WO2011109965A1 - 电力线载波调制方法、解调方法、电路及芯片 - Google Patents

电力线载波调制方法、解调方法、电路及芯片 Download PDF

Info

Publication number
WO2011109965A1
WO2011109965A1 PCT/CN2010/073507 CN2010073507W WO2011109965A1 WO 2011109965 A1 WO2011109965 A1 WO 2011109965A1 CN 2010073507 W CN2010073507 W CN 2010073507W WO 2011109965 A1 WO2011109965 A1 WO 2011109965A1
Authority
WO
WIPO (PCT)
Prior art keywords
power line
carrier
frequency
signal
line carrier
Prior art date
Application number
PCT/CN2010/073507
Other languages
English (en)
French (fr)
Inventor
崔健
潘松
胡亚军
赵启山
王锐
Original Assignee
青岛东软载波科技股份有限公司
上海海尔集成电路有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛东软载波科技股份有限公司, 上海海尔集成电路有限公司 filed Critical 青岛东软载波科技股份有限公司
Publication of WO2011109965A1 publication Critical patent/WO2011109965A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying

Definitions

  • the present invention relates to the field of power communication, and in particular, to a power line carrier modulation method, a demodulation method, a circuit, and a chip. Background technique
  • the power line communication technology is a technology for transmitting a power line carrier signal using a power line as a transmission medium for communication purposes.
  • 1 is a demodulation circuit diagram of a conventional power line carrier signal. As shown in the figure, in the demodulation process of an existing power line carrier signal, the power line carrier signal is first subjected to an analog-to-digital converter (Ana log to Dig i ta l Conver ter , the cartridge is called: ADC) is converted into a digital signal, and then mixed with the local fixed frequency carrier and then demodulated by the demodulator.
  • ADC analog-to-digital converter
  • the existing low-voltage power grids are usually connected with a large number of electrical equipment, such as switching power supply equipment, non-linear power equipment, and high-power frequency conversion equipment, etc., each of which has a power supply to the power grid.
  • electrical equipment such as switching power supply equipment, non-linear power equipment, and high-power frequency conversion equipment, etc.
  • Different levels of noise pollution such as harmonic noise or impulse noise.
  • the access and disconnection of electrical equipment is also random, resulting in frequent changes in the power line noise environment.
  • the invention provides a power line carrier modulation method, a demodulation method, a circuit and a chip, which are adapted to adapt to changes in a power line noise environment and improve power line communication quality.
  • An embodiment of the present invention provides a power line carrier modulation method, including:
  • a digital signal to be modulated is modulated onto the modulated carrier to generate a power line carrier signal.
  • Another embodiment of the present invention provides a power line carrier demodulation method, including: using the non-noise frequency selected in the power line carrier modulation method as a local carrier frequency;
  • the power line carrier signal received from the power line is demodulated with the local carrier.
  • a further embodiment of the present invention provides a power line carrier modulation circuit, including: a numerically controlled oscillator, configured to generate a modulated carrier according to a set carrier frequency, wherein the carrier frequency is a narrowband non-Gaussian noise frequency in a power line a non-noise frequency selected from the preset carrier frequency band after the detection; a modulation module, configured to modulate the digital signal to be modulated onto the modulated carrier generated by the numerically controlled oscillator.
  • Still another embodiment of the present invention provides a power line carrier modulation chip including the above power line carrier modulation circuit.
  • a further embodiment of the present invention provides a power line carrier demodulation circuit, including: an analog-to-digital converter, configured to perform analog-to-digital conversion on a power line carrier signal received from a power line to generate a digital modulated signal;
  • a local numerical control oscillator configured to generate a local carrier according to the set local carrier frequency, where the local carrier frequency is the non-noise frequency selected in the power line carrier modulation method;
  • a mixer configured to mix the local carrier generated by the local numerically controlled oscillator with the digital modulated signal generated by the analog to digital converter to generate a baseband demodulation signal
  • the demodulation module is configured to demodulate the baseband demodulation signal generated by the mixer to generate a demodulation signal.
  • a further embodiment of the present invention provides a power line carrier demodulation chip, which includes the power line carrier demodulation circuit.
  • Still another embodiment of the present invention provides a power line carrier communication chip including the above power line carrier modulation circuit and a power line carrier demodulation circuit.
  • the invention can avoid the narrowband non-Gaussian noise frequency, adapt to the change of the power line noise environment, and improve the quality of the power line communication.
  • 1 is a circuit diagram of a demodulation circuit of a conventional power line carrier signal
  • FIG. 2 is a flowchart of an embodiment of a power line carrier modulation method according to the present invention
  • FIG. 3 is a flowchart of an embodiment of a power line carrier demodulation method according to the present invention.
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of a power line carrier modulation circuit according to the present invention
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of a power line carrier modulation circuit according to the present invention
  • FIG. 6 is a schematic diagram of a power line carrier demodulation circuit according to the present invention
  • 1 is a schematic structural diagram of Embodiment 2 of a power line carrier demodulation circuit according to the present invention.
  • Step 101 Detecting a narrowband non-Gaussian noise frequency in the power line.
  • the narrowband non-Gaussian noise frequency in the power line may be periodically detected according to a preset detection period, so that the noise condition in the power line can be periodically monitored; or, according to the need, the narrowband non-Gaussian noise frequency in the power line may be used. Randomness detection is performed so that the noise condition in the power line can be known in time.
  • the power line carrier modulation circuit located at one end of the power line may first transmit the frequency sweep signal in a predetermined frequency band of the power line, for example, a predetermined frequency band below 500 kHz.
  • Transmitting a frequency-swept signal, and then the power line carrier demodulating circuit located at the other end of the power line is based on the energy value of the frequency-swept signal, such as a received signal strength indication (Received S i gna l S t rength Indica t ion, referred to as: RSSI), detecting the narrowband non-Gaussian noise frequency, and transmitting the detected narrowband non-Gaussian noise frequency back to the power line carrier modulation circuit, thereby completing detection of a narrowband non-Gaussian noise frequency.
  • RSSI received signal strength indication
  • Step 102 Select a non-noise frequency from the preset carrier frequency band as a modulation carrier frequency.
  • the preset carrier frequency band refers to a frequency band that is allowed to be used for power line communication.
  • the European EN500065 standard specifies that the power line carrier communication frequency ranges from 3 kHz to 148. 5 kHz.
  • the non-noise frequency refers to an available frequency other than the narrowband non-Gaussian noise frequency in the preset carrier frequency band. Specifically, when a non-noise frequency is selected, the non-noise frequency farthest from the narrowband non-Gaussian noise frequency can be selected from the preset carrier frequency band to minimize the influence of the narrowband non-Gaussian noise on the modulation signal.
  • Step 103 Generate a modulated carrier by using the modulated carrier frequency.
  • the operating frequency of the numerically controlled oscillator (Numer ica l Cont ro l ed Osc i l la tor , abbreviated as NC0) may be set to the modulated carrier frequency, so that the NC0 generates a modulated carrier.
  • NC0 is a digital controllable frequency device, which can change the frequency of the output carrier by setting the frequency word, thereby achieving continuous adjustable output of the carrier frequency.
  • Step 104 Modulate the digital signal to the modulation carrier to generate a power line carrier signal.
  • the digital signal to be modulated may be modulated onto the modulated carrier to generate a digital tone. Making a signal; then digitally converting the digital modulated signal to generate a power line carrier signal.
  • the specific modulation method may use Frequency Shift Keying (FSK) or Phase Shift Keying (PSK).
  • the method according to the embodiment modulates the noise of the power line by using modulated carriers of different frequencies, avoiding the narrowband non-Gaussian noise frequency, and thus can adapt to changes in the power line noise environment and improve the quality of the power line communication.
  • FIG. 3 is a flowchart of an embodiment of a power line carrier demodulation method according to the present invention. As shown in the figure, the method includes the following steps:
  • Step 201 The non-noise frequency selected in the foregoing power line carrier modulation method embodiment is used as a local carrier frequency.
  • the local carrier frequency in the demodulation process should be the same as the modulation carrier frequency in the modulation process to achieve successful demodulation.
  • Step 2Q2 Generate a local carrier with the local carrier frequency.
  • Step 203 Demodulate the power line carrier signal from the power line by using the carrier pair.
  • the power line carrier signal may be first subjected to analog-to-digital conversion to generate a digital modulated signal; then, the digital modulated signal is mixed by the local carrier to generate a baseband demodulated signal; and finally the baseband demodulated signal is obtained.
  • Demodulation is performed to generate a demodulated signal.
  • the specific demodulation method should correspond to the modulation method, such as FSK or PSK.
  • the method according to the embodiment demodulates the local carrier of different frequencies according to the noise condition of the power line, avoiding the narrowband non-Gaussian noise frequency, and thus can adapt to the change of the power line noise environment and improve the quality of the power line communication.
  • the power line carrier modulation circuit 10 includes at least: a numerically controlled oscillator 11 and a modulation module 12, and the working principle is as follows:
  • the numerically controlled oscillator 11 generates a modulated carrier according to the set carrier frequency, wherein the carrier frequency is selected from a preset carrier frequency band after detecting a narrowband non-Gaussian noise frequency in the power line.
  • Modulation module 12 modulates the digital signal to be modulated onto the modulated carrier generated by numerically controlled oscillator 11 to effect modulation.
  • the power line carrier modulation circuit 10 may further include a digital-to-analog converter (DAC) 13 and a low-pass filter (LPF), which works. as follows:
  • DAC digital-to-analog converter
  • LPF low-pass filter
  • the modulation module 12 modulates the digital signal to be modulated onto the modulated carrier generated by the numerically controlled oscillator 11 to generate a digital modulated signal, and the digital-to-analog converter 13 performs digital-to-analog conversion on the digital modulated signal generated by the modulation module 12.
  • a power line carrier signal is generated.
  • the specific modulation method can be FSK or PSK.
  • the circuit according to the embodiment modulates the modulated carrier of different frequencies according to the noise condition of the power line, avoiding the narrowband non-Gaussian noise frequency, and thus can adapt to changes in the power line noise environment and improve the quality of the power line communication.
  • FIG. 5 is a schematic structural diagram of a second embodiment of a power line carrier modulation circuit according to the present invention. As shown in the figure, the power line carrier modulation circuit 10 of the present embodiment further includes: A noise detecting module 14, a frequency selecting module 15 and a frequency setting module 16, the working principle is as follows:
  • the first noise detecting module 14 is configured to detect a narrowband non-Gaussian noise frequency in the power line. Specifically, the first frequency sweeping unit 1401 in the power line carrier modulation circuit 10 at one end of the power line transmits the frequency band within the specified frequency band of the power line.
  • Sweeping a signal for example, transmitting a frequency sweep signal in a predetermined frequency band below 500 kHz; and then detecting the narrow band by a power line carrier demodulation circuit located at the other end of the power line according to an energy value of the frequency sweep signal, such as RSSI Non-Gaussian noise frequency, the detected narrowband non-Gaussian noise frequency is sent back to the power line carrier modulation circuit; the receiving unit 1402 in the power line carrier modulation circuit 10 receives the narrowband non-Gaussian noise frequency, thereby completing the narrowband non-Gaussian Detection of noise frequency.
  • a power line carrier demodulation circuit located at the other end of the power line according to an energy value of the frequency sweep signal, such as RSSI Non-Gaussian noise frequency
  • the frequency selection module 15 detects the narrowband non-Gauss according to the first noise detecting module 14.
  • Noise frequency a non-noise frequency selected from a preset carrier frequency band, which is an available frequency other than a narrowband non-Gaussian noise frequency in a preset carrier frequency band.
  • the non-noise frequency farthest from the narrowband non-Gaussian noise frequency can be selected from the preset carrier frequency band to minimize the influence of the narrowband non-Gaussian noise on the modulated signal.
  • the frequency setting module 16 sets the carrier frequency of the modulated carrier generated by the numerically controlled oscillator 11 in accordance with the non-noise frequency selected by the frequency selecting module 15.
  • the automatic detection of the narrowband non-Gaussian noise frequency in the power line and the automatic setting of the carrier frequency of the modulated carrier generated by the NC0 are realized, thereby reducing manual intervention and improving the degree of automation.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of a power line carrier demodulation circuit according to the present invention.
  • the power line carrier demodulation circuit 20 includes: an analog-to-digital converter 21, a local numerically controlled oscillator 22, and a mixer 13.
  • the demodulation module 24 the working principle is as follows:
  • the analog-to-digital converter 21 performs analog-to-digital conversion on the power line carrier signal received from the power line to generate a digital modulated signal; the local numerically controlled oscillator 22 generates a local carrier according to the set local carrier frequency, wherein the local carrier frequency is the above-mentioned power line
  • the non-noise frequency is selected in the embodiment of the carrier modulation method. For the specific selection, refer to the description of the foregoing method embodiments, and details are not described herein again.
  • the mixer 23 mixes the local carrier generated by the local numerically controlled oscillator 11 with the digital modulated signal generated by the analog-to-digital converter ADC to generate a baseband demodulation signal; the demodulation module 24 generates the mixer 23 The baseband demodulated signal is demodulated to generate a demodulated signal.
  • the specific demodulation method should correspond to the modulation method, such as FSK or PSK.
  • the circuit in this embodiment demodulates the local carrier of different frequencies according to the noise condition of the power line, avoiding the narrowband non-Gaussian noise frequency, and thus can adapt to changes in the power line noise environment and improve the quality of the power line communication.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of a power line carrier demodulation circuit according to the present invention; as shown in the figure, the power line carrier demodulation circuit 20 of the present embodiment further develops on the basis of Embodiment 1 of the power line carrier demodulation circuit.
  • the second noise detecting module 25 includes: a second frequency sweeping unit 2501 and sending unit 2502, the working principle is as follows:
  • the second frequency sweeping unit 2501 of the second noise detecting module 25 detects the narrowband non-Gaussian noise frequency according to the energy value of the frequency sweep signal from the power line carrier modulation circuit 10; the transmitting unit 2502 sets the second frequency sweeping unit The narrowband non-Gaussian noise frequency detected by 2501 is sent back to the power line carrier modulation circuit 10.
  • the power line carrier demodulation circuit of the embodiment cooperates with the power line carrier modulation circuit located at the opposite end of the power line to realize automatic detection of the narrowband non-Gaussian noise frequency in the power line, thereby reducing manual intervention and improving the degree of automation.
  • the above circuits may be fabricated using discrete components or may be integrated into the chip.
  • the embodiment of the present invention further provides a power line carrier modulation chip, including the power line carrier modulation circuit 10, and thus has a corresponding technical effect.
  • the embodiment of the present invention further provides a power line carrier demodulation chip, including the foregoing power line carrier solution.
  • the circuit 20 is also provided with a corresponding technical effect.
  • the embodiment of the present invention further provides a power line carrier communication chip, including the power line carrier modulation circuit 10 and the power line carrier demodulation circuit 20 described above, and thus has corresponding technical effects. Moreover, since the power line carrier communication chip has both modulation and demodulation functions, system design and device procurement are also facilitated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

电力线载波调制方法、 解调方法、 电路及芯片 技术领域
本发明涉及电力信通信领域, 尤其涉及一种电力线载波调制方法、 解调 方法、 电路及芯片。 背景技术
电力线通信技术是一种以电力线为传输媒介传输电力线载波信号以实现 通信目的的技术。 图 1为现有电力线载波信号的解调电路图, 如图所示, 在现 有电力线载波信号的解调过程中,先将电力线载波信号经模数转换器(Ana log to Dig i ta l Conver ter , 筒称: ADC)转换为数字信号, 然后与本地固定频率 载波进行混频后由解调器解调出解调信号。 现有技术中至少存在如下问题: 现有常用的低压电网通常连接有众多的用电设备, 如开关电源设备、 非 线性用电设备和大功率变频设备等, 每种用电设备都对电网有不同程度的噪 声污染, 如谐波噪声或脉冲噪声等。 另外, 用电设备的接入和断开也是随机 性的, 从而造成电力线噪声环境会经常发生变化。
而现有的电力线载波通信芯片通常只使用一种或几种固定的频率的本地 载波用于混频, 因此不能适应电力线噪声环境的变化, 从而制约了电力线通 信的质量。 发明内容
本发明提供一种电力线载波调制方法、 解调方法、 电路及芯片, 用以适 应电力线噪声环境的变化, 提高电力线通信质量。
本发明一实施例提供一种电力线载波调制方法, 其中包括:
对电力线中的窄带非高斯噪声频率进行检测;
从预设载波频段内选择非噪声频率作为调制载波频率; 以所述调制载波频率生成调制载波;
将待调制的数字信号调制到所述调制载波上生成电力线载波信号。
本发明另一实施例提供一种电力线载波解调方法, 其中包括: 将上述电力线载波调制方法中选择的所述非噪声频率作为本地载波频 率;
以所述本地载波频率生成本地载波;
釆用所述本地载波对从电力线接收到的电力线载波信号进行解调。
本发明又一实施例提供一种电力线载波调制电路, 其中包括: 数控振荡器, 用于根据设定的载波频率生成调制载波, 其中, 所述载波 频率是在对电力线中的窄带非高斯噪声频率进行检测后从预设载波频段内选 择的非噪声频率; 调制模块, 用于将待调制的数字信号调制到数控振荡器生成的所述调制 载波上。
本发明再一实施例提供一种电力线载波调制芯片, 其中包括上述电力线 载波调制电路。
本发明再一实施例提供一种电力线载波解调电路, 其中包括: 模数转换器, 用于对从电力线接收到的电力线载波信号进行模数转换, 生成数字调制信号;
本地数控振荡器, 用于根据设定的本地载波频率生成本地载波, 其中所 述本地载波频率为上述电力线载波调制方法中选择的所述非噪声频率;
混频器, 用于将本地数控振荡器生成的所述本地载波与模数转换器生成 的所述数字调制信号进行混频, 生成基带解调信号;
解调模块, 用于对混频器生成的所述基带解调信号进行解调生成解调信 号 本发明再一实施例提供一种电力线载波解调芯片, 其中包括上述电力线 载波解调电路。 本发明再一实施例提供一种电力线载波通信芯片, 其中包括上述电力线 载波调制电路及电力线载波解调电路。
本发明能够避开窄带非高斯噪声频率, 适应电力线噪声环境的变化, 提 高电力线通信的质量。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一筒单介绍, 显而易见, 下面描 述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有电力线载波信号的解调电路图;
图 2为本发明所述电力线载波调制方法实施例的流程图;
图 3为本发明所述电力线载波解调方法实施例的流程图;
图 4为本发明所述电力线载波调制电路实施例一的结构示意图; 图 5为本发明所述电力线载波调制电路实施例二的结构示意图; 图 6为本发明所述电力线载波解调电路实施例一的结构示意图; 图 Ί为本发明所述电力线载波解调电路实施例二的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明所述电力线载波调制方法实施例的流程图, 如图所示, 该 方法包括如下步骤: 步骤 101 , 对电力线中的窄带非高斯噪声频率进行检测。
具体地, 可以根据预设检测周期, 对电力线中的窄带非高斯噪声频率进 行周期性检测, 以便能够定期监控电力线中的噪声状况; 或者, 也可根据需 要, 对电力线中的窄带非高斯噪声频率进行随机性检测, 以便能够及时获知 电力线中的噪声状况。
具体地, 在对电力线中的窄带非高斯噪声频率进行检测时, 可以先由位 于电力线一端的电力线载波调制电路在所述电力线的规定频段内发送扫频信 号, 例如, 可以在 500kHz以下的规定频段内发送扫频信号, 然后由位于所述 电力线另一端的电力线载波解调电路根据所述扫频信号的能量值, 如接收信 号强度指示 ( Received S i gna l S t rength Indica t ion, 简称: RSSI ) , 检测 所述窄带非高斯噪声频率, 再将检测到的窄带非高斯噪声频率发回给所述电 力线载波调制电路, 从而完成对窄带非高斯噪声频率的检测。
步骤 102 , 从预设载波频段内选择非噪声频率作为调制载波频率。
其中, 所述预设载波频段是指允许用作电力线通信的频段, 例如欧洲 EN500065标准中规定, 电力线载波通信频率范围为 3kHz ~ 148. 5kHz。 所述非 噪声频率是指在预设载波频段内除窄带非高斯噪声频率以外的可用频率。 具 体地, 当选择非噪声频率时, 可以从预设载波频段内选择距离所述窄带非高 斯噪声频率最远的非噪声频率, 以便在最大程度上减小窄带非高斯噪声对调 制信号的影响。
步骤 103, 以所述调制载波频率生成调制载波。
具体地, 可以将数控振荡器(Numer ica l Cont ro l l ed Osc i l la tor , 简称: NC0)的工作频率设置为所述调制载波频率,从而使该 NC0生成调制载波。其中, NC0为一种数字可控频率器件, 可以通过设置频率字来改变输出载波的频率, 从而实现载波频率的连续可调输出。
步骤 104, 将 ^周制的数字信号调制到所述调制载 生成电力线载波信号。 具体地, 可以先将待调制的数字信号调制到所述调制载波上生成数字调 制信号; 然后对所述数字调制信号进行数模转换, 生成电力线载波信号。 具 体的调制方式可以采用频移键控(Frequency Shif t Keying, 简称: FSK)或相 移键控(Phase Shi f t Keying, 筒称: PSK)等。
本实施例所述方法根据电力线的噪声状况采用不同频率的调制载波进行 调制, 避开窄带非高斯噪声频率, 因此能够适应电力线噪声环境的变化, 提 高电力线通信的质量。
图 3为本发明所述电力线载波解调方法实施例的流程图, 如图所示, 该方 法包括如下步骤:
步骤 201 ,将上述电力线载波调制方法实施例中选择的所述非噪声频率作 为本地载波频率。
其中, 解调过程中的本地载波频率要与调制过程中的调制载波频率相同 才能实现成功解调。
步骤 2Q2 , 以所述本地载波频率生成本地载波。
步骤 203, 采用所述 也载波对从电力线接》1^11的电力线载波信号进行解调。 具体地, 可以先对所述电力线载波信号进行模数转换, 生成数字调制信 号; 然后采用所述本地载波对所述数字调制信号进行混频生成基带解调信号; 最后对所述基带解调信号进行解调生成解调信号。 具体的解调方式应与调制 方式相对应, 如 FSK或 PSK等。
本实施例所述方法, 根据电力线的噪声状况采用不同频率的本地载波进 行解调, 避开窄带非高斯噪声频率, 因此能够适应电力线噪声环境的变化, 提高电力线通信的质量。
图 4为本发明所述电力线载波调制电路实施例一的结构示意图, 如图所 示, 该电力线载波调制电路 10至少包括: 数控振荡器 11及调制模块 12, 其 工作原理如下:
数控振荡器 11根据设定的载波频率生成调制载波, 其中, 所述载波频率 是在对电力线中的窄带非高斯噪声频率进行检测后从预设载波频段内选择的 非噪声频率; 具体的选择方式可参见前述方法实施例的说明, 此处不再赘述。 调制模块 12将待调制的数字信号调制到数控振荡器 11生成的所述调制 载波上以实现调制。
具体地, 该电力线载波调制电路 10还可以包括数模转换器(Digi ta l to Analog Conver ter , 简称: DAC) 13及低通滤波器(Low Pass F i l ter , 简称: LPF) , 其工作原理如下:
上述调制模块 12将待调制的数字信号调制到数控振荡器 11生成的所述 调制载波上之后生成数字调制信号, 数模转换器 13将调制模块 12生成的所 述数字调制信号进行数模转换, 生成电力线载波信号。 具体的调制方式可以 采用 FSK或 PSK等。
本实施例所述电路根据电力线的噪声状况采用不同频率的调制载波进行 调制, 避开窄带非高斯噪声频率, 因此能够适应电力线噪声环境的变化, 提 高电力线通信的质量。
图 5为本发明所述电力线载波调制电路实施例二的结构示意图; 如图所 示,本实施例所述电力线载波调制电路 10在上述电力线载波调制电路实施例 一的基础上还进一步包括: 第一噪声检测模块 14、 频率选择模块 15及频率 设置模块 16, 其工作原理如下:
第一噪声检测模块 14用于对电力线中的窄带非高斯噪声频率进行检测 具体地, 先由位于电力线一端的电力线载波调制电路 10中的第一扫频单元 1401在所述电力线的规定频段内发送扫频信号, 例如, 可以在 500kHz以下 的规定频段内发送扫频信号; 然后由位于所述电力线另一端的电力线载波解 调电路根据所述扫频信号的能量值,如 RSSI ,检测所述窄带非高斯噪声频率, 再将检测到的窄带非高斯噪声频率发回给所述电力线载波调制电路; 电力线 载波调制电路 10中的接收单元 1402接收所述窄带非高斯噪声频率, 从而完 成对窄带非高斯噪声频率的检测。
此后, 频率选择模块 15根据第一噪声检测模块 14检测到的窄带非高斯 噪声频率, 从预设载波频段内选择的非噪声频率, 所述非噪声频率是指在预 设载波频段内除窄带非高斯噪声频率以外的可用频率。 具体地, 当选择非噪 声频率时, 可以从预设载波频段内选择距离所述窄带非高斯噪声频率最远的 非噪声频率, 以便在最大程度上减小窄带非高斯噪声对调制信号的影响。
频率设置模块 16根据频率选择模块 15选择的非噪声频率设置所述数控 振荡器 11生成的调制载波的载波频率。
通过本实施例所述电力线载波调制电路, 实现了对电力线内窄带非高斯 噪声频率的自动检测及 NC0生成的调制载波的载波频率的自动设置, 从而减 少了人工干预, 提高了自动化的程度。
图 6为本发明所述电力线载波解调电路实施例一的结构示意图, 如图所 示, 该电力线载波解调电路 20, 包括: 模数转换器 21、 本地数控振荡器 22、 混频器 13及解调模块 24 , 其工作原理如下:
模数转换器 21对从电力线接收到的电力线载波信号进行模数转换,生成 数字调制信号; 本地数控振荡器 22根据设定的本地载波频率生成本地载波, 其中所述本地载波频率是采用上述电力线载波调制方法实施例中选择的所述 非噪声频率; 具体的选择方式可参见前述方法实施例的说明, 此处不再赘述。
混频器 23将本地数控振荡器 11生成的所述本地载波与模数转换器 ADC 生成的所述数字调制信号进行混频, 生成基带解调信号; 解调模块 24对混频 器 23生成的所述基带解调信号进行解调生成解调信号。具体的解调方式应与 调制方式相对应, 如 FSK或 PSK等。
本实施例所述电路根据电力线的噪声状况采用不同频率的本地载波进行 解调, 避开窄带非高斯噪声频率, 因此能够适应电力线噪声环境的变化, 提 高电力线通信的质量。
图 7为本发明所述电力线载波解调电路实施例二的结构示意图; 如图所 示,本实施例所述电力线载波解调电路 20在上述电力线载波解调电路实施例 一的基 上还进一步包括第二噪声检测模块 25, 具体包括: 第二扫频单元 2501及发送单元 2502 , 其工作原理如下:
第二噪声检测模块 25中的第二扫频单元 2501根据来自于所述电力线载 波调制电路 10的扫频信号的能量值, 检测所述窄带非高斯噪声频率; 发送单 元 2502将第二扫频单元 2501检测到的窄带非高斯噪声频率发回给所述电力 线载波调制电路 10。
本实施例所述电力线载波解调电路通过与位于电力线对端的电力线载波 调制电路相配合, 实现了对电力线内窄带非高斯噪声频率的自动检测, 从而 减少了人工干预, 提高了自动化的程度。 上述电路可以采用分立元件制成, 或者也可以集成于芯片中。 例如, 本发明实施例还提供一种电力线载波调制 芯片, 包括上述电力线载波调制电路 10, 因此也具有相应的技术效果; 本发 明实施例还提供一种电力线载波解调芯片,包括上述电力线载波解调电路 20, 因此也具有相应的技术效果;本发明实施例还提供一种电力线载波通信芯片, 包括上述电力线载波调制电路 10及上述电力线载波解调电路 20 , 因此也具 有相应的技术效果。 并且, 由于电力线载波通信芯片同时具有调制和解调功 能, 因此也便于进行系统设计及器件采购。
另外, 通过采用设定 NC0的工作频率输出不同频率的本地载波, 还有利于 兼容其他厂商的调制芯片, 从而实现与其互连互通。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介盾中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人 员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者 对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术 方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种电力线载波调制方法, 其特征在于, 包括:
对电力线中的窄带非高斯噪声频率进行检测;
从预设载波频段内选择非噪声频率作为调制载波频率;
以所述调制载波频率生成调制载波;
将待调制的数字信号调制到所述调制载波上生成电力线载波信号。
2、 根据权利要求 1所述的电力线载波调制方法, 其特征在于, 所述对 电力线中的窄带非高斯噪声频率进行检测包括:
根据预设检测周期,对电力线中的窄带非高斯噪声频率进行周期性检测; 或者
对电力线中的窄带非高斯噪声频率进行随机性检测。
3、 根据权利要求 1所述的电力线载波调制方法, 其特征在于, 所述对 电力线中的窄带非高斯噪声频率进行检测包括:
在所述电力线的规定频段内发送扫频信号;
接收由位于所述电力线另一端的电力线载波解调电路 ^^据所述扫频信号 的能量值检测到的所述窄带非高斯噪声频率。
4、 根据权利要求 1所述的电力线载波调制方法, 其特征在于, 所述从 预设载波频段内选择非噪声频率包括: 从预设载波频段内选择距离所述窄带 非高斯噪声频率最远的非噪声频率。
5、 根据权利要求 1所述的电力线载波调制方法, 其特征在于, 所述将 待调制的数字信号调制到所述调制载波上生成电力线载波信号包括:
将待调制的数字信号调制到所述调制载波上生成数字调制信号; 对所述数字调制信号进行数模转换, 生成电力线载波信号。
6、 一种电力线载波解调方法, 其特征在于, 包括:
将权利要求 1 ~ 5中任一所述电力线载波调制方法中选择的所述非噪声 频率作为本地载波频率;
以所述本地载波频率生成本地载波;
采用所述本地载波对从电力线接收到的电力线载波信号进行解调。
7、 根据权利要求 6所述的电力线载波解调方法, 其特征在于, 采用所 述本地载波对从电力线接收到的电力线载波信号进行解调包括:
对所述电力线载波信号进行模数转换, 生成数字调制信号;
釆用所述本地载波对所述数字调制信号进行混频生成基带解调信号; 对所述基带解调信号进行数字解调生成解调信号。
8、 一种电力线载波调制电路, 其特征在于, 包括:
数控振荡器, 用于根据设定的载波频率生成调制载波, 其中, 所述载波 频率是在对电力线中的窄带非高斯噪声频率进行检测后, 从预设载波频段内 选择的非噪声频率;
调制模块, 用于将待调制的数字信号调制到数控振荡器生成的所述调制 载波上。
9、 根据权利要求 8所述的电力线载波调制电路,其特征在于,还包括: 数模转换器, 用于将调制模块将所述数字信号调制后生成的数字调制信 号进行数模转换, 生成电力线载波信号。
1 0、 根据权利要求 8所述的电力线载波调制电路,其特征在于,还包括: 第一噪声检测模块, 用于对电力线中的窄带非高斯噪声频率进行检测; 频率选择模块, 用于根据第一噪声检测模块检测到的窄带非高斯噪声频 率, 从预设载波频段内选择的非噪声频率;
频率设置模块, 用于根据频率选择模块选择的非噪声频率设置所述数控 振荡器生成的调制载波的载波频率。
11、 根据权利要求 1 0所述的电力线载波调制电路, 其特征在于, 所述 第一噪声检测模块包括:
第一扫频单元, 用于在所述电力线的规定频段内发送扫频信号; 接收单元, 用于接收由位于所述电力线另一端的解调电路根据所述扫频 信号的能量值检测到的所述窄带非高斯噪声频率。
12、 一种电力线载波调制芯片, 其特征在于, 包括权利要求 8 ~ 11中任 一所述的电力线载波调制电路。
1 3、 一种电力线载波解调电路, 其特征在于, 包括:
模数转换器, 用于对从电力线接收到的电力线载波信号进行模数转换, 生成数字调制信号;
本地数控振荡器, 用于根据设定的本地载波频率生成本地载波, 其中所 述本地载波频率为权利要求 1 ~ 5中任一所述电力线载波调制方法中选择的 所述非噪声频率;
混频器, 用于将本地数控振荡器生成的所述本地载波与模数转换器生成 的所述数字调制信号进行混频, 生成基带解调信号;
解调模块, 用于对混频器生成的所述基带解调信号进行解调生成解调信
14、 根据权利要求 1 3所述的电力线载波解调电路, 其特征在于, 还包 括第二噪声检测模块, 所述第二噪声检测模块包括:
第二扫频单元, 用于根据来自于所述电力线载波调制电路的扫频信号的 能量值, 检测所述窄带非高斯噪声频率;
发送单元, 用于将第二扫频单元检测到的窄带非高斯噪声频率发回给所 述电力线载波调制电路。
15、 一种电力线载波解调芯片, 其特征在于, 包括权利要求 13或 14所 述的电力线载波解调电路。
16、 一种电力线载波通信芯片, 其特征在于包括: 权利要求 8 ~ 11中任 一所述的电力线载波调制电路及权利要求 13或 14所述的电力线载波解调电 路。
PCT/CN2010/073507 2010-03-10 2010-06-03 电力线载波调制方法、解调方法、电路及芯片 WO2011109965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010123201.2 2010-03-10
CN 201010123201 CN102195679B (zh) 2010-03-10 2010-03-10 电力线载波调制方法、解调方法、电路及芯片

Publications (1)

Publication Number Publication Date
WO2011109965A1 true WO2011109965A1 (zh) 2011-09-15

Family

ID=44562804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073507 WO2011109965A1 (zh) 2010-03-10 2010-06-03 电力线载波调制方法、解调方法、电路及芯片

Country Status (2)

Country Link
CN (1) CN102195679B (zh)
WO (1) WO2011109965A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103095340B (zh) * 2012-12-12 2015-05-20 广东电网公司电力科学研究院 一种低压电力线载波互联互通装置
CN104242990B (zh) * 2013-06-24 2016-05-18 上海东软载波微电子有限公司 电力线载波通信芯片
CN103349551B (zh) * 2013-07-08 2015-08-26 深圳先进技术研究院 一种磁共振弹性成像方法及系统
CN105933079B (zh) * 2016-06-01 2018-07-20 国网河北省电力公司电力科学研究院 针对不同频率载波信号通信性能的检测系统及其检测方法
CN107317604A (zh) * 2017-07-15 2017-11-03 青岛鼎信通讯股份有限公司 适用于电力线信道的断续包络载波调制方法
CN109426164B (zh) * 2017-08-25 2021-06-08 上海芯龙半导体技术股份有限公司 一种用于中央空调系统中信号传输的载波集成电路
CN109150245B (zh) * 2018-08-24 2021-03-19 广东石油化工学院 Plc通信信号中非平稳非高斯噪声的滤除方法及系统
CN109167616A (zh) * 2018-09-27 2019-01-08 武汉全华光电科技股份有限公司 一种电力载波扩频通讯系统及扩频通讯方法
CN109507522A (zh) * 2018-12-19 2019-03-22 国网北京市电力公司 信号的处理方法、处理装置、存储介质和处理器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405987A (zh) * 2001-08-07 2003-03-26 许继集团有限公司 单、双路调制及解调方法及其单、双路调制解调器
CN1795653A (zh) * 2003-09-19 2006-06-28 松下电器产业株式会社 多载波通信方法、系统和装置
CN2810038Y (zh) * 2005-08-09 2006-08-23 深圳市业通达实业有限公司 电力线载波调制解调器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643658A1 (en) * 2004-10-04 2006-04-05 Sony Deutschland GmbH Power line communication method
ES2323477T3 (es) * 2006-12-27 2009-07-16 Abb Technology Ag Procedimiento de determinacion de una calidad de canal y modem.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405987A (zh) * 2001-08-07 2003-03-26 许继集团有限公司 单、双路调制及解调方法及其单、双路调制解调器
CN1795653A (zh) * 2003-09-19 2006-06-28 松下电器产业株式会社 多载波通信方法、系统和装置
CN2810038Y (zh) * 2005-08-09 2006-08-23 深圳市业通达实业有限公司 电力线载波调制解调器

Also Published As

Publication number Publication date
CN102195679A (zh) 2011-09-21
CN102195679B (zh) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2011109965A1 (zh) 电力线载波调制方法、解调方法、电路及芯片
CA1073054A (en) Method and apparatus for radio system cochannel interference suppression
US20230089473A1 (en) Wake-Up Signal Management
US20080001779A1 (en) Frequency Shift Compensation, Such as for Use In a Wireless Utility Meter Reading Environment
CN108173799B (zh) 一种基于频域处理的电力线载波通信方法
CN106165365A (zh) 组合振幅‑时间调制和相位调制
JP2002354057A (ja) 電力線通信システム用多重チャンネル周波数シフトキーイング変復調装置
WO2013056520A1 (zh) 基于信道认知技术的电力线通信方法
CN111954280A (zh) 宽带载波与无线的双模通信切换方法、系统及装置
US20210385109A1 (en) Method and apparatus for channel estimation for three-phase plc systems
CN103023533B (zh) 一种双频率电力线载波通信方法
WO2017030561A1 (en) Low power wireless communication utilizing ofdm backchannels
CN114142917B (zh) 卫星信道选择方法及装置
JPH0969806A (ja) 電気回路網上に伝送チャネルを割り当てる回路
US11196596B2 (en) Bit slicer circuit for S-FSK receiver, integrated circuit, and method associated therewith
CN203445873U (zh) 多相电力线载波通信装置
US20060193402A1 (en) Frequency shift keying receiver for minimum shift keying, and a method for setting reference PN sequence for frequency shift keying thereof
CN109286406B (zh) 高速数传接收装置
CN101010871B (zh) 用于无线通信终端的接收机和方法
JP5988863B2 (ja) 受信装置及び復調方法
AU8307691A (en) Dual mode automatic gain control
JP5212638B2 (ja) 電力線搬送通信システム及び電力線搬送通信装置
JP2006115165A (ja) 通信装置および通信システム
JP2003273818A (ja) 周波数変換装置および方法
CN114389640B (zh) 复杂信号条件下的调制及解调方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847224

Country of ref document: EP

Kind code of ref document: A1