WO2011105800A2 - Heat sink including a heat-dissipation fin capable of vibrating - Google Patents

Heat sink including a heat-dissipation fin capable of vibrating Download PDF

Info

Publication number
WO2011105800A2
WO2011105800A2 PCT/KR2011/001252 KR2011001252W WO2011105800A2 WO 2011105800 A2 WO2011105800 A2 WO 2011105800A2 KR 2011001252 W KR2011001252 W KR 2011001252W WO 2011105800 A2 WO2011105800 A2 WO 2011105800A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat sink
dissipation fin
heat dissipation
piezoelectric element
Prior art date
Application number
PCT/KR2011/001252
Other languages
French (fr)
Korean (ko)
Other versions
WO2011105800A3 (en
Inventor
김성진
박희승
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100030077A external-priority patent/KR20110097552A/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2011105800A2 publication Critical patent/WO2011105800A2/en
Publication of WO2011105800A3 publication Critical patent/WO2011105800A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D33/00Non-positive-displacement pumps with other than pure rotation, e.g. of oscillating type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat sink having a vibrating heat dissipation fin, and more particularly, to a heat sink in which a heat dissipation fin vibrates due to contraction and expansion of a driving part on one side of a heat dissipation fin for dissipating heat. .
  • the interior of the electronics is equipped with a cooling device for dissipating heat. Looking at the conventional cooling device mounted inside the electronic products as follows.
  • the electronic chip cooling apparatus disclosed in Korean Unexamined Patent Publication No. 10-2004-52010 includes a terminal base that directly contacts a heating element such as a CPU and conducts heat, a heat pipe that is soldered on top of the terminal base, and a heat pipe.
  • a heat dissipation block soldered to the end, a fan motor positioned at the center thereof to supply cooling fluid to the heat dissipation block, a base frame to which the fan motor and the terminal base are fixed, and a top center of the fan motor mounting portion of the base frame. It is made of a fan cover to block most except for allowing the cooling fluid to be efficiently introduced and discharged.
  • the fan cover formed under the installation line of the heat pipe is soldered to the heat pipe to integrate the heat cover, so that the heat cover can be used as a heat sink that conducts heat from the heat pipe and radiates heat in the air.
  • the electronic chip cooling device transfers heat generated from a heating element such as a CPU to the heat pipe through the terminal base, and the heat transferred to the heat pipe is moved to the heat dissipation block formed at each end of the heat pipe and moved to the heat dissipation block.
  • the heat causes forced convection by driving the fan motor to cool it.
  • the cooling device for computer parts presented in the Republic of Korea Patent No. 10-600448 is a device for cooling the heat generating parts that generate heat during operation of the parts built into the computer, so that the heat generated from the heat generating parts can be received
  • At least one heat pipe and heat radiation fins of the heat pipe formed of a heat block that is tightly coupled to the heat generating parts, a heat block block portion coupled to the heat block to receive heat from the heat block, and a heat radiation fin coupling portion bent to form a curved shape.
  • the coupling portion it comprises a plurality of heat dissipation fins spaced apart from each other along the radiating fin coupling portion.
  • the cooling device for the computer parts configured as described above serves to cool the heat by dissipating heat into the air from the parts other than the parts coupled to the heat block through the heat pipe when heat is transferred from the heat-generating electronic parts to the heat block.
  • the plurality of heat dissipation fins allow the air flow generated by the cooling fan to pass through the heat dissipation fins so that the air flows to the outside of the cooling fan in a spiral manner to cool the computer components.
  • such a conventional cooling device is configured to apply an axial fan to introduce external air along the rotational axis of the fan to pass through the heat radiating fins and then to flow out in the axial direction. That is, the heat dissipation fins are cooled by an axial fan installed on the top of the heat dissipation fins through which heat is transmitted from a heat generating component such as a CPU. Cooling is sequentially performed through a plurality of heat-dissipating fins stacked below.
  • the wind generated from the axial fan has a problem of lowering the cooling efficiency due to the low wind strength by the interference of the heat radiation fins, and there is also a problem that the volume occupied by the fan reduces the heat transfer area so that heat transfer is not effectively performed.
  • the present invention to achieve the above object is a heat radiation fin for dissipating heat; And a driving unit attached to one side of the heat dissipation fins and repeating contraction and expansion to vibrate the heat dissipation fins.
  • the present invention also provides a base; A plurality of heat dissipation fins spaced apart from each other and attached to the base, for dissipating heat; And a driving unit attached to one side of the heat dissipation fins and repeating contraction and expansion to vibrate the heat dissipation fins.
  • the present invention provides a heat sink having a vibrating heat dissipation fin, characterized in that the drive unit is a piezoelectric element.
  • the present invention provides a heat sink having a vibrating heat sink fin, characterized in that the same frequency as the natural frequency of the heat sink fin is input to the piezoelectric element.
  • the driving unit is attached to one side of the heat dissipation fin so that the driving unit vibrates the heat dissipation fin.
  • the air flow is generated by the vibration, so the cooling performance is excellent even without a separate fan.
  • the heat sink does not have to be equipped with a fan, there is no need for a separate space for the fan inside the heat sink. Therefore, the heat sink design can be made more free, and the size of the heat sink can be reduced.
  • FIG. 1 is a view schematically showing a heat sink according to an embodiment of the present invention.
  • FIG. 2 is a view showing a principle that the heat radiation fin of the heat sink according to an embodiment of the present invention vibrates.
  • FIG 3 is a view showing a heat sink combined with a heater and an insulation system according to an embodiment of the present invention.
  • FIG. 4 shows that a heat sink coupled with a heater and a thermal insulation system is connected to another device.
  • FIG. 5 is a diagram showing a comparison result between experimental data of the present invention and a related Bar-cohen equation.
  • FIG. 6 is a diagram showing the thermal performance of the heat sink as a thermal resistance to the input frequency in the piezoelectric element having an input voltage of 24V.
  • FIG. 7 is a graph illustrating a change in flow rate according to an input voltage.
  • FIG. 8 is a graph showing a relationship between a thermal resistance of a heat sink having a piezoelectric element and an input voltage of the piezoelectric element.
  • FIG. 1 is a view schematically showing a heat sink according to an embodiment of the present invention.
  • the heat sink 100 includes a heat dissipation fin 110, a base 120, and a driver 130.
  • the heat dissipation fin 110 is a portion that radiates heat.
  • the heat dissipation fin 110 has a plate shape, but is not limited thereto and may have various shapes according to the use form or purpose.
  • the heat dissipation fins 110 are plural and spaced apart from each other and attached to the base 120.
  • the base portion 120 fixes the heat dissipation fins 110 and is a portion for mounting the heat dissipation fins 110 to the heating element. Heat generated from the heating element is transferred to the heat dissipation fin 110 through the base 120.
  • the driver 130 is attached to one side of the heat dissipation fin 110.
  • the drive unit 130 is capable of contraction and expansion.
  • the driving unit 130 is a piezoelectric element.
  • the piezoelectric element contracts when a positive field is induced and expands when a negative field is induced. It is connected to the AC power supply 140 for the contraction and expansion of the piezoelectric element.
  • the AC power supply 140 inputs AC into the piezoelectric element.
  • the driving unit 130 is described as being a piezoelectric element in this embodiment, the present invention is not limited thereto and may be various members capable of vibrating the heat dissipation fin 110 through contraction and expansion.
  • the heat dissipation fin 110 vibrates by contraction and expansion of the driving unit 130.
  • a boundary layer of air around the heat dissipation fin 110 is disturbed, thereby increasing cooling performance.
  • the air around the heat radiating fins 110 is moved by the vibration of the heat radiating fins 110, the air around the heat radiating fins 110 is discharged into the atmosphere without a device such as a fan for generating air flow. Therefore, the heat sink 100 according to the present embodiment has a higher cooling performance than a heat sink that does not use a conventional fan, and has the same or superior cooling performance as that of a heat sink using a fan. Since there is no need for space, there is an advantage to save space.
  • FIG. 2 is a view showing a principle that the heat radiation fin of the heat sink with a piezoelectric element according to an embodiment of the present invention vibrates.
  • the piezoelectric element 230 is attached to one side of the heat dissipation fin 210 of the heat sink 200 according to the embodiment of the present invention.
  • piezoelectric element 230 is attached to the end adjacent to base 220.
  • the piezoelectric element 230 is connected to an AC power supply.
  • the piezoelectric element 230 contracts. Since the piezoelectric element 230 is attached to one side of the heat dissipation fin 210, one side of the heat dissipation fin 210 is contracted by the contraction of the piezoelectric element 230 and the other side is not changed. Therefore, the heat dissipation fin 210 is bent to one side to which the piezoelectric element 230 is attached.
  • the piezoelectric element 230 When a negative electric field is induced in the piezoelectric element 230, as shown in FIG. 2B, the piezoelectric element 230 expands. Due to the expansion of the piezoelectric element 230, one side of the heat dissipation fin 210 expands and the other side thereof does not change. Therefore, the heat dissipation fin 210 is bent to the other side to which the piezoelectric element 230 is not attached.
  • the piezoelectric element 230 repeats the contraction and expansion, and thus the heat dissipation fin 210 is fanned. Similar vibrations will occur. In this case, inputting the same frequency as the natural frequency of the heat dissipation fin 210 into the piezoelectric element 230 increases the vibration of the heat dissipation fin 210 by resonance, thereby improving cooling performance.
  • the heat sink for the experiment is the shape of an optimized natural convection heat sink, and this natural convection heat sink optimization was performed based on Bar-cohen's research.
  • the width, length and fin height of the base of the heat sink were fixed and the fin thickness and the optimal channel width between fins were obtained through iteration.
  • the shape of the heat sink is shown in the table below and the temperature of the heat sink was measured with three J-type thermocouples.
  • FIG 3 is a view showing a heat sink coupled to a heater and a thermal insulation system according to an embodiment of the present invention
  • Figure 4 is a view showing a heat sink coupled to the heater and the thermal insulation system is connected to another device.
  • the heater is manufactured to about 0.025mm and is connected to the DC power supply. Direct current is applied to the heater and a constant heat flux boundary condition is generated. The heat generated by the heater is controlled by the current of the DC power supply and the electrical resistance of the heater.
  • the insulation system is made of Teflon to reduce unwanted heat losses. However, the thermal insulation system could not completely prevent heat loss, so the heat loss was measured with six J-type thermocouples. Therefore, the experiment as combined as shown in Figure 3 can be confirmed that the heat is transferred to the heat transfer through the heat sink is not transferred to other places, through which the heat transfer performance of the heat sink can be seen.
  • the function generator (Stanford Research System, DS340) generates sinusoidal signals of various frequencies, which are then passed to the AC power supply.
  • An AC power supply is a power source for applying AC power to a piezoelectric element.
  • the input frequency is controlled by the function generator and the input voltage is controlled by the AC power supply.
  • the difference between the heat in the heater and the heat loss in the insulation system is the heat input to the heat sink.
  • the temperature of the heat sink is also measured by a J-type thermocouple, which is connected to a digital data acquisition system (Agilent, 34970A).
  • a digital data acquisition system Agilent, 34970A.
  • 0.1 ° C is the limit of analysis of the digital data capture system used in the experiment. It took about 2 hours to become stable and all measurements were performed after 2 hours. Verification of heat loss was performed using a natural convection heat sink. There are many studies on the thermal performance of natural convection heat sinks, and the Bar-cohen equation is used for verification.
  • FIG. 5 is a diagram showing a comparison result between experimental data and a Bar-cohen equation of the present invention.
  • the experimental data of the present invention is consistent with Bar-cohen's equation within ⁇ 10%.
  • the thermal performance of the heat sink can thus be measured well with the experimental equipment used in the present invention.
  • the vibration frequency of the heat sink coincides with the input frequency of the piezoelectric element.
  • the thermal performance of the heat sink increases as the input frequency increases because the vibration speed increases as the vibration frequency increases.
  • cooling performance increases significantly at special input frequencies due to resonance.
  • the oscillation width is amplified by the resonance and the thermal performance is also amplified.
  • FIG. 6 is a diagram showing the thermal performance of the heat sink as a thermal resistance to the input frequency in the piezoelectric element having an input voltage of 24V.
  • FIG. 6 shows that optimal frequency input is important in piezoelectric elements to maximize the thermal performance of a heat sink having heat sink fins with piezoelectric elements mounted thereon. Also, the optimum input frequency is the natural frequency of the heat sink fins of the heat sink.
  • the shape of the heat sink is similar to the cantilever beam, and the natural frequency of the cantilever beam can be obtained by the following equation (1).
  • G is a proportionality constant, which is determined experimentally.
  • Y is the Young's modulus
  • is the density
  • is the Poisson's ratio, which is a property of the material of the cantilever beam.
  • the natural frequency is determined by the shape of the cantilever beam, the thickness t of the fin and the height H of the heat sink fin. If the input frequency is fixed, it is necessary that a heat sink based on Equation (1) be manufactured to produce a natural frequency of the heat sink fin that matches the input frequency.
  • FIG. 7 is a graph illustrating a change in flow rate according to an input voltage.
  • the flow rate is proportional to the input voltage of the piezoelectric element in the case of the heat sink having the heat dissipation fin to which the piezoelectric element is attached. As the flow rate increases, the thermal resistance of the heat sink with heat sink fins with piezoelectric elements decreases.
  • FIG. 8 is a graph showing a relationship between a thermal resistance of a heat sink having a piezoelectric element and an input voltage of the piezoelectric element.
  • the input frequency of the piezoelectric element matches the natural frequency of the heat sink fins.
  • the thermal resistance of the heat sink having the heat dissipation fin to which the piezoelectric element is attached is inversely proportional to the input voltage. This means that the thermal resistance is inversely proportional to the flow rate generated.
  • the points on the thermal resistance axis represent the thermal resistance of the optimal natural convection heat sink without the piezoelectric element.
  • the thermal resistance of the natural convection heat sink decreases as the heat transferred from the heater is reduced.
  • FIG. 8 shows that the thermal performance of the heat sink with the heat dissipation fin to which the piezoelectric element is attached is more than twice as large as that of the natural convection heat sink, and the rate of increase of the thermal performance may be increased as the input voltage is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The present invention relates to a heat sink including a heat-dissipation fin capable of vibrating. The heat sink of the present invention comprises a piezoelectric device that is attached to a surface of a heat-dissipation fin for dissipating heat, wherein the piezoelectric device compresses or expands so as to vibrate the heat-dissipation fin. The same frequency as the natural frequency of the heat-dissipation fin can be inputted to the piezoelectric device. According to the present invention, since airflow is generated by the vibration of the heat-dissipation fin, the heat sink has good cooling performance without using a separate fan. Thus, a space for accommodating a fan in the heat sink is unnecessary.

Description

진동 가능한 방열핀을 구비한 히트 싱크Heat sink with vibrating heat sink fins
본 발명은 진동 가능한 방열핀을 구비한 히트 싱크에 관한 것으로, 보다 구체적으로는 열을 발산하기 위한 방열핀의 일측면에 구동부를 부착하고, 구동부의 수축과 팽창에 의해 방열핀이 진동하는 히트 싱크에 관한 것이다.The present invention relates to a heat sink having a vibrating heat dissipation fin, and more particularly, to a heat sink in which a heat dissipation fin vibrates due to contraction and expansion of a driving part on one side of a heat dissipation fin for dissipating heat. .
최근, 반도체 칩과 이를 포함하는 패키지 등의 고집적화, 고성능화 및 소형화 추세에 따라 전자제품도 급격히 고성능화되고 있다. 전자제품이 고성능화됨에 따라 동작시 내부에서 많은 열이 발생하게 된다. 특히, 전자제품의 내부에서 사용되는 CPU 및 주변 전자부품들의 용량이 상대적으로 대용량화됨에 따라 발열량은 극도로 증가하게 된다. Recently, electronic products are rapidly becoming high performance according to the trend of high integration, high performance, and miniaturization of semiconductor chips and packages including the same. As electronic products become more efficient, a lot of heat is generated inside the operation. In particular, as the capacity of the CPU and the peripheral electronic components used in the electronics becomes relatively large, the heat generation amount is extremely increased.
따라서 전자제품을 안정적으로 동작시키기 위해서는 동작시 그 내부에서 발생되는 열을 효율적으로 신속히 방출시키는 것이 중요하다. 이를 위해 전자제품의 내부에는 열을 방출하기 위한 냉각장치가 장착된다. 전자제품 내부에 장착된 종래의 냉각장치를 살펴보면 다음과 같다.Therefore, in order to operate electronic products stably, it is important to efficiently and quickly release the heat generated therein during operation. To this end, the interior of the electronics is equipped with a cooling device for dissipating heat. Looking at the conventional cooling device mounted inside the electronic products as follows.
먼저, 대한민국 공개특허공보 10-2004-52010호에서 제시된 전자칩 냉각장치는 CPU 등과 같은 발열체에 직접 접촉되어 열을 전도시키는 역할을 하는 터미널 베이스와, 터미널 베이스 상단에 솔더링되는 히트파이프와, 히트파이프 끝단에 솔더링되는 방열 블록과, 방열 블록에 냉각유체를 공급하기 위해 그 중심부에 위치하도록 된 팬 모터와, 팬 모터 및 터미널 베이스가 고정되도록 하는 베이스 프레임과, 베이스 프레임의 팬 모터 설치부 상단 중심을 제외한 대부분을 차단시켜 냉각유체가 효율적으로 유입 및 배출될 수 있도록 하는 팬 커버로 이루어진다. 여기서 히트파이프의 설치라인 하측에 형성된 팬 커버를 히트파이프에 솔더링시켜 일체화시킴으로서, 히트파이프의 열을 전도 받아서 대기 중에 방열하는 방열판으로서 사용되도록 구성된다. 이러한 전자칩 냉각장치는 CPU 등과 같은 발열체에서 발생된 열을 터미널 베이스를 통해 히트파이프로 전달하고, 히트파이프로 전달된 열은 다시 히트파이프 각 끝단에 형성된 방열블럭으로 이동되며, 방열블록으로 이동된 열은 팬모터를 구동시킴으로서 강제대류를 일으켜 냉각된다.First, the electronic chip cooling apparatus disclosed in Korean Unexamined Patent Publication No. 10-2004-52010 includes a terminal base that directly contacts a heating element such as a CPU and conducts heat, a heat pipe that is soldered on top of the terminal base, and a heat pipe. A heat dissipation block soldered to the end, a fan motor positioned at the center thereof to supply cooling fluid to the heat dissipation block, a base frame to which the fan motor and the terminal base are fixed, and a top center of the fan motor mounting portion of the base frame. It is made of a fan cover to block most except for allowing the cooling fluid to be efficiently introduced and discharged. Here, the fan cover formed under the installation line of the heat pipe is soldered to the heat pipe to integrate the heat cover, so that the heat cover can be used as a heat sink that conducts heat from the heat pipe and radiates heat in the air. The electronic chip cooling device transfers heat generated from a heating element such as a CPU to the heat pipe through the terminal base, and the heat transferred to the heat pipe is moved to the heat dissipation block formed at each end of the heat pipe and moved to the heat dissipation block. The heat causes forced convection by driving the fan motor to cool it.
또한, 대한민국 등록특허 제10-600448호에서 제시된 컴퓨터 부품용 냉각장치 는 컴퓨터에 내장된 부품 중 작동시 열을 발생시키는 발열부품을 냉각시키기 위한 장치로서, 발열부품에서 발생하는 열을 전달받을 수 있도록 발열부품에 밀착 결합되는 전열블록, 전열블록으로부터 열을 전달받을 수 있도록 전열블록에 결합되어 있는 전열블록 결합부, 곡선형태를 이루도록 구부러진 방열핀 결합부를 구비하여 형성된 적어도 하나의 히트파이프 및 히트파이프의 방열핀 결합부에 결합되되, 방열핀 결합부를 따라 상호 이격되어 배치된 다수의 방열핀을 포함하여 구성된다. 이렇게 구성되는 컴퓨터 부품용 냉각장치는 발열하는 전자부품에서 전열블록으로 발열이 전달되면 히트파이프를 통하여 전열블럭에 결합된 부분의 이외의 부분에서 열이 공기 중으로 발산되어 열을 냉각시키는 역할을 하게 되며, 다수의 방열핀들은 냉각팬에 의해 생성되는 공기흐름이 방열핀들을 통과하여 냉각팬의 회전축에 대해 공기흐름이 나선형태로 외부로 배출되도록 하여 컴퓨터 부품을 냉각시킬 수 있도록 되어 있다.In addition, the cooling device for computer parts presented in the Republic of Korea Patent No. 10-600448 is a device for cooling the heat generating parts that generate heat during operation of the parts built into the computer, so that the heat generated from the heat generating parts can be received At least one heat pipe and heat radiation fins of the heat pipe formed of a heat block that is tightly coupled to the heat generating parts, a heat block block portion coupled to the heat block to receive heat from the heat block, and a heat radiation fin coupling portion bent to form a curved shape. Is coupled to the coupling portion, it comprises a plurality of heat dissipation fins spaced apart from each other along the radiating fin coupling portion. The cooling device for the computer parts configured as described above serves to cool the heat by dissipating heat into the air from the parts other than the parts coupled to the heat block through the heat pipe when heat is transferred from the heat-generating electronic parts to the heat block. In addition, the plurality of heat dissipation fins allow the air flow generated by the cooling fan to pass through the heat dissipation fins so that the air flows to the outside of the cooling fan in a spiral manner to cool the computer components.
그러나, 이와 같은 종래의 냉각장치는 액시얼 팬(axial fan)을 적용하여 외부의 공기를 팬의 회전축을 따라 유입시켜 방열핀들을 통과시킨 후 축방향으로 유출시키는 형태로 이루어져 있다. 즉, CPU 등의 발열부품의 열이 전달되는 방열핀의 상부에 설치되는 액시얼 팬을 통하여 방열핀을 냉각시키게 되는데, 액시얼 팬에 의해 발생한 바람에 의해 방열핀의 상부가 바람에 최초로 맞닿게 되어 냉각되고 다수 적층된 하부의 방열핀을 거쳐 차례로 냉각되게 된다.However, such a conventional cooling device is configured to apply an axial fan to introduce external air along the rotational axis of the fan to pass through the heat radiating fins and then to flow out in the axial direction. That is, the heat dissipation fins are cooled by an axial fan installed on the top of the heat dissipation fins through which heat is transmitted from a heat generating component such as a CPU. Cooling is sequentially performed through a plurality of heat-dissipating fins stacked below.
이때 액시얼 팬에서 발생하는 바람은 방열핀의 간섭에 의해 바람의 세기가 낮아져 냉각효율이 떨어지는 문제점이 있으며, 또한, 팬이 차지하는 부피가 열전달 면적을 줄여 효과적으로 열전달이 이루어지지 않는 문제점이 있다.At this time, the wind generated from the axial fan has a problem of lowering the cooling efficiency due to the low wind strength by the interference of the heat radiation fins, and there is also a problem that the volume occupied by the fan reduces the heat transfer area so that heat transfer is not effectively performed.
따라서, 액시얼 팬을 사용하지 않아 열전달 면적을 넓혀 효과적인 열전달을 통해 방출효율이 우수한 히트 싱크의 개발이 소망되었다.Therefore, it is desired to develop a heat sink having excellent emission efficiency through effective heat transfer by increasing the heat transfer area without using an axial fan.
본 발명의 목적은 액시얼 팬을 사용하지 않고도 내부의 열을 효과적으로 외부로 전달할 수 있는 히트 싱크를 제공하는 것이다.It is an object of the present invention to provide a heat sink that can effectively transfer internal heat to the outside without using an axial fan.
상기 목적을 달성하기 위해 본 발명은 열을 발산하기 위한 방열핀; 및 상기 방열핀의 일측면에 부착되며, 수축과 팽창을 반복해 상기 방열핀을 진동시키는 구동부;를 포함하는 것을 특징으로 하는 진동 가능한 방열핀을 구비한 히트 싱크를 제공한다.The present invention to achieve the above object is a heat radiation fin for dissipating heat; And a driving unit attached to one side of the heat dissipation fins and repeating contraction and expansion to vibrate the heat dissipation fins.
또한 본 발명은 기저부; 상기 기저부에 서로 이격되어 부착되며, 열을 발산하기 위한 복수의 방열핀; 및 상기 방열핀의 일측면에 부착되며, 수축과 팽창을 반복해 상기 방열핀을 진동시키는 구동부;를 포함하는 것을 특징으로 하는 진동 가능한 방열핀을 구비한 히트 싱크를 제공한다.The present invention also provides a base; A plurality of heat dissipation fins spaced apart from each other and attached to the base, for dissipating heat; And a driving unit attached to one side of the heat dissipation fins and repeating contraction and expansion to vibrate the heat dissipation fins.
또한 본 발명은 상기 구동부가 압전 소자인 것을 특징으로 하는 진동 가능한 방열핀을 구비한 히트 싱크를 제공한다.In another aspect, the present invention provides a heat sink having a vibrating heat dissipation fin, characterized in that the drive unit is a piezoelectric element.
또한 본 발명은 상기 압전 소자에 방열핀의 고유 진동수와 동일한 주파수가 입력되는 것을 특징으로 하는 진동 가능한 방열핀을 구비한 히트 싱크를 제공한다.In another aspect, the present invention provides a heat sink having a vibrating heat sink fin, characterized in that the same frequency as the natural frequency of the heat sink fin is input to the piezoelectric element.
본 발명에 따른 히트 싱크는 방열핀의 일측면에 구동부가 부착되어 구동부가 방열핀을 진동시킨다. 이러한 진동에 의해 공기의 흐름이 발생하므로 별도의 팬을 구비하지 않아도 냉각 성능이 우수하다. In the heat sink according to the present invention, the driving unit is attached to one side of the heat dissipation fin so that the driving unit vibrates the heat dissipation fin. The air flow is generated by the vibration, so the cooling performance is excellent even without a separate fan.
또한 히트 싱크가 팬을 구비하지 않아도 되므로 히트 싱크 내부에 팬을 위한 공간을 별도로 확보할 필요가 없다. 따라서 히트 싱크 설계를 보다 자유롭게 할 수 있으며, 히트 싱크의 크기를 작게 할 수도 있다.In addition, since the heat sink does not have to be equipped with a fan, there is no need for a separate space for the fan inside the heat sink. Therefore, the heat sink design can be made more free, and the size of the heat sink can be reduced.
도 1은 본 발명의 실시예에 따른 히트 싱크를 개략적으로 나타내는 도면이다. 1 is a view schematically showing a heat sink according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 히트 싱크의 방열핀이 진동하는 원리를 나타내는 도면이다. 2 is a view showing a principle that the heat radiation fin of the heat sink according to an embodiment of the present invention vibrates.
도 3은 본 발명의 일실시예에 따른 히트싱크가 히터 및 단열시스템과 결합된 것을 나타낸 도면이다.3 is a view showing a heat sink combined with a heater and an insulation system according to an embodiment of the present invention.
도 4는 히터 및 단열시스템과 결합된 히트 싱크가 다른 장치와 연결된 것을 나타내는 도면이다. 4 shows that a heat sink coupled with a heater and a thermal insulation system is connected to another device.
도 5는 본 발명의 실험 데이터 및 상호관련 Bar-cohen 식 사이의 비교 결과를 나타내는 도면이다.5 is a diagram showing a comparison result between experimental data of the present invention and a related Bar-cohen equation.
도 6은 입력 전압이 24V인 압전 소자에서 입력 주파수에 대한 열적 저항으로서 히트 싱크의 열적 성능을 나타내는 도면이다.6 is a diagram showing the thermal performance of the heat sink as a thermal resistance to the input frequency in the piezoelectric element having an input voltage of 24V.
도 7은 입력 전압에 따른 유속의 변화를 나타내는 그래프이다.7 is a graph illustrating a change in flow rate according to an input voltage.
도 8은 압전 소자를 구비한 히트 싱크의 열적 저항과 압전 소자의 입력 전압 사이의 관계를 보여주는 그래프이다.8 is a graph showing a relationship between a thermal resistance of a heat sink having a piezoelectric element and an input voltage of the piezoelectric element.
이하 본 발명에 첨부된 도면을 참조하여 발명의 실시를 위한 구체적인 내용에서는 본 발명의 바람직한 일실시예를 상세히 설명하기로 한다. 우선, 도면들 중, 동일한 구성요소 또는 부품들은 가능한 한 동일한 참조부호를 나타내고 있음에 유의하여야 한다. 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, it should be noted that in the drawings, the same components or parts denote the same reference numerals as much as possible. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.As used herein, the terms "about", "substantially", and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are intended to aid the understanding of the invention. Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers.
도 1은 본 발명의 실시예에 따른 히트 싱크를 개략적으로 나타내는 도면이다. 1 is a view schematically showing a heat sink according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 히트 싱크(100)는 방열핀(110), 기저부(120), 구동부(130)를 포함한다. As shown in FIG. 1, the heat sink 100 according to the embodiment of the present invention includes a heat dissipation fin 110, a base 120, and a driver 130.
방열핀(110)은 열을 발산하는 부분이다. 본 실시예에서 방열핀(110)은 판(plate)형상이지만, 이에 한정되지 않고 사용 형태나 목적에 따라 다양한 형상이 될 수 있다. 방열핀(110)은 복수개이며, 서로 이격되어 기저부(120)에 부착된다. The heat dissipation fin 110 is a portion that radiates heat. In the present embodiment, the heat dissipation fin 110 has a plate shape, but is not limited thereto and may have various shapes according to the use form or purpose. The heat dissipation fins 110 are plural and spaced apart from each other and attached to the base 120.
기저부(120)는 방열핀(110)을 고정하며, 방열핀(110)을 발열체에 장착하기 위한 부분이다. 발열체에서 발생되는 열은 기저부(120)를 통해 방열핀(110)으로 전달된다. The base portion 120 fixes the heat dissipation fins 110 and is a portion for mounting the heat dissipation fins 110 to the heating element. Heat generated from the heating element is transferred to the heat dissipation fin 110 through the base 120.
구동부(130)는 방열핀(110)의 일측면에 부착된다. 구동부(130)는 수축과 팽창이 가능하다. 본 실시예에서 구동부(130)는 압전 소자이다. 압전 소자는 양전기장이 유도될 때 수축하고 음전기장이 유도될 때 팽창한다. 압전 소자의 수축과 팽창을 위해 교류 전원장치(140)와 연결된다. 교류 전원장치(140)는 압전 소자에 교류를 입력한다. 본 실시예에서는 구동부(130)가 압전 소자인 것에 대해서 설명하고 있으나, 이에 한정되지 않고 수축과 팽창을 통해 방열핀(110)을 진동시킬 수 있는 다양한 부재가 될 수 있다. The driver 130 is attached to one side of the heat dissipation fin 110. The drive unit 130 is capable of contraction and expansion. In this embodiment, the driving unit 130 is a piezoelectric element. The piezoelectric element contracts when a positive field is induced and expands when a negative field is induced. It is connected to the AC power supply 140 for the contraction and expansion of the piezoelectric element. The AC power supply 140 inputs AC into the piezoelectric element. Although the driving unit 130 is described as being a piezoelectric element in this embodiment, the present invention is not limited thereto and may be various members capable of vibrating the heat dissipation fin 110 through contraction and expansion.
상기 방열핀(110)은 구동부(130)의 수축과 팽창에 의해 진동하는 데, 상기 방열핀(110)이 진동하면 방열핀(110) 주변의 공기의 경계층이 교란되어 냉각 성능이 증가한다. 또한 방열핀(110)의 진동에 의해 방열핀(110) 주변의 공기가 이동하게 되므로 공기의 유동을 발생시키기 위한 별도의 팬과 같은 장치 없이도 방열핀(110) 주변의 공기가 대기 중으로 배출된다. 따라서, 본 실시예에 따른 히트 싱크(100)는 기존의 팬을 사용하지 않는 히트 싱크에 비해서 높은 냉각 성능을 갖게 되며, 팬을 사용한 히트 싱크에 비해서는 동일 또는 우월한 냉각 성능을 가지면서도 팬을 위한 공간을 따로 필요로 하지 않기 때문에 공간을 절약할 수 있는 장점이 있다. The heat dissipation fin 110 vibrates by contraction and expansion of the driving unit 130. When the heat dissipation fin 110 vibrates, a boundary layer of air around the heat dissipation fin 110 is disturbed, thereby increasing cooling performance. In addition, since the air around the heat radiating fins 110 is moved by the vibration of the heat radiating fins 110, the air around the heat radiating fins 110 is discharged into the atmosphere without a device such as a fan for generating air flow. Therefore, the heat sink 100 according to the present embodiment has a higher cooling performance than a heat sink that does not use a conventional fan, and has the same or superior cooling performance as that of a heat sink using a fan. Since there is no need for space, there is an advantage to save space.
도 2는 본 발명의 실시예에 따른 압전 소자가 부착된 히트 싱크의 방열핀이 진동하는 원리를 나타내는 도면이다. 2 is a view showing a principle that the heat radiation fin of the heat sink with a piezoelectric element according to an embodiment of the present invention vibrates.
도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 히트 싱크(200)의 방열핀(210)의 일측면에는 압전 소자(230)가 부착된다. 바람직하게는 압전 소자(230)가 기저부(220)에 인접한 끝단에 부착된다. 압전 소자(230)는 교류 전원장치와 연결된다. As shown in FIG. 2, the piezoelectric element 230 is attached to one side of the heat dissipation fin 210 of the heat sink 200 according to the embodiment of the present invention. Preferably, piezoelectric element 230 is attached to the end adjacent to base 220. The piezoelectric element 230 is connected to an AC power supply.
교류 전원장치에 의해 압전 소자(230)에 양전기장이 유도되면, 도 2의 (a)에 도시된 바와 같이, 압전 소자(230)가 수축한다. 압전 소자(230)는 방열핀(210)의 일측면에 부착되었으므로, 압전 소자(230)의 수축에 의해 방열핀(210)의 일측면은 수축하고 타측면은 변화하지 않는다. 따라서 방열핀(210)이 압전 소자(230)가 부착된 일측으로 구부러진다. When a positive electric field is induced in the piezoelectric element 230 by the AC power supply device, as shown in FIG. 2A, the piezoelectric element 230 contracts. Since the piezoelectric element 230 is attached to one side of the heat dissipation fin 210, one side of the heat dissipation fin 210 is contracted by the contraction of the piezoelectric element 230 and the other side is not changed. Therefore, the heat dissipation fin 210 is bent to one side to which the piezoelectric element 230 is attached.
압전 소자(230)에 음전기장이 유도되면, 도 2의 (b)에 도시된 바와 같이, 압전 소자(230)가 팽창한다. 압전 소자(230)의 팽창에 의해 방열핀(210)의 일측면은 팽창하고 타측면은 변화하지 않는다. 따라서 방열핀(210)은 압전 소자(230)가 부착되지 않은 타측으로 구부러진다. When a negative electric field is induced in the piezoelectric element 230, as shown in FIG. 2B, the piezoelectric element 230 expands. Due to the expansion of the piezoelectric element 230, one side of the heat dissipation fin 210 expands and the other side thereof does not change. Therefore, the heat dissipation fin 210 is bent to the other side to which the piezoelectric element 230 is not attached.
이러한 방식으로 교류 전원장치를 이용해 압전 소자(230)에 양전기장과 음전기장을 반복해서 유도하면, 압전 소자(230)가 수축과 팽창을 반복하게 되고, 이에 따라 방열핀(210)이 마치 부채질하는 것과 유사한 진동을 하게 된다. 이 경우 압전 소자(230)에는 방열핀(210)의 고유 진동수와 동일한 주파수를 입력하는 것이 공명 현상에 의해 방열핀(210)의 진동을 크게 하여 냉각 성능을 향상시킨다. When the positive and negative electric fields are repeatedly induced to the piezoelectric element 230 using the AC power supply in this manner, the piezoelectric element 230 repeats the contraction and expansion, and thus the heat dissipation fin 210 is fanned. Similar vibrations will occur. In this case, inputting the same frequency as the natural frequency of the heat dissipation fin 210 into the piezoelectric element 230 increases the vibration of the heat dissipation fin 210 by resonance, thereby improving cooling performance.
본 발명의 실시예에 따른 히트 싱크의 열적 성능을 측정하기 위한 실험을 수행하였다. 실험을 위한 히트 싱크는 최적화된 자연 대류 히트 싱크의 형상이며, 이러한 자연 대류 히트 싱크 최적화는 Bar-cohen의 연구에 근거하여 수행되었다. 히트 싱크 기저부의 너비, 길이 및 핀 높이가 고정되었고 핀 두께 및 핀 사이의 최적 채널 너비는 반복계산을 통해 구해졌다. 히트 싱크의 형상은 아래의 표에서 나타나며 히트 싱크의 온도는 3개의 J-타입 열전대로 측정되었다.An experiment was performed to measure the thermal performance of a heat sink according to an embodiment of the present invention. The heat sink for the experiment is the shape of an optimized natural convection heat sink, and this natural convection heat sink optimization was performed based on Bar-cohen's research. The width, length and fin height of the base of the heat sink were fixed and the fin thickness and the optimal channel width between fins were obtained through iteration. The shape of the heat sink is shown in the table below and the temperature of the heat sink was measured with three J-type thermocouples.
표 1
Material Aluminum 6061
Base width 39.5 mm
Base length 38 mm
Fin height 40 mm
Fin thickness 300 ㎛
Channel width between fins 5.3 mm
Table 1
Material Aluminum 6061
Base width 39.5 mm
Base length 38 mm
Fin height
40 mm
Fin thickness 300 μm
Channel width between fins 5.3 mm
도 3은 본 발명의 일실시예에 따른 히트싱크가 히터 및 단열시스템과 결합된 것을 나타내는 도면이고, 도 4는 히터 및 단열시스템과 결합된 히트 싱크가 다른 장치와 연결된 것을 나타내는 도면이다. 3 is a view showing a heat sink coupled to a heater and a thermal insulation system according to an embodiment of the present invention, Figure 4 is a view showing a heat sink coupled to the heater and the thermal insulation system is connected to another device.
히터는 약 0.025mm로 제조되며, 직류 전원장치와 연결된다. 직류 전류가 히터에 가해지고 일정한 열유속 경계 조건이 발생된다. 히터에 의해 발생된 열은 직류 전원장치의 전류 및 히터의 전기 저항에 의해 제어된다. 단열시스템은 원하지 않는 열손실을 줄이기 위해 테플론(Teflon)으로 제조되었다. 그러나, 단열시스템은 완벽하게 열손실을 막을 수 없으므로, 열손실을 6개의 J-타입 열전대로 측정하였다. 따라서, 도 3과 같이 결합된 것으로의 실험은 히터의 열이 다른 곳으로는 전달되지 않으며 히트싱크를 통하여 열이 전달되는 것을 확인할 수 있는 데, 이를 통해 히트싱크의 열전달 성능을 알 수 있다.The heater is manufactured to about 0.025mm and is connected to the DC power supply. Direct current is applied to the heater and a constant heat flux boundary condition is generated. The heat generated by the heater is controlled by the current of the DC power supply and the electrical resistance of the heater. The insulation system is made of Teflon to reduce unwanted heat losses. However, the thermal insulation system could not completely prevent heat loss, so the heat loss was measured with six J-type thermocouples. Therefore, the experiment as combined as shown in Figure 3 can be confirmed that the heat is transferred to the heat transfer through the heat sink is not transferred to other places, through which the heat transfer performance of the heat sink can be seen.
함수 발생기(Stanford Research System, DS340)는 다양한 주파수의 사인함수 신호를 발생시키고, 발생된 신호는 교류 전원 장치에 전달된다. 교류 전원장치는 압전소자에 교류 전원을 가하는 동력원이다. 입력 주파수는 함수 발생기에 의해 제어되고 입력 전압은 교류 전원장치에 의해 제어된다. The function generator (Stanford Research System, DS340) generates sinusoidal signals of various frequencies, which are then passed to the AC power supply. An AC power supply is a power source for applying AC power to a piezoelectric element. The input frequency is controlled by the function generator and the input voltage is controlled by the AC power supply.
히터에서의 열과 단열시스템에서의 열손실 차이는 히트 싱크에 입력되는 열이다. 히트 싱크의 온도는 또한 J-타입 열전대에 의해 측정되고, 이러한 열전대는 디지탈 데이터 포착 시스템(Agilent, 34970A)과 연결된다. 히트 싱크의 열적 성능을 측정하기 위한 실험에서 일시적 영향을 제거하기 위해 안정 상태를 만드는 것이 중요하다. 히트 싱크의 기저부 온도 및 단열시스템 온도가 0.1℃ 보다 작게 변화할 때, 안정 상태라고 볼 수 있다. 0.1℃는 실험에서 사용된 디지탈 데이터 포착 시스템의 분석한계이다. 안정 상태로 되기 위해서는 약 2시간이 소요되고 모든 측정은 2시간 후에 수행하였다. 열손실에 대한 검증은 자연 대류 히트 싱크를 사용하여 수행하였다. 자연 대류 히트 싱크의 열적 성능에 관한 많은 연구가 있는데, 검증에는 Bar-cohen 식을 사용하였다.The difference between the heat in the heater and the heat loss in the insulation system is the heat input to the heat sink. The temperature of the heat sink is also measured by a J-type thermocouple, which is connected to a digital data acquisition system (Agilent, 34970A). In experiments to measure the heat performance of a heat sink, it is important to establish a steady state to eliminate transient effects. When the base temperature of the heat sink and the temperature of the thermal insulation system change to less than 0.1 ° C, it can be regarded as a stable state. 0.1 ° C is the limit of analysis of the digital data capture system used in the experiment. It took about 2 hours to become stable and all measurements were performed after 2 hours. Verification of heat loss was performed using a natural convection heat sink. There are many studies on the thermal performance of natural convection heat sinks, and the Bar-cohen equation is used for verification.
도 5는 본 발명의 실험 데이터 및 Bar-cohen 식 사이의 비교 결과를 나타내는 도면이다.5 is a diagram showing a comparison result between experimental data and a Bar-cohen equation of the present invention.
도 5에 도시된 바와 같이, 본 발명의 실험 데이터는 ±10% 내에서 Bar-cohen의 방정식과 일치한다. 따라서 히트 싱크의 열적 성능은 본 발명에서 사용된 실험 장비로 잘 측정될 수 있다. As shown in FIG. 5, the experimental data of the present invention is consistent with Bar-cohen's equation within ± 10%. The thermal performance of the heat sink can thus be measured well with the experimental equipment used in the present invention.
히트 싱크의 진동 주파수는 압전 소자의 입력 주파수와 일치한다. 히트 싱크의 열적 성능은 입력 주파수가 증가함에 따라 증가하는 데, 이는 진동 속도는 진동 주파수가 증가함에 따라 증가하기 때문이다. 그러나, 냉각 성능은 공명(resonance) 때문에 특별한 입력 주파수에서 크게 증가한다. 진동 폭은 공명으로 인해 증폭되고 열적 성능 또한 증폭된다.The vibration frequency of the heat sink coincides with the input frequency of the piezoelectric element. The thermal performance of the heat sink increases as the input frequency increases because the vibration speed increases as the vibration frequency increases. However, cooling performance increases significantly at special input frequencies due to resonance. The oscillation width is amplified by the resonance and the thermal performance is also amplified.
도 6은 입력 전압이 24V인 압전 소자에서 입력 주파수에 대한 열적 저항으로서 히트 싱크의 열적 성능을 나타내는 도면이다. 6 is a diagram showing the thermal performance of the heat sink as a thermal resistance to the input frequency in the piezoelectric element having an input voltage of 24V.
도 6은 압전 소자가 장착된 방열핀을 구비하는 히트 싱크의 열적 성능을 최대화하기 위해 압전 소자에서 최적 주파수 입력이 중요함을 보여준다. 또한, 최적 입력 주파수는 히트 싱크의 방열핀의 고유 진동수이다.FIG. 6 shows that optimal frequency input is important in piezoelectric elements to maximize the thermal performance of a heat sink having heat sink fins with piezoelectric elements mounted thereon. Also, the optimum input frequency is the natural frequency of the heat sink fins of the heat sink.
히트 싱크의 형상은 캔틸레버 빔(cantilever beam)과 유사하며, 캔틸레버 빔(cantilever beam)의 고유진동수는 다음의 식 (1)로 구해질 수 있다.The shape of the heat sink is similar to the cantilever beam, and the natural frequency of the cantilever beam can be obtained by the following equation (1).
Figure PCTKR2011001252-appb-I000001
Figure PCTKR2011001252-appb-I000001
식 (1)에서 G는 비례상수이고, 이 값은 실험으로 결정된다. Y는 영률(Young's modulus), ρ는 밀도, σ은 포아송비(Poisson's ratio)이며, 이는 캔틸레버 빔의 재질에 따른 물성값이다. 물성값들이 고정될 때 고유 진동수는 캔틸레버 빔의 형상, 핀의 두께(t) 및 방열핀의 높이(H)에 의해 결정된다. 입력 주파수가 고정된다면 입력 주파수와 일치하는 방열핀의 고유 진동수를 만들기 위해 식 (1)에 근거한 히트 싱크가 제조되는 것이 필요하다.In Eq. (1), G is a proportionality constant, which is determined experimentally. Y is the Young's modulus, ρ is the density, and σ is the Poisson's ratio, which is a property of the material of the cantilever beam. When the property values are fixed, the natural frequency is determined by the shape of the cantilever beam, the thickness t of the fin and the height H of the heat sink fin. If the input frequency is fixed, it is necessary that a heat sink based on Equation (1) be manufactured to produce a natural frequency of the heat sink fin that matches the input frequency.
도 7은 입력 전압에 따른 유속의 변화를 나타내는 그래프이다. 7 is a graph illustrating a change in flow rate according to an input voltage.
도 7에 도시된 바와 같이, 압전 소자가 부착된 방열핀을 구비한 히트 싱크의 경우에 유속이 압전 소자의 입력 전압에 비례함을 알 수 있다. 유속이 증가하면 압전 소자가 부착된 방열핀을 구비한 히트 싱크의 열적 저항은 감소한다.As shown in FIG. 7, it can be seen that the flow rate is proportional to the input voltage of the piezoelectric element in the case of the heat sink having the heat dissipation fin to which the piezoelectric element is attached. As the flow rate increases, the thermal resistance of the heat sink with heat sink fins with piezoelectric elements decreases.
도 8은 압전 소자를 구비한 히트 싱크의 열적 저항과 압전 소자의 입력 전압 사이의 관계를 보여주는 그래프이다. 8 is a graph showing a relationship between a thermal resistance of a heat sink having a piezoelectric element and an input voltage of the piezoelectric element.
압전 소자의 입력 주파수는 방열핀의 고유 진동수와 일치한다. 도 8에서 압전 소자가 부착된 방열핀을 구비한 히트 싱크의 열적 저항은 입력 전압과 반비례한다. 이는 열적 저항이 발생된 유속과 반비례한다는 것을 의미한다. The input frequency of the piezoelectric element matches the natural frequency of the heat sink fins. In FIG. 8, the thermal resistance of the heat sink having the heat dissipation fin to which the piezoelectric element is attached is inversely proportional to the input voltage. This means that the thermal resistance is inversely proportional to the flow rate generated.
도 8에서, 열적 저항 축의 점들은 압전 소자를 구비하지 않은 최적 자연 대류 히트 싱크의 열적 저항을 의미한다. 자연 대류 히트 싱크의 열적 저항은 히터에서 전달되는 열이 감소됨에 따라 감소한다. In FIG. 8, the points on the thermal resistance axis represent the thermal resistance of the optimal natural convection heat sink without the piezoelectric element. The thermal resistance of the natural convection heat sink decreases as the heat transferred from the heater is reduced.
도 8에서는 압전 소자가 부착된 방열핀을 구비한 히트 싱크의 열적 성능이 자연 대류 히트 싱크보다 두 배 이상 크다는 것을 보여주고, 상기 열적 성능의 증가 비율은 입력 전압의 증가에 따라 증가될 수 있다.FIG. 8 shows that the thermal performance of the heat sink with the heat dissipation fin to which the piezoelectric element is attached is more than twice as large as that of the natural convection heat sink, and the rate of increase of the thermal performance may be increased as the input voltage is increased.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.
참조Reference
[1] A. Bar-Cohen, M. Iyengar and A.D. Kraus, Design of optimum plate-fin natural convective heat sinks, J. Electronic Packaging 125 (2003) 208-216[1] A. Bar-Cohen, M. Iyengar and A.D. Kraus, Design of optimum plate-fin natural convective heat sinks, J. Electronic Packaging 125 (2003) 208-216

Claims (4)

  1. 열을 발산하기 위한 방열핀; 및Heat dissipation fins for dissipating heat; And
    상기 방열핀의 일측면에 부착되며, 수축과 팽창을 반복해 상기 방열핀을 진동시키는 구동부;를 포함하는 것을 특징으로 하는 진동 가능한 방열핀을 구비한 히트 싱크.And a driving unit attached to one side of the heat dissipation fin and repeating contraction and expansion to vibrate the heat dissipation fin.
  2. 기저부;Base;
    상기 기저부에 서로 이격되어 부착되며, 열을 발산하기 위한 복수의 방열핀; 및A plurality of heat dissipation fins spaced apart from each other and attached to the base, for dissipating heat; And
    상기 방열핀의 일측면에 부착되며, 수축과 팽창을 반복해 상기 방열핀을 진동시키는 구동부;를 포함하는 것을 특징으로 하는 진동 가능한 방열핀을 구비한 히트 싱크.And a drive unit attached to one side of the heat dissipation fin and repeating contraction and expansion to vibrate the heat dissipation fin.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 구동부는 압전 소자인 것을 특징으로 하는 진동 가능한 방열핀을 구비한 히트 싱크.And the driving unit is a piezoelectric element.
  4. 제3항에 있어서,The method of claim 3,
    상기 압전 소자에는 방열핀의 고유 진동수와 동일한 주파수가 입력되는 것을 특징으로 하는 진동 가능한 방열핀을 구비한 히트 싱크.The piezoelectric element is a heat sink having a vibrating radiating fin, characterized in that the same frequency as the natural frequency of the radiating fin is input.
PCT/KR2011/001252 2010-02-23 2011-02-23 Heat sink including a heat-dissipation fin capable of vibrating WO2011105800A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0016233 2010-02-23
KR20100016233 2010-02-23
KR10-2010-0030077 2010-04-01
KR1020100030077A KR20110097552A (en) 2010-02-23 2010-04-01 Heat sink having cooling fin capable of vibrating

Publications (2)

Publication Number Publication Date
WO2011105800A2 true WO2011105800A2 (en) 2011-09-01
WO2011105800A3 WO2011105800A3 (en) 2012-01-12

Family

ID=44507420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001252 WO2011105800A2 (en) 2010-02-23 2011-02-23 Heat sink including a heat-dissipation fin capable of vibrating

Country Status (1)

Country Link
WO (1) WO2011105800A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2731131A1 (en) * 2012-11-08 2014-05-14 Alcatel-Lucent Cooling assembly
US9409264B2 (en) 2013-03-25 2016-08-09 International Business Machines Corporation Interleaved heat sink and fan assembly
CN112351634A (en) * 2019-08-07 2021-02-09 杭州海康威视数字技术股份有限公司 Heat dissipation device and electronic equipment
CN113692182A (en) * 2021-08-05 2021-11-23 Oppo广东移动通信有限公司 Heat dissipation device and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697336A (en) * 1992-09-17 1994-04-08 Toshiba Corp Radiating device and semiconductor device using same
JP2001028418A (en) * 1999-07-14 2001-01-30 Hokuriku Electric Ind Co Ltd Heat sink
JP2008210875A (en) * 2007-02-23 2008-09-11 Furukawa Electric Co Ltd:The Heat sink
JP2008210876A (en) * 2007-02-23 2008-09-11 Furukawa Electric Co Ltd:The Heat sink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697336A (en) * 1992-09-17 1994-04-08 Toshiba Corp Radiating device and semiconductor device using same
JP2001028418A (en) * 1999-07-14 2001-01-30 Hokuriku Electric Ind Co Ltd Heat sink
JP2008210875A (en) * 2007-02-23 2008-09-11 Furukawa Electric Co Ltd:The Heat sink
JP2008210876A (en) * 2007-02-23 2008-09-11 Furukawa Electric Co Ltd:The Heat sink

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2731131A1 (en) * 2012-11-08 2014-05-14 Alcatel-Lucent Cooling assembly
WO2014072025A1 (en) * 2012-11-08 2014-05-15 Alcatel Lucent Cooling assembly
CN104718617A (en) * 2012-11-08 2015-06-17 阿尔卡特朗讯 Cooling assembly
US9409264B2 (en) 2013-03-25 2016-08-09 International Business Machines Corporation Interleaved heat sink and fan assembly
CN112351634A (en) * 2019-08-07 2021-02-09 杭州海康威视数字技术股份有限公司 Heat dissipation device and electronic equipment
CN113692182A (en) * 2021-08-05 2021-11-23 Oppo广东移动通信有限公司 Heat dissipation device and electronic equipment

Also Published As

Publication number Publication date
WO2011105800A3 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
US5828549A (en) Combination heat sink and air duct for cooling processors with a series air flow
EP2533281B1 (en) Heat radiation device and electronic equipment using the same
US5986882A (en) Electronic apparatus having removable processor/heat pipe cooling device modules therein
JPH10215094A (en) Device for eliminating heat from pc card array
US6580608B1 (en) Method and apparatus for thermally controlling multiple electronic components
WO2011105800A2 (en) Heat sink including a heat-dissipation fin capable of vibrating
US8305758B2 (en) Heat-dissipating module
US6637505B1 (en) Apparatus for cooling a box with heat generating elements received therein and a method for cooling same
WO2015198642A1 (en) Heat sink and method for dissipating heat using heat sink
JP2004523883A (en) High-performance fin structure for air-cooled radiator
US10962297B2 (en) Multidimensional heat transfer system for cooling electronic components
JP2004320021A (en) System and method for cooling electronic device
JP2004538657A (en) Electronic device cooling structure
TW201118543A (en) Electronic device and heat dissipation module thereof
KR20110097552A (en) Heat sink having cooling fin capable of vibrating
JP5920356B2 (en) Water cooling device, electronic device having water cooling device, and water cooling method
US6493224B1 (en) Method and apparatus to increase convection heat transfer in an electrical system and a method of manufacturing the same
TW200512571A (en) Heat dissipation device
WO2006098020A1 (en) Cooling apparatus and electronic apparatus
US20220330414A1 (en) Heat sinks with beyond-board fins
JP2003188327A (en) Heat dissipating module
JP2001257494A (en) Electronic apparatus
Muthu et al. Embedded thermal management solution for power electronics PCB using additive manufacturing
JP3405900B2 (en) Heat sink device
US20070103871A1 (en) Heat dissipation module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747690

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747690

Country of ref document: EP

Kind code of ref document: A2