WO2011110037A1 - 一种环网架构下的组播实现方法、接入层设备及系统 - Google Patents
一种环网架构下的组播实现方法、接入层设备及系统 Download PDFInfo
- Publication number
- WO2011110037A1 WO2011110037A1 PCT/CN2010/079369 CN2010079369W WO2011110037A1 WO 2011110037 A1 WO2011110037 A1 WO 2011110037A1 CN 2010079369 W CN2010079369 W CN 2010079369W WO 2011110037 A1 WO2011110037 A1 WO 2011110037A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer device
- access layer
- aggregation
- access
- multicast
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/1863—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast comprising mechanisms for improved reliability, e.g. status reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/42—Loop networks
- H04L12/437—Ring fault isolation or reconfiguration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
- H04L12/4604—LAN interconnection over a backbone network, e.g. Internet, Frame Relay
- H04L12/462—LAN interconnection over a bridge based backbone
Definitions
- the present invention relates to the field of network technologies, and in particular, to a multicast implementation method, an access layer device, and a system in a ring network architecture.
- a ring network is usually formed between the access layer and the aggregation layer.
- the Layer 2 packets are transmitted to the network through the aggregation layer. Therefore, broadcast packets are easily broadcast on the ring network.
- the Spanning Tree Protocol came into being.
- the basic idea of the spanning tree protocol is to block certain ports through the STP (spanning tree protocol) algorithm, simplifying the ring network into a tree, and at the same time functioning as a link protection.
- Multi-spanning tree protocol can transform the network into multiple trees, which can play different paths for different services and achieve traffic load sharing.
- the application of the multicast service needs to ensure that the members of the multicast group can join the new topology in time to ensure that the multicast service is not interrupted.
- the combination of the multicast service and the multi-spanning tree protocol solves the multicast application in the ring network architecture.
- the member join/leave packets are sent to the root port generated by the multiple spanning tree protocol.
- the network topology changes. It is possible to generate new multicast distribution path information according to changes in the root port.
- the prior art uses the RSTP (rapid spanning tree protocol) protocol to detect network topology changes, and configures the program binding mode to root port mode.
- IGMP Internet protocol
- Packets are sent from the root port.
- the multicast data stream is injected downward from the root port, and multicast data is copied in a DSLAM (Digital Subscriber Line Access Multiplexer).
- DSLAM Digital Subscriber Line Access Multiplexer
- the embodiments of the present invention provide a multicast implementation method, an access layer device, and a system in a ring network architecture to ensure normal operation of a multicast service.
- the embodiment of the present invention provides a multicast implementation method in a ring network architecture, where the ring network architecture includes a first aggregation layer device, a second aggregation layer device, and a first access connection to the first aggregation layer device.
- a layer device and a second access layer device connected to the second aggregation layer device, where the first aggregation layer device is connected to the second aggregation layer device, and the first access layer device is connected to the second access layer device
- the method includes: setting The first access layer device and the second access layer device are root bridges; when the link between the first aggregation layer device and the first access layer device fails, the bridge priority of the first access layer device is reduced.
- the root port of the first access layer device is calculated by using the spanning tree protocol, and the multicast join message is sent through the root port.
- the embodiment of the present invention provides an access layer device, where one end of the access layer device is connected to the aggregation layer device, and the other end is connected to other access layer devices, including: a link detection unit, configured to access The connection status of the link between the layer device and the aggregation layer device is detected; the spanning tree unit is configured to: when the link detection unit detects that the link is faulty, the bridge priority of the P low access layer device, using the spanning tree The protocol calculates the root port of the access layer device.
- the multicast unit is configured to send a multicast join request packet through the root port.
- the embodiment of the present invention provides a multicast implementation system in a ring network architecture, where the ring network architecture includes a first aggregation layer device, a second aggregation layer device, and a first aggregation layer device.
- An access layer device and a second access layer device connected to the second aggregation layer device, where the first aggregation layer device is connected to the second aggregation layer device, and the first access layer device is connected to the second access layer device.
- the ingress device and the second access layer device are root bridges, where the first access layer device is configured to reduce the link between the first access layer device and the first aggregation layer device when the link fails.
- the bridge priority is used to calculate its own root port through the spanning tree protocol and send multicast join packets through the root port.
- the first access layer device and the second access layer device are set as the root bridge; when the link between the first aggregation layer device and the first access layer device fails The bridge priority of the first access layer device is reduced, and the root port of the first access layer device is calculated by using the spanning tree protocol, and the multicast port is sent through the root port, so that the device is connected to the aggregation layer device.
- the uplink port link of the access layer device is faulty, and the access layer device is the root bridge, the entire multicast service is not interrupted, but the technical effect of multicasting is normal.
- FIG. 1 is a schematic diagram of a network structure of a multicast implementation in a ring network architecture
- FIG. 2 is a schematic diagram of a network structure of a multicast implementation in a ring network architecture according to an embodiment of the present invention
- FIG. 4 is a schematic diagram of a loop architecture of a multicast network in a temporary stable state according to an embodiment of the present invention
- FIG. 5 is a schematic structural diagram of an access layer device according to an embodiment of the present invention.
- FIG. 1 it is a network structure diagram of a multicast implementation in a ring network architecture, where the ring network architecture includes a first aggregation layer device 10, a second aggregation layer device 12, and a connection to the first aggregation layer device 10.
- the ingress layer device 100 (the first access layer device) and the access layer device 106 (the second access layer device) connected to the second aggregation layer device 12, the first aggregation layer device 10 is connected to the second aggregation layer device 12,
- the access layer device 100 is connected to the access layer device 106.
- the access layer device 100 can be connected to the access layer device 106 directly or through other access layer devices, for example, through the access layer device 102 and the access layer in the figure. Device 104).
- Ports 1, 3, and 6 are DP (Designated Port), ports 2, 5, and 8 are RP (Root Port), and port 4 is BLK (Blocked Port), ports 7 and 8.
- Is UP Uplink Port
- the RSTP protocol is used to detect the change of the network topology, and the uplink forwarding mode of the multicast control packet (for example, IGMP packet) of the access layer device 100 and the access layer device 106 is configured as a binding root port mode, that is, setting IGMP messages are sent from the root port.
- the multicast data stream is sent to the RP port through the DP port.
- the RSTP protocol recalculates to form a new topology and computes a new root port (port 4).
- the access layer device 104 sends an IGMP join message through the new root port (port 4), and the multicast data stream is injected from the access layer device 102 to the access layer device 104.
- the existing solution can solve the problem caused by the fault between the access layer devices, but cannot solve the problem of the fault between the access layer device and the aggregation layer device.
- the access layer device 100 is the root bridge (that is, the bridge has the highest priority). After the uplink failure of the access layer device 100, the entire multicast service will be interrupted.
- the network structure of the multicast implementation in the ring network architecture is shown in the embodiment of the present invention.
- all access layer devices (100-106) run the RSTP/MSTP (multiple spanning tree protocol) protocol.
- the uplink forwarding mode of the multicast control packet of the access layer device 100 and the access layer device 106 is set to the bound root port mode.
- the IGMP message of the access layer device is sent out from the RP.
- the access layer device that does not obtain the root port (for example, the access layer device 100) sends IGMP messages from the configured UP port.
- two access layer devices connected to the aggregation layer device are configured as a root bridge, and in FIG.
- FIG. 3 a ring provided by the embodiment of the present invention is provided.
- Step 301 Set the access layer device 100 and the access layer device 106 as a root bridge.
- the access layer device 100 and the access layer device 106 are set as the root bridge, and the method may be that the bridge priorities of the access layer device 100 and the access layer device 106 are set to be consistent, and higher than other access layers.
- the device for example, sets the bridge priority of the access layer device 100 and the access layer device 106 to 0, and sets the bridge priority of other access layer devices (102 and 104) to 32768 or the like.
- the port that connects the access layer device 100 to the first aggregation layer device 10 is an UP port
- the port that the access layer device 106 connects to the second aggregation layer device 12 is also an UP port.
- the distribution of the multicast data stream is as shown in FIG. 2, one path is the aggregation layer device 10, the access layer device 100, the access layer device 102, and the other path is the second aggregation layer device 12, the access layer device 106.
- Access layer device 104 is shown in FIG. 2, one path is the aggregation layer device 10, the access layer device 100, the access
- the foregoing aggregation layer device may include a router or the like.
- the foregoing access layer device may include a digital subscriber line access multiplexer DSLAM, etc., which is not limited thereto.
- Step 302 When the link between the first aggregation layer device 10 and the access layer device 100 fails, reduce the bridge priority of the access layer device 100, and calculate the access layer device 100 by using a spanning tree protocol.
- the root port sends multicast join messages through the port.
- the bridge priority of the access layer device 100 is lowered, for example, the bridge priority of the access layer device 100 is adjusted to 4096, 32768, and the like. It can also be a value less than 32768, etc. It should be noted that the above is only a specific implementation example of the bridge priority.
- the bridge priority value of the present invention is not limited thereto.
- the access layer device 100 After adjusting the bridge priority of the access layer device 100, the access layer device 100 recalculates the root port of the access layer device 100 according to the spanning tree protocol. As the priority of the bridge is reduced, the original DP port may become an RP port, such as port 1. When the access layer device 100 is the root bridge, port 1 is the RP port of the access layer device 102. After the bridge priority of 100 is reduced, port 1 may become the root port after being recalculated by the spanning tree protocol.
- the foregoing multicast join message may include an IGMP join message.
- the method further includes: sending a Spanning Tree Protocol (STP) packet through the root port (port 1).
- STP Spanning Tree Protocol
- the bridge priority of the STP packet sent by the access layer device 100 also changes.
- the access layer device 102 receives the STP packet from the access layer device 100, it calculates a new STP algorithm. The root port, whose port 3 is changed from the DP port to the RP port, and the port 2 is changed from the RP port to the DP port.
- the port adjustment process is that the spanning tree protocol is reselected according to the STP packet and belongs to the scope of the spanning tree protocol standard.
- the RSTP MSTP module needs to correctly resolve STP packets. That is, the root bridge is the local bridge. The bridge priority is different from that of the local bridge.
- the port the purpose of this state is to ensure fast switching of services, without waiting for timeout), until port 8 of the access layer device 106 detects that the STP packet has timed out. Before the access layer device 106 detects the STP timeout, it remains in a temporary stable state. As shown in FIG.
- FIG. 4 a schematic diagram of a ring network architecture in which a multicast is implemented in a temporary stable state is performed according to an embodiment of the present invention, and a DP port of the access layer device 100 and the access layer device 102 is cut.
- the access layer device 102 sends an IGMP Leave message through the previous RP port (port 2), and sends an IGMP join message through the new RP port (port 3), thereby refreshing the multicast distribution path. information.
- the distribution of the multicast data stream when the temporary steady state is reached is as shown in FIG. 4, and the distribution path of the multicast data stream is the second aggregation layer device 12, the access layer device 106, the access layer device 104, the access layer device 102.
- the bridge priority of the access layer device 100 is modified, so that the access layer device 100 becomes the root bridge, for example, The bridge priority of the access layer device 100 is set to 0, and the network topology is restored as shown in FIG. 2.
- the method of the present invention can automatically adjust the bridge priority of the access layer device according to the link status between the access layer device and the aggregation layer device, and then calculate the root port of the access layer device through the spanning tree protocol, and pass the root port through the spanning tree protocol. Sends a multicast join message to form a new multicast distribution path. It is ensured that when the uplink port link of the access layer device connected to the aggregation layer device is faulty and the access layer device is the root bridge, the entire multicast service is not interrupted, but multicast is performed normally.
- FIG. 5 is a schematic structural diagram of an access layer device according to an embodiment of the present invention, where one end of the access layer device is connected to the aggregation layer device, and the other end is connected to other access layer devices, including:
- the link detecting unit 501 is configured to detect a connection state of a link between the access layer device and the aggregation layer device.
- a spanning tree unit 502 configured to: when the link detecting unit 501 detects that the link is faulty, reduce a bridge priority of the access stratum device, and calculate a root of the access stratum device by using a spanning tree protocol Port
- the multicast unit 503 is configured to send a multicast join request message through the root port.
- the multicast unit 503 is further configured to send a Spanning Tree Protocol (STP) packet by using the root port.
- STP Spanning Tree Protocol
- the embodiment of the present invention further provides a multicast implementation system in a ring network architecture, where the ring network architecture includes a first aggregation layer device, a second aggregation layer device, and a first connection connected to the first aggregation layer device.
- An inbound device and a second access layer device connected to the second aggregation layer device, where the first aggregation layer device is connected to the second aggregation layer device, the first access layer device and the second The access layer device is connected, and the uplink forwarding mode of the multicast control packet of the first access layer device and the second access layer device is a binding root port mode, where the first access layer device and the first The second access layer device is a root bridge, where the first access layer device is configured to reduce itself when a link between the first access layer device and the first aggregation layer device fails.
- the bridge priority is calculated by the spanning tree protocol, and the multicast port is sent through the root port.
- the other access layer device may further include a third access layer device, where the third access layer device may be configured to receive a spanning tree protocol STP packet from the first access layer device. And calculating a root port of the third access layer device according to the STP packet, and refreshing the multicast distribution path.
- the first access layer device is further configured to modify a bridge priority of the first access layer device when a link between the first access layer device and the first aggregation layer device returns to normal
- the first access layer device is configured as a root bridge.
- the foregoing aggregation layer device may include a router or the like.
- the access layer device may include a digital subscriber line access multiplexer DSLAM, etc., which is not limited thereto.
- the device embodiment of the present invention can automatically adjust the bridge priority of the access layer device according to the link status between the access layer device and the aggregation layer device, and then calculate the root port of the access layer device through the spanning tree protocol, and pass the root port through the spanning tree protocol. Sends a multicast join message to form a new multicast distribution path. It is ensured that when the uplink port link of the access layer device connected to the aggregation layer device is faulty and the access layer device is the root bridge, the entire multicast service is not interrupted, but multicast is performed normally.
- the program can be executed by instructing related hardware, and the program can be stored in a computer readable storage medium.
- the program includes all or part of the above steps, such as: ROM/ RAM, disk, CD, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Small-Scale Networks (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明实施例提供一种环网架构下的组播实现方法、接入层设备及系统,所述环网架构包括第一汇聚层设备、第二汇聚层设备、连接第一汇聚层设备的第一接入层设备以及连接第二汇聚层设备的第二接入层设备,第一汇聚层设备与第二汇聚层设备相连,第一接入层设备与第二接入层设备相连,所述方法包括:设置第一接入层设备和第二接入层设备为根桥;当第一汇聚层设备与第一接入层设备之间的链路出现故障时,降低第一接入层设备的桥优先级,通过生成树协议计算第一接入层设备的根端口,通过根端口发送组播加入报文。本发明保障整个组播业务不会中断。
Description
一种环网架构下的組播实现方法、 接入层设备及系统
本申请要求于 2010 年 03 月 10 曰提交中国专利局、 申请号为 201010134543.4, 发明名称为"一种环网架构下的组播实现方法、 接入层设备 及系统"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及网络技术领域, 尤其涉及一种环网架构下的组播实现方法、 接入层设备及系统。
背景技术
为了保证整个网络的稳定,通常在接入层以及汇聚层之间组成环网架构, 汇聚层设备之间透传接入网上来的二层报文, 从而广播报文容易在环网中产 生广播风暴, 其会占用线路带宽, 造成 MAC ( Media Access Control, 媒体访 问控制)地址漂移。 为了解决环网造成的广播风暴等问题, 生成树协议应运 而生。 生成树协议的基本思想是通过 STP ( spanning tree protocol, 生成树协 议) 算法阻塞某些端口, 把环网化简成一棵树, 同时能够起到链路保护的作 用。 多生成树协议可以把网络拓朴化筒成多棵树, 可以起到不同的业务走不 同的路径, 做到流量负荷分担作用。
在环网架构的组网中, 組播业务的应用需要保证在网络拓朴变化时, 组 播组成员能够及时加入到新的拓朴中, 保证组播业务不中断。 组播业务与多 生成树协议的结合应用很好的解决了在环网架构中的組播应用,组成员加入 / 离开报文发往多生成树协议生成的根端口, 在网络拓朴变化时能够根据根端 口的变化生成新的組播分发路径信息。
现有技术利用 RSTP ( rapid spanning tree protocol, 快速生成树协议)协 议检测网络拓朴的变化, 配置节目绑定模式为根端口模式, IGMP ( internet
group managent protocol, 因特网组管理协议 )报文从根端口发送。 组播数据 流从根端口向下注入,在 DSLAM( Digital Subscriber Line Access Multiplexer, 数字用户线路接入复用器) 内进行组播数据的复制。
然而,现有技术当与汇聚层设备连接的接入层设备的上行端口链路故障, 且所述接入层设备为根桥时, 整个组播业务将会中断。
发明内容
本发明实施例提供一种环网架构下的组播实现方法、接入层设备及系统, 保障组播业务的正常进行。
一方面, 本发明实施例提供了一种环网架构下的组播实现方法, 所述环 网架构包括第一汇聚层设备、 第二汇聚层设备、 连接第一汇聚层设备的第一 接入层设备以及连接第二汇聚层设备的第二接入层设备, 第一汇聚层设备与 第二汇聚层设备相连,第一接入层设备与第二接入层设备相连,该方法包括: 设置第一接入层设备和第二接入层设备为根桥; 当第一汇聚层设备与第一接 入层设备之间的链路出现故障时, 降低第一接入层设备的桥优先级, 通过生 成树协议计算第一接入层设备的根端口, 通过根端口发送组播加入报文。 另一方面, 本发明实施例提供了一种接入层设备, 所述接入层设备一端 连接汇聚层设备, 另一端连接其他接入层设备, 包括: 链路检测单元, 用于 对接入层设备和汇聚层设备之间的链路的连接状态进行检测; 生成树单元, 用于在链路检测单元检测到链路出现故障时, P 低接入层设备的桥优先级, 利用生成树协议计算接入层设备的根端口; 组播单元, 用于通过根端口发送 組播加入请求报文。 再一方面, 本发明实施例提供了一种环网架构下的组播实现系统, 所述 环网架构包括第一汇聚层设备、 第二汇聚层设备、 连接第一汇聚层设备的第
一接入层设备以及连接第二汇聚层设备的第二接入层设备, 第一汇聚层设备 与第二汇聚层设备相连, 第一接入层设备与第二接入层设备相连第一接入层 设备和第二接入层设备为根桥; 其中, 第一接入层设备, 用于在第一接入层 设备和第一汇聚层设备之间的链路出现故障时, 降低自身的桥优先级, 通过 生成树协议计算自身的根端口, 通过根端口发送组播加入报文。
上述技术方案具有如下有益效果: 因为釆用设置第一接入层设备和第二 接入层设备为根桥; 当第一汇聚层设备与第一接入层设备之间的链路出现故 障时, 降低第一接入层设备的桥优先级, 通过生成树协议计算第一接入层设 备的根端口, 通过根端口发送组播加入报文的技术手段, 所以达到了当与汇 聚层设备连接的接入层设备的上行端口链路故障,且该接入层设备为根桥时, 整个组播业务不会中断, 而是正常进行组播的技术效果。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为一种环网架构下的组播实现的网络结构示意图; 图 2为本发明实施例一种环网架构下的组播实现的网络结构示意图; 图 3本发明实施例提供的一种环网架构下的組播实现方法的流程图; 图 4为本发明实施例一种实现组播的环网架构达到临时稳定态时的示意 图;
图 5为本发明实施例一种接入层设备结构示意图。
具体实施例 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行
清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
如图 1所示, 为一种环网架构下的组播实现的网络结构示意图, 该环网 架构包括第一汇聚层设备 10、 第二汇聚层设备 12、 连接第一汇聚层设备 10 的接入层设备 100 (第一接入层设备 )以及连接第二汇聚层设备 12的接入层 设备 106 (第二接入层设备 ) , 第一汇聚层设备 10与第二汇聚层设备 12相 连, 接入层设备 100与接入层设备 106相连(接入层设备 100可以直接或者 通过其他接入层设备与接入层设备 106相连, 例如, 通过图中的接入层设备 102、 接入层设备 104 ) 。 其中, 端口 1、 3、 6为 DP ( Designated Port, 指定 端口), 端口 2、 5、 8为 RP ( Root Port, 根端口), 端口 4为 BLK ( Blocked Port, 阻塞端口), 端口 7、 8为 UP ( Uplink Port, 上行端口)。 现有技术利 用 RSTP协议检测网络拓朴的变化, 配置接入层设备 100和接入层设备 106 的组播控制报文(例如 IGMP报文 ) 的上行转发模式为绑定根端口模式, 即 设置 IGMP报文从根端口发送。组播数据流通过 DP端口向 RP端口发送。 当 接入层设备 102与接入层设备 104之间的链路发生故障时, RSTP协议会重 新计算, 形成新的拓朴, 计算出新的根端口 (端口 4 ) 。 接入层设备 104会 通过新的根端口 (端口 4 )发送 IGMP加入报文, 组播数据流会从接入层设 备 102注入到接入层设备 104。 现有的方案虽然能解决接入层设备之间故障 引起的问题, 但是不能解决接入层设备和汇聚层设备之间故障的问题, 如接 入层设备 100为根桥 (即桥优先级最高的设备 ) , 当接入层设备 100的上行 链路故障后, 整个组播业务将会中断。
如图 2所示, 为本发明实施例一种环网架构下的组播实现的网络结构示
意图, 所有接入层设备 ( 100-106 )运行 RSTP/MSTP ( multiple spanning tree protocol, 多生成树协议)协议。 首先, 设置接入层设备 100 和接入层设备 106的组播控制报文的上行转发模式为绑定根端口模式。 那么, 通过该设置, 接入层设备的 IGMP报文从 RP发送出去,获取不到根端口的接入层设备(如 接入层设备 100 )会从配置的 UP端口发送 IGMP报文。 本发明实施例在架 构上将与汇聚层设备相连的两个接入层设备设置为根桥, 在图 2中为接入层 设备 100和接入层设备 106, 这样在一个接入层设备和汇聚层设备之间的链 路出现故障时, 另外一个根桥可以继续工作, 下面将对本发明实施例提供的 方法做详细的描述, 如图 3所示,为本发明实施例提供的一种环网架构下的 組播实现方法的流程图, 所述方法包括:
步骤 301、 设置接入层设备 100和接入层设备 106为根桥;
其中, 设置接入层设备 100和接入层设备 106为根桥, 其方法可以是将 接入层设备 100和接入层设备 106的桥优先级设置为一致, 且高于其他的接 入层设备, 比如, 设置接入层设备 100和接入层设备 106的桥优先级为 0, 设置其它接入层设备 ( 102以及 104 )的桥优先级为 32768等。设置接入层设 备 100与第一汇聚层设备 10连接的端口为 UP端口,接入层设备 106与第二 汇聚层设备 12连接的端口也为 UP端口。 组播数据流的分发如图 2中所示, 一条路径为笫一汇聚层设备 10 接入层设备 100——接入层设备 102; 另 一条路径为第二汇聚层设备 12 接入层设备 106 接入层设备 104。
可选的, 上述汇聚层设备可以包括路由器等; 上述接入层设备可以包括 数字用户线路接入复用器 DSLAM等, 本发明实施例并不以此为限。
步骤 302、 当第一汇聚层设备 10与接入层设备 100之间的链路出现故障 时, 降低接入层设备 100的桥优先级, 通过生成树协议计算接入层设备 100
的根端口, 通过该才艮端口发送组播加入艮文。
在第一汇聚层设备 10与接入层设备 100之间的链路出现故障时,降低接 入层设备 100的桥优先级, 比如将接入层设备 100的桥优先级调整为 4096、 32768等, 也可以是小于 32768的值等, 需要说明的是, 以上只是桥优先级 的具体实现举例, 本发明的桥优先级值并不以此为限。
在调整了接入层设备 100的桥优先级后, 接入层设备 100根据生成树协 议重新计算接入层设备 100的根端口。 由于桥优先级降低了, 原先的 DP端 口可能会变成 RP端口, 比如端口 1 , 当接入层设备 100为根桥时, 端口 1 为接入层设备 102的 RP端口, 当接入层设备 100的桥优先级降低后, 经过 生成树协议重新计算后, 端口 1就可能变成根端口。
可选的, 上述组播加入报文可以包括 IGMP加入报文。 通过生成树协议 计算接入层设备 100的根端口之后还包括, 可以通过根端口 (端口 1 )发送 生成树协议 STP报文。 对应于图 2, 接入层设备 100发出的 STP报文的桥优 先级也随之改变,当接入层设备 102收到来自接入层设备 100的 STP报文后, 通过 STP算法计算新的根端口,其端口 3由 DP端口转变为 RP端口,端口 2 由 RP端口转变为 DP端口。 该端口调整过程是生成树协议根据 STP报文进 行重新选择的, 属于生成树协议标准的范畴。 在网络拓朴稳定的过程中会有 一个临时的稳定态(在这个状态下,需要 RSTP MSTP模块能够正确解析 STP 报文, 即判断根桥是为本桥, 桥优先级与本桥不同的 DP端口, 存在这个状 态目的是保证业务的快速切换, 而不需要等待超时) , 直到接入层设备 106 的端口 8检测到了 STP报文超时。在接入层设备 106检测到 STP超时前,保 持为临时稳定态。 如图 4所示, 为本发明实施例一种实现组播的环网架构达 到临时稳定态时的示意图, 接入层设备 100、 接入层设备 102的 DP端口切
换为 RP端口, 这时例如接入层设备 102会分别通过之前 RP端口 (端口 2 ) 发送 IGMP离开报文, 通过新的 RP端口 (端口 3 )发送 IGMP加入报文, 从 而刷新组播分发路径信息。 达到临时稳定态时的组播数据流的分发如图 4中 所示, 组播数据流的分发路径为第二汇聚层设备 12 接入层设备 106 接入层设备 104——接入层设备 102——接入层设备 100。 当所述接入层设备 100和所述第一汇聚层设备之间的链路恢复正常时,修改所述接入层设备 100 的桥优先级, 使接入层设备 100成为根桥, 例如重新设置接入层设备 100的 桥优先级为 0 , 网络拓朴恢复成如图 2所示。
本发明方法实施例能够根据接入层设备与汇聚层设备之间的链路状况自 动调整接入层设备的桥优先级, 重新通过生成树协议计算接入层设备的根端 口, 通过该根端口发送组播加入报文, 形成新的组播分发路径。 保障了当与 汇聚层设备连接的接入层设备的上行端口链路故障, 且该接入层设备为根桥 时, 整个组播业务不会中断, 而是正常进行组播。 与上述方法实施例对应, 如图 5所示, 为本发明实施例一种接入层设备 结构示意图, 所述接入层设备一端连接汇聚层设备, 另一端连接其他接入层 设备, 包括:
链路检测单元 501, 用于对所述接入层设备和所述汇聚层设备之间的链 路的连接状态进行检测;
生成树单元 502 , 用于在所述链路检测单元 501检测到所述链路出现故 障时, 降低所述接入层设备的桥优先级, 利用生成树协议计算所述接入层设 备的根端口;
组播单元 503, 用于通过所述根端口发送组播加入请求报文。
可选的,组播单元 503还用于通过所述根端口发送生成树协议 STP报文。 另外, 本发明实施例还提供一种环网架构下的組播实现系统, 所述环网 架构包括第一汇聚层设备、 第二汇聚层设备、 连接所述第一汇聚层设备的第 一接入层设备以及连接所述第二汇聚层设备的第二接入层设备, 所述第一汇 聚层设备与所述第二汇聚层设备相连, 所述第一接入层设备与所述第二接入 层设备相连, 所述第一接入层设备和第二接入层设备的组播控制报文的上行 转发模式为绑定根端口模式, 所述第一接入层设备和所述第二接入层设备为 根桥; 其中, 所述第一接入层设备, 用于在所述第一接入层设备和所述第一 汇聚层设备之间的链路出现故障时, 降低自身的桥优先级, 通过生成树协议 计算自身的根端口, 通过所述根端口发送组播加入 4艮文。
可选的, 所述其他接入层设备还可以包括第三接入层设备, 所述第三接 入层设备, 可以用于接收来自所述第一接入层设备的生成树协议 STP报文, 根据所述 STP报文计算所述第三接入层设备的根端口, 刷新组播分发路径。 所述第一接入层设备还用于在所述第一接入层设备和所述第一汇聚层设备之 间的链路恢复正常时, 修改所述第一接入层设备的桥优先级, 使所述第一接 入层设备为根桥。 上述汇聚层设备可以包括路由器等; 上述接入层设备可以 包括数字用户线路接入复用器 DSLAM等, 本发明实施例并不以此为限。
本发明装置实施例能够根据接入层设备与汇聚层设备之间的链路状况自 动调整接入层设备的桥优先级, 重新通过生成树协议计算接入层设备的根端 口, 通过该根端口发送组播加入报文, 形成新的组播分发路径。 保障了当与 汇聚层设备连接的接入层设备的上行端口链路故障, 且该接入层设备为根桥 时, 整个组播业务不会中断, 而是正常进行组播。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步驟
是可以通过程序来指令相关硬件来完成, 所述的程序可以存储于一计算机可 读取存储介质中, 该程序在执行时, 包括上述全部或部分步骤, 所述的存储 介质, 如: ROM/RAM、 磁盘、 光盘等。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1、 一种环网架构下的组播实现方法, 所述环网架构包括第一汇聚层设备、 第二汇聚层设备、 连接所述笫一汇聚层设备的第一接入层设备以及连接所述第 二汇聚层设备的第二接入层设备, 所述第一汇聚层设备与所述第二汇聚层设备 相连, 所述第一接入层设备与所述笫二接入层设备相连, 其特征在于, 所述方 法包括:
设置所述第一接入层设备和所述第二接入层设备为根桥;
当所述第一汇聚层设备与所述第一接入层设备之间的链路出现故障时, 降 低所述第一接入层设备的桥优先级, 通过生成树协议计算所述第一接入层设备 的根端口, 通过所述根端口发送组播加入报文。
2、 根据权利要求 1所述的方法, 其特征在于, 所述組播加入报文包括因特 网组管理协议 IGMP加入报文。
3、 根据权利要求 1所述的方法, 其特征在于, 所述通过生成树协议计算所 述第一接入层设备的根端口之后还包括, 通过所述根端口发送生成树协议 STP 报文。
4、根据权利要求 1-3任意一项所述的方法, 其特征在于, 所述方法还包括: 当所述第一接入层设备和所述第一汇聚层设备之间的链路恢复正常时, 修 改所述接入层设备的桥优先级, 使所述第一接入层设备为根桥。
5、根据权利要求 4所述的方法,其特征在于, 所述汇聚层设备包括路由器; 所述接入层设备包括数字用户线路接入复用器 DSLAM。
6、 一种接入层设备, 所述接入层设备一端连接汇聚层设备, 另一端连接其 他接入层设备, 其特征在于, 包括: 链路检测单元, 用于对所述接入层设备和所述汇聚层设备之间的链路的连 接状态进行检测; 生成树单元, 用于在所述链路检测单元检测到所述链路出现故障时, 降低 所述接入层设备的桥优先级, 利用生成树协议计算所述接入层设备的根端口; 組播单元, 用于通过所述根端口发送组播加入请求报文。
7、 4艮据权利要求 6所述的设备, 其特征在于, 所述组播单元还用于通过所 述根端口发送生成树协议 STP报文。
8、 一种环网架构下的组播实现系统, 所述环网架构包括第一汇聚层设备、 第二汇聚层设备、 连接所述第一汇聚层设备的第一接入层设备以及连接所述第 二汇聚层设备的第二接入层设备, 所述第一汇聚层设备与所述第二汇聚层设备 相连, 所述第一接入层设备与所述第二接入层设备相连, 其特征在于, 所述第 一接入层设备和所述第二接入层设备为根桥, 其中, 所述第一接入层设备, 用于在所述第一接入层设备和所述第一汇聚层设备 之间的链路出现故障时, 降低自身的桥优先级, 通过生成树协议计算自身的根 端口, 通过所述根端口发送组播加入报文。
9、 根据权利要求 8所述的系统, 其特征在于, 所述其他接入层设备包括第 三接入层设备, 所述第三接入层设备,用于接收来自所述第一接入层设备的生成树协议 STP 报文, 根据所述 STP报文计算所述第三接入层设备的根端口, 刷新组播分发路 径。
10、 根据权利要求 8或 9所述的系统, 其特征在于, 所述第一接入层设备 还用于在所述第一接入层设备和所述第一汇聚层设备之间的链路恢复正常时, 修改所述第一接入层设备的桥优先级, 使所述第一接入层设备为根桥。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10847295.2A EP2547041B1 (en) | 2010-03-10 | 2010-12-02 | Multicast implementation method, access layer equipment and system under ring network architecture |
US13/608,898 US20130003527A1 (en) | 2010-03-10 | 2012-09-10 | Method, access layer device, and system for implementing multicast in ring network architecture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010134543.4 | 2010-03-10 | ||
CN201010134543.4A CN102195863B (zh) | 2010-03-10 | 2010-03-10 | 一种环网架构下的组播实现方法、接入层设备及系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/608,898 Continuation US20130003527A1 (en) | 2010-03-10 | 2012-09-10 | Method, access layer device, and system for implementing multicast in ring network architecture |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011110037A1 true WO2011110037A1 (zh) | 2011-09-15 |
Family
ID=44562860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/079369 WO2011110037A1 (zh) | 2010-03-10 | 2010-12-02 | 一种环网架构下的组播实现方法、接入层设备及系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130003527A1 (zh) |
EP (1) | EP2547041B1 (zh) |
CN (1) | CN102195863B (zh) |
WO (1) | WO2011110037A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9059901B1 (en) | 2012-09-26 | 2015-06-16 | Juniper Networks, Inc. | Methods and apparatus for multicast traffic failover in a network |
CN103051536A (zh) * | 2012-12-22 | 2013-04-17 | 中国船舶重工集团公司第七0九研究所 | 一种二层冗余链路的快速组播切换方法 |
CN106375222A (zh) * | 2015-07-20 | 2017-02-01 | 中兴通讯股份有限公司 | 环型组网组播线路切换的方法及装置 |
US10862910B2 (en) * | 2018-03-08 | 2020-12-08 | Cisco Technology, Inc. | Predicting and mitigating layer-2 anomalies and instabilities |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1520094A (zh) * | 2003-01-24 | 2004-08-11 | 华为技术有限公司 | 一种基于生成树协议的环网管理方法 |
US6976088B1 (en) * | 1997-12-24 | 2005-12-13 | Cisco Technology, Inc. | Method and apparatus for rapidly reconfiguring bridged networks using a spanning tree algorithm |
CN101001165A (zh) * | 2006-01-11 | 2007-07-18 | 大唐移动通信设备有限公司 | 具有冗余端口的网络故障恢复方法 |
US7586856B1 (en) * | 2003-03-20 | 2009-09-08 | Foundry Networks, Inc. | Technical enhancements to STP (IEEE 802.1D) implementation |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7872991B2 (en) * | 2003-02-04 | 2011-01-18 | Alcatel-Lucent Usa Inc. | Methods and systems for providing MPLS-based layer-2 virtual private network services |
JP4397292B2 (ja) * | 2004-07-09 | 2010-01-13 | 富士通株式会社 | 制御パケットループ防止方法及びそれを用いたブリッジ装置 |
US7564779B2 (en) * | 2005-07-07 | 2009-07-21 | Alcatel Lucent | Ring rapid spanning tree protocol |
US20080304428A1 (en) * | 2005-11-16 | 2008-12-11 | Nokia Siemens Networks Gmbh & Co. Kg | Method for Establishing a Loop-Free Tree Structure in a Data Transmission Network and Associated Network Element |
US7787399B2 (en) * | 2008-07-25 | 2010-08-31 | Alcatel-Lucent Usa Inc. | Automatically configuring mesh groups in data networks |
-
2010
- 2010-03-10 CN CN201010134543.4A patent/CN102195863B/zh active Active
- 2010-12-02 EP EP10847295.2A patent/EP2547041B1/en active Active
- 2010-12-02 WO PCT/CN2010/079369 patent/WO2011110037A1/zh active Application Filing
-
2012
- 2012-09-10 US US13/608,898 patent/US20130003527A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6976088B1 (en) * | 1997-12-24 | 2005-12-13 | Cisco Technology, Inc. | Method and apparatus for rapidly reconfiguring bridged networks using a spanning tree algorithm |
CN1520094A (zh) * | 2003-01-24 | 2004-08-11 | 华为技术有限公司 | 一种基于生成树协议的环网管理方法 |
US7586856B1 (en) * | 2003-03-20 | 2009-09-08 | Foundry Networks, Inc. | Technical enhancements to STP (IEEE 802.1D) implementation |
CN101001165A (zh) * | 2006-01-11 | 2007-07-18 | 大唐移动通信设备有限公司 | 具有冗余端口的网络故障恢复方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2547041A4 (en) | 2013-03-20 |
CN102195863A (zh) | 2011-09-21 |
EP2547041B1 (en) | 2016-04-20 |
US20130003527A1 (en) | 2013-01-03 |
EP2547041A1 (en) | 2013-01-16 |
CN102195863B (zh) | 2014-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10142239B2 (en) | Synchronizing multicast state between multi-homed routers in an Ethernet virtual private network | |
US9059902B2 (en) | Procedures, apparatuses, systems, and computer-readable media for operating primary and backup network elements | |
US9294343B2 (en) | System and method using RSVP hello suppression for graceful restart capable neighbors | |
CN101047601B (zh) | 基于vpls的双归属网络的实现方法及系统 | |
WO2018121066A1 (zh) | 一种bum流量控制方法、相关装置以及系统 | |
US20130021896A1 (en) | Method, system, and device for protecting multicast in communication network | |
EP2498454A1 (en) | Method, device and system for processing service traffic based on pseudo wires | |
WO2012075831A1 (zh) | 一种实现组播保护的方法及系统 | |
WO2009046644A1 (fr) | Procédé et dispositif pour la commutation de flux de trafic | |
WO2012003743A1 (zh) | 组播流量的转发方法及装置 | |
WO2009036705A1 (fr) | Procédé de détection de panne d'interface et équipement de nœud de réseau | |
EP2773070A1 (en) | Multicast processing method and apparatus | |
KR101688682B1 (ko) | 빠른 lsp 경보 메커니즘 | |
WO2012024952A1 (zh) | 一种基于点到多点业务的路径切换方法及系统 | |
WO2011144088A2 (zh) | 一种业务保护方法及接入设备 | |
WO2013086858A1 (zh) | 一种恢复用户业务的方法和装置 | |
WO2012146097A1 (zh) | Vpls网络和以太环网的倒换方法及装置 | |
WO2011110037A1 (zh) | 一种环网架构下的组播实现方法、接入层设备及系统 | |
WO2011113395A2 (zh) | 一种负载分担方法和装置 | |
WO2010006524A1 (zh) | 可靠组播的方法、运营商边缘上层设备及系统 | |
WO2012152134A1 (zh) | 以太网二层组播快速收敛的方法及以太网系统 | |
WO2008095360A1 (fr) | Méthode et système de commutation rapide en cas de défaillance d'une liaison d'un réseau privé virtuel | |
WO2011079688A1 (zh) | 一种半环网络的保护方法、设备及系统 | |
WO2011020339A1 (zh) | 一种分段保护中的切换方法及系统 | |
WO2011050665A1 (zh) | 一种实现端口快速重路由的方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10847295 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010847295 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |