WO2011105580A1 - 充電システム、充放電制御装置および充放電制御方法 - Google Patents
充電システム、充放電制御装置および充放電制御方法 Download PDFInfo
- Publication number
- WO2011105580A1 WO2011105580A1 PCT/JP2011/054386 JP2011054386W WO2011105580A1 WO 2011105580 A1 WO2011105580 A1 WO 2011105580A1 JP 2011054386 W JP2011054386 W JP 2011054386W WO 2011105580 A1 WO2011105580 A1 WO 2011105580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- storage unit
- charge
- amount
- charging
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/482—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/20—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L8/00—Electric propulsion with power supply from forces of nature, e.g. sun or wind
- B60L8/003—Converting light into electric energy, e.g. by using photo-voltaic systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
- H02J3/322—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/008—Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S50/00—Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
- Y04S50/10—Energy trading, including energy flowing from end-user application to grid
Definitions
- the present invention relates to a charging system including a power storage unit capable of storing electric power, a charge / discharge control device, and a charge / discharge control method.
- a charging system that is installed in a house and includes a power storage unit that can store power from the power system is known.
- a charging system is disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-247090.
- the charging system disclosed in JP 2009-247090 A includes a charging / discharging device including a power storage unit capable of storing electric power from an electric power system, and a mobile unit connected to the charging / discharging device when charging a moving body such as an electric vehicle. And a charger for connecting to the body.
- This charging system has a low charging speed in charging performed by supplying power to the moving body from the power system. Therefore, when charging the moving body in a short time, the power storage unit connects the moving body through two paths. By supplying the power, the mobile body can be charged at twice the speed.
- the charging system is configured to disconnect the connection between the power system and the moving body and not supply power to the moving body from the power system.
- this charging system is configured to store the power from the power system in the power storage unit in the midnight time zone when the electricity rate is low.
- the present invention has been made to solve the above-described problems, and one object of the present invention is to provide a charging system, a charging / discharging control device, and a charging / discharging device capable of improving convenience as a charging facility. It is to provide a discharge control method.
- a charging system is a charging system connected to an electric power system, and includes a first power storage unit capable of charging and discharging power, and charging and discharging of the first power storage unit.
- a charge / discharge control unit for controlling discharge, and a second power storage unit or a power load that is detachably connected to the charging system, and the charge / discharge control unit stores a predetermined amount of power stored in the first power storage unit. If the amount is greater than or equal to the amount, power is supplied from the first power storage unit to the second power storage unit or the power load so that the amount of power purchased from the power system does not exceed a predetermined threshold.
- a charge / discharge control apparatus includes a first power storage unit capable of charging and discharging power, and a second power storage unit or a power load to which power is supplied from the power system or the first power storage unit.
- a charging / discharging control device used in a charging system wherein when the amount of power stored in the first power storage unit is equal to or greater than a predetermined remaining amount, the purchased power amount from the power system is not increased beyond a predetermined threshold. The amount of power supplied from one power storage unit to the second power storage unit or the power load is controlled.
- a charge / discharge control method includes a step of determining whether the amount of power stored in the first power storage unit is equal to or greater than a predetermined remaining amount, and supplying power from the power system to the second power storage unit A step of determining whether the purchased power amount from the power system does not exceed a predetermined threshold value, and the second power storage unit from the first power storage unit when the purchased power amount from the power system exceeds a predetermined threshold value. Supplying power to the power storage unit or the power load.
- the present invention by supplying power from the power system, unlike the case where charging is performed only by the power storage unit, there is no inconvenience that the amount of stored power is reduced, so the convenience as a charging facility is improved. Can be made.
- the amount of power stored in the first power storage unit is greater than or equal to a predetermined remaining amount
- the first power is purchased so that the purchased power amount from the power system does not exceed a predetermined threshold (for example, contracted power amount with a power company).
- a predetermined threshold for example, contracted power amount with a power company.
- the charging system 1 of the first embodiment is provided in a store (for example, a small store such as a convenience store) having a power receiving facility for receiving high-voltage power supplied from the power system 100.
- the store in which the charging system 1 is incorporated has a function as a charging stand for the electric vehicle 200.
- the charging system 1 includes a vehicle charger 2 connected to the electric vehicle 200 when the electric vehicle 200 is charged, a solar cell 3 that generates power using solar energy, and direct-current power output from the solar cell 3.
- a power conditioner 4 that converts AC power and outputs the power, and a storage battery system 5 are mainly provided.
- the electric power output from the power conditioner 4 is supplied to the store apparatus 110 and the normal charger 22 and, if there is surplus power, the storage battery 51 is charged.
- the solar cell 3 is an example of the “power generation device” in the present invention, and the power conditioner 4 is driven by the solar cell 3.
- the car charger 2 includes a quick charger 21 that can charge the electric vehicle 200 from the electric power system 100 with an electric power of 30 kW or more within 30 minutes, and a slower charging speed than the quick charger 21, for example, 5 hours And a normal charger 22 that charges the electric vehicle 200 over the above time. Moreover, the vehicle charger 2 further includes a sensor 23 that detects whether or not the quick charger 21 is used.
- the storage battery system 5 charges and discharges the storage battery 51, the AC / DC converter 52, the inverter 53, the DC / DC converter 54, and the storage battery 51 that can store the power from the power system 100 and the generated power of the solar battery 3. And a charge / discharge control device 55 to be controlled.
- the storage battery 51 is a lithium ion storage battery.
- the AC / DC converter 52, the inverter 53, and the DC / DC converter 54 are connected to the storage battery 51 via switches 52a, 53a, and 54a, respectively, on / off switching control of which is performed by the charge / discharge control device 55.
- the storage battery 51 is configured to convert the AC power output from the transformer 140 and the AC power output from the power conditioner 4 into DC power by the AC / DC converter 52 and output the DC power.
- the inverter 53 is configured to convert the DC power output from the storage battery 51 into AC power and supply the AC power to the store apparatus 110 or the normal charger 22.
- the storage battery 51 and the charge / discharge control device 55 are examples of the “first power storage unit” and the “charge / discharge control unit” of the present invention, respectively.
- the DC / DC converter 54 is configured to convert the voltage of the power output from the storage battery 51 and output it to the power conditioner 4. Since the capacity of the power conditioner 4 is larger than the capacity of the inverter 53, the power conditioner 4 is connected from the storage battery 51 when discharging from the storage battery 51 and supplying power to the equipment (store equipment 110 and normal charger 22) side. By outputting to the device side via the inverter 53, it is possible to supply more power to the device side than when outputting to the device side via the inverter 53.
- a switch 56 and a switch 57 are provided on the output side of the inverter 53 and the output side of the DC / DC converter 54, respectively.
- the DC / DC converter 54 By switching on and off the switches 56 and 57, when discharging from the storage battery 51 to the store equipment 110 or the normal charger 22, it is discharged via the DC / DC converter 54 and the power conditioner 4 or via the inverter 53. It is possible to select whether or not to discharge. Note that the DC / DC converter 54 need not provide a configuration for outputting the discharge power of the storage battery 51 to the power conditioner 4.
- the charging / discharging control device 55 has a function of controlling charging / discharging of the storage battery 51 by controlling driving of the AC / DC converter 52, the inverter 53, the DC / DC converter 54, switching of the switches 56 and 57, and the like. Further, the charge / discharge control device 55 recognizes whether or not power is being supplied from the power system 100 via the quick charger 21 (hereinafter referred to as quick charge) based on the output of the sensor 23. Is configured to be possible. In addition, the charge / discharge control device 55 is configured to sequentially receive information on the purchased power amount and the contract power amount of the store from the power meter 120.
- the charging / discharging control device 55 controls charging / discharging of the storage battery 51 based on the determination as to whether or not rapid charging is performed by the power from the power system 100, the purchased power amount of the store, and the contracted power amount of the store. It is configured.
- High voltage power (for example, 6600V) is supplied from the power system 100 to the store, converted into 210V by the transformer 130 and the transformer 140, and supplied to the charging system 1, the store apparatus 110, and the like.
- the transformer 130 outputs the power input from the power system 100 by a three-phase AC
- the transformer 140 outputs the power input from the power system 100 by a single-phase AC.
- the three-phase AC power output from the power system 100 via the transformer 130 is configured to be supplied to the quick charger 21 and the store equipment 110.
- Single-phase AC power output from the power system 100 via the transformer 140 is configured to be supplied to the AC / DC converter 52, the store equipment 110, and the normal charger 22 of the storage battery system 5.
- the charging system 1 is connected to the bus of the electrical equipment in the store, similar to the store equipment 110.
- the total power consumption of devices connected to the bus (charging system 1, store device 110, etc.) is collectively managed by a power meter 120 that measures the purchased power amount of the store.
- the contracted electric energy of the store is set on the basis of the maximum value (maximum purchased electric energy) of the purchased electric energy in each integration period in the past year including the month.
- the power meter 120 (demand meter) measures the purchased power amount in each integration period.
- a value obtained by dividing this measured value by unit time (30 minutes) (time average value of purchased power in the integration period) is the demand power in the integration period, and is the maximum in a predetermined period (for example, one month) of demand power
- the value is the maximum demand power.
- the maximum value of the maximum demand power in the past year is the contract power amount. Based on this contracted electric energy, a basic charge for electricity charges is determined.
- the charge / discharge control device 55 determines that the quick charge is performed by the electric power from the electric power system 100 based on the output of the sensor 23, the storage battery 51 is discharged to store the store equipment.
- the charge / discharge control device 55 stores the storage battery 51 in the integration period so that the demand power amount in the integration period does not become larger than the contract power amount.
- the storage battery 51 is charged, charging is performed so that the amount of power demand does not become larger than the contracted power amount due to purchasing power from the power system 100 for charging.
- FIG. 2 shows an example in which the power consumption of the store is only the store device 110 in order to simplify the description.
- the power consumption of the store must take into account the power consumption of the parking lot where the store bears the cost of power, the amount of power generated by the solar cell 3, and the like.
- the contract power amount of the store (more accurately, the power amount when the contract power is continuously used for the integration period (30 minutes)) Becomes A.
- the rapid charging facility is introduced into the store, the rapid charging by the power supply from the power system 100 uses a large amount of power in a short time, and thus the demand power during the integration period is greatly increased.
- the amount of power demand increases to B, and in the integration period in which the quick charge ⁇ is performed, the amount of power increases to C.
- the purchased power amount will exceed the contracted power amount, and the basic electricity charge will change (rise).
- the demand power amount during the integration period is the contract power amount. Is discharged from the storage battery 51 so that the amount of power demanded during the integration period is less than or equal to the contracted power amount A.
- the charging system 1 discharges the amount of power equal to or more than CA from the storage battery 51 so that the demand power amount during the integration period does not exceed the contract power amount.
- the demand power amount during the integration period is set to the contract power amount A or less.
- the charging system 1 performs charging so that the sum of the power consumption amount and the charging power amount of the store apparatus 110 during each integration period is equal to or less than the contract power amount A during the period when the quick charging ⁇ and ⁇ are not performed. Do.
- the charge / discharge control device 55 is configured to reduce the discharge power amount of the storage battery 51 with respect to the rapid charge by the power supply from the power system 100 by the amount of the generated power when the solar cell 3 generates power.
- the power generated by the solar cell 3 is configured to be supplied to the store apparatus 110 or the normal charger 22. Further, in this case, the chargeable power amount (charge capacity for charging so as not to exceed the contracted power amount) in each accumulation period other than during rapid charging increases, so the charge / discharge control device 55 The amount of charge can be increased.
- the state of charge (SOC) of the storage battery 51 it is possible to restore the state of charge (SOC) of the storage battery 51 to a state where it can be rapidly charged in a short time.
- SOC state of charge
- the purchased power amount does not exceed the contracted power amount even during rapid charging. It is possible to respond to rapid charging by the generated power of the solar cell 3 without performing the above.
- step S1 the charge / discharge control device 55 determines whether or not the remaining amount of the storage battery 51 is a predetermined amount (for example, 20%) or more. When the remaining amount of the storage battery 51 is a predetermined amount (for example, 20%) or more, the remaining amount of the storage battery 51 is sufficient, so that the charging system 1 can accept rapid charging.
- step S ⁇ b> 2 the charge / discharge control device 55 determines whether or not rapid charging is performed based on the output of the sensor 23. When the remaining amount of the storage battery 51 is less than the predetermined amount in step S1, the charging system 1 does not accept a quick charge request. In this case, the vehicle charger 2 may make a display showing that rapid charging is impossible for the user.
- step S3 the charge / discharge control device 55 determines whether or not the maximum discharge power of the storage battery 51 is larger than the generated power of the solar battery 3.
- the charge / discharge control device 55 calculates the power of the maximum discharge power of the storage battery 51 minus the generated power of the solar battery 3 in step S4. To the store equipment 110 or the normal charger 22. Then, it returns to step S1.
- the maximum discharge power of the storage battery 51 is equal to or less than the generated power of the solar battery 3
- the generated power of the solar battery 3 is sufficiently large, and the power supply from the power system 100 is performed without discharging the storage battery 51. Since it can respond to a quick charge, it does not discharge the storage battery 51, but returns to step S1.
- step S1 If it is determined in step S1 that the remaining amount of the storage battery 51 is less than the predetermined amount (20%), the charge / discharge control device 55 prohibits the use of the quick charger 21 in step S6. That is, the user cannot use the quick charger 21.
- step S7 the charge / discharge control device 55 determines whether or not the purchased power amount in the integration period is equal to or less than a predetermined amount (for example, 80% of the contracted power amount).
- a predetermined amount for example, 80% of the contracted power amount.
- charge / discharge control is performed because the purchased power amount does not immediately exceed the contracted power amount even if further power is purchased from the power system 100 for charging.
- the device 55 charges the storage battery 51 in step S8, and returns to step S1.
- the purchased power amount in the integration period is larger than the predetermined amount, charging and discharging is possible because the purchased power amount may exceed the contracted power amount when further power is purchased from the power system 100 for charging.
- the control device 55 does not perform charging within the integration period. That is, the charge / discharge control device 55 prohibits charging of the storage battery 51 in step S9, and returns to step S1 without charging the storage battery 51.
- the charge / discharge control device 55 determines whether or not the storage battery 51 can be charged. That is, the charge / discharge control device 55 determines whether or not the storage battery 51 is fully charged in step S5. When the battery is fully charged, it is not necessary to perform charging, and therefore the charge / discharge control device 55 prohibits charging of the storage battery 51 in step S9 and returns to step S1. On the other hand, if the battery is not fully charged, the charge / discharge control device 55 performs the processes of steps S7 to S9, and then returns to step S1.
- the charge / discharge control device 55 repeats the processes of steps S1 to S9, thereby discharging the storage battery 51 during rapid charging by supplying power from the power system 100, and whether or not the storage battery 51 can be charged except during rapid charging. If necessary, the storage battery 51 is charged.
- the charging system 1 by supplying power from the power system 100 via the quick charger 21, unlike the case where quick charging is performed using only the storage battery 51, the amount of stored power is reduced. Therefore, convenience as a charging facility can be improved.
- the charging system 1 discharges the storage battery 51 to the store apparatus 110 based on the supply of power from the power system 100 via the quick charger 21, so that a predetermined period of the store (for example, The quick charger 21 is provided when the amount of power (contracted power) that can be used in the integration period with the electric power company is determined based on the maximum demand electric energy in the integration period (30 minutes) in one year). Even in this case, it is possible to prevent or suppress an increase in the contract power amount.
- the maximum demand power amount easily increases in order to purchase a large amount of power in a short time.
- the amount of power supplied from the storage battery 51 to the store device 110 by discharging the storage battery 51 to the store device 110 based on the supply of the amount of power during the integration period purchased from the power system 100 Therefore, even when the quick charger 21 is provided in addition to the store apparatus 110, it is possible to prevent or suppress an increase in the maximum demand power amount.
- the quick charger 21 can be easily installed in the store while preventing or suppressing the increase in the contract power amount. Can be introduced.
- the charging system 1 of the first embodiment can discharge the storage battery 51 based on the supply of power from the power system 100 via the quick charger 21 as described above, Based on the fact that power is not being supplied via the quick charger 21, the quick charging to the electric vehicle 200 is completed by configuring the storage battery 51 to be able to charge regardless of the time zone. Thereafter, when it is determined to charge the storage battery 51 without waiting for a specific time zone such as a midnight time zone, the storage battery 51 can be immediately charged. Thereby, after the rapid charging of the electric vehicle 200, the storage battery 51 can be charged quickly so that the next electric vehicle 200 can be rapidly charged while preventing an increase in the contracted electric energy during the integration period in a shorter time than in the past. Since it is charged, even when it is necessary to quickly charge the next electric vehicle 200, preparation for rapid charging of those electric vehicles 200 can be performed earlier than before. Thereby, the convenience as a charging facility can be improved.
- the charging system 1 of 1st Embodiment discharges the storage battery 51 as mentioned above, the purchased electric energy from the electric power grid
- the storage battery 51 is discharged and the storage battery 51 is charged, the storage battery 51 is charged so that the purchased power amount from the power system 100 as a result of charging the storage battery 51 is equal to or less than the contract power amount.
- the electric vehicle 200 is rapidly charged (when power for rapid charging is purchased from the power system 100), power is purchased from the power system 100 to charge the storage battery 51. In this case, it is possible to suppress the purchase power amount during the store integration period from exceeding the contract power amount.
- the charging system 1 includes the storage battery 51 in the integration period including at least a part of the time during which power is supplied from the power system 100 to the electric vehicle 200 via the quick charger 21. Discharge.
- electric power can be supplied by discharging from the storage battery 51 in the integration period in which the electric vehicle 200 is rapidly charged. Therefore, purchase in the integration period in which the electric vehicle 200 is rapidly charged. An increase in the amount of electric power can be suppressed, and an increase in the contracted electric energy can be prevented.
- the charging system 1 of 1st Embodiment is the solar cell 3 when discharging the storage battery 51 based on supplying electric power from the electric power grid
- the amount of discharge is adjusted according to the generated power.
- a charging system 300 according to the second embodiment of the present invention will be described with reference to FIGS. 5 and 6.
- the storage battery 51 is discharged only when the purchased power amount exceeds a predetermined threshold during the rapid charging. An example to be performed will be described.
- the storage battery system 301 of the charging system 300 includes a charge / discharge control device 302.
- the configuration of the charging system 300 other than the charge / discharge control device 302 is the same as that of the first embodiment.
- the charge / discharge control device 302 when the charge / discharge control device 302 is performing quick charging by supplying power from the power system 100, the purchased power amount during the integration period is greater than the threshold value.
- the storage battery 51 is discharged, and the storage battery 51 is not discharged when the purchased power amount during the integration period is less than or equal to the threshold value.
- the charge / discharge control device 302 calculates the threshold based on the elapsed time in the integration period and the contract power (contract power amount) so as not to exceed the contract power amount.
- the threshold value is a value on a straight line when the purchased power amount linearly increases from 0 to the contracted power amount as time passes from the start to the end of the integration period.
- the charge / discharge control device 302 calculates a threshold value based on this straight line and the elapsed time within the integration period.
- the charge / discharge control device 302 acquires the POS data and the visitor number data based on the door opening / closing number from the store apparatus 110 and stores the data.
- the charge / discharge control device 302 also stores information such as the day of the week, the time, and the number of times that quick charging has been performed. Based on these pieces of information, the charge / discharge control device 302 is configured to be able to predict a time zone in which a quick charge is likely to be performed by supplying power from the power system 100. For example, it is predicted that there is a high possibility that quick charging is performed by supplying power from the power system 100 during the time when the number of visitors increases.
- the charge / discharge control device 302 can also store the storage battery 51 in the time zone before a predetermined time (for example, 1 to 3 hours) in which the quick charge is likely to be performed even when the quick charge is performed.
- the discharge rate is reduced. Specifically, discharging is performed with the maximum discharge rate of the storage battery 51 being halved.
- step S11 and step S12 the charge / discharge control apparatus 302 performs the same processing as step S1 and step S2 (see FIG. 4) of the first embodiment. Thereafter, in step S ⁇ b> 13, the charge / discharge control device 302 calculates a threshold based on the elapsed time and the contract power amount during the integration period. In step S14, the charge / discharge control device 302 determines whether or not the current purchased power amount is equal to or less than a threshold value. If the current purchased power amount is equal to or less than the threshold value, the charge / discharge control device 302 returns to step S11 without discharging the storage battery 51.
- step S15 the charge / discharge control device 302 performs rapid charging by supplying power from the power system 100 after a predetermined time (1 to 3 hours). Determine whether the possibility is high.
- step S16 the charge / discharge control device 302 discharges the storage battery 51 with the maximum discharge rate being 1 ⁇ 2 of the normal rate. Then, it returns to step S11.
- step S17 the charge / discharge control device 302 discharges the storage battery 51 at a normal maximum discharge rate. Then, it returns to step S11.
- step S11 when it is determined in step S11 that the remaining amount of the storage battery 51 is less than the predetermined amount (20%), the charge / discharge control device 302 performs the process of the first embodiment in steps S18, S20, and S21. The same processing as in steps S6 to S8 (see FIG. 4) is performed. If it is determined in step S12 that quick charging is not performed, the charge / discharge control device 302 determines whether or not the storage battery 51 is fully charged in step S19. When the battery is fully charged, it is not necessary to perform charging. Therefore, the charging / discharging control device 302 prohibits charging of the storage battery 51 in step S22 and returns to step S11. If the battery is not fully charged, the charge / discharge control device 302 returns to step S11 after performing the processes of steps S20 to S22.
- step S11 By repeating the processing of step S11 to step S22, the storage battery 51 is discharged with a minimum discharge amount at the time of rapid charging, and whether or not the storage battery 51 can be charged is determined at times other than at the time of rapid charging. The storage battery 51 is charged.
- the charging system 300 is based on the fact that rapid charging is performed by supplying power from the power system 100, and when the purchased power amount within the integration period exceeds a predetermined threshold, By discharging the storage battery 51, it is possible to prevent the contract power amount from increasing while minimizing the discharge amount of the storage battery 51 even when rapid charging is performed by supplying power from the power system 100. it can.
- the charging system 300 of the second embodiment calculates the predetermined threshold based on the contract power amount and the elapsed time in the integration period, so that the purchased power amount in the integration period can be quickly charged.
- the threshold for controlling the discharge of the storage battery 51 can be easily set so as not to exceed the contracted power amount when the container 21 is not provided.
- the charging system 300 predicts a time zone in which the quick charger 21 is likely to be used, and in the time zone before the predicted time zone, the storage battery 51. Reduce the discharge rate. By configuring in this way, the capacity of the storage battery 51 can be ensured in a time zone in which the quick charger 21 is likely to be used, so that the remaining capacity of the storage battery 51 is eliminated when the electric vehicle 200 is rapidly charged. Can be suppressed.
- a charging system 400 according to a third embodiment of the present invention will be described with reference to FIG.
- the third embodiment unlike the first embodiment in which the storage battery 51 is discharged during rapid charging regardless of the season, an example in which the storage battery 51 is discharged during rapid charging only in summer and winter will be described.
- the storage battery system 401 of the charging system 400 includes a charge / discharge control device 402.
- the configuration of the charging system 400 other than the charge / discharge control device 402 is the same as that of the first embodiment.
- the charge / discharge control device 402 performs the same charge / discharge control as in the first embodiment in summer and winter. In addition, in the spring and autumn, the charge / discharge control device 402 does not discharge the storage battery 51 even during rapid charging by supplying power from the power system 100, and the storage battery 51 is not in the time zone (midnight time) when the electricity rate is low. In addition to charging, the storage battery 51 is discharged mainly during a time zone when the electricity bill is high.
- step S31 the charge / discharge control device 402 determines whether the current season is spring (March to June) and autumn (October and November). When the current time is not spring or autumn, the charge / discharge control device 402 performs the processes of steps S1 to S9 similar to those in the first embodiment.
- the charge / discharge control device 402 determines whether or not discharge is necessary in step S32. If it is determined that discharging is necessary, the charge / discharge control device 402 discharges the storage battery 51 in step S33 regardless of the time period. If it is determined that no discharge is necessary, the charge / discharge control device 402 determines in step S34 whether the current time is a midnight time zone. If the current time is not in the midnight time zone (when it is daytime), the charge / discharge control device 402 returns to step S31 without charging or discharging the storage battery 51. When the current time is in the midnight time zone, the charge / discharge control device 402 charges the storage battery 51 in step S35.
- the charging system 400 supplies power via the quick charger 21 in the summer or winter when the store has an electricity bill for each time zone.
- the storage battery 51 can be discharged on the basis of the battery power, and the storage battery 51 can be charged regardless of the time zone based on the fact that power is not supplied via the quick charger 21.
- the power consumption of the store apparatus 110 is smaller in the spring and autumn than in the summer and winter, and the contracted power is consumed without discharging the storage battery 51 for rapid charging of the electric vehicle 200. Therefore, charging the storage battery 51 in a time zone where the electricity charge is cheap in the spring and autumn can reduce the electricity charge in the spring and autumn.
- the electric vehicle 200 is given as an example of the “second power storage unit”.
- the present invention is not limited to this, and is used for charging other vehicles such as a motorcycle and a bicycle. Also good.
- the present invention is not limited to this, and the power supply target has a power storage function. There may not be just a load. As such a load, an elevator is mentioned, for example.
- the generated power of the solar cell 3 is supplied to the store apparatus 110 or the normal charger 22 .
- the present invention is not limited to this, and the generated power of the solar cell 3 is May be supplied to the quick charger 21 or may be supplied to the storage battery 51.
- the present invention is not limited to this, and facilities other than the store where the charging system 1 can be installed, You may prepare it for a house. Moreover, you may prepare for a parking lot.
- the charging system 1 is provided in a store (convenience store) having a high-voltage power receiving facility.
- the present invention is not limited to this, and the high-voltage power receiving facility is not provided. You may prepare for the facility.
- the present invention is not limited to this, and when charging at a normal speed other than rapid charging is performed.
- the storage battery 51 may be discharged.
- the present invention is not limited to this, and after the quick charge is finished, May be discharged within the same integration period.
- the example in which the storage battery 51 is discharged so as not to exceed the contracted power amount when the quick charger 21 is not installed has been shown. It suffices if a part of the power required for charging can be offset by discharging the storage battery 51. Even in this case, it is possible to suppress a significant increase in the contract power amount.
- the quick charge can be performed in any of a plurality of stores. Some information may be provided to the user via the Internet or the like.
- the solar cell 3 is used as the “power generation device”.
- the present invention is not limited to this, and other renewable energy power generation devices such as a wind power generation device are used. May be.
- the lithium ion storage battery is used as the “first power storage unit” in the first to third embodiments.
- the present invention is not limited to this, and other two such as a nickel hydride storage battery and a lead storage battery are used.
- a secondary battery may be used.
- a capacitor may be used as the power storage unit.
- the present invention is not limited thereto, and the quick charger is not limited thereto. 21 may be discharged.
- the said 1st Embodiment demonstrated the example which discharges the storage battery 51 at the time of quick charge
- this invention is not limited to this
- the time at which quick charge was started is in the middle of the integration period (for example, integration period) Whether or not it is in the second half), and if it is in the middle, the storage battery 51 may not be discharged during the integration period including the start time of the quick charge. If rapid charging is started in the middle of the integration period, the effect of the increase in purchased power due to rapid charging in that integration period is small, so the purchased power amount for that integration period is contracted power without discharging the storage battery. This is because the amount may not be exceeded.
- the quick charge is started immediately when the user tries to perform the quick charge.
- the timing may be controlled by a charge / discharge control device or the like.
- the vehicle charger 2 is configured to start rapid charging at a timing such that power supply (rapid charging) from the power system 100 to the electric vehicle 200 is performed over a certain integration period and the next integration period. May be controlled by a charge / discharge control device.
- the amount of power supplied to the electric vehicle 200 is reflected in two or more integration periods, so that all of the amount of power supplied to the electric vehicle 200 is purchased power within one integration period.
- the present invention is not limited to this, and the remaining capacity of the storage battery 51 is not limited. Even when the amount is not sufficient, rapid charging may be accepted, and the rapid charging may be actually started when the remaining amount of the storage battery 51 becomes sufficient.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
この充電システムは、電力系統に接続された充電システムであって、電力を充放電可能な第1蓄電部と、第1蓄電部の充放電を制御する充放電制御部と、充電システムに着脱可能に接続される第2蓄電部または電力負荷とを備え、充放電制御部は、第1蓄電部に蓄電された電力量が所定の残量以上の場合に、電力系統からの購入電力量が所定の閾値を超えないように第1蓄電部から第2蓄電部または電力負荷に電力を供給する。
Description
本発明は、電力を蓄電可能な蓄電部を備えた充電システム、充放電制御装置および充放電制御方法に関する。
従来、住宅に設置され、電力系統からの電力を蓄電可能な蓄電部を備えた充電システムが知られている。このような充電システムは、たとえば、特開2009-247090号公報に開示されている。
上記特開2009-247090号公報の充電システムは、電力系統からの電力を蓄電可能な蓄電部を含む充放電装置と、充放電装置に接続され、電気自動車などの移動体を充電する際に移動体に接続するための充電器とを備えている。この充電システムは、電力系統から移動体に電力を供給して行う充電では充電速度が小さいため、短時間で移動体の充電を行いたい場合には、蓄電部から移動体に2つの経路を介して電力を供給することにより、2倍の速度で移動体の充電を行うことが可能に構成されている。この充電システムは、2倍の速度の充電を行う場合、電力系統と移動体との接続を切断し、電力系統からは移動体に電力を供給しないように構成されている。また、この充電システムは、電気料金の安い深夜時間帯に電力系統からの電力を蓄電部に蓄電するように構成されている。
しかしながら、上記特開2009-247090号公報では、移動体の充電を2倍の速度で行う場合に、電力系統と移動体との接続を切断して蓄電部のみから移動体に電力を供給するので、蓄電部の残量がすぐに減ってしまう。また、深夜時間帯にのみ蓄電部の充電を行うため、移動体の充電を行って蓄電部の充電量が少なくなっている場合には、深夜時間帯を経た後でないと2倍の速度での移動体の充電を行うことが困難となってしまう。その結果、充電設備としての利便性が悪化してしまうという問題点がある。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、充電設備としての利便性を向上させることが可能な充電システム、充放電制御装置および充放電制御方法を提供することである。
上記目的を達成するために、この発明の第1の局面による充電システムは、電力系統に接続された充電システムであって、電力を充放電可能な第1蓄電部と、第1蓄電部の充放電を制御する充放電制御部と、充電システムに着脱可能に接続される第2蓄電部または電力負荷とを備え、充放電制御部は、第1蓄電部に蓄電された電力量が所定の残量以上の場合に、電力系統からの購入電力量が所定の閾値を超えないように第1蓄電部から第2蓄電部または電力負荷に電力を供給する。
この発明の第2の局面による充放電制御装置は、電力を充放電可能な第1蓄電部と、電力系統または第1蓄電部から電力が供給される第2蓄電部または電力負荷とを備えた充電システムに用いられる充放電制御装置であって、第1蓄電部に蓄電された電力量が所定の残量以上の場合に、電力系統からの購入電力量が所定の閾値を超えないように第1蓄電部から第2蓄電部または電力負荷へ供給する電力量を制御する。
この発明の第3の局面による充放電制御方法は、第1蓄電部に蓄電された電力量が所定の残量以上であるかを判断する工程と、電力系統から第2蓄電部に電力を供給する工程と、電力系統からの購入電力量が所定の閾値を超えないかを判断する工程と、電力系統からの購入電力量が所定の閾値を超えている場合に、第1蓄電部から第2蓄電部または電力負荷へ電力を供給する工程とを含む。
本発明によれば、電力系統から電力の供給を行うことによって、蓄電部のみで充電を行う場合と異なり、蓄電量が減少するというような不都合が生じないので、充電設備としての利便性を向上させることができる。また、第1蓄電部に蓄電された電力量が所定の残量以上の場合に、電力系統からの購入電力量が所定の閾値(たとえば電力会社との契約電力量)を超えないように第1蓄電部から第2蓄電部または電力負荷に電力を供給することによって、充電システムを導入した住宅や店舗などに充電器を設けた場合にも、充電器を設けていない場合に比べて契約電力量が増加することを防止または抑制することができる。すなわち、電力系統から電力を供給して充電を行う場合、短時間に多くの電力を購入することになるが、第1蓄電部から第2蓄電部または電力負荷に供給した電力量の分、電力系統からの購入電力量を減らすことができ、充電にともない購入電力量が急激に増加することを防止または抑制することができる。
以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
まず、図1~図3を参照して、本発明の第1実施形態による充電システム1の構造を説明する。
まず、図1~図3を参照して、本発明の第1実施形態による充電システム1の構造を説明する。
図1に示すように、第1実施形態の充電システム1は、電力系統100から供給される高圧電力を受電するための受電設備を有する店舗(たとえばコンビニエンスストアなどの小規模店舗)に備えつけられる。充電システム1が組み込まれた店舗は、電気自動車200の充電スタンドとしての機能を有する。
充電システム1は、電気自動車200を充電する際に電気自動車200に接続される車用充電器2と、太陽光エネルギーを用いて発電する太陽電池3と、太陽電池3から出力される直流電力を交流電力に変換して出力するパワーコンディショナ4と、蓄電池システム5とを主に備えている。パワーコンディショナ4から出力された電力は、店舗機器110、通常充電器22に供給されるとともに、余剰電力があれば蓄電池51に充電される。なお、太陽電池3は、本発明の「発電装置」の一例であり、パワーコンディショナ4は、太陽電池3により駆動される。
車用充電器2は、利用時間が30分以内で30kW以上の電力を電力系統100から電気自動車200に充電可能な急速充電器21と、急速充電器21よりも充電速度の遅い、たとえば5時間以上の時間をかけて電気自動車200を充電する通常充電器22とを含んでいる。また、車用充電器2は、急速充電器21が使用されているか否かを検出するセンサ23をさらに含んでいる。
蓄電池システム5は、電力系統100からの電力および太陽電池3の発電電力を蓄電可能な蓄電池51と、AC/DCコンバータ52と、インバータ53と、DC/DCコンバータ54と、蓄電池51の充放電を制御する充放電制御装置55とを含んでいる。蓄電池51にはリチウムイオン蓄電池が用いられる。AC/DCコンバータ52、インバータ53およびDC/DCコンバータ54は、それぞれ、充放電制御装置55がオン/オフの切り替え制御を行うスイッチ52a、53aおよび54aを介して蓄電池51に接続されている。蓄電池51は、変圧器140から出力された交流電力およびパワーコンディショナ4から出力された交流電力を、AC/DCコンバータ52で直流電力に変換して出力するように構成されている。インバータ53は、蓄電池51から出力された直流電力を交流電力に変換して店舗機器110または通常充電器22に供給するように構成されている。なお、蓄電池51および充放電制御装置55は、それぞれ、本発明の「第1蓄電部」および「充放電制御部」の一例である。
DC/DCコンバータ54は、蓄電池51から出力された電力の電圧を変換してパワーコンディショナ4に出力するように構成されている。パワーコンディショナ4の容量はインバータ53の容量よりも大きいので、蓄電池51から放電して機器(店舗機器110および通常充電器22)側に電力を供給する際に、蓄電池51からパワーコンディショナ4を介して機器側に出力することにより、インバータ53を介して機器側に出力する場合よりも多くの電力を機器側に供給することが可能である。また、インバータ53の出力側およびDC/DCコンバータ54の出力側には、それぞれスイッチ56およびスイッチ57が設けられている。スイッチ56および57のオン/オフを切り替えることにより、蓄電池51から店舗機器110または通常充電器22に放電する際に、DC/DCコンバータ54およびパワーコンディショナ4を介して放電するかインバータ53を介して放電するかを選択することが可能である。なお、DC/DCコンバータ54により蓄電池51の放電電力をパワーコンディショナ4に出力する構成については設けなくてもよい。
充放電制御装置55は、AC/DCコンバータ52、インバータ53、DC/DCコンバータ54の駆動やスイッチ56および57の切替などを制御することにより、蓄電池51の充放電を制御する機能を有する。また、充放電制御装置55は、センサ23の出力に基づいて、電力系統100から急速充電器21を介した電力の供給(以下、急速充電と呼ぶ)が行われているか否かを認識することが可能に構成されている。また、充放電制御装置55は、電力メータ120から店舗の購入電力量および契約電力量に関する情報を逐次受信するように構成されている。充放電制御装置55は、電力系統100からの電力により急速充電が行われているか否かの判断、店舗の購入電力量および店舗の契約電力量に基づいて、蓄電池51の充放電を制御するように構成されている。
店舗には、電力系統100から高圧電力(たとえば、6600V)が供給され、変圧器130および変圧器140により210Vに変換されて充電システム1および店舗機器110などに供給される。変圧器130は電力系統100から入力された電力を三相交流により出力し、変圧器140は電力系統100から入力された電力を単相交流により出力する。電力系統100から変圧器130を介して出力される三相交流電力は、急速充電器21および店舗機器110に供給されるように構成されている。電力系統100から変圧器140を介して出力される単相交流電力は、蓄電池システム5のAC/DCコンバータ52、店舗機器110および通常充電器22に供給されるように構成されている。
充電システム1は、店舗機器110と同様に店舗内の電気設備の母線に接続されている。母線に接続された機器(充電システム1、店舗機器110など)の合計の使用電力量は、店舗の購入電力量を計量する電力メータ120で一括して管理される。
店舗の契約電力量は、毎月、その月を含む過去1年間で各積算期間における購入電力量のうちの最大値(最大購入電力量)に基づいて設定される。たとえば、購入電力の積算期間を30分単位と定めた場合、電力メータ120(デマンドメータ)は、各積算期間の購入電力量を計量する。この計量値を単位時間(30分)で除した値(積算期間内の購入電力の時間平均値)が当該積算期間の需要電力であり、需要電力の所定の期間(たとえば1ヶ月間)における最大値が最大需要電力となる。この最大需要電力の過去1年間の最大値が契約電力量である。この契約電力量に基づいて、電気料金の基本料金が決められる。
第1実施形態では、充放電制御装置55は、センサ23の出力に基づいて電力系統100からの電力により急速充電が行われていると判断した場合には、蓄電池51の放電を行って店舗機器110などに電力を供給するとともに、急速充電が行われていないと判断した場合には、時間帯に拘わらず蓄電池51の充電の可否判断を行う。より具体的には、充放電制御装置55は、ある積算期間内に急速充電が行われている場合に、その積算期間における需要電力量が契約電力量より大きくならないようにその積算期間において蓄電池51の放電を行うとともに、蓄電池51の充電を行う場合にも、充電のために電力を電力系統100から購入することに起因して需要電力量が契約電力量より大きくならないように充電を行う。以下、図2および図3を参照して詳細に説明する。
図2では、説明を簡略化するために、店舗の消費電力量が店舗機器110のみである場合の例を示す。なお、実際には店舗の消費電力量は、店舗が電力の費用負担をする駐車場などの消費電力量や太陽電池3の発電電力量などを加味しなければならない。図2に示すように、店舗の負荷が店舗機器110のみの場合には、店舗の契約電力量(正確には、契約電力を積算期間(30分)分継続して使用した場合の電力量)はAとなる。ここで、急速充電設備を店舗に導入した場合、電力系統100からの電力供給による急速充電は短時間に大きな電力を使用するため、上記積算期間における需要電力は大きく増加してしまう。急速充電αが行われた積算期間では需要電力量はBまで増加し、急速充電βが行われた積算期間ではCまで増加してしまう。これらの場合、購入電力量が契約電力量を超えてしまうことになり、電気基本料金が変わる(上昇する)ことになる。
ここで、図3に示すように、第1実施形態による充電システム1は、電力系統100からの電力供給による急速充電αが行われた場合には、その積算期間の需要電力量が契約電力量を超えないようにB-A以上の電力量を蓄電池51から放電することによって、その積算期間の需要電力量を契約電力量A以下にする。また充電システム1は、急速充電βが行われた場合には、その積算期間の需要電力量が契約電力量を超えないようにC-A以上の電力量を蓄電池51から放電することによって、その積算期間の需要電力量を契約電力量A以下にする。また充電システム1は、急速充電αおよびβが行われていない期間においては、各積算期間における店舗機器110の消費電力量と充電電力量との和が契約電力量A以下となるように充電を行う。
なお、図2および図3では、太陽電池3の発電電力分は考慮していない。充放電制御装置55は、太陽電池3の発電がある場合には、その発電電力量分だけ電力系統100からの電力供給による急速充電に対する蓄電池51の放電電力量を減らすように構成されている。第1実施形態では、太陽電池3の発電電力は店舗機器110または通常充電器22に供給されるように構成されている。また、この場合、急速充電時以外の各積算期間における蓄電池51への充電可能電力量(契約電力量を超えないように充電する充電余力)が増えるので、充放電制御装置55は、蓄電池51の充電量を増やすことができる。これにより、蓄電池51の充電状態(SOC)を短時間で急速充電可能な状態まで回復させることが可能である。特に、太陽電池3の発電電力量が蓄電池51の最大放電量以上である場合には、急速充電時にも購入電力量が契約電力量を超えないので、急速充電時であっても蓄電池51の放電は行わずに太陽電池3の発電電力によって急速充電に対応することができる。
次に、図4を参照して、本発明の第1実施形態による充電システム1の充放電制御装置55の制御フローについて説明する。
まず、充放電制御装置55は、ステップS1において、蓄電池51の残量が所定量(たとえば20%)以上であるか否かを判断する。蓄電池51の残量が所定量(たとえば20%)以上である場合には、蓄電池51の残量は十分にあるので、充電システム1は急速充電を受付可能とする。そして、ステップS2において、充放電制御装置55は、センサ23の出力に基づいて、急速充電が行われているか否かを判断する。なお、ステップS1において蓄電池51の残量が所定量未満の場合には、充電システム1は急速充電の要求を受け付けない。この場合、車用充電器2が、急速充電が不可であることを示す表示をユーザに視認可能に行ってもよい。
急速充電が行われている場合には、ステップS3において、充放電制御装置55は、蓄電池51の最大放電電力が太陽電池3の発電電力より大きいか否かを判断する。蓄電池51の最大放電電力が太陽電池3の発電電力より大きい場合には、ステップS4において、充放電制御装置55は、蓄電池51の最大放電電力-太陽電池3の発電電力の分の電力を蓄電池51から店舗機器110または通常充電器22に放電する。この後、ステップS1に戻る。また、蓄電池51の最大放電電力が太陽電池3の発電電力以下である場合には、太陽電池3の発電電力が十分に大きく、蓄電池51の放電を行わなくても電力系統100からの電力供給による急速充電に対応できるので、蓄電池51の放電は行わずにステップS1に戻る。
また、ステップS1において蓄電池51の残量が所定量(20%)未満であると判断した場合には、充放電制御装置55は、ステップS6において、急速充電器21の使用を禁止する。すなわち、ユーザが急速充電器21を使用できないようにする。
この後、充放電制御装置55は、ステップS7において、積算期間における購入電力量が所定量(たとえば契約電力量の80%)以下であるか否かを判断する。積算期間における購入電力量が所定量以下である場合には、充電を行うために電力系統100から電力をさらに購入しても購入電力量が契約電力量をすぐには超えないので、充放電制御装置55は、ステップS8において蓄電池51の充電を行い、ステップS1に戻る。また、積算期間における購入電力量が所定量より大きい場合には、充電を行うために電力系統100から電力をさらに購入した場合に購入電力量が契約電力量を超える可能性があるので、充放電制御装置55は、その積算期間内での充電を行わないようにする。すなわち、充放電制御装置55は、ステップS9において蓄電池51の充電を禁止して、蓄電池51の充電を行わずにステップS1に戻る。
また、ステップS2において電力系統100からの電力供給による急速充電が行われていないと判断した場合には、充放電制御装置55は、蓄電池51の充電の可否判断を行う。すなわち、充放電制御装置55は、ステップS5において、蓄電池51が満充電であるか否かを判断する。満充電である場合には、充電を行う必要がないので、充放電制御装置55は、ステップS9において蓄電池51の充電を禁止してステップS1に戻る。また、満充電でない場合には、充放電制御装置55は、ステップS7~ステップS9の処理を行った後、ステップS1に戻る。
充放電制御装置55は、ステップS1~ステップS9の処理を繰り返すことにより、電力系統100からの電力供給による急速充電時には蓄電池51の放電を行うとともに、急速充電時以外には蓄電池51の充電の可否を判断し、必要な場合には蓄電池51の充電を行う。
第1実施形態の充電システム1は、上記のように、電力系統100から急速充電器21を介した電力の供給を行うことによって、蓄電池51のみで急速充電を行う場合と異なり、蓄電量が減少するというような不都合が生じないので、充電設備としての利便性を向上させることができる。また、充電システム1は、電力系統100から急速充電器21を介した電力の供給が行われることに基づいて店舗機器110に対して蓄電池51の放電を行うことによって、店舗の所定の期間(たとえば1年間)における積算期間(30分)の最大需要電力量に基づいて電力会社との間の積算期間での使用可能な電力量(契約電力量)が決まる場合に、急速充電器21を設けた場合にも、契約電力量が増加することを防止または抑制することができる。すなわち、電力系統100から電力を供給して急速充電を行う場合、短時間で多くの電力量を購入するために最大需要電力量が容易に増加してしまうが、急速充電器21を介した電力の供給が行われることに基づいて店舗機器110に対して蓄電池51の放電を行うことによって、蓄電池51から店舗機器110に供給した電力量の分、電力系統100から購入する積算期間中の電力量を減らすことができるので、店舗機器110に加えて急速充電器21を設けた場合にも、最大需要電力量が増加することを防止または抑制することができる。これにより、店舗の最大需要電力量に基づいて電力会社との間の契約電力量が決まる場合にも、契約電力量が増加することを防止または抑制しながら、店舗に容易に急速充電器21を導入することができる。
第1実施形態の充電システム1は、上記のように、電力系統100から急速充電器21を介した電力の供給が行われることに基づいて、蓄電池51の放電を行うことが可能であるとともに、急速充電器21を介した電力の供給が行われていないことに基づいて、時間帯に拘わらず蓄電池51の充電を行うことが可能に構成することによって、電気自動車200への急速充電が終了した後、深夜時間帯などの特定の時間帯を待つことなく、蓄電池51の充電を行うことを判断した場合にはすぐに蓄電池51の充電を行うことができる。これにより、電気自動車200の急速充電の後、従来に比べ短時間で、積算期間の契約電力量の増加を防止しながら次の電気自動車200の急速充電を行うことが可能なように蓄電池51が充電されるので、次の電気自動車200に急速充電を行う必要のある場合であっても、それらの電気自動車200の急速充電の準備を従来よりも早く行うことができる。これにより、充電設備としての利便性を向上させることができる。
また、第1実施形態の充電システム1は、上記のように、蓄電池51の放電を行う際に、蓄電池51の放電を行った結果の電力系統100からの購入電力量が契約電力量以下となるように蓄電池51の放電を行うとともに、蓄電池51の充電を行う際に、蓄電池51の充電を行った結果の電力系統100からの購入電力量が契約電力量以下となるように蓄電池51の充電を行う。このように構成することによって、電気自動車200の急速充電を行う場合(急速充電のための電力を電力系統100から購入する場合)も、蓄電池51の充電を行うために電力系統100から電力を購入する場合も、店舗の積算期間の購入電力量が契約電力量を超えるのを抑制することができる。
また、第1実施形態の充電システム1は、上記のように、電力系統100から急速充電器21を介して電気自動車200に電力を供給した時間の少なくとも一部が含まれる積算期間において、蓄電池51の放電を行う。このように構成することによって、電気自動車200への急速充電を行った積算期間において蓄電池51から放電して電力を供給することができるので、電気自動車200への急速充電を行った積算期間における購入電力量の増加を抑制し、契約電力量が増加することを防止することができる。
また、第1実施形態の充電システム1は、上記のように、電力系統100から急速充電器21を介した電力の供給が行われることに基づいて蓄電池51の放電を行う場合に、太陽電池3の発電電力に応じて放電量を調節する。このように構成することによって、太陽電池3の発電電力が大きい場合には蓄電池51の放電量を減らすなどにより、蓄電池51の放電量を最小限にしながら、契約電力量が増加することを防止することができる。
(第2実施形態)
次に、図5および図6を参照して、本発明の第2実施形態による充電システム300について説明する。この第2実施形態では、急速充電中に継続して蓄電池51の放電を行う上記第1実施形態と異なり、急速充電中に購入電力量が所定の閾値を超えた場合にだけ蓄電池51の放電を行う例について説明する。
次に、図5および図6を参照して、本発明の第2実施形態による充電システム300について説明する。この第2実施形態では、急速充電中に継続して蓄電池51の放電を行う上記第1実施形態と異なり、急速充電中に購入電力量が所定の閾値を超えた場合にだけ蓄電池51の放電を行う例について説明する。
図5に示すように、充電システム300の蓄電池システム301は、充放電制御装置302を含んでいる。充電システム300の充放電制御装置302以外の構成は上記第1実施形態と同様である。
第2実施形態では、図6に示すように、充放電制御装置302は、電力系統100からの電力供給により急速充電が行われている場合に、積算期間における購入電力量が閾値よりも大きいときに蓄電池51の放電を行い、積算期間における購入電力量が閾値以下のときには蓄電池51の放電を行わないように構成されている。充放電制御装置302は、この閾値を積算期間における経過時間と契約電力(契約電力量)とに基づいて契約電力量を超えないように算出する。具体的には、積算期間の開始時から終了時までにおいて時間経過とともに購入電力量が0から契約電力量まで線形的に増加するとした場合の直線上の値が閾値となる。充放電制御装置302は、この直線と積算期間内の経過時間とに基づいて閾値を算出する。
また、第2実施形態では、充放電制御装置302は、POSデータやドアの開閉数に基づいた来客数データを、店舗機器110などから取得して記憶している。また、充放電制御装置302は、急速充電が行われた曜日、時間、回数などの情報も記憶している。充放電制御装置302は、これらの情報に基づいて、電力系統100からの電力供給により急速充電が行われる可能性の高い時間帯を予測することが可能に構成されている。たとえば、来客数が増加する時間には電力系統100からの電力供給により急速充電が行われる可能性も高いと予測する。また、過去に急速充電が行われた曜日、時間などと同じ条件では急速充電が行われる可能性が高いと予測する。また、充放電制御装置302は、急速充電が行われる可能性が高い時間帯の所定時間(たとえば、1時間~3時間)前の時間帯においては、急速充電があった場合にも、蓄電池51の放電速度を小さくするように構成されている。具体的には、蓄電池51の最大放電速度を1/2として放電を行う。
次に、図7を参照して、本発明の第2実施形態による充電システム300の充放電制御装置302の制御フローについて説明する。
まず、ステップS11およびステップS12において、充放電制御装置302は、上記第1実施形態のステップS1およびステップS2(図4参照)と同様の処理を行う。この後、ステップS13において、充放電制御装置302は、積算期間における経過時間と契約電力量とに基づいて閾値を算出する。そして、充放電制御装置302は、ステップS14において、現時点の購入電力量が閾値以下か否かを判断する。現時点の購入電力量が閾値以下である場合には、充放電制御装置302は蓄電池51の放電を行わずにステップS11に戻る。
また、現時点の購入電力量が閾値よりも大きい場合には、ステップS15において、充放電制御装置302は、電力系統100からの電力供給による急速充電が所定時間(1時間~3時間)後に行われる可能性が高いか否かを判断する。急速充電が所定時間後に行われる可能性が高い場合には、ステップS16において、充放電制御装置302は、最大放電速度を通常の1/2として蓄電池51の放電を行う。この後、ステップS11に戻る。また、急速充電が所定時間後に行われる可能性が低い場合には、ステップS17において、充放電制御装置302は、通常の最大放電速度で蓄電池51の放電を行う。この後、ステップS11に戻る。
また、ステップS11において蓄電池51の残量が所定量(20%)未満であると判断した場合には、充放電制御装置302は、ステップS18、ステップS20およびステップS21において、上記第1実施形態のステップS6~ステップS8(図4参照)と同様の処理を行う。また、ステップS12において急速充電が行われていないと判断した場合には、充放電制御装置302は、ステップS19において、蓄電池51が満充電であるか否かを判断する。満充電である場合には、充電を行う必要がないので、充放電制御装置302は、ステップS22において蓄電池51の充電を禁止してステップS11に戻る。また、満充電でない場合には、充放電制御装置302は、ステップS20~ステップS22の処理を行った後、ステップS11に戻る。
ステップS11~ステップS22の処理が繰り返されることにより、急速充電時には蓄電池51の放電が最小限の放電量で行われるとともに、急速充電時以外には蓄電池51の充電の可否が判断され、必要な場合には蓄電池51の充電が行われる。
第2実施形態の充電システム300は、上記のように、電力系統100からの電力供給により急速充電が行われることに基づいて、積算期間内の購入電力量が所定の閾値を超えた場合に、蓄電池51の放電を行うことによって、電力系統100からの電力供給により急速充電が行われた場合にも、蓄電池51の放電量を最小限にしながら、契約電力量が増加することを防止することができる。
また、第2実施形態の充電システム300は、上記のように、所定の閾値を、契約電力量と積算期間内における経過時間とに基づいて算出することによって、積算期間における購入電力量が急速充電器21を設けていないとした場合の契約電力量を超えないように蓄電池51の放電を制御するための閾値を容易に設定することができる。
また、第2実施形態の充電システム300は、上記のように、急速充電器21が使用される可能性が高い時間帯を予測するとともに、予測した時間帯の前の時間帯においては、蓄電池51の放電速度を小さくする。このように構成することによって、急速充電器21が使用される可能性の高い時間帯において蓄電池51の容量を確保することができるので、電気自動車200への急速充電時に蓄電池51の残容量がなくなってしまうことを抑制することができる。
(第3実施形態)
次に、図8を参照して、本発明の第3実施形態による充電システム400について説明する。この第3実施形態では、季節に関係なく急速充電時に蓄電池51の放電を行う上記第1実施形態と異なり、夏季および冬季にのみ急速充電時に蓄電池51の放電を行う例について説明する。
次に、図8を参照して、本発明の第3実施形態による充電システム400について説明する。この第3実施形態では、季節に関係なく急速充電時に蓄電池51の放電を行う上記第1実施形態と異なり、夏季および冬季にのみ急速充電時に蓄電池51の放電を行う例について説明する。
図8に示すように、充電システム400の蓄電池システム401は、充放電制御装置402を含んでいる。充電システム400の充放電制御装置402以外の構成は上記第1実施形態と同様である。
第3実施形態では、充放電制御装置402は、夏季および冬季においては上記第1実施形態と同様の充放電制御を行う。また充放電制御装置402は、春季および秋季においては、電力系統100からの電力供給による急速充電時においても蓄電池51の放電は行わず、電気料金の安い時間帯(深夜時間帯)に蓄電池51の充電を行うとともに、主に電気料金の高い時間帯に蓄電池51の放電を行う。
次に、図9を参照して、本発明の第3実施形態による充電システム400の充放電制御装置402の制御フローについて説明する。
まず、充放電制御装置402は、ステップS31において、現在が春季(3月~6月)および秋季(10月および11月)であるか否かを判断する。現在が春季および秋季でない場合には、充放電制御装置402は、上記第1実施形態と同様のステップS1~ステップS9の処理を行う。
また、現在が春季または秋季である場合には、充放電制御装置402は、ステップS32において、放電が必要か否かを判断する。放電が必要であると判断した場合には、充放電制御装置402は、ステップS33において、時間帯に拘わらず蓄電池51の放電を行う。また、放電が必要ないと判断した場合には、充放電制御装置402は、ステップS34において、現在が深夜時間帯であるか否かを判断する。現在が深夜時間帯でない場合(昼間である場合)には、充放電制御装置402は、蓄電池51の充電も放電も行わずにステップS31に戻る。また、現在が深夜時間帯である場合には、充放電制御装置402は、ステップS35において、蓄電池51の充電を行う。
第3実施形態の充電システム400は、上記のように、店舗が時間帯別の電気料金契約を行っている場合に、夏季または冬季においては、急速充電器21を介した電力の供給を行うことに基づいて、蓄電池51の放電を行うことが可能であるとともに、急速充電器21を介した電力の供給が行われていないことに基づいて、時間帯に拘わらず蓄電池51の充電を行うことが可能であり、春季または秋季においては、優先的に電気料金の安い時間帯に蓄電池51の充電を行うことが可能である。このように構成することによって、春季および秋季は夏季および冬季に比べて店舗機器110の使用電力量が少なく、電気自動車200への急速充電に対して蓄電池51の放電を行わなくても契約電力量が増加する可能性は低いので、春季および秋季においては電気料金の安い時間帯に蓄電池51の充電を行うことにより、春季および秋季においては電気料金を減らすことができる。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、上記第1~第3実施形態では、「第2蓄電部」の一例として電気自動車200を挙げたが、本発明はこれに限らず、バイク、自転車などの他の車両の充電に用いてもよい。また、車両に限らず、蓄電機能を有する船舶などの移動体の充電に用いてもよい。
また、上記第1~第3実施形態では、急速充電器21を介して電気自動車200を充電する例について説明したが、本発明はこれに限らず、電力の供給対象が蓄電機能を有していない単なる負荷であってもよい。このような負荷としては、たとえば、エレベータが挙げられる。
また、上記第1~第3実施形態では、太陽電池3の発電電力を店舗機器110または通常充電器22に供給する例を説明したが、本発明はこれに限らず、太陽電池3の発電電力を急速充電器21に供給してもよいし、蓄電池51に供給してもよい。
また、上記第1~第3実施形態では、充電システム1を店舗(コンビニエンスストア)に備えつけた例について説明したが、本発明はこれに限らず、充電システム1を設置可能な店舗以外の施設や住宅に備えつけてもよい。また、駐車場に備えつけてもよい。
また、上記第1~第3実施形態では、充電システム1を、高圧受電設備を有する店舗(コンビニエンスストア)に備えつけた例について説明したが、本発明はこれに限らず、高圧受電設備を有しない施設に備えつけてもよい。
また、上記第1~第3実施形態では、急速充電を行う際に蓄電池51の放電を行う例について説明したが、本発明はこれに限らず、急速充電ではない通常速度の充電を行う際に蓄電池51の放電を行ってもよい。
また、上記第1~第3実施形態では、急速充電が行われているときに蓄電池51の放電を行う例について説明したが、本発明はこれに限らず、急速充電が終わった後であっても、同一の積算期間内に放電すればよい。
また、上記第1~第3実施形態では、急速充電器21を設置しない場合の契約電力量を超えないように蓄電池51の放電を行う例を示したが、本発明はこれに限らず、急速充電に要する電力の一部を蓄電池51の放電により相殺できればよい。この場合でも、契約電力量が大幅に増加することを抑制することができる。
また、上記第1~第3実施形態では、蓄電池51の残量が少ない場合には急速充電を禁止する例について説明したが、この場合、複数の店舗のうち、どの店舗において急速充電が可能であるかの情報を、インターネットなどを介してユーザに提供してもよい。
また、上記第1~第3実施形態では、「発電装置」として太陽電池3を用いる例について説明したが、本発明はこれに限らず、風力発電装置などの他の再生可能エネルギー発電装置を用いてもよい。
また、上記第1~第3実施形態では、「第1蓄電部」としてリチウムイオン蓄電池を用いた例を説明したが、本発明はこれに限らず、ニッケル水素蓄電池や鉛蓄電池などの他の2次電池を用いてもよい。また、蓄電部としてキャパシタを用いてもよい。
また、上記第1~第3実施形態では、急速充電時に蓄電池51から放電する場合、店舗機器110または通常充電器22に放電した例を説明したが、本発明はこれに限らず、急速充電器21に放電してもよい。
また、上記第1実施形態では、太陽電池3の発電電力に応じて急速充電時の蓄電池51の放電量を調節する例について説明したが、本発明はこれに限らず、太陽電池3の発電電力に応じて急速充電時の蓄電池51の放電速度を調節してもよい。
また、上記第1実施形態では、急速充電時に蓄電池51の放電を行う例について説明したが、本発明はこれに限らず、急速充電が開始された時刻が積算期間の途中(たとえば、積算期間の後半)であるか否かを判断し、途中である場合には、急速充電の開始時が含まれる積算期間における蓄電池51の放電を行わないようにしてもよい。急速充電が積算期間の途中で開始された場合には、その積算期間における急速充電による購入電力の増加の影響が小さいので、蓄電池の放電を行わなくてもその積算期間の購入電力量が契約電力量を超えない場合があるからである。
また、上記第2実施形態では、積算期間における購入電力量が閾値を超えた場合に蓄電池51の放電を行う例について説明したが、本発明はこれに限らず、購入電力量の推移を予測し、閾値を超えると判断した場合に蓄電池51の放電を行うようにしてもよい。
また、上記第1~第3実施形態では、ユーザが急速充電を行おうとした場合にはすぐに急速充電が開始される例を示したが、本発明はこれに限らず、急速充電の開始のタイミングを充放電制御装置などにより制御してもよい。たとえば、電気自動車200に対する電力系統100からの電力の供給(急速充電)がある積算期間とその次の積算期間に跨って行われるようなタイミングで急速充電を開始するように、車用充電器2を充放電制御装置により制御してもよい。このように構成することによって、電気自動車200に供給した電力量が2つ以上の積算期間に分けて反映されるので、電気自動車200に供給した電力量の全てが1つの積算期間内における購入電力量として反映されてしまう場合と異なり、各積算期間における購入電力量の増加を抑制することができる。これにより、電気自動車200に急速充電を行うために電力系統100から電力を購入する場合にも、契約電力量が増加することを容易に抑制することができる。
また、上記第1~第3実施形態では、蓄電池51の残量が十分にないときには、十分になるまで急速充電を受け付けない例について説明したが、本発明はこれに限らず、蓄電池51の残量が十分にないときでも急速充電を受け付けておき、蓄電池51の残量が十分になったときに実際に急速充電を開始するように構成してもよい。
Claims (10)
- 電力系統に接続された充電システムであって、
電力を充放電可能な第1蓄電部と、
前記第1蓄電部の充放電を制御する充放電制御部と、
前記充電システムに着脱可能に接続される第2蓄電部または電力負荷とを備え、
前記充放電制御部は、前記第1蓄電部に蓄電された電力量が所定の残量以上の場合に、前記電力系統からの購入電力量が所定の閾値を超えないように前記第1蓄電部から前記第2蓄電部または前記電力負荷に電力を供給する、充電システム。 - 前記充放電制御部は、前記第1蓄電部から前記第2蓄電部または前記電力負荷に電力を供給していないことを検出した場合に、前記電力系統から供給される電力で前記第1蓄電部の充電を行う、請求項1に記載の充電システム。
- 再生可能エネルギーを用いて発電する発電装置をさらに備え、
前記充放電制御部は、前記電力系統または前記発電装置から前記第2蓄電部に電力の供給を行うとともに、前記第1蓄電部から前記第2蓄電部または前記電力負荷に電力の供給を行う場合に、前記発電装置の発電電力に応じて前記第1蓄電部の放電量または放電速度の少なくとも一方を調節する、請求項1または2に記載の充電システム。 - 前記充放電制御部は、前記第1蓄電部の最大放電量と前記発電装置の発電電力量との差分に相当する電力量を放電する、請求項3に記載の充電システム。
- 電力を充放電可能な第1蓄電部と、電力系統または前記第1蓄電部から電力が供給される第2蓄電部または電力負荷とを備えた充電システムに用いられる充放電制御装置であって、
前記第1蓄電部に蓄電された電力量が所定の残量以上の場合に、前記電力系統からの購入電力量が所定の閾値を超えないように前記第1蓄電部から前記第2蓄電部または前記電力負荷へ供給する電力量を制御する、充放電制御装置。 - 前記第1蓄電部から前記第2蓄電部または前記電力負荷に電力を供給していないことを検出した場合に、前記電力系統から供給される電力で前記第1蓄電部の充電を行うよう制御する、請求項5に記載の充放電制御装置。
- 第1蓄電部に蓄電された電力量が所定の残量以上であるかを判断する工程と、
電力系統から第2蓄電部に電力を供給する工程と、
前記電力系統からの購入電力量が所定の閾値を超えないかを判断する工程と、
前記電力系統からの購入電力量が所定の閾値を超えている場合に、前記第1蓄電部から前記第2蓄電部または電力負荷へ電力を供給する工程とを含む、充放電制御方法。 - 前記第1蓄電部から前記第2蓄電部または前記電力負荷に電力を供給していないことを検出した場合に、前記電力系統から供給される電力で前記第1蓄電部を充電する工程を含む、請求項7に記載の充放電制御方法。
- 発電装置により再生可能エネルギーを用いて発電する工程をさらに備え、
前記電力系統または前記発電装置から前記第2蓄電部に電力の供給を行うとともに、前記第1蓄電部から前記第2蓄電部に電力の供給を行う場合に、前記発電装置の発電電力に応じて前記第1蓄電部の放電量または放電速度の少なくとも一方を調節する工程を含む、請求項7または8に記載の充放電制御方法。 - 前記第1蓄電部の最大放電量と前記発電装置の発電電力量との差分に相当する電力量を放電する工程を含む、請求項9に記載の充放電制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-043342 | 2010-02-26 | ||
JP2010043342 | 2010-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011105580A1 true WO2011105580A1 (ja) | 2011-09-01 |
Family
ID=44506977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/054386 WO2011105580A1 (ja) | 2010-02-26 | 2011-02-25 | 充電システム、充放電制御装置および充放電制御方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011105580A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013031243A (ja) * | 2011-07-27 | 2013-02-07 | Hitachi Ltd | 充電用の電力管理システムおよびその電力管理装置 |
WO2014068732A1 (ja) * | 2012-10-31 | 2014-05-08 | Jfeエンジニアリング株式会社 | 急速充電器 |
JP2014099958A (ja) * | 2012-11-13 | 2014-05-29 | Toyota Industries Corp | 充電システム |
WO2015004849A1 (ja) * | 2013-07-09 | 2015-01-15 | パナソニックIpマネジメント株式会社 | 電力制御方法、電力制御装置、電力制御システム |
CN106627202A (zh) * | 2016-11-07 | 2017-05-10 | 上海工程技术大学 | 一种光伏直流充电桩系统 |
FR3045900A1 (fr) * | 2015-12-21 | 2017-06-23 | Electricite De France | Systeme et procede de pilotage d'un dispositif de stockage d'energie |
CN111492530A (zh) * | 2017-12-21 | 2020-08-04 | 本田技研工业株式会社 | 电力系统、能量系统、能量供受方法、程序、终端以及移动体 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06178461A (ja) * | 1992-12-09 | 1994-06-24 | Japan Storage Battery Co Ltd | 系統連系電源システム |
JPH11178237A (ja) * | 1997-12-10 | 1999-07-02 | Nissan Motor Co Ltd | 家庭用電力供給システム |
JP2003009418A (ja) * | 2001-06-27 | 2003-01-10 | Meidensha Corp | 鉛蓄電池の充放電方法 |
JP3123576U (ja) * | 2006-05-11 | 2006-07-20 | 伊藤 昇 | Evステーションシステム |
JP2007535282A (ja) * | 2003-07-10 | 2007-11-29 | エアロヴァイロンメント インコーポレイテッド | バッテリー充電システム及び方法 |
-
2011
- 2011-02-25 WO PCT/JP2011/054386 patent/WO2011105580A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06178461A (ja) * | 1992-12-09 | 1994-06-24 | Japan Storage Battery Co Ltd | 系統連系電源システム |
JPH11178237A (ja) * | 1997-12-10 | 1999-07-02 | Nissan Motor Co Ltd | 家庭用電力供給システム |
JP2003009418A (ja) * | 2001-06-27 | 2003-01-10 | Meidensha Corp | 鉛蓄電池の充放電方法 |
JP2007535282A (ja) * | 2003-07-10 | 2007-11-29 | エアロヴァイロンメント インコーポレイテッド | バッテリー充電システム及び方法 |
JP3123576U (ja) * | 2006-05-11 | 2006-07-20 | 伊藤 昇 | Evステーションシステム |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013031243A (ja) * | 2011-07-27 | 2013-02-07 | Hitachi Ltd | 充電用の電力管理システムおよびその電力管理装置 |
WO2014068732A1 (ja) * | 2012-10-31 | 2014-05-08 | Jfeエンジニアリング株式会社 | 急速充電器 |
JP2014099958A (ja) * | 2012-11-13 | 2014-05-29 | Toyota Industries Corp | 充電システム |
WO2015004849A1 (ja) * | 2013-07-09 | 2015-01-15 | パナソニックIpマネジメント株式会社 | 電力制御方法、電力制御装置、電力制御システム |
JPWO2015004849A1 (ja) * | 2013-07-09 | 2017-03-02 | パナソニックIpマネジメント株式会社 | 電力制御方法、電力制御装置、電力制御システム |
FR3045900A1 (fr) * | 2015-12-21 | 2017-06-23 | Electricite De France | Systeme et procede de pilotage d'un dispositif de stockage d'energie |
WO2017108942A1 (fr) * | 2015-12-21 | 2017-06-29 | Electricite De France | Système et procédé de pilotage d'un dispositif de stockage d'énergie |
CN108432029A (zh) * | 2015-12-21 | 2018-08-21 | 法国电力公司 | 用于控制电力存储设备的系统和方法 |
US11011910B2 (en) | 2015-12-21 | 2021-05-18 | Electricite De France | System and method for controlling a power storage device |
CN108432029B (zh) * | 2015-12-21 | 2021-08-13 | 法国电力公司 | 用于控制电力存储设备的系统和方法 |
CN106627202A (zh) * | 2016-11-07 | 2017-05-10 | 上海工程技术大学 | 一种光伏直流充电桩系统 |
CN111492530A (zh) * | 2017-12-21 | 2020-08-04 | 本田技研工业株式会社 | 电力系统、能量系统、能量供受方法、程序、终端以及移动体 |
CN111492530B (zh) * | 2017-12-21 | 2024-04-26 | 本田技研工业株式会社 | 能量系统、能量供受方法、程序以及移动体 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2587623B1 (en) | Dc power distribution system | |
KR101530821B1 (ko) | 축전 장치 및 축전 시스템 | |
US20130049676A1 (en) | Quick charging device and mobile charging apparatus | |
WO2011105580A1 (ja) | 充電システム、充放電制御装置および充放電制御方法 | |
JP5633478B2 (ja) | 蓄電池 | |
US9331512B2 (en) | Power control device and power control method for measuring open-circuit voltage of battery | |
US20110234150A1 (en) | Battery charging apparatus | |
WO2017159486A1 (ja) | 力率改善装置、及びそれを備えた蓄電装置 | |
JP5369885B2 (ja) | 電力供給システムおよびその制御方法 | |
US20150162784A1 (en) | Vehicle-Solar-Grid Integration | |
US10889190B2 (en) | Apparatus for controlling electric vehicle charging system | |
US9676287B2 (en) | Electric battery charging installation and method | |
JP2015106962A (ja) | 充放電制御装置及び充放電システム | |
JP7189861B2 (ja) | 充電装置及び充電方法 | |
WO2017179178A1 (ja) | 電力管理システム | |
JP7165953B2 (ja) | 電力変換システム | |
WO2014083788A1 (ja) | 双方向コンバータ | |
JP6125843B2 (ja) | 電力制御装置、電力制御システム、および電力制御方法 | |
US20190103756A1 (en) | Power storage system, apparatus and method for controlling charge and discharge, and program | |
JP6076381B2 (ja) | 電力供給システム | |
KR101523941B1 (ko) | 에너지 저장 시스템 | |
WO2023042456A1 (ja) | 電池容量推定装置、充電計画生成装置、放電計画生成装置及び電池容量推定方法 | |
KR20240021433A (ko) | 하이브리드 전기차 충전 시스템 | |
JP2024154613A (ja) | 電源装置 | |
JP2024041010A (ja) | 電池容量制御装置および蓄電システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11747536 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11747536 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |