WO2011105450A1 - Method for designing resin-coated saw wire - Google Patents

Method for designing resin-coated saw wire Download PDF

Info

Publication number
WO2011105450A1
WO2011105450A1 PCT/JP2011/054032 JP2011054032W WO2011105450A1 WO 2011105450 A1 WO2011105450 A1 WO 2011105450A1 JP 2011054032 W JP2011054032 W JP 2011054032W WO 2011105450 A1 WO2011105450 A1 WO 2011105450A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
wire
cut
workpiece
saw wire
Prior art date
Application number
PCT/JP2011/054032
Other languages
French (fr)
Japanese (ja)
Inventor
一男 吉川
昭典 浦塚
浩 家口
隆 古保里
義武 松島
Original Assignee
株式会社コベルコ科研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ科研 filed Critical 株式会社コベルコ科研
Priority to CN201180010405.8A priority Critical patent/CN102762338B/en
Priority to KR1020127021986A priority patent/KR101403078B1/en
Publication of WO2011105450A1 publication Critical patent/WO2011105450A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • B23D61/185Saw wires; Saw cables; Twisted saw strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D65/00Making tools for sawing machines or sawing devices for use in cutting any kind of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a saw wire used when a workpiece such as silicon or ceramics is cut with a saw machine, and more particularly, to a method of designing a resin-coated saw wire in which a surface of a steel wire is coated with a resin.
  • a method of cutting the workpiece while spraying slurry containing abrasive grains (hereinafter sometimes referred to as loose abrasive grains) on the saw wire (conventional method 1), and attaching and fixing the abrasive grains on the surface of the base wire
  • a method (conventional method 2) for cutting a workpiece using the saw wire with fixed abrasive grains is known.
  • loose abrasive grains contained in the sprayed slurry are drawn between the workpiece and the saw wire, and the wear of the saw wire and the workpiece is promoted, whereby the workpiece grinding is promoted and the workpiece is cut.
  • wear of the workpiece is promoted by the abrasive grains fixed on the surface, whereby the grinding of the workpiece is promoted and the workpiece is cut.
  • Patent Document 1 discloses a method of cutting a workpiece while embedding a solution containing free abrasive grains using a wire in which the outer peripheral surface of a steel wire such as high carbon steel is covered with an abrasive carrier resin film (conventional method 3). ) Is disclosed.
  • a cut body obtained by cutting silicon with a saw wire is used as a substrate of a solar cell, for example.
  • a work-affected layer (sometimes called a damage layer) is formed on the cut surface of the cut body during cutting. It has been pointed out that the bonding quality with respect to the substrate is deteriorated if the work-affected layer remains, and the characteristics as a solar cell cannot be sufficiently obtained (Patent Document 2), and it is necessary to remove the work-affected layer. is there.
  • FIG. 1 shows a state in which a steel wire is used as a saw wire as in the above-described conventional method 1, and free abrasive grains are sprayed on the steel wire and cut while drawing the abrasive grains.
  • the abrasive grains are drawn in the direction in which the steel wire is cut into the workpiece, and the abrasive grains are drawn between the steel wire and the cut surface (work wall surface) of the workpiece. Therefore, it was found that the cut surface of the workpiece was also ground and a work-affected layer was formed. Moreover, it turned out that the surface roughness of a cut surface also becomes coarse.
  • FIG. 2 shows a state in which the workpiece is cut while fixing the fixed abrasive grains on the surface of the saw wire or embedding the abrasive grains as in the conventional methods 2 and 3 described above.
  • the cut surface of the workpiece (wall surface of the workpiece) is also ground, so that the work-affected layer is deeply formed.
  • a work-affected layer is formed on the cut surface of the cut body. It is necessary to remove the work-affected layer. If this process-affected layer removal step can be omitted, the yield and productivity of the cut body can be improved.
  • the cut surface is roughened by forming a work-affected layer and forming irregularities by abrasive grains used at the time of cutting.
  • etching is performed in a downstream process. If this etching step can be omitted, the productivity of the cut body can be improved.
  • the present invention has been made in view of such a situation, and its purpose is that when a workpiece is cut using a resin-coated saw wire in which the surface of a steel wire is coated with a resin, the work-affected layer depth is low. It is an object of the present invention to provide a method for designing a resin-coated saw wire in which a cut body having a shallow and smooth surface can be obtained.
  • a method for designing a resin-coated saw wire including a step of coating a steel wire with a resin having a predetermined hardness to obtain a resin-coated saw wire, A method for designing a resin-coated saw wire, in which the hardness of the resin is adjusted so that the work-affected layer depth at the cut surface of the workpiece becomes acceptable by repeating the following (1) to (4).
  • the work is cut with the obtained resin-coated saw wire.
  • (2) Examine the depth of the work-affected layer on the cut surface of the workpiece.
  • the steel wire is covered with a harder resin.
  • the acceptance / rejection criteria may be any depth of the work-affected layer that can obtain the effects of the present invention.
  • a work-affected layer depth of 5 ⁇ m or less is cited as a pass criterion.
  • a method for designing a resin-coated saw wire including a step of coating a steel wire with a resin having a predetermined hardness to obtain a resin-coated saw wire, A method for designing a resin-coated saw wire in which the hardness of the resin is adjusted so that the surface roughness of the cut surface of the workpiece is acceptable by repeating the following (1) to (4).
  • (1) The work is cut with the obtained resin-coated saw wire.
  • (2) The surface roughness of the cut surface of the work is examined.
  • the steel wire is covered with a harder resin.
  • the acceptance / rejection criteria may be any surface roughness that can achieve the effects of the present invention.
  • a surface roughness of 0.5 ⁇ m or less is cited as a pass criterion.
  • a wire diameter of the steel wire is 130 ⁇ m or less.
  • a method of manufacturing a cut body by cutting a workpiece with a resin-coated saw wire, the step of spraying abrasive grains on a resin-coated saw wire coated with a steel wire with a resin whose hardness is adjusted, and the cut surface and the resin Manufacture of a cut body including a step of cutting the workpiece by drawing the abrasive grains in the direction in which the coated saw wire is cut into the workpiece while suppressing the drawing of the abrasive grains between the coated saw wire and the resin.
  • the surface of the saw wire is covered with the resin and the hardness thereof is adjusted. Therefore, the pulling of the abrasive grains between the cut surface and the resin-coated saw wire can be suppressed by the resin while pulling and cutting the abrasive grains. Therefore, formation of a work-affected layer on the surface of the cut body can be suppressed. Moreover, when a workpiece
  • the resin-coated saw wire of the present invention is used, so that the pulling of abrasive grains between the cut surface and the resin-coated saw wire is suppressed, so that the cutting allowance can be reduced and the productivity of the cut body can be improved.
  • Drawing 1 is a mimetic diagram showing a situation when a work is cut with a steel wire.
  • FIG. 2 is a schematic diagram showing a state when a workpiece is cut with a steel wire with fixed abrasive.
  • FIG. 3 is a schematic view showing a state when a workpiece is cut with a resin-coated saw wire.
  • FIG. 32 is a drawing-substituting photograph obtained by photographing the surface of a resin-coated saw wire (comparative example) after cutting a workpiece in FIG.
  • FIG. 5A and FIG. 5B are cross-sectional views for explaining the procedure for measuring the work-affected layer depth.
  • FIG. 25 is a drawing-substituting photograph obtained by photographing the cut surface of the workpiece in 25 with an optical microscope.
  • FIG. 27 is a drawing-substituting photograph in which a cut surface of the workpiece in No. 27 is photographed with an optical microscope.
  • FIG. 32 is a drawing-substituting photograph in which a cut surface of a workpiece in 32 is photographed with an optical microscope.
  • FIG. 4 is a drawing-substituting photograph in which a cut surface of a workpiece in 33 is photographed with an optical microscope.
  • FIG. 35 is a drawing-substituting photograph obtained by photographing the cut surface of the workpiece in 35 with an optical microscope.
  • FIG. 37 is a drawing-substituting photograph obtained by photographing the cut surface of the workpiece in 37 with an optical microscope.
  • FIG. 12 is a graph showing the relationship between the hardness of the resin measured at 120 ° C. and the number of abrasive grains that have digged into the resin surface.
  • FIG. 13 is a graph showing the relationship between the hardness of the resin measured at 120 ° C. and the depth of the work-a
  • the resin-coated saw wire of the present invention has a resin formed on the surface, and when cutting the workpiece, the resin on the surface is in close contact with the cut surface, so that the abrasive is interposed between the saw wire and the workpiece cut surface. It is possible to prevent the grains from being drawn. Therefore, it is difficult to form a work-affected layer on the cut surface, and the surface of the cut surface is likely to be smooth.
  • the abrasive grains bite into the resin as in the conventional method 3, and the abrasive grains are interposed between the resin-coated saw wire and the workpiece as shown in FIG. A work-affected layer is formed on the cut surface.
  • the present inventors prevent the abrasive grains from biting into the resin surface by appropriately adjusting the hardness of the resin coated on the surface of the steel wire, and when the workpiece is cut with the resin-coated saw wire,
  • the present invention was completed by finding that the depth of the work-affected layer formed in 1 was small and the surface roughness of the cut surface could be reduced.
  • a method for designing a resin-coated saw wire including a step of coating a steel wire with a resin having a predetermined hardness to obtain a resin-coated saw wire, wherein the workpiece is obtained by repeating the following (1) to (4)
  • the resin-coated saw wire may be designed in such a manner that the hardness of the resin is adjusted so that the surface properties (processed deteriorated layer depth, surface roughness, etc.) on the cut surface are acceptable.
  • the work is cut with the obtained resin-coated saw wire.
  • the surface properties (worked layer depth, surface roughness) on the cut surface of the workpiece are examined.
  • the steel wire is covered with a harder resin.
  • the work-affected layer depth is 5 ⁇ m or less (preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less), or the surface roughness (arithmetic mean roughness Ra) is 0.5 ⁇ m or less (preferably 0.4 ⁇ m).
  • the cut body cut with the resin-coated saw wire designed as described above can be suitably used as a material for a solar cell, for example.
  • the depth of the work-affected layer may be determined by etching the cut surface and measuring the etch pit depth of the transition introduced when the workpiece is cut.
  • arithmetic mean roughness may be measured by “CS-3200 (device name)” manufactured by Mitutoyo Corporation.
  • the resin-coated saw wire used in the present invention is obtained by coating the surface of a steel wire with a resin designed according to the above guidelines.
  • a steel wire having a tensile strength of 3000 MPa or more is preferable to use as the steel wire.
  • a steel wire having a tensile strength of 3000 MPa or more for example, a high carbon steel wire containing 0.5 to 1.2% of C can be used.
  • a high carbon steel wire for example, a piano wire specified in JIS G3502 can be used.
  • the upper limit of the tensile strength of the steel wire is preferably set to 5000 MPa in consideration of the possibility that the ductility is lost and the wire is likely to be disconnected at the time of abnormality such as skipping.
  • the diameter of the steel wire should be as small as possible within a range that can withstand the load applied at the time of cutting, and is, for example, 130 ⁇ m or less, preferably 110 ⁇ m or less, more preferably 100 ⁇ m or less. By reducing the diameter of the steel wire, the cutting allowance can be reduced and the productivity of the cut body can be improved. In addition, it is preferable that the diameter of a steel wire shall be 60 micrometers or more.
  • thermosetting resin or a thermoplastic resin can be used, and among these resins, phenol resin, amide resin, imide resin, polyamideimide, epoxy resin, polyurethane, formal, ABS resin, vinyl chloride. , Polyester, and the like can be suitably used.
  • polyamideimide, polyurethane, or polyester can be preferably used.
  • the resin can be formed by applying a commercially available varnish to the surface of the steel wire and heating it.
  • varnish enameled wire varnish commercially available from Tohoku Paint Co., Ltd., electric wire varnish commercially available from Kyocera Chemical Co., Ltd., etc. can be used.
  • varnishes for heat-resistant urethane copper wires (“TVE5160-27”, epoxy-modified formal resins), varnishes for formal copper wires ("TVE5225A”, etc., polyvinyl formal resins), and heat-resistant formal copper wires.
  • Varnishes (“TVE5230-27”, such as epoxy-modified formal resin), polyester copper wire varnishes (“TVE5350 series”, polyester resin), etc. (both are products manufactured by Kyocera Chemical Co., Ltd.) can be used.
  • the surface of the steel wire may be covered with a resin by thermosetting at 250 ° C. or higher (preferably 300 ° C. or higher).
  • the upper limit of the thermosetting is preferably set to 400 ° C. in consideration of the possibility that the strength of the steel wire starts to decrease.
  • the hardness of the resin can be adjusted, for example, by changing the type of resin to be coated or changing the heating temperature when forming the resin.
  • the resin it is preferable to use a resin having a hardness measured at 120 ° C. of 0.07 GPa or more. That is, when a workpiece is cut with a resin-coated saw wire, the wire is run at a linear speed of 500 m / min, for example, and the workpiece is cut while the wire and abrasive grains or the wire and the workpiece are in contact with each other. For this reason, the surface of the wire is considered to rise in temperature due to frictional heat and exceed 100 ° C. Therefore, if the hardness of the resin is adjusted based on the hardness measured at 100 ° C. or lower (for example, room temperature), the resin may be softened because it cannot withstand the frictional heat generated during actual workpiece cutting. . When the resin is softened, the abrasive grains easily bite into the resin, so that the depth of the work-affected layer is large and the surface may be roughened.
  • the hardness of the resin be adjusted based on the hardness when measured at a temperature exceeding 100 ° C. (for example, 120 ° C.) so that it does not soften even if frictional heat is generated when the workpiece is cut.
  • the resin it is preferable to use a resin having a hardness when measured at 120 ° C. of 0.07 GPa or more, and more preferably a resin having a hardness of 0.1 GPa or more.
  • the number of abrasive grains that bite into the resin surface can be suppressed to 20 / (50 ⁇ m ⁇ 200 ⁇ m) or less, and formed into a cut body. It is possible to reduce the depth of the work-affected layer, and to smooth the surface of the cut body.
  • the hardness of resin is so good that it is hard, and the upper limit in particular is not set.
  • the hardness of the resin can be measured by, for example, a nanoindentation method.
  • the film thickness of the resin may be 2 to 15 ⁇ m, for example. If the resin is too thin, it may be difficult to form the resin uniformly on the surface of the steel wire. In addition, if the resin is too thin, the resin is worn away at the initial stage of cutting, so that the strand (steel wire) is exposed, and the strand may be worn and easily broken. Accordingly, the thickness of the resin is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, and particularly preferably 4 ⁇ m or more. However, if the resin is too thick, the diameter of the resin-coated saw wire increases, so that the cutting allowance increases and the productivity may deteriorate.
  • the thickness of the resin is preferably 15 ⁇ m or less, more preferably 13 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the upper limit and the lower limit of the film thickness of the resin can be arbitrarily combined to make the resin film thickness range.
  • the diameter (wire diameter) of the resin-coated saw wire is not particularly limited, but is usually about 100 to 300 ⁇ m (preferably 100 to 150 ⁇ m).
  • the workpiece to be cut with the resin-coated saw wire for example, silicon, ceramics, crystal, semiconductor member, magnetic material, or the like can be used.
  • the workpiece When cutting the workpiece with the above-mentioned coated saw wire, the workpiece is cut after abrasive grains are sprayed on the saw wire.
  • abrasive grain a silicon carbide abrasive grain (SiC abrasive grain), a diamond abrasive grain, etc. can be used, for example.
  • SiC abrasive grain silicon carbide abrasive grain
  • diamond abrasive grain etc.
  • diamond abrasive grains for example, “SCM Fine Diamond (trade name)” manufactured by Sumiishi Materials Co., Ltd. can be used.
  • SCM Fine Diamond trade name
  • a polycrystalline type or a single crystal type can be used, but it is preferable to use a single crystal type. This is because the single crystal type is not easily broken during cutting.
  • the average particle size of the abrasive grains is not particularly limited, and may be, for example, 2 to 15 ⁇ m (preferably 4 to 10 ⁇ m, more preferably 4 to 7 ⁇ m).
  • the average particle size of the abrasive grains can be measured by, for example, “Microtrack HRA (device name)” manufactured by Nikkiso Co., Ltd.
  • the above abrasive grains are usually sprayed with a slurry dispersed in a working fluid.
  • a water-soluble processing liquid or an oil-based processing liquid can be used.
  • water-soluble processing fluid ethylene glycol processing fluid “H4” manufactured by Yushiro Chemical Industry Co., Ltd., propylene glycol processing fluid “Histat TMD (trade name)” manufactured by Sanyo Chemical Industries, Ltd., etc. may be used. it can.
  • As the oil-based processing fluid Yushiro Chemical Industry Co., Ltd. “Yushiron Oil (trade name)” or the like can be used.
  • the concentration of abrasive grains in the slurry can be, for example, 5 to 50% by mass (preferably 5 to 30% by mass, more preferably 5 to 10% by mass).
  • the temperature of the slurry may be, for example, 10 to 30 ° C. (preferably 20 to 25 ° C.).
  • the conditions for cutting the workpiece with the resin-coated saw wire include, for example, a workpiece cutting speed of 0.1 to 0.8 mm / min (preferably 0.1 to 0.35 mm / min, more preferably 0.25 to 0.35 mm / min), and the linear velocity of the resin-coated saw wire may be 300 m / min or more (preferably 500 m / min or more, more preferably 800 m / min or more).
  • the tension (N) applied to the resin-coated saw wire so as to satisfy the range of the following formula (1) calculated based on the tensile strength of the wire (the steel wire before coating the resin).
  • the range of 50 to 70% with respect to the tensile strength (N) of the steel wire is to prevent disconnection at the time of cutting. This is because the total of the cutting load applied to the resin-coated saw wire and the pull-out load applied when the resin-coated saw wire is pulled out from the workpiece is approximately 5.0 N.
  • the tensile strength of a steel wire changes with component composition and wire diameter of a steel wire
  • regulated to JISG3522 for example, the tensile strength of a steel wire with a wire diameter of 100 micrometers is 24.
  • the tensile strength of the steel wire with 3N and wire diameter of 120 ⁇ m is 34.4N
  • the tensile strength of the steel wire with wire diameter of 130 ⁇ m is 39.7N
  • the piano wire (type B) is used, the steel wire with wire diameter of 100 ⁇ m
  • the tensile strength is 26.5 N
  • the tensile strength of the steel wire having a wire diameter of 120 ⁇ m is 37.7 N
  • the tensile strength of the steel wire having a wire diameter of 130 ⁇ m is 45.7 N.
  • the cutting margin of the workpiece is approximately 1 to 1.1 times (preferably 1 to 1.05 times, more preferably 1) with respect to the wire diameter (diameter) of the resin-coated saw wire. To 1.04 times, more preferably 1 to 1.03 times). Therefore, the productivity of the cut body can be improved.
  • the resin-coated saw wire of the present invention since the hardness of the resin is appropriately adjusted, even if abrasive grains are sprayed on the resin-coated saw wire, the abrasive grains between the cut surface and the resin-coated saw wire Since drawing is suppressed by the resin, the cutting allowance is reduced.
  • the cutting allowance when using a steel wire as the saw wire is a width obtained by adding the length of the steel wire to a length about three times the average diameter of the abrasive grains. Therefore, in order to improve productivity, it is necessary to reduce the diameter of the steel wire, but there is a limit to increasing the strength so that the steel wire does not break, so there is a limit to reducing the cutting allowance.
  • the cutting allowance when the workpiece is cut using the steel wire with fixed abrasive as in the conventional method 2 is equal to the diameter of the steel wire with fixed abrasive, to reduce the cutting allowance, It is conceivable to reduce the diameter of the steel wire or reduce the diameter of the fixed abrasive. However, if the diameter of the steel wire is made too small, the strength becomes insufficient, the cutting load applied at the time of cutting cannot be withstood, and the wire may be broken. Further, when the diameter of the fixed abrasive is reduced, the workpiece is difficult to be ground, so that productivity is deteriorated.
  • Example 1 A workpiece (single crystal silicon) is mounted on the work table, and a saw wire is placed above the work, and abrasives are sprayed on the saw wire. (Carfloss) was measured.
  • Examples 3 to 5 are examples of using a resin-coated saw wire in which a resin is coated on the surface of a steel wire with a thickness shown in Table 1 below as a saw wire.
  • the resin was formed by applying the following varnish to the surface of the steel wire and then curing it by heating. Specifically, prior to forming the resin, the steel wire is degreased, and the number of times of coating is divided into 4 to 10 times, and the following varnish is coated and heated to harden the steel wire. Resin was formed on the surface.
  • Table 1 below shows the diameter of the resin-coated saw wire.
  • SiC abrasive grains having an average particle size of 13 ⁇ m (“Shinano Random (trade name)” manufactured by Shinano Denki Co., Ltd.) as a processing fluid (“ethylene glycol aqueous solution” manufactured by Yushiro Chemical Industry Co., Ltd.) ) was used.
  • the SiC abrasive grain concentration in the slurry was 50% by mass, the diamond abrasive grain concentration was 5% by mass, the slurry temperature was 20-25 ° C., and the slurry supply rate was 100 L / min.
  • the ascent speed (cutting speed) of the work table on which the workpiece is placed is 0.3 mm / min
  • the linear speed of the resin-coated saw wire is 500 m / min
  • the tension of the resin-coated saw wire is 25 N
  • the number of turns of the resin-coated saw wire is 41
  • the resin coating The winding pitch of the saw wire was set to 1 mm.
  • No. 1 is a comparative example in which a steel wire is used as a saw wire.
  • a steel wire is used as a saw wire.
  • loose abrasive grains are drawn between the steel wire and the workpiece, and the workpiece is excessively shaved, resulting in a workpiece cutting margin of 160 ⁇ m. became.
  • the width loss was as large as 40 ⁇ m. Therefore, productivity is getting worse.
  • No. 2 is a comparative example using a wire with fixed abrasive as a saw wire, and the workpiece is cut without spraying loose abrasive, so the cutting allowance of the workpiece is the wire diameter (diameter of the wire with fixed abrasive) ) And 155 ⁇ m.
  • Examples 3 to 5 are examples in which a workpiece is cut using a resin-coated saw wire with a steel wire coated with a resin.
  • the workpiece cutting margin is 125 to 147 ⁇ m, and the width loss is as small as 3 to 4 ⁇ m. It can be seen that can be improved. Further, when the surface of the resin-coated saw wire used for the slicing process was visually observed, the abrasive grains were hardly adhered.
  • No. 1 to 3 are examples in which a steel wire obtained by drawing a piano wire to a diameter of 120 ⁇ m is used as an element wire, and thus has the same tensile strength and is considered to have the same risk of disconnection. No. When comparing 1 to 3, No. The cutting allowance of 3 (resin-coated saw wire) is the smallest, and the productivity is the best.
  • the steel wire itself is unlikely to be reduced in diameter even if slicing is performed. Therefore, the diameter of the steel wire itself can be further reduced. For example, no.
  • the cutting allowance is 125 ⁇ m. It becomes 983 sheets, and productivity can further be improved.
  • the average grain size of the abrasive grains is required to be 15 ⁇ m or more from the viewpoint of ensuring cutability, and the pulling load from the wire of the wire with fixed abrasive grains is a free abrasive. Three to five times as much as when grains are used is required. Therefore, it is difficult to make the wire diameter of the wire with fixed abrasive grains 120 ⁇ m or less from the viewpoint of preventing disconnection. Therefore, no. As shown in FIG. 2, it is difficult to set the cutting allowance to 155 ⁇ m or less.
  • Nos. 21 to 32 are examples of using a resin-coated saw wire in which a resin is coated on the surface of a steel wire with a thickness shown in Table 2 below as a saw wire.
  • the resin was formed by applying the following varnish to the surface of the steel wire and then curing it by heating. Specifically, prior to resin formation, the steel wire is degreased and then coated with the following varnish by dividing the number of coatings into 4-10 times and heated so that the resin temperature is 150-300 ° C. This was heated and cured to form a resin on the surface of the steel wire.
  • the heating temperature is shown in Table 2 below.
  • the hardness at room temperature was measured by the continuous stiffness measurement method, and the hardness was measured when the indentation depth from the outermost surface of the resin film was 400 to 450 nm.
  • the hardness was measured at 15 points, and the hardness was calculated by averaging the measurement results. Of the measurement results, if there is an abnormal value (a value that is 3 or more times or 1/3 or less of the average value), remove this and add the newly measured result to obtain the total number of measurement points. Adjustment was made to be 15 points.
  • Measurement conditions at 120 °C >> Measurement mode: Basic (load removal measurement method) Indentation depth: Up to 450 nm Measurement point: 10 points Measurement environment: Sample tray held at 120 ° C with resistance heater
  • the hardness at 120 ° C. was measured by the load removal measurement method, and the hardness at a position where the indentation depth from the outermost surface of the resin film was 450 nm was measured. That is, when measuring the hardness while heating the sample, the continuous stiffness measurement method cannot be adopted as when measuring the hardness at room temperature. The load was adjusted so that the hardness was measured.
  • the hardness measurement at 120 ° C. was performed while the resin-coated saw wire was attached to a metal nanoindentation sample tray with a ceramic adhesive, and the sample tray was heated with a resistance heater and held at 120 ° C. .
  • the hardness measurement at 120 ° C. was performed at 10 points, and the hardness was calculated by averaging the measurement results. Of the measurement results, if there is an abnormal value (a value that is 3 or more times or 1/3 or less of the average value), remove this and add the newly measured result to obtain the total number of measurement points. Adjustment was made to 10 points.
  • the hardness measured at room temperature or 120 ° C. is shown in Table 2 below.
  • single crystal silicon 60 mm ⁇ 20 mm ⁇ 50 mm
  • a multi-wire saw (“D-500” manufactured by Yasunaga Co., Ltd.) to produce a cut body.
  • Slicing processing was performed while spraying a slurry in which diamond abrasive grains or SiC abrasive grains having an average particle diameter shown in Table 2 below were suspended in an ethylene glycol-based aqueous solution between saw wire and single crystal silicon.
  • SiC abrasive grains having an average particle diameter of 5.6 ⁇ m (Shinano Denki Smelting Co., Ltd., “Shinano Random (trade name)”) were used as the abrasive grains.
  • a slurry suspended in a glycol-based aqueous solution ”) was used.
  • SiC abrasive grains (Shinano Denki Smelting Co., Ltd., “Shinano Random (trade name)”) having an average particle diameter of 13 ⁇ m are used as the processing grains (“ethylene glycol aqueous solution” manufactured by Yushiro Chemical Industry Co., Ltd.) ) Was used.
  • the diamond abrasive grain concentration is 5% by mass, and the SiC abrasive grain concentration is No. 1.
  • Nos. 22 and 23 are 5% by mass. 33 was 50% by mass, the temperature of the slurry was 20 to 25 ° C., and the supply rate of the slurry was 100 L / min.
  • the ascending speed of the work table on which the workpiece is placed is 0.1 mm / min, 0.3 mm / min, or 1 mm / min, the linear velocity of the resin-coated saw wire is 500 m / min, the tension of the resin-coated saw wire is 25 N, The number of windings was 41, and the winding pitch of the resin-coated saw wire was set to 1 mm.
  • FIG. 4 shows a drawing-substituting photograph in which the surface of the resin-coated saw wire used in 32 is photographed.
  • the number of abrasive grains that dig into the resin surface was measured by the following procedure. That is, the surface of the used resin-coated saw wire was photographed at a magnification of 400 with an optical microscope, and the number of abrasive grains observed in a 50 ⁇ m ⁇ 200 ⁇ m region near the center of the resin-coated saw wire was visually measured. The measurement region is indicated by the dotted line in FIG.
  • the depth of the work-affected layer formed on the cut surface and the surface roughness of the cut surface were measured for the cut body obtained by slicing.
  • the depth of the work-affected layer formed on the cut surface is embedded in the resin so as to have an inclination of 4 ° with respect to the horizontal direction.
  • the cut body and the resin were polished so that the cut surface of the cut body was exposed.
  • the exposed surface was etched with an etching solution having the composition shown in Table 3 below, and the work-affected layer formed when the workpiece was cut (etched pits of transition introduced when the workpiece was cut) was observed with an optical microscope.
  • FIGS. FIG. 25, FIG. 27, FIG. 32, FIG. 33, FIG. 35, FIG. 37 shows a drawing substitute photo.
  • No. 21 to 31 are examples in which a cut body was manufactured using a resin-coated saw wire obtained through the steps specified in the present invention, and the depth of the work-affected layer formed on the cut surface was as shallow as 5 ⁇ m or less.
  • the arithmetic average roughness Ra is substantially smooth at 0.5 ⁇ m or less.
  • No. Nos. 32 to 37 are examples in which a cut body was manufactured using a saw wire obtained without going through the steps specified in the present invention.
  • No. No. 32 is an example using a resin-coated saw wire in which the surface of a steel wire is coated with a resin.
  • the resin is too soft, a phenomenon occurs in which abrasive grains bite into the resin during slicing.
  • the depth of the work-affected layer formed on the cut surface was deeper than 5 ⁇ m.
  • FIG. 12 shows the relationship between the hardness of the resin measured at 120 ° C. and the number of abrasive grains that dig into the resin surface (the number in the observation visual field 50 ⁇ m ⁇ 200 ⁇ m region). From FIG. 12, it can be seen that the greater the hardness of the resin measured at 120 ° C., the smaller the number of abrasive grains that bite into the resin.
  • FIG. 13 shows the relationship between the hardness of the resin measured at 120 ° C. and the depth of the work-affected layer formed on the cut surface. It can be seen from FIG. 13 that the depth of the work-affected layer decreases as the hardness of the resin measured at 120 ° C. increases. Moreover, it can be read that if the hardness of the resin measured at 120 ° C. is set to 0.07 GPa or more, the depth of the work-affected layer can be suppressed to 5 ⁇ m or less.
  • the surface of the saw wire is covered with the resin and the hardness thereof is adjusted. Therefore, the pulling of the abrasive grains between the cut surface and the resin-coated saw wire can be suppressed by the resin while pulling and cutting the abrasive grains. Therefore, formation of a work-affected layer on the surface of the cut body can be suppressed. Moreover, when a workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

Provided is a method for designing a resin-coated saw wire such that when a workpiece is cut off using a resin-coated saw wire formed by coating the surface of a steel wire with resin, the depth of a machining-altered layer is shallow, and a cut body having a smooth surface can be obtained. (1) A steel wire is coated with resin having predetermined hardness. (2) A workpiece is cut off using the resin-coated saw wire obtained. (3) The depth of the machining-altered layer on the cut crosses section of the workpiece is examined. (4) Acceptance or rejection of the depth of the machining-altered layer is checked. (5) In the event of rejection, a steel wire is coated with further hardened resin, and items (2) to (4) are repeated, and thereby, resin hardness is adjusted so that the depth of the machining-altered layer on the cut cross section of the workpiece will be accepted.

Description

樹脂被覆ソーワイヤの設計方法Design method of resin-coated saw wire
 本発明は、ソーマシンでシリコンやセラミックスなどのワークを切断するときに用いるソーワイヤに関するものであり、詳細には、鋼線の表面に樹脂を被覆した樹脂被覆ソーワイヤを設計する方法に関するものである。 The present invention relates to a saw wire used when a workpiece such as silicon or ceramics is cut with a saw machine, and more particularly, to a method of designing a resin-coated saw wire in which a surface of a steel wire is coated with a resin.
 シリコンやセラミックスなどのワークは、ソーワイヤが取り付けられたソーマシンで切断される。ソーワイヤは、一方向または双方向(往復方向)に走行しており、このソーワイヤにワークを接触させることでワークを任意の幅でスライスできる。 Work such as silicon and ceramics is cut with a saw machine with a saw wire attached. The saw wire travels in one direction or in both directions (reciprocating direction), and the workpiece can be sliced with an arbitrary width by bringing the workpiece into contact with the saw wire.
 ワークの切断時には、ソーワイヤに砥粒(以下、遊離砥粒と呼ぶことがある。)を含むスラリーを吹き付けながらワークを切断する方法(従来方法1)や、ベースワイヤの表面に砥粒を付着固定した固定砥粒付きソーワイヤを用いてワークを切断する方法(従来方法2)が知られている。前者の方法では、吹き付けたスラリーに含まれる遊離砥粒が、ワークとソーワイヤの間に引き込まれ、ソーワイヤとワークの摩耗が促されることによってワークの研削加工が促進され、ワークが切断される。一方、後者の方法では、表面に固定された砥粒によってワークの摩耗が促されることによってワークの研削加工が促進され、ワークが切断される。 At the time of cutting the workpiece, a method of cutting the workpiece while spraying slurry containing abrasive grains (hereinafter sometimes referred to as loose abrasive grains) on the saw wire (conventional method 1), and attaching and fixing the abrasive grains on the surface of the base wire A method (conventional method 2) for cutting a workpiece using the saw wire with fixed abrasive grains is known. In the former method, loose abrasive grains contained in the sprayed slurry are drawn between the workpiece and the saw wire, and the wear of the saw wire and the workpiece is promoted, whereby the workpiece grinding is promoted and the workpiece is cut. On the other hand, in the latter method, wear of the workpiece is promoted by the abrasive grains fixed on the surface, whereby the grinding of the workpiece is promoted and the workpiece is cut.
 また、特許文献1には、高炭素鋼等の鋼線の外周面を砥粒キャリア樹脂皮膜で被覆したワイヤを用い、遊離砥粒を含む溶液を埋め込ませながらワークを切断する方法(従来方法3)が開示されている。 Patent Document 1 discloses a method of cutting a workpiece while embedding a solution containing free abrasive grains using a wire in which the outer peripheral surface of a steel wire such as high carbon steel is covered with an abrasive carrier resin film (conventional method 3). ) Is disclosed.
 ところで、シリコンをソーワイヤで切断した切断体は、例えば、太陽電池の基板として用いられる。ところが、切断体の切断面には、切断時に加工変質層(ダメージ層と呼ばれることもある。)が形成される。この加工変質層が残ったままでは、基板に対する接合品質が悪くなり、太陽電池としての特性が充分に得られないことが指摘されており(特許文献2)、この加工変質層は除去する必要がある。 Incidentally, a cut body obtained by cutting silicon with a saw wire is used as a substrate of a solar cell, for example. However, a work-affected layer (sometimes called a damage layer) is formed on the cut surface of the cut body during cutting. It has been pointed out that the bonding quality with respect to the substrate is deteriorated if the work-affected layer remains, and the characteristics as a solar cell cannot be sufficiently obtained (Patent Document 2), and it is necessary to remove the work-affected layer. is there.
日本国特開2006-179677号公報Japanese Unexamined Patent Publication No. 2006-179677 日本国特開2000-323736号公報Japanese Unexamined Patent Publication No. 2000-323736
 図1は、上記従来方法1のようにソーワイヤとして鋼線を用い、鋼線に遊離砥粒を吹き付け、砥粒を引き込ませながら切断するときの様子を示している。本発明者らの研究によると、この方法では、ワークに対して鋼線が切り込む方向に砥粒が引き込まれると共に、鋼線とワークの切断面(ワーク壁面)との間に砥粒が引き込まれるため、ワークの切断面にも研削加工が施され、加工変質層が形成されることが分かった。また、切断面の表面粗さも粗くなることが判明した。 FIG. 1 shows a state in which a steel wire is used as a saw wire as in the above-described conventional method 1, and free abrasive grains are sprayed on the steel wire and cut while drawing the abrasive grains. According to the study by the present inventors, in this method, the abrasive grains are drawn in the direction in which the steel wire is cut into the workpiece, and the abrasive grains are drawn between the steel wire and the cut surface (work wall surface) of the workpiece. Therefore, it was found that the cut surface of the workpiece was also ground and a work-affected layer was formed. Moreover, it turned out that the surface roughness of a cut surface also becomes coarse.
 図2は、上記従来方法2、3のように、ソーワイヤの表面に固定砥粒を固定して、または砥粒を埋め込ませながらワークを切断するときの様子を示している。本発明者らの研究によると、これらの方法でも、上記図1と同様、ワークの切断面(ワークの壁面)についても研削加工が施されるため加工変質層が深く形成される。 FIG. 2 shows a state in which the workpiece is cut while fixing the fixed abrasive grains on the surface of the saw wire or embedding the abrasive grains as in the conventional methods 2 and 3 described above. According to the study by the present inventors, in these methods as well, as in the case of FIG. 1 described above, the cut surface of the workpiece (wall surface of the workpiece) is also ground, so that the work-affected layer is deeply formed.
 上記図1、図2に示すように、従来方法では、切断体の切断面には加工変質層が形成されるため、上記特許文献2に指摘されているように、下流側の工程で、この加工変質層を除去する必要がある。この加工変質層除去工程を省略できれば、切断体の歩留まりおよび生産性を向上できる。 As shown in FIG. 1 and FIG. 2, in the conventional method, a work-affected layer is formed on the cut surface of the cut body. It is necessary to remove the work-affected layer. If this process-affected layer removal step can be omitted, the yield and productivity of the cut body can be improved.
 また、上記切断面は、加工変質層が形成される他、切断時に用いられる砥粒によって凹凸が形成されて粗くなる。しかし切断体の表面は、通常、平滑であることが求められるため、下流側の工程で、エッチングが施される。このエッチング工程を省略できれば、切断体の生産性を向上できる。 Further, the cut surface is roughened by forming a work-affected layer and forming irregularities by abrasive grains used at the time of cutting. However, since the surface of the cut body is usually required to be smooth, etching is performed in a downstream process. If this etching step can be omitted, the productivity of the cut body can be improved.
 本発明は、このような状況に鑑みて成されたものであり、その目的は、鋼線の表面に樹脂を被覆した樹脂被覆ソーワイヤを用いてワークを切断したときに、加工変質層深さが浅く、平滑な表面の切断体が得られる樹脂被覆ソーワイヤの設計方法を提供することにある。 The present invention has been made in view of such a situation, and its purpose is that when a workpiece is cut using a resin-coated saw wire in which the surface of a steel wire is coated with a resin, the work-affected layer depth is low. It is an object of the present invention to provide a method for designing a resin-coated saw wire in which a cut body having a shallow and smooth surface can be obtained.
 本発明は以下の態様を含む。
[1] 所定の硬さの樹脂で鋼線を被覆し、樹脂被覆ソーワイヤを得る工程を含む、樹脂被覆ソーワイヤの設計方法であって、
 下記(1)~(4)を繰り返すことによってワークの切断面における加工変質層深さが合格となるように樹脂の硬さを調節する樹脂被覆ソーワイヤの設計方法。
(1)得られた樹脂被覆ソーワイヤでワークを切断する。
(2)ワークの切断面における加工変質層深さを調べる。
(3)加工変質層深さの合否を確認する。
(4)不合格の場合は、より硬くした樹脂で鋼線を被覆する。
 なお、上記合否の基準としては、本発明の効果を得られるような加工変質層深さであればよく、例えば、後述するように、加工変質層深さ5μm以下が合格の基準として挙げられる。
[2] 前記加工変質層深さが5μmよりも深い場合は、より硬くした樹脂で鋼線を被覆する[1]に記載の設計方法。
[3] 所定の硬さの樹脂で鋼線を被覆し、樹脂被覆ソーワイヤを得る工程を含む、樹脂被覆ソーワイヤの設計方法であって、
 下記(1)~(4)を繰り返すことによってワークの切断面における表面粗さが合格となるように樹脂の硬さを調節する樹脂被覆ソーワイヤの設計方法。
(1)得られた樹脂被覆ソーワイヤでワークを切断する。
(2)ワークの切断面における表面粗さを調べる。
(3)表面粗さの合否を確認する。
(4)不合格の場合は、より硬くした樹脂で鋼線を被覆する。
 なお、上記合否の基準としては、本発明の効果を得られるような表面粗さであればよく、例えば、後述するように、表面粗さ0.5μm以下が合格の基準として挙げられる。
[4] 前記表面粗さが0.5μmよりも粗い場合は、より硬くした樹脂で鋼線を被覆する[3]に記載の設計方法。
[5] 前記樹脂の膜厚が2~15μmである[1]~[4]のいずれかに記載の設計方法。
[6] 前記鋼線の線径が130μm以下である[1]~[5]のいずれかに記載の設計方法。
[7] 樹脂被覆ソーワイヤでワークを切断して切断体を製造する方法であって、硬さを調節した樹脂で鋼線を被覆した樹脂被覆ソーワイヤに砥粒を吹き付ける工程、及び、切断面と樹脂被覆ソーワイヤとの間への砥粒の引き込みを前記樹脂によって抑制しつつ、前記ワークに対して前記被覆ソーワイヤが切り込む方向には、砥粒を引き込むことでワークを切断する工程を含む切断体の製造方法。
[8] 前記ワークの切断面における加工変質層深さが5μm以下となるように切断する[7]に記載の製造方法。
[9] 前記ワークの切断面における表面粗さが0.5μm以下となるように切断する[7]に記載の製造方法。
[10] 前記ワークの切断代が、樹脂被覆ソーワイヤの線径に対して1~1.1倍となるように切断する[7]~[9]のいずれかに記載の製造方法。
[11] 前記砥粒として、ダイヤモンド砥粒を吹き付けて切断する[7]~[10]のいずれかに記載の製造方法。
[12] 前記樹脂として、120℃での硬さが0.07GPa以上のものを用いる[7]~[11]のいずれか一つに記載の製造方法。
[13] [7]~[12]のいずれかの方法により製造された切断体。
[14] [7]~[12]のいずれかの製造方法に使用される樹脂被覆ソーワイヤ。
The present invention includes the following aspects.
[1] A method for designing a resin-coated saw wire, including a step of coating a steel wire with a resin having a predetermined hardness to obtain a resin-coated saw wire,
A method for designing a resin-coated saw wire, in which the hardness of the resin is adjusted so that the work-affected layer depth at the cut surface of the workpiece becomes acceptable by repeating the following (1) to (4).
(1) The work is cut with the obtained resin-coated saw wire.
(2) Examine the depth of the work-affected layer on the cut surface of the workpiece.
(3) Confirm the pass / fail of the work-affected layer depth.
(4) In the case of failure, the steel wire is covered with a harder resin.
The acceptance / rejection criteria may be any depth of the work-affected layer that can obtain the effects of the present invention. For example, as will be described later, a work-affected layer depth of 5 μm or less is cited as a pass criterion.
[2] The design method according to [1], in which when the work-affected layer depth is deeper than 5 μm, the steel wire is covered with a harder resin.
[3] A method for designing a resin-coated saw wire, including a step of coating a steel wire with a resin having a predetermined hardness to obtain a resin-coated saw wire,
A method for designing a resin-coated saw wire in which the hardness of the resin is adjusted so that the surface roughness of the cut surface of the workpiece is acceptable by repeating the following (1) to (4).
(1) The work is cut with the obtained resin-coated saw wire.
(2) The surface roughness of the cut surface of the work is examined.
(3) Confirm pass / fail of surface roughness.
(4) In the case of failure, the steel wire is covered with a harder resin.
The acceptance / rejection criteria may be any surface roughness that can achieve the effects of the present invention. For example, as will be described later, a surface roughness of 0.5 μm or less is cited as a pass criterion.
[4] The design method according to [3], wherein when the surface roughness is rougher than 0.5 μm, the steel wire is covered with a harder resin.
[5] The design method according to any one of [1] to [4], wherein the thickness of the resin is 2 to 15 μm.
[6] The design method according to any one of [1] to [5], wherein a wire diameter of the steel wire is 130 μm or less.
[7] A method of manufacturing a cut body by cutting a workpiece with a resin-coated saw wire, the step of spraying abrasive grains on a resin-coated saw wire coated with a steel wire with a resin whose hardness is adjusted, and the cut surface and the resin Manufacture of a cut body including a step of cutting the workpiece by drawing the abrasive grains in the direction in which the coated saw wire is cut into the workpiece while suppressing the drawing of the abrasive grains between the coated saw wire and the resin. Method.
[8] The manufacturing method according to [7], wherein cutting is performed so that a work-affected layer depth at a cut surface of the workpiece is 5 μm or less.
[9] The manufacturing method according to [7], wherein the workpiece is cut so that the surface roughness of the cut surface of the workpiece is 0.5 μm or less.
[10] The manufacturing method according to any one of [7] to [9], wherein the work is cut so that a cutting allowance is 1 to 1.1 times the wire diameter of the resin-coated saw wire.
[11] The production method according to any one of [7] to [10], wherein diamond abrasive grains are sprayed and cut as the abrasive grains.
[12] The production method according to any one of [7] to [11], wherein the resin has a hardness at 120 ° C. of 0.07 GPa or more.
[13] A cut body produced by the method according to any one of [7] to [12].
[14] A resin-coated saw wire used in the production method according to any one of [7] to [12].
 本発明によれば、ソーワイヤの表面を樹脂で被覆すると共に、その硬さを調節している。そのため、砥粒を引き込んで切断しながら、切断面と樹脂被覆ソーワイヤとの間への砥粒の引き込みは樹脂によって抑制できる。よって切断体表面における加工変質層の形成を抑制できる。また、この樹脂被覆ソーワイヤを用いてワークを切断すると、平滑な表面を有する切断体を製造できる。よって、下流側の工程で、加工変質層を除去したり、表面を平滑にするためのエッチング工程を省略でき、切断体の生産性を向上できる。 According to the present invention, the surface of the saw wire is covered with the resin and the hardness thereof is adjusted. Therefore, the pulling of the abrasive grains between the cut surface and the resin-coated saw wire can be suppressed by the resin while pulling and cutting the abrasive grains. Therefore, formation of a work-affected layer on the surface of the cut body can be suppressed. Moreover, when a workpiece | work is cut | disconnected using this resin-coated saw wire, the cut body which has a smooth surface can be manufactured. Therefore, it is possible to remove the work-affected layer or to remove the etching process for smoothing the surface in the downstream process, and the productivity of the cut body can be improved.
 更に、本発明の樹脂被覆ソーワイヤを用いれば、切断面と樹脂被覆ソーワイヤとの間への砥粒の引き込みが抑制されるため、切断代を小さくでき、切断体の生産性を向上できる。 Furthermore, if the resin-coated saw wire of the present invention is used, the pulling of abrasive grains between the cut surface and the resin-coated saw wire is suppressed, so that the cutting allowance can be reduced and the productivity of the cut body can be improved.
図1は、鋼線でワークを切断しているときの様子を示す模式図である。 Drawing 1 is a mimetic diagram showing a situation when a work is cut with a steel wire. 図2は、固定砥粒付き鋼線でワークを切断しているときの様子を示す模式図である。FIG. 2 is a schematic diagram showing a state when a workpiece is cut with a steel wire with fixed abrasive. 図3は、樹脂被覆ソーワイヤでワークを切断しているときの様子を示す模式図である。FIG. 3 is a schematic view showing a state when a workpiece is cut with a resin-coated saw wire. 図4は、表2のNo.32におけるワーク切断後の樹脂被覆ソーワイヤ(比較例)の表面を撮影した図面代用写真である。FIG. 32 is a drawing-substituting photograph obtained by photographing the surface of a resin-coated saw wire (comparative example) after cutting a workpiece in FIG. 図5(a)及び図5(b)は、加工変質層深さを測定する手順を説明するための断面図である。FIG. 5A and FIG. 5B are cross-sectional views for explaining the procedure for measuring the work-affected layer depth. 図6は、表2のNo.25におけるワークの切断面を光学顕微鏡で撮影した図面代用写真である。FIG. 25 is a drawing-substituting photograph obtained by photographing the cut surface of the workpiece in 25 with an optical microscope. 図7は、表2のNo.27におけるワークの切断面を光学顕微鏡で撮影した図面代用写真である。FIG. 27 is a drawing-substituting photograph in which a cut surface of the workpiece in No. 27 is photographed with an optical microscope. 図8は、表2のNo.32におけるワークの切断面を光学顕微鏡で撮影した図面代用写真である。FIG. 32 is a drawing-substituting photograph in which a cut surface of a workpiece in 32 is photographed with an optical microscope. 図9は、表2のNo.33におけるワークの切断面を光学顕微鏡で撮影した図面代用写真である。FIG. 4 is a drawing-substituting photograph in which a cut surface of a workpiece in 33 is photographed with an optical microscope. 図10は、表2のNo.35におけるワークの切断面を光学顕微鏡で撮影した図面代用写真である。FIG. 35 is a drawing-substituting photograph obtained by photographing the cut surface of the workpiece in 35 with an optical microscope. 図11は、表2のNo.37におけるワークの切断面を光学顕微鏡で撮影した図面代用写真である。FIG. 37 is a drawing-substituting photograph obtained by photographing the cut surface of the workpiece in 37 with an optical microscope. 図12は、120℃で測定した樹脂の硬さと、樹脂表面に食い込んだ砥粒の個数との関係を示すグラフである。FIG. 12 is a graph showing the relationship between the hardness of the resin measured at 120 ° C. and the number of abrasive grains that have digged into the resin surface. 図13は、120℃で測定した樹脂の硬さと、切断面に形成された加工変質層の深さとの関係を示すグラフである。FIG. 13 is a graph showing the relationship between the hardness of the resin measured at 120 ° C. and the depth of the work-affected layer formed on the cut surface.
 上記図1、図2に示すように、ソーワイヤとして鋼線または固定砥粒付き鋼線を用い、ソーワイヤに砥粒を吹き付けながらワークを切断すると、ワークの切断面には加工変質層が深く形成され、切断面の表面粗さは粗くなる。 As shown in FIGS. 1 and 2, when a steel wire or a steel wire with fixed abrasive grains is used as a saw wire and the workpiece is cut while spraying abrasive grains on the saw wire, a work-affected layer is deeply formed on the cut surface of the workpiece. The surface roughness of the cut surface becomes rough.
 これに対し、樹脂被覆ソーワイヤを用いれば、加工変質層を浅くでき、表面を平滑にできる。樹脂被覆ソーワイヤを用いてワークを切断するときの様子を図3を用いて説明する。図3に示すように、本発明の樹脂被覆ソーワイヤには、表面に樹脂が形成されており、ワーク切断時には、表面の樹脂が切断面に密着することでソーワイヤとワーク切断面との間に砥粒が引き込まれるのを防止できる。そのため、切断面には加工変質層が形成され難く、切断面の表面は平滑になりやすくなる。 On the other hand, if a resin-coated saw wire is used, the work-affected layer can be made shallow, and the surface can be smoothed. A state when a workpiece is cut using a resin-coated saw wire will be described with reference to FIG. As shown in FIG. 3, the resin-coated saw wire of the present invention has a resin formed on the surface, and when cutting the workpiece, the resin on the surface is in close contact with the cut surface, so that the abrasive is interposed between the saw wire and the workpiece cut surface. It is possible to prevent the grains from being drawn. Therefore, it is difficult to form a work-affected layer on the cut surface, and the surface of the cut surface is likely to be smooth.
 ところで、鋼線の表面に被覆した樹脂が柔らかいと、上記従来方法3のように、砥粒が樹脂に食い込み、上記図2のように、樹脂被覆ソーワイヤとワークとの間に砥粒が介在し、切断面に加工変質層が形成される。 By the way, when the resin coated on the surface of the steel wire is soft, the abrasive grains bite into the resin as in the conventional method 3, and the abrasive grains are interposed between the resin-coated saw wire and the workpiece as shown in FIG. A work-affected layer is formed on the cut surface.
 そこで本発明者らは、鋼線の表面に被覆する樹脂の硬さを適切に調節することで砥粒が樹脂表面に食い込むのを防止し、樹脂被覆ソーワイヤでワークを切断したときに、切断面に形成される加工変質層深さが浅く、切断面の表面粗さを小さくできることを見出し、本発明を完成した。具体的には、所定の硬さの樹脂で鋼線を被覆し、樹脂被覆ソーワイヤを得る工程を含む、樹脂被覆ソーワイヤの設計方法であって、下記(1)~(4)を繰り返すことによってワークの切断面における表面性状(加工変質層深さ、表面粗さなど)が合格となるように樹脂の硬さを調節する樹脂被覆ソーワイヤの設計方法とすればよい。
(1)得られた樹脂被覆ソーワイヤでワークを切断する。
(2)ワークの切断面における表面性状(加工変質層深さ、表面粗さ)を調べる。
(3)表面性状の合否を確認する。
(4)不合格の場合は、より硬くした樹脂で鋼線を被覆する。
Therefore, the present inventors prevent the abrasive grains from biting into the resin surface by appropriately adjusting the hardness of the resin coated on the surface of the steel wire, and when the workpiece is cut with the resin-coated saw wire, The present invention was completed by finding that the depth of the work-affected layer formed in 1 was small and the surface roughness of the cut surface could be reduced. Specifically, a method for designing a resin-coated saw wire including a step of coating a steel wire with a resin having a predetermined hardness to obtain a resin-coated saw wire, wherein the workpiece is obtained by repeating the following (1) to (4) The resin-coated saw wire may be designed in such a manner that the hardness of the resin is adjusted so that the surface properties (processed deteriorated layer depth, surface roughness, etc.) on the cut surface are acceptable.
(1) The work is cut with the obtained resin-coated saw wire.
(2) The surface properties (worked layer depth, surface roughness) on the cut surface of the workpiece are examined.
(3) Confirm pass / fail of surface properties.
(4) In the case of failure, the steel wire is covered with a harder resin.
 樹脂被覆ソーワイヤで切断したワークについて、切断面の表面性状を調べ、その特性が不合格の場合は、より硬い樹脂を鋼線の表面に被覆して樹脂被覆ソーワイヤを製造するように樹脂を設計すれば、切断面の表面性状を良好にできる。 For workpieces cut with resin-coated saw wire, check the surface properties of the cut surface, and if the characteristics are not acceptable, design the resin so that a harder resin is coated on the surface of the steel wire to produce a resin-coated saw wire. Thus, the surface property of the cut surface can be improved.
 適切な表面硬さに調節した樹脂被覆ソーワイヤを用い、該ソーワイヤに砥粒を吹き付けながら樹脂被覆ソーワイヤでワークを切断すると、図3に示すように、ワークに対して樹脂被覆ソーワイヤが切り込む方向には、砥粒が引き込まれるが、切断面と樹脂被覆ソーワイヤとの間への砥粒の引き込みは樹脂によって抑制されるため、ワークの切断面には加工変質層は殆ど形成されず、切断面は平滑となる。 When using a resin-coated saw wire adjusted to an appropriate surface hardness and cutting the workpiece with the resin-coated saw wire while spraying abrasive grains on the saw wire, as shown in FIG. Abrasive grains are pulled in, but since the pulling of the abrasive grains between the cut surface and the resin-coated saw wire is suppressed by the resin, a work-affected layer is hardly formed on the cut surface of the workpiece, and the cut surface is smooth. It becomes.
 表面性状のうち、加工変質層深さが5μm以下(好ましくは4μm以下、より好ましくは3μm以下)であるか、表面粗さ(算術平均粗さRa)が0.5μm以下(好ましくは0.4μm以下、より好ましくは0.3μm以下)となるように樹脂被覆ソーワイヤを設計することが推奨される。上記のように設計された樹脂被覆ソーワイヤで切断した切断体は、例えば、太陽電池用の素材として好適に使用することができる。 Among the surface properties, the work-affected layer depth is 5 μm or less (preferably 4 μm or less, more preferably 3 μm or less), or the surface roughness (arithmetic mean roughness Ra) is 0.5 μm or less (preferably 0.4 μm). In the following, it is recommended to design the resin-coated saw wire so as to be more preferably 0.3 μm or less. The cut body cut with the resin-coated saw wire designed as described above can be suitably used as a material for a solar cell, for example.
 加工変質層深さは、切断面をエッチングし、ワーク切断時に導入された転移のエッチピット深さを測定すればよい。 The depth of the work-affected layer may be determined by etching the cut surface and measuring the etch pit depth of the transition introduced when the workpiece is cut.
 表面粗さは、株式会社ミツトヨ製「CS-3200(装置名)」にて算術平均粗さ(Ra)を測定すればよい。 As for the surface roughness, arithmetic mean roughness (Ra) may be measured by “CS-3200 (device name)” manufactured by Mitutoyo Corporation.
 次に、本発明で好適に用いることができる樹脂被覆ソーワイヤについて説明する。 Next, a resin-coated saw wire that can be suitably used in the present invention will be described.
 本発明で用いる樹脂被覆ソーワイヤは、鋼線の表面に、上記指針に従って設計された樹脂を被覆したものである。 The resin-coated saw wire used in the present invention is obtained by coating the surface of a steel wire with a resin designed according to the above guidelines.
 上記鋼線としては、引張強度が3000MPa以上の鋼線を用いることが好ましい。引張強度が3000MPa以上の鋼線としては、例えば、Cを0.5~1.2%含有する高炭素鋼線を用いることができる。高炭素鋼線としては、例えば、JIS G3502に規定されているピアノ線材を用いることができる。なお、上記鋼線の引張強度の上限としては、延性がなくなり目飛びなどの異常時に断線し易くなるおそれがあることを考慮し、5000MPaとすることが好ましい。 It is preferable to use a steel wire having a tensile strength of 3000 MPa or more as the steel wire. As the steel wire having a tensile strength of 3000 MPa or more, for example, a high carbon steel wire containing 0.5 to 1.2% of C can be used. As the high carbon steel wire, for example, a piano wire specified in JIS G3502 can be used. The upper limit of the tensile strength of the steel wire is preferably set to 5000 MPa in consideration of the possibility that the ductility is lost and the wire is likely to be disconnected at the time of abnormality such as skipping.
 上記鋼線の直径は、切断時に付与される荷重に耐えられる範囲でできるだけ小さくするのがよく、例えば、130μm以下、好ましくは110μm以下、より好ましくは100μm以下である。鋼線の直径を小さくすることによって、切断代を小さくでき、切断体の生産性を向上させることができる。なお、鋼線の直径は60μm以上とすることが好ましい。 The diameter of the steel wire should be as small as possible within a range that can withstand the load applied at the time of cutting, and is, for example, 130 μm or less, preferably 110 μm or less, more preferably 100 μm or less. By reducing the diameter of the steel wire, the cutting allowance can be reduced and the productivity of the cut body can be improved. In addition, it is preferable that the diameter of a steel wire shall be 60 micrometers or more.
 上記樹脂としては、熱硬化性樹脂または熱可塑性樹脂を用いることができ、こうした樹脂のなかでもフェノール樹脂、アミド系樹脂、イミド系樹脂、ポリアミドイミド、エポキシ樹脂、ポリウレタン、ホルマール、ABS樹脂、塩化ビニル、ポリエステル、などを好適に用いることができる。特に、ポリアミドイミド、ポリウレタン、またはポリエステルを好適に用いることができる。 As the resin, a thermosetting resin or a thermoplastic resin can be used, and among these resins, phenol resin, amide resin, imide resin, polyamideimide, epoxy resin, polyurethane, formal, ABS resin, vinyl chloride. , Polyester, and the like can be suitably used. In particular, polyamideimide, polyurethane, or polyester can be preferably used.
 上記樹脂は、上記鋼線の表面に、市販されているワニスを塗布し、これを加熱することによって形成できる。 The resin can be formed by applying a commercially available varnish to the surface of the steel wire and heating it.
 上記ワニスとしては、東特塗料株式会社から市販されているエナメル線用ワニスや京セラケミカル株式会社から市販されている電線用ワニスなどを使用できる。 As the varnish, enameled wire varnish commercially available from Tohoku Paint Co., Ltd., electric wire varnish commercially available from Kyocera Chemical Co., Ltd., etc. can be used.
 上記エナメル線用ワニスとしては、例えば次のものを使用できる。
(a)ポリウレタンワニス(「TPU F1」、「TPU F2-NC」、「TPU F2-NCA」、「TPU 6200」、「TPU 5100」、「TPU 5200」、「TPU 5700」、「TPU K5 132」、「TPU 3000K」、「TPU3000EA」など;東特塗料株式会社製の商品。)
(b)ポリエステルワニス(「LITON 2100S」、「LITON 2100P」、「LITON 3100F」、「LITON 3200BF」、「LITON 3300」、「LITON 3300KF」、「LITON 3500SLD」、「Neoheat 8200K2」など;東特塗料株式会社製の商品。)
(c)ポリアミドイミドワニス(「Neoheat AI-00C」など;東特塗料株式会社製の商品。)
(d)ポリエステルイミドワニス(「Neoheat 8600A」、「Neoheat8600AY」、「Neoheat 8600」、「Neaheat 8600H3」、「Neoheat 8625」、「Neoheat 8600E2」など;東特塗料株式会社製の商品。)
As the varnish for enameled wire, for example, the following can be used.
(A) Polyurethane varnish (“TPU F1”, “TPU F2-NC”, “TPU F2-NCA”, “TPU 6200”, “TPU 5100”, “TPU 5200”, “TPU 5700”, “TPU K5 132” , “TPU 3000K”, “TPU 3000EA”, etc .; products made by Tohoku Paint Co., Ltd.)
(B) Polyester varnish (“LITON 2100S”, “LITON 2100P”, “LITON 3100F”, “LITON 3200BF”, “LITON 3300”, “LITON 3300KF”, “LITON 3500SLD”, “Neoheat 8200K2”, etc. Product made by corporation.)
(C) Polyamideimide varnish (“Neoheat AI-00C” etc .; a product made by Tohoku Paint Co., Ltd.)
(D) Polyesterimide varnish (“Neoheat 8600A”, “Neoheat 8600AY”, “Neoheat 8600”, “Nearheat 8600H3”, “Neoheat 8625”, “Neoheat 8600E2”; products manufactured by Tohoku Paint Co., Ltd.)
 上記電線用ワニスとしては、例えば、耐熱ウレタン銅線用ワニス(「TVE5160-27」など、エポキシ変性ホルマール樹脂)、ホルマール銅線用ワニス(「TVE5225A」など、ポリビニルホルマール樹脂)、耐熱ホルマール銅線用ワニス(「TVE5230-27」など、エポキシ変性ホルマール樹脂)、ポリエステル銅線用ワニス(「TVE5350シリーズ」、ポリエステル樹脂)など(いずれも京セラケミカル株式会社製の商品。)を使用できる。 Examples of the varnish for electric wires include varnishes for heat-resistant urethane copper wires ("TVE5160-27", epoxy-modified formal resins), varnishes for formal copper wires ("TVE5225A", etc., polyvinyl formal resins), and heat-resistant formal copper wires. Varnishes (“TVE5230-27”, such as epoxy-modified formal resin), polyester copper wire varnishes (“TVE5350 series”, polyester resin), etc. (both are products manufactured by Kyocera Chemical Co., Ltd.) can be used.
 上記鋼線の表面に上記ワニスを塗布した後は、例えば、250℃以上(好ましくは300℃以上)で熱硬化させて鋼線の表面を樹脂で被覆すればよい。なお、上記熱硬化の上限としては、鋼線の強度が低下し始めるおそれがあることを考慮し、400℃とすることが好ましい。上記樹脂の硬さは、例えば、被覆する樹脂の種類を変えたり、樹脂を形成するときの加熱温度を変えることによって調整できる。 After applying the varnish to the surface of the steel wire, for example, the surface of the steel wire may be covered with a resin by thermosetting at 250 ° C. or higher (preferably 300 ° C. or higher). The upper limit of the thermosetting is preferably set to 400 ° C. in consideration of the possibility that the strength of the steel wire starts to decrease. The hardness of the resin can be adjusted, for example, by changing the type of resin to be coated or changing the heating temperature when forming the resin.
 上記樹脂としては、120℃で測定したときの硬さが0.07GPa以上の樹脂を用いることが好ましい。即ち、樹脂被覆ソーワイヤでワークを切断する際には、ワイヤを例えば線速500m/分で走らせておき、ワイヤと砥粒またはワイヤとワークが接触しながらワークが切断される。そのため、ワイヤの表面は、摩擦熱による温度上昇が生じ、100℃を超えると考えられる。従って上記樹脂の硬さを、100℃以下(例えば、室温)で測定したときの硬さに基づいて調節すると、実際のワーク切断時に発生する摩擦熱に耐えられず、樹脂が軟化することがある。樹脂が軟化すると、砥粒が樹脂に食い込みやすくなるため、加工変質層の深さが大きく、表面が粗くなることがある。 As the resin, it is preferable to use a resin having a hardness measured at 120 ° C. of 0.07 GPa or more. That is, when a workpiece is cut with a resin-coated saw wire, the wire is run at a linear speed of 500 m / min, for example, and the workpiece is cut while the wire and abrasive grains or the wire and the workpiece are in contact with each other. For this reason, the surface of the wire is considered to rise in temperature due to frictional heat and exceed 100 ° C. Therefore, if the hardness of the resin is adjusted based on the hardness measured at 100 ° C. or lower (for example, room temperature), the resin may be softened because it cannot withstand the frictional heat generated during actual workpiece cutting. . When the resin is softened, the abrasive grains easily bite into the resin, so that the depth of the work-affected layer is large and the surface may be roughened.
 そこで上記樹脂の硬さは、ワーク切断時に摩擦熱が発生しても軟化しないように、100℃を超える温度(例えば、120℃)で測定したときの硬さに基づいて調節することが推奨される。具体的には、上記樹脂として、120℃で測定したときの硬さが0.07GPa以上の樹脂を用いることが好ましく、より好ましくは0.1GPa以上の樹脂を用いるのがよい。120℃で測定したときの硬さが0.07GPa以上の樹脂を用いることによって、樹脂表面に食い込む砥粒の個数を、20個/(50μm×200μm)以下に抑えることができ、切断体に形成される加工変質層の深さを小さく、また切断体表面を平滑にすることができる。なお、樹脂の硬さは、硬ければ硬いほどよく、その上限は特に設定されない。 Therefore, it is recommended that the hardness of the resin be adjusted based on the hardness when measured at a temperature exceeding 100 ° C. (for example, 120 ° C.) so that it does not soften even if frictional heat is generated when the workpiece is cut. The Specifically, as the resin, it is preferable to use a resin having a hardness when measured at 120 ° C. of 0.07 GPa or more, and more preferably a resin having a hardness of 0.1 GPa or more. By using a resin having a hardness of 0.07 GPa or more when measured at 120 ° C., the number of abrasive grains that bite into the resin surface can be suppressed to 20 / (50 μm × 200 μm) or less, and formed into a cut body. It is possible to reduce the depth of the work-affected layer, and to smooth the surface of the cut body. In addition, the hardness of resin is so good that it is hard, and the upper limit in particular is not set.
 上記樹脂の硬さは、例えば、ナノインデンテーション法で測定できる。 The hardness of the resin can be measured by, for example, a nanoindentation method.
 上記樹脂の膜厚は、例えば、2~15μmとすればよい。樹脂が薄過ぎると、鋼線の表面に樹脂を均一に形成することが困難となるおそれがある。また、樹脂が薄過ぎると切断初期の段階で樹脂が摩滅するため、素線(鋼線)が露出し、素線が摩耗して断線し易くなるおそれがある。従って樹脂の膜厚は、好ましくは2μm以上、より好ましくは3μm以上、特に好ましくは4μm以上とする。しかし樹脂が厚過ぎると、樹脂被覆ソーワイヤの直径が大きくなるため、切断代が大きくなり、生産性が劣化するおそれがある。また、樹脂被覆ソーワイヤ全体に占める樹脂の割合が大きくなり過ぎるため、樹脂被覆ソーワイヤ全体の強度が低下するおそれがある。そのため、生産性を上げようとしてワイヤの線速を大きくすると断線し易くなる傾向がある。従って樹脂の膜厚は好ましくは15μm以下、より好ましくは13μm以下、特に好ましくは10μm以下とする。なお、上記樹脂の膜厚の上限と下限を任意に組み合わせて上記樹脂の膜厚の範囲とすることもできる。 The film thickness of the resin may be 2 to 15 μm, for example. If the resin is too thin, it may be difficult to form the resin uniformly on the surface of the steel wire. In addition, if the resin is too thin, the resin is worn away at the initial stage of cutting, so that the strand (steel wire) is exposed, and the strand may be worn and easily broken. Accordingly, the thickness of the resin is preferably 2 μm or more, more preferably 3 μm or more, and particularly preferably 4 μm or more. However, if the resin is too thick, the diameter of the resin-coated saw wire increases, so that the cutting allowance increases and the productivity may deteriorate. Moreover, since the ratio of the resin to the whole resin-coated saw wire becomes too large, the strength of the entire resin-coated saw wire may be lowered. Therefore, if the wire speed is increased in order to increase productivity, the wire tends to be easily disconnected. Therefore, the thickness of the resin is preferably 15 μm or less, more preferably 13 μm or less, and particularly preferably 10 μm or less. In addition, the upper limit and the lower limit of the film thickness of the resin can be arbitrarily combined to make the resin film thickness range.
 上記樹脂被覆ソーワイヤの直径(線径)は特に限定されないが、通常、100~300μm程度(好ましくは100~150μm)である。 The diameter (wire diameter) of the resin-coated saw wire is not particularly limited, but is usually about 100 to 300 μm (preferably 100 to 150 μm).
 上記樹脂被覆ソーワイヤで切断対象とするワークとしては、例えば、シリコン、セラミックス、水晶、半導体部材、磁性体材料等を用いることができる。 As the workpiece to be cut with the resin-coated saw wire, for example, silicon, ceramics, crystal, semiconductor member, magnetic material, or the like can be used.
 次に、上記樹脂被覆ソーワイヤを用いてワークを切断して切断体を製造するときの条件について説明する。 Next, conditions for manufacturing a cut body by cutting a workpiece using the resin-coated saw wire will be described.
 上記被覆ソーワイヤでワークを切断する際には、ソーワイヤに砥粒を吹き付けてからワークを切断する。この砥粒としては、例えば、炭化珪素砥粒(SiC砥粒)やダイヤモンド砥粒などを用いることができる。特に、切断面を平滑にするには、ダイヤモンド砥粒を用いることが好ましい。 When cutting the workpiece with the above-mentioned coated saw wire, the workpiece is cut after abrasive grains are sprayed on the saw wire. As this abrasive grain, a silicon carbide abrasive grain (SiC abrasive grain), a diamond abrasive grain, etc. can be used, for example. In particular, it is preferable to use diamond abrasive grains to smooth the cut surface.
 上記ダイヤモンド砥粒としては、例えば、住石マテリアルズ株式会社製の「SCMファインダイヤ(商品名)」を用いることができる。ダイヤモンド砥粒としては、多結晶タイプまたは単結晶タイプを用いることができるが、単結晶タイプを用いることが好ましい。単結晶タイプは切削時に破壊され難いからである。 As the diamond abrasive grains, for example, “SCM Fine Diamond (trade name)” manufactured by Sumiishi Materials Co., Ltd. can be used. As the diamond abrasive grains, a polycrystalline type or a single crystal type can be used, but it is preferable to use a single crystal type. This is because the single crystal type is not easily broken during cutting.
 上記砥粒の平均粒径は特に限定されず、例えば、2~15μm(好ましくは4~10μm、より好ましくは4~7μm)であればよい。 The average particle size of the abrasive grains is not particularly limited, and may be, for example, 2 to 15 μm (preferably 4 to 10 μm, more preferably 4 to 7 μm).
 上記砥粒の平均粒径は、例えば、日機装株式会社製の「マイクロトラックHRA(装置名)」で測定できる。 The average particle size of the abrasive grains can be measured by, for example, “Microtrack HRA (device name)” manufactured by Nikkiso Co., Ltd.
 上記砥粒は、通常、加工液に分散させたスラリーを吹き付ける。上記加工液としては、水溶性の加工液または油性の加工液を用いることができる。水溶性の加工液としては、ユシロ化学工業株式会社製のエチレングリコール系加工液「H4」、三洋化成工業株式会社製のプロピレングリコール系加工液「ハイスタットTMD(商品名)」などを用いることができる。油性の加工液としては、ユシロ化学工業株式会社「ユシロンオイル(商品名)」などを用いることができる。 The above abrasive grains are usually sprayed with a slurry dispersed in a working fluid. As the processing liquid, a water-soluble processing liquid or an oil-based processing liquid can be used. As water-soluble processing fluid, ethylene glycol processing fluid “H4” manufactured by Yushiro Chemical Industry Co., Ltd., propylene glycol processing fluid “Histat TMD (trade name)” manufactured by Sanyo Chemical Industries, Ltd., etc. may be used. it can. As the oil-based processing fluid, Yushiro Chemical Industry Co., Ltd. “Yushiron Oil (trade name)” or the like can be used.
 上記スラリーにおける砥粒の濃度は、例えば、5~50質量%(好ましくは5~30質量%、より好ましくは5~10質量%)のものを用いることができる。 The concentration of abrasive grains in the slurry can be, for example, 5 to 50% by mass (preferably 5 to 30% by mass, more preferably 5 to 10% by mass).
 上記スラリーの温度は、例えば、10~30℃(好ましくは20~25℃)であればよい。 The temperature of the slurry may be, for example, 10 to 30 ° C. (preferably 20 to 25 ° C.).
 上記樹脂被覆ソーワイヤでワークを切断するときの条件は、例えば、ワークの切断速度を0.1~0.8mm/分(好ましくは0.1~0.35mm/分、より好ましくは0.25~0.35mm/分)、樹脂被覆ソーワイヤの線速を300m/分以上(好ましくは500m/分以上、より好ましくは800m/分以上)とすればよい。 The conditions for cutting the workpiece with the resin-coated saw wire include, for example, a workpiece cutting speed of 0.1 to 0.8 mm / min (preferably 0.1 to 0.35 mm / min, more preferably 0.25 to 0.35 mm / min), and the linear velocity of the resin-coated saw wire may be 300 m / min or more (preferably 500 m / min or more, more preferably 800 m / min or more).
 また、樹脂被覆ソーワイヤにかける張力(N)は、素線(樹脂を被覆する前の鋼線)の抗張力に基づいて算出される下記式(1)の範囲を満足するように設定することが好ましい。下記式(1)において、鋼線の抗張力(N)に対して50~70%の範囲としたのは、切断時に断線を発生させないためであり、「-5.0」としたのは、切断時の樹脂被覆ソーワイヤにかかる切断荷重とワークから樹脂被覆ソーワイヤを引き抜くときにかかる引き抜き荷重を足した合計がおおよそ5.0Nだからである。
 抗張力×0.5-5.0≦張力≦抗張力×0.7-5.0 ・・・(1)
Moreover, it is preferable to set the tension (N) applied to the resin-coated saw wire so as to satisfy the range of the following formula (1) calculated based on the tensile strength of the wire (the steel wire before coating the resin). . In the following formula (1), the range of 50 to 70% with respect to the tensile strength (N) of the steel wire is to prevent disconnection at the time of cutting. This is because the total of the cutting load applied to the resin-coated saw wire and the pull-out load applied when the resin-coated saw wire is pulled out from the workpiece is approximately 5.0 N.
Tensile strength × 0.5-5.0 ≦ Tension ≦ Tension strength × 0.7-5.0 (1)
 なお、鋼線の抗張力は、鋼線の成分組成および線径によって異なるが、例えば、JISG3522に規定されているピアノ線(A種)を用いた場合は、線径100μmの鋼線の抗張力は24.3N、線径120μmの鋼線の抗張力は34.4N、線径130μmの鋼線の抗張力は39.7Nであり、ピアノ線(B種)を用いた場合は、線径100μmの鋼線の抗張力は26.5N、線径120μmの鋼線の抗張力は37.7N、線径130μmの鋼線の抗張力は45.7Nである。 In addition, although the tensile strength of a steel wire changes with component composition and wire diameter of a steel wire, when using the piano wire (A type) prescribed | regulated to JISG3522, for example, the tensile strength of a steel wire with a wire diameter of 100 micrometers is 24. The tensile strength of the steel wire with 3N and wire diameter of 120μm is 34.4N, the tensile strength of the steel wire with wire diameter of 130μm is 39.7N, and when the piano wire (type B) is used, the steel wire with wire diameter of 100μm The tensile strength is 26.5 N, the tensile strength of the steel wire having a wire diameter of 120 μm is 37.7 N, and the tensile strength of the steel wire having a wire diameter of 130 μm is 45.7 N.
 上記樹脂被覆ソーワイヤでワークを切断すると、ワークの切断代は、樹脂被覆ソーワイヤの線径(直径)に対して、おおよそ1~1.1倍(好ましくは1~1.05倍、より好ましくは1~1.04倍、さらに好ましくは1~1.03倍)となる。従って切断体の生産性を向上させることができる。 When the workpiece is cut with the resin-coated saw wire, the cutting margin of the workpiece is approximately 1 to 1.1 times (preferably 1 to 1.05 times, more preferably 1) with respect to the wire diameter (diameter) of the resin-coated saw wire. To 1.04 times, more preferably 1 to 1.03 times). Therefore, the productivity of the cut body can be improved.
 即ち、本発明の樹脂被覆ソーワイヤによれば、樹脂の硬さを適切に調節しているため、樹脂被覆ソーワイヤに砥粒を吹き付けても、切断面と樹脂被覆ソーワイヤとの間への砥粒の引き込みは上記樹脂によって抑制されるため、切断代が小さくなる。 That is, according to the resin-coated saw wire of the present invention, since the hardness of the resin is appropriately adjusted, even if abrasive grains are sprayed on the resin-coated saw wire, the abrasive grains between the cut surface and the resin-coated saw wire Since drawing is suppressed by the resin, the cutting allowance is reduced.
 これに対し、上記従来方法1のように、ソーワイヤとして鋼線を用いたときの切断代は、鋼線の直径に、砥粒の平均直径の3倍程度の長さを足した幅になる。従って生産性を向上させるには、鋼線の直径を小さくする必要があるが、鋼線が断線しないように強度を高めるには限界があるため、切断代を小さくすることにも限度がある。 On the other hand, as in the conventional method 1, the cutting allowance when using a steel wire as the saw wire is a width obtained by adding the length of the steel wire to a length about three times the average diameter of the abrasive grains. Therefore, in order to improve productivity, it is necessary to reduce the diameter of the steel wire, but there is a limit to increasing the strength so that the steel wire does not break, so there is a limit to reducing the cutting allowance.
 また、上記従来方法3のように、樹脂皮膜に砥粒を食い込ませると、ソーワイヤの線径(直径)が大きくなるため、ワークの切断代が大きくなる。 In addition, when abrasive grains are digged into the resin film as in the conventional method 3, the wire diameter (diameter) of the saw wire increases, so that the cutting allowance for the workpiece increases.
 なお、上記従来方法2のように、固定砥粒付き鋼線を用いてワークを切断したときの切断代は、固定砥粒付き鋼線の直径に等しくなるため、切断代を小さくするには、鋼線の直径を小さくするか、固定砥粒の直径を小さくすることが考えられる。しかし、鋼線の直径を小さくし過ぎると、強度不足となり、切断時に付与される切断荷重に耐えられず、断線する恐れがある。また、固定砥粒の直径を小さくすると、ワークが研削され難くなるため、生産性が劣化する。 In addition, since the cutting allowance when the workpiece is cut using the steel wire with fixed abrasive as in the conventional method 2 is equal to the diameter of the steel wire with fixed abrasive, to reduce the cutting allowance, It is conceivable to reduce the diameter of the steel wire or reduce the diameter of the fixed abrasive. However, if the diameter of the steel wire is made too small, the strength becomes insufficient, the cutting load applied at the time of cutting cannot be withstood, and the wire may be broken. Further, when the diameter of the fixed abrasive is reduced, the workpiece is difficult to be ground, so that productivity is deteriorated.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
 下記実験例1では、ワークをソーワイヤで切断して切断体を製造したときの切断代(カーフロス)について調べ、下記実験例2では、ワークをソーワイヤで切断して切断体を製造したときに切断面に形成される加工変質層深さおよび表面粗さについて調べた。 In Experimental Example 1 below, the cutting allowance (kerfloss) when a workpiece is cut by saw wire to produce a cut body is examined. In Experimental Example 2 below, the cut surface is obtained when the workpiece is cut by saw wire to produce a cut body. The depth and surface roughness of the work-affected layer formed on the surface were investigated.
[実験例1]
 加工台にワーク(単結晶シリコン)を取り付けると共に、ワークの上方にソーワイヤを這わせ、ソーワイヤに砥粒を吹き付けながら、加工台を上昇させて走行するワイヤによってワークを切断し、ワークの切断代(カーフロス)を測定した。
[Experimental Example 1]
A workpiece (single crystal silicon) is mounted on the work table, and a saw wire is placed above the work, and abrasives are sprayed on the saw wire. (Carfloss) was measured.
 上記ソーワイヤとして、下記表1に示す種類のソーワイヤを用いた。 As the saw wire, the types of saw wires shown in Table 1 below were used.
 下記表1のNo.1では、ソーワイヤとして、JIS G3502に規定されるピアノ線材(A種、「SWRS 82A」相当の線材。具体的には、C:0.82質量%、Si:0.19質量%、Mn:0.49質量%を含有し、残部が鉄および不可避不純物からなる線材。)を直径120μmに線引きした鋼線を用いた。 No. in Table 1 below. 1, the wire corresponding to a piano wire (Class A, “SWRS 82A” defined in JIS G3502 as a saw wire. Specifically, C: 0.82 mass%, Si: 0.19 mass%, Mn: 0 A steel wire having a diameter of 120 μm was used, which was .49% by mass, and the balance was made of iron and inevitable impurities.
 下記表1のNo.2では、ソーワイヤとして、上記No.1で用いたピアノ線材を直径120μmに線引きした鋼線の表面に、Niメッキを施し、このNiメッキ層に最大直径が17.5μmのダイヤモンド砥粒を固着させた固定砥粒付きワイヤを用いた。固定砥粒付きワイヤの直径は155μmである。 No. in Table 1 below. In No. 2, as the saw wire, the above No. 2 is used. The surface of the steel wire drawn to 120 μm in diameter with the piano wire used in 1 was plated with Ni, and a wire with fixed abrasive grains in which diamond abrasive grains with a maximum diameter of 17.5 μm were fixed to this Ni plated layer was used. . The diameter of the wire with fixed abrasive is 155 μm.
 下記表1のNo.3~5は、ソーワイヤとして、鋼線の表面に樹脂を下記表1に示す厚みで被覆した樹脂被覆ソーワイヤを用いた例である。 No. in Table 1 below. Examples 3 to 5 are examples of using a resin-coated saw wire in which a resin is coated on the surface of a steel wire with a thickness shown in Table 1 below as a saw wire.
 上記鋼線として、下記表1のNo.3では上記No.1で用いたピアノ線材を直径120μmに線引きした鋼線を用い、下記表1のNo.4では上記No.1で用いたピアノ線材を直径130μmに線引きした鋼線を用い、下記表1のNo.5では上記No.1で用いたピアノ線材を直径110μmに線引きした鋼線を用いた。 No. in the following Table 1 as the steel wire. In No. 3 above, No. 1 in Table 1 below was used, using a steel wire drawn to a diameter of 120 μm. In No. 4 above, No. 1 in the following Table 1 was used using a steel wire drawn to a diameter of 130 μm from the piano wire used in No. 1. In No. 5 above, A steel wire obtained by drawing the piano wire used in 1 to a diameter of 110 μm was used.
 上記樹脂は、上記鋼線の表面に下記ワニスを塗布した後、加熱することにより硬化させて形成した。具体的には、樹脂を形成するに先立って、鋼線に脱脂処理を行った後、塗布回数を4~10回に分けて下記ワニスをコーティングし、これを加熱して硬化させて鋼線の表面に樹脂を形成した。 The resin was formed by applying the following varnish to the surface of the steel wire and then curing it by heating. Specifically, prior to forming the resin, the steel wire is degreased, and the number of times of coating is divided into 4 to 10 times, and the following varnish is coated and heated to harden the steel wire. Resin was formed on the surface.
 下記表1に示すNo.3~5では、JIS C2351に規定されるポリウレタン線用ワニス「W143」(東特塗料株式会社製、エナメル線用ワニス「TPU F1(商品名)」、焼付け後の塗膜組成はポリウレタン)を用い、加熱温度は250℃とした。 No. shown in Table 1 below. Nos. 3 to 5 use varnish for polyurethane wire “W143” (manufactured by Tohoku Paint Co., Ltd., enameled wire varnish “TPU F1 (trade name)”, and the coating composition after baking is polyurethane). The heating temperature was 250 ° C.
 下記表1に、樹脂被覆ソーワイヤの直径を示す。 Table 1 below shows the diameter of the resin-coated saw wire.
 次に、上記No.1~5のソーワイヤを用い、マルチワイヤソー(株式会社安永製、「D-500」)にて単結晶シリコン(60mm×20mm×50mm)を切断(スライシング加工)した。スライシング加工は、下記表1に示す平均粒径のSiC砥粒またはダイヤモンド砥粒を加工液に懸濁させたスラリーを吹き付けながら行った。 Next, the above No. Single-crystal silicon (60 mm × 20 mm × 50 mm) was cut (sliced) with a multi-wire saw (“D-500” manufactured by Yasunaga Co., Ltd.) using 1-5 saw wires. The slicing process was performed while spraying a slurry in which SiC abrasive grains or diamond abrasive grains having an average particle diameter shown in Table 1 below were suspended in the machining liquid.
 下記表1のNo.1では、砥粒として、平均粒径が13μmのSiC砥粒(信濃電気製錬株式会社製、「シナノランダム(商品名)」)を加工液(ユシロ化学工業社製の「エチレングリコール系水溶液」)に懸濁させたスラリーを用いた。 No. in Table 1 below. 1, SiC abrasive grains having an average particle size of 13 μm (“Shinano Random (trade name)” manufactured by Shinano Denki Co., Ltd.) as a processing fluid (“ethylene glycol aqueous solution” manufactured by Yushiro Chemical Industry Co., Ltd.) ) Was used.
 下記表1のNo.3~5では、砥粒として、平均粒径が5.6μmのダイヤモンド砥粒(住石マテリアルズ株式会社製、「SCMファインダイヤ(商品名)」)を加工液(ユシロ化学工業社製の「エチレングリコール系水溶液」)に懸濁させたスラリーを用いた。 No. in Table 1 below. In Nos. 3 to 5, diamond abrasive grains having an average particle size of 5.6 μm (manufactured by Sumiishi Materials Co., Ltd., “SCM Fine Diamond (trade name)”) are used as the abrasive grains. A slurry suspended in an ethylene glycol aqueous solution ") was used.
 スラリー中のSiC砥粒濃度は50質量%、ダイヤモンド砥粒濃度はいずれも5質量%であり、スラリーの温度は20~25℃、スラリーの供給量は100L/分とした。 The SiC abrasive grain concentration in the slurry was 50% by mass, the diamond abrasive grain concentration was 5% by mass, the slurry temperature was 20-25 ° C., and the slurry supply rate was 100 L / min.
 ワークを乗せた加工台の上昇速度(切断速度)は0.3mm/分、樹脂被覆ソーワイヤの線速は500m/分、樹脂被覆ソーワイヤの張力は25N、樹脂被覆ソーワイヤの巻数は41巻、樹脂被覆ソーワイヤの巻ピッチは1mmに設定した。 The ascent speed (cutting speed) of the work table on which the workpiece is placed is 0.3 mm / min, the linear speed of the resin-coated saw wire is 500 m / min, the tension of the resin-coated saw wire is 25 N, the number of turns of the resin-coated saw wire is 41, and the resin coating The winding pitch of the saw wire was set to 1 mm.
 なお、下記表1のNo.2では、ソーワイヤと単結晶シリコンの間に、加工液として砥粒を含まないエチレングリコール系水溶液を吹き付けながらスライシング加工した。 In addition, No. in Table 1 below. In No. 2, slicing was performed while spraying an ethylene glycol-based aqueous solution containing no abrasive grains between the saw wire and the single crystal silicon.
 上記条件でスライシング加工したときの切断代を測定し、結果を下記表1に示す。 The cutting allowance was measured when slicing was performed under the above conditions, and the results are shown in Table 1 below.
 また、切断代とソーワイヤの線径(直径)との差(幅ロス)を算出し、結果を下記表1に示す。 Also, the difference (width loss) between the cutting allowance and the wire diameter (diameter) of the saw wire was calculated, and the results are shown in Table 1 below.
 下記表1から次のように考察できる。No.1は、ソーワイヤとして鋼線を用いた比較例であり、ワーク切断時に、鋼線とワークとの間に遊離砥粒が引き込まれ、ワークが過剰に削られた結果、ワークの切断代は160μmになった。また、幅ロスは40μmと大きくなった。従って生産性が悪くなっている。切断代を狭くするには、鋼線の直径を小さくすることが考えられるが、ワーク切断時には鋼線自体も削られるため、鋼線の直径を小さくし過ぎると鋼線の断線が発生し易くなる。No.1のように、鋼線の直径が120μmの場合は、断線を発生させないために、鋼線の直径が100μmに減径するまでに鋼線を交換する必要がある。 The following table 1 can be considered as follows. No. 1 is a comparative example in which a steel wire is used as a saw wire. When cutting a workpiece, loose abrasive grains are drawn between the steel wire and the workpiece, and the workpiece is excessively shaved, resulting in a workpiece cutting margin of 160 μm. became. Further, the width loss was as large as 40 μm. Therefore, productivity is getting worse. To narrow the cutting allowance, it is conceivable to reduce the diameter of the steel wire, but the steel wire itself is also cut when cutting the workpiece. Therefore, if the diameter of the steel wire is too small, the steel wire is likely to break. . No. As in 1, when the diameter of the steel wire is 120 μm, it is necessary to replace the steel wire before the diameter of the steel wire is reduced to 100 μm in order to prevent disconnection.
 No.2は、ソーワイヤとして固定砥粒付きワイヤを用いた比較例であり、遊離砥粒を吹付けずにワークを切断しているため、ワークの切断代は、固定砥粒付きワイヤの線径(直径)と同じ155μmであった。 No. 2 is a comparative example using a wire with fixed abrasive as a saw wire, and the workpiece is cut without spraying loose abrasive, so the cutting allowance of the workpiece is the wire diameter (diameter of the wire with fixed abrasive) ) And 155 μm.
 No.3~5は、鋼線の表面に樹脂を被覆した樹脂被覆ソーワイヤを用いてワークを切断した例であり、ワークの切断代は125~147μmであり、幅ロスは3~4μmと小さく、生産性を向上できることが分かる。また、スライシング加工に用いた樹脂被覆ソーワイヤ表面を目視で観察したところ、砥粒は殆ど付着していなかった。 No. Examples 3 to 5 are examples in which a workpiece is cut using a resin-coated saw wire with a steel wire coated with a resin. The workpiece cutting margin is 125 to 147 μm, and the width loss is as small as 3 to 4 μm. It can be seen that can be improved. Further, when the surface of the resin-coated saw wire used for the slicing process was visually observed, the abrasive grains were hardly adhered.
 No.1~3は、いずれも、ピアノ線材を直径120μmに線引きした鋼線を素線として用いた例であるため、同じ抗張力を有しており、断線に対する危険性は同じと考えられる。No.1~3を比較すると、No.3(樹脂被覆ソーワイヤ)の切断代が最も小さく、生産性が最も良好である。 No. 1 to 3 are examples in which a steel wire obtained by drawing a piano wire to a diameter of 120 μm is used as an element wire, and thus has the same tensile strength and is considered to have the same risk of disconnection. No. When comparing 1 to 3, No. The cutting allowance of 3 (resin-coated saw wire) is the smallest, and the productivity is the best.
 上記実験例1で得られた結果に基づいて、長さが300mmの単結晶シリコンから、現在主流の厚み0.18mmのウエハを切り出す場合について考えると、ソーワイヤとして上記No.1の鋼線を用いた場合には、切断代が160μmであるため、ウエハの取得枚数は882枚となる。上記No.2の固定砥粒付きワイヤを用いた場合には、切断代が155μmであるため、ウエハの取得枚数は895枚となり、上記No.3の樹脂被覆ソーワイヤを用いた場合には、切断代が135μmであるため、ウエハの取得枚数は952枚となる。 Based on the results obtained in Experimental Example 1, considering the case where a wafer with a thickness of 0.18 mm, which is currently mainstream, is cut out from single-crystal silicon having a length of 300 mm, the above-mentioned No. 1 is obtained as a saw wire. When the steel wire No. 1 is used, since the cutting allowance is 160 μm, the number of wafers acquired is 882. No. above. In the case of using the wire with fixed abrasive of No. 2, since the cutting allowance is 155 μm, the number of wafers acquired is 895, and the above No. 2 is obtained. When the resin-coated saw wire No. 3 is used, since the cutting allowance is 135 μm, the number of acquired wafers is 952.
 樹脂被覆ソーワイヤを用いた場合には、樹脂が鋼線の耐摩耗性を向上させる作用を有しているため、スライシング加工しても鋼線自体の減径は発生し難い。従って、鋼線自体の直径を更に小さくできる。例えば、No.5のように、直径が110μmの鋼線の表面に、ポリウレタン樹脂を厚み6μmで被覆した樹脂被覆ソーワイヤを用いてワークを切断した場合には、切断代は125μmになるため、ウエハの取得枚数は983枚となり、生産性を更に向上できる。 When a resin-coated saw wire is used, since the resin has an effect of improving the wear resistance of the steel wire, the steel wire itself is unlikely to be reduced in diameter even if slicing is performed. Therefore, the diameter of the steel wire itself can be further reduced. For example, no. When the workpiece is cut using a resin-coated saw wire in which a polyurethane resin is coated with a thickness of 6 μm on the surface of a steel wire having a diameter of 110 μm as shown in FIG. 5, the cutting allowance is 125 μm. It becomes 983 sheets, and productivity can further be improved.
 一方、固定砥粒付きワイヤの場合は、切断性確保の観点から、砥粒の平均粒径は15μm以上が必要とされており、また固定砥粒付きワイヤのワイヤからの引き抜き荷重は、遊離砥粒を用いた場合の3~5倍は必要とされている。従って、固定砥粒付きワイヤの線径を120μm以下にすることは、断線を防止する観点から難しい。よってNo.2に示したように、切断代を155μm以下とするのは困難である。 On the other hand, in the case of a wire with fixed abrasive grains, the average grain size of the abrasive grains is required to be 15 μm or more from the viewpoint of ensuring cutability, and the pulling load from the wire of the wire with fixed abrasive grains is a free abrasive. Three to five times as much as when grains are used is required. Therefore, it is difficult to make the wire diameter of the wire with fixed abrasive grains 120 μm or less from the viewpoint of preventing disconnection. Therefore, no. As shown in FIG. 2, it is difficult to set the cutting allowance to 155 μm or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実験例2]
 加工台にワーク(単結晶シリコン)を取り付けると共に、ワークの上方にソーワイヤを這わせ、ソーワイヤに砥粒を吹き付けながら、加工台を上昇させて走行するワイヤによってワークを切断したときに、単結晶シリコンの切断代、切断面に形成された加工変質層深さ、および切断面の表面粗さを測定した。
[Experiment 2]
When a workpiece (single crystal silicon) is attached to the work table, a saw wire is placed above the work, and abrasive grains are sprayed on the saw wire, while the work piece is lifted and the workpiece is cut by the wire that travels, the single crystal silicon The cutting allowance, the depth of the work-affected layer formed on the cut surface, and the surface roughness of the cut surface were measured.
 上記ソーワイヤとして、下記表2に示す種類のソーワイヤを用いた。 As the saw wire, the types of saw wires shown in Table 2 below were used.
 下記表2のNo.21~32は、ソーワイヤとして、鋼線の表面に樹脂を下記表2に示す厚みで被覆した樹脂被覆ソーワイヤを用いた例である。 No. in Table 2 below. Nos. 21 to 32 are examples of using a resin-coated saw wire in which a resin is coated on the surface of a steel wire with a thickness shown in Table 2 below as a saw wire.
 上記鋼線として、下記表2のNo.21~32では、上記実験例1のNo.1で用いたピアノ線材を直径130μmに線引きした鋼線を用いた。 No. in Table 2 below as the steel wire. In Nos. 21 to 32, No. A steel wire obtained by drawing the piano wire used in 1 to a diameter of 130 μm was used.
 上記樹脂は、上記鋼線の表面に下記ワニスを塗布した後、加熱することにより硬化させて形成した。具体的には、樹脂形成に先立って、鋼線に脱脂処理を行った後、塗布回数を4~10回に分けて下記ワニスをコーティングし、樹脂の温度が150~300℃となるように加熱し、これを加熱して硬化させて鋼線の表面に樹脂を形成した。加熱温度を下記表2に示す。 The resin was formed by applying the following varnish to the surface of the steel wire and then curing it by heating. Specifically, prior to resin formation, the steel wire is degreased and then coated with the following varnish by dividing the number of coatings into 4-10 times and heated so that the resin temperature is 150-300 ° C. This was heated and cured to form a resin on the surface of the steel wire. The heating temperature is shown in Table 2 below.
 下記表2に示すNo.21では、JIS C2351に規定されるポリエステル線用ワニス「W141」(東特塗料株式会社製、エナメル線用ワニス「LITON 2100S(商品名)」、焼付け後の塗膜組成はテレフタル酸系ポリエステル)を用いた。 No. shown in Table 2 below. No. 21, varnish for polyester wire “W141” defined by JIS C2351 (manufactured by Tohoku Paint Co., Ltd., varnish for enameled wire “LITON 2100S (trade name)”, coating composition after baking is terephthalic acid polyester) Using.
 下記表2に示すNo.22~28、30~32では、JIS C2351に規定されるポリウレタン線用ワニス「W143」(東特塗料株式会社製、エナメル線用ワニス「TPU F1(商品名)」、焼付け後の塗膜組成はポリウレタン)を用いた。 No. shown in Table 2 below. 22-28, 30-32, polyurethane wire varnish “W143” (manufactured by Tohoku Paint Co., Ltd., enameled wire varnish “TPU F1 (trade name)” defined in JIS C2351, coating composition after baking is Polyurethane).
 下記表2に示すNo.29では、ポリアミドイミド線用ワニス(東特塗料株式会社製、エナメル線用ワニス「Neoheat AI-00C(商品名)」、焼付け後の塗膜組成はポリアミドイミド)を用いた。 No. shown in Table 2 below. In No. 29, a polyamide-imide wire varnish (manufactured by Tohoku Paint Co., Ltd., enameled wire varnish “Neoheat® AI-00C (trade name)”, the coating composition after baking was polyamide-imide) was used.
 下記表2のNo.33では、上記実験例1のNo.1で用いたピアノ線材を直径120μmに線引きした鋼線を使用した。 No. in Table 2 below. 33, No. 1 in Experimental Example 1 above. A steel wire obtained by drawing the piano wire used in 1 to a diameter of 120 μm was used.
 下記表2のNo.34、35では、上記実験例1のNo.1で用いたピアノ線材を直径160μmに線引きした鋼線を使用した。 No. in Table 2 below. 34 and 35, No. 1 in Experimental Example 1 above. A steel wire obtained by drawing the piano wire used in 1 to a diameter of 160 μm was used.
 下記表2のNo.36、37では、上記実験例1のNo.2で用いた固定砥粒付きワイヤ(直径155μm)を使用した。 No. in Table 2 below. 36 and 37, No. 1 in Experimental Example 1 above. The wire with fixed abrasive grains (diameter 155 μm) used in 2 was used.
 ここで、下記表2のNo.25~32に示した樹脂被覆ソーワイヤについて、樹脂の硬さをナノインデンテーション法で測定した。硬さは、室温(23℃)または120℃で測定した。具体的な測定条件は次の通りである。 Here, No. in Table 2 below. With respect to the resin-coated saw wires shown in 25 to 32, the hardness of the resin was measured by the nanoindentation method. The hardness was measured at room temperature (23 ° C.) or 120 ° C. Specific measurement conditions are as follows.
《室温および120℃で共通の測定条件》
測定装置 :Agilent Technologies製「Nano Indenter XP/DCM」
解析ソフト:Agilent Technologies製「Test Works 4」
Tip :XP
歪速度 :0.05/秒
測定点間隔:30μm
標準試料 :フューズドシリカ
《室温での測定条件》
測定モード :CSM(連続剛性測定法)
励起振動周波数:45Hz
励起振動振幅 :2nm
押込深さ :500nmまで
測定点 :15点
測定環境 :空調装置内で室温23℃
<< Common measurement conditions at room temperature and 120 ℃ >>
Measuring device: “Nano Indenter XP / DCM” manufactured by Agilent Technologies
Analysis software: “Test Works 4” manufactured by Agilent Technologies
Tip: XP
Strain rate: 0.05 / sec Measurement point interval: 30 μm
Standard sample: Fused silica << Measurement conditions at room temperature >>
Measurement mode: CSM (continuous stiffness measurement method)
Excitation vibration frequency: 45 Hz
Excitation vibration amplitude: 2 nm
Indentation depth: Up to 500 nm Measurement point: 15 measurement environment: Room temperature 23 ° C in air conditioner
 室温での硬さ測定は連続剛性測定法で行い、樹脂皮膜の最表面からの押し込み深さが400~450nmの範囲における硬さを測定した。硬さ測定は、15点で行い、測定結果を平均して硬さを算出した。なお、測定結果のうち、異常値(平均値に対して3倍以上または1/3以下となる値)があった場合はこれを除去し、新たに測定した結果を加えて測定点の合計が15点となるように調整した。 The hardness at room temperature was measured by the continuous stiffness measurement method, and the hardness was measured when the indentation depth from the outermost surface of the resin film was 400 to 450 nm. The hardness was measured at 15 points, and the hardness was calculated by averaging the measurement results. Of the measurement results, if there is an abnormal value (a value that is 3 or more times or 1/3 or less of the average value), remove this and add the newly measured result to obtain the total number of measurement points. Adjustment was made to be 15 points.
《120℃での測定条件》
測定モード:Basic(負荷除去測定法)
押込深さ :450nmまで
測定点 :10点
測定環境 :抵抗加熱ヒータでサンプルトレイを120℃に保持
<< Measurement conditions at 120 ℃ >>
Measurement mode: Basic (load removal measurement method)
Indentation depth: Up to 450 nm Measurement point: 10 points Measurement environment: Sample tray held at 120 ° C with resistance heater
 120℃での硬さ測定は負荷除去測定法で行い、樹脂皮膜の最表面からの押し込み深さが450nm位置における硬さを測定した。即ち、サンプルを加熱しながら硬さを測定する場合には、室温で硬さを測定するときのように連続剛性測定法は採用できないため、測定位置が、最表面からの押込み深さが450nm位置となるように荷重を調整して硬さ測定を行った。 The hardness at 120 ° C. was measured by the load removal measurement method, and the hardness at a position where the indentation depth from the outermost surface of the resin film was 450 nm was measured. That is, when measuring the hardness while heating the sample, the continuous stiffness measurement method cannot be adopted as when measuring the hardness at room temperature. The load was adjusted so that the hardness was measured.
 120℃での硬さ測定は、上記樹脂被覆ソーワイヤをセラミック系接着剤で金属製のナノインデンテーション用サンプルトレイに貼り付け、抵抗加熱ヒータでサンプルトレイを加熱し、120℃に保持しながら行なった。 The hardness measurement at 120 ° C. was performed while the resin-coated saw wire was attached to a metal nanoindentation sample tray with a ceramic adhesive, and the sample tray was heated with a resistance heater and held at 120 ° C. .
 120℃での硬さ測定は、10点で行い、測定結果を平均して硬さを算出した。なお、測定結果のうち、異常値(平均値に対して3倍以上または1/3以下となる値)があった場合はこれを除去し、新たに測定した結果を加えて測定点の合計が10点となるように調整した。 The hardness measurement at 120 ° C. was performed at 10 points, and the hardness was calculated by averaging the measurement results. Of the measurement results, if there is an abnormal value (a value that is 3 or more times or 1/3 or less of the average value), remove this and add the newly measured result to obtain the total number of measurement points. Adjustment was made to 10 points.
 室温または120℃で測定した硬さを下記表2に示す。 The hardness measured at room temperature or 120 ° C. is shown in Table 2 below.
 次に、上記ソーワイヤを用い、マルチワイヤソー(株式会社安永製、「D-500」)にて単結晶シリコン(60mm×20mm×50mm)を切断(スライシング加工)して切断体を製造した。スライシング加工は、ソーワイヤと単結晶シリコンの間に、下記表2に示す平均粒径のダイヤモンド砥粒またはSiC砥粒をエチレングリコール系水溶液に懸濁させたスラリーを吹き付けながら行った。 Next, using the above saw wire, single crystal silicon (60 mm × 20 mm × 50 mm) was cut (sliced) with a multi-wire saw (“D-500” manufactured by Yasunaga Co., Ltd.) to produce a cut body. Slicing processing was performed while spraying a slurry in which diamond abrasive grains or SiC abrasive grains having an average particle diameter shown in Table 2 below were suspended in an ethylene glycol-based aqueous solution between saw wire and single crystal silicon.
 下記表2のNo.21、24~32、34、35では、砥粒として、平均粒径が5.6μmのダイヤモンド砥粒(住石マテリアルズ株式会社製、「SCMファインダイヤ(商品名)」)を加工液(ユシロ化学工業社製の「エチレングリコール系水溶液」)に懸濁させたスラリーを用いた。 No. in Table 2 below. In Nos. 21, 24 to 32, 34, and 35, diamond abrasive grains having an average particle diameter of 5.6 μm (“SCM Fine Diamond (trade name)”) manufactured by Sumiishi Materials Co., Ltd. are used as a processing fluid (Yushiro). A slurry suspended in an “ethylene glycol aqueous solution” manufactured by Chemical Industry Co., Ltd.) was used.
 下記表2のNo.22、23では、砥粒として、平均粒径が5.6μmのSiC砥粒(信濃電気製錬株式会社製、「シナノランダム(商品名)」)を加工液(ユシロ化学工業社製の「エチレングリコール系水溶液」)に懸濁させたスラリーを用いた。 No. in Table 2 below. In Nos. 22 and 23, SiC abrasive grains having an average particle diameter of 5.6 μm (Shinano Denki Smelting Co., Ltd., “Shinano Random (trade name)”) were used as the abrasive grains. A slurry suspended in a glycol-based aqueous solution ”) was used.
 下記表2のNo.33では、砥粒として、平均粒径が13μmのSiC砥粒(信濃電気製錬株式会社製、「シナノランダム(商品名)」)を加工液(ユシロ化学工業社製の「エチレングリコール系水溶液」)に懸濁させたスラリーを用いた。 No. in Table 2 below. In No. 33, SiC abrasive grains (Shinano Denki Smelting Co., Ltd., “Shinano Random (trade name)”) having an average particle diameter of 13 μm are used as the processing grains (“ethylene glycol aqueous solution” manufactured by Yushiro Chemical Industry Co., Ltd.) ) Was used.
 ダイヤモンド砥粒の濃度はいずれも5質量%、SiC砥粒の濃度はNo.22と23は5質量%、No.33は50質量%であり、スラリーの温度は20~25℃、スラリーの供給量は100L/分とした。ワークを乗せた加工台の上昇速度は0.1mm/分、0.3mm/分、または1mm/分、樹脂被覆ソーワイヤの線速は500m/分、樹脂被覆ソーワイヤの張力は25N、樹脂被覆ソーワイヤの巻数は41巻、樹脂被覆ソーワイヤの巻ピッチは1mmに設定した。 The diamond abrasive grain concentration is 5% by mass, and the SiC abrasive grain concentration is No. 1. Nos. 22 and 23 are 5% by mass. 33 was 50% by mass, the temperature of the slurry was 20 to 25 ° C., and the supply rate of the slurry was 100 L / min. The ascending speed of the work table on which the workpiece is placed is 0.1 mm / min, 0.3 mm / min, or 1 mm / min, the linear velocity of the resin-coated saw wire is 500 m / min, the tension of the resin-coated saw wire is 25 N, The number of windings was 41, and the winding pitch of the resin-coated saw wire was set to 1 mm.
 なお、下記表2のNo.36、37では、ソーワイヤと単結晶シリコンの間に、加工液として砥粒を含まないエチレングリコール系水溶液を吹き付けながらスライシング加工した。 In addition, No. in Table 2 below. In Nos. 36 and 37, slicing was performed while spraying an ethylene glycol-based aqueous solution containing no abrasive grains between the saw wire and the single crystal silicon.
 次に、スライシング加工に用いた樹脂被覆ソーワイヤの表面を目視で観察した。その結果、No.21~31で用いた樹脂被覆ソーワイヤの表面には、砥粒の食い込みは殆ど認められなかった。これに対し、No.32で用いた樹脂被覆ソーワイヤの表面には、砥粒の食い込みが認められた。No.32で用いた樹脂被覆ソーワイヤの表面を撮影した図面代用写真を図4に示す。 Next, the surface of the resin-coated saw wire used for slicing was visually observed. As a result, no. On the surface of the resin-coated saw wires used in 21 to 31, almost no abrasive grains were found. In contrast, no. The surface of the resin-coated saw wire used in No. 32 was found to have bite of abrasive grains. No. FIG. 4 shows a drawing-substituting photograph in which the surface of the resin-coated saw wire used in 32 is photographed.
 ここで、No.25~32で用いた樹脂被覆ソーワイヤについて、樹脂表面に食い込んだ砥粒の個数を次の手順で測定した。即ち、使用済み樹脂被覆ソーワイヤの表面を、光学顕微鏡で400倍で写真撮影し、樹脂被覆ソーワイヤの中心付近における50μm×200μmの領域内に観察される砥粒の個数を目視で測定した。測定領域を上記図4に点線で示す。 Here, No. With respect to the resin-coated saw wires used in 25 to 32, the number of abrasive grains that dig into the resin surface was measured by the following procedure. That is, the surface of the used resin-coated saw wire was photographed at a magnification of 400 with an optical microscope, and the number of abrasive grains observed in a 50 μm × 200 μm region near the center of the resin-coated saw wire was visually measured. The measurement region is indicated by the dotted line in FIG.
 次に、スライシング加工して得られた切断体について、切断面に形成されている加工変質層深さ、および切断面の表面粗さを測定した。 Next, the depth of the work-affected layer formed on the cut surface and the surface roughness of the cut surface were measured for the cut body obtained by slicing.
《加工変質層深さ》
 切断面に形成される加工変質層の深さは、切断体を図5(a)に示すように、水平方向に対して4°の傾きとなるように樹脂に埋め込み、図5(b)に示すように切断体の切断面が露出するように切断体と樹脂を研磨した。次に、露出面を下記表3に示す組成のエッチング液でエッチングし、ワーク切断時に形成された加工変質層(ワーク切断時に導入された転移のエッチピット)を光学顕微鏡にて観察した。
<Processed layer depth>
As shown in FIG. 5 (a), the depth of the work-affected layer formed on the cut surface is embedded in the resin so as to have an inclination of 4 ° with respect to the horizontal direction. As shown, the cut body and the resin were polished so that the cut surface of the cut body was exposed. Next, the exposed surface was etched with an etching solution having the composition shown in Table 3 below, and the work-affected layer formed when the workpiece was cut (etched pits of transition introduced when the workpiece was cut) was observed with an optical microscope.
 ワークの切断面を光学顕微鏡で撮影した写真を図6~図11に示す。図6はNo.25、図7はNo.27、図8はNo.32、図9はNo.33、図10はNo.35、図11はNo.37の図面代用写真を示している。 The photographs of the cut surface of the workpiece taken with an optical microscope are shown in FIGS. FIG. 25, FIG. 27, FIG. 32, FIG. 33, FIG. 35, FIG. 37 shows a drawing substitute photo.
 光学顕微鏡で観察したときに、加工変質層は、黒色で示され、この深さ(厚み)を測定した。測定結果を下記表2に示す。 When observed with an optical microscope, the work-affected layer was shown in black, and this depth (thickness) was measured. The measurement results are shown in Table 2 below.
《表面粗さ》
 切断面の表面粗さは、株式会社ミツトヨ製「CS-3200(装置名)」を用い、切断方向(切り込みの深さ方向)に対して10mmに亘って算術平均粗さRaを測定した。測定結果を下記表2に示す。
"Surface roughness"
As the surface roughness of the cut surface, an arithmetic average roughness Ra was measured over 10 mm with respect to the cutting direction (the depth direction of cutting) using “CS-3200 (device name)” manufactured by Mitutoyo Corporation. The measurement results are shown in Table 2 below.
 下記表2から次のように考察できる。No.21~31は、本発明で規定する工程を経て得られた樹脂被覆ソーワイヤを用いて切断体を製造した例であり、切断面に形成される加工変質層深さは5μm以下と浅く、切断面の算術平均粗さRaが0.5μm以下とほぼ平滑になっている。 From Table 2 below, it can be considered as follows. No. 21 to 31 are examples in which a cut body was manufactured using a resin-coated saw wire obtained through the steps specified in the present invention, and the depth of the work-affected layer formed on the cut surface was as shallow as 5 μm or less. The arithmetic average roughness Ra is substantially smooth at 0.5 μm or less.
 一方、No.32~37は、本発明で規定する工程を経ずに得られたソーワイヤを用いて切断体を製造した例である。これらのうちNo.32は、鋼線の表面に樹脂を被覆した樹脂被覆ソーワイヤを用いた例であるが、樹脂が柔らか過ぎるため、スライシング加工時に、砥粒が樹脂に食い込む現象が起こった。また、切断面に形成される加工変質層深さは5μmを超えて深くなった。 On the other hand, No. Nos. 32 to 37 are examples in which a cut body was manufactured using a saw wire obtained without going through the steps specified in the present invention. Of these, No. No. 32 is an example using a resin-coated saw wire in which the surface of a steel wire is coated with a resin. However, since the resin is too soft, a phenomenon occurs in which abrasive grains bite into the resin during slicing. The depth of the work-affected layer formed on the cut surface was deeper than 5 μm.
 No.33~35では、ソーワイヤとして鋼線を用いているため、鋼線とワークとの間に砥粒が回りこみ、切断代が大きくなった。また、切断面に形成される加工変質層深さは深く、表面粗さも粗くなった。 No. In Nos. 33 to 35, a steel wire was used as the saw wire, so that abrasive grains spilled between the steel wire and the workpiece, resulting in a large cutting allowance. Further, the depth of the work-affected layer formed on the cut surface was deep and the surface roughness was also roughened.
 No.36、37は、ソーワイヤとして固定砥粒付きワイヤを用いているため、切断代が大きく、切断面に形成される加工変質層深さは深く、表面粗さも粗くなった。 No. Since 36 and 37 use wires with fixed abrasives as saw wires, the cutting allowance is large, the depth of the work-affected layer formed on the cut surface is deep, and the surface roughness is also rough.
 上記No.21~31は、切断面の算術平均粗さRaが0.5μm以下であるため、上記切断体を例えば太陽電池の素材として使用する場合には、このままの状態で、表面に微細テクスチャをエッチング加工することができる。これに対し、上記No.33~37は、切断面の算術平均粗さRaが0.5μmを超えているため、微細テクスチャをエッチング加工する前に、切断面を平滑にするためのエッチングが必要となる。 No. above In Nos. 21 to 31, since the arithmetic average roughness Ra of the cut surface is 0.5 μm or less, when the cut body is used as a material for a solar cell, for example, a fine texture is etched on the surface as it is. can do. On the other hand, the above-mentioned No. In Nos. 33 to 37, since the arithmetic average roughness Ra of the cut surface exceeds 0.5 μm, etching for smoothing the cut surface is required before the fine texture is etched.
 次に、樹脂の硬さと樹脂表面に食い込んだ砥粒の個数を測定したNo.25~32の結果を比較すると次のように考察できる。No.25~32では、室温で測定した樹脂の硬さは、いずれも0.27GPa前後で、ほぼ等しい結果であったが、120℃で測定した樹脂の硬さは、0.04~0.28GPaとバラツキがあることが分かった。このようにバラツキが生じた原因は、樹脂の種類や加熱温度の違いにあると考えられる。 Next, No. measured the hardness of the resin and the number of abrasive grains biting into the resin surface. Comparing the results of 25 to 32, it can be considered as follows. No. In 25 to 32, the hardness of the resin measured at room temperature was about 0.27 GPa, and the results were almost equal, but the hardness of the resin measured at 120 ° C. was 0.04 to 0.28 GPa. I found that there was variation. The cause of the variation is considered to be the difference in the type of resin and the heating temperature.
 ここで、120℃で測定した樹脂の硬さと、樹脂表面に食い込んだ砥粒の個数(観察視野50μm×200μmの領域における個数)との関係を図12に示す。図12から、120℃で測定した樹脂の硬さが大きくなるほど、樹脂に食い込む砥粒の数が少なくなる傾向が読み取れる。 Here, FIG. 12 shows the relationship between the hardness of the resin measured at 120 ° C. and the number of abrasive grains that dig into the resin surface (the number in the observation visual field 50 μm × 200 μm region). From FIG. 12, it can be seen that the greater the hardness of the resin measured at 120 ° C., the smaller the number of abrasive grains that bite into the resin.
 また、120℃で測定した樹脂の硬さと、切断面に形成された加工変質層の深さとの関係を図13に示す。図13から、120℃で測定した樹脂の硬さが大きくなるほど、加工変質層の深さが小さくなる傾向が読み取れる。また、120℃で測定した樹脂の硬さを0.07GPa以上にすれば、加工変質層の深さを5μm以下に抑制できることが読み取れる。 FIG. 13 shows the relationship between the hardness of the resin measured at 120 ° C. and the depth of the work-affected layer formed on the cut surface. It can be seen from FIG. 13 that the depth of the work-affected layer decreases as the hardness of the resin measured at 120 ° C. increases. Moreover, it can be read that if the hardness of the resin measured at 120 ° C. is set to 0.07 GPa or more, the depth of the work-affected layer can be suppressed to 5 μm or less.
 上記図12と図13から、樹脂表面に食い込んだ砥粒の個数が減少すると、加工変質層の深さが小さくなる傾向が読み取れる。 From FIG. 12 and FIG. 13 above, it can be seen that the depth of the work-affected layer tends to decrease as the number of abrasive grains biting into the resin surface decreases.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年2月23日出願の日本特許出願(特願2010-038017)、2010年7月15日出願の日本特許出願(特願2010-161093)に基づくものであり、その内容はここに参照として取り込まれる。
Although this application has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on February 23, 2010 (Japanese Patent Application No. 2010-038017) and a Japanese patent application filed on July 15, 2010 (Japanese Patent Application No. 2010-161093). Incorporated herein by reference.
 本発明によれば、ソーワイヤの表面を樹脂で被覆すると共に、その硬さを調節している。そのため、砥粒を引き込んで切断しながら、切断面と樹脂被覆ソーワイヤとの間への砥粒の引き込みは樹脂によって抑制できる。よって切断体表面における加工変質層の形成を抑制できる。また、この樹脂被覆ソーワイヤを用いてワークを切断すると、平滑な表面を有する切断体を製造できる。よって、下流側の工程で、加工変質層を除去したり、表面を平滑にするためのエッチング工程を省略でき、切断体の生産性を向上できる。
 更に、本発明の樹脂被覆ソーワイヤを用いれば、切断面と樹脂被覆ソーワイヤとの間への砥粒の引き込みが抑制されるため、切断代を小さくでき、切断体の生産性を向上できる。
According to the present invention, the surface of the saw wire is covered with the resin and the hardness thereof is adjusted. Therefore, the pulling of the abrasive grains between the cut surface and the resin-coated saw wire can be suppressed by the resin while pulling and cutting the abrasive grains. Therefore, formation of a work-affected layer on the surface of the cut body can be suppressed. Moreover, when a workpiece | work is cut | disconnected using this resin-coated saw wire, the cut body which has a smooth surface can be manufactured. Therefore, it is possible to remove the work-affected layer or to remove the etching process for smoothing the surface in the downstream process, and the productivity of the cut body can be improved.
Furthermore, if the resin-coated saw wire of the present invention is used, the pulling of abrasive grains between the cut surface and the resin-coated saw wire is suppressed, so that the cutting allowance can be reduced and the productivity of the cut body can be improved.

Claims (18)

  1.  所定の硬さの樹脂で鋼線を被覆し、樹脂被覆ソーワイヤを得る工程を含む、樹脂被覆ソーワイヤの設計方法であって、
     下記(1)~(4)を繰り返すことによってワークの切断面における加工変質層深さが合格となるように樹脂の硬さを調節する樹脂被覆ソーワイヤの設計方法。
    (1)得られた樹脂被覆ソーワイヤでワークを切断する。
    (2)ワークの切断面における加工変質層深さを調べる。
    (3)加工変質層深さの合否を確認する。
    (4)不合格の場合は、より硬くした樹脂で鋼線を被覆する。
    A method for designing a resin-coated saw wire, including a step of coating a steel wire with a resin having a predetermined hardness to obtain a resin-coated saw wire,
    A method for designing a resin-coated saw wire, in which the hardness of the resin is adjusted so that the work-affected layer depth at the cut surface of the workpiece becomes acceptable by repeating the following (1) to (4).
    (1) The work is cut with the obtained resin-coated saw wire.
    (2) Examine the depth of the work-affected layer on the cut surface of the workpiece.
    (3) Confirm the pass / fail of the work-affected layer depth.
    (4) In the case of failure, the steel wire is covered with a harder resin.
  2.  前記加工変質層深さが5μmよりも深い場合は、より硬くした樹脂で鋼線を被覆する請求項1に記載の設計方法。 The design method according to claim 1, wherein when the work-affected layer depth is deeper than 5 µm, the steel wire is covered with a harder resin.
  3.  所定の硬さの樹脂で鋼線を被覆し、樹脂被覆ソーワイヤを得る工程を含む、樹脂被覆ソーワイヤの設計方法であって、
     下記(1)~(4)を繰り返すことによってワークの切断面における表面粗さが合格となるように樹脂の硬さを調節する樹脂被覆ソーワイヤの設計方法。
    (1)得られた樹脂被覆ソーワイヤでワークを切断する。
    (2)ワークの切断面における表面粗さを調べる。
    (3)表面粗さの合否を確認する。
    (4)不合格の場合は、より硬くした樹脂で鋼線を被覆する。
    A method for designing a resin-coated saw wire, including a step of coating a steel wire with a resin having a predetermined hardness to obtain a resin-coated saw wire,
    A method for designing a resin-coated saw wire in which the hardness of the resin is adjusted so that the surface roughness of the cut surface of the workpiece is acceptable by repeating the following (1) to (4).
    (1) The work is cut with the obtained resin-coated saw wire.
    (2) The surface roughness of the cut surface of the work is examined.
    (3) Confirm pass / fail of surface roughness.
    (4) In the case of failure, the steel wire is covered with a harder resin.
  4.  前記表面粗さが0.5μmよりも粗い場合は、より硬くした樹脂で鋼線を被覆する請求項3に記載の設計方法。 4. The design method according to claim 3, wherein when the surface roughness is rougher than 0.5 μm, the steel wire is covered with a harder resin.
  5.  前記樹脂の膜厚が2~15μmである請求項1又は3に記載の設計方法。 The design method according to claim 1 or 3, wherein the resin has a thickness of 2 to 15 µm.
  6.  前記鋼線の線径が130μm以下である請求項1又は3に記載の設計方法。 The design method according to claim 1 or 3, wherein a wire diameter of the steel wire is 130 µm or less.
  7.  樹脂被覆ソーワイヤでワークを切断して切断体を製造する方法であって、硬さを調節した樹脂で鋼線を被覆した樹脂被覆ソーワイヤに砥粒を吹き付ける工程、及び、切断面と樹脂被覆ソーワイヤとの間への砥粒の引き込みを前記樹脂によって抑制しつつ、前記ワークに対して前記被覆ソーワイヤが切り込む方向には、砥粒を引き込むことでワークを切断する工程を含む切断体の製造方法。 A method of manufacturing a cut body by cutting a workpiece with a resin-coated saw wire, the step of spraying abrasive grains on a resin-coated saw wire coated with a steel wire with a resin whose hardness is adjusted, and a cut surface and a resin-coated saw wire, A method of manufacturing a cut body including a step of cutting the workpiece by drawing the abrasive grains in a direction in which the coated saw wire is cut into the workpiece while suppressing the drawing of the abrasive grains between the two by the resin.
  8.  前記ワークの切断面における加工変質層深さが5μm以下となるように切断する請求項7に記載の製造方法。 The manufacturing method according to claim 7, wherein the work-affected layer depth at the cut surface of the workpiece is cut to be 5 µm or less.
  9.  前記ワークの切断面における表面粗さが0.5μm以下となるように切断する請求項7に記載の製造方法。 The manufacturing method according to claim 7, wherein the cutting is performed so that the surface roughness of the cut surface of the workpiece is 0.5 µm or less.
  10.  前記ワークの切断代が、樹脂被覆ソーワイヤの線径に対して1~1.1倍となるように切断する請求項7に記載の製造方法。 The manufacturing method according to claim 7, wherein the workpiece is cut so that a cutting allowance is 1 to 1.1 times the wire diameter of the resin-coated saw wire.
  11.  前記砥粒として、ダイヤモンド砥粒を吹き付けて切断する請求項7に記載の製造方法。 The manufacturing method according to claim 7, wherein diamond abrasive grains are sprayed and cut as the abrasive grains.
  12.  前記樹脂として、120℃での硬さが0.07GPa以上のものを用いる請求項7に記載の製造方法。 The manufacturing method according to claim 7, wherein a resin having a hardness at 120 ° C of 0.07 GPa or more is used as the resin.
  13.  前記樹脂として、120℃での硬さが0.07GPa以上のものを用いる請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein the resin has a hardness at 120 ° C of 0.07 GPa or more.
  14.  前記樹脂として、120℃での硬さが0.07GPa以上のものを用いる請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein a resin having a hardness at 120 ° C of 0.07 GPa or more is used as the resin.
  15.  前記樹脂として、120℃での硬さが0.07GPa以上のものを用いる請求項10に記載の製造方法。 The manufacturing method according to claim 10, wherein a resin having a hardness at 120 ° C of 0.07 GPa or more is used as the resin.
  16.  前記樹脂として、120℃での硬さが0.07GPa以上のものを用いる請求項11に記載の製造方法。 The manufacturing method according to claim 11, wherein the resin has a hardness at 120 ° C. of 0.07 GPa or more.
  17.  請求項7~16のいずれか一項の方法により製造された切断体。 A cut body produced by the method according to any one of claims 7 to 16.
  18.  請求項7~16のいずれか一項の製造方法に使用される樹脂被覆ソーワイヤ。 A resin-coated saw wire used in the production method according to any one of claims 7 to 16.
PCT/JP2011/054032 2010-02-23 2011-02-23 Method for designing resin-coated saw wire WO2011105450A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180010405.8A CN102762338B (en) 2010-02-23 2011-02-23 Method for designing resin-coated saw wire
KR1020127021986A KR101403078B1 (en) 2010-02-23 2011-02-23 Method for designing resin-coated saw wire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010038017 2010-02-23
JP2010-038017 2010-02-23
JP2010161093A JP4939635B2 (en) 2010-02-23 2010-07-15 Design method of resin-coated saw wire
JP2010-161093 2010-07-15

Publications (1)

Publication Number Publication Date
WO2011105450A1 true WO2011105450A1 (en) 2011-09-01

Family

ID=44506852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054032 WO2011105450A1 (en) 2010-02-23 2011-02-23 Method for designing resin-coated saw wire

Country Status (5)

Country Link
JP (1) JP4939635B2 (en)
KR (1) KR101403078B1 (en)
CN (2) CN104260215B (en)
TW (2) TWI478782B (en)
WO (1) WO2011105450A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035373A1 (en) * 2011-09-09 2013-03-14 住友電気工業株式会社 Saw wire, and method for producing iii-nitride crystal substrate using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596829A (en) * 2015-01-20 2015-05-06 苏州同冠微电子有限公司 Secondary defect detection solution and method for silicon wafer
TWI632041B (en) * 2017-09-11 2018-08-11 環球晶圓股份有限公司 Ingot slicing method and slicing abrasive kit
KR102164683B1 (en) 2018-08-10 2020-10-12 서명배 Method for manufacturing wire saw using foam coating process and wire saw manufactured thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469155A (en) * 1990-07-09 1992-03-04 Kobe Steel Ltd Wire saw for polishing
JPH11138414A (en) * 1997-11-14 1999-05-25 Tokyo Seimitsu Co Ltd Wire with fixed abrasive grain for endless wire saw
JP2006179677A (en) * 2004-12-22 2006-07-06 Japan Fine Steel Co Ltd Saw wire
JP2009023066A (en) * 2007-07-23 2009-02-05 Hitoshi Suwabe Saw wire and cutting method by wire saw using saw wire

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10138114A (en) * 1996-11-08 1998-05-26 Hitachi Cable Ltd Wire for wire saw
JP4262922B2 (en) 2002-01-25 2009-05-13 日立金属株式会社 Method for cutting high-hardness material using fixed abrasive wire saw and method for manufacturing ceramic substrate for magnetic head
JP2004283966A (en) * 2003-03-24 2004-10-14 Noritake Super Abrasive:Kk Manufacturing method of resin bond wire saw
JP4111928B2 (en) * 2004-03-24 2008-07-02 株式会社ノリタケスーパーアブレーシブ Resin bond wire saw and manufacturing method thereof
CN1810425A (en) * 2005-12-23 2006-08-02 浙江工业大学 Prepn process of photosensitive resin binder scroll saw
CN101439502B (en) * 2008-12-11 2010-08-11 浙江工业大学 Method and equipment for manufacturing spray scroll saw
CN101564828B (en) * 2009-06-03 2011-02-09 南京师范大学 Wire saw for cutting hard and fragile materials and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469155A (en) * 1990-07-09 1992-03-04 Kobe Steel Ltd Wire saw for polishing
JPH11138414A (en) * 1997-11-14 1999-05-25 Tokyo Seimitsu Co Ltd Wire with fixed abrasive grain for endless wire saw
JP2006179677A (en) * 2004-12-22 2006-07-06 Japan Fine Steel Co Ltd Saw wire
JP2009023066A (en) * 2007-07-23 2009-02-05 Hitoshi Suwabe Saw wire and cutting method by wire saw using saw wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035373A1 (en) * 2011-09-09 2013-03-14 住友電気工業株式会社 Saw wire, and method for producing iii-nitride crystal substrate using same
JP2013056398A (en) * 2011-09-09 2013-03-28 Sumitomo Electric Ind Ltd Saw wire and method of manufacturing group iii nitride crystal substrate using the same

Also Published As

Publication number Publication date
CN104260215B (en) 2017-09-29
CN104260215A (en) 2015-01-07
JP4939635B2 (en) 2012-05-30
KR20120120344A (en) 2012-11-01
CN102762338B (en) 2015-03-18
TW201442808A (en) 2014-11-16
CN102762338A (en) 2012-10-31
TWI478783B (en) 2015-04-01
TW201200273A (en) 2012-01-01
KR101403078B1 (en) 2014-06-02
TWI478782B (en) 2015-04-01
JP2011194559A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
TWI517919B (en) A sawing wire with abrasive particles partly embedded in a metal wire and partly held by an organic binder
JP5135623B2 (en) Cutting method of semiconductor ingot
WO2011105450A1 (en) Method for designing resin-coated saw wire
JP5588483B2 (en) Resin-coated saw wire and cut body
WO2015105175A1 (en) Method for cutting workpiece
JP6245833B2 (en) Wire saw manufacturing method
JP5412320B2 (en) Coated saw wire
JP2001054850A (en) Hard brittle material cutting method by means of fixed abrasive grain wire saw
JP5537577B2 (en) Method for producing cut body
KR20170122999A (en) Resin bonded diamond wire saw
JP2005193332A (en) Saw wire
JP2011173195A (en) Method for manufacturing cutting object
KR20170123002A (en) Resin bonded diamond wire saw
JP5512362B2 (en) Wire tool
JP2003205448A (en) Saw wire producing excellent machined surface
JP5950762B2 (en) Superabrasive wire saw and manufacturing method thereof
JP4899088B2 (en) Cutting method of semiconductor ingot
JP2015131353A (en) Cutting method of workpiece
TW201236786A (en) A fixed abrasive sawing wire and a method to produce such wire
JP2014231121A (en) Electrodeposited wire tool

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010405.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127021986

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747410

Country of ref document: EP

Kind code of ref document: A1