WO2011108213A1 - キャスタブル中の硫黄化合物の除去方法 - Google Patents

キャスタブル中の硫黄化合物の除去方法 Download PDF

Info

Publication number
WO2011108213A1
WO2011108213A1 PCT/JP2011/000935 JP2011000935W WO2011108213A1 WO 2011108213 A1 WO2011108213 A1 WO 2011108213A1 JP 2011000935 W JP2011000935 W JP 2011000935W WO 2011108213 A1 WO2011108213 A1 WO 2011108213A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sulfur compound
castable
synthesis gas
steam
Prior art date
Application number
PCT/JP2011/000935
Other languages
English (en)
French (fr)
Inventor
真哉 程島
冬樹 八木
周平 若松
蛙石 健一
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
国際石油開発帝石株式会社
Jx日鉱日石エネルギー株式会社
石油資源開発株式会社
コスモ石油株式会社
新日鉄エンジニアリング株式会社
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構, 国際石油開発帝石株式会社, Jx日鉱日石エネルギー株式会社, 石油資源開発株式会社, コスモ石油株式会社, 新日鉄エンジニアリング株式会社, 千代田化工建設株式会社 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Priority to CN201180011677.XA priority Critical patent/CN102781565B/zh
Priority to EP11750327.6A priority patent/EP2543431A4/en
Priority to US13/581,019 priority patent/US8832967B2/en
Priority to CA2791861A priority patent/CA2791861C/en
Priority to AU2011222348A priority patent/AU2011222348B2/en
Priority to BR112012021914A priority patent/BR112012021914B8/pt
Priority to EA201290736A priority patent/EA019981B1/ru
Priority to JP2012502991A priority patent/JP5591910B2/ja
Publication of WO2011108213A1 publication Critical patent/WO2011108213A1/ja
Priority to ZA2012/06247A priority patent/ZA201206247B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0455Purification by non-catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0888Methods of cooling by evaporation of a fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas

Definitions

  • the present invention relates to a method for removing sulfur compounds contained in castables constructed as heat-resistant members on the inner surfaces of reactors, pipes and the like. More specifically, the sulfur compounds contained in castables constructed as heat-resistant members on the inner surface of the connecting pipe from the reforming catalyst tube outlet of the synthesis gas production device to the waste heat boiler are removed in advance before the operation of the synthesis gas production device. On how to do.
  • heat-resistant members are coated on the inner surfaces of the reactors and pipes as necessary. is doing.
  • this heat-resistant member castable is often used because it is easy to construct.
  • this castable often contains a trace amount of a sulfur compound, and when exposed to high temperatures, the sulfur compound is detached, which may adversely affect subsequent devices and products.
  • a synthetic gas mixed gas of carbon monoxide and hydrogen
  • a reforming reaction Is done.
  • the produced synthesis gas produces liquid hydrocarbons by, for example, a Fischer-Tropsch reaction, and the obtained liquid hydrocarbons are hydrotreated to produce synthetic hydrocarbons such as product fuel oil.
  • a series of steps including this Fischer-Tropsch reaction is called a Gas-to-Liquids (GTL) process.
  • the synthesis gas can be used for methanol synthesis and oxo synthesis.
  • the reforming reaction proceeds at a high temperature of 700 to 900 ° C., for example, in the case of the steam reforming method. Therefore, the high-temperature synthesis gas generated from the reformer outlet is sent to a waste heat boiler through a pipe covered with a castable which is a refractory material, and is heat-exchanged.
  • the sulfur compound originally contained in the castable may be desorbed, and the sulfur compound may be mixed in the gas. Furthermore, since the separation and recovery of carbon dioxide from the produced synthesis gas is carried out by chemical absorption using a weakly basic aqueous solution such as an amine solution, the sulfur compound contained in the product gas is also separated and recovered simultaneously with the carbon dioxide. Become. Therefore, the separated and recovered gas is supplied to the reformer for producing synthetic gas in a state containing the sulfur compound desorbed from the castable, and the reforming catalyst used in the reformer is deteriorated by the adsorption poisoning of the sulfur compound. There's a problem.
  • the object of the present invention is to avoid the adverse effects on subsequent devices and products due to sulfur compounds desorbed from castables installed as heat-resistant members on the inner surfaces of reactors and pipes. Furthermore, the present invention provides a castable sulfur compound mixed in a product gas produced by a reforming reaction such as natural gas, the mixed sulfur compound is separated and recovered together with carbon dioxide, and the recovered carbon dioxide is used as a raw material gas. By recycling, the sulfur compound is supplied to the reformer, and the reforming catalyst of the reformer is prevented from being poisoned by sulfur and being deteriorated.
  • the present invention removes sulfur compounds in castable by circulating steam purged from steam or a gas containing steam to castable constructed as a heat-resistant member on the inner surface of a reactor, piping, etc. It is characterized by doing.
  • the present invention removes sulfur compounds contained in the castable in advance by flowing a purge gas made of steam or a steam-containing gas through piping used in the synthesis gas production apparatus before the operation of the synthesis gas production apparatus. It is characterized by doing.
  • FIG. 3 is a schematic diagram showing an outline of a sulfur compound removal test from a castable in Example 1.
  • 4 is a schematic diagram showing an outline of a reforming reaction test in Example 2.
  • FIG. 6 is a schematic diagram showing an outline of a sulfur compound removal test from castables in Comparative Examples 1 to 5.
  • FIG. 9 is a schematic diagram showing an outline of a reforming reaction test in Comparative Example 6.
  • the method for removing sulfur compounds from castables used in reactors and pipes according to the present invention is to circulate a purge gas consisting of steam or a steam-containing gas in advance in reactors and pipes that use castables as heat-resistant materials.
  • the reactor and piping may be used in any apparatus as long as a castable is used as a heat-resistant material.
  • unreacted carbon dioxide gas and produced carbon dioxide gas contained in the produced synthesis gas are separated and recovered, recycled to the synthesis gas production process, and reused in the carbon dioxide reforming method.
  • the sulfur compound desorbed from the castable is separated and recovered and supplied to the reformer for synthesis gas production, and the reforming catalyst used for the reformer is a sulfur compound.
  • the problem of deterioration due to adsorption poisoning can be prevented.
  • the synthesis gas production apparatus is an apparatus having at least a reformer that produces synthesis gas from natural gas by a reforming reaction, and a pipe that connects the reformer and other sections, and all or at least the reformer outlet of the pipe This means that castables are used in some parts. Furthermore, in the synthesis gas production apparatus according to the present invention, a decarbonation section for separating and recovering carbon dioxide in the synthesis gas is provided in the steps after the reformer, and a gas containing the separated and collected carbon dioxide (hereinafter referred to as separation and recovery). Gas) is recycled to the reformer and reused in the reforming reaction.
  • separation and recovery a gas containing the separated and collected carbon dioxide
  • the synthesis gas production apparatus may include a desulfurization section for desulfurizing sulfur compounds contained in natural gas.
  • a desulfurization section for desulfurizing sulfur compounds contained in natural gas.
  • any process used in a known syngas production apparatus such as a heat recovery section for recovering heat generated by the reforming reaction, an oxygen supply section, or a syngas adjustment section may be provided.
  • the heat recovery section is preferably installed in a process after the reformer and before the decarbonation section.
  • the reformer is equipped with a catalyst tube filled with a reforming catalyst, and the reforming reaction proceeds by the catalytic action of the reforming catalyst by heating the natural gas mixed with carbon dioxide and steam in the catalyst tube. Syngas is produced.
  • the reforming reaction can be performed by a known method such as a steam reforming method using steam or a carbon dioxide reforming method using carbon dioxide.
  • the steam reforming method is a method in which steam is added to natural gas and a synthesis gas is generated according to the following reaction formula (1).
  • the carbon dioxide reforming method is a method in which carbon dioxide gas is added to natural gas.
  • carbon dioxide contained in natural gas is used to produce synthesis gas according to the following reaction formula (2).
  • Equation (1) CH 4 + H 2 O ⁇ CO + 3H 2 Equation (2): CH 4 + CO 2 ⁇ 2CO + 2H 2
  • the ratio of CO and H 2 to be generated can be adjusted.
  • any known reforming catalyst can be used.
  • An oxide catalyst or the like is preferably used, and a noble metal-supported basic oxide catalyst or the like is preferably used when the steam reforming method and the carbon dioxide reforming method are performed simultaneously.
  • the concentration of the sulfur compound contained in the gas introduced into the synthesis gas production section is preferably less than 10 vol-ppb in terms of sulfur atoms.
  • the gas introduced into the synthesis gas production section is steam so that the H 2 O / C molar ratio is greater than 0 and less than or equal to 3.0 and / or the CO 2 / C molar ratio is greater than 0 and less than or equal to 1.0. And / or carbon dioxide is added.
  • the natural gas contains organic sulfur compounds such as dimethyl sulfide (DMS: (CH 3 ) 2 S) and carbonyl sulfide (COS). Therefore, it is preferable that natural gas is desulfurized by a desulfurization apparatus installed in a desulfurization section in the synthesis gas production apparatus before being introduced into the reformer.
  • DMS dimethyl sulfide
  • COS carbonyl sulfide
  • the desulfurization For the desulfurization, known methods such as an alkali cleaning method, a solvent desulfurization method, and a catalytic desulfurization method can be used. Among them, it is particularly preferable to desulfurize by a catalytic desulfurization method (hydrodesulfurization method) by hydrotreatment.
  • the hydrodesulfurization method includes a first step of hydrotreating a sulfur compound contained in a gas and a second step of absorbing the sulfur compound hydrogenated in the first step with a desulfurization agent. Desulfurization method.
  • the synthesis gas produced by the reforming reaction contains carbon dioxide gas generated by the shift reaction accompanying the steam reforming and unreacted carbon dioxide gas in the carbon dioxide reforming.
  • these carbon dioxide gases are separated and recovered in the decarbonation section.
  • a method for separating and recovering carbon dioxide gas a chemical absorption method, a physical adsorption method, a membrane separation method and the like are known, but in this embodiment, it is preferable to use a chemical absorption method using an amine-based aqueous solution such as monoethanolamine. .
  • an amine treater comprising an absorption tower and a regeneration tower is used.
  • carbon dioxide contained in the synthesis gas is absorbed in an amine-based aqueous solution such as monoethanolamine in the absorption tower.
  • a method of stripping the amine-based aqueous solution that has absorbed the carbon dioxide gas by heating with steam in a regeneration tower to dissipate the carbon dioxide gas and recovering the diffused carbon dioxide gas can be preferably used.
  • the carbon dioxide thus separated and recovered is then recycled to the reformer and can be reused for the carbon dioxide reforming reaction.
  • the produced synthesis gas has a high temperature of about 900 ° C. at the reformer outlet. For this reason, there exists a possibility that the sulfur compound in the castable used as a coating on the pipe connecting the steps after the reformer outlet may be desorbed in the form of hydrogen sulfide and mixed into the synthesis gas.
  • the separated and recovered gas that is separated and recovered in the decarbonation step and then introduced into the reformer includes hydrogen sulfide desorbed from the castable in addition to the carbon dioxide gas. If the sulfur compound concentration in the gas introduced into the reformer exceeds 10 vol-ppb in terms of sulfur atoms due to the hydrogen sulfide, the reforming catalyst may be deteriorated by sulfur poisoning.
  • a purge gas composed of steam or a steam-containing gas is circulated in advance in the piping used in the reformed gas production apparatus before the operation of the synthesis gas production apparatus. Remove the sulfur compounds in the castable by drying and rolling.
  • Drying is preferably performed before the synthesis gas production apparatus is operated and before the catalyst tube is filled with the reforming catalyst.
  • the purge gas it is preferable to use steam or steam-containing gas from the viewpoint of the sulfur compound removal rate.
  • the steam content is not particularly limited, but is usually 1 vol-% or more, preferably 10 vol-% or more, and more preferably 50 vol-% or more.
  • the heating temperature of the dry firing is 650 to 900 ° C., preferably 750 to 900 ° C., and the sulfur compound is efficiently removed by circulating until the sulfur compound in the discharged purge gas is not detected. be able to.
  • the sulfur compound in the castable can be detected at a detection limit value of 1.0 wtppm or less in terms of sulfur atoms, and the removal rate can be 97% or more if it is circulated for 48 hours or more. It is possible to remove.
  • deterioration of the reforming catalyst during production of synthesis gas can be suppressed by the synthesis gas production apparatus using the pipe from which the sulfur compound contained in the castable is removed by the above method.
  • the synthesis gas thus produced is subjected to, for example, a Fischer-Tropsch reaction, and a gaseous product is separated from the Fischer-Tropsch reaction product to produce Fischer-Tropsch oil.
  • the hydrotreated product obtained by hydrotreating can be suitably used in a GTL process in which light hydrocarbon gas and kerosene oil, which is the final product, are separated by distillation.
  • hydrogen can be suitably produced from the synthesis gas produced by the synthesis gas production apparatus using the piping embodying the present invention.
  • Example 1 In order to show that a sulfur compound in castable is removed by circulating a purge gas through a pipe and drying it, Example 1 below was performed.
  • Plycast MIX # 786 (trade name. Concentration of sulfur compound contained is 39.5 wt-ppm in terms of sulfur atom) manufactured by Japan Publico Co., Ltd. was used.
  • the castable raw material was kneaded with water, and after it was confirmed that strength was generated, it was crushed into 2 mm-4 mm pieces.
  • the chemical composition of the castable before the test is as shown in Table 1.
  • the SUS reaction tube 14 filled with the castable fragments 11 between the alumina bead layers 12 and 13 was heated to a predetermined temperature, and steam or a steam / nitrogen mixed gas was allowed to flow from the upper part of the apparatus for 48 hours (FIG. 1).
  • the purge gas that has passed through the castable is condensed with water by the cooler 15 and separated into gas and liquid, and the sulfur compound concentration in the condensed water 16 is analyzed by ICP (inductively coupled plasma) analysis.
  • the sulfur compound concentration in the nitrogen gas 17 is sulfur chemiluminescence.
  • SCD-GC gas chromatograph
  • SCD sulfur chemiluminescence detector
  • the castable was extracted after the experiment was completed, and the concentration of the sulfur compound remaining in the castable was also measured.
  • Table 2 shows the results after circulating the purge gas for 48 hours.
  • concentration of the outflow sulfur compound into the gas and liquid after 48 hours was zero. Further, the concentration of residual sulfur compounds in the castable after 48 hours decreased to less than 1.0 wt-ppm (below the detection limit) in terms of sulfur atoms.
  • Example 2 In order to confirm that no sulfur compound was mixed in the synthesis gas from the castable through which the purge gas was allowed to flow, the following Example 2 was performed.
  • Example 2 After the test of Example 1, the SUS reaction tube 24 in which the castable 21 (7.5 cc) subjected to the steam treatment was installed in the rear stage of the reforming catalyst 28 was prepared, and the synthesis gas having an H 2 / CO ratio of 2.0 was prepared. A reforming reaction test to be manufactured was carried out (FIG. 2), and it was confirmed by SCD-GC analysis whether or not a sulfur compound was contained in the synthesis gas 29 generated from the reactor outlet.
  • Example 3 In order to investigate the change in the sulfur compound removal rate depending on the heating temperature when the purge gas is circulated, the same test apparatus as in Example 1 is used, except for the temperature of the packed bed, except for the steam / nitrogen mixed gas of Example 1. The sulfur compound removal test was carried out under the conditions described above. As a result, when the temperature of the packed bed was maintained at 650 ° C. and 750 ° C., and the steam / nitrogen mixed gas was allowed to flow for 48 hours, the sulfur compound removal rates in the castable were 80% and 97%, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

 改質反応によって製造した合成ガス中にキャスタブル由来の硫黄化合物が混入し、混入した硫黄化合物が炭酸ガスと共に分離回収され、さらに回収された硫黄化合物がそのままリフォーマー中へ供給されることにより、リフォーマーの改質触媒が硫黄被毒され劣化することを回避すること。合成ガス製造装置の稼動前に、合成ガス製造装置に用いる配管にスチーム又はスチーム含有ガスからなるパージガスを流して乾燥焚きを行い、キャスタブルに含有される硫黄化合物をあらかじめ除去することにより、高温の合成ガスによる硫黄化合物の脱離を防止する。

Description

キャスタブル中の硫黄化合物の除去方法
 本発明は、反応器や配管等の内表面に耐熱部材として施工されたキャスタブルに含まれる硫黄化合物を除去する方法に関する。さらに詳しくは、合成ガス製造装置の改質触媒管出口からウェイストヒートボイラーまでの連結配管の内表面に耐熱部材として施工されたキャスタブルに含まれる硫黄化合物を、合成ガス製造装置の稼動前にあらかじめ除去する方法に関する。
 天然ガスを原料として合成ガスを製造する合成ガス製造装置のような高温での反応を必要とする反応器や配管等では、必要に応じて反応器や配管等の内表面に耐熱部材を被覆施工している。この耐熱部材としては施工が容易であることからキャスタブルが用いられる場合が多い。しかし、このキャスタブルには微量の硫黄化合物が含まれている場合が多く、高温に曝されたとき硫黄化合物が脱離して、後続の装置や製品等に悪影響を与える可能性がある。
 例えば、天然ガスを原料として化学反応によりナフサ、灯油、軽油等の合成炭化水素を製造する過程においては、一般に、改質反応により合成ガス(一酸化炭素と水素の混合ガス)が中間体として製造される。
 合成ガスの製造では、まず、原料である天然ガスに含有される硫黄化合物は脱硫装置において脱硫される。その後、脱硫された天然ガスにスチーム及び/又は炭酸ガスを添加した後、合成ガス製造装置に導入してリフォーマー内で加熱することにより、リフォーマー内に充填された改質触媒の触媒作用によって改質反応が進行し、合成ガスが製造される。改質反応としては、スチームを用いる水蒸気改質法が主に用いられるが、近年では炭酸ガスによる炭酸ガス改質法も実用化されている。炭酸ガス改質法を用いると、天然ガス中に含まれる炭酸ガスを改質反応前に分離除去する必要がないため、工程の効率化や低コスト化が図れるという利点がある。また、製造された合成ガス中に含まれる未反応炭酸ガスや生成炭酸ガスを分離回収して合成ガスの製造工程にリサイクルし、炭酸ガス改質法に再利用することができるため、炭酸ガスのさらなる資源化が図れる。
 製造された合成ガスは、その後、例えばフィッシャー・トロプシュ反応により液状炭化水素を生成し、さらに得られた液状炭化水素を水素化処理することにより、製品燃料油等の合成炭化水素が製造される。このフィッシャー・トロプシュ反応を含む一連の工程はGas-to-Liquids(GTL)プロセスとよばれる。その他、合成ガスは、メタノール合成やオキソ合成にも使用することができる。
 ここで、改質反応は、例えば水蒸気改質法の場合には700~900℃という高温で反応が進行する。そのため、リフォーマーの出口から生成する高温の合成ガスは、耐火材であるキャスタブルを被覆した配管を通って、ウェイストヒートボイラーに送られて熱交換される。
 生成ガスが配管を通過する際に、キャスタブル中に元来含まれている硫黄化合物が脱離して、ガス中に硫黄化合物が混入した状態となる可能性がある。さらに、製造した合成ガスからの炭酸ガスの分離回収はアミン溶液等の弱塩基性水溶液を用いた化学吸収により行われるため、生成ガスに含まれる硫黄化合物も炭酸ガスと同時に分離回収されることとなる。そのため、分離回収されたガスは、キャスタブルから脱離した硫黄化合物を含有した状態で合成ガス製造用リフォーマーに供給され、リフォーマーに用いられる改質触媒が硫黄化合物の吸着被毒により劣化してしまうという問題がある。
 本発明は、反応器や配管等の内表面に耐熱部材として施工されたキャスタブルから脱離する硫黄化合物により、後続の装置や製品等に悪影響を及ぼすことを回避することを目的とする。さらに本発明は、天然ガス等の改質反応によって製造した生成ガス中にキャスタブル由来の硫黄化合物が混入し、混入した硫黄化合物が炭酸ガスと共に分離回収され、さらに回収された炭酸ガスが原料ガスにリサイクルされることにより、硫黄化合物がリフォーマーに供給され、リフォーマーの改質触媒が硫黄被毒され劣化することを回避することを目的とする。
 上記課題に鑑み、本発明は反応器や配管等の内表面に耐熱部材として施工されたキャスタブルにスチーム又はスチーム含有ガスからなるパージガスを流通させて乾燥焚きを行うことでキャスタブル中の硫黄化合物を除去することを特徴とする。また、本発明は合成ガス製造装置の稼動前に、合成ガス製造装置に用いる配管等にスチームまたはスチーム含有ガスからなるパージガスを流して乾燥焚きを行い、キャスタブル中に含有される硫黄化合物をあらかじめ除去することを特徴とする。
 本発明の手段により、反応器や配管等の内表面に耐熱部材として施工されたキャスタブルから硫黄化合物の脱離を防止することができるので、後続の装置や製品等に悪影響を及ぼすことを回避することができる。また、合成ガス製造装置の配管等に使用されたキャスタブルに含有された硫黄化合物は、改質反応が開始する前にキャスタブルから除去されるため、合成ガス中にキャスタブル由来の硫黄化合物が混入することを防ぐことができ、合成ガス製造用改質触媒の劣化を防ぐことができる。
実施例1におけるキャスタブルからの硫黄化合物除去試験の概略を示す模式図。 実施例2における改質反応試験の概略を示す模式図。 比較例1~5におけるキャスタブルからの硫黄化合物除去試験の概略を示す模式図。 比較例6における改質反応試験の概略を示す模式図。
 本発明に係る反応器や配管等に使用されるキャスタブルから硫黄化合物を除去する方法は、キャスタブルを耐熱材として使用する反応器や配管等にあらかじめスチーム又はスチーム含有ガスからなるパージガスを流通させることを特徴とする。反応器や配管等は、耐熱材としてキャスタブルが使用されている限りいかなる装置に使用されるものでもよい。特に、合成ガス製造装置において、製造された合成ガス中に含まれる未反応炭酸ガスや生成炭酸ガスを分離回収して合成ガスの製造工程にリサイクルし、炭酸ガス改質法に再利用するような場合には、本発明を合成ガス製造装置稼動前に実施することにより、キャスタブルから脱離した硫黄化合物が分離回収され合成ガス製造用リフォーマーに供給され、リフォーマーに用いられる改質触媒が硫黄化合物の吸着被毒により劣化してしまうという問題を防ぐことができる。
 本発明に係る合成ガス製造装置とは、改質反応により天然ガスから合成ガスを製造するリフォーマー、及びリフォーマーとその他のセクションとを連結する配管を少なくとも有する装置であり、配管の全部又は少なくともリフォーマー出口を含む一部にキャスタブルを使用しているものをいう。さらに本発明に係る合成ガス製造装置においては、合成ガス中の炭酸ガスを分離回収するための脱炭酸セクションがリフォーマー以降の工程に備えられ、分離回収された炭酸ガスを含むガス(以下、分離回収ガスとする)はリフォーマーにリサイクルされて改質反応に再利用される。
 また、合成ガス製造装置には、天然ガスに含まれる硫黄化合物を脱硫するための脱硫セクションが含まれていてもよい。その他、改質反応により生じた熱を回収するための熱回収セクションや、酸素供給セクション、合成ガス調整セクション等の、公知の合成ガス製造装置に使用されるいかなる工程を備えていてもよい。ウェイストヒートボイラー等の熱回収セクションを用いて合成ガスの廃熱処理を行う場合は、熱回収セクションは、リフォーマー以降で脱炭酸セクション以前の工程に設置されることが好ましい。
 リフォーマーには改質触媒が充填された触媒管が備えられており、炭酸ガスやスチームが混合された天然ガスを触媒管内で加熱することにより、改質触媒の触媒作用によって改質反応が進行し、合成ガスが製造される。
 本実施形態において、改質反応はスチームを使用する水蒸気改質法や炭酸ガスを使用する炭酸ガス改質法等の公知の方法によることができる。
 ここで、水蒸気改質法とは、天然ガスにスチームを添加して以下の反応式(1)に従って合成ガスを生成するものであり、炭酸ガス改質法とは、天然ガスに炭酸ガスを添加するか又は天然ガスに含まれる炭酸ガスを使用して以下の反応式(2)に従って合成ガスを生成するものである。なお、下記の式では炭素化合物がメタンの場合を例として示している。
 式(1): CH + HO → CO + 3H
 式(2): CH + CO → 2CO + 2H
 本実施形態においては、これらのうちいずれか一方のみを使用するものでもよい。ただし、水蒸気改質法と炭酸ガス改質法を同時に行うと、生成するCOとHの比率を調整することができる。例えばフィッシャー・トロプシュ反応やメタノール合成において好ましい比率であるH/CO=2.0やオキソ合成において好ましい比率であるH/CO=1.0に近づけることが可能となり、その後の調整の手間が省けるため好ましい。
 改質触媒としては、あらゆる公知の改質触媒を用いることができるが、水蒸気改質法においてはニッケル担持アルミナ触媒や貴金属担持塩基性酸化物触媒等、炭酸ガス改質法においては貴金属担持塩基性酸化物触媒等が好ましく用いられ、また、水蒸気改質法と炭酸ガス改質法を同時に行う場合は貴金属担持塩基性酸化物触媒等が好ましく用いられる。
 また、改質触媒の劣化を抑えるためには、合成ガス製造セクションに導入されるガスに含有される硫黄化合物の濃度は、硫黄原子換算で10vol-ppb未満であることが好ましい。
 また、合成ガス製造セクションに導入されるガスはHO/Cモル比が0より大きく3.0以下、及び/又はCO/Cモル比が0より大きく1.0以下となるよう、スチーム及び/又は炭酸ガスが添加される。
 なお、天然ガスには硫化ジメチル(DMS:(CHS)や硫化カルボニル(COS)等の有機硫黄化合物が含有されている。そのため、天然ガスはリフォーマーに導入される前に、合成ガス製造装置内の脱硫セクションに設置される脱硫装置によって脱硫されることが好ましい。
 脱硫にはアルカリ洗浄法、溶剤脱硫法、接触脱硫法等の公知の方法を用いることができるが、その中でも特に水素化処理による接触脱硫法(水素化脱硫法)により脱硫することが好ましい。ここで、水素化脱硫法とは、ガスに含まれる硫黄化合物を水素化処理する第1の工程、および第1の工程において水素化された硫黄化合物を脱硫剤によって吸収する第2の工程からなる脱硫法をいう。
 また、前記改質反応により製造した合成ガスには、水蒸気改質に付随するシフト反応により生成した炭酸ガスや、炭酸ガス改質において未反応の炭酸ガスが含まれている。本実施態様に係る合成ガス製造装置では、これらの炭酸ガスは、脱炭酸セクションにおいて分離回収される。炭酸ガスの分離回収法としては化学吸収法や物理吸着法、膜分離法等などが公知であるが、本実施態様においてはモノエタノールアミン等のアミン系水溶液を用いる化学吸収法を用いることが好ましい。
 アミン系水溶液を用いる化学吸収法としては、例えば、吸収塔と再生塔からなるアミントリーター等を使用し、まず合成ガスに含まれる炭酸ガスを吸収塔においてモノエタノールアミン等のアミン系水溶液に吸収させ、その後、炭酸ガスを吸収したアミン系水溶液を再生塔においてスチームで加熱してストリッピング処理することにより炭酸ガスを放散させ、放散した炭酸ガスを回収する方法等が好ましく使用できる。
 アミン系水溶液を使用した場合、炭酸ガスは以下の反応式(3)に従って炭酸水素イオンとして吸収される。
Figure JPOXMLDOC01-appb-I000001
 モノエタノールアミン等のアミン系水溶液は弱塩基なので、炭酸水素イオンとして炭酸ガスを吸収した水溶液を加熱することにより、炭酸水素イオンは炭酸ガスとして放出される。こうして、製造された合成ガス中の炭酸ガスを分離回収することができる。
 こうして分離回収された炭酸ガスはその後、リフォーマーにリサイクルされ、炭酸ガス改質反応に再利用することができる。
 ここで、合成ガス製造セクションにおけるリフォーマーでの改質反応は高温で進行するため、製造された合成ガスはリフォーマー出口において約900℃の高温となっている。このため、リフォーマー出口以降の工程をつなぐ配管に被覆使用されているキャスタブル中の硫黄化合物が硫化水素の形で脱離し、合成ガス中に混入するおそれがある。
 合成ガス中に混入した硫化水素は、上記脱炭酸セクションにおいて以下の反応式(4)に従って炭酸ガスとともに水溶液に吸収され、炭酸ガスと同様に、水溶液を加熱することにより放出される。
 式(4): R-NH + HS →  R-NH  +  HS
 つまり、脱炭酸工程で分離回収され、その後リフォーマーに導入されることになる分離回収ガスには、炭酸ガスのほかに、キャスタブルから脱離した硫化水素が含まれることになる。この硫化水素によって、リフォーマーに導入されるガス中の硫黄化合物濃度が硫黄原子換算で前記の10vol-ppbを超えると、改質触媒が硫黄被毒により劣化するおそれがある。
 この硫化水素がリフォーマーに導入されることを防ぐため、本発明においては、合成ガス製造装置の稼動前に改質ガス製造装置に使用される配管にあらかじめスチーム又はスチーム含有ガスからなるパージガスを流通させて乾燥焚きを行い、キャスタブル中の硫黄化合物を除去する。
 乾燥焚きは、合成ガス製造装置の稼動前で、触媒管に改質触媒を充填する前に行うのが好ましい。
 かかる構成とすることによって、配管内部のキャスタブルに含有される硫黄化合物を合成ガスの製造開始前に除去することができ、生成した合成ガスに硫黄化合物が混入することを防ぐことができる。
 パージガスとしては、スチーム又はスチーム含有ガスを使用することが硫黄化合物除去率の点から好ましい。スチーム含有ガスを用いる場合、スチームの含有率は特に限定されないが、通常1vol-%以上、好ましくは10vol-%以上、さらには50vol-%以上が好ましい。
 パージガスを流す際の乾燥焚きの加熱温度は650~900℃、好ましくは750~900℃で、排出されるパージガス中の硫黄化合物が検出されなくなるまで流通させることで、硫黄化合物を効率的に除去することができる。
 例えば、パージガスを流す際の加熱温度が750~900℃であれば、48時間以上流通させればキャスタブル中の硫黄化合物を硫黄原子換算で検出限界値1.0wtppm以下、除去率で97%以上まで除去することが可能である。
 また、パージガスは循環させずに、排出することが好ましい。
 本実施形態において、上記方法によってキャスタブルに含有される硫黄化合物を除去した配管を用いた合成ガス製造装置によって、合成ガスを製造する際の改質触媒の劣化を抑えることができる。
 このようにして製造された合成ガスは、これを例えばフィッシャー・トロプシュ反応に供し、フィッシャー・トロプシュ反応生成物からガス状生成物を分離してフィッシャー・トロプシュ油を製造し、該フィッシャー・トロプシュ油を水素化処理して得られた水素化処理物を蒸留して軽質炭化水素ガスと最終製品である灯軽油とを分離するというGTLプロセスにおいて好適に使用することができる。
 また、水素製造プロセスにおいても、本発明を実施した配管を用いた合成ガス製造装置により製造された合成ガスから、好適に水素を製造することができる。
 以下に、本発明の更なる理解のために実施例を用いて説明するが、これらの実施例はなんら本発明の範囲を限定するものではない。
[実施例1]
 配管にパージガスを流通させ乾燥焚きすることでキャスタブルの硫黄化合物が除去されることを示すため、以下の実施例1を行った。
 キャスタブル原料として日本プライブリコ社のプライキャストMIX#786(商品名。含有硫黄化合物濃度は硫黄原子換算で39.5wt-ppm)を使用した。キャスタブル原料は水練し、強度が発生したことが認められた後に2mm-4mmの破片状になるよう破砕した。試験前のキャスタブルの化学組成は表1に示すとおりである。このキャスタブル破片11がアルミナビーズ層12及び13の間に充填されたSUS反応管14を所定の温度に加熱し、装置上部からスチーム又はスチーム/窒素混合ガスを48時間流通させた(図1)
Figure JPOXMLDOC01-appb-T000001
 キャスタブルを通過したパージガスは冷却器15で水を凝縮させて気液分離し、凝縮水16中の硫黄化合物濃度をICP(誘導結合プラズマ)分析で、窒素ガス17中の硫黄化合物濃度は硫黄化学発光検出器SCD(sulfur chemiluminescence detector)を備えたガスクロマトグラフ(SCD-GC)で測定することでパージガス流通後のキャスタブルからの硫黄化合物流出量を測定した。
 また、実験終了後にキャスタブルを抜き出し、キャスタブル中に残存している硫黄化合物濃度も併せて測定した。
 表2に48時間パージガスを流通させた後の結果を示す。スチーム又はスチーム/窒素混合ガスのいずれを流した場合も、48時間経過時におけるガス中および液中への流出硫黄化合物濃度はゼロとなった。また、48時間後のキャスタブル中の残存硫黄化合物濃度は、硫黄原子換算でそれぞれ1.0wt-ppm未満(検出限界以下)まで減少していた。
Figure JPOXMLDOC01-appb-T000002
[実施例2]
 パージガスを貫流させたキャスタブルからは合成ガス中に硫黄化合物が混入しないことを確認するため、以下の実施例2をおこなった。
 実施例1の試験後に、スチーム処理を行ったキャスタブル21(7.5cc)をリフォーミング触媒28の後段に設置したSUS反応管24を用意して、H/CO比2.0の合成ガスを製造する改質反応試験を実施し(図2)、反応器出口から生成する合成ガス29中に硫黄化合物が含有されているか否かをSCD―GC分析により確認した。
 表3の結果に示されるように、500時間のリフォーミング反応中、生成合成ガス中に硫黄化合物が流出することはなく、スチーム処理を行うことで含有硫黄化合物がキャスタブル中から除去できることが確認された。
Figure JPOXMLDOC01-appb-T000003
[実施例3]
 パージガスを流通させる際の加熱温度による硫黄化合物除去率の変化を調べるため、実施例1と同様の試験装置を用いて、充填層の温度以外は実施例1のスチーム/窒素混合ガスの場合と同一の条件にして硫黄化合物除去試験を実施した。その結果、充填層の温度を650℃、750℃に維持してスチーム/窒素混合ガスを48時間流したときのキャスタブル中の硫黄化合物除去率は、それぞれ80%、97%であった。
[比較例1-5]
 スチームを含まないパージガスでの硫黄化合物除去効率を確認するため、以下の比較例を行った。
 実施例1と同様の試験装置を用いて、パージガスの組成を表4中に示すように変えたほかは実施例1と同一の条件にして硫黄化合物除去試験を実施し、キャスタブル31中に残存している硫黄化合物濃度及び硫黄化合物除去率を求めた(図3)。
 表4の結果が示す通り、いずれのガスをフィードした場合も硫黄化合物の除去率は14~52%に留まった。
Figure JPOXMLDOC01-appb-T000004
[比較例6]
 実施例2と同様に比較例4による硫黄化合物除去試験後のキャスタブル41(15cc)を触媒層後段に設置して改質反応試験を実施し、生成合成ガス49中への硫黄化合物の流出をSCD-GC分析により確認した(図4)。なお、キャスタブルの充填量は15ccとした。表5の結果が示すように、反応開始直後から生成ガス中への硫黄化合物の脱離が確認され、以後連続的に発生した。スチームを用いない加熱前処理では硫黄化合物の除去は不充分であることが確認された。
Figure JPOXMLDOC01-appb-T000005
 この出願は2010年3月2日に出願された日本国特許出願第2010-045698号からの優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。
11 キャスタブル破片
12 アルミナビーズ層
13 アルミナビーズ層
14 SUS反応管
15 冷却器
16 凝縮水
17 窒素ガス
21 キャスタブル
24 SUS反応管
28 リフォーミング触媒
29 合成ガス
31 キャスタブル
41 キャスタブル
49 合成ガス
 
 

Claims (5)

  1.  反応器及び配管の内表面に耐熱部材として施工されたキャスタブルにスチーム又はスチーム含有ガスからなるパージガスを流通させて乾燥焚きを行うことを特徴とする、キャスタブル中の硫黄化合物の除去方法。
  2.  前記配管が合成ガス製造装置に使用され、前記乾燥焚きを合成ガス製造装置の稼動前に行うことを特徴とする、請求項1に記載のキャスタブル中の硫黄化合物の除去方法。
  3.  前記乾燥焚きを合成ガス製造用装置に改質触媒を充填する前に行うことを特徴とする、請求項2に記載のキャスタブル中の硫黄化合物の除去方法。
  4.  前記乾燥焚きの温度は750~900℃であることを特徴とする、請求項1~3の何れか1項に記載のキャスタブル中の硫黄化合物の除去方法。
  5.  前記乾燥焚きは48時間以上行うことを特徴とする、請求項4に記載のキャスタブル中の硫黄化合物の除去方法。
PCT/JP2011/000935 2010-03-02 2011-02-21 キャスタブル中の硫黄化合物の除去方法 WO2011108213A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201180011677.XA CN102781565B (zh) 2010-03-02 2011-02-21 浇注料中的硫化物的去除方法
EP11750327.6A EP2543431A4 (en) 2010-03-02 2011-02-21 METHOD FOR REMOVING SULFUR COMPOUNDS FROM A MOLDED MATERIAL
US13/581,019 US8832967B2 (en) 2010-03-02 2011-02-21 Method for removing sulfur compounds in castable
CA2791861A CA2791861C (en) 2010-03-02 2011-02-21 Method for removing sulfur compounds in castable
AU2011222348A AU2011222348B2 (en) 2010-03-02 2011-02-21 Method for removing sulfur compounds in castable
BR112012021914A BR112012021914B8 (pt) 2010-03-02 2011-02-21 método para remover compostos de enxofre em fundível
EA201290736A EA019981B1 (ru) 2010-03-02 2011-02-21 Способ удаления соединений серы, содержащихся в жаропрочном бетоне
JP2012502991A JP5591910B2 (ja) 2010-03-02 2011-02-21 キャスタブル中の硫黄化合物の除去方法
ZA2012/06247A ZA201206247B (en) 2010-03-02 2012-08-20 Method for removing sulfur compounds in castable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010045698 2010-03-02
JP2010-045698 2010-03-02

Publications (1)

Publication Number Publication Date
WO2011108213A1 true WO2011108213A1 (ja) 2011-09-09

Family

ID=44541883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000935 WO2011108213A1 (ja) 2010-03-02 2011-02-21 キャスタブル中の硫黄化合物の除去方法

Country Status (11)

Country Link
US (1) US8832967B2 (ja)
EP (1) EP2543431A4 (ja)
JP (1) JP5591910B2 (ja)
CN (1) CN102781565B (ja)
AU (1) AU2011222348B2 (ja)
BR (1) BR112012021914B8 (ja)
CA (1) CA2791861C (ja)
EA (1) EA019981B1 (ja)
MY (1) MY160346A (ja)
WO (1) WO2011108213A1 (ja)
ZA (1) ZA201206247B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011107669B4 (de) * 2011-07-12 2022-02-10 Eberspächer Climate Control Systems GmbH & Co. KG Kraftstoffbehandlungsvorrichtung
US10046371B2 (en) * 2013-03-29 2018-08-14 Semes Co., Ltd. Recycling unit, substrate treating apparatus and recycling method using the recycling unit
US10131593B2 (en) * 2013-08-06 2018-11-20 Chiyoda Corporation Systems and methods for producing hydrogen from a hydrocarbon and using the produced hydrogen in a hydrogenation reaction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329323A (ja) * 1999-03-12 2000-11-30 Ube Ind Ltd 廃棄物ガス化処理装置における高温ガス化炉構造
JP2003021314A (ja) * 2001-07-04 2003-01-24 Sumitomo Heavy Ind Ltd ガス化炉の起動方法
JP2003336079A (ja) * 2002-05-20 2003-11-28 Kyuchiku Ind Co Ltd 熱分解ガスの改質方法
JP2010045698A (ja) 2008-08-18 2010-02-25 Lenovo Singapore Pte Ltd タブレット式コンピュータおよび無線通信システムの制御方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2730437A (en) * 1951-04-07 1956-01-10 Raymond B Coombe Automatic control for gas making machines
US2721122A (en) * 1952-09-24 1955-10-18 Inst Gas Technology Thermal method of making oil gas
US2893853A (en) * 1956-07-12 1959-07-07 United Gas Improvement Co Method for catalytic conversion hydrocarbons
US3865745A (en) 1971-01-15 1975-02-11 Grace W R & Co Process for the preparation of metal carbide and metal oxide microspheres
US3974256A (en) 1974-05-07 1976-08-10 Exxon Research And Engineering Company Sulfide removal process
US4058575A (en) * 1975-06-12 1977-11-15 Exxon Research & Engineering Co. Catalyst pretreatment with hydrocarbon feedstock
US4270928A (en) * 1978-09-05 1981-06-02 Occidental Research Corporation Desulfurization of carbonaceous materials
US4276081A (en) * 1978-10-10 1981-06-30 Hazen Research, Inc. Process for beneficiating ores
DE3109820A1 (de) * 1981-03-14 1982-09-23 Basf Ag, 6700 Ludwigshafen Verfahren zur verhinderung von ablagerungen in den rohren von abhitzekesseln
JPS61287419A (ja) * 1985-04-24 1986-12-17 オサケ イフテイオ タンペラ ア−ベ− 炉の煙道ガスから気体硫黄化合物を除去する方法
US5202057A (en) * 1988-09-14 1993-04-13 Air Products And Chemicals, Inc. Production of ammonia synthesis gas
US5068058A (en) * 1989-05-04 1991-11-26 Air Products And Chemicals, Inc. Production of ammonia synthesis gas
US6005149A (en) * 1998-08-18 1999-12-21 Engineering, Separation & Recycling, Ltd. Co. Method and apparatus for processing organic materials to produce chemical gases and carbon char
NL1011490C2 (nl) * 1999-03-08 2000-09-12 Paques Bio Syst Bv Werkwijze voor het ontzwavelen van gassen.
CN100343287C (zh) * 2003-01-28 2007-10-17 出光兴产株式会社 间同立构乙烯基芳族聚合物的多步骤固态脱挥发分
JP4319878B2 (ja) * 2003-09-17 2009-08-26 電気化学工業株式会社 アルミナセメント組成物及び不定形耐火物の製造方法
CN101285004B (zh) * 2007-04-11 2010-12-15 中国科学院工程热物理研究所 一种多功能能源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329323A (ja) * 1999-03-12 2000-11-30 Ube Ind Ltd 廃棄物ガス化処理装置における高温ガス化炉構造
JP2003021314A (ja) * 2001-07-04 2003-01-24 Sumitomo Heavy Ind Ltd ガス化炉の起動方法
JP2003336079A (ja) * 2002-05-20 2003-11-28 Kyuchiku Ind Co Ltd 熱分解ガスの改質方法
JP2010045698A (ja) 2008-08-18 2010-02-25 Lenovo Singapore Pte Ltd タブレット式コンピュータおよび無線通信システムの制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2543431A4 *

Also Published As

Publication number Publication date
BR112012021914B8 (pt) 2019-10-01
US20120317833A1 (en) 2012-12-20
JP5591910B2 (ja) 2014-09-17
JPWO2011108213A1 (ja) 2013-06-20
CA2791861A1 (en) 2011-09-09
MY160346A (en) 2017-02-28
BR112012021914A2 (pt) 2016-05-31
ZA201206247B (en) 2013-05-29
CN102781565B (zh) 2016-04-27
CN102781565A (zh) 2012-11-14
EP2543431A1 (en) 2013-01-09
AU2011222348A1 (en) 2012-09-20
AU2011222348B2 (en) 2013-11-07
US8832967B2 (en) 2014-09-16
EA201290736A1 (ru) 2013-02-28
EA019981B1 (ru) 2014-07-30
CA2791861C (en) 2016-09-06
BR112012021914B1 (pt) 2019-04-02
EP2543431A4 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5638600B2 (ja) 合成ガスの製造方法
JP2019156658A (ja) 二酸化炭素の再利用方法
JP5364715B2 (ja) 炭化水素化合物合成反応ユニット及びその運転方法
JP5591910B2 (ja) キャスタブル中の硫黄化合物の除去方法
US9884998B2 (en) Method of suppressing metal contamination of synthesis gas production apparatus
AU2009299346B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesizing method
JPWO2007114279A1 (ja) 液体燃料合成システム
JP2008239443A (ja) 合成ガス製造方法及びシステム
US20150139879A1 (en) Method and plant for removing acid compounds from gaseous effluents of different origins
US9200210B2 (en) Method for stopping operation of reactor
CN107428527A (zh) 用于处理废气和制造氢气的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011677.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13581019

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011222348

Country of ref document: AU

Ref document number: 2012502991

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011750327

Country of ref document: EP

Ref document number: 201290736

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2791861

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1201004408

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011222348

Country of ref document: AU

Date of ref document: 20110221

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012021914

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012021914

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120830