WO2011107048A2 - 用于双向中继系统的通信方法和装置及系统 - Google Patents

用于双向中继系统的通信方法和装置及系统 Download PDF

Info

Publication number
WO2011107048A2
WO2011107048A2 PCT/CN2011/073042 CN2011073042W WO2011107048A2 WO 2011107048 A2 WO2011107048 A2 WO 2011107048A2 CN 2011073042 W CN2011073042 W CN 2011073042W WO 2011107048 A2 WO2011107048 A2 WO 2011107048A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
source node
coding
packet
node
Prior art date
Application number
PCT/CN2011/073042
Other languages
English (en)
French (fr)
Other versions
WO2011107048A3 (zh
Inventor
余官定
张朝阳
张昱
张洁涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180000259.0A priority Critical patent/CN102844997B/zh
Priority to PCT/CN2011/073042 priority patent/WO2011107048A2/zh
Publication of WO2011107048A2 publication Critical patent/WO2011107048A2/zh
Publication of WO2011107048A3 publication Critical patent/WO2011107048A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15521Ground-based stations combining by calculations packets received from different stations before transmitting the combined packets as part of network coding

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method, apparatus, and system for a two-way relay system.
  • the traditional communication network transmits data in a way that is stored and forwarded. That is, nodes other than the transmitting node and the receiving node of the data are only responsible for routing, and do not perform any processing on the data content, and the intermediate node plays the role of the transponder.
  • source node A and source node B need to exchange signals through relay node R. If the conventional communication method is adopted, a transmission process of 4 time slots is required, that is, the source node A transmits the signal a to the relay node R in the first time slot, and the relay node R forwards the signal to the source node B in the second time slot.
  • the source node B sends a signal b to the relay node R, and in the fourth time slot, the relay node R forwards the signal b to the source node A.
  • This type of communication has a low transmission efficiency.
  • Network Coding is an information exchange technology that combines routing and coding. Its core idea is to linearly or non-linearly process the information received on each channel at each node in the network, and then forward it to the downstream node.
  • the intermediate node acts as an encoder or signal processor. Still taking the two-way relay system shown in FIG.
  • the signal exchange between the source nodes A and B can be completed by only three time slot transmission processes, including: Node A sends a signal a to the relay node R, in the second time slot, the source node B sends a signal b to the relay node R, and in the third time slot, the relay node R performs network coding of the signals a and b, for example, after XOR. Give source nodes A and B.
  • network coding can effectively improve the throughput of the network and improve the network transmission efficiency.
  • the information of user A and user B is XORed and re-encoded, and broadcast to the source node in the third time slot.
  • the throughput of the network can be improved, only R can be reached.
  • the Chinese invention patent with the publication number "CN101888358A1" discloses a reduction based on
  • the method for transmitting the computational complexity of the two-way relay node of the network coding includes: In the two-way cooperative relay communication, the first two time slots respectively perform convolutional coding of the own information to the relay by the two sources, and the relay performs separately Maximum likelihood detection and hard decision to obtain the estimated value before decoding; the third time slot network encodes two estimated values, and then performs convolutional code decoding to obtain superimposed information of the estimated value, and then re-encodes the superimposed information (
  • the turbo coding is a fixed rate coding modulation transmission.
  • the receiving end combines the data of the previous time slot with the received data according to the internal mechanism of the network coding to obtain the required information.
  • the scheme combining fixed rate coding and network coding can improve the utilization of channel capacity, but has the following problems: Since a fixed rate code is adopted, the transmitting end node needs to interact with other nodes through a large number of messages to obtain a channel before encoding.
  • the state information (CSI) or the Hybrid Automatic Repeat Request (HQQ) is used in the transmission.
  • the information is applied to the asymmetric scenario (that is, the information rates of the nodes at both ends are different, and the relay receives the relay.
  • the relay needs to supplement the shorter data with 0 to make the packet length consistent or use different rate coding. If the method of complementing 0 is used, the bandwidth will be wasted and the channel capacity will be brought. Loss; if different rate encoding is used, the relay needs to perform message interaction with the two nodes to obtain the CSI of the channel.
  • Embodiments of the present invention provide a communication method, apparatus, and system for a two-way relay system.
  • a communication method for a two-way relay system comprising:
  • the relay node receives the first signal sent by the first source node and the second signal sent by the second source node; performing rate-free coding on the first signal and the second signal respectively, and performing network coding to obtain a joint coding packet;
  • a communication method for a two-way relay system comprising:
  • the first source node sends the first signal to the relay node
  • a relay node comprising:
  • a receiving unit configured to receive a first signal sent by the first source node and a second signal sent by the second source node
  • a coding unit configured to perform rate-free coding on the first signal and the second signal, respectively, and perform network coding to obtain a joint coding packet
  • a sending unit configured to broadcast the joint coding packet obtained by the coding unit to the first source node and the second source node.
  • a source node including:
  • a sending unit configured to send a first signal to the relay node
  • a receiving unit configured to receive a joint coding packet sent by the relay node, where the joint coding packet is a first signal received by the relay node from a first source node, and a second source node The second signal is respectively subjected to rateless coding, and then obtained by network coding;
  • a decoding unit configured to decode the joint encoded packet, and acquire the second signal.
  • a two-way relay system comprising:
  • a relay node configured to receive a first signal sent by the first source node and a second signal sent by the second source node, perform rateless coding on the first signal and the second signal, and perform network coding to obtain a joint Encoding the packet, broadcasting the joint coding packet to the first source node and the second source node; the first source node, configured to send a first signal to the relay node, and receive the relay node to send a joint coding packet, decoding the joint coding packet, and acquiring the second signal;
  • the second source node is configured to send a second signal to the relay node, receive a joint encoded packet sent by the relay node, and decode the joint encoded packet to obtain the first signal.
  • the embodiment of the present invention adopts a technical solution in which a signal from a source node received by a relay node in a two-way relay system is first rate-free encoded and then network-coded and then broadcast to a source node.
  • the rate-free coding can adaptively change the current channel state and ensure the correct reception of the signal.
  • the source node of the sender can avoid acquiring a large number of messages with other nodes without acquiring CSI or HARQ.
  • the relay node first performs rate-free coding and then performs network coding. When applied to an asymmetric service scenario, the channel capacity can be effectively improved compared with the prior art, and information transmission efficiency is improved.
  • FIG. 1 is a schematic view of a single cylinder of a conventional two-way relay system
  • FIG. 2 is a flow chart of a communication method for a two-way relay system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a single tube of a two-way relay system according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a communication method for a two-way relay system according to another embodiment of the present invention
  • FIG. 5 is a flowchart of a communication method for a two-way relay system according to still another embodiment of the present invention
  • FIG. 7 is a schematic diagram of a cartridge of a source node according to an embodiment of the present invention.
  • An embodiment of the present invention provides a communication method for a two-way relay system, including: a relay node receives a first signal sent by a first source node and a second signal sent by a second source node; and the first signal and The second signal is respectively subjected to rateless coding, and then network coding is performed; and the joint coding packet obtained by the network coding is broadcast to the first source node and the second source node.
  • the signal received from the source node by the relay node is first rate-free encoded and then network coded and then broadcast to the source node, so that the correct reception of the signal can be ensured, and the CSI need not be acquired.
  • an embodiment of the present invention provides a communication method for a two-way relay system, including: 101.
  • a relay node receives a first signal sent by a first source node and a second signal sent by a second source node.
  • the method in this embodiment is applied to a two-way relay system.
  • the first source node and the second source node in the system exchange information through the relay node.
  • the first source node and the second source node may be user terminals.
  • the relay node may be a base station (BS) or a relay station (RS) in a cellular system, or an access point in a wireless local area network (WLAN) system ( Access Point, AP ).
  • the first source node and the second source node are indirectly connected through the relay node; however, the case where there is a direct connection between the first source node and the second source node is not excluded. It is easy to understand that the first source node and the second source node exchange signals through the relay node.
  • a source node and a second source node directly perform signal exchange with better transmission performance.
  • the handshake between the first source node and the second source node is completed in three time slots.
  • the relay node receives the first signal sent by the first source node in the first time slot, and receives the second signal sent by the second source node in the second time slot.
  • the step 101 may specifically include:
  • the relay node receives the first signal that is sent by the first source node and is not rate-coded.
  • the first signal that is received by the rate-free encoding is decoded. If the decoding succeeds, the first signal is obtained, and then An acknowledge character (ACK) ACK RA is sent to the first source node; if the decoding is unsuccessful, the first signal sent by the first source node after the rateless encoding is continuously received;
  • ACK acknowledge character
  • the relay node receives the second signal that is sent by the second source node and is not rate-coded; and decodes the received second signal that has not been rate-coded. If the decoding succeeds, the second signal is obtained, and then Confirming the second source node of the character ACK R ; if the decoding is unsuccessful, continuing to receive the second signal of the rate-free encoding sent by the second source node.
  • the relay node can decode the signal subjected to rateless coding by using a Belief Propagation (BP) algorithm.
  • BP Belief Propagation
  • the first signal has ( 1 _ ⁇ K bit information
  • the second signal has ⁇ Kbit information
  • the first source node performs rate-free encoding on the first signal by a preset degree ⁇ ⁇
  • the second source node pre- The degree ⁇ ⁇ point is used to rate-free the second signal
  • the degrees ⁇ ⁇ and the degree 0 are pre-configured in the first source node, the second source node, and the relay node, so that each node utilizes in encoding and decoding.
  • the relay node After receiving the first signal sent by the first source node and the second signal sent by the second source node, the relay node performs Rateless Coding (RC) on the first signal and the second signal respectively, for example, signal to a predetermined degree ⁇ ⁇ -free encoding rate to obtain a coded packet i3 ⁇ 4cfe a; the second signal at a preset rate coding without degrees ⁇ ⁇ , obtain encoded packet packet B; and the two encoded packets
  • RC Rateless Coding
  • the relay node transmits the joint coded packet obtained by the network coding to the first source node and the second source node in a broadcast manner.
  • the first or second source node receives the joint coding packet and performs decoding to obtain the required second or first signal. After the decoding is successful and the required signal is obtained, the first or second source node also needs to respectively return an acknowledgement character to the relay node.
  • the relay node After receiving the second signal, the relay node returns the confirmation character ACK A] ⁇ p, after the second source node successfully obtains the first signal and returns the confirmation character ACK BR . The handshake between the first source node and the second source node is completed.
  • the first source node obtains the first coded packet after the first signal is subjected to rateless coding
  • the second source node obtains the second coded packet after the second signal is subjected to rateless coding.
  • the joint coding packet broadcast by the relay node received by the first source node can be regarded as being obtained by performing an exclusive OR operation on the first coded packet and the second coded packet. Therefore, the soft decision may be first performed according to the log-likelihood ratio (LRR) of the received first coded packet and the joint coded packet, respectively, and the soft information of the first coded packet and the soft information of the joint coded packet are respectively obtained.
  • LRR log-likelihood ratio
  • the soft information is an estimated value, that is, an estimated value of the encoded packet before the final decision has been made and the final decoding is not succeeded.
  • the soft information of the first encoded packet and the soft information of the joint encoded packet are XORed to obtain soft information of the second encoded packet.
  • the BP algorithm is used to decode the obtained soft information of the second encoded packet, that is, the second signal is obtained.
  • the first source node also continuously receives the second encoded packet sent by the second source node.
  • the soft information of the directly received second encoded packets can be directly obtained, and then the soft information of the directly received second encoded packets can be compared with the first encoded packet described above.
  • the soft information and the soft information of the joint coded packet are XORed, the soft information of the second coded packet is obtained and combined, and then decoded to obtain the second signal. In this way, the success rate of decoding can be improved.
  • the first node performs no rate coding and then performs network coding.
  • Program The difference between the rateless coding and the fixed rate coding is that the coding end continuously encodes the information, the coding rate is not fixed, and the source code is continuously sent to the receiving end, so that the code rate adaptively changes to adapt to the current The channel state, the receiving end can continuously receive the encoded packet until it can be correctly decoded, which can ensure the correct reception of the information.
  • no rate coding is applied, and the transmitting end does not need the CSI of the channel, and for fixed rate coding, the transmitting end must implement the CSI.
  • Rateless coding has a great advantage in fading channels, because the sender does not need to know the current channel state, only need to perform rateless coding, and can get very good performance, so no harq is needed, which is the traditional fixed rate. Encoding can't be done.
  • the decoding of rateless coding is mainly based on the tanner graph BP algorithm, which is a very mature decoding algorithm and will not be described in detail here.
  • the relay after using the rateless coding transmission, after receiving and correctly decoding the signals of the two source nodes, the relay first performs rateless coding and then performs network coding to obtain a joint coding packet, and broadcasts in the third time slot.
  • No rate coding can adaptively change the current channel state to ensure correct reception of signals.
  • the source node of the transmitting end can avoid the need to acquire CSI or HARQ, and avoids a large number of message interactions with other nodes.
  • the relay node performs network coding without rate coding first, and is applied to the asymmetric service scene and the fading channel to effectively improve the utilization of the channel capacity and improve the information transmission efficiency.
  • the first node has no rate coding and network coding
  • the source node can be equivalent to the relay node using the degree ⁇ ⁇ and the rateless coding, and then independently sent to the first source node and the second source node.
  • the capacity of the link R- ⁇ and the link RB can be respectively approximated by optimizing the degrees ⁇ « and ⁇ «, for example, using the dynamic degree fraction.
  • the communication method for the two-way relay system includes: 201.
  • the first source node sends a first signal to the relay node.
  • This step 201 may specifically include:
  • the first source node performs rate-free encoding on the first signal to be sent, to obtain a first encoded packet, and sends the first encoded packet to the relay node.
  • the first source node performs rate-free encoding on the first signal by a preset degree ⁇ ⁇
  • the relay node After the decoding succeeds, the relay node returns an acknowledgement character to the first source node after acquiring the first signal.
  • the first source node sends the first signal to the relay node to complete in the first time slot.
  • the second source node sends a second signal to the relay node, the steps of which are the same as step 201, except that: the second signal is assumed to have bit information, and the second source node is preset.
  • the second signal is rate-free encoded at a degree of 0, and the second encoded packet is obtained after encoding.
  • the rate-free coding is performed separately, and then the network coding is performed.
  • the relay node After receiving the first signal sent by the first source node and the second signal sent by the second source node, the relay node performs rate-free encoding on the first signal and the second signal, for example, preset the first signal.
  • the degree ⁇ ⁇ is rate-free encoding, and the encoded packet Packet is obtained; the second signal is subjected to rateless encoding by a preset degree ⁇ ,, the encoded packet is obtained, and then the two encoded packets are network-coded to obtain a joint encoding packet, said
  • the network coding may be an XOR operation of two coded packets, a physical layer network coding, or other types of network coding.
  • the source node and the relay second node of the first source node to the network coding jointly encoded packet P aC ket R obtained is sent to a broadcast manner.
  • the first source node obtains the required second signal after receiving the joint coding packet for decoding.
  • This step may specifically include:
  • the second encoded packet is the second source node
  • the second signal is obtained by rateless coding
  • the soft information of the second encoded packet is decoded by using a confidence propagation decoding BP algorithm to obtain the second signal.
  • the first source node After the decoding is successful and the required signal is obtained, the first source node also needs to return an acknowledgement character to the relay node.
  • the step of the second source node receiving the joint coding packet for decoding and obtaining the required first signal is the same as the foregoing step 203, and is not described in detail herein.
  • the signal is transmitted to the relay node by using the source node without rate coding, and the relay node first performs signalless coding on the signals received from the two source nodes in the first two time slots, and then performs network coding. Broadcasting to the two source nodes can ensure the correct reception of the signal. It can be used without any CSI or HARQ. When applied to an asymmetric service scenario, the channel capacity can be effectively improved and the information transmission efficiency can be improved.
  • a relay node including:
  • the receiving unit 601 is configured to receive a first signal sent by the first source node and a second signal sent by the second source node.
  • the coding unit 602 is configured to perform rate-free coding on the first signal and the second signal, respectively, and perform network coding to obtain a joint coding packet.
  • the sending unit 603, the joint coding packet obtained by the coding unit is broadcast to the first source node and the second source node.
  • the relay node may further include a decoding unit 604;
  • the receiving unit 601 is specifically configured to receive the first signal that is sent by the first source node and that is sent by the second source node and that is not rate-coded;
  • the decoding unit 604 is configured to decode the received rate-free encoded first signal and the second signal, and successfully acquire the first signal and the second signal;
  • the sending unit 603 is further configured to: after the decoding unit successfully acquires the first signal and the second signal, return an acknowledgement character to the first source node and the second source node.
  • the encoding unit 602 includes: The rate-free coding unit is configured to perform rate-free coding on the first signal and the second signal respectively to obtain two coding packets, to obtain a joint coding packet;
  • the receiving unit 601 is further configured to: receive an acknowledgement character returned after the first source node successfully acquires the second signal, and return the second source node to successfully obtain the first signal, and then return Confirmation character.
  • the relay node in the embodiment of the present invention can perform the rate-free encoding of the signals received from the two source nodes in the first two time slots, perform network coding, and then broadcast to the two source nodes to ensure correct signal reception. It is not necessary to obtain CSI or HARQ. When applied to an asymmetric service scenario, the channel capacity can be effectively improved compared with the prior art, and information transmission efficiency is improved.
  • a source node including:
  • the sending unit 701 is configured to send the first signal to the relay node.
  • the receiving unit 702 is configured to receive a joint coding packet sent by the relay node, where the joint coding packet is a first signal that is received by the relay node from the first source node, and is from a second source node.
  • the second signal is respectively subjected to rateless coding, and then obtained by network coding;
  • the decoding unit 703 is configured to decode the joint encoded packet to obtain the second signal.
  • the receiving unit 702 is further configured to receive an acknowledgement character returned by the relay node after the decoding succeeds in acquiring the first signal.
  • the source node may further include an encoding unit 704;
  • the encoding unit 704 is configured to perform rate-free encoding on the first signal to be sent, to obtain a first encoded packet.
  • the sending unit 701 is specifically configured to send the first encoded packet to a relay node.
  • the decoding unit 703 is specifically configured to separately obtain soft information of the first encoded packet and soft information of the joint encoded packet, and soft information of the first encoded packet and the The soft information of the joint coded packet is subjected to an exclusive OR operation to obtain soft information corresponding to the second coded packet, and the second coded packet is obtained by the second source node for rateless coding of the second signal;
  • the degree propagation decoding BP algorithm decodes the soft information of the second encoded packet to obtain the second signal.
  • the sending unit 701 is further configured to send an acknowledgement character to the relay node after the decoding unit successfully acquires the second signal.
  • the source node in the embodiment of the present invention may transmit the signal to the relay node without rate coding, and receive the signal from the two source nodes that is received by the relay node and transmit the signals from the two source nodes in advance without rate. Coding and encoding the obtained coded packet, and then decoding and obtaining the required signal, can ensure the correct reception of the signal, and can obtain the CSI or the HARQ without being acquired.
  • the channel can be effectively improved compared with the prior art.
  • the use of capacity improves the efficiency of information transmission.
  • an embodiment of the present invention further provides a two-way relay system, including:
  • a relay node configured to receive a first signal sent by the first source node and a second signal sent by the second source node, perform rateless coding on the first signal and the second signal, and perform network coding to obtain a joint coding packet. Broadcasting the joint coding packet to the first source node and the second source node;
  • a first source node configured to send a first signal to the relay node, receive a joint coded packet sent by the relay node, decode the joint coded packet, and obtain a second signal;
  • the second source node is configured to send the second signal to the relay node, receive the joint coded packet sent by the relay node, decode the joint coded packet, and obtain the first signal.
  • the two-way relay system of the embodiment of the present invention adopts a technique in which a signal from two source nodes received by a relay node in the first two time slots is first rate-free encoded, then network coded, and then broadcast to two source nodes.
  • the rate-free coding can adaptively change the current channel state and ensure the correct reception of the signal; on the other hand, since the rate-free coding is adopted, the source node of the transmitting end can avoid acquiring CSI or HARQ, and avoids other A large number of message interactions of nodes; on the other hand, the relay node performs rate-free coding and then performs network coding.
  • the channel capacity can be effectively improved compared with the prior art, and information transmission efficiency is improved.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Read memory, random access memory, disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

一种用于双向中继系统的通信方法、装置及系统,方法包括:中继节点接收第一源节点发送的第一信号和第二源节点发送的第二信号;对所述第一信号和第二信号分别进行无速率编码,再进行网络编码;将网络编码后得到的联合编码包广播给所述第一源节点和第二源节点。本发明技术方案由于采用在中继节点先进行无速率编码再进行网络编码的技术方案,可以无需获取CSI或者HARQ,在非对称业务场景下相对于现有技术可以有效提高对信道容量的利用,提高信息传输效率。

Description

用于双向中继系统的通信方法和装置及系统 技术领域
本发明涉及通信技术领域,具体涉及一种用于双向中继系统的通信方法和 装置及系统。
背景技术
传统的通信网络传送数据的方式是存储转发,即除了数据的发送节点和接 收节点以外的节点只负责路由, 不对数据内容做任何处理, 中间节点扮演着转 发器的角色。 以图 1所示的双向中继系统为例, 源节点 A和源节点 B需要通 过中继节点 R交换信号。 如果采用传统的通信方法, 需要 4个时隙的传输过 程, 即: 在第一时隙源节点 A向中继节点 R发送信号 a, 在第二时隙中继节点 R向源节点 B转发信号 a, 在第三时隙源节点 B向中继节点 R发送信号 b, 在 第四时隙中继节点 R向源节点 A转发信号 b。 这种通信方式传输效率较低。
为了提高信息的传输效率, 出现了网络编码(Network Coding, NC)。 网络 编码是一种融合了路由和编码的信息交换技术,它的核心思想是在网络中的各 个节点上对各条信道上收到的信息进行线性或者非线性的处理,然后转发给下 游节点, 中间节点扮演着编码器或信号处理器的角色。仍以图 1所示的双向中 继系统为例, 如果采用网络编码, 只需三个时隙的传输过程即可完成源节点 A 和 B之间的信号交换, 包括: 在第一时隙源节点 A向中继节点 R发送信号 a, 在第二时隙源节点 B向中继节点 R发送信号 b, 在第三时隙中继节点 R将信 号 a和 b进行网络编码例如异或后广播给源节点 A和 B。
相对于传统的通信方法,采用网络编码可以有效提高网络的吞吐量从而提 高网络传输效率。但是, 采用上述三时隙的网络编码技术, 将用户 A和用户 B 的信息异或再编码, 在第三时隙广播给源节点, 虽然可以提高网络的吞吐量, 但是也只能达到 R到 A和 R到 B这两条信道容量的最小值。
为了进一步提高网络的吞吐量,有文献提出了在第三时隙采用固定速率编 码和网络编码结合的方案,这样在广播时可以分别达到这两条信道容量的较大 值。 例如, 公开号为 "CN101888358A1" 的中国发明专利公开了一种降低基于 网络编码的双向中继节点计算复杂度的传输方法, 包括: 在双向协作中继通信 中, 前两个时隙由两信源分别将自身信息进行卷积编码向中继发出, 中继分别 进行最大似然检测并进行硬判决得到译码前的估计值;第三时隙将两路估计值 进行网络编码,再进行卷积码译码得到估计值的叠加信息, 然后将叠加信息重 新编码(turbo 编码, 是一种固定速率编码)调制发送出去, 接收端根据网络 编码的内在机理,将前一时隙自身数据与收到的数据联合处理,获取所需信息。
采用固定速率编码和网络编码结合的方案,虽然可以提高对信道容量的利 用, 但是, 有如下问题: 由于采用固定速率码, 发送端节点在编码前需要与其 它节点通过大量的消息交互以获取信道状态信息 ( Channel State Information, CSI )或者在发送中采用混合自动重传请求( Hybrid Automatic Repeat Request , HARQ ); 另外, 在应用于非对称场景 (即两端节点的信息速率不同, 中继接 收到的两端节点的数据包长度不一致的场景) 时, 中继需要对较短数据补 0 以使数据包长度一致或者采用不同速率编码,如果采用补 0的方法,会浪费带 宽, 带来信道容量的损失; 如果采用不同速率编码, 则中继需要与两端节点进 行消息交互以获取信道的 CSI。
发明内容
本发明实施例提供一种用于双向中继系统的通信方法和装置及系统。
一种用于双向中继系统的通信方法, 包括:
中继节点接收第一源节点发送的第一信号和第二源节点发送的第二信号; 对所述第一信号和第二信号分别进行无速率编码,再进行网络编码,得到 联合编码包;
将所述联合编码包广播给所述第一源节点和第二源节点。
一种用于双向中继系统的通信方法, 包括:
第一源节点发送第一信号给中继节点;
接收所述中继节点发送的联合编码包,所述联合编码包是所述中继节点将 接收到的来自于第一源节点的第一信号和来自于第二源节点的第二信号分别 进行无速率编码, 再进行网络编码后得到的;
对所述联合编码包进行译码, 获取所述第二信号。 一种中继节点, 包括:
接收单元,用于接收第一源节点发送的第一信号和第二源节点发送的第二 信号;
编码单元, 用于对所述第一信号和第二信号分别进行无速率编码,再进行 网络编码, 得到联合编码包;
发送单元,用于将所述编码单元得到的联合编码包广播给所述第一源节点 和第二源节点。
一种源节点, 包括:
发送单元, 用于发送第一信号给中继节点;
接收单元, 用于接收所述中继节点发送的联合编码包, 所述联合编码包是 所述中继节点将接收到的来自于第一源节点的第一信号和来自于第二源节点 的第二信号分别进行无速率编码, 再进行网络编码后得到的;
译码单元, 用于对所述联合编码包进行译码, 获取所述第二信号。
一种双向中继系统, 包括:
中继节点,用于接收第一源节点发送的第一信号和第二源节点发送的第二 信号, 对所述第一信号和第二信号分别进行无速率编码, 再进行网络编码, 得 到联合编码包, 将所述联合编码包广播给所述第一源节点和第二源节点; 所述第一源节点, 用于发送第一信号给所述中继节点,接收所述中继节点 发送的联合编码包, 对所述联合编码包进行译码, 获取所述第二信号;
所述第二源节点, 用于发送第二信号给所述中继节点,接收所述中继节点 发送的联合编码包, 对所述联合编码包进行译码, 获取所述第一信号。
本发明实施例采用在双向中继系统中由中继节点将前两个时隙收到的来 自于源节点的信号先进行无速率编码再进行网络编码然后广播给源节点的技 术方案, 一方面, 无速率编码可以自适应的改变当前的信道状态, 同时保证信 号的正确接收; 另一方面, 由于采用无速率编码, 发送端的源节点可以无需获 取 CSI或者 HARQ, 避免了与其它节点的大量消息交互; 再一方面, 中继节 点先进行无速率编码再进行网络编码,在应用于非对称业务场景时相对于现有 技术可以有效提高对信道容量的利用, 提高信息传输效率。 附图说明
图 1是现有的双向中继系统的筒单示意图;
图 2是本发明一个实施例的用于双向中继系统的通信方法的流程图; 图 3是本发明实施例的双向中继系统的筒单示意图;
图 4是本发明另一实施例的用于双向中继系统的通信方法的流程图; 图 5是本发明再一实施例的用于双向中继系统的通信方法的流程图; 图 6是本发明实施例的中继节点的筒单示意图;
图 7是本发明实施例的源节点的筒单示意图。
具体实施方式
本发明实施例提供一种用于双向中继系统的通信方法, 包括: 中继节点接 收第一源节点发送的第一信号和第二源节点发送的第二信号;对所述第一信号 和第二信号分别进行无速率编码,再进行网络编码; 将网络编码后得到的联合 编码包广播给所述第一源节点和第二源节点。本发明实施例通过由中继节点将 前两个时隙收到的来自于源节点的信号先进行无速率编码再进行网络编码然 后广播给源节点, 可以保证信号的正确接收, 可以无需获取 CSI或者 HARQ, 在应用于非对称业务场景时相对于现有技术可以有效提高对信道容量的利用, 提高信息传输效率。本发明实施例还提供相应的装置及系统。 以下分别进行详 细说明。 请参考图 2, 本发明实施例提供一种用于双向中继系统的通信方法, 包括: 101、 中继节点接收第一源节点发送的第一信号和第二源节点发送的第二 信号。
本实施例方法应用于双向中继系统, 如图 3所示, 系统中的第一源节点和 第二源节点通过中继节点交换信息。所说的第一源节点和第二源节点可以是用 户端。 所说的中继节点可以是蜂窝系统中的基站(Base station, BS )或中继站 ( Relay station, RS ),或者无线局 i或网给 (Wireless Local Area Networks, WLAN) 系统中的接入点(Access Point, AP )。 其中, 第一源节点和第二源节点通过中 继节点间接连接; 但是,也不排除第一源节点和第二源节点之间有直接连接的 情况。容易理解, 第一源节点和第二源节点通过中继节点进行信号交换会比第 一源节点和第二源节点直接进行信号交换具有更优的传输性能。
本实施例中, 第一源节点和第二源节点之间的信号交换在三个时隙内完 成。 其中, 中继节点在第一时隙接收第一源节点发送的第一信号, 在第二时隙 接收第二源节点发送的第二信号。
如图 4所示, 该步骤 101具体可以包括:
101a, 中继节点接收第一源节点发送的经过无速率编码的第一信号; 对接 收到的经过无速率编码的第一信号进行译码,若译码成功,则获取第一信号后, 返回确认字符 (ACKnowledge Character, ACK ) ACKRA给第一源节点; 若译 码不成功, 则继续接收第一源节点发送的经过无速率编码的第一信号;
101b, 中继节点接收第二源节点发送的经过无速率编码的第二信号; 对接 收到的经过无速率编码的第二信号进行译码,若译码成功,则获取第二信号后, 返回确认字符 ACKR 第二源节点; 若译码不成功, 则继续接收第二源节点发 送的经过无速率编码的第二信号。
这里,中继节点对经过无速率编码的信号可以采用置信度传播解码( Belief Propagation, BP )算法进行译码。 采用 BP算法进行译码已是较成熟的技术, 此 处不再详述。
其中, 假定第一信号有 (1 _^ K bit信息, 第二信号有 ^Kbit信息, 第一源节 点以预设的度数 ΩΑ点对第一信号进行无速率编码, 第二源节点以预设的度数 ΩΒ点对第二信号进行无速率编码, 度数 ΩΑ和度数 0 均预先配置在第一源节 点、 第二源节点和中继节点中, 以便各个节点在编码和译码时利用。
102、对所述第一信号和第二信号分别进行无速率编码,再进行网络编码, 得到联合编码包。
中继节点收到第一源节点发送的第一信号和第二源节点发送的第二信号 后, 分别对第一信号和第二信号进行无速率编码(Rateless Coding, RC ), 例 如, 对第一信号以预设的度数 ΩΑΛ进行无速率编码, 获得编码包 i¾cfe A ; 对第 二信号以预设的度数 ΩΒΛ进行无速率编码, 获得編码包 PacketB ; 然后将这两个 编码包进行网络编码得到联合编码包 ,所说的网络编码可以是将两个编 码包进行异或操作,也可以是进行物理层网络编码,还可以是其它类型的网络 编码。
103、 将联合编码包广播给第一源节点和第二源节点。
在第三时隙,中继节点将网络编码后得到的联合编码包 以广播的方 式发送给第一源节点和第二源节点。
第一或第二源节点在收到联合编码包 ^^ , 进行译码, 即可获得所需要 的第二或第一信号。 在译码成功, 获得所需要的信号后, 第一或第二源节点还 需要分别返回确认字符给中继节点。
如图 4所示: 104、 中继节点收到第一源节点成功获取第二信号后返回的确 认字符 ACKA]^p第二源节点成功获取第一信号后返回的确认字符 ACKBR后,第 一源节点和第二源节点之间的信号交换完成。
下面,对源节点收到联合编码包后 ^ 后如何译码, 以获取所需信号做 进一步详细的说明:
设第一源节点将第一信号进行无速率编码后得到的是第一编码包,第二源 节点将第二信号进行无速率编码后得到的是第二编码包。第一源节点收到的中 继节点广播的联合编码包,可以视为由第一编码包和第二编码包进行异或操作 后得到的。 于是, 可以先根据收到的第一编码包和联合编码包的对数似然比 ( log-likelihood ratio, LLR )进行软判决, 分别得到第一编码包的软信息和联 合编码包的软信息, 所说的软信息是一种估计值, 即尚未进行最终判决, 未最 终译码成功前的对编码包的估计值。将第一编码包的软信息和联合编码包的软 信息进行异或操作, 即得到第二编码包的软信息。 然后采用 BP算法对得到的 第二编码包的软信息进行译码, 即得到第二信号。
需要说明的是,在第一源节点和第二源节点之间有直接连接的情况下, 第 一源节点也会源源不断的收到第二源节点发送的第二编码包。这样,在译码阶 段, 可以直接获取这些直接收到的第二编码包的软信息, 然后可以将这些直接 收到的第二编码包的软信息与上文所述的将第一编码包的软信息和联合编码 包的软信息进行异或操作后得到第二编码包的软信息进行合并,然后再进行译 码, 以得到第二信号。 这样, 可以提高译码的成功率。
本发明实施例中,采用了在中继节点先进行无速率编码再进行网络编码的 方案。 其中, 无速率编码与固定速率编码的不同在于, 编码端将信息不断地编 码, 编码的速率不固定, 并源源不断的发送编码包给接收端, 可以使得其码率 自适应的改变以适应当前的信道状态,接收端可以源源不断的接收编码包, 直 到可以正确译码, 可以保证信息的正确接收。在无线通信系统中应用无速率编 码,发射端不需要信道的 CSI,而对于固定速率编码,发射端必须实现获得 CSI。 无速率编码在衰落信道中有非常大的优势,因为发送端不需要知道当前的信道 状态, 只需要进行无速率编码, 就能获得非常好的性能, 因此不需要 harq, 这 是传统的固定速率编码无法做到的。 无速率编码的译码主要是基于 tanner图的 BP算法, 这是一种非常成熟的译码算法, 此处不再详述。
本发明实施例中,通过采用无速率编码传输, 中继收到并正确译出两个源 节点的信号后,先进行无速率编码再进行网络编码得到联合编码包,在第三时 隙进行广播的技术方案, 可以取得以下有益效果:
1、无速率编码可以自适应的改变当前的信道状态,保证信号的正确接收; 同时, 发送端的源节点可以无需获取 CSI或者 HARQ, 避免了与其它节点的大 量消息交互。
2、 中继节点先进行无速率编码再进行网络编码, 在应用于非对称业务场 景和衰落信道下相对于现有技术可以有效提高对信道容量的利用,提高信息传 输效率。
3、 中继节点采用的先无速率编码再网络编码的方式, 对于源节点可以等 效为中继节点分别采用度数 Ω^和 进行无速率编码后独立发送给第一源节 点和第二源节点, 则在第三时隙的广播阶段, 通过优化度数^«和^« , 例如 采用动态度数分部, 可以分别逼近链路 R- Α和链路 R-B的容量。
4、 先无速率编码再网络编码(筒称无速率网络编码) 比传统网络编码理 论上可以达到更大的容量区, 可以达到更高的传输效率。 进行信号交换的场景, 对于两个以上节点间相互交换信息同样适用。 请参考图 5, 本实施例提供的用于双向中继系统的通信方法, 包括: 201、 第一源节点发送第一信号给中继节点。 本步骤 201具体可以包括:
第一源节点对待发送的第一信号进行无速率编码, 得到第一编码包; 将所述第一编码包发送给中继节点。
其中, 假定第一信号有 ^^) Kbit信息, 第一源节点以预设的度数 ΩΑ点对 第一信号进行无速率编码,
需要说明的是, 中继节点在译码成功, 获取所述第一信号后, 会返回确认 字符给第一源节点。
上述第一源节点发送第一信号给中继节点在第一时隙完成。 在第二时隙, 第二源节点会发送第二信号给中继节点, 其步骤与步骤 201相同, 不同之处在 于: 本文中假定第二信号有 bit信息, 第二源节点以预设的度数 0 点对第二 信号进行无速率编码, 编码后得到第二编码包。
202、 接收所述中继节点发送的联合编码包, 所述联合编码包是所述中继 节点将接收到的来自于第一源节点的第一信号和来自于第二源节点的第二信 号分别进行无速率编码, 再进行网络编码后得到的。
中继节点收到第一源节点发送的第一信号和第二源节点发送的第二信号 后, 分别对第一信号和第二信号进行无速率编码, 例如, 对第一信号以预设的 度数 ΩΑΛ进行无速率编码, 得编码包 Packet ;对第二信号以预设的度数 ΩΒΛ进 行无速率编码, 获得编码包 然后将这两个编码包进行网络编码得到联 合编码包 Packet , 所说的网络编码可以是将两个编码包进行异或操作,也可以 是进行物理层网络编码, 还可以是其它类型的网络编码。 在第三时隙, 中继节 点就网络编码后得到的联合编码包 PaCketR以广播的方式发送给第一源节点和 第二源节点。
203、 对所述联合编码包进行译码, 获取所述第二信号。
第一源节点在收到联合编码包 进行译码, 即可获得所需要的第二 信号。 本步骤具体可以包括:
203a, 分别获取所述第一编码包的软信息和所述联合编码包的软信息; 203b、将所述第一编码包的软信息和所述联合编码包的软信息进行异或运 算, 获得对应于第二编码包的软信息, 所述第二编码包是所述第二源节点对所 述第二信号进行无速率编码得到的;
203c, 采用置信度传播解码 BP算法对所述第二编码包的软信息进行译码, 获得所述第二信号。
在译码成功, 获得所需要的信号后, 第一源节点还需要返回确认字符给中 继节点。
第二源节点收到联合编码包 进行译码, 获得所需要的第一信号的 步骤与上述步骤 203相同, 此处不再详述。
本发明实施例通过采用源节点将信号进行无速率编码传输给中继节点,中 继节点将前两个时隙收到的来自于两个源节点的信号先进行无速率编码再进 行网络编码然后广播给两个源节点, 可以保证信号的正确接收, 可以无需获取 CSI或者 HARQ, 在应用于非对称业务场景时相对于现有技术可以有效提高对 信道容量的利用, 提高信息传输效率。 请参考图 6, 本发明实施例还提供一种中继节点, 包括:
接收单元 601 , 用于接收第一源节点发送的第一信号和第二源节点发送的 第二信号;
编码单元 602, 用于对所述第一信号和第二信号分别进行无速率编码, 再 进行网络编码, 得到联合编码包;
发送单元 603 , 用于所述编码单元得到的联合编码包广播给所述第一源节 点和第二源节点。
在一个实施例中:
上述中继节点还可以包括译码单元 604;
该实施例中, 所述接收单元 601 , 具体用于接收第一源节点发送的经过无 速率编码的第一信号和第二源节点发送的经过无速率编码的第二信号;
所述译码单元 604, 用于对接收到的经过无速率编码的第一信号和第二信 号进行译码, 成功获取第一信号和第二信号;
所述发送单元 603 , 还用于在所述译码单元成功获取所述第一信号和第二 信号后, 返回确认字符给第一源节点和第二源节点。
在一个实施例中, 所述编码单元 602包括: 无速率编码单元,用于对所述第一信号和第二信号分别进行无速率编码得 到两个编码包, 得到联合编码包; 码。
在一个实施例中, 所述接收单元 601 , 还用于接收所述第一源节点成功获 取所述第二信号后返回的确认字符和所述第二源节点成功获取所述第一信号 后返回的确认字符。
本发明实施例的中继节点,可以将前两个时隙收到的来自于两个源节点的 信号先进行无速率编码再进行网络编码然后广播给两个源节点,可以保证信号 的正确接收, 可以无需获取 CSI或者 HARQ, 在应用于非对称业务场景时相对 于现有技术可以有效提高对信道容量的利用, 提高信息传输效率。 请参考图 7, 本发明实施例还提供一种源节点, 包括:
发送单元 701 , 用于发送第一信号给中继节点;
接收单元 702, 用于接收所述中继节点发送的联合编码包, 所述联合编码 包是所述中继节点将接收到的来自于第一源节点的第一信号和来自于第二源 节点的第二信号分别进行无速率编码, 再进行网络编码后得到的;
译码单元 703, 用于对所述联合编码包进行译码, 获取所述第二信号。 在一个实施例中, 所述接收单元 702, 还用于接收所述中继节点在译码成 功获取所述第一信号后返回的确认字符。
在一个实施例中, 上述源节点还可以包括编码单元 704;
该实施例中, 所述编码单元 704, 用于对待发送的第一信号进行无速率编 码, 得到第一编码包;
所述发送单元 701 , 具体用于将所述第一编码包发送给中继节点。
在一个实施例中, 所述译码单元 703, 具体用于分别获取所述第一编码包 的软信息和所述联合编码包的软信息;将所述第一编码包的软信息和所述联合 编码包的软信息进行异或运算, 获得对应于第二编码包的软信息, 所述第二编 码包是所述第二源节点对所述第二信号进行无速率编码得到的;采用置信度传 播解码 BP算法对所述第二编码包的软信息进行译码, 获得所述第二信号。 在一个实施例中, 所述发送单元 701 , 还用于在所述译码单元成功获取所 述第二信号之后, 发送确认字符给所述中继节点。
本发明实施例的源节点, 可以将信号进行无速率编码后传输给中继节点, 接收中继节点广播的将其前两个时隙收到的来自于两个源节点的信号先进行 无速率编码再进行网络编码得到的编码包,再译码获得需要的信号, 可以保证 信号的正确接收, 可以无需获取 CSI或者 HARQ, 在应用于非对称业务场景时 相对于现有技术可以有效提高对信道容量的利用, 提高信息传输效率。 请参考图 3, 本发明实施例还提供一种双向中继系统, 包括:
中继节点,用于接收第一源节点发送的第一信号和第二源节点发送的第二 信号, 对第一信号和第二信号分别进行无速率编码, 再进行网络编码, 得到联 合编码包, 将联合编码包广播给第一源节点和第二源节点;
第一源节点, 用于发送第一信号给中继节点,接收中继节点发送的联合编 码包, 对所述联合编码包进行译码, 获取第二信号;
第二源节点, 用于发送第二信号给中继节点,接收中继节点发送的联合编 码包, 对联合编码包进行译码, 获取第一信号。
本发明实施例的双向中继系统,采用由中继节点将前两个时隙收到的来自 于两个源节点的信号先进行无速率编码再进行网络编码然后广播给两个源节 点的技术方案, 一方面, 无速率编码可以自适应的改变当前的信道状态, 同时 保证信号的正确接收; 另一方面, 由于采用无速率编码, 发送端的源节点可以 无需获取 CSI或者 HARQ, 避免了与其它节点的大量消息交互; 再一方面, 中 继节点先进行无速率编码再进行网络编码,在应用于非对称业务场景时相对于 现有技术可以有效提高对信道容量的利用, 提高信息传输效率。 本领域技术人员可以理解上述实施例的各种方法中的全部或部分步骤是 可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储 介质中, 存储介质可以包括: 只读存储器、 随机存储存储器、 磁盘或光盘等。
以上对本发明实施例所提供的用于双向中继系统的通信方法以及相应的 式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思 想, 不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种用于双向中继系统的通信方法, 其特征在于, 包括:
中继节点接收第一源节点发送的第一信号和第二源节点发送的第二信号; 对所述第一信号和第二信号分别进行无速率编码,再进行网络编码,得到 联合编码包;
将所述联合编码包广播给所述第一源节点和第二源节点。
2、根据权利要求 1所述的方法, 其特征在于, 所述中继节点接收第一源节 点发送的第一信号和第二源节点发送的第二信号包括:
中继节点接收第一源节点发送的经过无速率编码的第一信号;
对接收到的经过无速率编码的第一信号进行译码, 成功获取第一信号后, 返回确认字符给第一源节点;
中继节点接收第二源节点发送的经过无速率编码的第二信号;
对接收到的经过无速率编码的第二信号进行译码, 成功获取第二信号后, 返回确认字符给第二源节点。
3、 根据权利要求 1所述的方法, 其特征在于, 所述对所述第一信号和第二 信号分别进行无速率编码, 再进行网络编码, 得到联合编码包, 包括:
对所述第一信号和第二信号分别进行无速率编码得到两个编码包;
4、 根据权利要求 1所述的方法, 其特征在于, 所述将所述联合编码包广播 给所述第一源节点和第二源节点之后还包括:
接收所述第一源节点成功获取所述第二信号后返回的确认字符和所述第 二源节点成功获取所述第一信号后返回的确认字符。
5、 一种用于双向中继系统的通信方法, 其特征在于, 包括:
第一源节点发送第一信号给中继节点;
接收所述中继节点发送的联合编码包,所述联合编码包是所述中继节点将 接收到的来自于第一源节点的第一信号和来自于第二源节点的第二信号分别 进行无速率编码, 再进行网络编码后得到的;
对所述联合编码包进行译码, 获取所述第二信号。
6、根据权利要求 5所述的方法, 其特征在于, 所述第一源节点发送第一信 号给中继节点之后还包括:
接收所述中继节点在译码成功获取所述第一信号后返回的确认字符。
7、根据权利要求 5所述的方法, 其特征在于, 所述第一源节点发送第一信 号给中继节点包括:
第一源节点对待发送的第一信号进行无速率编码, 得到第一编码包; 将所述第一编码包发送给中继节点。
8、 根据权利要求 7所述的方法, 其特征在于, 所述对所述联合编码包进行 译码, 获取所述第二信号包括:
分别获取所述第一编码包的软信息和所述联合编码包的软信息; 将所述第一编码包的软信息和所述联合编码包的软信息进行异或运算,获 得对应于第二编码包的软信息,所述第二编码包是所述第二源节点对所述第二 信号进行无速率编码得到的;
采用置信度传播解码算法对所述第二编码包的软信息进行译码,获得所述 第二信号。
9、 根据权利要求 5所述的方法, 其特征在于, 所述对所述联合编码包进行 译码, 获取所述第二信号之后还包括:
发送确认字符给所述中继节点。
10、 一种中继节点, 其特征在于, 包括:
接收单元,用于接收第一源节点发送的第一信号和第二源节点发送的第二 信号;
编码单元, 用于对所述第一信号和第二信号分别进行无速率编码,再进行 网络编码, 得到联合编码包;
发送单元,用于将所述编码单元得到的联合编码包广播给所述第一源节点 和第二源节点。
11、 根据权利要求 10所述的中继节点, 其特征在于: 还包括译码单元; 所述接收单元,具体用于接收第一源节点发送的经过无速率编码的第一信 号和第二源节点发送的经过无速率编码的第二信号; 所述译码单元,用于对接收到的经过无速率编码的第一信号和第二信号进 行译码, 成功获取第一信号和第二信号;
所述发送单元,还用于在所述译码单元成功获取所述第一信号和第二信号 后, 返回确认字符给第一源节点和第二源节点。
12、 根据权利要求 10所述的中继节点, 其特征在于, 所述编码单元包括: 无速率编码单元,用于对所述第一信号和第二信号分别进行无速率编码得 到两个编码包; 码, 得到联合编码包。
13、 根据权利要求 10所述的中继节点, 其特征在于:
所述接收单元,还用于接收所述第一源节点成功获取所述第二信号后返回 的确认字符和所述第二源节点成功获取所述第一信号后返回的确认字符。
14、 一种源节点, 其特征在于, 包括:
发送单元, 用于发送第一信号给中继节点;
接收单元, 用于接收所述中继节点发送的联合编码包, 所述联合编码包是 所述中继节点将接收到的来自于第一源节点的第一信号和来自于第二源节点 的第二信号分别进行无速率编码, 再进行网络编码后得到的;
译码单元, 用于对所述联合编码包进行译码, 获取所述第二信号。
15、 根据权利要求 14所述的源节点, 其特征在于:
所述接收单元,还用于接收所述中继节点在译码成功获取所述第一信号后 返回的确认字符。
16、 根据权利要求 14所述的源节点, 其特征在于, 还包括编码单元; 所述编码单元, 用于对待发送的第一信号进行无速率编码,得到第一编码 包;
所述发送单元, 具体用于将所述第一编码包发送给中继节点。
17、 根据权利要求 16所述的源节点, 其特征在于:
所述译码单元,具体用于分别获取所述第一编码包的软信息和所述联合编 码包的软信息;将所述第一编码包的软信息和所述联合编码包的软信息进行异 或运算, 获得对应于第二编码包的软信息, 所述第二编码包是所述第二源节点 对所述第二信号进行无速率编码得到的;采用置信度传播解码算法对所述第二 编码包的软信息进行译码, 获得所述第二信号。
18、 根据权利要求 14所述的源节点, 其特征在于:
所述发送单元,还用于在所述译码单元成功获取所述第二信号之后,发送 确认字符给所述中继节点。
19、 一种双向中继系统, 其特征在于, 包括:
中继节点,用于接收第一源节点发送的第一信号和第二源节点发送的第二 信号, 对所述第一信号和第二信号分别进行无速率编码, 再进行网络编码, 得 到联合编码包, 将所述联合编码包广播给所述第一源节点和第二源节点; 所述第一源节点, 用于发送第一信号给所述中继节点,接收所述中继节点 发送的联合编码包, 对所述联合编码包进行译码, 获取所述第二信号;
所述第二源节点, 用于发送第二信号给所述中继节点,接收所述中继节点 发送的联合编码包, 对所述联合编码包进行译码, 获取所述第一信号。
PCT/CN2011/073042 2011-04-20 2011-04-20 用于双向中继系统的通信方法和装置及系统 WO2011107048A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180000259.0A CN102844997B (zh) 2011-04-20 2011-04-20 用于双向中继系统的通信方法和装置及系统
PCT/CN2011/073042 WO2011107048A2 (zh) 2011-04-20 2011-04-20 用于双向中继系统的通信方法和装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073042 WO2011107048A2 (zh) 2011-04-20 2011-04-20 用于双向中继系统的通信方法和装置及系统

Publications (2)

Publication Number Publication Date
WO2011107048A2 true WO2011107048A2 (zh) 2011-09-09
WO2011107048A3 WO2011107048A3 (zh) 2012-03-22

Family

ID=44542634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073042 WO2011107048A2 (zh) 2011-04-20 2011-04-20 用于双向中继系统的通信方法和装置及系统

Country Status (2)

Country Link
CN (1) CN102844997B (zh)
WO (1) WO2011107048A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813413A (zh) * 2012-11-12 2014-05-21 上海贝尔股份有限公司 基于本地交换来改善数据传输的方法、装置与基站

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105049107B (zh) * 2015-08-18 2017-12-15 北京工业大学 基于证据理论与物理层网络编码结合的满分集多天线双向中继接收方法
CN110855403B (zh) * 2019-11-12 2022-05-31 哈尔滨工业大学(深圳) 空间信息网的高能效网络编码arq双向中继传输机制
CN112532293B (zh) * 2020-12-01 2022-03-08 电子科技大学 一种适用于多个中继节点的双向无线中继传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505171A (zh) * 2009-03-10 2009-08-12 东南大学 基于双向中继网络编码系统的通信方法
CN101515917A (zh) * 2009-03-25 2009-08-26 东南大学 基于双向中继的多用户无线通信系统及方法
WO2009134059A2 (en) * 2008-04-29 2009-11-05 Samsung Electronics Co., Ltd. Methods and apparatus for network coding in a communication system
WO2010056067A2 (en) * 2008-11-14 2010-05-20 Samsung Electronics Co., Ltd. Method and apparatus for harq operation with network coding
CN101741448A (zh) * 2009-12-04 2010-06-16 西安电子科技大学 双向信道中基于最小均方误差波束成型的信息传输方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969668A (zh) * 2010-10-24 2011-02-09 天津大学 一种用于无线协作中继系统的数据传输方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009134059A2 (en) * 2008-04-29 2009-11-05 Samsung Electronics Co., Ltd. Methods and apparatus for network coding in a communication system
WO2010056067A2 (en) * 2008-11-14 2010-05-20 Samsung Electronics Co., Ltd. Method and apparatus for harq operation with network coding
CN101505171A (zh) * 2009-03-10 2009-08-12 东南大学 基于双向中继网络编码系统的通信方法
CN101515917A (zh) * 2009-03-25 2009-08-26 东南大学 基于双向中继的多用户无线通信系统及方法
CN101741448A (zh) * 2009-12-04 2010-06-16 西安电子科技大学 双向信道中基于最小均方误差波束成型的信息传输方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813413A (zh) * 2012-11-12 2014-05-21 上海贝尔股份有限公司 基于本地交换来改善数据传输的方法、装置与基站

Also Published As

Publication number Publication date
WO2011107048A3 (zh) 2012-03-22
CN102844997A (zh) 2012-12-26
CN102844997B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
US10911183B2 (en) System and method for HARQ for cellular integrated D2D communications
US8004992B2 (en) Adding hybrid ARQ to WLAN protocols with MAC based feedback
RU2469482C2 (ru) Способ и система для передачи данных в сети передачи данных
US8948309B2 (en) Method and system for redundancy-based decoding of video content in a wireless system
WO2017215382A1 (zh) 一种数据传输方法、装置和设备
JP2005260939A (ja) パケットフォーマット
JP2002198936A (ja) Ofdm物理層を使用するcsmaシステムのための符号化方式
WO2010124408A1 (zh) 数据包中继和数据包解码的方法及装置
WO2012122802A1 (zh) 数据重传方法、中继站、基站和通信系统
TW201728114A (zh) 即時處理回饋
WO2011110072A1 (zh) 协作通信的接收方法、装置和系统
WO2011107048A2 (zh) 用于双向中继系统的通信方法和装置及系统
JP2010537506A (ja) デコード不能パケットを送信するための装置および方法
WO2015096444A1 (zh) 一种数据传输方法和系统
JP5032678B2 (ja) 複数キャリアのスケジューリング
Osseiran et al. Advances in wireless network coding for IMT-Advanced & beyond
WO2014190819A1 (zh) 一种信息传输方法、中间节点和终端
WO2024065490A1 (en) Methods, system, and apparatus for joint error correction coding of a self-decodable payload
WO2011157200A1 (zh) 一种多用户联合校验中继协作通信的方法、系统及装置
WO2010133026A1 (zh) 用户设备、中继站、基站、信息处理方法及系统
WO2022050019A1 (ja) 情報処理装置および復号化方法
WO2012094881A1 (zh) 一种无线网络及无线通信中的编码协作方法
KR101118689B1 (ko) 어드밴스트 코딩을 적용한 데이터 프레임의 송수신 장치 및방법
Su et al. Adaptive transmission based on multi-relay selection and rate-compatible LDPC codes
Arpitha et al. Cooperative Hybrid Automatic Repeat Request Based on the Number of Retransmissions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000259.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750201

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750201

Country of ref document: EP

Kind code of ref document: A2