WO2011107296A1 - Pump or rotary cutter for operation in a fluid - Google Patents
Pump or rotary cutter for operation in a fluid Download PDFInfo
- Publication number
- WO2011107296A1 WO2011107296A1 PCT/EP2011/001125 EP2011001125W WO2011107296A1 WO 2011107296 A1 WO2011107296 A1 WO 2011107296A1 EP 2011001125 W EP2011001125 W EP 2011001125W WO 2011107296 A1 WO2011107296 A1 WO 2011107296A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pump
- accordance
- state
- rotary cutter
- rotor
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320725—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with radially expandable cutting or abrading elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320758—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/165—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
- A61M60/178—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/205—Non-positive displacement blood pumps
- A61M60/216—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/424—Details relating to driving for positive displacement blood pumps
- A61M60/457—Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being magnetic
- A61M60/462—Electromagnetic force
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
- F04D29/22—Rotors specially for centrifugal pumps
- F04D29/24—Vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
- F04D29/22—Rotors specially for centrifugal pumps
- F04D29/24—Vanes
- F04D29/247—Vanes elastic or self-adjusting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D3/00—Axial-flow pumps
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
- A61M2205/0272—Electro-active or magneto-active materials
- A61M2205/0277—Chemo-active materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/02—General characteristics of the apparatus characterised by a particular materials
- A61M2205/0272—Electro-active or magneto-active materials
- A61M2205/0288—Electro-rheological or magneto-rheological materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/135—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/148—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/403—Details relating to driving for non-positive displacement blood pumps
- A61M60/408—Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
- A61M60/411—Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
- A61M60/414—Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor transmitted by a rotating cable, e.g. for blood pumps mounted on a catheter
Definitions
- such devices can be used as microinvasive devices, for example pumps or rotary cutters in human or animal vessels, for example blood vessels or other bodily cavities.
- microinvasive devices for example pumps or rotary cutters in human or animal vessels, for example blood vessels or other bodily cavities.
- radially compressible pumps have already been proposed to solve this problem which are kept in a transport state with small radial extent during transport and which can be radially expanded at the deployment site, for example in a ventricle, after introduction there.
- a compressible rotor is known, for example, from US 6,860,713.
- a further rotor is known from
- the pump housing which can surround the rotor, in a correspondingly compressible manner.
- the problem that, on the one hand, the construction and the materials of the rotor should be stable in operation in order reliably to convey the fluid at high speeds and that, on the other hand, a certain yielding of at least parts of the rotor is desirable to keep the forces which are necessary for the compression of the rotor or of the pump within limits .
- a technique is known from WO 2009/132309 to bring stents into a desired form after the introduction into a blood vessel by introducing a hardenable medium and subsequently to stabilize them in an operating state.
- the first element comprises a material or is filled or fillable with a material or a material mixture which passes through a chemical reaction on transition into the operating state, for example a cross-linking or a transition from the liquid state into a solid state or a change in the rheological state and thus at least changes a mechanical
- the first element can be a conveying element, for example a conveying blade of a rotor of a fluid pump or a bracing element of a rotary cutter so that, on a lower stiffness, the corresponding conveying element can be laid onto a hub and the corresponding rotor is thus easily compressible.
- the rotor can also be self-compressible in that, in the state of rest, the conveying elements lie on the hub and are only erected on being put into operation by centrifugal forces .
- the material of which the conveying blade or a part of the conveying blade is composed is selected such that it undergoes a hardening or stiffening when passing through the corresponding reaction or the transition, in particular the transition into a different state of aggregation, for example a
- the first element that is, for example, the conveying element, has hollow spaces which can be filled with a
- the change of the viscosity can be effected, for example with magnetorheological or electrorheological liquids, by applying a magnetic field or an electric field from outside a patient's body.
- a corresponding field can, however, also be effected by coils or electrodes in the body in the direct vicinity of the pump/rotary cutter.
- the field generating elements can also be directly fastened to the pump/rotary cutter.
- the first element represents another part of a rotor of a fluid pump or that a pump housing has accordingly to be brought into an operating shape or a stiffness corresponding to the operation.
- hollow spaces can also be provided which can, for example, be filled with a fluid under pressure and can thus be inflated to give the corresponding first element a desired shape, whereupon the material can be hardened or stiffened to keep this shape stable .
- a fluid under pressure can be filled with a fluid under pressure and can thus be inflated to give the corresponding first element a desired shape, whereupon the material can be hardened or stiffened to keep this shape stable .
- stiffness a different stiffness
- a part of a conveying blade can be shorted or extended in the manner of a shrinking hose by the reaction and thereby, that is, by means of lever forces, erect or stiffen the conveying blade.
- the material of which the first element is composed in part or with which it can be filled can, for example, be a hardenable material, in particular a hardenable plastic.
- a hardening can take place for transition into the operating state, for example by temperature effect or pressure effect, electric and/or magnetic fields or pulses, radiation (IR light or UV light, ⁇ , ⁇ , ⁇ radiation), mechanical effect, e.g. ultrasound or vibration, or can also be brought about by contact with a further material or by initialization of a crystallization with a liquid material.
- the further material can in this respect be a real reaction partner which likewise reacts in the
- reaction and undergoes a conversion or it can be a catalyst or enzyme which, when added, results in an acceleration of the reaction.
- the further material can, for example, be included in the medium on which the apparatus should act, for example in the body fluid in which a corresponding fluid pump should be operated.
- the body fluid can diffuse on the introduction of the
- the first material can for this purpose e.g. comprise a protein or consist of a protein.
- An advantageous embodiment of the invention further provides that the first element can be changed by a continued or further reaction, reversibly or
- embrittlement can, for example, go so far with a synthetic resin that the corresponding parts can break by themselves or can at least be easily broken in order again to achieve a suitable transport state for the return transport of the apparatus/fluid pump.
- a different reaction can, however, also be provided to achieve the corresponding desired result.
- the invention also relates to a method in which the apparatus is first introduced into a body of a living being, wherein the material/the material mixture of the first element thereupon undergoes a reaction, in particular a cross-linking, or a
- the apparatus is first brought to the deployment site within a body of a living being in the transport state and is only there brought into the operating state with respect to the mechanical properties and thus into a form efficient for
- a hollow space or a series of hollow spaces which can be formed, for example, by bubbles of a foam of which the first element is composed, can be filled via hoses with a material which can either itself pass through a reaction to change its
- the invention moreover relates to a fluid pump or rotary cutter having at least one first element which can be brought from a transport state into an
- the first element at least partly comprises a material or can be filled with a material or material mixture which, as long as it is exposed to a radiation or an electric and/or magnetic field, has mechanical properties, in particular with respect to stiffness, viscosi y, size and/or shape, changed compared with the state without such an action.
- the invention can also be
- Cross-linking in macromolecular chemistry refers to reactions in which a plurality of individual
- macromolecules are linked to form a three-dimensional network.
- the linking can be achieved either directly on the buildup of the macromolecules or by reactions on already existing polymers. Examples for directly cross-linking reactions are radical polymerizations of monomers having two vinyl functions or the
- cross -linking agents by the addition of multifunctional low-molecular substances, the cross -linking agents.
- the hardening of epoxy resins using amines and the addition of substances containing sulfur on the vulcanization of rubber are examples for cross - linking reactions.
- polyvinyl chloride (PVC) vulcanized rubber
- polyethylene polyethylene
- PMMA polypropylene
- PET PET
- PTFE polyurethane
- polyesters polyamides
- polystyrene and proteins examples: keratin
- synthetic resins are synthetically manufactured by polymerization reactions or polycondensation reactions. They can be modified by natural substances, for example vegetable or animal oils or natural resins, or manufactured by esterification or saponification of natural resins. Synthetic resins as a rule comprise two main components
- composition can often be selected so that the
- a polymerization can also be initiated in a variety of plastics by the application of radiation (particle radiation (alpha or beta particles) , or also X-ray radiation or gamma radiation or UV radiation) .
- radiation particle radiation (alpha or beta particles)
- X-ray radiation or gamma radiation or UV radiation X-ray radiation or gamma radiation or UV radiation
- UV radiation particle radiation
- UV- hardening adhesives which are also correspondingly biocompatible
- Radiation cross-linking gives inexpensive bulk plastics or technical plastics the mechanical, thermal and chemical properties of high-performance plastics. This refining of plastics allows a use under conditions which these plastics would otherwise not withstand.
- cross- linking of polyethylene, polyamide, PVC and PBT is the most significant from a quantity aspect.
- the cross-linking of thermoplastic elastomers (TPO, TPC and TPA) is increasingly gaining importance.
- a cross-linking of polypropylene is generally also possible although degradation reactions predominate with this material as a rule.
- Radiation cross- linking is always possible when chemical cross -linking by means of radical initiators such as peroxides is possible.
- the radiation for hardening takes place after or during the molding or deforming.
- a direct deforming can, however, also take place by the radiation itself and by an accompanying cross -linking and desired shrinking or stretching of the material thus treated.
- thermoplastics are thus combined with the properties of thermosetting systems.
- Rubber is mainly manufactured synthetically.
- Synthetic rubber is usually composed of styrene and butadiene; other raw material bases are styrene acrylate, pure acrylate, vinyl acetate.
- the first commercially usable one was the styrene butadiene rubber, another is neoprene .
- PE Polyethylene
- Polyethylene belongs to the group of polyolefins.
- Polyethylene is manufactured on the basis of ethylene gas which can be manufactured either conventionally in a petrochemical manner or from ethanol .
- Polyurethanes (PU, DIN abbreviation: PUR) are examples of PU, DIN abbreviation: PUR.
- plastics or synthetic resins which arise from the polyaddition reaction of diolen or polyolene with polyisocyanates .
- the urethane group is characteristic for polyurethanes .
- Polyurethanes can be hard and brittle, or also soft and elastic, depending on the manufacture.
- the elastomers in particular show a comparatively high breaking strength.
- polyurethane is known as a permanently elastic flexible foam or as a hard expanding foam.
- Polyurethanes can have different properties depending on the choice of the isocyanate and of the polyol .
- the density of unfoamed polyurethane varies between around 1000 and 1250 kg/m3.
- the later properties are substantially determined by the polyol component because it is usually not the isocyanate component which is adapted to achieve the desired properties, but rather the polyol component.
- the following isocyanate components are generally used: methylene diphenyl diisocyanate (MDI)
- HDI hexamethylene diisocyanate
- IPDI isophorone diisocyanate
- polyurethanes When polyurethanes are fully cured and no longer contain any monomers, they as a rule do not have any properties harmful to the health. Isocyanates can, however, trigger allergies and are suspected of causing cancer.
- the toluene diisocyanate used for some polyurethanes evaporates at room temperature and can cause damage in the lung when inhaled. Such substances are predominantly only used as filling of a closed hollow body, with subsequent hardening, located in the patient's body.
- Polyurethanes arise by the polyaddition reaction of polyisocyanates with multiple alcohols, the polyols.
- Linear polyurethanes can, for example, be obtained from diols and
- Linear polyurethanes can be any organic diisocyanates.
- Linear polyurethanes can be any organic diisocyanates.
- Linear polyurethanes can be any organic diisocyanates.
- polyurethanes can also be manufactured by the
- both the polyols and the polyisocyanates originate from the production from petrochemical raw materials; however, polyols on the basis of vegetable oils can also be used.
- Ricinus oil is above all suitable for this purpose since it has hydroxyl groups itself and it can be converted directly with isocyanates. Derivatives of the ricinus oil can furthermore be used.
- polyols on the basis of vegetable oils can be manufactured, on the one hand, by epoxidation of the vegetable oils with a subsequent ring opening and via a transesterification of vegetable oils with glycerin.
- Polyurethanes on the basis of vegetable oils are also marketed as "bio polyurethanes" due to the biogenic origin of some of the raw materials.
- Polyesters are polymers having ester functions - [-CO-
- polyesters admittedly are also present in nature, but today polyesters are rather understood as a large family of synthetic polymers (plastics) which include the widely used polycarbonates (PC) and above all the technically important thermoplastic polyethylene terephthalate (PET) .
- PC polycarbonates
- PET thermoplastic polyethylene terephthalate
- Mylar is a particular processing form of the polyethylene enterephthalate - as a film.
- UP thermosetting unsaturated polyester resin
- PC polycarbonate a derivative of carbonic acid PET polyethylene terephthalate, a derivative of terephthalic acid
- polyamides are usually used as a name for synthetic technically usable thermoplastics and thus delineates this material class from the
- amino carboxylic acids, lactams and/or diamines and dicarboxylic acids are used as monomers for the polyamides .
- Polyamides can be categorized in the following classes :
- Aliphatic polyamides the monomers are derived from aliphatic base bodies, e.g. PA from ⁇ -caprolactam (polycaprolactam, abbreviated PA 6) or from
- hexamethylene diamine and adipic acid PA 66
- PA 66 hexamethylene diamine and adipic acid
- PA 6T hexamethylene diamine and terephthalic acid
- Aromatic polyamides (polyaramides) : the monomers are derived from purely aromatic base bodies, e.g. para- phenylene diamine and terephthalic acid (aramide) . By the kind of monomer composition
- Homopolyamides the polymer is derived from an amino carboxylic acid or from a lactam or a diamine and an dicarboxylic acid. Such polyamides can be described by a single repetition unit. Examples for this are the PA from caprolactam [NH- (CH2 ) 5-CO] n (PA 6) or the PA from hexamethylene diamine and adipic acid [NH- (CH2) 6-NH-CO- (CH2) 4-CO] n (PA 66).
- Copolyamides the polyamide is derived from a
- Such polyamides can only be described by giving a plurality of repetition units. Examples for this are the PA from caprolactam, hexamethylene diamine and adipic acid [NH- (CH2 ) 6-NH- CO- (CH2) 4-CO] n- [NH- (CH2) 5-CO] m (PA 6/66), or PA from hexamethylene diamine, adipic acid and sebacic acid [NH- (CH2) 6-NH-CO- (CH2) 4-CO] n- [NH- (CH2) 6-NH-CO- ( CH2 ) 8- CO] m (PA 66/610). It must be noted that the formulae given only describe the polymer composition, but not the sequence of the monomer units; these are usually statistically distributed over the polymer chains.
- Partially crystalline polyamides form crystalline domains from the melt when cooling (1st order phase transition) .
- the whole melt does not solidify in a crystalline manner, but amorphous domains are rather also formed (see below) .
- the ratio between the crystalline and the amorphous domains is determined by the chemical nature of the polyamide and by the cooling conditions.
- the crystallization can be promoted or hindered by nucleating or antinucleating additives.
- Polyamides which crystallize easily are e.g. PA 46 or PA 66;
- polyamides which crystallize with difficulty are e.g.
- PA mXD6 from xylylene diamine and adipic acid or certain copolyamides .
- Amorphous polyamides solidify in glass-like manner from the melt. In the solid state, there is no long- range order of the repetition units. The transition between solid and liquid is described by the glass transition temperature (2nd order phase transition) .
- Examples are the PA from hexamethylene diamine and isophthalic acid (PA 61) and certain copolyamides.
- amorphous polyamides include monomer units which make a regular, crystalline arrangement of the chains impossible. Under extreme cooling conditions, otherwise partially crystalline polyamides can also solidify amorphously.
- Polystyrene (abbreviation PS, IUPAC name: poly(l- phenylethane- 1 , 2-diyl) ) is a transparent, amorphous or partly crystalline thermoplastic. Amorphous polystyrene can be used for a variety of purposes.
- Polystyrene is used either as a thermoplastically processable material or as a foam (expanded
- Polystyrene is physiologically
- Polystyrene is predominantly gained by suspension polymerization of the monomer styrene which has exceptional polymerization properties. It can be polymerized radically, cationically,
- Ethene is today acquired from crude oil. Chlorine is above all acquired on a large technical scale in chlorine alkaline electrolysis from common salt. The chlorine is added to the ethene in a first step and 1, 2-dichloroethene is created. In a second step, HC1 is split off therefrom, with VCM arising. VCM is polymerized in an autoclave to form PVC under
- initiator is dissolved in monomeric vinyl chloride.
- the liquid used a special magnetorheological oil
- the liquid used is permeated with microscopically small, magnetically polarizable metal particles. It is possible to generate a magnetic field via an electromagnet or a permanent magnet.
- the metal particles are thereby aligned in the direction of the magnetic field and thus decisively influence the viscosity, i.e. the flowability of the oil.
- a voltage By applying a voltage, the arrangement of the magnetic particles and thus the physical consistency (viscosity) of the liquid reacting almost without delay is varied.
- the property of the dilatancy of a substance can also be used directly to increase the viscosity in situ.
- Structural viscosity also called shear thinning
- shear thinning is the property of a fluid to show a reducing viscosity at high shear forces. I.e., the higher the shear acting on the fluid, the less viscous, it is. Such a fluid is therefore aptly called shear thinning, which is occasionally used as a synonym for structural - viscous .
- the reduction of the viscosity arises due to a structural change in the fluid which provides that the individual fluid particles (e.g. polymer chains) can slide past one another more easily.
- individual fluid particles e.g. polymer chains
- Thixotropy the viscosity does not immediately increase again after reduction of the shear force; Rheopexy, the opposite behavior to thixotropy.
- Non-drip wall paint does not drip off the roller since the shear is small and the viscosity is large, whereas it is easy to apply to the wall since the thin film between the wall and the roller causes a large shear and thus the viscosity is small.
- Associative materials are systems in which small molecules congregate to form supramolecular systems via physical interactions, for example hydrogen bridge bonds or ion-dipol interactions. These bonds which are weak (in comparison with covalent bonds) are broken open by shear, which lowers the viscosity.
- the special feature in this respect is that the bonds only completely form back after a certain material-specific time ( ⁇ thixotropy) .
- Technically important representatives are ionomers .
- Dilatancy is in rheology the property of a non-Newtonian fluid to show a higher viscosity at high shear forces.
- a dilatants fluid is also called shear thickening or shear hardening.
- the increase in the viscosity arises through a structural change in the fluid which ensures that the individual fluid particles interact more with one another (for example interlace) and so slide past one another less easily.
- the viscosity of a dilatant fluid increases with the shear speed , but does not depend on the time with a constant shear speed.
- APS active protection system
- Electrorheological fluids EPFs
- homogeneous ERFs comprise e.g. aluminum salts of stearic acid.
- the active mechanism of the homogeneous ERFs is not known with absolute certainty.
- the heterogeneous ERFs comprise polarizable particles or droplets which are dispersed in an electrically non- conductive carrier fluid, e.g. silicone oil or mineral oil.
- Dipoles are induced in the particles by an external electric field.
- the particles form chains and columns along the field lines of the electric field.
- Winslow chain model is the simplest structural model to explain the electrorheological effect.
- Electrorheological fluids are usually used as a central component of a mechatronic system. These systems can react to different general conditions together with a housing, a high- oltage power pack and a corresponding control or regulation.
- the damping properties of hydraulic bearings can thus, for example, be controlled by the use of an electrorheological fluid in that the viscosity of the electrorheological fluid is controllable.
- an electrorheological fluid in that the viscosity of the electrorheological fluid is controllable.
- Electrorheological fluids are just as loadable as their base materials. When used as a variable brake, modern ERFs are, unlike solid brakes, not abrasive and are comparatively temperature stable. There are, however, also ERF formulations which can be used as abrasives due to their high abrasiveness .
- suspensions e.g. of polyurethane particles
- the soft and elastic particles have, on the one hand, no abrasive influence on the mechanical components of the ER systems (pumps, valves) ; on the other hand, they are themselves extremely resistant to mechanical wear due to their flexibility so that no degradation of the ERF itself is to be seen even under the most vigorous mechanical load.
- Fig. 1 schematically in a longitudinal section, a blood vessel with a hollow catheter
- FIG. 2 schematically, a blood vessel which opens into a ventricle and through which a hollow catheter having a heart pump is pushed in;
- Fig. 3 a rotor or a pump in the transport state
- Fig. 4 the rotor of Fig. 3 in the operating state
- Fig. 5 a further rotor in the transport state
- Fig. 7 a third rotor in the transport state
- Fig. 9 a detail of a rotor with a conveying
- Fig. 10 the detail of Fig. 9, with the hollow space being completely filled;
- Fig. 11 schematically, a view of a rotor in the
- Fig. 13 a rotor in the operating state in stiffened form with a housing of a pump in the operating state;
- Fig. 14 the parts of the pump of Fig. 13 after a further treatment which allows the breaking of the conveying elements;
- Fig. 15 a rotor with conveying elements which is pushed through a hollow catheter in the transport state;
- Fig. 16 the rotor of Fig. 15 which is erected by withdrawing the hub into the hollow catheter;
- Fig. 17 a rotor which is erected by displacement of a support wheel by means of thrust elements
- Fig 18 a view of the thrust wheel.
- Fig. 1 shows, as an example for an apparatus in accordance with the invention, a rotary cutter 1 which is introduced at the distal end of a hollow catheter 2 into a blood vessel 3 of a human body to eliminate a constriction 4 by cutting away deposits at the wall of the blood vessel.
- a shaft 5 runs within the hollow catheter 2, said shaft being configured for a rotation at high speed and being able to be driven by a motor from outside the hollow catheter.
- the rotary cutter 1 is advantageously first
- the invention solves the problem of effecting this change in the mechanical properties of the rotary cutter in a favorable form after passing through the transport path.
- Fig. 2 shows a further example application for an apparatus in accordance with the invention which is in this case formed by a heart catheter pump 6.
- the latter has a housing 7 in which a rotor is
- the pump typically has a larger diameter in operation than during the transport in order to give it the required efficiency. For this reason, the pump is radially compressed before the introduction into a blood vessel 11 through which it should be pushed into a ventricle 12. Then it is introduced through a sluice 13 into the blood vessel 10 and is pushed through up to the ventricle 12.
- the pump for example the rotor and the pump housing, is then radially expanded together or each part on its own.
- the invention can generate the expansion movement per se or assist it. It can, however, also only become effective after the expansion movement in that, for example, the rotor or the pump housing is stiffened in the expanded position and is thus stabilized.
- the pump can then be operated at high speeds and under high mechanical load in that the motor 14 drives the shaft 15 at 10,000 r.p.m., for example.
- the erection of the individual elements of the pump 6 after the bringing to the deployment site in the ventricle 12 can take place, for example, in that the rotor 8, 9, 10 is set into rotation and is erected either by the acting centrifugal forces or by the counter fluid forces which are adopted on the
- mechanical apparatus such as pulls or compression devices can also be provided which can be actuated along the hollow catheter 16 from outside the patient body and which act on the pump head and there cause or assist a corresponding expansion movement.
- Other mechanisms are also possible via which it is possible to work toward an expansion.
- Fig. 3 shows a view of a rotor having conveying blades or rotor blades 9', 10' which are arranged at a hub 8 1 and which are still shown in the transport state in Fig. 3 in which they lie radially at the hub 8 ' .
- a respective part region 17, 18 of each conveying element 9', 10' is designed such that it contracts through certain external influences such as radiation with UV light or particle radiation, (a,
- Self cross - linking plastics which harden, on the one hand, and contract, on the other hand, on the cross-linking can be selected as the materials 17, 18, for example.
- Fig. 4 shows that the conveying elements 9', 10' are pulled more to the hub 8' in their regions by a contraction of the regions 17, 18 and are thus radially erected, as indicated by the arrow 19. This effect is stable and permanent with a permanent cross-linking. It is, however, also conceivable to use materials which show such a contraction
- the rotor is only radially expanded for so long as (or with an effect only in the
- FIG. 5 A further embodiment of the invention is shown in Fig. 5 having a rotor with a hub 8" and two conveying blades 9", 10" and hollow spaces 20, 21 arranged therein .
- the hollow spaces 20, 21 are connected to a pressure source via a line system having feeds 22, 23 which extend through the hub 8".
- Corresponding lines can be fed either through a lumen of the hollow catheter or through hoses additionally arranged inwardly or outwardly at the hollow catheter there.
- a gas or a liquid can, for example, be fed into the hollow spaces 20, 21 for erecting the conveying elements 9", 10" so that the conveying elements 9", 10" are erected and tightened as shown in Fig. 6.
- a corresponding pressed- in liquid in the hollow spaces 20, 21 is then solidified either by cross-linking or by a chemical reaction with a further material or the properties of the liquid are changed by a field effect, which is, for example, possible with
- the rotor is thus stabilized and stiffened at a high viscosity of the liquid.
- a further substance must then be introduced to maintain the stiffening permanently.
- a plurality of substances can, for example, also be introduced in the form of liquids and/or gases which either react with one another after meeting in the hollow spaces 20, 21 or which are added to by a catalyst as soon as the conveying elements 9", 10" are erected to accelerate the reaction. If an irreversible reaction is triggered by the external effect, the effect can be removed after the stiffening of the rotor. On the other hand, the maintenance, for example of a field, can also be necessary to maintain the corresponding desired mechanical properties of the rotor.
- Fig. 7 shows a rotor having two conveying elements in the form of impeller blades 9"', 10"', wherein each of the conveying elements has two stiffening webs 24, 25, 26, 27. They are still flaccid in the transport state of Fig. 7 so that the conveying elements 9"',
- the rotor After being brought to the deployment site, the rotor is set into rotation, as designated by the arrow 28 in Fig. 8, so that the conveying elements 9"', 10"' are erected by centrifugal force and/or fluid
- reaction can start for stiffening the webs 24, 25, 26, 27, either by radiation such as by means of an influencing source 29, which can, however, also be replaced by a magnetic or electric field source, or by an
- substance can, for example, be present in human blood as a component of the blood in natural form before the pump is used. If this substance diffuses into the conveying elements and meets the reinforcement or stiffening webs, a hardening reaction takes place there which stiffens the conveying elements.
- Fig. 9 schematically shows a single conveying element 31 having a hollow space 32 which is partially filled with a liquid 33.
- An expansion by which the hollow space 32 is pressurized and inflated takes place hereby and by the
- the foam 36 is stiffened, either by the reaction or by a
- Fig. 11 shows a pump in the transport state having a pump housing 36 in the form of a membrane which is collapsed and tightly surrounds the likewise
- the housing 36 is fastened to the end 38 of the hub 39 and is pushed in this state at the end of a hollow catheter through a blood vessel.
- the rotor can slowly be set in motion, as shown in Fig. 12.
- the conveying blades 37 are erected by the centrifugal force and/or by fluid counter forces of the blood to be conveyed, suck blood through openings at the front side of the housing 36, indicated by the arrows 40, 41, and thus increase the pressure in the inner space of the pump housing 36.
- the membrane 36 is hereby widened and inflated and tautens tightly. At the same time, the space for the complete
- unfolding of the conveying blades 37 opens so that the rotor can take up its full rotational speed.
- the blood can then be pressed from the inner space 42 of the pump housing 36 through the openings 43 into the blood vessel 10.
- the pump housing 36 is in this respect supported on the distal end 44 of the hollow catheter 45, with the drive shaft 46 which ends at the hub 47 also
- the hub 47 is sensibly rotatably supported at both ends of the pump housing 36.
- the pump can thus be stabilized in this state by hardening both of the pump housing and of the conveying blades. This is done, for example, by radiation from outside with UV light, another radiation or ultrasound or by a chemical effect either by addition of a suitable substance starting a reaction at the conveying elements or at the pump housing or by reaction with a substance which is anyway in the blood to be conveyed and which acts as a reaction partner or as a
- a temporary stiffening or increase of the viscosity can also be provided here in the case of filling liquids by using magnetic or electric fields.
- Corresponding fields can be introduced or radiated in from outside the patient's body or they can be applied by corresponding probes which are brought into the vicinity of the pump or are arranged at the end of the hollow catheter carrying the pump.
- a motor can be arranged at the pump head, for example with a corresponding pump, said motor generating a magnetic rotary field by means of its coil when switched on. Since said rotary field also rotates at the speed of the rotor, it represents a stationary magnetic field with respect to the impeller blades of the rotor which can therefore - in addition to the drive function - influence the magnetorheological fluid of the rotor blades in order to stabilize them.
- a coil without a drive function can also be arranged at the pump head, said coil effecting the stabilization of the corresponding rotor, wherein the rotor would be driven by a separate drive, for example by a flexible shaft .
- electromagnetic radiation such as light, UV radiation, infrared radiation, short waves or X-ray radiation is, for example, conducted to the pump head to cause a hardening reaction there.
- electromagnetic radiation such as light, UV radiation, infrared radiation, short waves or X-ray radiation is, for example, conducted to the pump head to cause a hardening reaction there.
- This can take place, for example, via a suitable optical fiber which can be conducted, for example, through the hollow catheter.
- Fig. 13 schematically shows a pump head having a housing 36 and conveying blades 37 which have
- reinforcing ribs 48 are typically stiffened to stabilize the operating state, for example by cross - linking of a cross-linkable polymer.
- the rotor is further radiated by a radiation source 49 so that the hardening is continued by further cross -linking up the embrittlement .
- the stiffening webs 48 are embrittled, they can break on their own or can be broken simply on the removal of the pump by
- FIG. 14 shows the reinforcement webs 48 within the conveying blades 37 in the kinked or broken state, as the pump head is pulled back together with the housing 36 into the funnel-shaped distal end of the hollow catheter 49 by means of the drive shaft 46.
- the retraction can, however, also take place by other means such as pulls extending parallel to the drive shaft 46 in the hollow catheter 49.
- the pump head can be pulled into the hollow catheter without any greater
- An embrittlement or a breaking can, for example, be provided by
- a temperature lowering can also be locally effected, for example, by introduction of a coolant through the hollow catheter 49 in order to embrittle the rotor and/or the pump housing and to make it susceptible to breaking. It is the most sensible in this respect accordingly only to break the rotor and to leave the pump housing intact so that any breaking splinters which may occur cannot enter into the bloodstream.
- a possible erection mechanism is shown for a rotor after the transport and for the transition to the operating state.
- a rotor is shown having the hub 50 and the conveying blades 51 in the compressed state within the hollow catheter 52 shortly before it is pushed out of the hollow catheter within the
- the rotor can thereupon again be pushed out of the hollow catheter 52 in the direction of the arrow 53 and can be pushed away therefrom to reach the operating position.
- Fig. 17 shows a further embodiment of a rotor having a hub 58 to which the conveying blades 59 are
- the rotor or the conveying blades of the rotor can be erected by a pushing up of an erection wheel 61 which is shown more clearly in the plan view in Fig. 18.
- the erection wheel 61 is effected by pushing by means of a plurality of thrust elements 63, 64 or by means of a hose- like element which extends within the hollow catheter 60 and which can . , for example, surround the drive shaft 65.
- the erection wheel 61 is provided with large passage openings 66 in order not to impair or only minimally to impair the flow relationships of the pump.
- the crystallization process of the liquid can thus, for example, be triggered by a brief mechanical pulse, similar to the procedure with so-called heat packs.
- the heat effect could be locally limited so much that any damage to the surrounding tissue is reduced to a non- harmful degree or is completely avoided.
- the apparatus in accordance with the invention and the methods in accordance with the invention allow the influencing of the mechanical properties of elements of an apparatus, especially a blood pump, introduced into a patient's body using a technically clear-cut effort so that said apparatus can be brought into the suitable form for operation or can be provided with the required stiffness without the corresponding mechanical properties already having to be present on the introduction into the patient's body.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Cardiology (AREA)
- General Engineering & Computer Science (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Vascular Medicine (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Materials For Medical Uses (AREA)
- External Artificial Organs (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/261,423 US9217442B2 (en) | 2010-03-05 | 2011-03-02 | Pump or rotary cutter for operation in a fluid |
CN201180012576.4A CN102791303B (en) | 2010-03-05 | 2011-03-02 | The pump operated in a fluid or rotating knife |
DE112011100800T DE112011100800T5 (en) | 2010-03-05 | 2011-03-02 | Pump or tiller for operation in a fluid |
US14/942,158 US9907891B2 (en) | 2010-03-05 | 2015-11-16 | Pump or rotary cutter for operation in a fluid |
US15/873,294 US10413646B2 (en) | 2010-03-05 | 2018-01-17 | Pump or rotary cutter for operation in a fluid |
US16/532,553 US11040187B2 (en) | 2010-03-05 | 2019-08-06 | Pump or rotary cutter for operation in a fluid |
US17/308,094 US11986205B2 (en) | 2010-03-05 | 2021-05-05 | Pump or rotary cutter for operation in a fluid |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31075010P | 2010-03-05 | 2010-03-05 | |
EP10075103A EP2363157A1 (en) | 2010-03-05 | 2010-03-05 | Device for exerting mechanical force on a medium, in particular fluid pump |
EP10075103.1 | 2010-03-05 | ||
US61/310,750 | 2010-03-05 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/261,423 A-371-Of-International US9217442B2 (en) | 2010-03-05 | 2011-03-02 | Pump or rotary cutter for operation in a fluid |
US14/942,158 Continuation US9907891B2 (en) | 2010-03-05 | 2015-11-16 | Pump or rotary cutter for operation in a fluid |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011107296A1 true WO2011107296A1 (en) | 2011-09-09 |
Family
ID=42269499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/001125 WO2011107296A1 (en) | 2010-03-05 | 2011-03-02 | Pump or rotary cutter for operation in a fluid |
Country Status (5)
Country | Link |
---|---|
US (5) | US9217442B2 (en) |
EP (1) | EP2363157A1 (en) |
CN (1) | CN102791303B (en) |
DE (1) | DE112011100800T5 (en) |
WO (1) | WO2011107296A1 (en) |
Families Citing this family (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7393181B2 (en) | 2004-09-17 | 2008-07-01 | The Penn State Research Foundation | Expandable impeller pump |
CA2646277C (en) | 2006-03-23 | 2016-01-12 | The Penn State Research Foundation | Heart assist device with expandable impeller pump |
US8489190B2 (en) | 2007-10-08 | 2013-07-16 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US8439859B2 (en) | 2007-10-08 | 2013-05-14 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
EP2194278A1 (en) | 2008-12-05 | 2010-06-09 | ECP Entwicklungsgesellschaft mbH | Fluid pump with a rotor |
EP2216059A1 (en) | 2009-02-04 | 2010-08-11 | ECP Entwicklungsgesellschaft mbH | Catheter device with a catheter and an actuation device |
EP2229965A1 (en) | 2009-03-18 | 2010-09-22 | ECP Entwicklungsgesellschaft mbH | Fluid pump with particular form of a rotor blade |
EP2246078A1 (en) | 2009-04-29 | 2010-11-03 | ECP Entwicklungsgesellschaft mbH | Shaft assembly with a shaft which moves within a fluid-filled casing |
EP2248544A1 (en) | 2009-05-05 | 2010-11-10 | ECP Entwicklungsgesellschaft mbH | Fluid pump with variable circumference, particularly for medical use |
EP2266640A1 (en) | 2009-06-25 | 2010-12-29 | ECP Entwicklungsgesellschaft mbH | Compressible and expandable turbine blade for a fluid pump |
EP2282070B1 (en) | 2009-08-06 | 2012-10-17 | ECP Entwicklungsgesellschaft mbH | Catheter device with a coupling device for a drive device |
EP2298371A1 (en) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Function element, in particular fluid pump with a housing and a transport element |
EP2298372A1 (en) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Rotor for an axial pump for transporting a fluid |
EP2298373A1 (en) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Fluid pump with at least one turbine blade and a seating device |
DK3441616T3 (en) | 2009-09-22 | 2023-05-30 | Ecp Entw Mbh | COMPRESSIBLE ROTOR FOR A FLUID PUMP |
EP2314330A1 (en) | 2009-10-23 | 2011-04-27 | ECP Entwicklungsgesellschaft mbH | Flexible shaft arrangement |
EP2314331B1 (en) | 2009-10-23 | 2013-12-11 | ECP Entwicklungsgesellschaft mbH | Catheter pump arrangement and flexible shaft arrangement with a cable core |
EP2338541A1 (en) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Radial compressible and expandable rotor for a fluid pump |
EP2338540A1 (en) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Delivery blade for a compressible rotor |
EP2338539A1 (en) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Pump device with a detection device |
EP2347778A1 (en) | 2010-01-25 | 2011-07-27 | ECP Entwicklungsgesellschaft mbH | Fluid pump with a radially compressible rotor |
EP2363157A1 (en) | 2010-03-05 | 2011-09-07 | ECP Entwicklungsgesellschaft mbH | Device for exerting mechanical force on a medium, in particular fluid pump |
EP2388029A1 (en) | 2010-05-17 | 2011-11-23 | ECP Entwicklungsgesellschaft mbH | Pump array |
EP2399639A1 (en) | 2010-06-25 | 2011-12-28 | ECP Entwicklungsgesellschaft mbH | System for introducing a pump |
EP2407186A1 (en) | 2010-07-15 | 2012-01-18 | ECP Entwicklungsgesellschaft mbH | Rotor for a pump, produced with an initial elastic material |
EP2407187A3 (en) | 2010-07-15 | 2012-06-20 | ECP Entwicklungsgesellschaft mbH | Blood pump for invasive application within the body of a patient |
EP2407185A1 (en) | 2010-07-15 | 2012-01-18 | ECP Entwicklungsgesellschaft mbH | Radial compressible and expandable rotor for a pump with a turbine blade |
EP2422735A1 (en) | 2010-08-27 | 2012-02-29 | ECP Entwicklungsgesellschaft mbH | Implantable blood transportation device, manipulation device and coupling device |
WO2012094641A2 (en) | 2011-01-06 | 2012-07-12 | Thoratec Corporation | Percutaneous heart pump |
EP2497521A1 (en) | 2011-03-10 | 2012-09-12 | ECP Entwicklungsgesellschaft mbH | Push device for axial insertion of a string-shaped, flexible body |
EP2564771A1 (en) | 2011-09-05 | 2013-03-06 | ECP Entwicklungsgesellschaft mbH | Medicinal product with a functional element for invasive use in the body of a patient |
US8926492B2 (en) | 2011-10-11 | 2015-01-06 | Ecp Entwicklungsgesellschaft Mbh | Housing for a functional element |
EP2785391B1 (en) * | 2011-11-28 | 2015-09-23 | Mi-vad, Inc. | Ventricular assist device and method |
US9446179B2 (en) | 2012-05-14 | 2016-09-20 | Thoratec Corporation | Distal bearing support |
EP4218887A1 (en) | 2012-05-14 | 2023-08-02 | Tc1 Llc | Mechanical circulatory support device for stabilizing a patient after cardiogenic shock |
US8721517B2 (en) | 2012-05-14 | 2014-05-13 | Thoratec Corporation | Impeller for catheter pump |
US9872947B2 (en) | 2012-05-14 | 2018-01-23 | Tc1 Llc | Sheath system for catheter pump |
EP2858711B1 (en) | 2012-06-06 | 2018-03-07 | Magenta Medical Ltd. | Prosthetic renal valve |
US9421311B2 (en) | 2012-07-03 | 2016-08-23 | Thoratec Corporation | Motor assembly for catheter pump |
US9358329B2 (en) | 2012-07-03 | 2016-06-07 | Thoratec Corporation | Catheter pump |
EP4186557A1 (en) | 2012-07-03 | 2023-05-31 | Tc1 Llc | Motor assembly for catheter pump |
US11033728B2 (en) | 2013-03-13 | 2021-06-15 | Tc1 Llc | Fluid handling system |
EP4122520A1 (en) | 2013-03-13 | 2023-01-25 | Tc1 Llc | Fluid handling system |
US10583231B2 (en) | 2013-03-13 | 2020-03-10 | Magenta Medical Ltd. | Blood pump |
US11077294B2 (en) | 2013-03-13 | 2021-08-03 | Tc1 Llc | Sheath assembly for catheter pump |
CN109821085B (en) | 2013-03-13 | 2021-08-31 | 马真塔医药有限公司 | Blood pump |
WO2014143593A1 (en) | 2013-03-15 | 2014-09-18 | Thoratec Corporation | Catheter pump assembly including a stator |
US9308302B2 (en) | 2013-03-15 | 2016-04-12 | Thoratec Corporation | Catheter pump assembly including a stator |
EP2860849B1 (en) | 2013-10-11 | 2016-09-14 | ECP Entwicklungsgesellschaft mbH | Compressible motor, implanting assembly and method for positioning the motor |
EP2860399A1 (en) * | 2013-10-14 | 2015-04-15 | ECP Entwicklungsgesellschaft mbH | Method for operating a supply device that supplies a channel with a liquid, and supply device |
EP2868331B1 (en) | 2013-11-01 | 2016-07-13 | ECP Entwicklungsgesellschaft mbH | Pump, in particular blood pump |
AU2015223169B2 (en) | 2014-02-25 | 2019-08-29 | Zain KHALPEY | Ventricular assist device and method |
EP3791920B1 (en) | 2014-04-15 | 2024-07-03 | Tc1 Llc | Catheter pump introducer system |
EP3799918A1 (en) | 2014-04-15 | 2021-04-07 | Tc1 Llc | Sensors for catheter pumps |
US10583232B2 (en) | 2014-04-15 | 2020-03-10 | Tc1 Llc | Catheter pump with off-set motor position |
US9827356B2 (en) | 2014-04-15 | 2017-11-28 | Tc1 Llc | Catheter pump with access ports |
US10449279B2 (en) | 2014-08-18 | 2019-10-22 | Tc1 Llc | Guide features for percutaneous catheter pump |
JP2017529954A (en) | 2014-10-01 | 2017-10-12 | ハートウェア、インコーポレイテッド | Backup control system with update |
WO2016118784A1 (en) | 2015-01-22 | 2016-07-28 | Thoratec Corporation | Attachment mechanisms for motor of catheter pump |
WO2016118781A2 (en) | 2015-01-22 | 2016-07-28 | Thoratec Corporation | Motor assembly with heat exchanger for catheter pump |
EP3247420B1 (en) | 2015-01-22 | 2019-10-02 | Tc1 Llc | Reduced rotational mass motor assembly for catheter pump |
EP3088018A1 (en) * | 2015-04-30 | 2016-11-02 | ECP Entwicklungsgesellschaft mbH | Rotor for a fluid pump and method and mould for its preparation |
US11291824B2 (en) | 2015-05-18 | 2022-04-05 | Magenta Medical Ltd. | Blood pump |
EP3808401A1 (en) | 2016-07-21 | 2021-04-21 | Tc1 Llc | Gas-filled chamber for catheter pump motor assembly |
WO2018017678A1 (en) | 2016-07-21 | 2018-01-25 | Thoratec Corporation | Fluid seals for catheter pump motor assembly |
EP3556409B1 (en) | 2016-10-25 | 2022-01-05 | Magenta Medical Ltd. | Ventricular assist device |
CA3039302A1 (en) | 2016-11-23 | 2018-05-31 | Magenta Medical Ltd. | Blood pumps |
US10533558B2 (en) | 2016-12-21 | 2020-01-14 | Saudi Arabian Oil Company | Centrifugal pump with adaptive pump stages |
JP7150617B2 (en) * | 2017-01-27 | 2022-10-11 | テルモ株式会社 | impeller and blood pump |
US11690645B2 (en) | 2017-05-03 | 2023-07-04 | Medtronic Vascular, Inc. | Tissue-removing catheter |
WO2018204704A1 (en) | 2017-05-03 | 2018-11-08 | Medtronic Vascular, Inc. | Tissue-removing catheter |
EP4233989A3 (en) | 2017-06-07 | 2023-10-11 | Shifamed Holdings, LLC | Intravascular fluid movement devices, systems, and methods of use |
US11511103B2 (en) | 2017-11-13 | 2022-11-29 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US10905808B2 (en) | 2018-01-10 | 2021-02-02 | Magenta Medical Ltd. | Drive cable for use with a blood pump |
CN108261589B (en) * | 2018-01-22 | 2020-11-27 | 上海市肺科医院 | Micro-injector acting on pathological target cells |
DE102018201030A1 (en) | 2018-01-24 | 2019-07-25 | Kardion Gmbh | Magnetic coupling element with magnetic bearing function |
JP7410034B2 (en) | 2018-02-01 | 2024-01-09 | シファメド・ホールディングス・エルエルシー | Intravascular blood pump and methods of use and manufacture |
DE102018207611A1 (en) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Rotor bearing system |
DE102018207575A1 (en) | 2018-05-16 | 2019-11-21 | Kardion Gmbh | Magnetic face turning coupling for the transmission of torques |
DE102018208541A1 (en) | 2018-05-30 | 2019-12-05 | Kardion Gmbh | Axial pump for a cardiac assist system and method of making an axial pump for a cardiac assist system |
DE102018211327A1 (en) | 2018-07-10 | 2020-01-16 | Kardion Gmbh | Impeller for an implantable vascular support system |
DE102018212153A1 (en) | 2018-07-20 | 2020-01-23 | Kardion Gmbh | Inlet line for a pump unit of a cardiac support system, cardiac support system and method for producing an inlet line for a pump unit of a cardiac support system |
CN109083862B (en) * | 2018-08-09 | 2020-08-14 | 浙江创美机电有限公司 | Novel magnetorheological water pump |
EP4434477A2 (en) | 2018-11-16 | 2024-09-25 | Medtronic Vascular Inc. | Tissue-removing catheter |
EP4385556A3 (en) | 2019-01-24 | 2024-08-28 | Magenta Medical Ltd. | Ventricular assist device |
AU2020248173A1 (en) | 2019-03-26 | 2021-11-25 | Puzzle Medical Devices Inc. | Modular mammalian body implantable fluid flow influencing device and related methods |
US11819236B2 (en) | 2019-05-17 | 2023-11-21 | Medtronic Vascular, Inc. | Tissue-removing catheter |
JP2022534654A (en) | 2019-05-23 | 2022-08-03 | マジェンタ・メディカル・リミテッド | blood pump |
JP2022540616A (en) | 2019-07-12 | 2022-09-16 | シファメド・ホールディングス・エルエルシー | Intravascular blood pump and methods of manufacture and use |
WO2021016372A1 (en) | 2019-07-22 | 2021-01-28 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
EP4034192A4 (en) | 2019-09-25 | 2023-11-29 | Shifamed Holdings, LLC | Intravascular blood pump systems and methods of use and control thereof |
EP4034221A4 (en) | 2019-09-25 | 2023-10-11 | Shifamed Holdings, LLC | Catheter blood pumps and collapsible pump housings |
EP4034184A4 (en) | 2019-09-25 | 2023-10-18 | Shifamed Holdings, LLC | Catheter blood pumps and collapsible blood conduits |
US11534596B2 (en) | 2020-01-09 | 2022-12-27 | Heartware, Inc. | Pulsatile blood pump via contraction with smart material |
US11806518B2 (en) | 2020-01-10 | 2023-11-07 | Heartware, Inc. | Passive thrust bearing angle |
DE102020102474A1 (en) | 2020-01-31 | 2021-08-05 | Kardion Gmbh | Pump for conveying a fluid and method for manufacturing a pump |
CN111329595B (en) * | 2020-02-26 | 2021-01-29 | 吉林大学 | Gastroenterology scope center patient shifts case |
EP4039320A1 (en) | 2020-04-07 | 2022-08-10 | Magenta Medical Ltd. | Lateral blood-inlet openings |
US11499563B2 (en) | 2020-08-24 | 2022-11-15 | Saudi Arabian Oil Company | Self-balancing thrust disk |
US11920469B2 (en) | 2020-09-08 | 2024-03-05 | Saudi Arabian Oil Company | Determining fluid parameters |
US11969586B2 (en) | 2021-03-02 | 2024-04-30 | Heartware, Inc. | Blood pump impeller |
US11644351B2 (en) | 2021-03-19 | 2023-05-09 | Saudi Arabian Oil Company | Multiphase flow and salinity meter with dual opposite handed helical resonators |
US11591899B2 (en) | 2021-04-05 | 2023-02-28 | Saudi Arabian Oil Company | Wellbore density meter using a rotor and diffuser |
US11913464B2 (en) | 2021-04-15 | 2024-02-27 | Saudi Arabian Oil Company | Lubricating an electric submersible pump |
CN113520568B (en) * | 2021-06-08 | 2023-02-28 | 武汉大学中南医院 | Plasma scalpel |
US11994016B2 (en) | 2021-12-09 | 2024-05-28 | Saudi Arabian Oil Company | Downhole phase separation in deviated wells |
US12085687B2 (en) | 2022-01-10 | 2024-09-10 | Saudi Arabian Oil Company | Model-constrained multi-phase virtual flow metering and forecasting with machine learning |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010047147A1 (en) * | 2000-02-10 | 2001-11-29 | Slepian Marvin J. | Transurethral volume reduction of the prostate (TUVOR) |
US6860713B2 (en) | 2002-11-27 | 2005-03-01 | Nidec Corporation | Fan with collapsible blades, redundant fan system, and related method |
US20060062672A1 (en) * | 2004-09-17 | 2006-03-23 | Mcbride Mark W | Expandable impeller pump |
US20090024108A1 (en) * | 2004-02-25 | 2009-01-22 | Kathy Lee-Sepsick | Methods and Devices for Delivery of Compositions to Conduits |
WO2009132309A1 (en) | 2008-04-25 | 2009-10-29 | Nellix, Inc. | Stent graft delivery system |
Family Cites Families (177)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB536245A (en) * | 1940-04-22 | 1941-05-07 | Frederic Drury Wayre | Improvements in or relating to apparatus comprising a rotary shaft and intended for dealing with corrosive fluids |
US3510229A (en) | 1968-07-23 | 1970-05-05 | Maytag Co | One-way pump |
US3568659A (en) | 1968-09-24 | 1971-03-09 | James N Karnegis | Disposable percutaneous intracardiac pump and method of pumping blood |
CH538410A (en) | 1971-02-17 | 1973-06-30 | L Somers S Brice | Flexible device for the transport of granular, powdery or fluid products |
DE2113986A1 (en) | 1971-03-23 | 1972-09-28 | Svu Textilni | Artificial heart machine - with ptfe or similar inert plastic coated parts,as intracorperal replacement |
SU400331A1 (en) | 1971-07-06 | 1973-10-01 | ||
US4014317A (en) | 1972-02-18 | 1977-03-29 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Multipurpose cardiocirculatory assist cannula and methods of use thereof |
US3812812A (en) | 1973-06-25 | 1974-05-28 | M Hurwitz | Trolling propeller with self adjusting hydrodynamic spoilers |
US4207028A (en) | 1979-06-12 | 1980-06-10 | Ridder Sven O | Extendable and retractable propeller for watercraft |
US4559951A (en) | 1982-11-29 | 1985-12-24 | Cardiac Pacemakers, Inc. | Catheter assembly |
US4563181A (en) | 1983-02-18 | 1986-01-07 | Mallinckrodt, Inc. | Fused flexible tip catheter |
US4686982A (en) | 1985-06-19 | 1987-08-18 | John Nash | Spiral wire bearing for rotating wire drive catheter |
US4679558A (en) | 1985-08-12 | 1987-07-14 | Intravascular Surgical Instruments, Inc. | Catheter based surgical methods and apparatus therefor |
US4801243A (en) | 1985-12-28 | 1989-01-31 | Bird-Johnson Company | Adjustable diameter screw propeller |
US4747821A (en) | 1986-10-22 | 1988-05-31 | Intravascular Surgical Instruments, Inc. | Catheter with high speed moving working head |
US4753221A (en) | 1986-10-22 | 1988-06-28 | Intravascular Surgical Instruments, Inc. | Blood pumping catheter and method of use |
US4749376A (en) | 1986-10-24 | 1988-06-07 | Intravascular Surgical Instruments, Inc. | Reciprocating working head catheter |
US4817613A (en) | 1987-07-13 | 1989-04-04 | Devices For Vascular Intervention, Inc. | Guiding catheter |
US5154705A (en) | 1987-09-30 | 1992-10-13 | Lake Region Manufacturing Co., Inc. | Hollow lumen cable apparatus |
US5061256A (en) | 1987-12-07 | 1991-10-29 | Johnson & Johnson | Inflow cannula for intravascular blood pumps |
US5183384A (en) | 1988-05-16 | 1993-02-02 | Trumbly Joe H | Foldable propeller assembly |
US5011469A (en) | 1988-08-29 | 1991-04-30 | Shiley, Inc. | Peripheral cardiopulmonary bypass and coronary reperfusion system |
US4919647A (en) | 1988-10-13 | 1990-04-24 | Kensey Nash Corporation | Aortically located blood pumping catheter and method of use |
US4957504A (en) | 1988-12-02 | 1990-09-18 | Chardack William M | Implantable blood pump |
US4969865A (en) | 1989-01-09 | 1990-11-13 | American Biomed, Inc. | Helifoil pump |
US5112292A (en) | 1989-01-09 | 1992-05-12 | American Biomed, Inc. | Helifoil pump |
US4944722A (en) | 1989-02-23 | 1990-07-31 | Nimbus Medical, Inc. | Percutaneous axial flow blood pump |
US5052404A (en) | 1989-03-02 | 1991-10-01 | The Microspring Company, Inc. | Torque transmitter |
US4995857A (en) | 1989-04-07 | 1991-02-26 | Arnold John R | Left ventricular assist device and method for temporary and permanent procedures |
US5097849A (en) | 1989-08-17 | 1992-03-24 | Kensey Nash Corporation | Method of use of catheter with working head having selectable impacting surfaces |
US5042984A (en) | 1989-08-17 | 1991-08-27 | Kensey Nash Corporation | Catheter with working head having selectable impacting surfaces and method of using the same |
US5040944A (en) | 1989-09-11 | 1991-08-20 | Cook Einar P | Pump having impeller rotational about convoluted stationary member |
GB2239675A (en) | 1989-12-05 | 1991-07-10 | Man Fai Shiu | Pump for pumping liquid |
US5118264A (en) | 1990-01-11 | 1992-06-02 | The Cleveland Clinic Foundation | Purge flow control in rotary blood pumps |
US5145333A (en) | 1990-03-01 | 1992-09-08 | The Cleveland Clinic Foundation | Fluid motor driven blood pump |
JPH0636821B2 (en) | 1990-03-08 | 1994-05-18 | 健二 山崎 | Implantable auxiliary artificial heart |
US5108411A (en) | 1990-03-28 | 1992-04-28 | Cardiovascular Imaging Systems, Inc. | Flexible catheter drive cable |
US5092844A (en) | 1990-04-10 | 1992-03-03 | Mayo Foundation For Medical Education And Research | Intracatheter perfusion pump apparatus and method |
US5163910A (en) | 1990-04-10 | 1992-11-17 | Mayo Foundation For Medical Education And Research | Intracatheter perfusion pump apparatus and method |
US5113872A (en) | 1990-04-18 | 1992-05-19 | Cordis Corporation | Guidewire extension system with connectors |
US5813405A (en) | 1990-04-18 | 1998-09-29 | Cordis Corporation | Snap-in connection assembly for extension guidewire system |
US5191888A (en) | 1990-04-18 | 1993-03-09 | Cordis Corporation | Assembly of an extension guidewire and an alignment tool for same |
US5117838A (en) | 1990-04-18 | 1992-06-02 | Cordis Corporation | Rotating guidewire extension system |
ES2020787A6 (en) | 1990-07-20 | 1991-09-16 | Figuera Aymerich Diego | Intra-ventricular expansible assist pump |
US5192286A (en) | 1991-07-26 | 1993-03-09 | Regents Of The University Of California | Method and device for retrieving materials from body lumens |
US5188621A (en) | 1991-08-26 | 1993-02-23 | Target Therapeutics Inc. | Extendable guidewire assembly |
IT1251758B (en) | 1991-11-05 | 1995-05-23 | Roberto Parravicini | VENTRICULAR PUMPING ASSISTANCE ELEMENT, WITH EXTERNAL DRIVE |
US5201679A (en) | 1991-12-13 | 1993-04-13 | Attwood Corporation | Marine propeller with breakaway hub |
US5271415A (en) | 1992-01-28 | 1993-12-21 | Baxter International Inc. | Guidewire extension system |
US6302910B1 (en) | 1992-06-23 | 2001-10-16 | Sun Medical Technology Research Corporation | Auxiliary artificial heart of an embedded type |
US5300112A (en) | 1992-07-14 | 1994-04-05 | Aai Corporation | Articulated heart pump |
US5676651A (en) | 1992-08-06 | 1997-10-14 | Electric Boat Corporation | Surgically implantable pump arrangement and method for pumping body fluids |
SE501215C2 (en) | 1992-09-02 | 1994-12-12 | Oeyvind Reitan | catheter Pump |
US5376114A (en) | 1992-10-30 | 1994-12-27 | Jarvik; Robert | Cannula pumps for temporary cardiac support and methods of their application and use |
US5365943A (en) | 1993-03-12 | 1994-11-22 | C. R. Bard, Inc. | Anatomically matched steerable PTCA guidewire |
JPH06346917A (en) | 1993-06-03 | 1994-12-20 | Shicoh Eng Co Ltd | Pressure-proof water-proof sealing system using unidirectional dynamic pressure bearing |
US5368438A (en) | 1993-06-28 | 1994-11-29 | Baxter International Inc. | Blood pump |
US5720300A (en) | 1993-11-10 | 1998-02-24 | C. R. Bard, Inc. | High performance wires for use in medical devices and alloys therefor |
DK145093D0 (en) | 1993-12-23 | 1993-12-23 | Gori 1902 As | PROPELLER |
US5531789A (en) | 1993-12-24 | 1996-07-02 | Sun Medical Technology Research Corporation | Sealing system of an artificial internal organ |
US5613935A (en) | 1994-12-16 | 1997-03-25 | Jarvik; Robert | High reliability cardiac assist system |
DE19535781C2 (en) | 1995-09-26 | 1999-11-11 | Fraunhofer Ges Forschung | Device for active flow support of body fluids |
EP0768091B1 (en) | 1995-10-16 | 2003-07-30 | Sun Medical Technology Research Corporation | Artificial heart |
US5701911A (en) | 1996-04-05 | 1997-12-30 | Medtronic, Inc. | Guide wire extension docking system |
US6254359B1 (en) | 1996-05-10 | 2001-07-03 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for providing a jewel bearing for supporting a pump rotor shaft |
IL118352A0 (en) | 1996-05-21 | 1996-09-12 | Sudai Amnon | Apparatus and methods for revascularization |
US5820571A (en) | 1996-06-24 | 1998-10-13 | C. R. Bard, Inc. | Medical backloading wire |
US6015272A (en) | 1996-06-26 | 2000-01-18 | University Of Pittsburgh | Magnetically suspended miniature fluid pump and method of designing the same |
US5779721A (en) | 1996-07-26 | 1998-07-14 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other blood vessels |
US5851174A (en) | 1996-09-17 | 1998-12-22 | Robert Jarvik | Cardiac support device |
EP2058017A3 (en) | 1996-10-04 | 2011-02-23 | Tyco Healthcare Group LP | Circulatory support system |
US5882329A (en) | 1997-02-12 | 1999-03-16 | Prolifix Medical, Inc. | Apparatus and method for removing stenotic material from stents |
CA2206644A1 (en) | 1997-05-30 | 1998-11-30 | L. Conrad Pelletier | Ventricular assist device comprising enclosed-impeller axial flow blood pump |
US6129704A (en) | 1997-06-12 | 2000-10-10 | Schneider (Usa) Inc. | Perfusion balloon catheter having a magnetically driven impeller |
AU9787498A (en) | 1997-10-02 | 1999-04-27 | Micromed Technology, Inc. | Implantable pump system |
US5980471A (en) | 1997-10-10 | 1999-11-09 | Advanced Cardiovascular System, Inc. | Guidewire with tubular connector |
US6007478A (en) | 1997-11-13 | 1999-12-28 | Impella Cardiotechnik Aktiengesellschaft | Cannula having constant wall thickness with increasing distal flexibility and method of making |
DE29804046U1 (en) | 1998-03-07 | 1998-04-30 | Günther, Rolf W., Prof. Dr.med., 52074 Aachen | Percutaneously implantable, self-expanding axial pump for temporary heart support |
GB9824436D0 (en) | 1998-11-06 | 1999-01-06 | Habib Nagy A | Methods of treatment |
US6308632B1 (en) | 1998-11-23 | 2001-10-30 | James E. Shaffer | Deployable folded propeller assembly for aerial projectiles |
CA2256131A1 (en) | 1998-12-16 | 2000-06-16 | Micro Therapeutics, Inc. | Miniaturized medical brush |
US7780628B1 (en) | 1999-01-11 | 2010-08-24 | Angiodynamics, Inc. | Apparatus and methods for treating congestive heart disease |
US6123659A (en) | 1999-01-26 | 2000-09-26 | Nimbus Inc. | Blood pump with profiled outflow region |
EP1194177B1 (en) | 1999-04-20 | 2005-07-13 | Berlin Heart AG | Device for axially delivering fluidic media |
CA2311977A1 (en) | 1999-06-18 | 2000-12-18 | Helmut Reul | Method for delivering a fluid into a vessel of a human body, and improved cannula useful for carrying out the method |
US6458139B1 (en) | 1999-06-21 | 2002-10-01 | Endovascular Technologies, Inc. | Filter/emboli extractor for use in variable sized blood vessels |
US6506025B1 (en) | 1999-06-23 | 2003-01-14 | California Institute Of Technology | Bladeless pump |
US6247892B1 (en) | 1999-07-26 | 2001-06-19 | Impsa International Inc. | Continuous flow rotary pump |
WO2001007787A1 (en) | 1999-07-26 | 2001-02-01 | Impsa International Inc. | Continuous flow rotary pump |
US6398714B1 (en) | 1999-07-29 | 2002-06-04 | Intra-Vasc.Nl B.V. | Cardiac assist catheter pump and catheter and fitting for use therein |
US7022100B1 (en) | 1999-09-03 | 2006-04-04 | A-Med Systems, Inc. | Guidable intravascular blood pump and related methods |
US6454775B1 (en) | 1999-12-06 | 2002-09-24 | Bacchus Vascular Inc. | Systems and methods for clot disruption and retrieval |
JP2001207988A (en) | 2000-01-26 | 2001-08-03 | Nipro Corp | Magnetic driving type axial flow pump |
US20010031981A1 (en) | 2000-03-31 | 2001-10-18 | Evans Michael A. | Method and device for locating guidewire and treating chronic total occlusions |
US6592612B1 (en) | 2000-05-04 | 2003-07-15 | Cardeon Corporation | Method and apparatus for providing heat exchange within a catheter body |
US6537030B1 (en) | 2000-10-18 | 2003-03-25 | Fasco Industries, Inc. | Single piece impeller having radial output |
US7087078B2 (en) | 2000-11-21 | 2006-08-08 | Schering Ag | Tubular vascular implants (stents) and methods for producing the same |
DE10058669B4 (en) | 2000-11-25 | 2004-05-06 | Impella Cardiotechnik Ag | micromotor |
DE10059714C1 (en) | 2000-12-01 | 2002-05-08 | Impella Cardiotech Ag | Intravasal pump has pump stage fitted with flexible expandible sleeve contricted during insertion through blood vessel |
DE10108810A1 (en) | 2001-02-16 | 2002-08-29 | Berlin Heart Ag | Device for the axial conveyance of liquids |
US6517315B2 (en) | 2001-05-29 | 2003-02-11 | Hewlett-Packard Company | Enhanced performance fan with the use of winglets |
DE10155011B4 (en) | 2001-11-02 | 2005-11-24 | Impella Cardiosystems Ag | Intra-aortic pump |
US6981942B2 (en) | 2001-11-19 | 2006-01-03 | University Of Medicine And Dentristy Of New Jersey | Temporary blood circulation assist device |
AU2003202250A1 (en) | 2002-01-08 | 2003-07-24 | Micromed Technology, Inc. | Method and system for detecting ventricular collapse |
RU2229899C2 (en) | 2002-03-20 | 2004-06-10 | Федеральный научно-производственный центр закрытое акционерное общество "Научно-производственный концерн (объединение) "ЭНЕРГИЯ" | Device for supporting assist blood circulation |
US7648619B2 (en) * | 2002-06-04 | 2010-01-19 | Industrial Technology Research | Hydrogel-driven micropump |
WO2003103745A2 (en) | 2002-06-11 | 2003-12-18 | Walid Aboul-Hosn | Expandable blood pump and related methods |
US20030231959A1 (en) | 2002-06-12 | 2003-12-18 | William Hackett | Impeller assembly for centrifugal pumps |
US7118356B2 (en) | 2002-10-02 | 2006-10-10 | Nanyang Technological University | Fluid pump with a tubular driver body capable of selective axial expansion and contraction |
US20040215222A1 (en) | 2003-04-25 | 2004-10-28 | Michael Krivoruchko | Intravascular material removal device |
US7655022B2 (en) | 2003-04-28 | 2010-02-02 | Cardiac Pacemakers, Inc. | Compliant guiding catheter sheath system |
US7074018B2 (en) | 2003-07-10 | 2006-07-11 | Sheldon Chang | Direct drive linear flow blood pump |
DE10336902C5 (en) | 2003-08-08 | 2019-04-25 | Abiomed Europe Gmbh | Intracardiac pumping device |
WO2005021078A1 (en) | 2003-09-02 | 2005-03-10 | Intra-Vasc.Nl B.V. | Catheter pump, catheter and fittings therefore and methods of using a catheter pump. |
WO2005030316A1 (en) | 2003-09-26 | 2005-04-07 | Medtronic, Inc. | Sutureless pump connector |
EP1670524A4 (en) | 2003-10-09 | 2012-12-26 | Thoratec Corp | Impeller |
EP1718361B1 (en) | 2004-02-11 | 2015-06-17 | Fort Wayne Metals Research Products Corporation | Drawn strand filled tubing wire |
US8048086B2 (en) | 2004-02-25 | 2011-11-01 | Femasys Inc. | Methods and devices for conduit occlusion |
US7942804B2 (en) * | 2004-05-20 | 2011-05-17 | Cor-Med Vascular, Inc. | Replaceable expandable transmyocardial ventricular assist device |
CA2577051C (en) | 2004-08-13 | 2014-05-20 | Reynolds M. Delgado, Iii | Method and apparatus for long-term assisting a left ventricle to pump blood |
US7479102B2 (en) | 2005-02-28 | 2009-01-20 | Robert Jarvik | Minimally invasive transvalvular ventricular assist device |
EP2438937B1 (en) | 2005-06-06 | 2015-10-28 | The Cleveland Clinic Foundation | Blood pump |
EP1738783A1 (en) | 2005-07-01 | 2007-01-03 | Universitätsspital Basel | Axial flow pump with helical blade |
US7878967B1 (en) * | 2005-10-06 | 2011-02-01 | Sanjaya Khanal | Heart failure/hemodynamic device |
US7438699B2 (en) | 2006-03-06 | 2008-10-21 | Orqis Medical Corporation | Quick priming connectors for blood circuit |
US20070213690A1 (en) | 2006-03-08 | 2007-09-13 | Nickolas Phillips | Blood conduit connector |
CA2646277C (en) | 2006-03-23 | 2016-01-12 | The Penn State Research Foundation | Heart assist device with expandable impeller pump |
US20090234278A1 (en) | 2006-05-22 | 2009-09-17 | Koninklijke Philips Electronics N.V. | Catheter insertion sheath with adjustable flexibility |
DE102006036948A1 (en) | 2006-08-06 | 2008-02-07 | Akdis, Mustafa, Dipl.-Ing. | blood pump |
CA2663586C (en) | 2006-09-14 | 2014-10-28 | Circulite, Inc | Intravascular blood pump and catheter |
US7766394B2 (en) | 2006-10-30 | 2010-08-03 | Medtronic, Inc. | Breakaway connectors and systems |
US9028392B2 (en) | 2006-12-01 | 2015-05-12 | NuCardia, Inc. | Medical device |
AU2008219653B2 (en) | 2007-02-26 | 2014-01-16 | Heartware, Inc. | Intravascular ventricular assist device |
AU2008227102C1 (en) | 2007-03-19 | 2013-09-12 | Boston Scientific Neuromodulation Corporation | Methods and apparatus for fabricating leads with conductors and related flexible lead configurations |
DE102007014224A1 (en) | 2007-03-24 | 2008-09-25 | Abiomed Europe Gmbh | Blood pump with micromotor |
AU2008237136A1 (en) | 2007-04-05 | 2008-10-16 | Micromed Technology, Inc. | Blood pump system |
US8512312B2 (en) | 2007-05-01 | 2013-08-20 | Medtronic, Inc. | Offset catheter connector, system and method |
US20080275427A1 (en) | 2007-05-01 | 2008-11-06 | Sage Shahn S | Threaded catheter connector, system, and method |
US7828710B2 (en) | 2007-06-05 | 2010-11-09 | Medical Value Partners, Llc | Apparatus comprising a drive cable for a medical device |
WO2009015784A1 (en) | 2007-07-30 | 2009-02-05 | Ifw Manfred Otte Gmbh | Mould-integrated plastifying unit |
DE502007005015C5 (en) | 2007-10-08 | 2020-02-20 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
ATE491483T1 (en) | 2007-10-08 | 2011-01-15 | Ais Gmbh Aachen Innovative Solutions | CATHETER DEVICE |
US8439859B2 (en) | 2007-10-08 | 2013-05-14 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US8489190B2 (en) | 2007-10-08 | 2013-07-16 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
EP2194278A1 (en) | 2008-12-05 | 2010-06-09 | ECP Entwicklungsgesellschaft mbH | Fluid pump with a rotor |
EP2216059A1 (en) | 2009-02-04 | 2010-08-11 | ECP Entwicklungsgesellschaft mbH | Catheter device with a catheter and an actuation device |
EP2218469B1 (en) | 2009-02-12 | 2012-10-31 | ECP Entwicklungsgesellschaft mbH | Casing for a functional element |
EP2229965A1 (en) | 2009-03-18 | 2010-09-22 | ECP Entwicklungsgesellschaft mbH | Fluid pump with particular form of a rotor blade |
DE102010011998A1 (en) | 2009-03-24 | 2010-09-30 | Ecp Entwicklungsgesellschaft Mbh | Fluid pumping unit, particularly for medical area for use within body vessel, has fluid pump which consists of pump rotor and drive device for driving fluid pump, where drive device has fluid supply line and drive rotor driven by fluid |
EP2246078A1 (en) | 2009-04-29 | 2010-11-03 | ECP Entwicklungsgesellschaft mbH | Shaft assembly with a shaft which moves within a fluid-filled casing |
EP2248544A1 (en) | 2009-05-05 | 2010-11-10 | ECP Entwicklungsgesellschaft mbH | Fluid pump with variable circumference, particularly for medical use |
CN102438674B (en) | 2009-05-18 | 2014-11-05 | 卡迪奥布里奇有限公司 | Catheter pump |
EP2266640A1 (en) | 2009-06-25 | 2010-12-29 | ECP Entwicklungsgesellschaft mbH | Compressible and expandable turbine blade for a fluid pump |
EP2282070B1 (en) | 2009-08-06 | 2012-10-17 | ECP Entwicklungsgesellschaft mbH | Catheter device with a coupling device for a drive device |
DK3441616T3 (en) | 2009-09-22 | 2023-05-30 | Ecp Entw Mbh | COMPRESSIBLE ROTOR FOR A FLUID PUMP |
EP2298371A1 (en) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Function element, in particular fluid pump with a housing and a transport element |
EP2298372A1 (en) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Rotor for an axial pump for transporting a fluid |
EP2298373A1 (en) | 2009-09-22 | 2011-03-23 | ECP Entwicklungsgesellschaft mbH | Fluid pump with at least one turbine blade and a seating device |
EP2314330A1 (en) | 2009-10-23 | 2011-04-27 | ECP Entwicklungsgesellschaft mbH | Flexible shaft arrangement |
EP2314331B1 (en) | 2009-10-23 | 2013-12-11 | ECP Entwicklungsgesellschaft mbH | Catheter pump arrangement and flexible shaft arrangement with a cable core |
EP2338541A1 (en) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Radial compressible and expandable rotor for a fluid pump |
EP2338540A1 (en) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Delivery blade for a compressible rotor |
EP2338539A1 (en) | 2009-12-23 | 2011-06-29 | ECP Entwicklungsgesellschaft mbH | Pump device with a detection device |
EP2343091B1 (en) | 2010-01-08 | 2014-05-14 | ECP Entwicklungsgesellschaft mbH | Fluid pump with a transport device with controllable volume alteration |
EP2347778A1 (en) | 2010-01-25 | 2011-07-27 | ECP Entwicklungsgesellschaft mbH | Fluid pump with a radially compressible rotor |
EP2353626A1 (en) | 2010-01-27 | 2011-08-10 | ECP Entwicklungsgesellschaft mbH | Supply device for a fluid |
EP2363157A1 (en) | 2010-03-05 | 2011-09-07 | ECP Entwicklungsgesellschaft mbH | Device for exerting mechanical force on a medium, in particular fluid pump |
EP2388029A1 (en) | 2010-05-17 | 2011-11-23 | ECP Entwicklungsgesellschaft mbH | Pump array |
EP2399639A1 (en) | 2010-06-25 | 2011-12-28 | ECP Entwicklungsgesellschaft mbH | System for introducing a pump |
EP2407186A1 (en) | 2010-07-15 | 2012-01-18 | ECP Entwicklungsgesellschaft mbH | Rotor for a pump, produced with an initial elastic material |
EP2407187A3 (en) | 2010-07-15 | 2012-06-20 | ECP Entwicklungsgesellschaft mbH | Blood pump for invasive application within the body of a patient |
EP2407185A1 (en) | 2010-07-15 | 2012-01-18 | ECP Entwicklungsgesellschaft mbH | Radial compressible and expandable rotor for a pump with a turbine blade |
EP2497521A1 (en) | 2011-03-10 | 2012-09-12 | ECP Entwicklungsgesellschaft mbH | Push device for axial insertion of a string-shaped, flexible body |
EP2564771A1 (en) | 2011-09-05 | 2013-03-06 | ECP Entwicklungsgesellschaft mbH | Medicinal product with a functional element for invasive use in the body of a patient |
EP2606919A1 (en) | 2011-12-22 | 2013-06-26 | ECP Entwicklungsgesellschaft mbH | Sluice device for inserting a catheter |
EP2606920A1 (en) | 2011-12-22 | 2013-06-26 | ECP Entwicklungsgesellschaft mbH | Sluice device for inserting a catheter |
EP2607712B1 (en) | 2011-12-22 | 2016-07-13 | ECP Entwicklungsgesellschaft mbH | Pump housing with an interior for holding a pump rotor |
-
2010
- 2010-03-05 EP EP10075103A patent/EP2363157A1/en not_active Withdrawn
-
2011
- 2011-03-02 CN CN201180012576.4A patent/CN102791303B/en active Active
- 2011-03-02 DE DE112011100800T patent/DE112011100800T5/en active Pending
- 2011-03-02 US US13/261,423 patent/US9217442B2/en active Active
- 2011-03-02 WO PCT/EP2011/001125 patent/WO2011107296A1/en active Application Filing
-
2015
- 2015-11-16 US US14/942,158 patent/US9907891B2/en active Active
-
2018
- 2018-01-17 US US15/873,294 patent/US10413646B2/en active Active
-
2019
- 2019-08-06 US US16/532,553 patent/US11040187B2/en active Active
-
2021
- 2021-05-05 US US17/308,094 patent/US11986205B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010047147A1 (en) * | 2000-02-10 | 2001-11-29 | Slepian Marvin J. | Transurethral volume reduction of the prostate (TUVOR) |
US6860713B2 (en) | 2002-11-27 | 2005-03-01 | Nidec Corporation | Fan with collapsible blades, redundant fan system, and related method |
US20090024108A1 (en) * | 2004-02-25 | 2009-01-22 | Kathy Lee-Sepsick | Methods and Devices for Delivery of Compositions to Conduits |
US20060062672A1 (en) * | 2004-09-17 | 2006-03-23 | Mcbride Mark W | Expandable impeller pump |
US7393181B2 (en) | 2004-09-17 | 2008-07-01 | The Penn State Research Foundation | Expandable impeller pump |
WO2009132309A1 (en) | 2008-04-25 | 2009-10-29 | Nellix, Inc. | Stent graft delivery system |
Also Published As
Publication number | Publication date |
---|---|
US11040187B2 (en) | 2021-06-22 |
US20160144088A1 (en) | 2016-05-26 |
CN102791303A (en) | 2012-11-21 |
US20180200421A1 (en) | 2018-07-19 |
CN102791303B (en) | 2016-03-02 |
EP2363157A1 (en) | 2011-09-07 |
US9907891B2 (en) | 2018-03-06 |
US20130066139A1 (en) | 2013-03-14 |
DE112011100800T5 (en) | 2013-02-07 |
US20190358379A1 (en) | 2019-11-28 |
US10413646B2 (en) | 2019-09-17 |
US11986205B2 (en) | 2024-05-21 |
US20210346673A1 (en) | 2021-11-11 |
US9217442B2 (en) | 2015-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11986205B2 (en) | Pump or rotary cutter for operation in a fluid | |
US12065941B2 (en) | Rotor for a pump, produced with a first elastic material | |
Islam et al. | Progress and challenges in self-healing composite materials | |
US6085797A (en) | Constant velocity joint boot and method of making the same | |
CN104984424B (en) | Invade the blood pump of patient's body application | |
US7588707B2 (en) | Multilayered articles having biocompatibility and biostability characteristics | |
CN110023056A (en) | The method for manufacturing three-dimension object for subsequent cure by delivering reactive component | |
CA2739180C (en) | Implantable device for the delivery of octreotide and methods of use thereof | |
JP5676461B2 (en) | Resin composition for disposable resin molded article and resin molded article for disposable | |
EP3475090A1 (en) | Thermoset additive manufactured articles incorporating a phase change material and method to make them | |
CN112654489A (en) | 3D printed elastomeric product reinforced with continuous fibers and having asymmetric elastic properties | |
CA2955996A1 (en) | Self-lubricating polymer composition | |
WO2004060628A1 (en) | One-pack hardening paste material for use in foaming machine | |
CA2725677A1 (en) | Reaction injection molding system and processes for producing polyurethane articles | |
Akram et al. | Self‐Healing Polymers | |
Chauhan et al. | Polyurethanes: silicone-polyurethane copolymers and | |
US20220409776A1 (en) | A medical tubing comprising thermoplastic polyurethane | |
Sambhudevan et al. | Polyurethane from Sustainable Routes | |
AU2020221556B2 (en) | Elastomeric compositions and methods of use | |
US5241020A (en) | Polymeric blends prepared with reactive initiators | |
Romero-Sabat | Synthesis of novel polymeric materials for high-performance and 3d printing applications | |
EP0398490A2 (en) | Polymeric blends prepared with reactive initiators | |
JP2003326553A (en) | Resin molded part/metal structure | |
MXPA95002846A (en) | Cover for constant improved speed joints and method for the manufacture of the mi |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180012576.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11707601 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120111008007 Country of ref document: DE Ref document number: 112011100800 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13261423 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11707601 Country of ref document: EP Kind code of ref document: A1 |