48. 如权利要求 47所述的流体处理装置, 其特征在于:
所述前处理流体处理组件具有至少一个处理腔室, 在所述处理腔室 内容纳有至少一种细碎的流体处理介质, 该腔室具有供待处理的流体进 入的入口和供处理后的流体流出的出口。
49. 如权利要求 48所述的流体处理装置, 其特征在于:
所述流体处理装置为可反冲式流体处理装置。
50. 如权利要求 47-49之一所述的流体处理装置, 其特征在于: 所述流体处理装置具有正常工作状态和反冲状态, 在正常工作状态 下, 待处理的流体经由所述引入口引入罐体之后, 依次经过所述第一通 道、 所述前处理流体处理组件、 所述第二通道、 所述位于罐体内细碎的 流体处理介质、 所述第三通道, 并最终由排出口排出; 在反冲状态下, 用于反冲的流体经由所述排出口引入所述罐体, 并且在依次通过所述第 三通道、 所述位于罐体内细碎的流体处理介质和所述第二通道之后, 至 少一部分用于反冲的流体通过单向阀进入第一通道, 并通过进入口排出。
51. 如权利要求 47所述的流体处理装置, 其特征在于:
所述单向阀为压差开启式单向阀, 当所述第二通道内的流体压力超 过所述第一通道内的流体压力一预定值时, 所述单向阀开启。
52. 如权利要求 51所述的流体处理装置, 其特征在于:
通过调节所述单向阀的开启压差, 能够调节通过单向阀的流体和通 过所述前处理流体处理组件的流体的比例。
PCT/CN2011/071525 2010-03-08 2011-03-04 流体处理单元、流体处理组件以及流体处理装置 WO2011110075A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/582,904 US9527015B2 (en) 2010-03-08 2011-03-04 Unit, assembly and apparatus for treating fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010128811.1 2010-03-08
CN201010128811.1A CN102190336B (zh) 2010-03-08 2010-03-08 流体处理单元、流体处理组件以及流体处理装置

Publications (1)

Publication Number Publication Date
WO2011110075A1 true WO2011110075A1 (zh) 2011-09-15

Family

ID=44562879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071525 WO2011110075A1 (zh) 2010-03-08 2011-03-04 流体处理单元、流体处理组件以及流体处理装置

Country Status (3)

Country Link
US (1) US9527015B2 (zh)
CN (1) CN102190336B (zh)
WO (1) WO2011110075A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109126464A (zh) * 2017-06-19 2019-01-04 九阳股份有限公司 侧流式反渗透滤芯组件

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9713666B2 (en) 2013-01-09 2017-07-25 Medtronic, Inc. Recirculating dialysate fluid circuit for blood measurement
US10052612B2 (en) 2013-11-26 2018-08-21 Medtronic, Inc. Zirconium phosphate recharging method and apparatus
US10004839B2 (en) 2013-11-26 2018-06-26 Medtronic, Inc. Multi-use sorbent cartridge
US10537875B2 (en) 2013-11-26 2020-01-21 Medtronic, Inc. Precision recharging of sorbent materials using patient and session data
US9943780B2 (en) * 2013-11-26 2018-04-17 Medtronic, Inc. Module for in-line recharging of sorbent materials with optional bypass
US9884145B2 (en) 2013-11-26 2018-02-06 Medtronic, Inc. Parallel modules for in-line recharging of sorbents using alternate duty cycles
US10427960B2 (en) 2014-06-16 2019-10-01 Yiu Chau Chau Method for improving performance of fluid processing system based on crystallization promoting medium
US10414669B2 (en) * 2014-06-20 2019-09-17 Hydronovation, Inc. Water treatment system tank and method of assembly
WO2015199763A1 (en) 2014-06-24 2015-12-30 Medtronic, Inc. A urease introduction system for replenishing urease in a sorbent cartridge
WO2015199764A1 (en) 2014-06-24 2015-12-30 Medtronic, Inc. Replenishing urease in dialysis systems using urease pouches
EP3160531B1 (en) 2014-06-24 2019-08-14 Medtronic Inc. Replenisihing urease in dialysis systems using a urease introducer
US10172991B2 (en) 2014-06-24 2019-01-08 Medtronic, Inc. Modular dialysate regeneration assembly
US10286380B2 (en) 2014-06-24 2019-05-14 Medtronic, Inc. Sorbent pouch
US10357757B2 (en) 2014-06-24 2019-07-23 Medtronic, Inc. Stacked sorbent assembly
US10981148B2 (en) 2016-11-29 2021-04-20 Medtronic, Inc. Zirconium oxide module conditioning
JP6694378B2 (ja) * 2016-12-26 2020-05-13 本田技研工業株式会社 燃料電池発電システムの純水精製装置
US11167070B2 (en) 2017-01-30 2021-11-09 Medtronic, Inc. Ganged modular recharging system
EP3636598B1 (en) * 2017-06-06 2024-06-19 Canpro Water Treatment Inc. Liquid treatment apparatus
US10960381B2 (en) 2017-06-15 2021-03-30 Medtronic, Inc. Zirconium phosphate disinfection recharging and conditioning
US11213616B2 (en) 2018-08-24 2022-01-04 Medtronic, Inc. Recharge solution for zirconium phosphate
CA3112023A1 (en) * 2018-09-10 2020-03-19 Enviroeye Llc Oil monitoring system
US11725781B2 (en) 2019-02-11 2023-08-15 Watts Regulator Co. Pressure relief cover assembly
US11471794B2 (en) 2019-02-11 2022-10-18 Watts Regulator Co. Filter cartridge for a whole house water filtering system
US11333264B2 (en) 2019-02-11 2022-05-17 Watts Regulator Co. Manifold assembly for a water filter system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469696A (en) * 1968-01-22 1969-09-30 American Mach & Foundry Filtration apparatus
US3854902A (en) * 1971-09-28 1974-12-17 Ducon Co Method of filtering gas
US5698093A (en) * 1996-05-31 1997-12-16 Eagle Filter Corporation Gasoline filter with automatic shut off
CN1232790A (zh) * 1998-01-15 1999-10-27 佳宝水处理股份有限公司 罐子处理组件
US20040217045A1 (en) * 2003-05-02 2004-11-04 Champion Laboratories, Inc. Fuel dispenser filter with removable filter media
CN1894165A (zh) * 2003-12-15 2007-01-10 D2O有限公司 具有磁场发生的流体净化器
CN1980718A (zh) * 2004-07-05 2007-06-13 皮克革兰股份有限公司 单触装配式单一或复式转接器,与其可拆卸地配合的过滤组件以及使用这些部件的水净化系统
WO2007149497A2 (en) * 2006-06-20 2007-12-27 Cummins Filtration Inc. Replaceable filter elements including plural filter media and related filtration systems, tecniques and methods

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US746292A (en) * 1903-03-04 1903-12-08 Allison N Clark Filter.
US3561602A (en) * 1968-12-18 1971-02-09 Donald H Molitor Liquid filter
US5415770A (en) 1984-04-30 1995-05-16 Kdf Fluid Treatment, Inc. Apparatus for treating fluids
US5006246A (en) * 1989-12-19 1991-04-09 Eastman Kodak Company Baffled particulate material housing
US5017286A (en) * 1990-03-05 1991-05-21 Heiligman Randy B Faucet-mounted water filter with wall inlet and annular chamber
US6254772B1 (en) * 1998-01-15 2001-07-03 Yiu Chau Chau Backwashable filtration system
US7208084B2 (en) * 2004-09-07 2007-04-24 T.F.H. Publications, Inc. Modular aquarium filter
KR100712266B1 (ko) * 2005-03-24 2007-05-17 주식회사 피코그램 커넥터를 이용하여 용이하게 교체되는 정수용 필터, 및 이를 이용한 정수장치
GB0518704D0 (en) * 2005-09-14 2005-10-19 Madison Filter 981 Ltd Scavenging filter
CN200977424Y (zh) * 2006-09-25 2007-11-21 林振兴 功能性净出水滤器的结构改良
CN200973994Y (zh) * 2006-10-18 2007-11-14 王德兴 净出水过滤器
CN100496663C (zh) * 2006-11-09 2009-06-10 福州金源泉科技有限公司 水质处理装置
CN201012302Y (zh) * 2007-03-08 2008-01-30 洁成原能科技有限公司 滤水装置
CN201380069Y (zh) * 2009-04-30 2010-01-13 中国人民解放军后勤工程学院 高效复合旋流反应分离器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469696A (en) * 1968-01-22 1969-09-30 American Mach & Foundry Filtration apparatus
US3854902A (en) * 1971-09-28 1974-12-17 Ducon Co Method of filtering gas
US5698093A (en) * 1996-05-31 1997-12-16 Eagle Filter Corporation Gasoline filter with automatic shut off
CN1232790A (zh) * 1998-01-15 1999-10-27 佳宝水处理股份有限公司 罐子处理组件
US20040217045A1 (en) * 2003-05-02 2004-11-04 Champion Laboratories, Inc. Fuel dispenser filter with removable filter media
CN1894165A (zh) * 2003-12-15 2007-01-10 D2O有限公司 具有磁场发生的流体净化器
CN1980718A (zh) * 2004-07-05 2007-06-13 皮克革兰股份有限公司 单触装配式单一或复式转接器,与其可拆卸地配合的过滤组件以及使用这些部件的水净化系统
WO2007149497A2 (en) * 2006-06-20 2007-12-27 Cummins Filtration Inc. Replaceable filter elements including plural filter media and related filtration systems, tecniques and methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109126464A (zh) * 2017-06-19 2019-01-04 九阳股份有限公司 侧流式反渗透滤芯组件
CN109126464B (zh) * 2017-06-19 2022-02-01 九阳股份有限公司 侧流式反渗透滤芯组件

Also Published As

Publication number Publication date
CN102190336A (zh) 2011-09-21
US20130068675A1 (en) 2013-03-21
US9527015B2 (en) 2016-12-27
CN102190336B (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2011110075A1 (zh) 流体处理单元、流体处理组件以及流体处理装置
JP5765676B2 (ja) 浄化システム及びフィルタ
US7413649B2 (en) Treatment apparatus with modular chemical containing units having one-way valve assemblies
CN106890488A (zh) 回流过滤器
KR20160071505A (ko) 정수필터 및 이를 포함하는 수처리장치
TW558450B (en) Filter cartridge with divided filter bed for gravity flow use
CA2691815A1 (en) Fluid removing filter apparatus and method of removing fluid from a mixture
US20150251744A1 (en) Method for Treating Ballast Water and Device for Treating Ballast Water
JP5782516B2 (ja) 重力送り式フィルタを有する浄水装置
KR100982699B1 (ko) 정수용 필터와 이를 위한 필터 카트리지
CN103619759A (zh) 渗透过滤系统
KR20120002855A (ko) 일체형필터
KR101784886B1 (ko) 분배챔버를 이용한 연속여과장치
CN104478011A (zh) 流体处理装置
KR100652840B1 (ko) 사이클론을 이용한 물 정화장치
WO2021020138A1 (ja) 水処理装置
KR101894544B1 (ko) 정수기용 필터 카트리지
KR20180059625A (ko) 정수처리용 멤브레인 모듈 및 이를 이용한 정수처리 장치
CN108726702A (zh) 水处理装置
JP3651423B2 (ja) 圧縮空気より発生したドレン水の油水分離装置
KR102194546B1 (ko) 나선관을 이용한 분리막
US8696906B2 (en) Involute cartridge filter system
KR20120052006A (ko) 중공사막필터 유닛이 직렬연결되는 정수필터
KR20230095469A (ko) 필터 부재 및 이를 포함하는 필터 구조체
JP2003062561A (ja) 浄水器用カートリッジ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11752818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13582904

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11752818

Country of ref document: EP

Kind code of ref document: A1