WO2011108192A1 - Optical disc evaluation method and optical disc evaluation device - Google Patents

Optical disc evaluation method and optical disc evaluation device Download PDF

Info

Publication number
WO2011108192A1
WO2011108192A1 PCT/JP2011/000671 JP2011000671W WO2011108192A1 WO 2011108192 A1 WO2011108192 A1 WO 2011108192A1 JP 2011000671 W JP2011000671 W JP 2011000671W WO 2011108192 A1 WO2011108192 A1 WO 2011108192A1
Authority
WO
WIPO (PCT)
Prior art keywords
information recording
recording surface
optical disc
light
signal
Prior art date
Application number
PCT/JP2011/000671
Other languages
French (fr)
Japanese (ja)
Inventor
智 山下
Original Assignee
Jvc・ケンウッド・ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jvc・ケンウッド・ホールディングス株式会社 filed Critical Jvc・ケンウッド・ホールディングス株式会社
Publication of WO2011108192A1 publication Critical patent/WO2011108192A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10527Audio or video recording; Data buffering arrangements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10305Improvement or modification of read or write signals signal quality assessment
    • G11B20/10314Improvement or modification of read or write signals signal quality assessment amplitude of the recorded or reproduced signal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/268Post-production operations, e.g. initialising phase-change recording layers, checking for defects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B2020/10935Digital recording or reproducing wherein a time constraint must be met
    • G11B2020/10981Recording or reproducing data when the data rate or the relative speed between record carrier and transducer is variable
    • G11B2020/1099Recording or reproducing data when the data rate or the relative speed between record carrier and transducer is variable wherein a disc is spun at a variable speed
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs

Definitions

  • the present invention relates to a technique for detecting defects such as the shape of the information recording surface of an optical disc.
  • the manufactured optical disk is rotated at a rotation speed when reproducing information recorded on the information recording surface. Then, the information recording surface of the optical disk is irradiated with light, focus control is performed, the reflected light amount reflected from the optical disk is detected while gradually changing the light irradiation position in the radial direction of the optical disk, and the radial push-pull based on the amount is detected. Get a signal.
  • the information recording surface is a pit, groove, or land.
  • the tracking error signal which is the original signal of the radial push-pull signal, includes a signal corresponding to a pit, a groove, or a land (hereinafter referred to as “push-pull signal”) and a signal corresponding to a wobble (hereinafter referred to as “push-pull signal”). , Described as “wobble signal”).
  • the frequency of the wobble signal is very high compared to the frequency of the push-pull signal.
  • the value of the high frequency component is markedly reduced by a low pass filter for the purpose of removing the wobble signal that is the high frequency component of the tracking error signal. Reduce. Then, the waveform of the radial push-pull signal corresponding to the pit, groove, or land is evaluated.
  • FIG. 1 is a diagram showing the relationship between the rotation center C of the actual optical disc D and the center C ′ of the track T.
  • the rotation center C and the center C ′ of the track T do not coincide with each other as shown in FIG. 1 due to various alignment accuracy at the time of creating a stamper as a master disk of the optical disk D. That is, the actual optical disc D has a so-called “eccentric R”. Therefore, as shown in FIG.
  • the information recording surface of the optical disc D has a portion A (hereinafter referred to as “sparse portion A”) in which the number of tracks traversed by the circular light L irradiated without tracking control is small. And a portion B (hereinafter referred to as “dense portion B”) in which the number of tracks traversed by the light L is large.
  • the frequency of the portion corresponding to the dense portion B of the tracking error signal increases.
  • the value of the portion corresponding to the dense portion B of the push-pull signal is greatly reduced from the original value by the low-pass filter for removing the wobble signal. For this reason, even if a defect such as a shape exists in the dense portion B, the waveform disturbance is hidden in the radial push-pull signal. That is, for the portion corresponding to the dense portion B, it is difficult to detect the disturbance of the waveform of the radial push-pull signal. Therefore, it is difficult for the dense portion B to specify a portion where a defect may exist.
  • an optical disc with a high information transfer speed has a high rotation speed at the time of reproduction, so that the rotation speed when judging whether or not there is a defect on the information recording surface is also high.
  • the frequency of the tracking error signal corresponding to the dense portion B is high. Therefore, in the same manner as described above, it is difficult to detect the disturbance of the radial push-pull signal waveform in the portion corresponding to the dense portion B, and it is not possible to specify a portion where a defect may exist. Have difficulty.
  • An object of the present invention is to provide an optical disk evaluation method and an optical disk evaluation apparatus that can identify a portion where a defect in the form of an information recording surface of an optical disk may exist.
  • an optical disk evaluation method provides an optical disk having an information recording surface at a rotation speed slower than the rotation speed when reproducing information recorded on the information recording surface. Rotating, irradiating the information recording surface of the rotated optical disc with light, detecting a reflected light amount reflected from the information recording surface, and calculating a tracking error signal based on the reflected light amount And a step of reducing the high frequency component of the tracking error signal, and determining whether a ratio or level difference between the maximum amplitude level and the minimum amplitude level in the waveform of the signal with the reduced high frequency component is within a predetermined value. Steps.
  • the optical disk evaluation apparatus of the present invention includes a rotation control unit that rotates an optical disk having an information recording surface at a rotation speed slower than a rotation speed when reproducing information recorded on the information recording surface; A light source for irradiating the information recording surface with light; a detection unit for detecting a reflected light amount reflected from the information recording surface; a low-pass filter for reducing a high-frequency component of a tracking error signal based on the reflected light amount; and the high-frequency component And a push-pull signal determination unit that determines whether or not the ratio or level difference between the maximum amplitude level and the minimum amplitude level in the waveform of the signal with reduced noise is within a predetermined value.
  • the present invention can provide an optical disk evaluation method and an optical disk evaluation apparatus that can identify a portion where a defect such as a shape of an information recording surface of an optical disk may exist.
  • a tracking error signal is a signal containing a wobble signal and a low-pass filter reduces the value of the high frequency component of a tracking error signal remarkably.
  • FIG. 2 is a configuration diagram of the optical disc evaluation apparatus 100 of the present embodiment.
  • the optical disc D to be evaluated is also displayed.
  • the optical disc D is an optical disc immediately after manufacture, and includes a substrate D1, an information recording surface D2 provided on the substrate D1, and a transparent substrate D3 provided on the information recording surface D2.
  • the information recording surface D2 is a pit, a groove, or a land, and is formed in a spiral shape.
  • the optical disk evaluation apparatus 100 is an apparatus that identifies a portion where a defect such as the shape of the information recording surface D2 of the optical disk D may be present.
  • rotation controller 2 light source 3
  • optical power controller 4 collimator lens 5
  • polarizing beam splitter 6 quarter-wave plate 7, objective lens 8, and condenser lens 9
  • the cylindrical lens 10 the detection unit 11, the first addition unit 12, the second addition unit 13, the third addition unit 14, the fourth addition unit 15, the first subtraction unit 16, and the focus control unit 17.
  • the rotation control unit 2 controls the spindle motor 1 so as to rotate the optical disc D at a predetermined rotation speed that is lower than the rotation speed when reproducing the information recorded on the information recording surface D2.
  • the light source 3 is composed of a semiconductor laser, and emits light L that is linearly polarized light and has a divergence.
  • the optical power control unit 4 controls the light source 3 so that the power of the light L emitted from the light source 3 is smaller than the power for reproducing the information recorded on the information recording surface D2.
  • “when reproducing information recorded on the information recording surface D2” may be referred to as “during reproduction”.
  • the collimating lens 5 converts the divergent light L from the light source 3 into parallel light.
  • the polarization beam splitter 6 reflects the light from the collimating lens 5 toward the quarter-wave plate 7 side. Further, the polarization beam splitter 6 transmits the light from the quarter-wave plate 7 toward the condenser lens 9.
  • the quarter-wave plate 7 converts the light from the polarization beam splitter 6 into circularly polarized light and directs it to the objective lens 8.
  • the quarter-wave plate 7 converts the light from the objective lens 8 into linearly polarized light and directs it to the polarizing beam splitter 6.
  • the objective lens 8 collects the light from the quarter-wave plate 7 on the information recording surface D2 through the transparent substrate D3 of the optical disc D.
  • the objective lens 8 makes the light from the information recording surface D2 parallel light and directs it toward the quarter-wave plate 7.
  • the condensing lens 9 converges the light from the polarization beam splitter 6 and directs it to the cylindrical lens 10.
  • the cylindrical lens 10 further converges the light from the condenser lens 9 and collects it in the detection unit 11.
  • the light L emitted from the light source 3 passes through the collimating lens 5, the polarizing beam splitter 6, the quarter wavelength plate 7, and the objective lens 8 in this order, and the information recording surface D2 of the optical disc D. To be collected. Then, the light is reflected by the information recording surface D2, passes through the objective lens 8, the quarter-wave plate 7, the polarization beam splitter 6, the condensing lens 9, and the cylindrical lens 10 in that order, and passes to the detection unit 11. Collected.
  • the detection unit 11 detects light from the cylindrical lens 10.
  • the detection unit 11 includes four light receiving units as in the conventional optical pickup detector. That is, the detection unit 11 includes a first light receiving unit 11A, a second light receiving unit 11B, a third light receiving unit 11C, and a fourth light receiving unit 11D. As shown in FIG. 2, each light receiving portion is arranged counterclockwise.
  • the longitudinal direction of the set of the first light receiving unit 11A and the fourth light receiving unit 11D and the longitudinal direction of the set of the second light receiving unit 11B and the third light receiving unit 11C are substantially orthogonal to the track direction. is doing. That is, the longitudinal direction of both sets is substantially the radial direction of the optical disc D.
  • Each light receiving unit of the detecting unit 11 outputs a signal having a current value corresponding to the amount of received light.
  • the current signal output by the first light receiving unit 11A is described as “current signal Ia”
  • the current signal output by the second light receiving unit 11B is described as “current signal Ib”
  • the third light receiving unit 11C outputs
  • the current signal to be output is referred to as “current signal Ic”
  • the current signal output from the fourth light receiving unit 11D is referred to as “current signal Id”.
  • the first addition unit 12 adds the current signal Ib from the second light receiving unit 11B and the current signal Id from the fourth light receiving unit 11D.
  • the second addition unit 13 adds the current signal Ia from the first light receiving unit 11A and the current signal Ic from the third light receiving unit 11C.
  • the third addition unit 14 adds the current signal Ia from the first light receiving unit 11A and the current signal Ib from the second light receiving unit 11B.
  • the fourth addition unit 15 adds the current signal Ic from the third light receiving unit 11C and the current signal Id from the fourth light receiving unit 11D.
  • the first subtractor 16 subtracts the value obtained by the first adder 12 from the value obtained by the second adder 13 to calculate the focus error signal “(Ia + Ic) ⁇ (Ib + Id)”.
  • the focus control unit 17 causes the first actuator 18 to perform focus control based on the focus error signal calculated by the first subtraction unit 16.
  • the first actuator 18 performs focus control according to the control of the focus control unit 17.
  • the fifth adder 19 adds the value obtained by the third adder 14 and the value obtained by the fourth adder 15 to calculate the RF signal “(Ia + Ib + Ic + Id)”.
  • the second subtractor 20 subtracts the value obtained by the fourth adder 15 from the value obtained by the third adder 14 to calculate the tracking error signal “(Ia + Ib) ⁇ (Ic + Id)”.
  • FIG. 3 is a diagram for explaining the tracking error signal.
  • the detection unit 11 including the first light receiving unit 11A, the second light receiving unit 11B, the third light receiving unit 11C, and the fourth light receiving unit 11D is also displayed.
  • FIG. 3A shows a state in which the light L is collected at the center of the concave portion of the track T by the objective lens 8.
  • the value of (Ia + Ib) is equal to the value of (Ic + Id), and the tracking error signal “ The value of (Ia + Ib) ⁇ (Ic + Id) ”is 0.
  • FIG. 3B shows a state where the tracking is shifted by half of the track T, and the value of (Ia + Ib) and the value of (Ic + Id) are the most different, and the tracking error signal “(Ia + Ib) ⁇ (Ic + Id)”. "Is the maximum negative value.
  • FIG. 3C shows a state in which the light L is collected at the center of the convex portion of the track T by the objective lens 8.
  • the value of (Ia + Ib) is equal to the value of (Ic + Id), and the tracking error signal
  • the value of “(Ia + Ib) ⁇ (Ic + Id)” is 0.
  • FIG. 3D shows a state where the tracking is shifted by half of the track T. The value of (Ia + Ib) and the value of (Ic + Id) are the most different, and the tracking error signal “(Ia + Ib) ⁇ (Ic + Id)” is shown. "Is the maximum positive value.
  • the tracking error signal When the wavelength of the light L is ⁇ , when n is a positive number, the tracking error signal is not always “0” unless the groove depth of the track is “n ⁇ ⁇ / 4”. When m is an odd number, the tracking error signal has the maximum amplitude when the depth of the groove of the track is “m ⁇ ⁇ / 8”.
  • the wobble detection circuit 21 detects wobble based on the tracking error signal calculated by the second subtraction unit 20.
  • FIG. 4 is a diagram illustrating the characteristics of the low-pass filter 22.
  • the low-pass filter 22 has a characteristic of remarkably reducing the value of a high frequency component equal to or higher than the cutoff frequency Fc. That is, the low-pass filter 22 significantly reduces the value of the high frequency component equal to or higher than the cutoff frequency Fc in the tracking error signal calculated by the second subtracting unit 20.
  • the radial push-pull signal generator 23 calculates a radial push-pull signal by dividing the tracking error signal whose high-frequency component is reduced by the low-pass filter 22 by the RF signal calculated by the fifth adder 19 and normalizing it.
  • the tracking control unit 24 causes the second actuator 25 to perform tracking control based on the radial push-pull signal calculated by the radial push-pull signal generation unit 23.
  • the second actuator 25 performs tracking control according to the control of the tracking control unit 24.
  • FIG. 5 is a diagram for explaining defects such as the shape of the information recording surface D2 of the optical disc D.
  • FIG. 5A shows a cross section of an optical disc D that does not have a shape or other defect on the information recording surface D2.
  • FIG. 5B shows a cross section of the optical disc D having the first defect df1 in which the groove depth of the track T is relatively shallow on the information recording surface D2.
  • FIG. 5C shows a cross section of an optical disc D having a second defect df2 in which the groove shape of the track T is different from the others on the information recording surface D2.
  • the structure of the information recording surface D2 will be described again with reference to FIG.
  • FIG. 6 is a diagram showing the relationship between a defect such as the shape of the information recording surface D2 of the optical disc D and the waveform of the radial push-pull signal.
  • FIG. 6A is a diagram showing a waveform Pw of the radial push-pull signal for the optical disc D having the cross section of FIG. 5A, and there is no disturbance of the waveform Pw.
  • FIG. 6B is a diagram showing the waveform Pw of the radial push-pull signal for the optical disc D having the cross section of FIG. 5B, and the waveform Pw shows the first defect df1 in FIG. There is a corresponding first disturbance dis1 whose amplitude level is relatively small compared to other parts.
  • FIG. 6C is a diagram showing the waveform Pw of the radial push-pull signal for the optical disc D having the cross section of FIG. 5C.
  • the waveform Pw shows the second defect df2 in FIG.
  • there is a second disturbance dis2 whose shape is different from the other parts and whose amplitude level is relatively small compared to the other parts.
  • the radial push-pull signal determination unit 26 in FIG. 2 determines (evaluates) whether there is a disturbance in the waveform of the radial push-pull signal calculated by the radial push-pull signal generation unit 23, and determines the maximum amplitude level and the minimum amplitude.
  • a waveform disturbance is detected by determining whether or not the amplitude level ratio or level difference is within a predetermined value, a shape is formed on the portion of the information recording surface D2 corresponding to the waveform disturbance based on the above correlation. It is determined that there may be defects such as.
  • the reproduction signal evaluation unit 27 evaluates the reproduction signal based on the RF signal calculated by the fifth addition unit 19. Specifically, the reproduction signal evaluation unit 27 performs error rate, CNR (Carrier-to-Noise-Ratio), jitter, SAM (Sequence-Amplitude-Margin), PRSNR (Partial-Response-Signal-Noise-Ratio), MLSE (Maximum-Likelihood-Sequence-Error), modulation. Degree, asymmetry, ⁇ , etc. are evaluated.
  • CNR Carrier-to-Noise-Ratio
  • jitter SAM (Sequence-Amplitude-Margin)
  • PRSNR Partial-Response-Signal-Noise-Ratio
  • MLSE Maximum-Likelihood-Sequence-Error
  • the output unit 28 outputs and displays the results obtained by the radial push-pull signal determination unit 26 and the reproduction signal evaluation unit 27 on a display device (not shown) outside the optical disk evaluation device 100 of the present embodiment.
  • FIG. 7 is a perspective view including a cross section of the optical disc D.
  • the information recording surface D2 of the optical disc D has a groove D21, a land D22, a recording film D23, a recording mark D24, and a wobble D25.
  • the wobble D25 is used when controlling the focal position of light on the information recording surface D2 of the optical disc D.
  • the radial push-pull signal determination unit 26 detects defects such as the shape and size of the information recording surface D2 of the optical disc D to be evaluated by detecting the disturbance of the waveform of the radial push-pull signal.
  • the push-pull signal that is the source of the radial push-pull signal is included in the tracking error signal calculated by the second subtracting unit 20. Since the tracking error signal is a signal based on the amount of reflected light reflected from the information recording surface D2, the tracking error signal includes a push-pull signal and a wobble signal corresponding to the wobble D25. Therefore, in order to detect defects such as the shape and size of the information recording surface D2, it is necessary to remove the wobble signal included in the tracking error signal.
  • the low pass filter 22 significantly reduces the value of the high frequency component in the tracking error signal in order to remove the wobble signal included in the tracking error signal.
  • the tracking error signal calculated by the second subtracting unit 20 is a signal including a wobble signal, and the low pass filter 22 significantly reduces the value of the high frequency component of the tracking error signal. 8 will be used for explanation.
  • FIG. 8 is a diagram for explaining that the tracking error signal is a signal including a wobble signal and that the low-pass filter 22 significantly reduces the value of the high frequency component of the tracking error signal.
  • FIG. 8A to 8D are tracking error signals when the rotational speed of the optical disc D is the rotational speed at the time of reproduction. More specifically, FIG. 8A is a diagram showing a tracking error signal when the eccentricity is relatively large, and FIG. 8B is a diagram showing a tracking error signal when the eccentricity is relatively small. .
  • FIG. 8C is a diagram illustrating a tracking error signal in which a high-frequency component is reduced and a wobble signal is removed by the low-pass filter 22 with respect to the tracking error signal when the eccentricity illustrated in FIG. 8A is relatively large.
  • FIG. 8D shows a tracking error signal in which the high-frequency component is reduced by the low-pass filter 22 and the wobble signal is removed with respect to the tracking error signal when the eccentricity shown in FIG.
  • FIG. 8E shows a tracking error signal in which the high-frequency component is reduced by the low-pass filter 22 when the eccentricity is relatively large and the rotation speed of the optical disc D is a predetermined rotation speed lower than the rotation speed during reproduction.
  • the waveform disturbance is hidden in the push-pull signal BP corresponding to the dense portion B, and the waveform disturbance of the radial push-pull signal is detected. Have difficulty.
  • the rotation control unit 2 controls the spindle motor 1 so as to rotate the optical disc D at a predetermined rotation speed that is lower than the rotation speed when reproducing the information recorded on the information recording surface D2. To do. That is, the rotation control unit 2 controls the spindle motor 1 so as to rotate the optical disc D at a speed slower than the rotation speed during reproduction.
  • the low-pass filter 22 can substantially remove only the wobble signal even if the eccentricity is relatively large. That is, for the dense portion B, the value of the push-pull signal after being processed by the low-pass filter 22 is substantially the original value.
  • the radial push-pull signal determination unit 26 determines that the ratio or level difference between the maximum amplitude level and the minimum amplitude level in the radial push-pull signal waveform is within a predetermined value. By determining whether or not, it is possible to detect waveform disturbance.
  • the light power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 is smaller than the power for reproducing the information recorded on the information recording surface D2. .
  • the light source 3 emits even though the rotation speed of the optical disc D at the time of evaluation when judging whether or not a defect such as a shape exists on the information recording surface D2 is lower than the rotation speed at the time of reproduction. If the power of light is the same as that during reproduction, the following problems occur. That is, since the heating time in each unit time of the recording film D23 in FIG. 7 due to light irradiation is longer than before, the temperature of each part of the recording film D23 rises, and the recording film D23 crystallizes or melts for recording. Signals can be fatally damaged. Therefore, in the present embodiment, in order to prevent the recording film D23 from being damaged, the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 becomes smaller than the power during reproduction.
  • FIG. 9 is a flowchart showing each step of the operation of the optical disc evaluation apparatus 100 of the present embodiment.
  • the operator places the optical disk D to be evaluated on a mounting unit (not shown) of the optical disk evaluation apparatus 100, and the optical recording apparatus D has a defect such as a shape on the information recording surface D2 of the optical disk D.
  • the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 is smaller than the power during reproduction.
  • the light source 3 emits light having a predetermined power smaller than the power at the time of reproduction according to the control of the optical power control unit 4 (S1).
  • the rotation control unit 2 controls the spindle motor 1 so as to rotate the optical disc D at a predetermined rotation speed that is slower than the rotation speed during reproduction.
  • the spindle motor 1 rotates the optical disc D at a lower speed than the rotation speed during reproduction according to the control of the rotation control unit 2 (S2). Focus control is performed under the control of the focus control unit 17, and tracking control is not performed (S3).
  • the radial push-pull signal determination unit 26 evaluates the waveform of the radial push-pull signal calculated by the radial push-pull signal generation unit 23 (S4). Specifically, the radial push-pull signal determination unit 26 determines whether there is any disturbance in the waveform of the radial push-pull signal (S4). When the radial push-pull signal determination unit 26 detects a waveform disturbance whose ratio or level difference between the maximum amplitude level and the minimum amplitude level is greater than a predetermined value in the waveform of the radial push-pull signal, the radial push-pull signal determination unit 26 specifies the position of the waveform disturbance.
  • the output unit 28 outputs and displays the result obtained by the radial push-pull signal determination unit 26 on a display device (not shown) outside the optical disk evaluation apparatus 100 (S5).
  • the operator can check whether there is a defect such as a shape on the information recording surface D2 of the optical disc D to be evaluated. You can know whether or not.
  • information for identifying a site where a defect such as the shape of the information recording surface D2 of the optical disc D is displayed on the display device.
  • the site to be observed can be known with an atomic force microscope or the like.
  • the rotation control unit 2 when inspecting whether or not a defect such as a shape exists on the information recording surface D2 of the optical disc D, the rotation control unit 2 rotates the optical disc D at the speed of reproduction.
  • the spindle motor 1 is controlled to rotate at a slower predetermined rotational speed.
  • the optical power control unit 4 controls the light source 3 so that the power of light emitted from the light source 3 is smaller than the power at the time of reproduction. Thereby, damage to the recording film D23 of the optical disc D can be prevented.
  • FIG. 10 is a flowchart showing each step of the deformation operation of the optical disc evaluation apparatus 100 of the present embodiment.
  • the rotation control unit 2 controls the spindle motor 1 so that the optical disc D rotates at the rotation speed during reproduction.
  • the spindle motor 1 rotates the optical disk D at the rotation speed at the time of reproduction according to the control of the rotation control unit 2 (S11).
  • the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 becomes the power at the time of reproduction.
  • the light source 3 emits light having power during reproduction in accordance with the control of the optical power control unit 4 (S12).
  • the focus control unit 17 performs focus control
  • the tracking control unit 24 performs tracking control
  • the reproduction signal evaluation unit 27 evaluates the reproduction signal based on the RF signal calculated by the fifth addition unit 19.
  • the reproduction signal evaluation unit 27 evaluates error rate, CNR, jitter, SAM, PRSNR, MLSE, modulation degree, asymmetry, ⁇ , and the like.
  • the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 becomes a predetermined power smaller than the power so far, for example, 80% of the power so far. To do.
  • the light source 3 emits light with small power according to the control of the optical power control unit 4 (S14).
  • the rotation control unit 2 controls the spindle motor 1 so that the optical disk D rotates at a predetermined rotation speed slower than the rotation speed until then, for example, 60% of the rotation speed until then.
  • the spindle motor 1 rotates the optical disc D at a low speed according to the control of the rotation control unit 2 (S15).
  • the radial push-pull signal determination unit 26 evaluates the waveform of the radial push-pull signal calculated by the radial push-pull signal generation unit 23. (S16). Specifically, the radial push-pull signal determination unit 26 determines whether the ratio or the level difference between the maximum amplitude level and the minimum amplitude level is within a predetermined value with respect to the waveform of the radial push-pull signal. It is determined whether or not there is a disturbance (S16).
  • the radial push-pull signal determination unit 26 detects the waveform disturbance of the radial push-pull signal, the radial push-pull signal determination unit 26 identifies the position of the waveform disturbance, and based on this, there is a defect such as the shape of the information recording surface D2 of the optical disc D.
  • part which is present is specified (S16).
  • the output unit 28 outputs and displays the result obtained by the radial push-pull signal determination unit 26 on a display device (not shown) outside the optical disk evaluation apparatus 100 (S17).
  • the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 becomes 1.0 mW at the time of reproduction, and the rotation control unit 2 controls the linear velocity when the optical disc D is reproduced.
  • the spindle motor 1 was controlled to rotate at 7.8 m / s.
  • the radial push-pull signal generator 23 obtained the radial push-pull signal shown in FIG.
  • FIG. 11 is a diagram illustrating a radial push-pull signal of the comparative example.
  • the envelope of the radial push-pull signal has a drum shape, and the minimum amplitude level (peak-to-peak) P2 of the radial push-pull signal with respect to the maximum amplitude level (peak-to-peak) P1 of the radial push-pull signal.
  • the ratio was greater than 3 dB. That is, the value of the radial push-pull signal corresponding to the dense portion B is greatly reduced from the original value. As a result, the radial push-pull signal determination unit 26 cannot detect the waveform disturbance in the portion corresponding to the dense portion B of the radial push-pull signal.
  • coefficient k is specified by an experiment, for example.
  • the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 is 0.5 mW, which is half of that during reproduction, and the rotation control unit 2 reproduces the optical disc D.
  • the spindle motor 1 was controlled to rotate at 3.9 m / s, which is 1/2 of the linear velocity at the time.
  • the radial push-pull signal generator 23 obtained the radial push-pull signal shown in FIG.
  • FIG. 12 is a diagram illustrating a radial push-pull signal according to the embodiment.
  • the ratio of the minimum amplitude level (peak-to-peak) P2 of the radial push-pull signal to the maximum amplitude level (peak-to-peak) P1 of the radial push-pull signal is smaller than 1 dB. That is, the value of the radial push-pull signal corresponding to the dense portion B is substantially the original value.
  • the radial push-pull signal determination unit 26 determines whether the ratio or level difference between the maximum amplitude level and the minimum amplitude level is within a predetermined value in the portion corresponding to the dense portion B of the radial push-pull signal. As a result, the disturbance of the waveform could be detected.
  • the radial push-pull signal determination unit 26 determines whether the ratio between the minimum amplitude level and the maximum amplitude level of the radial push-pull signal whose high frequency component is reduced by the low-pass filter 22 is equal to or less than a predetermined value (for example, 1 dB). By making the determination, it is possible to detect waveform disturbance.
  • the rotation control unit 2 determines the optical disc D from the rotational speed at the time of reproduction.
  • the spindle motor 1 is controlled to rotate at a slow predetermined rotation speed.
  • the rotational speed at that time may be determined such that the ratio (P2 / P1) of the minimum amplitude P2 of the radial push-pull signal to the maximum amplitude P1 of the radial push-pull signal is not more than a predetermined value.
  • the predetermined value is 3 dB, for example.
  • the power of light emitted from the light source 3 is preferably controlled as follows. That is, assuming that the ratio of the rotation speed of the optical disk D at the time of inspection to the rotation speed of the optical disk D at the time of reproduction is Rr, the rate of decrease in the power of the light emitted from the light source 3 at the time of inspection It is desirable to be between about Rr times and 1/2 of Rr times. For example, when the power of light emitted from the light source 3 during reproduction is 1.0 mW and the rotation speed of the optical disc D during inspection is 1 ⁇ 2 of the rotation speed during reproduction, the light emitted from the light source 3 during inspection It is desirable that the power of the power is 0.5 mW to 0.75 mW.
  • the rotation control unit 2 moves the optical disk D to the information recording surface.
  • the spindle motor 1 is controlled to rotate at a predetermined rotational speed that is slower than the rotational speed at the time of reproducing the information recorded in D2.
  • the radial push-pull signal determination unit 26 evaluates the waveform of the radial push-pull signal calculated by the radial push-pull signal generation unit 23, and detects the waveform disturbance. However, the radial push-pull signal determination unit 26 may evaluate the waveform of the tracking error signal whose high-frequency component has been reduced by the low-pass filter 22 and detect the waveform disturbance.
  • 100 optical disk evaluation device 1 spindle motor, 2 rotation control unit, 3 light source, 4 optical power control unit, 5 collimating lens, 6 polarization beam splitter, 7/4 wavelength plate, 8 objective lens, 9 condensing lens, 10 Cylindrical lens, 11 detection unit, 12 1st addition unit, 13 2nd addition unit, 14 3rd addition unit, 15 4th addition unit, 16 1st subtraction unit, 17 focus control unit, 18 1st actuator, 19th 5th Addition unit, 20 second subtraction unit, 21 wobble detection circuit, 22 low pass filter, 23 radial push-pull signal generation unit, 24 tracking control unit, 25 second actuator, 26 radial push-pull signal determination unit, 27 reproduction signal evaluation unit 28 output unit, L light, D optical disk, D2 information recording surface.
  • the present invention can be used in a technique for detecting defects such as the shape of the information recording surface of an optical disc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Multimedia (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

An optical disc evaluation unit (100) comprises a rotation control unit (2) that rotates an optical disc (D), further comprising an information recording face (D2), at a rotation speed slower than the rotation speed of playing the information that is recorded on the information recording face (D2); a light source (3) for projecting light upon the information recording face (D2) of the rotating optical disc (D); a detector (11) that detects a quantity of reflected light from the information recording face (D2); and a radial push-pull signal determination unit (26) that evaluates a wave form of a value based on the quantity that is detected by the detector (11).

Description

光ディスク評価方法及び光ディスク評価装置Optical disk evaluation method and optical disk evaluation apparatus
 本発明は、光ディスクの情報記録面の形状等の欠陥を検出するための技術に関する。 The present invention relates to a technique for detecting defects such as the shape of the information recording surface of an optical disc.
 従来、光ディスクの製造工程では、製造した光ディスクの情報記録面に形状や大きさ等の欠陥が存在しているか否かを、以下に示す方法により判断している。先ず、製造した光ディスクを、情報記録面に記録された情報を再生する際の回転速度により回転させる。そして、光ディスクの情報記録面に光を照射し、フォーカス制御を行い、光の照射位置を光ディスクの半径方向で徐々に変えながら光ディスクから反射された反射光量を検出し、その量に基づくラジアルプッシュプル信号を得る。 Conventionally, in an optical disc manufacturing process, whether or not there is a defect such as a shape or size on the information recording surface of the manufactured optical disc is determined by the following method. First, the manufactured optical disk is rotated at a rotation speed when reproducing information recorded on the information recording surface. Then, the information recording surface of the optical disk is irradiated with light, focus control is performed, the reflected light amount reflected from the optical disk is detected while gradually changing the light irradiation position in the radial direction of the optical disk, and the radial push-pull based on the amount is detected. Get a signal.
 得られたラジアルプッシュプル信号の波形を評価し、波形の乱れを検出すると、情報記録面におけるその乱れに対応する部位に形状等の欠陥が存在している可能性があると判断する。最後に、欠陥が存在している可能性があると判断した部位を原子間力顕微鏡等により観察し、その部位に形状等の欠陥が存在しているか否かを判断する。なお、情報記録面は、ピット、グルーブ、又はランドである。 When the waveform of the obtained radial push-pull signal is evaluated and a disturbance of the waveform is detected, it is determined that there is a possibility that a defect such as a shape exists in a portion corresponding to the disturbance on the information recording surface. Finally, the part determined to have a defect is observed with an atomic force microscope or the like, and it is determined whether or not a defect such as a shape exists in the part. The information recording surface is a pit, groove, or land.
特開2000-311344号公報JP 2000-31344 A
 光ディスクの情報記録面には、位置情報として用いられるウォブルが存在する。そのため、ラジアルプッシュプル信号の元の信号であるトラッキングエラー信号には、ピット、グルーブ、又はランドに対応する信号(以下、「プッシュプル信号」と記載する。)とともに、ウォブルに対応する信号(以下、「ウォブル信号」と記載する。)が含まれる。トラッキングエラー信号において、ウォブル信号の周波数は、プッシュプル信号の周波数に比べると非常に高い。 There is a wobble used as position information on the information recording surface of the optical disc. Therefore, the tracking error signal, which is the original signal of the radial push-pull signal, includes a signal corresponding to a pit, a groove, or a land (hereinafter referred to as “push-pull signal”) and a signal corresponding to a wobble (hereinafter referred to as “push-pull signal”). , Described as “wobble signal”). In the tracking error signal, the frequency of the wobble signal is very high compared to the frequency of the push-pull signal.
 そこで、情報記録面に形状等の欠陥が存在しているか否かを判断する場合、トラッキングエラー信号の高周波数成分であるウォブル信号を除去する目的で、ローパスフィルタにより、高周波数成分の値を著しく低下させる。そして、ピット、グルーブ、又はランドに対応するラジアルプッシュプル信号の波形を評価する。 Therefore, when determining whether there is a defect such as a shape on the information recording surface, the value of the high frequency component is markedly reduced by a low pass filter for the purpose of removing the wobble signal that is the high frequency component of the tracking error signal. Reduce. Then, the waveform of the radial push-pull signal corresponding to the pit, groove, or land is evaluated.
 次に、現実の光ディスクDの回転中心CとトラックTの中心C’との関係を図1を用いて説明する。図1は、現実の光ディスクDの回転中心CとトラックTの中心C’との関係を示す図である。光ディスクDの原盤となるスタンパの作成時における各種位置合わせ精度等により、図1に示すように、製造された光ディスクDでは、回転中心CとトラックTの中心C’とは一致しない。つまり、現実の光ディスクDには、いわゆる「偏心R」が存在する。そのため、図1に示すように、光ディスクDの情報記録面には、トラッキング制御されずに照射された円形となる光Lが横切るトラックの数が少ない部分A(以下、「疎部分A」と記載する。)と、光Lが横切るトラックの数が多い部分B(以下、「密部分B」と記載する。)とが存在する。 Next, the relationship between the actual rotation center C of the optical disc D and the center C ′ of the track T will be described with reference to FIG. FIG. 1 is a diagram showing the relationship between the rotation center C of the actual optical disc D and the center C ′ of the track T. As shown in FIG. 1, the rotation center C and the center C ′ of the track T do not coincide with each other as shown in FIG. 1 due to various alignment accuracy at the time of creating a stamper as a master disk of the optical disk D. That is, the actual optical disc D has a so-called “eccentric R”. Therefore, as shown in FIG. 1, the information recording surface of the optical disc D has a portion A (hereinafter referred to as “sparse portion A”) in which the number of tracks traversed by the circular light L irradiated without tracking control is small. And a portion B (hereinafter referred to as “dense portion B”) in which the number of tracks traversed by the light L is large.
 偏心Rが大きくなると、トラッキングエラー信号の密部分Bに対応する部分の周波数は高くなる。そうすると、ウォブル信号を除去するためのローパスフィルタにより、プッシュプル信号の密部分Bに対応する部分の値は、本来の値より大きく低下する。そのため、密部分Bに形状等の欠陥が存在していても、波形の乱れがラジアルプッシュプル信号に隠れてしまう。つまり、密部分Bに対応する部分については、ラジアルプッシュプル信号の波形の乱れを検出することは困難である。そのため、密部分Bについては、欠陥が存在している可能性がある部位を特定することは困難である。 As the eccentricity R increases, the frequency of the portion corresponding to the dense portion B of the tracking error signal increases. Then, the value of the portion corresponding to the dense portion B of the push-pull signal is greatly reduced from the original value by the low-pass filter for removing the wobble signal. For this reason, even if a defect such as a shape exists in the dense portion B, the waveform disturbance is hidden in the radial push-pull signal. That is, for the portion corresponding to the dense portion B, it is difficult to detect the disturbance of the waveform of the radial push-pull signal. Therefore, it is difficult for the dense portion B to specify a portion where a defect may exist.
 また、情報の転送速度が速い光ディスクについては、再生時の回転速度が速いので情報記録面に欠陥が存在しているか否かを判断する際の回転速度も速い。特に、記録容量を増やすために情報記録面が微細化されている光ディスクについては、密部分Bに対応するトラッキングエラー信号の周波数は高くなる。したがって、上記と同様に、密部分Bに対応する部分については、ラジアルプッシュプル信号の波形の乱れを検出することは困難であり、欠陥が存在している可能性がある部位を特定することは困難である。 Also, an optical disc with a high information transfer speed has a high rotation speed at the time of reproduction, so that the rotation speed when judging whether or not there is a defect on the information recording surface is also high. In particular, for an optical disc whose information recording surface is miniaturized in order to increase the recording capacity, the frequency of the tracking error signal corresponding to the dense portion B is high. Therefore, in the same manner as described above, it is difficult to detect the disturbance of the radial push-pull signal waveform in the portion corresponding to the dense portion B, and it is not possible to specify a portion where a defect may exist. Have difficulty.
 本発明は、光ディスクの情報記録面の形態の欠陥が存在している可能性がある部位を特定することを可能とする光ディスク評価方法及び光ディスク評価装置を提供することを目的とする。 An object of the present invention is to provide an optical disk evaluation method and an optical disk evaluation apparatus that can identify a portion where a defect in the form of an information recording surface of an optical disk may exist.
 上記課題を解決し上記目的を達成するために、本発明の光ディスク評価方法は、情報記録面を有する光ディスクを、前記情報記録面に記録された情報を再生する際の回転速度より遅い回転速度で回転させるステップと、回転した前記光ディスクの前記情報記録面に光を照射するステップと、前記情報記録面から反射した反射光量を検出するステップと、前記反射光量に基づいてトラッキングエラー信号を算出するステップと、前記トラッキングエラー信号の高周波成分を低減するステップと、前記高周波成分が低減された信号の波形における最大振幅レベルと最小振幅レベルの比率またはレベル差が所定値以内であるか否かを判定するステップとを含む。 In order to solve the above problems and achieve the above object, an optical disk evaluation method according to the present invention provides an optical disk having an information recording surface at a rotation speed slower than the rotation speed when reproducing information recorded on the information recording surface. Rotating, irradiating the information recording surface of the rotated optical disc with light, detecting a reflected light amount reflected from the information recording surface, and calculating a tracking error signal based on the reflected light amount And a step of reducing the high frequency component of the tracking error signal, and determining whether a ratio or level difference between the maximum amplitude level and the minimum amplitude level in the waveform of the signal with the reduced high frequency component is within a predetermined value. Steps.
 本発明の光ディスク評価装置は、情報記録面を有する光ディスクを、前記情報記録面に記録された情報を再生する際の回転速度より遅い回転速度で回転させる回転制御部と、回転した前記光ディスクの前記情報記録面に光を照射するための光源と、前記情報記録面から反射した反射光量を検出する検出部と、前記反射光量に基づくトラッキングエラー信号の高周波成分を低減するローパスフィルタと、前記高周波成分が低減された信号の波形における最大振幅レベルと最小振幅レベルの比率またはレベル差が所定値以内であるか否かを判定するプッシュプル信号判定部とを有する。 The optical disk evaluation apparatus of the present invention includes a rotation control unit that rotates an optical disk having an information recording surface at a rotation speed slower than a rotation speed when reproducing information recorded on the information recording surface; A light source for irradiating the information recording surface with light; a detection unit for detecting a reflected light amount reflected from the information recording surface; a low-pass filter for reducing a high-frequency component of a tracking error signal based on the reflected light amount; and the high-frequency component And a push-pull signal determination unit that determines whether or not the ratio or level difference between the maximum amplitude level and the minimum amplitude level in the waveform of the signal with reduced noise is within a predetermined value.
 本発明は、光ディスクの情報記録面の形状等の欠陥が存在している可能性がある部位を特定することを可能とする光ディスク評価方法及び光ディスク評価装置を提供することができる。 The present invention can provide an optical disk evaluation method and an optical disk evaluation apparatus that can identify a portion where a defect such as a shape of an information recording surface of an optical disk may exist.
光ディスクの回転中心とトラックの中心との関係を示す図である。It is a figure which shows the relationship between the rotation center of an optical disk, and the center of a track | truck. 本実施の形態の光ディスク評価装置の構成図である。It is a block diagram of the optical disk evaluation apparatus of this Embodiment. トラッキングエラー信号を説明するための図である。It is a figure for demonstrating a tracking error signal. 図1のローパスフィルタの特性を示す図である。It is a figure which shows the characteristic of the low pass filter of FIG. 光ディスクの情報記録面の形状等の欠陥を説明するための図である。It is a figure for demonstrating defects, such as the shape of the information recording surface of an optical disk. 光ディスクの情報記録面の形状等の欠陥と、ラジアルプッシュプル信号の波形との関係を示す図である。It is a figure which shows the relationship between defects, such as the shape of the information recording surface of an optical disk, and the waveform of a radial push pull signal. 光ディスクの断面を含む斜視図である。It is a perspective view containing the cross section of an optical disk. トラッキングエラー信号がウォブル信号を含む信号であることと、ローパスフィルタがトラッキングエラー信号のうちの高周波数成分の値を著しく低下させることとを説明するための図である。It is a figure for demonstrating that a tracking error signal is a signal containing a wobble signal and a low-pass filter reduces the value of the high frequency component of a tracking error signal remarkably. 本実施の形態の光ディスク評価装置の動作の各ステップを示すフローチャートである。It is a flowchart which shows each step of operation | movement of the optical disk evaluation apparatus of this Embodiment. 本実施の形態の光ディスク評価装置の変形動作の各ステップを示すフローチャートである。It is a flowchart which shows each step of the deformation | transformation operation | movement of the optical disk evaluation apparatus of this Embodiment. 比較例のラジアルプッシュプル信号を示す図である。It is a figure which shows the radial push pull signal of a comparative example. 実施例のラジアルプッシュプル信号を示す図である。It is a figure which shows the radial push pull signal of an Example.
 以下に、本発明を実施するための形態を図面を参照して説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 先ず、本実施の形態の光ディスク評価装置100の構成を図2を用いて説明する。図2は、本実施の形態の光ディスク評価装置100の構成図である。図2には、評価対象の光ディスクDも表示されている。光ディスクDは、製造直後の光ディスクであって、基板D1と、基板D1に設けられている情報記録面D2と、情報記録面D2の上に設けられている透明基板D3とを有する。情報記録面D2は、ピット、グルーブ、又はランドであり、螺旋状に形成されている。 First, the configuration of the optical disk evaluation apparatus 100 according to the present embodiment will be described with reference to FIG. FIG. 2 is a configuration diagram of the optical disc evaluation apparatus 100 of the present embodiment. In FIG. 2, the optical disc D to be evaluated is also displayed. The optical disc D is an optical disc immediately after manufacture, and includes a substrate D1, an information recording surface D2 provided on the substrate D1, and a transparent substrate D3 provided on the information recording surface D2. The information recording surface D2 is a pit, a groove, or a land, and is formed in a spiral shape.
 本実施の形態の光ディスク評価装置100は、光ディスクDの情報記録面D2の形状等の欠陥が存在している可能性がある部位を特定する装置であって、図2に示すように、スピンドルモータ1と、回転制御部2と、光源3と、光パワー制御部4と、コリメートレンズ5と、偏光ビームスプリッタ6と、4分の1波長板7と、対物レンズ8と、集光レンズ9と、シリンドリカルレンズ10と、検出部11と、第1加算部12と、第2加算部13と、第3加算部14と、第4加算部15と、第1減算部16と、フォーカス制御部17と、第1アクチュエータ18と、第5加算部19と、第2減算部20と、ウォブル検出回路21と、ローパスフィルタ22と、ラジアルプッシュプル信号生成部23と、トラッキング制御部24と、第2アクチュエータ25と、ラジアルプッシュプル信号判定部26と、再生信号評価部27と、出力部28とを有する。 The optical disk evaluation apparatus 100 according to the present embodiment is an apparatus that identifies a portion where a defect such as the shape of the information recording surface D2 of the optical disk D may be present. As shown in FIG. 1, rotation controller 2, light source 3, optical power controller 4, collimator lens 5, polarizing beam splitter 6, quarter-wave plate 7, objective lens 8, and condenser lens 9 The cylindrical lens 10, the detection unit 11, the first addition unit 12, the second addition unit 13, the third addition unit 14, the fourth addition unit 15, the first subtraction unit 16, and the focus control unit 17. A first actuator 18, a fifth adder 19, a second subtractor 20, a wobble detection circuit 21, a low-pass filter 22, a radial push-pull signal generator 23, a tracking controller 24, a second Acti Having a eta 25, a radial push-pull signal determination unit 26, a reproduction signal evaluation unit 27, an output unit 28.
 スピンドルモータ1は、光ディスクDを回転させる。回転制御部2は、光ディスクDを、情報記録面D2に記録された情報を再生する際の回転速度より遅い所定の回転速度で回転させるようにスピンドルモータ1を制御する。光源3は、半導体レーザによって構成され、直線偏光であって発散性を有する光Lを射出する。光パワー制御部4は、光源3が射出する光Lのパワーを、情報記録面D2に記録された情報を再生する際のパワーより小さくするように光源3を制御する。以下では、「情報記録面D2に記録された情報を再生する際」を「再生時」と記載する場合がある。 Spindle motor 1 rotates optical disc D. The rotation control unit 2 controls the spindle motor 1 so as to rotate the optical disc D at a predetermined rotation speed that is lower than the rotation speed when reproducing the information recorded on the information recording surface D2. The light source 3 is composed of a semiconductor laser, and emits light L that is linearly polarized light and has a divergence. The optical power control unit 4 controls the light source 3 so that the power of the light L emitted from the light source 3 is smaller than the power for reproducing the information recorded on the information recording surface D2. Hereinafter, “when reproducing information recorded on the information recording surface D2” may be referred to as “during reproduction”.
 コリメートレンズ5は、光源3からの発散性を有する光Lを平行光に変換する。偏光ビームスプリッタ6は、コリメートレンズ5からの光を4分の1波長板7の側に反射する。また、偏光ビームスプリッタ6は、4分の1波長板7からの光を透過させて集光レンズ9に向かわせる。4分の1波長板7は、偏光ビームスプリッタ6からの光を円偏光に変換して対物レンズ8に向かわせる。また、4分の1波長板7は、対物レンズ8からの光を直線偏光に変換して偏光ビームスプリッタ6に向かわせる。 The collimating lens 5 converts the divergent light L from the light source 3 into parallel light. The polarization beam splitter 6 reflects the light from the collimating lens 5 toward the quarter-wave plate 7 side. Further, the polarization beam splitter 6 transmits the light from the quarter-wave plate 7 toward the condenser lens 9. The quarter-wave plate 7 converts the light from the polarization beam splitter 6 into circularly polarized light and directs it to the objective lens 8. The quarter-wave plate 7 converts the light from the objective lens 8 into linearly polarized light and directs it to the polarizing beam splitter 6.
 対物レンズ8は、4分の1波長板7からの光を、光ディスクDの透明基板D3を透過させて情報記録面D2に集める。また、対物レンズ8は、情報記録面D2からの光を平行光にして4分の1波長板7に向かわせる。集光レンズ9は、偏光ビームスプリッタ6からの光を収束させてシリンドリカルレンズ10に向かわせる。シリンドリカルレンズ10は、集光レンズ9からの光を更に収束させて検出部11に集める。 The objective lens 8 collects the light from the quarter-wave plate 7 on the information recording surface D2 through the transparent substrate D3 of the optical disc D. The objective lens 8 makes the light from the information recording surface D2 parallel light and directs it toward the quarter-wave plate 7. The condensing lens 9 converges the light from the polarization beam splitter 6 and directs it to the cylindrical lens 10. The cylindrical lens 10 further converges the light from the condenser lens 9 and collects it in the detection unit 11.
 以上の構成要素により、光源3から射出した光Lは、コリメートレンズ5、偏光ビームスプリッタ6、4分の1波長板7、及び、対物レンズ8をその順に通過して光ディスクDの情報記録面D2に集められる。そして、光は、情報記録面D2により反射し、対物レンズ8、4分の1波長板7、偏光ビームスプリッタ6、集光レンズ9、及び、シリンドリカルレンズ10をその順に通過して検出部11に集められる。 With the above components, the light L emitted from the light source 3 passes through the collimating lens 5, the polarizing beam splitter 6, the quarter wavelength plate 7, and the objective lens 8 in this order, and the information recording surface D2 of the optical disc D. To be collected. Then, the light is reflected by the information recording surface D2, passes through the objective lens 8, the quarter-wave plate 7, the polarization beam splitter 6, the condensing lens 9, and the cylindrical lens 10 in that order, and passes to the detection unit 11. Collected.
 検出部11は、シリンドリカルレンズ10からの光を検出する。検出部11は、従来の光ピックアップの検出器と同様に、4個の受光部を有する。すなわち、検出部11は、第1受光部11Aと、第2受光部11Bと、第3受光部11Cと、第4受光部11Dとを有する。各受光部は、図2に示すように、反時計回りに配置されている。第1受光部11Aと第4受光部11Dとの組の長手方向と、第2受光部11Bと第3受光部11Cとの組の長手方向とは、いずれもトラック方向に対して実質的に直交している。すなわち、両組ともその長手方向は実質的に光ディスクDの半径方向である。 The detection unit 11 detects light from the cylindrical lens 10. The detection unit 11 includes four light receiving units as in the conventional optical pickup detector. That is, the detection unit 11 includes a first light receiving unit 11A, a second light receiving unit 11B, a third light receiving unit 11C, and a fourth light receiving unit 11D. As shown in FIG. 2, each light receiving portion is arranged counterclockwise. The longitudinal direction of the set of the first light receiving unit 11A and the fourth light receiving unit 11D and the longitudinal direction of the set of the second light receiving unit 11B and the third light receiving unit 11C are substantially orthogonal to the track direction. is doing. That is, the longitudinal direction of both sets is substantially the radial direction of the optical disc D.
 検出部11の各受光部は、受光量に応じた電流値の信号を出力する。以下では、第1受光部11Aが出力する電流信号を「電流信号Ia」と記載し、第2受光部11Bが出力する電流信号を「電流信号Ib」と記載し、第3受光部11Cが出力する電流信号を「電流信号Ic」と記載し、第4受光部11Dが出力する電流信号を「電流信号Id」と記載する。 Each light receiving unit of the detecting unit 11 outputs a signal having a current value corresponding to the amount of received light. In the following, the current signal output by the first light receiving unit 11A is described as “current signal Ia”, the current signal output by the second light receiving unit 11B is described as “current signal Ib”, and the third light receiving unit 11C outputs The current signal to be output is referred to as “current signal Ic”, and the current signal output from the fourth light receiving unit 11D is referred to as “current signal Id”.
 第1加算部12は、第2受光部11Bからの電流信号Ibと、第4受光部11Dからの電流信号Idとを加算する。第2加算部13は、第1受光部11Aからの電流信号Iaと、第3受光部11Cからの電流信号Icとを加算する。第3加算部14は、第1受光部11Aからの電流信号Iaと、第2受光部11Bからの電流信号Ibとを加算する。第4加算部15は、第3受光部11Cからの電流信号Icと、第4受光部11Dからの電流信号Idとを加算する。 The first addition unit 12 adds the current signal Ib from the second light receiving unit 11B and the current signal Id from the fourth light receiving unit 11D. The second addition unit 13 adds the current signal Ia from the first light receiving unit 11A and the current signal Ic from the third light receiving unit 11C. The third addition unit 14 adds the current signal Ia from the first light receiving unit 11A and the current signal Ib from the second light receiving unit 11B. The fourth addition unit 15 adds the current signal Ic from the third light receiving unit 11C and the current signal Id from the fourth light receiving unit 11D.
 第1減算部16は、第2加算部13によって得られた値から第1加算部12によって得られた値を減じて、フォーカスエラー信号「(Ia+Ic)-(Ib+Id)」を算出する。フォーカス制御部17は、第1減算部16によって算出されたフォーカスエラー信号に基づいて、第1アクチュエータ18にフォーカス制御を行わせる。第1アクチュエータ18は、フォーカス制御部17の制御に従ってフォーカス制御を行う。 The first subtractor 16 subtracts the value obtained by the first adder 12 from the value obtained by the second adder 13 to calculate the focus error signal “(Ia + Ic) − (Ib + Id)”. The focus control unit 17 causes the first actuator 18 to perform focus control based on the focus error signal calculated by the first subtraction unit 16. The first actuator 18 performs focus control according to the control of the focus control unit 17.
 第5加算部19は、第3加算部14によって得られた値と、第4加算部15によって得られた値とを加算して、RF信号「(Ia+Ib+Ic+Id)」を算出する。第2減算部20は、第3加算部14によって得られた値から第4加算部15によって得られた値を減じて、トラッキングエラー信号「(Ia+Ib)-(Ic+Id)」を算出する。 The fifth adder 19 adds the value obtained by the third adder 14 and the value obtained by the fourth adder 15 to calculate the RF signal “(Ia + Ib + Ic + Id)”. The second subtractor 20 subtracts the value obtained by the fourth adder 15 from the value obtained by the third adder 14 to calculate the tracking error signal “(Ia + Ib) − (Ic + Id)”.
 第2減算部20によって算出されるトラッキングエラー信号を、図3を用いて説明する。図3は、トラッキングエラー信号を説明するための図である。図3には、第1受光部11Aと、第2受光部11Bと、第3受光部11Cと、第4受光部11Dとを有する検出部11も表示されている。 The tracking error signal calculated by the second subtraction unit 20 will be described with reference to FIG. FIG. 3 is a diagram for explaining the tracking error signal. In FIG. 3, the detection unit 11 including the first light receiving unit 11A, the second light receiving unit 11B, the third light receiving unit 11C, and the fourth light receiving unit 11D is also displayed.
 図3(A)は、光Lが対物レンズ8によってトラックTの凹部の中心に集められている状態を示しており、(Ia+Ib)の値と(Ic+Id)の値とは等しく、トラッキングエラー信号「(Ia+Ib)-(Ic+Id)」の値は0となる。図3(B)は、トラッキングがトラックTの半分ずれたが状態を示しており、(Ia+Ib)の値と(Ic+Id)の値とは最も大きく異なり、トラッキングエラー信号「(Ia+Ib)-(Ic+Id)」の値はマイナスの最大となる。 FIG. 3A shows a state in which the light L is collected at the center of the concave portion of the track T by the objective lens 8. The value of (Ia + Ib) is equal to the value of (Ic + Id), and the tracking error signal “ The value of (Ia + Ib) − (Ic + Id) ”is 0. FIG. 3B shows a state where the tracking is shifted by half of the track T, and the value of (Ia + Ib) and the value of (Ic + Id) are the most different, and the tracking error signal “(Ia + Ib) − (Ic + Id)”. "Is the maximum negative value.
 図3(C)は、光Lが対物レンズ8によってトラックTの凸部の中心に集められている状態を示しており、(Ia+Ib)の値と(Ic+Id)の値とは等しく、トラッキングエラー信号「(Ia+Ib)-(Ic+Id)」の値は0となる。図3(D)は、トラッキングがトラックTの半分ずれたが状態を示しており、(Ia+Ib)の値と(Ic+Id)の値とは最も大きく異なり、トラッキングエラー信号「(Ia+Ib)-(Ic+Id)」の値はプラスの最大値となる。 FIG. 3C shows a state in which the light L is collected at the center of the convex portion of the track T by the objective lens 8. The value of (Ia + Ib) is equal to the value of (Ic + Id), and the tracking error signal The value of “(Ia + Ib) − (Ic + Id)” is 0. FIG. 3D shows a state where the tracking is shifted by half of the track T. The value of (Ia + Ib) and the value of (Ic + Id) are the most different, and the tracking error signal “(Ia + Ib) − (Ic + Id)” is shown. "Is the maximum positive value.
 なお、光Lの波長をλとすると、nが正数であるとき、トラックの溝の深さが「n×λ/4」でなければ、トラッキングエラー信号は常に「0」にはならない。mを奇数とすると、トラックの溝の深さが「m×λ/8」であるとき、トラッキングエラー信号の振幅は最大となる。 When the wavelength of the light L is λ, when n is a positive number, the tracking error signal is not always “0” unless the groove depth of the track is “n × λ / 4”. When m is an odd number, the tracking error signal has the maximum amplitude when the depth of the groove of the track is “m × λ / 8”.
 図2に戻る。ウォブル検出回路21は、第2減算部20によって算出されたトラッキングエラー信号に基づいて、ウォブルを検出する。 Return to Figure 2. The wobble detection circuit 21 detects wobble based on the tracking error signal calculated by the second subtraction unit 20.
 次に、ローパスフィルタ22を図4を用いて説明する。図4は、ローパスフィルタ22の特性を示す図である。ローパスフィルタ22は、図4に示すように、カットオフ周波数Fc以上の高周波数成分の値を著しく低下させる特性を有している。すなわち、ローパスフィルタ22は、第2減算部20によって算出されたトラッキングエラー信号のうちのカットオフ周波数Fc以上の高周波数成分の値を著しく低下させる。 Next, the low-pass filter 22 will be described with reference to FIG. FIG. 4 is a diagram illustrating the characteristics of the low-pass filter 22. As shown in FIG. 4, the low-pass filter 22 has a characteristic of remarkably reducing the value of a high frequency component equal to or higher than the cutoff frequency Fc. That is, the low-pass filter 22 significantly reduces the value of the high frequency component equal to or higher than the cutoff frequency Fc in the tracking error signal calculated by the second subtracting unit 20.
 図2に戻る。ラジアルプッシュプル信号生成部23は、ローパスフィルタ22によって高周波成分が低減されたトラッキングエラー信号を、第5加算部19によって算出されたRF信号により除して正規化してラジアルプッシュプル信号を算出する。トラッキング制御部24は、ラジアルプッシュプル信号生成部23によって算出されたラジアルプッシュプル信号に基づいて、第2アクチュエータ25にトラッキング制御を行わせる。第2アクチュエータ25は、トラッキング制御部24の制御に従ってトラッキング制御を行う。 Return to Figure 2. The radial push-pull signal generator 23 calculates a radial push-pull signal by dividing the tracking error signal whose high-frequency component is reduced by the low-pass filter 22 by the RF signal calculated by the fifth adder 19 and normalizing it. The tracking control unit 24 causes the second actuator 25 to perform tracking control based on the radial push-pull signal calculated by the radial push-pull signal generation unit 23. The second actuator 25 performs tracking control according to the control of the tracking control unit 24.
 次に、ラジアルプッシュプル信号判定部26を説明するが、その前に、光ディスクDの情報記録面D2の形状等の欠陥を図5を用いて説明する。図5は、光ディスクDの情報記録面D2の形状等の欠陥を説明するための図である。図5(A)は、情報記録面D2に形状等の欠陥を有していない光ディスクDの断面を示している。図5(B)は、情報記録面D2にトラックTの溝の深さが相対的に浅い第1欠陥df1を有する光ディスクDの断面を示している。図5(C)は、情報記録面D2にトラックTの溝の形状が他と異なる第2欠陥df2を有する光ディスクDの断面を示している。なお、情報記録面D2の構造については図7を用いてあらためて説明する。 Next, the radial push-pull signal determination unit 26 will be described, but before that, defects such as the shape of the information recording surface D2 of the optical disc D will be described with reference to FIG. FIG. 5 is a diagram for explaining defects such as the shape of the information recording surface D2 of the optical disc D. FIG. 5A shows a cross section of an optical disc D that does not have a shape or other defect on the information recording surface D2. FIG. 5B shows a cross section of the optical disc D having the first defect df1 in which the groove depth of the track T is relatively shallow on the information recording surface D2. FIG. 5C shows a cross section of an optical disc D having a second defect df2 in which the groove shape of the track T is different from the others on the information recording surface D2. The structure of the information recording surface D2 will be described again with reference to FIG.
 次に、光ディスクDの情報記録面D2の形状等の欠陥と、ラジアルプッシュプル信号の波形との関係を図6用いて説明する。図6は、光ディスクDの情報記録面D2の形状等の欠陥と、ラジアルプッシュプル信号の波形との関係を示す図である。図6(A)は、図5(A)の断面を有する光ディスクDについてのラジアルプッシュプル信号の波形Pwを示す図であって、波形Pwの乱れは存在していない。 Next, the relationship between the defect such as the shape of the information recording surface D2 of the optical disc D and the waveform of the radial push-pull signal will be described with reference to FIG. FIG. 6 is a diagram showing the relationship between a defect such as the shape of the information recording surface D2 of the optical disc D and the waveform of the radial push-pull signal. FIG. 6A is a diagram showing a waveform Pw of the radial push-pull signal for the optical disc D having the cross section of FIG. 5A, and there is no disturbance of the waveform Pw.
 図6(B)は、図5(B)の断面を有する光ディスクDについてのラジアルプッシュプル信号の波形Pwを示す図であって、波形Pwには、図5(B)の第1欠陥df1に対応する、振幅レベルが相対的に他の部分と比較して小さい第1乱れdis1が存在している。図6(C)は、図5(C)の断面を有する光ディスクDについてのラジアルプッシュプル信号の波形Pwを示す図であって、波形Pwには、図5(C)の第2欠陥df2に対応する、形状が他の部分と異なり、振幅レベルが相対的に他の部分と比較して小さい第2乱れdis2が存在している。 FIG. 6B is a diagram showing the waveform Pw of the radial push-pull signal for the optical disc D having the cross section of FIG. 5B, and the waveform Pw shows the first defect df1 in FIG. There is a corresponding first disturbance dis1 whose amplitude level is relatively small compared to other parts. FIG. 6C is a diagram showing the waveform Pw of the radial push-pull signal for the optical disc D having the cross section of FIG. 5C. The waveform Pw shows the second defect df2 in FIG. Correspondingly, there is a second disturbance dis2 whose shape is different from the other parts and whose amplitude level is relatively small compared to the other parts.
 図5と図6とから明らかなように、光ディスクDの情報記録面D2の形状等の欠陥と、ラジアルプッシュプル信号の波形とには相関がある。そこで、図2のラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号生成部23によって算出されたラジアルプッシュプル信号の波形の乱れがあるか否かを判定(評価)し、最大振幅レベルと最小振幅レベルの比率またはレベル差が所定値以内であるか否かを判定することにより、波形の乱れを検出すると、上記の相関に基づいて、波形の乱れに対応する情報記録面D2の部位に形状等の欠陥が存在している可能性があると判断する。 As is clear from FIGS. 5 and 6, there is a correlation between the defect such as the shape of the information recording surface D2 of the optical disc D and the waveform of the radial push-pull signal. Therefore, the radial push-pull signal determination unit 26 in FIG. 2 determines (evaluates) whether there is a disturbance in the waveform of the radial push-pull signal calculated by the radial push-pull signal generation unit 23, and determines the maximum amplitude level and the minimum amplitude. When a waveform disturbance is detected by determining whether or not the amplitude level ratio or level difference is within a predetermined value, a shape is formed on the portion of the information recording surface D2 corresponding to the waveform disturbance based on the above correlation. It is determined that there may be defects such as.
 再生信号評価部27は、第5加算部19によって算出されたRF信号に基づいて、再生信号を評価する。具体的には、再生信号評価部27は、エラーレート、CNR(Carrier to Noise Ratio)、ジッタ、SAM(Sequence Amplitude Margin)、PRSNR(Partial Response Signal Noise Ratio)、MLSE(Maximum Likelihood Sequence Error)、変調度、アシンメトリ、及びβ等を評価する。 The reproduction signal evaluation unit 27 evaluates the reproduction signal based on the RF signal calculated by the fifth addition unit 19. Specifically, the reproduction signal evaluation unit 27 performs error rate, CNR (Carrier-to-Noise-Ratio), jitter, SAM (Sequence-Amplitude-Margin), PRSNR (Partial-Response-Signal-Noise-Ratio), MLSE (Maximum-Likelihood-Sequence-Error), modulation. Degree, asymmetry, β, etc. are evaluated.
 出力部28は、ラジアルプッシュプル信号判定部26及び再生信号評価部27によって得られた結果を、本実施の形態の光ディスク評価装置100の外部の図示されていない表示装置に出力して表示させる。 The output unit 28 outputs and displays the results obtained by the radial push-pull signal determination unit 26 and the reproduction signal evaluation unit 27 on a display device (not shown) outside the optical disk evaluation device 100 of the present embodiment.
 次に、光ディスクDの情報記録面D2の構造を図7を用いて説明する。図7は、光ディスクDの断面を含む斜視図である。図7に示すように、光ディスクDの情報記録面D2は、グルーブD21と、ランドD22と、記録膜D23と、記録マークD24と、ウォブルD25とを有する。ウォブルD25は、光ディスクDの情報記録面D2における光の焦点位置を制御する際に用いられる。 Next, the structure of the information recording surface D2 of the optical disc D will be described with reference to FIG. FIG. 7 is a perspective view including a cross section of the optical disc D. FIG. As shown in FIG. 7, the information recording surface D2 of the optical disc D has a groove D21, a land D22, a recording film D23, a recording mark D24, and a wobble D25. The wobble D25 is used when controlling the focal position of light on the information recording surface D2 of the optical disc D.
 上述したように、ラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号の波形の乱れを検出することにより、評価対象の光ディスクDの情報記録面D2の形状や大きさ等の欠陥を検出する。ところで、ラジアルプッシュプル信号の元になるプッシュプル信号は、第2減算部20によって算出されるトラッキングエラー信号に含まれる。トラッキングエラー信号は、情報記録面D2からの反射した反射光量に基づく信号であるので、プッシュプル信号を含むとともに、ウォブルD25に対応するウォブル信号を含む。そのため、情報記録面D2の形状や大きさ等の欠陥を検出するためには、トラッキングエラー信号に含まれるウォブル信号を除去する必要がある。ローパスフィルタ22は、トラッキングエラー信号に含まれるウォブル信号を除去するために、トラッキングエラー信号のうちの高周波数成分の値を著しく低下させる。 As described above, the radial push-pull signal determination unit 26 detects defects such as the shape and size of the information recording surface D2 of the optical disc D to be evaluated by detecting the disturbance of the waveform of the radial push-pull signal. By the way, the push-pull signal that is the source of the radial push-pull signal is included in the tracking error signal calculated by the second subtracting unit 20. Since the tracking error signal is a signal based on the amount of reflected light reflected from the information recording surface D2, the tracking error signal includes a push-pull signal and a wobble signal corresponding to the wobble D25. Therefore, in order to detect defects such as the shape and size of the information recording surface D2, it is necessary to remove the wobble signal included in the tracking error signal. The low pass filter 22 significantly reduces the value of the high frequency component in the tracking error signal in order to remove the wobble signal included in the tracking error signal.
 次に、第2減算部20によって算出されるトラッキングエラー信号がウォブル信号を含む信号であることと、ローパスフィルタ22がトラッキングエラー信号のうちの高周波数成分の値を著しく低下させることとを、図8を用いて説明する。図8は、トラッキングエラー信号がウォブル信号を含む信号であることと、ローパスフィルタ22がトラッキングエラー信号のうちの高周波数成分の値を著しく低下させることとを説明するための図である。 Next, the tracking error signal calculated by the second subtracting unit 20 is a signal including a wobble signal, and the low pass filter 22 significantly reduces the value of the high frequency component of the tracking error signal. 8 will be used for explanation. FIG. 8 is a diagram for explaining that the tracking error signal is a signal including a wobble signal and that the low-pass filter 22 significantly reduces the value of the high frequency component of the tracking error signal.
 図8(A)~図(D)のトラッキングエラー信号は、光ディスクDの回転速度が再生時の回転速度である場合の信号である。更に詳細には、図8(A)は、偏心が比較的大きい場合のトラッキングエラー信号を示す図であり、図8(B)は、偏心が比較的小さい場合のトラッキングエラー信号を示す図である。図8(C)は、図8(A)に示す偏心が比較的大きい場合のトラッキングエラー信号に対してローパスフィルタ22により高周波成分が低減されウォブル信号が除去されたトラッキングエラー信号を示す図であり、図8(D)は、図8(A)に示す偏心が比較的小さい場合のトラッキングエラー信号に対してローパスフィルタ22により高周波成分が低減されウォブル信号が除去されたトラッキングエラー信号を示す図である。図8(E)は、偏心が比較的大きく、かつ、光ディスクDの回転速度が再生時の回転速度より遅い所定の回転速度である場合の、ローパスフィルタ22によって高周波成分が低減されたトラッキングエラー信号を示す図である。 8A to 8D are tracking error signals when the rotational speed of the optical disc D is the rotational speed at the time of reproduction. More specifically, FIG. 8A is a diagram showing a tracking error signal when the eccentricity is relatively large, and FIG. 8B is a diagram showing a tracking error signal when the eccentricity is relatively small. . FIG. 8C is a diagram illustrating a tracking error signal in which a high-frequency component is reduced and a wobble signal is removed by the low-pass filter 22 with respect to the tracking error signal when the eccentricity illustrated in FIG. 8A is relatively large. FIG. 8D shows a tracking error signal in which the high-frequency component is reduced by the low-pass filter 22 and the wobble signal is removed with respect to the tracking error signal when the eccentricity shown in FIG. 8A is relatively small. is there. FIG. 8E shows a tracking error signal in which the high-frequency component is reduced by the low-pass filter 22 when the eccentricity is relatively large and the rotation speed of the optical disc D is a predetermined rotation speed lower than the rotation speed during reproduction. FIG.
 図8(B)と図8(D)とを比較すると明らかなように、偏心が比較的小さい場合、光ディスクDの回転速度が再生時の回転速度であっても、ローパスフィルタ22は、実質的にウォブル信号のみを除去することができる。他方、図8(A)と図8(C)とを比較すると明らかなように、偏心が比較的大きく、かつ、光ディスクDの回転速度が再生時の回転速度である場合、ローパスフィルタ22は、ウォブル信号のみならず、光が横切るトラックの数が多い密部分Bに対応するプッシュプル信号BPの値も小さくする。そのため、密部分Bに形状等の欠陥が存在していても、波形の乱れが密部分Bに対応するプッシュプル信号BPに隠れてしまって、ラジアルプッシュプル信号の波形の乱れを検出することは困難である。 As is clear from a comparison between FIG. 8B and FIG. 8D, when the eccentricity is relatively small, even if the rotational speed of the optical disc D is the rotational speed during reproduction, the low-pass filter 22 is substantially Only the wobble signal can be removed. On the other hand, as is clear from comparing FIG. 8A and FIG. 8C, when the eccentricity is relatively large and the rotational speed of the optical disc D is the rotational speed at the time of reproduction, the low-pass filter 22 Not only the wobble signal but also the value of the push-pull signal BP corresponding to the dense portion B where the number of tracks traversed by light is large is reduced. Therefore, even if a defect such as a shape exists in the dense portion B, the waveform disturbance is hidden in the push-pull signal BP corresponding to the dense portion B, and the waveform disturbance of the radial push-pull signal is detected. Have difficulty.
 そこで、本実施の形態では、回転制御部2は、光ディスクDを、情報記録面D2に記録された情報を再生する際の回転速度より遅い所定の回転速度で回転させるようにスピンドルモータ1を制御する。つまり、回転制御部2は、光ディスクDを再生時の回転速度より遅い速度で回転させるようにスピンドルモータ1を制御する。 Therefore, in the present embodiment, the rotation control unit 2 controls the spindle motor 1 so as to rotate the optical disc D at a predetermined rotation speed that is lower than the rotation speed when reproducing the information recorded on the information recording surface D2. To do. That is, the rotation control unit 2 controls the spindle motor 1 so as to rotate the optical disc D at a speed slower than the rotation speed during reproduction.
 これにより、光ディスクDを再生時の回転速度で回転させる場合より、単位時間に光が密部分Bを横切るトラックの数を小さくことができる。すなわち、トラッキングエラー信号の時間軸が長くなり、プッシュプル信号の密部分Bに対応する部分の周波数を小さくすることができる。そうすると、図8(E)に示すように、偏心が比較的大きくても、ローパスフィルタ22は、実質的にウォブル信号のみを除去することができる。つまり、密部分Bについて、ローパスフィルタ22によって処理された後のプッシュプル信号の値は、実質的に本来の値となる。その結果、密部分Bに形状等の欠陥が存在していた場合、ラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号の波形における最大振幅レベルと最小振幅レベルの比率またはレベル差が所定値以内であるか否かを判定することにより、波形の乱れを検出することができる。 Thereby, the number of tracks in which light crosses the dense portion B per unit time can be reduced as compared with the case where the optical disc D is rotated at the rotation speed during reproduction. That is, the time axis of the tracking error signal becomes longer, and the frequency of the portion corresponding to the dense portion B of the push-pull signal can be reduced. Then, as shown in FIG. 8E, the low-pass filter 22 can substantially remove only the wobble signal even if the eccentricity is relatively large. That is, for the dense portion B, the value of the push-pull signal after being processed by the low-pass filter 22 is substantially the original value. As a result, when a defect such as a shape exists in the dense portion B, the radial push-pull signal determination unit 26 determines that the ratio or level difference between the maximum amplitude level and the minimum amplitude level in the radial push-pull signal waveform is within a predetermined value. By determining whether or not, it is possible to detect waveform disturbance.
 また、本実施の形態では、光パワー制御部4は、光源3が射出する光のパワーを、情報記録面D2に記録された情報を再生する際のパワーより小さくするように光源3を制御する。情報記録面D2に形状等の欠陥が存在しているか否かを判断する際の評価時の光ディスクDの回転速度が再生時の回転速度より遅くなったのにもかかわらず、光源3が射出する光のパワーを再生時のパワーと同じパワーにしておくと、次のような問題が生じる。すなわち、光の照射による図7の記録膜D23の各部の単位時間における加熱時間が従来より長くなるので記録膜D23の各部の温度が上昇し、記録膜D23が結晶化したり融解したりして記録信号が致命的に損傷してしまう可能性がある。そこで、本実施の形態では、記録膜D23の損傷を防止するために、光パワー制御部4は、光源3が出射する光のパワーが再生時のパワーより小さくなるように光源3を制御する。 In the present embodiment, the light power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 is smaller than the power for reproducing the information recorded on the information recording surface D2. . The light source 3 emits even though the rotation speed of the optical disc D at the time of evaluation when judging whether or not a defect such as a shape exists on the information recording surface D2 is lower than the rotation speed at the time of reproduction. If the power of light is the same as that during reproduction, the following problems occur. That is, since the heating time in each unit time of the recording film D23 in FIG. 7 due to light irradiation is longer than before, the temperature of each part of the recording film D23 rises, and the recording film D23 crystallizes or melts for recording. Signals can be fatally damaged. Therefore, in the present embodiment, in order to prevent the recording film D23 from being damaged, the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 becomes smaller than the power during reproduction.
 次に、本実施の形態の光ディスク評価装置100の動作を図9を用いて説明する。図9は、本実施の形態の光ディスク評価装置100の動作の各ステップを示すフローチャートである。 Next, the operation of the optical disk evaluation apparatus 100 of the present embodiment will be described with reference to FIG. FIG. 9 is a flowchart showing each step of the operation of the optical disc evaluation apparatus 100 of the present embodiment.
 作業者は、評価対象の光ディスクDを、光ディスク評価装置100の図示されていない載置部に載置し、光ディスク評価装置100に対して、光ディスクDの情報記録面D2に形状等の欠陥が存在しているか否かを検査させるための指示を与える。その指示により、光パワー制御部4は、光源3が射出する光のパワーが再生時のパワーより小さくなるように光源3を制御する。光源3は、光パワー制御部4の制御に従って、再生時のパワーより小さい所定のパワーの光を射出する(S1)。 The operator places the optical disk D to be evaluated on a mounting unit (not shown) of the optical disk evaluation apparatus 100, and the optical recording apparatus D has a defect such as a shape on the information recording surface D2 of the optical disk D. Give instructions to check whether or not In response to the instruction, the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 is smaller than the power during reproduction. The light source 3 emits light having a predetermined power smaller than the power at the time of reproduction according to the control of the optical power control unit 4 (S1).
 回転制御部2は、光ディスクDを再生時の回転速度より遅い所定の回転速度で回転させるようにスピンドルモータ1を制御する。スピンドルモータ1は、回転制御部2の制御に従って、再生時の回転速度より低速で光ディスクDを回転させる(S2)。フォーカス制御部17の制御によりフォーカス制御を行い、トラッキング制御は行わない状態とする(S3)。 The rotation control unit 2 controls the spindle motor 1 so as to rotate the optical disc D at a predetermined rotation speed that is slower than the rotation speed during reproduction. The spindle motor 1 rotates the optical disc D at a lower speed than the rotation speed during reproduction according to the control of the rotation control unit 2 (S2). Focus control is performed under the control of the focus control unit 17, and tracking control is not performed (S3).
 ラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号生成部23によって算出されたラジアルプッシュプル信号の波形を評価する(S4)。具体的には、ラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号の波形に乱れが存在するか否かを判断する(S4)。ラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号の波形において、最大振幅レベルと最小振幅レベルの比率またはレベル差が所定値より大きい波形の乱れを検出すると、波形の乱れの位置を特定し、それに基づいて、光ディスクDの情報記録面D2の形状等の欠陥が存在している部位を特定する(S4)。出力部28は、ラジアルプッシュプル信号判定部26によって得られた結果を光ディスク評価装置100の外部の図示されていない表示装置に出力して表示させる(S5)。 The radial push-pull signal determination unit 26 evaluates the waveform of the radial push-pull signal calculated by the radial push-pull signal generation unit 23 (S4). Specifically, the radial push-pull signal determination unit 26 determines whether there is any disturbance in the waveform of the radial push-pull signal (S4). When the radial push-pull signal determination unit 26 detects a waveform disturbance whose ratio or level difference between the maximum amplitude level and the minimum amplitude level is greater than a predetermined value in the waveform of the radial push-pull signal, the radial push-pull signal determination unit 26 specifies the position of the waveform disturbance. Based on this, a site where a defect such as the shape of the information recording surface D2 of the optical disc D is identified (S4). The output unit 28 outputs and displays the result obtained by the radial push-pull signal determination unit 26 on a display device (not shown) outside the optical disk evaluation apparatus 100 (S5).
 ラジアルプッシュプル信号の波形に乱れが存在するか否かの判断結果が表示装置に表示されるので、作業者は、評価対象の光ディスクDの情報記録面D2に形状等の欠陥が存在しているか否かを知ることができる。また、ラジアルプッシュプル信号の波形に乱れが存在する場合、光ディスクDの情報記録面D2の形状等の欠陥が存在している部位を特定する情報が表示装置に表示されるので、作業者は、原子間力顕微鏡等により観察すべき部位を知ることができる。 Since the determination result of whether or not there is a disturbance in the radial push-pull signal waveform is displayed on the display device, the operator can check whether there is a defect such as a shape on the information recording surface D2 of the optical disc D to be evaluated. You can know whether or not. In addition, when there is a disturbance in the waveform of the radial push-pull signal, information for identifying a site where a defect such as the shape of the information recording surface D2 of the optical disc D is displayed on the display device. The site to be observed can be known with an atomic force microscope or the like.
 上述したように、本実施の形態では、光ディスクDの情報記録面D2に形状等の欠陥が存在しているか否かを検査する際、回転制御部2は、光ディスクDを、再生時の回転速度より遅い所定の回転速度で回転させるようにスピンドルモータ1を制御する。これにより、光ディスクDの偏心が大きくても、ローパスフィルタ22は、実質的にウォブル信号のみを除去することができ、その結果、ラジアルプッシュプル信号判定部26は、密部分Bについても、ラジアルプッシュプル信号の波形の乱れを検出することができる。 As described above, in this embodiment, when inspecting whether or not a defect such as a shape exists on the information recording surface D2 of the optical disc D, the rotation control unit 2 rotates the optical disc D at the speed of reproduction. The spindle motor 1 is controlled to rotate at a slower predetermined rotational speed. Thereby, even if the eccentricity of the optical disk D is large, the low-pass filter 22 can substantially remove only the wobble signal, and as a result, the radial push-pull signal determination unit 26 also performs the radial push for the dense portion B. The disturbance of the pull signal waveform can be detected.
 また、本実施の形態では、光パワー制御部4は、光源3が射出する光のパワーを、再生時のパワーより小さくするように光源3を制御する。これにより、光ディスクDの記録膜D23の損傷を防止することができる。 Further, in the present embodiment, the optical power control unit 4 controls the light source 3 so that the power of light emitted from the light source 3 is smaller than the power at the time of reproduction. Thereby, damage to the recording film D23 of the optical disc D can be prevented.
 なお、本実施の形態の光ディスク評価装置100は、図10に示すように動作してもよい。図10は、本実施の形態の光ディスク評価装置100の変形動作の各ステップを示すフローチャートである。 Note that the optical disk evaluation apparatus 100 of the present embodiment may operate as shown in FIG. FIG. 10 is a flowchart showing each step of the deformation operation of the optical disc evaluation apparatus 100 of the present embodiment.
 すなわち、回転制御部2は、光ディスクDが再生時の回転速度で回転するようにスピンドルモータ1を制御する。スピンドルモータ1は、回転制御部2の制御に従って、再生時の回転速度で光ディスクDを回転させる(S11)。次に、光パワー制御部4は、光源3が射出する光のパワーが再生時のパワーになるように光源3を制御する。光源3は、光パワー制御部4の制御に従って、再生時のパワーの光を射出する(S12)。 That is, the rotation control unit 2 controls the spindle motor 1 so that the optical disc D rotates at the rotation speed during reproduction. The spindle motor 1 rotates the optical disk D at the rotation speed at the time of reproduction according to the control of the rotation control unit 2 (S11). Next, the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 becomes the power at the time of reproduction. The light source 3 emits light having power during reproduction in accordance with the control of the optical power control unit 4 (S12).
 次に、フォーカス制御部17はフォーカス制御を行い、トラッキング制御部24は、トラッキング制御を行い、再生信号評価部27は、第5加算部19によって算出されたRF信号に基づいて、再生信号を評価する(S13)。例えば、再生信号評価部27は、エラーレート、CNR、ジッタ、SAM、PRSNR、MLSE、変調度、アシンメトリ、及びβ等を評価する。次に、光パワー制御部4は、光源3が射出する光のパワーがそれまでのパワーのより小さい所定のパワーになるように、例えばそれまでのパワーの80%になるように光源3を制御する。光源3は、光パワー制御部4の制御に従って、小さいパワーの光を射出する(S14)。 Next, the focus control unit 17 performs focus control, the tracking control unit 24 performs tracking control, and the reproduction signal evaluation unit 27 evaluates the reproduction signal based on the RF signal calculated by the fifth addition unit 19. (S13). For example, the reproduction signal evaluation unit 27 evaluates error rate, CNR, jitter, SAM, PRSNR, MLSE, modulation degree, asymmetry, β, and the like. Next, the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 becomes a predetermined power smaller than the power so far, for example, 80% of the power so far. To do. The light source 3 emits light with small power according to the control of the optical power control unit 4 (S14).
 回転制御部2は、光ディスクDがそれまでの回転速度より遅い所定の回転速度、例えばそれまでの回転速度の60%で回転するようにスピンドルモータ1を制御する。スピンドルモータ1は、回転制御部2の制御に従って低速で光ディスクDを回転させる(S15)。 The rotation control unit 2 controls the spindle motor 1 so that the optical disk D rotates at a predetermined rotation speed slower than the rotation speed until then, for example, 60% of the rotation speed until then. The spindle motor 1 rotates the optical disc D at a low speed according to the control of the rotation control unit 2 (S15).
 フォーカス制御部17の制御によりフォーカス制御を行い、トラッキング制御は行わない状態にした後、ラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号生成部23によって算出されたラジアルプッシュプル信号の波形を評価する(S16)。具体的には、ラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号の波形について、最大振幅レベルと最小振幅レベルの比率またはレベル差が所定値以内であるか否かを判定して、波形の乱れが存在するか否かを判断する(S16)。ラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号の波形の乱れを検出すると、波形の乱れの位置を特定し、それに基づいて、光ディスクDの情報記録面D2の形状等の欠陥が存在している部位を特定する(S16)。出力部28は、ラジアルプッシュプル信号判定部26によって得られた結果を光ディスク評価装置100の外部の図示されていない表示装置に出力して表示させる(S17)。 After the focus control is performed by the control of the focus control unit 17 and the tracking control is not performed, the radial push-pull signal determination unit 26 evaluates the waveform of the radial push-pull signal calculated by the radial push-pull signal generation unit 23. (S16). Specifically, the radial push-pull signal determination unit 26 determines whether the ratio or the level difference between the maximum amplitude level and the minimum amplitude level is within a predetermined value with respect to the waveform of the radial push-pull signal. It is determined whether or not there is a disturbance (S16). When the radial push-pull signal determination unit 26 detects the waveform disturbance of the radial push-pull signal, the radial push-pull signal determination unit 26 identifies the position of the waveform disturbance, and based on this, there is a defect such as the shape of the information recording surface D2 of the optical disc D. The site | part which is present is specified (S16). The output unit 28 outputs and displays the result obtained by the radial push-pull signal determination unit 26 on a display device (not shown) outside the optical disk evaluation apparatus 100 (S17).
 以下に、本発明の実施例及び比較例を説明する。説明の便宜上、先に比較例を説明し、その後に実施例を説明する。 Hereinafter, examples and comparative examples of the present invention will be described. For convenience of explanation, a comparative example will be described first, followed by an example.
 (比較例)
 比較例では、光パワー制御部4は、光源3が射出する光のパワーが再生時の1.0mWになるように光源3を制御し、回転制御部2は、光ディスクDが再生時の線速度の7.8m/sで回転するようにスピンドルモータ1を制御した。そのとき、ラジアルプッシュプル信号生成部23は、図11に示すラジアルプッシュプル信号を得た。図11は、比較例のラジアルプッシュプル信号を示す図である。
(Comparative example)
In the comparative example, the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 becomes 1.0 mW at the time of reproduction, and the rotation control unit 2 controls the linear velocity when the optical disc D is reproduced. The spindle motor 1 was controlled to rotate at 7.8 m / s. At that time, the radial push-pull signal generator 23 obtained the radial push-pull signal shown in FIG. FIG. 11 is a diagram illustrating a radial push-pull signal of the comparative example.
 光ディスクDのトラックのピッチをTpとし、光ディスクDの偏心量をRoとすると、光ディスクDが1/2回転するときに光源3が射出する光がトラックを横切る数nは、下記の式(1)により表される。 Assuming that the track pitch of the optical disk D is Tp and the eccentric amount of the optical disk D is Ro, the number n that the light emitted from the light source 3 crosses the track when the optical disk D rotates 1/2 is expressed by the following equation (1). It is represented by
   n=Ro/Tp   ・・・(1)
 したがって、光ディスクDの中心からの距離r離れた位置では、光ディスクDが回転する際の線速度をvとすると、ラジアルプッシュプル信号の平均周波数Faveは、下記の式(2)により表される。
n = Ro / Tp (1)
Therefore, at a position away from the center r of the optical disc D, assuming that the linear velocity when the optical disc D rotates is v, the average frequency Fave of the radial push-pull signal is expressed by the following equation (2).
   Fave=2×n×v/(2×π×r)   ・・・(2)
 光ディスクDには偏心が存在するので、図1に示すように、光ディスクDの情報記録面には、照射された円形となる光Lが横切るトラックの数が少ない疎部分Aと、光Lが横切るトラックの数が多い密部分Bとが存在する。ラジアルプッシュプル信号の密部分Bに対応する部分の周波数は、ラジアルプッシュプル信号の最大周波数Fmaxであって、係数をkとすると、ラジアルプッシュプル信号の最大周波数Fmaxは、下記の式(3)により表される。
Fave = 2 × n × v / (2 × π × r) (2)
Since the optical disc D is eccentric, as shown in FIG. 1, the light L crosses the information recording surface of the optical disc D with the sparse portion A having a small number of tracks traversed by the irradiated light beam L. There is a dense portion B with a large number of tracks. The frequency of the portion corresponding to the dense portion B of the radial push-pull signal is the maximum frequency Fmax of the radial push-pull signal, and the coefficient F is k. Is represented by
   Fmax=k×Fave   ・・・(3)
 光ディスクDのトラックのピッチTpが0.32μmであり、光ディスクDの偏心量Roが60μmであり、線速度vが7.8m/sであって、偏心量Roが60μmであるときの係数kが1.6であるので、光ディスクDの中心から24mm(r)離れた位置におけるラジアルプッシュプル信号の最大周波数Fmaxは、上記の式(1)~(3)により、31kHzである。ローパスフィルタ22が信号の値を著しく低下させるカットオフ周波数Fcが30kHzであったので、ラジアルプッシュプル信号の最大周波数Fmaxは、カットオフ周波数Fcより大きかった。
Fmax = k × Fave (3)
The coefficient k when the track pitch Tp of the optical disk D is 0.32 μm, the eccentricity Ro of the optical disk D is 60 μm, the linear velocity v is 7.8 m / s, and the eccentricity Ro is 60 μm is Since it is 1.6, the maximum frequency Fmax of the radial push-pull signal at a position 24 mm (r) away from the center of the optical disc D is 31 kHz according to the above equations (1) to (3). Since the cutoff frequency Fc at which the low-pass filter 22 significantly reduces the signal value was 30 kHz, the maximum frequency Fmax of the radial push-pull signal was larger than the cutoff frequency Fc.
 そのため、図11に示すように、ラジアルプッシュプル信号のエンベロープは鼓状になり、ラジアルプッシュプル信号の最大振幅レベル(ピークツウピーク)P1に対するラジアルプッシュプル信号の最小振幅レベル(ピークツウピーク)P2の比は、3dBより大きくなった。つまり、密部分Bに対応するラジアルプッシュプル信号の値は、本来の値より大きく低下した。その結果、ラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号の密部分Bに対応する部分において、波形の乱れを検出することができなかった。 Therefore, as shown in FIG. 11, the envelope of the radial push-pull signal has a drum shape, and the minimum amplitude level (peak-to-peak) P2 of the radial push-pull signal with respect to the maximum amplitude level (peak-to-peak) P1 of the radial push-pull signal. The ratio was greater than 3 dB. That is, the value of the radial push-pull signal corresponding to the dense portion B is greatly reduced from the original value. As a result, the radial push-pull signal determination unit 26 cannot detect the waveform disturbance in the portion corresponding to the dense portion B of the radial push-pull signal.
 なお、上記の係数kは、例えば実験によって特定される。 Note that the coefficient k is specified by an experiment, for example.
 (実施例)
 実施例では、光パワー制御部4は、光源3が射出する光のパワーが再生時の1/2の0.5mWになるように光源3を制御し、回転制御部2は、光ディスクDが再生時の線速度の1/2の3.9m/sで回転するようにスピンドルモータ1を制御した。そのとき、ラジアルプッシュプル信号生成部23は、図12に示すラジアルプッシュプル信号を得た。図12は、実施例のラジアルプッシュプル信号を示す図である。
(Example)
In the embodiment, the optical power control unit 4 controls the light source 3 so that the power of the light emitted from the light source 3 is 0.5 mW, which is half of that during reproduction, and the rotation control unit 2 reproduces the optical disc D. The spindle motor 1 was controlled to rotate at 3.9 m / s, which is 1/2 of the linear velocity at the time. At that time, the radial push-pull signal generator 23 obtained the radial push-pull signal shown in FIG. FIG. 12 is a diagram illustrating a radial push-pull signal according to the embodiment.
 光ディスクDのトラックのピッチTpが0.32μmであり、光ディスクDの偏心量Roが60μmであり、線速度vが3.9m/sであって、偏心量Roが60μmであるときの係数kが1.6であるので、光ディスクDの中心から24mm(r)離れた位置におけるラジアルプッシュプル信号の最大周波数Fmaxは、上記の式(1)~(3)により、16kHzである。ローパスフィルタ22のカットオフ周波数Fcが30kHzであったので、ラジアルプッシュプル信号の最大周波数Fmaxは、カットオフ周波数Fcより小さかった。 The coefficient k when the track pitch Tp of the optical disk D is 0.32 μm, the eccentricity Ro of the optical disk D is 60 μm, the linear velocity v is 3.9 m / s, and the eccentricity Ro is 60 μm is Since it is 1.6, the maximum frequency Fmax of the radial push-pull signal at a position 24 mm (r) away from the center of the optical disc D is 16 kHz according to the above equations (1) to (3). Since the cutoff frequency Fc of the low-pass filter 22 was 30 kHz, the maximum frequency Fmax of the radial push-pull signal was smaller than the cutoff frequency Fc.
 そのため、図12に示すように、ラジアルプッシュプル信号の最大振幅レベル(ピークツウピーク)P1に対するラジアルプッシュプル信号の最小振幅レベル(ピークツウピーク)P2の比は、1dBより小さくなった。つまり、密部分Bに対応するラジアルプッシュプル信号の値は、実質的に本来の値となった。その結果、ラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号の密部分Bに対応する部分において、最大振幅レベルと最小振幅レベルの比率またはレベル差が所定値以内であるか否かを判定することにより、波形の乱れを検出することができた。すなわち、ラジアルプッシュプル信号の最大周波数Fmaxが、ローパスフィルタ22のカットオフ周波数より小さい値となるように所定の線速度(回転速度)を定めることにより、ラジアルプッシュプル信号の密部分Bに対応する部分において、波形の乱れを検出することができる。そして、ラジアルプッシュプル信号判定部26は、ローパスフィルタ22で高周波成分が低減されたラジアルプッシュプル信号の最小振幅レベルと最大振幅レベルの比が所定値(例えば、1dB)以下であるか否かを判定することによって、波形の乱れを検出することができる。 Therefore, as shown in FIG. 12, the ratio of the minimum amplitude level (peak-to-peak) P2 of the radial push-pull signal to the maximum amplitude level (peak-to-peak) P1 of the radial push-pull signal is smaller than 1 dB. That is, the value of the radial push-pull signal corresponding to the dense portion B is substantially the original value. As a result, the radial push-pull signal determination unit 26 determines whether the ratio or level difference between the maximum amplitude level and the minimum amplitude level is within a predetermined value in the portion corresponding to the dense portion B of the radial push-pull signal. As a result, the disturbance of the waveform could be detected. That is, by determining a predetermined linear velocity (rotational speed) so that the maximum frequency Fmax of the radial push-pull signal is smaller than the cutoff frequency of the low-pass filter 22, it corresponds to the dense portion B of the radial push-pull signal. In this part, the waveform disturbance can be detected. Then, the radial push-pull signal determination unit 26 determines whether the ratio between the minimum amplitude level and the maximum amplitude level of the radial push-pull signal whose high frequency component is reduced by the low-pass filter 22 is equal to or less than a predetermined value (for example, 1 dB). By making the determination, it is possible to detect waveform disturbance.
 また、ラジアルプッシュプル信号を1時間かけて得たが、光ディスクDの記録膜D23の損傷は検出されなかった。それは、光源3が射出する光のパワーが再生時の1/2であったことによると考えられる。 Further, although a radial push-pull signal was obtained over 1 hour, no damage to the recording film D23 of the optical disc D was detected. This is considered to be because the power of light emitted from the light source 3 was ½ of that during reproduction.
 なお、上述した本実施の形態では、光ディスクDの情報記録面D2に形状等の欠陥が存在しているか否かを検査する際、回転制御部2は、光ディスクDを、再生時の回転速度より遅い所定の回転速度で回転させるようにスピンドルモータ1を制御する。その際の回転速度は、ラジアルプッシュプル信号の最大の振幅P1に対するラジアルプッシュプル信号の最小の振幅P2の比(P2/P1)が、所定の値以下となるように決定されてもよい。所定の値は例えば3dBである。 In the present embodiment described above, when inspecting whether or not a defect such as a shape is present on the information recording surface D2 of the optical disc D, the rotation control unit 2 determines the optical disc D from the rotational speed at the time of reproduction. The spindle motor 1 is controlled to rotate at a slow predetermined rotation speed. The rotational speed at that time may be determined such that the ratio (P2 / P1) of the minimum amplitude P2 of the radial push-pull signal to the maximum amplitude P1 of the radial push-pull signal is not more than a predetermined value. The predetermined value is 3 dB, for example.
 また、光源3が射出する光のパワーは、次のように制御することが好ましい。すなわち、再生時の光ディスクDの回転速度に対する、検査時の光ディスクDの回転速度の比をRrとすると、検査時の光源3が射出する光のパワーの低下率を、再生時の光のパワーのRr倍程度からRr倍の1/2の間にすることが望ましい。例えば、再生時に光源3が射出する光のパワーが1.0mWであって、検査時の光ディスクDの回転速度が再生時の回転速度の1/2である場合、検査時に光源3が射出する光のパワーを0.5mWから0.75mWにすることが望ましい。 Further, the power of light emitted from the light source 3 is preferably controlled as follows. That is, assuming that the ratio of the rotation speed of the optical disk D at the time of inspection to the rotation speed of the optical disk D at the time of reproduction is Rr, the rate of decrease in the power of the light emitted from the light source 3 at the time of inspection It is desirable to be between about Rr times and 1/2 of Rr times. For example, when the power of light emitted from the light source 3 during reproduction is 1.0 mW and the rotation speed of the optical disc D during inspection is ½ of the rotation speed during reproduction, the light emitted from the light source 3 during inspection It is desirable that the power of the power is 0.5 mW to 0.75 mW.
 また、光ディスクDが再生専用の光ディスクである場合、光ディスクDの情報記録面D2に形状等の欠陥が存在しているか否かを検査するとき、回転制御部2は、光ディスクDを、情報記録面D2に記録された情報を再生する際の回転速度より遅い所定の回転速度で回転させるようにスピンドルモータ1を制御する。 Further, when the optical disk D is a reproduction-only optical disk, when inspecting whether or not there is a defect such as a shape on the information recording surface D2 of the optical disk D, the rotation control unit 2 moves the optical disk D to the information recording surface. The spindle motor 1 is controlled to rotate at a predetermined rotational speed that is slower than the rotational speed at the time of reproducing the information recorded in D2.
 更に、ラジアルプッシュプル信号判定部26は、ラジアルプッシュプル信号生成部23によって算出されたラジアルプッシュプル信号の波形を評価し、波形の乱れを検出する。しかしながら、ラジアルプッシュプル信号判定部26は、ローパスフィルタ22によっ
て高周波成分が低減されたトラッキングエラー信号の波形を評価し、波形の乱れを検出してもよい。
Further, the radial push-pull signal determination unit 26 evaluates the waveform of the radial push-pull signal calculated by the radial push-pull signal generation unit 23, and detects the waveform disturbance. However, the radial push-pull signal determination unit 26 may evaluate the waveform of the tracking error signal whose high-frequency component has been reduced by the low-pass filter 22 and detect the waveform disturbance.
 100 光ディスク評価装置、 1 スピンドルモータ、 2 回転制御部、 3 光源、 4 光パワー制御部、 5 コリメートレンズ、 6 偏光ビームスプリッタ、 7 4分の1波長板、 8 対物レンズ、 9 集光レンズ、 10 シリンドリカルレンズ、 11 検出部、 12 第1加算部、 13 第2加算部、 14 第3加算部、 15 第4加算部、 16 第1減算部、 17 フォーカス制御部、 18 第1アクチュエータ、 19 第5加算部、 20 第2減算部、 21 ウォブル検出回路、 22 ローパスフィルタ、 23 ラジアルプッシュプル信号生成部、 24 トラッキング制御部、 25 第2アクチュエータ、 26 ラジアルプッシュプル信号判定部、 27 再生信号評価部、 28 出力部、 L 光、 D 光ディスク、 D2 情報記録面。 100 optical disk evaluation device, 1 spindle motor, 2 rotation control unit, 3 light source, 4 optical power control unit, 5 collimating lens, 6 polarization beam splitter, 7/4 wavelength plate, 8 objective lens, 9 condensing lens, 10 Cylindrical lens, 11 detection unit, 12 1st addition unit, 13 2nd addition unit, 14 3rd addition unit, 15 4th addition unit, 16 1st subtraction unit, 17 focus control unit, 18 1st actuator, 19th 5th Addition unit, 20 second subtraction unit, 21 wobble detection circuit, 22 low pass filter, 23 radial push-pull signal generation unit, 24 tracking control unit, 25 second actuator, 26 radial push-pull signal determination unit, 27 reproduction signal evaluation unit 28 output unit, L light, D optical disk, D2 information recording surface.
 本発明は、光ディスクの情報記録面の形状等の欠陥を検出するための技術に利用できる。 The present invention can be used in a technique for detecting defects such as the shape of the information recording surface of an optical disc.

Claims (3)

  1.  情報記録面を有する光ディスクを、前記情報記録面に記録された情報を再生する際の回転速度より遅い回転速度で回転させるステップと、
     回転した前記光ディスクの前記情報記録面に光を照射するステップと、
     前記情報記録面から反射した反射光量を検出するステップと、
     前記反射光量に基づいてトラッキングエラー信号を算出するステップと、
     前記トラッキングエラー信号の高周波成分を低減するステップと、
     前記高周波成分が低減された信号の波形における最大振幅レベルと最小振幅レベルの比率またはレベル差が所定値以内であるか否かを判定するステップと
     を含む光ディスク評価方法。
    Rotating an optical disk having an information recording surface at a rotation speed slower than a rotation speed when reproducing information recorded on the information recording surface;
    Irradiating the information recording surface of the rotated optical disc with light;
    Detecting the amount of reflected light reflected from the information recording surface;
    Calculating a tracking error signal based on the amount of reflected light;
    Reducing high frequency components of the tracking error signal;
    Determining whether the ratio or level difference between the maximum amplitude level and the minimum amplitude level in the waveform of the signal with reduced high-frequency components is within a predetermined value.
  2.  前記情報記録面に光を照射する場合、前記情報記録面に記録された情報を再生する際のパワーより小さい所定のパワーの光を照射する
     請求項1に記載の光ディスク評価方法。
    The optical disk evaluation method according to claim 1, wherein when irradiating light on the information recording surface, light having a predetermined power smaller than a power for reproducing information recorded on the information recording surface is irradiated.
  3.  情報記録面を有する光ディスクを、前記情報記録面に記録された情報を再生する際の回転速度より遅い回転速度で回転させる回転制御部と、
     回転した前記光ディスクの前記情報記録面に光を照射するための光源と、
     前記情報記録面から反射した反射光量を検出する検出部と、
     前記反射光量に基づくトラッキングエラー信号の高周波成分を低減するローパスフィルタと、
     前記高周波成分が低減された信号の波形における最大振幅レベルと最小振幅レベルの比率またはレベル差が所定値以内であるか否かを判定するプッシュプル信号判定部と
     を備える光ディスク評価装置。
    A rotation control unit that rotates an optical disk having an information recording surface at a rotation speed slower than a rotation speed when reproducing information recorded on the information recording surface;
    A light source for irradiating the information recording surface of the rotated optical disc with light;
    A detection unit for detecting a reflected light amount reflected from the information recording surface;
    A low-pass filter that reduces high-frequency components of the tracking error signal based on the reflected light amount;
    An optical disc evaluation apparatus comprising: a push-pull signal determination unit that determines whether a ratio or level difference between a maximum amplitude level and a minimum amplitude level in a waveform of a signal with reduced high-frequency components is within a predetermined value.
PCT/JP2011/000671 2010-03-05 2011-02-07 Optical disc evaluation method and optical disc evaluation device WO2011108192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010048649A JP2011187102A (en) 2010-03-05 2010-03-05 Optical disk evaluation method and optical disk evaluation device
JP2010-048649 2010-03-05

Publications (1)

Publication Number Publication Date
WO2011108192A1 true WO2011108192A1 (en) 2011-09-09

Family

ID=44541863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000671 WO2011108192A1 (en) 2010-03-05 2011-02-07 Optical disc evaluation method and optical disc evaluation device

Country Status (3)

Country Link
JP (1) JP2011187102A (en)
TW (1) TW201203230A (en)
WO (1) WO2011108192A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161705U (en) * 1985-03-29 1986-10-07
JPH08185664A (en) * 1994-12-28 1996-07-16 Kenwood Corp Wobble detecting circuit for optical disk device
JPH11126419A (en) * 1997-10-22 1999-05-11 Teac Corp Method and device for reproducing data
JP2000222737A (en) * 1999-01-29 2000-08-11 Sony Corp Optical disk evaluating device, optical disk evaluating method and manufacture of optical disk
JP2000311344A (en) * 1999-04-26 2000-11-07 Pioneer Electronic Corp Prepit detecting device
JP2005032335A (en) * 2003-07-11 2005-02-03 Sharp Corp Recording device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161705U (en) * 1985-03-29 1986-10-07
JPH08185664A (en) * 1994-12-28 1996-07-16 Kenwood Corp Wobble detecting circuit for optical disk device
JPH11126419A (en) * 1997-10-22 1999-05-11 Teac Corp Method and device for reproducing data
JP2000222737A (en) * 1999-01-29 2000-08-11 Sony Corp Optical disk evaluating device, optical disk evaluating method and manufacture of optical disk
JP2000311344A (en) * 1999-04-26 2000-11-07 Pioneer Electronic Corp Prepit detecting device
JP2005032335A (en) * 2003-07-11 2005-02-03 Sharp Corp Recording device

Also Published As

Publication number Publication date
TW201203230A (en) 2012-01-16
JP2011187102A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
US7457221B2 (en) Optical disc recording/reproduction device
JP2006189876A (en) Liquid crystal device for compensating for aberration, and optical pickup and optical recording and/or reproducing apparatus including same
JP2006302326A (en) Method and device for recording and reproducing information
JP2004119008A (en) Detecting method for non-recording region of optical recording medium
JP2007265590A5 (en)
JP4329364B2 (en) Optical head, recording and / or reproducing device
JP2012243363A (en) Reproducing method and reproducing apparatus
JP2009140568A (en) Optical disk drive, position control method, and optical pickup
WO2011108192A1 (en) Optical disc evaluation method and optical disc evaluation device
JP5623948B2 (en) Recommended recording condition determination method and recording adjustment method
JP5055411B2 (en) Optical disk apparatus and optical disk apparatus adjustment method
JP4479645B2 (en) Tracking error detection method, tracking error detection device, and optical recording / reproducing device
TWI245567B (en) Focus servo device
JP2003173549A (en) Optical disk device and focus offset adjusting method
JP2007087570A (en) Method and device for reading angular multiplexed pit
JP4396707B2 (en) Optical disk device
KR100888590B1 (en) Method and apparatus for detecting radial tilt
JP2001126269A (en) Optical disk device
JP5624116B2 (en) Optical information reproducing apparatus, optical information recording apparatus, optical information reproducing method, and optical information recording method
KR100600264B1 (en) Method and apparatus for controlling a focus in holographic digital data storage system
JP2004014047A (en) Optical disk device, and aberration compensation method for optical disk device
JP2009009634A (en) Optical pickup, optical information recording device, optical information recording method, optical information reproducing device, optical information reproducing method, and optical information recording medium
WO2010092761A1 (en) Optical information reproducing device, optical information reproducing method, and integrated circuit
JP2009238319A (en) Detector and detection method
JP2000090450A (en) Focus bias setting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750306

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750306

Country of ref document: EP

Kind code of ref document: A1