WO2011104815A1 - Object vibration device, mold for secondary concrete products, and method for vibrating objects and vibrating feeders - Google Patents
Object vibration device, mold for secondary concrete products, and method for vibrating objects and vibrating feeders Download PDFInfo
- Publication number
- WO2011104815A1 WO2011104815A1 PCT/JP2010/052743 JP2010052743W WO2011104815A1 WO 2011104815 A1 WO2011104815 A1 WO 2011104815A1 JP 2010052743 W JP2010052743 W JP 2010052743W WO 2011104815 A1 WO2011104815 A1 WO 2011104815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration
- vibrator
- vibration device
- fixed
- mold
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/08—Producing shaped prefabricated articles from the material by vibrating or jolting
- B28B1/087—Producing shaped prefabricated articles from the material by vibrating or jolting by means acting on the mould ; Fixation thereof to the mould
- B28B1/0873—Producing shaped prefabricated articles from the material by vibrating or jolting by means acting on the mould ; Fixation thereof to the mould the mould being placed on vibrating or jolting supports, e.g. moulding tables
Definitions
- the present invention relates to a vibration apparatus and a vibration method that can efficiently vibrate articles such as a mold for forming a concrete secondary product and a conveyance path of a vibration feeder with less vibration energy, and the vibration apparatus.
- the present invention relates to a formwork for a concrete secondary product and a vibration feeder.
- Patent Document 1 A vibration device that uses a spring resonance to obtain a high output with a small amount of vibration energy is described, for example, in Patent Document 1 below.
- This is a cylindrical holder with a piston as a vibrator sandwiched between both sides by a coil spring.
- the piston is vibrated with compressed air, and the coil spring resonates. Since it vibrates, the article can be vibrated with high efficiency by attaching the holder to the article to be vibrated.
- Patent Document 2 discloses a method and apparatus for controlling a concrete vibrator.
- a vibrator is attached to a mold for forming a concrete secondary product, and the mold is vibrated when the concrete is filled in the mold. This is to increase the fluidity of the concrete so that the concrete spreads to every corner of the formwork and expels air bubbles from the concrete to obtain a concrete product with a solid and smooth surface.
- the vibrator is used by being attached to the outer surface of a mold plate (a plate that directly contacts the partitioning concrete with the cavity) or its reinforcing material.
- the formwork resonates with the vibration of the vibrator, the following problems may occur. (1) The desired vibration cannot be obtained and the concrete placement and compaction efficiency decreases. (2) Noise increases and the work environment deteriorates.
- Patent Document 2 discloses a technique for adjusting the vibration frequency of the vibrator so as to automatically avoid the resonance of the formwork by raising the problems (1) to (3).
- the resonance of the mold was a taboo.
- FIG. 16 is an explanatory view of a typical vibration motor type vibrator used for a concrete secondary product form, showing a front view of a motor rotating shaft with an eccentric weight on the right side and a side view on the left side.
- Eccentric weights 32 are fixed near both ends of the motor rotating shaft 31.
- the eccentric weight 32 includes a fan-shaped fixed weight 32a and a fan-shaped adjustment weight 32b attached to the fan-shaped fixed weight 32a. Adjustment is possible by fixing the adjustment weight 32b.
- the centrifugal force (vibration force) generated by the vibration motor is determined by the mass of the weight, the position of the center of gravity, and the rotation speed.
- the center of gravity of the weight is located farthest from the axis when the fixed weight 32a and the adjustment weight 32b are completely overlapped, and the centrifugal force becomes the largest, and the amount of overlap between the fixed weight 32a and the adjustment weight 32b decreases.
- the center of gravity of the weight is close to the axis and the centrifugal force is reduced. That is, the centrifugal force generated by adjusting the overlapping degree of the fixed weight 32a and the adjustment weight 32b can be adjusted.
- Patent Document 3 discloses a technique for preventing adverse effects caused by resonance of a vibration feeder. As shown in this document, resonance also causes fatigue failure and noise in the vibration feeder.
- a vibration feeder using the resonance of the transport path has been developed, the condition is that the mass of the transported object is constant, and the eigenvalue changes when the transported substance amount changes.
- the resonance control can be achieved by changing the frequency, the eigenvalue becomes lower when it becomes heavier than twice, so the excitation frequency for resonance must be lowered, and as a result, the input centrifugal force is halved.
- the conveyance capability since the conveyance capability is lowered, it cannot be practically used in the case where the mass variation is large when the resonance is used.
- the mold for concrete secondary products is used with the vibrator attached to the outer surface of the sill plate of the mold or the reinforcing material thereof, so that local stress is generated in the vibrator attachment portion of the mold.
- the dam plate of the vibrator mounting portion vibrates excessively, and bubbles are likely to be generated on the concrete surface of that portion.
- the vibration applied to the mold is localized, there is a problem that a large number of vibrators must be attached in the case of a large concrete secondary product, which increases the cost.
- the present invention develops a vibration apparatus for an article having a simple structure, low manufacturing cost, capable of obtaining a large vibration force with a small vibration energy, and capable of vibrating at a high frequency and having a wide application range. Is an issue.
- the present invention is a vibratory apparatus having a beam having attachment portions to a vibrating article at two positions in the length direction and a vibrator fixed at a position different from the attachment portion in the length direction of the beam.
- the vibrator according to claim 1 wherein the vibrator can vibrate with the eigenvalue of the beam in the vibrator.
- the vibrator can vibrate at the eigenvalue of the beam in the vibrating device (the natural frequency of the beam with the vibrating device attached to the article to be vibrated), the vibrator is operated at the eigenvalue or a frequency in the vicinity thereof.
- the beam vibrates greatly, and the vibrator and the mass of the beam generating the acceleration act as vibration forces other than the centrifugal force generated by the rotation of the eccentric weight and act on the article to be excited. Therefore, the article to be vibrated can be vibrated with a very large force.
- the vibrator As the vibrator, a commercially available vibration motor type can be used. Thereby, a high frequency up to about 120 Hz can be generated.
- the eigenvalue of the beam in the vibration device is the beam length, the distance between the mounting parts (L), the Young's modulus (E) of the beam material, the secondary moment (I), the cross-sectional area (A), the density ( ⁇ ), and the vibrator. Since an approximate value can be calculated from the mass and weight (weight fixed to the beam in order to increase the vibration force), it can be designed to have a desired eigenvalue.
- FEM Finite Element Method
- the eigenvalue of the beam is 50 to 50%. Since it can be set to about 80 Hz, it can be operated at a frequency required for the vibration of the concrete formwork or feeder.
- the vibrator 3 was operated while changing the frequency from 50 Hz to 120 Hz, and the strain generated in the bolt 6 was measured by the strain gauge 7.
- a force that causes the vibrator to move upward or downward due to the centrifugal force of the weight in the vibrator is generated, whereby a tensile force or a compressive force acts on the bolt 6.
- this centrifugal force was calculated from the measured value of the strain gauge 7, it almost coincided with the centrifugal force described in the vibrator catalog.
- the centrifugal force at a frequency of 74 Hz was 3027N.
- the beam 1 and the vibrator 3 were installed on the iron floor 9.
- the beam 1 is formed by integrating four metal squares of 50 mm ⁇ 100 mm ⁇ 1150 mm in a horizontal direction, and mounting portions 2 (iron plates) are fixed by welding at four corners in advance, and the lower end of the mounting portion 2 is attached to the iron floor 9. It fixed on the iron floor 9 by welding.
- the vibrator 3 is the same as [Experiment 1], and is similarly fixed to the base 8 with bolts 6. This was installed in the center of the beam 1 and the base 8 was fixed to the upper surface of the beam 1 by welding.
- An acceleration sensor 10 is installed at the center of the upper surface of the pedestal 8 (just below the center of the vibrator). Thereby, the beam 1 is substantially a beam with both ends simply supported by the floor 9.
- FIG. 19 shows the result of measuring the acceleration at the center of the beam 1.
- the acceleration is maximum at M in the figure, and the vibration frequency of the vibrator at this time is the eigenvalue of the beam 1.
- Experiment 1 corresponds to a state in which the vibrator is directly attached to the article to be vibrated (iron floor), and the force acting on the article to be vibrated (floor) is 3027N.
- Experiment 2 corresponds to a state in which the vibration exciter of the present invention is attached to the article to be vibrated (floor). At this time, the force acting on the article to be vibrated (iron floor) is 46299 N, [Experiment 1 ] Is about 15 times that in the case of].
- this invention can make the vibration energy of a vibrator act on a to-be-excited article efficiently.
- the present invention resonates the vibration of the vibrator with the beam, but does not resonate the object to be excited, so that it is easy to avoid resonance of the object to be excited. That is, the eigenvalue of the beam in the excitation device may be designed to be different from the eigenvalue of the object to be excited.
- the present invention is the vibration device according to claim 1, wherein the mounting portion is in a symmetrical position with respect to the center in the beam length direction, and the vibrator is fixed at the center in the beam length direction.
- the attachment portion which is a portion attached to the article to be vibrated, is positioned symmetrically with respect to the center in the beam length direction.
- the attachment part may be any part that can be attached to the article to be excited by any method such as welding or bolting, but the beam should not be able to vibrate with the attachment part as a fulcrum while attached to the article to be excited. Don't be.
- the attachment portion is preferably a connecting member that does not prevent the bow of the beam from being deformed and transmits only the vertical force to the article to be vibrated, and the member separates the vibration characteristics of the mold and the vibration apparatus of the beam. be able to.
- the eigenvalue fluctuation of the beam can be reduced, and the excitation force can be maintained without lowering the resonance frequency.
- a plate-like connection is desirable.
- the upper part of FIG. 20 shows a state in which the vibration device of the present invention is attached to the mold 4 that is an object to be vibrated, and the lower part shows a state in which the vibration device is vibrated.
- the mounting portion 2 of the vibration device is plate-shaped (H-shaped steel web), and its plate surface is parallel to the vibration direction (arrow direction) by the vibration device and is perpendicular to the beam 1.
- the vibration direction of the vibration device is perpendicular to the beam and perpendicular to the rotational axis (motor shaft) of the eccentric weight of the vibrator.
- the vibrator is fixed to the outer side in the beam length direction of the mounting portions, and the vibrator and the mounting portion are located symmetrically with respect to the center in the beam length direction.
- This is a vibration device. (Claim 3)
- the vibrator cannot be provided at the center of the beam due to the vibration-excited article, it can be provided on the outer side (near the end) of each attachment portion of the beam. Therefore, the number of vibrators is plural. In this case, it is preferable that the vibrator and the attachment portion are symmetric with respect to the center in the beam length direction.
- the present invention is the vibration device according to claim 2, wherein a weight is fixed at the center of the beam. (Claim 4)
- the present invention is the vibration device according to claim 3, wherein weights are fixed to both ends of the beam. (Claim 5)
- the weight may be a metal plate, a metal lump, a steel material, or the like having a certain weight.
- the present invention is the vibration device according to any one of claims 1 to 5, wherein the vibrator is capable of changing a vibration frequency. (Claim 6)
- the vibration frequency of the vibrator can be easily adjusted to the eigenvalue of the beam. Since a commercially available normal vibration motor type vibrator can change the frequency, it can be used.
- the present invention is a mold for molding a concrete secondary product to which any of the vibration exciters described in 1 to 6 above is attached, wherein the beam resonates with vibration of the vibrator. It is a formwork for a concrete secondary product. (Claim 7)
- the vibration generator of the present invention Since the vibration generator of the present invention generates a very large vibration force, by attaching it to the formwork, the formwork is vibrated as a whole, not locally, and the flow of the entire concrete filled in the formwork Therefore, it is possible to form a high-quality concrete secondary product while preventing the generation of bubbles.
- the vibration device of the present invention efficiently generates a vibration force, a vibrator having a smaller size (smaller output) than that of the conventional vibrator can be used, and costs such as energy costs can be reduced.
- the vibration device can be attached to any position such as the bottom of the mold, the side plate or its reinforcing material, but it is most preferable to attach the vibration device to the bottom as described later.
- the present invention is the mold according to claim 7, wherein the vibration exciter is fixed to the bottom of the mold. (Claim 8)
- the bottom of the formwork is made with a strong combination of steel such as H-section steel to support the weight of the formwork body and the concrete to be filled.
- the present invention is a vibration feeder in which any of the vibration exciters described in the above 1 to 6 is attached to a conveyance path, wherein the beam resonates with the vibration of the vibrator. is there. (Claim 9)
- the present invention is the vibration feeder according to claim 9, wherein the vibration exciter is fixed to a lower surface of the conveyance path. (Claim 10)
- the vibration device according to claim 6 is attached to an article, and the article is vibrated by adjusting the vibration frequency of the vibrator based on the relationship between the frequency near the eigenvalue of the vibration apparatus and the beam acceleration. This is a method for exciting an article. (Claim 11)
- the vibration device according to claim 6 is attached to a mold, and the vibration frequency of the vibrator is adjusted based on the relationship between the frequency near the eigenvalue of the vibration device and the beam acceleration, and the mold is It is a method for exciting a formwork for a concrete secondary product characterized by being vibrated. (Claim 12)
- the vibration device according to claim 6 is attached to the conveyance path of the vibration feeder, and the vibration frequency of the vibrator is adjusted based on the relationship between the vibration frequency near the eigenvalue of the vibration device and the beam acceleration.
- a method of exciting a vibration feeder, wherein the conveying path is vibrated. (Claim 13)
- the acceleration (that is, the vibration force) of the beam becomes maximum at M (the eigenvalue of the beam).
- M the eigenvalue of the beam.
- a desired vibration force can be obtained by adjusting the vibration frequency.
- the desired vibration force can be adjusted by adjusting the overlapping state of the fixed weight 32a and the adjustment weight 32b of the vibrator (FIG. 1), but this operation is troublesome because the vibrator is disassembled. According to this method, the vibration force can be easily changed and fine adjustment can be performed.
- the vibration device and the vibration method of the present invention have a simple structure and a low manufacturing cost, and a large vibration force is obtained with a small vibration energy, so that the energy cost can be reduced. Moreover, it can be vibrated at a high frequency and has a wide application range.
- the concrete secondary product formwork of the present invention can vibrate the formwork as a whole rather than locally, increasing the fluidity of the entire concrete filled in the formwork and preventing the generation of bubbles. It becomes possible to form a quality concrete secondary product. Since the vibration feeder of the present invention can vibrate the entire conveyance path with a small amount of vibration energy, the article can be efficiently conveyed.
- FIG. 3 is a side view of the vibration device A. It is a front view of the formwork which attached vibration apparatus A. It is a front view of the vibration apparatus B. 4 is a side view of the vibration device B.
- FIG. 2 is a perspective view of a vibration device C.
- FIG. 3 is a perspective view of a vibration device D.
- FIG. 2 is a plan view of a vibration device D.
- FIG. It is a front view of the formwork which attached vibration apparatus D.
- 3 is a perspective view of a vibration device E.
- FIG. It is a front view of the formwork which attached vibration apparatus E. It is a schematic side view of the mold with the vibration device E attached.
- FIG. 15 is a schematic rear view of the vibration feeder of FIG. 14. It is explanatory drawing of the motor shaft of a vibration motor type vibrator. It is explanatory drawing of the performance confirmation experiment [Experiment 1] of a vibrator. It is explanatory drawing of the performance confirmation experiment [Experiment 2] of the vibration apparatus of this invention. It is explanatory drawing of the relationship between the vibrator frequency and beam acceleration in [Experiment 2]. It is explanatory drawing of a vibration of an attaching part and a beam.
- the vibration motor type vibrator 3 is fixed to the lower surface of the center of the beam 1 of the H-shaped steel with bolts (not shown), and the mounting portions 2 of the small H-shaped steel are fixed to the upper surfaces of both ends by welding. It is a thing.
- FIG. 3 shows an example in which the vibration exciter A is attached to the bottom of the concrete secondary product form 4.
- the mold 4 includes a cavity portion 4a for filling concrete, a bottom portion 4b for supporting the cavity portion, and a leg portion 4c.
- the attachment portion 2 is attached and fixed to the shape steel constituting the bottom portion 4b of the mold by any means such as welding.
- the beam 1 has a shape suspended from the bottom 4b so as to be deformed like a bow.
- the motor shaft of the vibrator 3 is oriented in the horizontal direction, and when the vibrator is operated, the beam vibrates in a vertical plane (perpendicular to the motor shaft), and this vibration is transmitted to the mold and vibrates the entire mold. It is desirable to provide an anti-vibration rubber 4d between the leg 4c and the ground.
- a vibration motor type vibrator 3 is fixed to the lower surfaces of both ends of an H-shaped steel beam 1 with bolts (not shown), and small H-shaped at two locations on the inner upper surface thereof.
- the steel mounting portion 2 is fixed by welding. Therefore, the vibrator 3 is fixed to the outer side in the beam length direction of the mounting portions 2 and 2, and the vibrators 3 and 3 and the mounting portions 2 and 2 are in symmetrical positions with respect to the center in the beam length direction.
- the vibration device C in FIG. 6 includes two beam members 1a (H-shaped steel) in which the beams 1 are parallel and a connecting member 1b (a combination of H-shaped steel and an iron plate) that connects the centers thereof.
- a small H-shaped steel mounting portion 2 is welded and fixed to the upper surface in the vicinity of both ends of each beam member 1a, and a vibration motor type vibrator 3 is fixed to the outer surface of the central portion of each beam member 1a with a bolt (not shown).
- the vibrator 3 is arranged at the center of the beam (beam member 1a), and the connecting member 1b acts as a weight, so that a very large vibration force is expressed.
- the vibration device D shown in FIGS. 7 to 9 is suitable for use in a large formwork.
- the beam 1 has two beam members 1a (H-shaped steel) opposed to each other and is welded and integrated into a quadrilateral shape with two connecting members 1b (H-shaped steel).
- Two attachment portions 2 and 2 ' are welded and fixed to the upper surface of each beam member 1a and 1a, and a total of four vibration motor type vibrators 3 are fixed to bolts (not shown) on the side surface of the outer beam member. ing.
- metal weights 5 are fixed to both ends of the outer beam member by welding.
- the attachment portions 2 and 2 are at the same position with respect to the length direction of the beam, and the attachment portions 2 ′ and 2 ′ are the same.
- the vibrators and the mounting portions 2 and 2 ' are in symmetrical positions with respect to the center in the beam length direction.
- the rotation of the eccentric weight of each vibrator is automatically synchronized by the vibration of the beam, and the beam resonates with the vibration of the synchronized vibrator.
- FIG. 9 shows an example in which the vibration exciter D is attached to the bottom of the mold 4 for molding a concrete secondary product (segment).
- the mold 4 includes a cavity portion 4a for filling concrete, a bottom portion 4b for supporting the cavity portion, and a leg portion 4c.
- the attachment portion 2 is attached and fixed to the H-section steel constituting the bottom portion 4b of the mold by any means such as welding.
- the beam 1 has a shape suspended from the bottom 4b so as to be deformed like a bow.
- the motor shaft of the vibrator 3 is oriented in the horizontal direction, and when the vibrator is operated, the beam vibrates in a vertical plane (perpendicular to the motor shaft), and this vibration is transmitted to the mold and vibrates the entire mold.
- the beam 1 has two beam members (metal square members) opposed to each other, and both ends thereof are welded and integrated into a quadrilateral shape with two connecting members (iron plates). It is.
- a metal weight 5 is fixed to the central portion of the beam members 1 a and 1 a, and the vibration motor type vibrator 3 is fixed to the weight 5.
- a total of four attachment portions 2, 2, 2 ', 2' are fixed to both ends of the beam 1 by welding.
- the attachment portions 2 and 2 are at the same position in the beam length direction, and the attachment portions 2 'and 2' are the same.
- the attachment portions 2 and 2 ' are in symmetrical positions with respect to the center in the beam length direction.
- 11 and 12 show an example in which the vibration exciter E is attached to a mold 4 for molding a concrete secondary product (fume pipe).
- the mounting portions 2 and 2 ' are fixed to a donut-shaped end plate 4f that closes both ends of the cavity portion 4a of the mold 4 by bolts (not shown), and the beam member 1a can be deformed as a bow. It has become.
- the motor shaft of the vibrator 3 is oriented in the vertical direction, and when the vibrator is operated, the beam vibrates in a horizontal plane (perpendicular to the motor shaft), and this vibration is transmitted to the mold and vibrates the entire mold.
- FIG. 13 shows an example in which the vibration exciter D is attached to the bottom of the mold 4 for forming the sulfur concrete secondary product.
- the mold 4 includes a cavity portion 4a filled with sulfur concrete, a bottom portion 4b that supports the cavity portion, and a leg portion 4c. Anti-vibration rubber 4d is provided between the leg 4c and the ground.
- the gate 4e for pouring high temperature sulfur concrete is provided.
- the cavity portion 4a is inclined and installed so that the sulfur concrete poured from the gate 4e spreads throughout the cavity. The sulfur concrete poured from the gate 4e comes into contact with the mold and is cured.
- the vibration exciter D is attached to the lower portion of the inclined bottom portion 4b with the same inclination, the excitation direction is the axial direction of the cavity as shown by the arrows in FIG.
- the vibration exciter of the present invention can vibrate the article to be vibrated in a desired direction.
- the vibration feeder 11 supports a conveyance path 11 a obtained by processing a steel plate into a bowl shape in an inclined state with a support member (not shown), conveys the concrete discharged from the hopper 12, and supplies it into the mold 4. Is. On the lower surface of the transport path 11a, a steel material is processed, and a lower surface reinforcing portion 11b having a triangular side surface shape is fixed. The vibration device A is attached to the lower surface reinforcing portion 11b. Thereby, the conveyance path 11a of the vibration feeder 11 is vibrated in the horizontal direction, and the concrete discharged from the hopper 12 is conveyed in the conveyance path 11a and flows into the mold 4.
- the vibration exciter of the present invention is not limited to the concrete secondary product formwork and the conveying path of the vibration feeder, and can be used to vibrate various articles.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Jigging Conveyors (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
Abstract
Provided is an object vibration device that has a wide variety of applications and can produce a large vibration force using a small amount of vibration energy. Said vibration device has: a beam which has attachment sections, at two points along the length of the beam, for attaching to an object to be vibrated; and a vibrator affixed to a different part of the beam, in terms of the long direction thereof, from the attachment sections. The vibrator can vibrate at the characteristic frequency of the beam in the vibration device. When the vibrator runs at the characteristic frequency of the beam, the beam vibrates a large amount. The masses of the vibrator and the beam, which are undergoing vibrational acceleration, produce a vibrational force which acts on the target object, thereby vibrating the target object with a very large force.
Description
本発明は、コンクリート二次製品を成形する型枠、振動フィーダの搬送路などの物品を、少ない振動エネルギーで効率的に加振することができる加振装置及び加振方法、並びにこの加振装置を取り付けたコンクリート二次製品用型枠及び振動フィーダに関する。
The present invention relates to a vibration apparatus and a vibration method that can efficiently vibrate articles such as a mold for forming a concrete secondary product and a conveyance path of a vibration feeder with less vibration energy, and the vibration apparatus. The present invention relates to a formwork for a concrete secondary product and a vibration feeder.
バネの共振を利用し、少ない振動エネルギーで高い出力を得る加振装置は、例えば下記特許文献1に記載されている。
これは、筒型のホルダーの中に振動子としてのピストンを両側からコイルばねで挟んで装入したもので、ピストンを圧搾空気で振動させ、これにコイルばねが共振し、これに伴いホルダーが振動するので、ホルダーを被加振物品に取り付けて物品を高効率で振動させることができる。 A vibration device that uses a spring resonance to obtain a high output with a small amount of vibration energy is described, for example, inPatent Document 1 below.
This is a cylindrical holder with a piston as a vibrator sandwiched between both sides by a coil spring. The piston is vibrated with compressed air, and the coil spring resonates. Since it vibrates, the article can be vibrated with high efficiency by attaching the holder to the article to be vibrated.
これは、筒型のホルダーの中に振動子としてのピストンを両側からコイルばねで挟んで装入したもので、ピストンを圧搾空気で振動させ、これにコイルばねが共振し、これに伴いホルダーが振動するので、ホルダーを被加振物品に取り付けて物品を高効率で振動させることができる。 A vibration device that uses a spring resonance to obtain a high output with a small amount of vibration energy is described, for example, in
This is a cylindrical holder with a piston as a vibrator sandwiched between both sides by a coil spring. The piston is vibrated with compressed air, and the coil spring resonates. Since it vibrates, the article can be vibrated with high efficiency by attaching the holder to the article to be vibrated.
下記特許文献2には、コンクリートバイブレータの制御方法及び装置が開示されている。
コンクリート二次製品を成形する型枠にはバイブレータを取り付け、型枠内にコンクリートを充填するときに型枠を振動させる。これは、コンクリートの流動性を増してコンクリートが型枠の隅々まで行き渡るようにし、また、気泡をコンクリート内から追い出し、密実で表面が平滑なコンクリート製品を得るためである。
バイブレータは、型枠のせき板(キャビティーを仕切りコンクリートに直接接触する板)外面又はその補強材に取り付けて使用される。
バイブレータの振動に型枠が共振すると、以下のような問題が生じるおそれがある。
(1)所期の振動が得られずコンクリートの打設、締固めの効率が低下する。
(2)騒音が増大し作業環境が悪化する。
(3)型枠の共振により型枠の寿命が短くなる。
(4)型枠の共振により型枠強度を高くする必要があり、補強材などのコストが高くなる。
特許文献2では、前記(1)~(3)の問題点を掲げ、型枠の共振を自動的に回避するようにバイブレータの振動数を調整する技術が開示されている。
このように、コンクリート二次製品用型枠のバイブレータにおいて、型枠の共振はタブーとされていた。Patent Document 2 below discloses a method and apparatus for controlling a concrete vibrator.
A vibrator is attached to a mold for forming a concrete secondary product, and the mold is vibrated when the concrete is filled in the mold. This is to increase the fluidity of the concrete so that the concrete spreads to every corner of the formwork and expels air bubbles from the concrete to obtain a concrete product with a solid and smooth surface.
The vibrator is used by being attached to the outer surface of a mold plate (a plate that directly contacts the partitioning concrete with the cavity) or its reinforcing material.
When the formwork resonates with the vibration of the vibrator, the following problems may occur.
(1) The desired vibration cannot be obtained and the concrete placement and compaction efficiency decreases.
(2) Noise increases and the work environment deteriorates.
(3) The life of the mold is shortened by the resonance of the mold.
(4) It is necessary to increase the strength of the mold due to the resonance of the mold, which increases the cost of the reinforcing material.
Patent Document 2 discloses a technique for adjusting the vibration frequency of the vibrator so as to automatically avoid the resonance of the formwork by raising the problems (1) to (3).
Thus, in the vibrator for the mold for concrete secondary products, the resonance of the mold was a taboo.
コンクリート二次製品を成形する型枠にはバイブレータを取り付け、型枠内にコンクリートを充填するときに型枠を振動させる。これは、コンクリートの流動性を増してコンクリートが型枠の隅々まで行き渡るようにし、また、気泡をコンクリート内から追い出し、密実で表面が平滑なコンクリート製品を得るためである。
バイブレータは、型枠のせき板(キャビティーを仕切りコンクリートに直接接触する板)外面又はその補強材に取り付けて使用される。
バイブレータの振動に型枠が共振すると、以下のような問題が生じるおそれがある。
(1)所期の振動が得られずコンクリートの打設、締固めの効率が低下する。
(2)騒音が増大し作業環境が悪化する。
(3)型枠の共振により型枠の寿命が短くなる。
(4)型枠の共振により型枠強度を高くする必要があり、補強材などのコストが高くなる。
特許文献2では、前記(1)~(3)の問題点を掲げ、型枠の共振を自動的に回避するようにバイブレータの振動数を調整する技術が開示されている。
このように、コンクリート二次製品用型枠のバイブレータにおいて、型枠の共振はタブーとされていた。
A vibrator is attached to a mold for forming a concrete secondary product, and the mold is vibrated when the concrete is filled in the mold. This is to increase the fluidity of the concrete so that the concrete spreads to every corner of the formwork and expels air bubbles from the concrete to obtain a concrete product with a solid and smooth surface.
The vibrator is used by being attached to the outer surface of a mold plate (a plate that directly contacts the partitioning concrete with the cavity) or its reinforcing material.
When the formwork resonates with the vibration of the vibrator, the following problems may occur.
(1) The desired vibration cannot be obtained and the concrete placement and compaction efficiency decreases.
(2) Noise increases and the work environment deteriorates.
(3) The life of the mold is shortened by the resonance of the mold.
(4) It is necessary to increase the strength of the mold due to the resonance of the mold, which increases the cost of the reinforcing material.
Thus, in the vibrator for the mold for concrete secondary products, the resonance of the mold was a taboo.
図16は、コンクリート二次製品用型枠に用いる代表的な振動モータ型バイブレータの説明図で、右側に偏芯ウエイトを装着したモータ回転軸の正面図、左側に側面図を示している。
モータ回転軸31の両端付近に偏芯ウエイト32が固定されている。偏芯ウエイト32は扇形の固定ウエイト32aと、これに取り付けられる扇形の調整ウエイト32bからなり、固定ウエイト32aと調整ウエイト32bの重なり具合を、適宜の調整穴32cにボルトを挿入して固定ウエイト32aに調整ウエイト32bを固定することで調整できるようになっている。
振動モータにより発生する遠心力(振動力)は、ウエイトの質量とその重心位置及び回転数によって決定する。ウエイトの重心位置は、固定ウエイト32aと調整ウエイト32bを完全に重ね合わせた場合が軸心から最も遠い位置となって遠心力が最も大きくなり、固定ウエイト32aと調整ウエイト32bの重なり量が小さくなるほどウエイトの重心が軸心に近くなって遠心力が小さくなる。すなわち、固定ウエイト32aと調整ウエイト32bの重なり具合を調整することで発生する遠心力を調整することができる。
振動モータはモータの回転数(1秒当たりの回転数=バイブレータの振動数)を50~120Hz程度の範囲で変化させることができる。モータの回転を早くすることで、振動数が大きくなり、遠心力も大きくなる。 FIG. 16 is an explanatory view of a typical vibration motor type vibrator used for a concrete secondary product form, showing a front view of a motor rotating shaft with an eccentric weight on the right side and a side view on the left side.
Eccentric weights 32 are fixed near both ends of the motor rotating shaft 31. The eccentric weight 32 includes a fan-shaped fixed weight 32a and a fan-shaped adjustment weight 32b attached to the fan-shaped fixed weight 32a. Adjustment is possible by fixing the adjustment weight 32b.
The centrifugal force (vibration force) generated by the vibration motor is determined by the mass of the weight, the position of the center of gravity, and the rotation speed. The center of gravity of the weight is located farthest from the axis when thefixed weight 32a and the adjustment weight 32b are completely overlapped, and the centrifugal force becomes the largest, and the amount of overlap between the fixed weight 32a and the adjustment weight 32b decreases. The center of gravity of the weight is close to the axis and the centrifugal force is reduced. That is, the centrifugal force generated by adjusting the overlapping degree of the fixed weight 32a and the adjustment weight 32b can be adjusted.
The vibration motor can change the number of rotations of the motor (the number of rotations per second = the number of vibrations of the vibrator) in a range of about 50 to 120 Hz. By making the motor rotate faster, the frequency increases and the centrifugal force also increases.
モータ回転軸31の両端付近に偏芯ウエイト32が固定されている。偏芯ウエイト32は扇形の固定ウエイト32aと、これに取り付けられる扇形の調整ウエイト32bからなり、固定ウエイト32aと調整ウエイト32bの重なり具合を、適宜の調整穴32cにボルトを挿入して固定ウエイト32aに調整ウエイト32bを固定することで調整できるようになっている。
振動モータにより発生する遠心力(振動力)は、ウエイトの質量とその重心位置及び回転数によって決定する。ウエイトの重心位置は、固定ウエイト32aと調整ウエイト32bを完全に重ね合わせた場合が軸心から最も遠い位置となって遠心力が最も大きくなり、固定ウエイト32aと調整ウエイト32bの重なり量が小さくなるほどウエイトの重心が軸心に近くなって遠心力が小さくなる。すなわち、固定ウエイト32aと調整ウエイト32bの重なり具合を調整することで発生する遠心力を調整することができる。
振動モータはモータの回転数(1秒当たりの回転数=バイブレータの振動数)を50~120Hz程度の範囲で変化させることができる。モータの回転を早くすることで、振動数が大きくなり、遠心力も大きくなる。 FIG. 16 is an explanatory view of a typical vibration motor type vibrator used for a concrete secondary product form, showing a front view of a motor rotating shaft with an eccentric weight on the right side and a side view on the left side.
The centrifugal force (vibration force) generated by the vibration motor is determined by the mass of the weight, the position of the center of gravity, and the rotation speed. The center of gravity of the weight is located farthest from the axis when the
The vibration motor can change the number of rotations of the motor (the number of rotations per second = the number of vibrations of the vibrator) in a range of about 50 to 120 Hz. By making the motor rotate faster, the frequency increases and the centrifugal force also increases.
下記特許文献3には、振動フィーダの共振による弊害を防止する技術が開示されている。
同文献に示されるように、振動フィーダにおいても、共振は疲労破壊や騒音の原因となる。なお、搬送路の共振を利用した振動フィーダは開発されているが、搬送物の質量が一定であることが条件となり、搬送物質量が変化すると、固有値が変わるため、質量変化が少ない場合には周波数を変えて共振させる制御が成り立つが、2倍以上重くなる場合には、固有値が低くなるため、共振させるための加振周波数を下げざるを得ず、結果的に入力となる遠心力が半減し、搬送能力が低下するので、共振を利用する場合の、質量変動の多い事例には実質的に使用できない。Patent Document 3 below discloses a technique for preventing adverse effects caused by resonance of a vibration feeder.
As shown in this document, resonance also causes fatigue failure and noise in the vibration feeder. Although a vibration feeder using the resonance of the transport path has been developed, the condition is that the mass of the transported object is constant, and the eigenvalue changes when the transported substance amount changes. Although the resonance control can be achieved by changing the frequency, the eigenvalue becomes lower when it becomes heavier than twice, so the excitation frequency for resonance must be lowered, and as a result, the input centrifugal force is halved. However, since the conveyance capability is lowered, it cannot be practically used in the case where the mass variation is large when the resonance is used.
同文献に示されるように、振動フィーダにおいても、共振は疲労破壊や騒音の原因となる。なお、搬送路の共振を利用した振動フィーダは開発されているが、搬送物の質量が一定であることが条件となり、搬送物質量が変化すると、固有値が変わるため、質量変化が少ない場合には周波数を変えて共振させる制御が成り立つが、2倍以上重くなる場合には、固有値が低くなるため、共振させるための加振周波数を下げざるを得ず、結果的に入力となる遠心力が半減し、搬送能力が低下するので、共振を利用する場合の、質量変動の多い事例には実質的に使用できない。
As shown in this document, resonance also causes fatigue failure and noise in the vibration feeder. Although a vibration feeder using the resonance of the transport path has been developed, the condition is that the mass of the transported object is constant, and the eigenvalue changes when the transported substance amount changes. Although the resonance control can be achieved by changing the frequency, the eigenvalue becomes lower when it becomes heavier than twice, so the excitation frequency for resonance must be lowered, and as a result, the input centrifugal force is halved. However, since the conveyance capability is lowered, it cannot be practically used in the case where the mass variation is large when the resonance is used.
前記特許文献1の加振装置は、筒状ホルダー内のピストンを圧縮空気で往復運動させるものであるので、振動発生装置が大掛かりになってコスト高になり、また発生させる振動数に限界があり、応用範囲が狭い。また、コイルばねの共振を利用するので、さほど大きな振動力は期待できないという問題がある。
Since the vibration device of Patent Document 1 reciprocates the piston in the cylindrical holder with compressed air, the vibration generator becomes large and expensive, and there is a limit to the frequency that can be generated. Application range is narrow. In addition, since the resonance of the coil spring is used, there is a problem that a large vibration force cannot be expected.
コンクリート二次製品用型枠や振動フィーダでは、高い振動数(例えば50~120Hz程度)の加振が必要であるので、前記特許文献1の加振装置は全く使用することができない。
また、前記のように、コンクリート二次製品用型枠は、バイブレータを型枠のせき板の外面又はその補強材に取り付けて使用するので、型枠のバイブレータ取り付け部に局部的な応力が発生し型枠強度を高くする必要があり、補強材などのコストが高くなる、またバイブレータ取り付け部分のせき板が過度に振動し、かえってその部分のコンクリート表面に気泡が発生しやすいという問題もある。
さらに、型枠へ与える振動が局部的になるので、大型のコンクリート二次製品の場合には多数のバイブレータを取り付けなければならず、コスト高になるという問題もあった。 In the concrete secondary product formwork and the vibration feeder, it is necessary to vibrate at a high frequency (for example, about 50 to 120 Hz), and therefore the vibration device ofPatent Document 1 cannot be used at all.
In addition, as described above, the mold for concrete secondary products is used with the vibrator attached to the outer surface of the sill plate of the mold or the reinforcing material thereof, so that local stress is generated in the vibrator attachment portion of the mold. There is a problem that it is necessary to increase the strength of the formwork, which increases the cost of the reinforcing material and the like, and the dam plate of the vibrator mounting portion vibrates excessively, and bubbles are likely to be generated on the concrete surface of that portion.
Furthermore, since the vibration applied to the mold is localized, there is a problem that a large number of vibrators must be attached in the case of a large concrete secondary product, which increases the cost.
また、前記のように、コンクリート二次製品用型枠は、バイブレータを型枠のせき板の外面又はその補強材に取り付けて使用するので、型枠のバイブレータ取り付け部に局部的な応力が発生し型枠強度を高くする必要があり、補強材などのコストが高くなる、またバイブレータ取り付け部分のせき板が過度に振動し、かえってその部分のコンクリート表面に気泡が発生しやすいという問題もある。
さらに、型枠へ与える振動が局部的になるので、大型のコンクリート二次製品の場合には多数のバイブレータを取り付けなければならず、コスト高になるという問題もあった。 In the concrete secondary product formwork and the vibration feeder, it is necessary to vibrate at a high frequency (for example, about 50 to 120 Hz), and therefore the vibration device of
In addition, as described above, the mold for concrete secondary products is used with the vibrator attached to the outer surface of the sill plate of the mold or the reinforcing material thereof, so that local stress is generated in the vibrator attachment portion of the mold. There is a problem that it is necessary to increase the strength of the formwork, which increases the cost of the reinforcing material and the like, and the dam plate of the vibrator mounting portion vibrates excessively, and bubbles are likely to be generated on the concrete surface of that portion.
Furthermore, since the vibration applied to the mold is localized, there is a problem that a large number of vibrators must be attached in the case of a large concrete secondary product, which increases the cost.
本発明は、単純な構造で製造コストが低く、少ない振動エネルギーで大きな振動力を得ることができ、高い振動数で振動させることが可能で応用範囲の広い、物品の加振装置を開発することを課題とするものである。
The present invention develops a vibration apparatus for an article having a simple structure, low manufacturing cost, capable of obtaining a large vibration force with a small vibration energy, and capable of vibrating at a high frequency and having a wide application range. Is an issue.
本発明は、長さ方向の2つの位置に被加振物品への取付部を有するビームと、該ビームの長さ方向の前記取付部と異なる位置に固定したバイブレータを有する加振装置であって、前記バイブレータが加振装置における前記ビームの固有値で振動できるものであることを特徴とする物品の加振装置である。(請求項1)
The present invention is a vibratory apparatus having a beam having attachment portions to a vibrating article at two positions in the length direction and a vibrator fixed at a position different from the attachment portion in the length direction of the beam. The vibrator according to claim 1, wherein the vibrator can vibrate with the eigenvalue of the beam in the vibrator. (Claim 1)
バイブレータが加振装置におけるビームの固有値(加振装置を被加振物品に取り付けた状態のビームの固有振動数)で振動できるものであるので、バイブレータを固有値又はその近傍の振動数で作動させることでビームが大きく振動し、その加速度を生じたバイブレータ及びビームの質量が偏芯ウエイトの回転により発生する遠心力以外の振動力となって被加振物品に作用する。したがって、被加振物品を非常に大きな力で振動させることができる。
Since the vibrator can vibrate at the eigenvalue of the beam in the vibrating device (the natural frequency of the beam with the vibrating device attached to the article to be vibrated), the vibrator is operated at the eigenvalue or a frequency in the vicinity thereof. The beam vibrates greatly, and the vibrator and the mass of the beam generating the acceleration act as vibration forces other than the centrifugal force generated by the rotation of the eccentric weight and act on the article to be excited. Therefore, the article to be vibrated can be vibrated with a very large force.
バイブレータは、市販の振動モータ型のものを使用できる。これにより、120Hz程度までの高振動数を発生できる。
加振装置におけるビームの固有値は、ビーム長さ、取付部の間隔(L)、ビーム材料のヤング率(E)、断面二次モーメント(I)、断面積(A)、密度(ρ)及びバイブレータ質量、ウエイト(振動力を大きくするためにビームに固定するウエイト)質量から近似値を計算できるから、所望の固有値となるように設計することができる。
ちなみに、ビームを両端支持の単純梁と仮定すると、ビームの固有値(1次振動数)fは、
f=(π/2L2)(EI/ρA)1/2
となり、これが加振装置におけるビームの固有値の近似値となる。バイブレータやウエイトの質量を考慮する場合は、FEM(Finite Element Method:有限要素法)などにより求めることも可能である。また、後述のように、実験によって求めることもできる。
一般に、加振装置が小型な(ビーム長さが短い)ものほど固有値は大きくなるが、大型の二次製品用型枠に使用できる大型の加振装置であっても、ビームの固有値を50~80Hz程度にすることができるので、コンクリート型枠やフィーダの振動に必要な振動数で作動させることが可能である。 As the vibrator, a commercially available vibration motor type can be used. Thereby, a high frequency up to about 120 Hz can be generated.
The eigenvalue of the beam in the vibration device is the beam length, the distance between the mounting parts (L), the Young's modulus (E) of the beam material, the secondary moment (I), the cross-sectional area (A), the density (ρ), and the vibrator. Since an approximate value can be calculated from the mass and weight (weight fixed to the beam in order to increase the vibration force), it can be designed to have a desired eigenvalue.
Incidentally, assuming that the beam is a simple beam supported at both ends, the eigenvalue (primary frequency) f of the beam is
f = (π / 2L 2 ) (EI / ρA) 1/2
This is an approximate value of the eigenvalue of the beam in the vibration exciter. When considering the mass of the vibrator or weight, it can be obtained by FEM (Finite Element Method) or the like. Moreover, it can also obtain | require by experiment as mentioned later.
In general, the smaller the vibration device (the shorter the beam length), the larger the eigenvalue. However, even with a large vibration device that can be used in a large formwork for a secondary product, the eigenvalue of the beam is 50 to 50%. Since it can be set to about 80 Hz, it can be operated at a frequency required for the vibration of the concrete formwork or feeder.
加振装置におけるビームの固有値は、ビーム長さ、取付部の間隔(L)、ビーム材料のヤング率(E)、断面二次モーメント(I)、断面積(A)、密度(ρ)及びバイブレータ質量、ウエイト(振動力を大きくするためにビームに固定するウエイト)質量から近似値を計算できるから、所望の固有値となるように設計することができる。
ちなみに、ビームを両端支持の単純梁と仮定すると、ビームの固有値(1次振動数)fは、
f=(π/2L2)(EI/ρA)1/2
となり、これが加振装置におけるビームの固有値の近似値となる。バイブレータやウエイトの質量を考慮する場合は、FEM(Finite Element Method:有限要素法)などにより求めることも可能である。また、後述のように、実験によって求めることもできる。
一般に、加振装置が小型な(ビーム長さが短い)ものほど固有値は大きくなるが、大型の二次製品用型枠に使用できる大型の加振装置であっても、ビームの固有値を50~80Hz程度にすることができるので、コンクリート型枠やフィーダの振動に必要な振動数で作動させることが可能である。 As the vibrator, a commercially available vibration motor type can be used. Thereby, a high frequency up to about 120 Hz can be generated.
The eigenvalue of the beam in the vibration device is the beam length, the distance between the mounting parts (L), the Young's modulus (E) of the beam material, the secondary moment (I), the cross-sectional area (A), the density (ρ), and the vibrator. Since an approximate value can be calculated from the mass and weight (weight fixed to the beam in order to increase the vibration force), it can be designed to have a desired eigenvalue.
Incidentally, assuming that the beam is a simple beam supported at both ends, the eigenvalue (primary frequency) f of the beam is
f = (π / 2L 2 ) (EI / ρA) 1/2
This is an approximate value of the eigenvalue of the beam in the vibration exciter. When considering the mass of the vibrator or weight, it can be obtained by FEM (Finite Element Method) or the like. Moreover, it can also obtain | require by experiment as mentioned later.
In general, the smaller the vibration device (the shorter the beam length), the larger the eigenvalue. However, even with a large vibration device that can be used in a large formwork for a secondary product, the eigenvalue of the beam is 50 to 50%. Since it can be set to about 80 Hz, it can be operated at a frequency required for the vibration of the concrete formwork or feeder.
〔実験1〕
本発明の作用効果を実証するため実験を行った。
先ず、図17に示すように、鉄床9に台座8(厚い鉄板)を強固に溶接固定し、この台座8の上中央にバイブレータ3(市販の振動モータ型:出力750W)を4本のボルト6で固定した。これにより、バイブレータ3は台座8及びボルト6を介して床9に固定されていることになる。4本のボルト6にはヒズミゲージ7を貼り付けた。 [Experiment 1]
Experiments were conducted to verify the effects of the present invention.
First, as shown in FIG. 17, a base 8 (thick iron plate) is firmly fixed to theiron floor 9 by welding, and a vibrator 3 (commercially available vibration motor type: output 750 W) is attached to the top center of the base 8 with four bolts 6. Fixed with. Thereby, the vibrator 3 is fixed to the floor 9 via the base 8 and the bolt 6. A strain gauge 7 was attached to the four bolts 6.
本発明の作用効果を実証するため実験を行った。
先ず、図17に示すように、鉄床9に台座8(厚い鉄板)を強固に溶接固定し、この台座8の上中央にバイブレータ3(市販の振動モータ型:出力750W)を4本のボルト6で固定した。これにより、バイブレータ3は台座8及びボルト6を介して床9に固定されていることになる。4本のボルト6にはヒズミゲージ7を貼り付けた。 [Experiment 1]
Experiments were conducted to verify the effects of the present invention.
First, as shown in FIG. 17, a base 8 (thick iron plate) is firmly fixed to the
この状態でバイブレータ3を50Hzから120Hzまで振動数を変化させながら作動し、ヒズミゲージ7によりボルト6に生じた歪みを計測した。バイブレータ3を作動させると、バイブレータ内のウエイトの遠心力によりバイブレータが上方又は下方に移動しようとする力が生じ、これによりボルト6に引張力又は圧縮力が作用する。この遠心力を、ヒズミゲージ7の計測値から計算したところ、バイブレータのカタログに記載されている遠心力とほぼ一致した。ちなみに、振動数74Hzのときの遠心力は3027Nであった。
In this state, the vibrator 3 was operated while changing the frequency from 50 Hz to 120 Hz, and the strain generated in the bolt 6 was measured by the strain gauge 7. When the vibrator 3 is operated, a force that causes the vibrator to move upward or downward due to the centrifugal force of the weight in the vibrator is generated, whereby a tensile force or a compressive force acts on the bolt 6. When this centrifugal force was calculated from the measured value of the strain gauge 7, it almost coincided with the centrifugal force described in the vibrator catalog. Incidentally, the centrifugal force at a frequency of 74 Hz was 3027N.
〔実験2〕
次に、図18に示すように、鉄床9の上にビーム1及びバイブレータ3を設置した。ビーム1は50mm×100mm×1150mmの金属製角材を水平方向に4本並べて一体化したもので、予め四隅に取付部2(鉄板)が溶接固定してあり、取付部2の下端を鉄床9に溶接することで鉄床9上に固定した。バイブレータ3は前記〔実験1〕と同じもので、同様にボルト6で台座8に固定してある。これをビーム1の中央に設置し、台座8をビーム1上面に溶接固定した。台座8の上面中央(バイブレータの中心直下)には加速度センサ10を設置した。
これにより、ビーム1は、実質的に、床9に両端を単純支持された梁となる。 [Experiment 2]
Next, as shown in FIG. 18, thebeam 1 and the vibrator 3 were installed on the iron floor 9. The beam 1 is formed by integrating four metal squares of 50 mm × 100 mm × 1150 mm in a horizontal direction, and mounting portions 2 (iron plates) are fixed by welding at four corners in advance, and the lower end of the mounting portion 2 is attached to the iron floor 9. It fixed on the iron floor 9 by welding. The vibrator 3 is the same as [Experiment 1], and is similarly fixed to the base 8 with bolts 6. This was installed in the center of the beam 1 and the base 8 was fixed to the upper surface of the beam 1 by welding. An acceleration sensor 10 is installed at the center of the upper surface of the pedestal 8 (just below the center of the vibrator).
Thereby, thebeam 1 is substantially a beam with both ends simply supported by the floor 9.
次に、図18に示すように、鉄床9の上にビーム1及びバイブレータ3を設置した。ビーム1は50mm×100mm×1150mmの金属製角材を水平方向に4本並べて一体化したもので、予め四隅に取付部2(鉄板)が溶接固定してあり、取付部2の下端を鉄床9に溶接することで鉄床9上に固定した。バイブレータ3は前記〔実験1〕と同じもので、同様にボルト6で台座8に固定してある。これをビーム1の中央に設置し、台座8をビーム1上面に溶接固定した。台座8の上面中央(バイブレータの中心直下)には加速度センサ10を設置した。
これにより、ビーム1は、実質的に、床9に両端を単純支持された梁となる。 [Experiment 2]
Next, as shown in FIG. 18, the
Thereby, the
この状態でバイブレータ3を振動数を変化させながら作動し、加速度センサ10によりビーム1の中央の加速度を計測した。ビーム1は、バイブレータ内のウエイトの遠心力により撓みを生じ、振動する。
図19は、ビーム1の中央の加速度を計測した結果である。同図のMで加速度が最大となっており、このときのバイブレータの振動数がビーム1の固有値である。このときの振動数(固有振動数)は74Hzで、最大加速度は287m/s2であった。
この結果から、力の方程式(F=ma)に基づいて、振動数74Hzのときに発生した力(すなわち床9に作用した力)を求めると、46299Nであった。 In this state, thevibrator 3 was operated while changing the frequency, and the acceleration at the center of the beam 1 was measured by the acceleration sensor 10. The beam 1 is deflected and vibrated by the centrifugal force of the weight in the vibrator.
FIG. 19 shows the result of measuring the acceleration at the center of thebeam 1. The acceleration is maximum at M in the figure, and the vibration frequency of the vibrator at this time is the eigenvalue of the beam 1. The frequency (natural frequency) at this time was 74 Hz, and the maximum acceleration was 287 m / s 2 .
From this result, based on the force equation (F = ma), the force generated at the frequency of 74 Hz (that is, the force acting on the floor 9) was found to be 46299N.
図19は、ビーム1の中央の加速度を計測した結果である。同図のMで加速度が最大となっており、このときのバイブレータの振動数がビーム1の固有値である。このときの振動数(固有振動数)は74Hzで、最大加速度は287m/s2であった。
この結果から、力の方程式(F=ma)に基づいて、振動数74Hzのときに発生した力(すなわち床9に作用した力)を求めると、46299Nであった。 In this state, the
FIG. 19 shows the result of measuring the acceleration at the center of the
From this result, based on the force equation (F = ma), the force generated at the frequency of 74 Hz (that is, the force acting on the floor 9) was found to be 46299N.
〔実験1と実験2の比較〕
前記〔実験1〕は、被加振物品(鉄床)に直接バイブレータを取り付けた状態に相当し、ことのき被加振物品(床)に作用する力は3027Nである。
前記〔実験2〕は、被加振物品(床)に本発明の加振装置を取り付けた状態に相当し、このときに被加振物品(鉄床)に作用する力は46299Nで、〔実験1〕の場合の約15倍となっている。
このように、本発明は、バイブレータの振動エネルギーを効率的に被加振物品に作用させることができる。 [Comparison betweenExperiment 1 and Experiment 2]
[Experiment 1] corresponds to a state in which the vibrator is directly attached to the article to be vibrated (iron floor), and the force acting on the article to be vibrated (floor) is 3027N.
[Experiment 2] corresponds to a state in which the vibration exciter of the present invention is attached to the article to be vibrated (floor). At this time, the force acting on the article to be vibrated (iron floor) is 46299 N, [Experiment 1 ] Is about 15 times that in the case of].
Thus, this invention can make the vibration energy of a vibrator act on a to-be-excited article efficiently.
前記〔実験1〕は、被加振物品(鉄床)に直接バイブレータを取り付けた状態に相当し、ことのき被加振物品(床)に作用する力は3027Nである。
前記〔実験2〕は、被加振物品(床)に本発明の加振装置を取り付けた状態に相当し、このときに被加振物品(鉄床)に作用する力は46299Nで、〔実験1〕の場合の約15倍となっている。
このように、本発明は、バイブレータの振動エネルギーを効率的に被加振物品に作用させることができる。 [Comparison between
[Experiment 1] corresponds to a state in which the vibrator is directly attached to the article to be vibrated (iron floor), and the force acting on the article to be vibrated (floor) is 3027N.
[Experiment 2] corresponds to a state in which the vibration exciter of the present invention is attached to the article to be vibrated (floor). At this time, the force acting on the article to be vibrated (iron floor) is 46299 N, [Experiment 1 ] Is about 15 times that in the case of].
Thus, this invention can make the vibration energy of a vibrator act on a to-be-excited article efficiently.
本発明は、バイブレータの振動をビームに共振させるものであるが、被加振物を共振させるものではないので、被加振物の共振を避けることも容易にできる。すなわち、加振装置におけるビームの固有値を被加振物の固有値と異なる値に設計すればよい。
The present invention resonates the vibration of the vibrator with the beam, but does not resonate the object to be excited, so that it is easy to avoid resonance of the object to be excited. That is, the eigenvalue of the beam in the excitation device may be designed to be different from the eigenvalue of the object to be excited.
また本発明は、前記取付部が前記ビーム長さ方向中央に対して対称の位置にあり、前記バイブレータがビームの長さ方向中央に固定されている請求項1に記載の加振装置である。(請求項2)
Also, the present invention is the vibration device according to claim 1, wherein the mounting portion is in a symmetrical position with respect to the center in the beam length direction, and the vibrator is fixed at the center in the beam length direction. (Claim 2)
バイブレータは、ビームの長さ方向中央に設けるのが最も効率的である。
被加振物品に取り付ける部分である取付部は、ビーム長さ方向中央に対して対称の位置とするのが好ましい。
取付部は、被加振物品に溶接、ボルト締めなど任意の方法で取り付けることができる部分であればよいが、被加振物品に取り付けた状態でビームが取付部を支点として振動可能でなければならない。
すなわち、取付部はビームの弓なり変形を妨げず、垂直方向の力だけを被加振物品に伝える連結部材が好適で、その部材により型枠の振動特性とビーム加振装置の振動特性を分離することができる。分離することで、型枠等の被加振物品の質量変化が生じても、ビームの固有値変動を小さくし、共振周波数を低下させずに加振力を維持できる。具体的には板状の連結が望ましい。 It is most efficient to provide the vibrator at the center in the longitudinal direction of the beam.
It is preferable that the attachment portion, which is a portion attached to the article to be vibrated, is positioned symmetrically with respect to the center in the beam length direction.
The attachment part may be any part that can be attached to the article to be excited by any method such as welding or bolting, but the beam should not be able to vibrate with the attachment part as a fulcrum while attached to the article to be excited. Don't be.
That is, the attachment portion is preferably a connecting member that does not prevent the bow of the beam from being deformed and transmits only the vertical force to the article to be vibrated, and the member separates the vibration characteristics of the mold and the vibration apparatus of the beam. be able to. By separating, even if the mass of the article to be excited such as a mold is changed, the eigenvalue fluctuation of the beam can be reduced, and the excitation force can be maintained without lowering the resonance frequency. Specifically, a plate-like connection is desirable.
被加振物品に取り付ける部分である取付部は、ビーム長さ方向中央に対して対称の位置とするのが好ましい。
取付部は、被加振物品に溶接、ボルト締めなど任意の方法で取り付けることができる部分であればよいが、被加振物品に取り付けた状態でビームが取付部を支点として振動可能でなければならない。
すなわち、取付部はビームの弓なり変形を妨げず、垂直方向の力だけを被加振物品に伝える連結部材が好適で、その部材により型枠の振動特性とビーム加振装置の振動特性を分離することができる。分離することで、型枠等の被加振物品の質量変化が生じても、ビームの固有値変動を小さくし、共振周波数を低下させずに加振力を維持できる。具体的には板状の連結が望ましい。 It is most efficient to provide the vibrator at the center in the longitudinal direction of the beam.
It is preferable that the attachment portion, which is a portion attached to the article to be vibrated, is positioned symmetrically with respect to the center in the beam length direction.
The attachment part may be any part that can be attached to the article to be excited by any method such as welding or bolting, but the beam should not be able to vibrate with the attachment part as a fulcrum while attached to the article to be excited. Don't be.
That is, the attachment portion is preferably a connecting member that does not prevent the bow of the beam from being deformed and transmits only the vertical force to the article to be vibrated, and the member separates the vibration characteristics of the mold and the vibration apparatus of the beam. be able to. By separating, even if the mass of the article to be excited such as a mold is changed, the eigenvalue fluctuation of the beam can be reduced, and the excitation force can be maintained without lowering the resonance frequency. Specifically, a plate-like connection is desirable.
図20の上段は、被加振物である型枠4に本発明の加振装置を取り付けた状態、下段はその加振装置を振動させた状態を示している。加振装置の取付部2は板状(H形鋼のウエブ)であり、その板面は加振装置による加振方向(矢印方向)に平行で、かつビーム1と直角をなしている。
加振装置を作動させると、ビーム1は同図下段に実線と破線で示すように弓なりに撓み変形するが、取付部2が板状であるため、ビーム1は撓み変形を妨げられることなく振動する。
なお、本発明において、加振装置の加振方向は、ビームに直角で、かつバイブレータの偏芯ウエイトの回転軸(モータ軸)と直角の方向になる。 The upper part of FIG. 20 shows a state in which the vibration device of the present invention is attached to themold 4 that is an object to be vibrated, and the lower part shows a state in which the vibration device is vibrated. The mounting portion 2 of the vibration device is plate-shaped (H-shaped steel web), and its plate surface is parallel to the vibration direction (arrow direction) by the vibration device and is perpendicular to the beam 1.
When the vibration exciter is operated, thebeam 1 is bent and deformed like a bow as indicated by the solid line and the broken line in the lower part of the figure, but the beam 1 vibrates without being hindered by deformation because the mounting portion 2 is plate-shaped. To do.
In the present invention, the vibration direction of the vibration device is perpendicular to the beam and perpendicular to the rotational axis (motor shaft) of the eccentric weight of the vibrator.
加振装置を作動させると、ビーム1は同図下段に実線と破線で示すように弓なりに撓み変形するが、取付部2が板状であるため、ビーム1は撓み変形を妨げられることなく振動する。
なお、本発明において、加振装置の加振方向は、ビームに直角で、かつバイブレータの偏芯ウエイトの回転軸(モータ軸)と直角の方向になる。 The upper part of FIG. 20 shows a state in which the vibration device of the present invention is attached to the
When the vibration exciter is operated, the
In the present invention, the vibration direction of the vibration device is perpendicular to the beam and perpendicular to the rotational axis (motor shaft) of the eccentric weight of the vibrator.
また本発明は、前記バイブレータが前記各取付部のビーム長さ方向外側に固定されており、前記各バイブレータ及び取付部が前記ビーム長さ方向中央に対して対称の位置にある請求項1に記載の加振装置である。(請求項3)
Further, in the present invention, the vibrator is fixed to the outer side in the beam length direction of the mounting portions, and the vibrator and the mounting portion are located symmetrically with respect to the center in the beam length direction. This is a vibration device. (Claim 3)
被加振物品との関係で、バイブレータをビームの中央に設けることができない場合、ビームの各取付部の外側(端部寄り)に設けることができる。したがって、バイブレータの数は複数となる。この場合、バイブレータ及び取付部は、ビーム長さ方向中央に対して対称の位置とするのがよい。
If the vibrator cannot be provided at the center of the beam due to the vibration-excited article, it can be provided on the outer side (near the end) of each attachment portion of the beam. Therefore, the number of vibrators is plural. In this case, it is preferable that the vibrator and the attachment portion are symmetric with respect to the center in the beam length direction.
また本発明は、前記ビームの中央にウエイトを固定した請求項2に記載の加振装置である。(請求項4)
Further, the present invention is the vibration device according to claim 2, wherein a weight is fixed at the center of the beam. (Claim 4)
また本発明は、前記ビームの両端にウエイトを固定した請求項3に記載の加振装置である。(請求項5)
Further, the present invention is the vibration device according to claim 3, wherein weights are fixed to both ends of the beam. (Claim 5)
ビームにウエイトを設けることで、被加振物品に作用する振動力を増幅させることができる。
ウエイトは、金属板、金属塊、鋼材などある程度重量のあるものであればよい。 By providing a weight on the beam, it is possible to amplify the vibration force acting on the article to be excited.
The weight may be a metal plate, a metal lump, a steel material, or the like having a certain weight.
ウエイトは、金属板、金属塊、鋼材などある程度重量のあるものであればよい。 By providing a weight on the beam, it is possible to amplify the vibration force acting on the article to be excited.
The weight may be a metal plate, a metal lump, a steel material, or the like having a certain weight.
また本発明は、前記バイブレータが、振動数を変えることができるものである請求項1~5のいずれかに記載の加振装置である。(請求項6)
The present invention is the vibration device according to any one of claims 1 to 5, wherein the vibrator is capable of changing a vibration frequency. (Claim 6)
振動数を変えることで、バイブレータの振動数をビームの固有値に容易に合わせることができる。
市販の通常の振動モータ型バイブレータは振動数を変えることができるので、これを用いることができる。 By changing the frequency, the vibration frequency of the vibrator can be easily adjusted to the eigenvalue of the beam.
Since a commercially available normal vibration motor type vibrator can change the frequency, it can be used.
市販の通常の振動モータ型バイブレータは振動数を変えることができるので、これを用いることができる。 By changing the frequency, the vibration frequency of the vibrator can be easily adjusted to the eigenvalue of the beam.
Since a commercially available normal vibration motor type vibrator can change the frequency, it can be used.
また本発明は、前記1~6に記載のいずれかの加振装置を取り付けたコンクリート二次製品を成形する型枠であって、前記バイブレータの振動に伴って前記ビームが共振することを特徴とするコンクリート二次製品用型枠である。(請求項7)
Further, the present invention is a mold for molding a concrete secondary product to which any of the vibration exciters described in 1 to 6 above is attached, wherein the beam resonates with vibration of the vibrator. It is a formwork for a concrete secondary product. (Claim 7)
本発明の加振装置は、非常に大きな振動力を発生するので、これを型枠に取り付けることで、型枠を局部的でなく全体的に振動させ、型枠に充填されるコンクリート全体の流動性を増し、気泡の発生も防いで高品質のコンクリート二次製品を成形することが可能となる。
また、本発明の加振装置は効率よく振動力を発生するので、従来に比べて小型の(出力の小さな)バイブレータを使用でき、エネルギーコストなどのコスト削減が可能となる。
加振装置の取り付け場所は、型枠の底部、側面のせき板又はその補強材など自由であるが、後述するように、底部に取り付けるのが最も好ましい。 Since the vibration generator of the present invention generates a very large vibration force, by attaching it to the formwork, the formwork is vibrated as a whole, not locally, and the flow of the entire concrete filled in the formwork Therefore, it is possible to form a high-quality concrete secondary product while preventing the generation of bubbles.
In addition, since the vibration device of the present invention efficiently generates a vibration force, a vibrator having a smaller size (smaller output) than that of the conventional vibrator can be used, and costs such as energy costs can be reduced.
The vibration device can be attached to any position such as the bottom of the mold, the side plate or its reinforcing material, but it is most preferable to attach the vibration device to the bottom as described later.
また、本発明の加振装置は効率よく振動力を発生するので、従来に比べて小型の(出力の小さな)バイブレータを使用でき、エネルギーコストなどのコスト削減が可能となる。
加振装置の取り付け場所は、型枠の底部、側面のせき板又はその補強材など自由であるが、後述するように、底部に取り付けるのが最も好ましい。 Since the vibration generator of the present invention generates a very large vibration force, by attaching it to the formwork, the formwork is vibrated as a whole, not locally, and the flow of the entire concrete filled in the formwork Therefore, it is possible to form a high-quality concrete secondary product while preventing the generation of bubbles.
In addition, since the vibration device of the present invention efficiently generates a vibration force, a vibrator having a smaller size (smaller output) than that of the conventional vibrator can be used, and costs such as energy costs can be reduced.
The vibration device can be attached to any position such as the bottom of the mold, the side plate or its reinforcing material, but it is most preferable to attach the vibration device to the bottom as described later.
また本発明は、前記加振装置を型枠の底部に固定した請求項7に記載の型枠である。(請求項8)
The present invention is the mold according to claim 7, wherein the vibration exciter is fixed to the bottom of the mold. (Claim 8)
型枠の底部は、型枠本体及び充填するコンクリートの重量を支えるために、H形鋼などの鋼材を組み合わせて頑丈に製作されている。型枠底部に本発明の加振装置を取り付けることで、加振装置の大きな振動力で、局部的でなく型枠全体を振動させることができる。これによって、今まで局部的に発生しやすかった気泡の発生を抑制し、高品質のコンクリート製品を製造できる。また、従来バイブレータにより局部的な力が働いたせき板や補強材などの型枠材料を軽減し、コストダウンも可能となる。
¡The bottom of the formwork is made with a strong combination of steel such as H-section steel to support the weight of the formwork body and the concrete to be filled. By attaching the vibration exciter of the present invention to the bottom of the mold, it is possible to vibrate the entire mold, not locally, with a large vibration force of the exciter. As a result, it is possible to suppress the generation of air bubbles that have been easily generated locally, and to manufacture a high-quality concrete product. In addition, it is possible to reduce cost by reducing mold materials such as slats and reinforcing materials that have been subjected to local force by a conventional vibrator.
また本発明は、前記1~6に記載のいずれかの加振装置を搬送路に取り付けた振動フィーダであって、前記バイブレータの振動に伴って前記ビームが共振することを特徴とする振動フィーダである。(請求項9)
In addition, the present invention is a vibration feeder in which any of the vibration exciters described in the above 1 to 6 is attached to a conveyance path, wherein the beam resonates with the vibration of the vibrator. is there. (Claim 9)
また本発明は、前記加振装置を搬送路の下面に固定した請求項9に記載の振動フィーダである。(請求項10)
The present invention is the vibration feeder according to claim 9, wherein the vibration exciter is fixed to a lower surface of the conveyance path. (Claim 10)
また本発明は、請求項6に記載の加振装置を物品に取り付け、該加振装置の固有値近辺の振動数とビーム加速度の関係に基づいて前記バイブレータの振動数を調整して物品を振動させることを特徴とする物品の加振方法である。(請求項11)
According to the present invention, the vibration device according to claim 6 is attached to an article, and the article is vibrated by adjusting the vibration frequency of the vibrator based on the relationship between the frequency near the eigenvalue of the vibration apparatus and the beam acceleration. This is a method for exciting an article. (Claim 11)
また本発明は、請求項6に記載の加振装置を型枠に取り付け、該加振装置の固有値近辺の振動数とビーム加速度の関係に基づいて前記バイブレータの振動数を調整して型枠を振動させることを特徴とするコンクリート二次製品用型枠の加振方法である。(請求項12)
According to another aspect of the present invention, the vibration device according to claim 6 is attached to a mold, and the vibration frequency of the vibrator is adjusted based on the relationship between the frequency near the eigenvalue of the vibration device and the beam acceleration, and the mold is It is a method for exciting a formwork for a concrete secondary product characterized by being vibrated. (Claim 12)
また本発明は、請求項6に記載の加振装置を振動フィーダの搬送路に取り付け、該加振装置の固有値近辺の振動数とビーム加速度の関係に基づいて前記バイブレータの振動数を調整して前記搬送路を振動させることを特徴とする振動フィーダの加振方法。(請求項13)
According to the present invention, the vibration device according to claim 6 is attached to the conveyance path of the vibration feeder, and the vibration frequency of the vibrator is adjusted based on the relationship between the vibration frequency near the eigenvalue of the vibration device and the beam acceleration. A method of exciting a vibration feeder, wherein the conveying path is vibrated. (Claim 13)
図19を参照すると、ビームの加速度(すなわち振動力)はM(ビームの固有値)で最大となるが、例えば図のSの領域において、加速度と振動数の間に一定の関係がある。この関係を利用することで、振動数を調整して所望の振動力を得ることができる。
所望の振動力は、バイブレータの固定ウエイト32aと調整ウエイト32bの重なり具合を調整することでもできるが(図1)、この作業はバイブレータを分解して行うので面倒である。本方法によれば、振動力の変更が容易になり、かつ微妙な調整も可能となる。 Referring to FIG. 19, the acceleration (that is, the vibration force) of the beam becomes maximum at M (the eigenvalue of the beam). For example, in the region S in the figure, there is a certain relationship between the acceleration and the vibration frequency. By utilizing this relationship, a desired vibration force can be obtained by adjusting the vibration frequency.
The desired vibration force can be adjusted by adjusting the overlapping state of the fixedweight 32a and the adjustment weight 32b of the vibrator (FIG. 1), but this operation is troublesome because the vibrator is disassembled. According to this method, the vibration force can be easily changed and fine adjustment can be performed.
所望の振動力は、バイブレータの固定ウエイト32aと調整ウエイト32bの重なり具合を調整することでもできるが(図1)、この作業はバイブレータを分解して行うので面倒である。本方法によれば、振動力の変更が容易になり、かつ微妙な調整も可能となる。 Referring to FIG. 19, the acceleration (that is, the vibration force) of the beam becomes maximum at M (the eigenvalue of the beam). For example, in the region S in the figure, there is a certain relationship between the acceleration and the vibration frequency. By utilizing this relationship, a desired vibration force can be obtained by adjusting the vibration frequency.
The desired vibration force can be adjusted by adjusting the overlapping state of the fixed
本発明の加振装置及び加振方法は、装置が単純な構造で製造コストが低く、少ない振動エネルギーで大きな振動力を得るのでエネルギーコストも削減できる。また、高い振動数で振動させることも可能で応用範囲が広い。
本発明のコンクリート二次製品用型枠は、型枠を局部的でなく全体的に振動させることができるので、型枠に充填されるコンクリート全体の流動性を増し、気泡の発生も防いで高品質のコンクリート二次製品を成形することが可能となる。
本発明の振動フィーダは、少ない振動エネルギーで搬送路を全体的に振動させることができるので、物品の搬送を効率的に行うことができる。 The vibration device and the vibration method of the present invention have a simple structure and a low manufacturing cost, and a large vibration force is obtained with a small vibration energy, so that the energy cost can be reduced. Moreover, it can be vibrated at a high frequency and has a wide application range.
The concrete secondary product formwork of the present invention can vibrate the formwork as a whole rather than locally, increasing the fluidity of the entire concrete filled in the formwork and preventing the generation of bubbles. It becomes possible to form a quality concrete secondary product.
Since the vibration feeder of the present invention can vibrate the entire conveyance path with a small amount of vibration energy, the article can be efficiently conveyed.
本発明のコンクリート二次製品用型枠は、型枠を局部的でなく全体的に振動させることができるので、型枠に充填されるコンクリート全体の流動性を増し、気泡の発生も防いで高品質のコンクリート二次製品を成形することが可能となる。
本発明の振動フィーダは、少ない振動エネルギーで搬送路を全体的に振動させることができるので、物品の搬送を効率的に行うことができる。 The vibration device and the vibration method of the present invention have a simple structure and a low manufacturing cost, and a large vibration force is obtained with a small vibration energy, so that the energy cost can be reduced. Moreover, it can be vibrated at a high frequency and has a wide application range.
The concrete secondary product formwork of the present invention can vibrate the formwork as a whole rather than locally, increasing the fluidity of the entire concrete filled in the formwork and preventing the generation of bubbles. It becomes possible to form a quality concrete secondary product.
Since the vibration feeder of the present invention can vibrate the entire conveyance path with a small amount of vibration energy, the article can be efficiently conveyed.
図1~3の加振装置Aは、H形鋼のビーム1中央下面に振動モータ型バイブレータ3をボルト(図示せず)により固定し、両端上面に小型H形鋼の取付部2を溶接固定したものである。
1 to 3, the vibration motor type vibrator 3 is fixed to the lower surface of the center of the beam 1 of the H-shaped steel with bolts (not shown), and the mounting portions 2 of the small H-shaped steel are fixed to the upper surfaces of both ends by welding. It is a thing.
図3は、加振装置Aをコンクリート二次製品用型枠4の底部に取り付けた例を示している。型枠4は、コンクリートを充填するキャビティー部4a、キャビティー部を支える底部4b及び脚部4cからなる。
取付部2を、型枠の底部4bを構成する形鋼に溶接など任意の手段で取り付け固定する。ビーム1は、弓なり変形可能に底部4bに吊り下げられた形となっている。
バイブレータ3のモータ軸は水平方向を向いており、バイブレータを作動するとビームは垂直な(モータ軸と直角方向の)面内で振動し、この振動が型枠に伝わって型枠全体が振動する。脚部4cと地面の間には防振ゴム4dを設けることが望ましい。 FIG. 3 shows an example in which the vibration exciter A is attached to the bottom of the concretesecondary product form 4. The mold 4 includes a cavity portion 4a for filling concrete, a bottom portion 4b for supporting the cavity portion, and a leg portion 4c.
Theattachment portion 2 is attached and fixed to the shape steel constituting the bottom portion 4b of the mold by any means such as welding. The beam 1 has a shape suspended from the bottom 4b so as to be deformed like a bow.
The motor shaft of thevibrator 3 is oriented in the horizontal direction, and when the vibrator is operated, the beam vibrates in a vertical plane (perpendicular to the motor shaft), and this vibration is transmitted to the mold and vibrates the entire mold. It is desirable to provide an anti-vibration rubber 4d between the leg 4c and the ground.
取付部2を、型枠の底部4bを構成する形鋼に溶接など任意の手段で取り付け固定する。ビーム1は、弓なり変形可能に底部4bに吊り下げられた形となっている。
バイブレータ3のモータ軸は水平方向を向いており、バイブレータを作動するとビームは垂直な(モータ軸と直角方向の)面内で振動し、この振動が型枠に伝わって型枠全体が振動する。脚部4cと地面の間には防振ゴム4dを設けることが望ましい。 FIG. 3 shows an example in which the vibration exciter A is attached to the bottom of the concrete
The
The motor shaft of the
図4,5の加振装置Bは、H形鋼のビーム1の両端下面に振動モータ型バイブレータ3をボルト(図示せず)により固定し、それよりも内側の上面の2個所に小型H形鋼の取付部2を溶接固定したものである。したがって、バイブレータ3が各取付部2,2のビーム長さ方向外側に固定されており、各バイブレータ3,3及び取付部2,2がビーム長さ方向中央に対して対称の位置にある。
2台のバイブレータを同じ回転速度で作動させると、ビームの振動によって各バイブレータの偏芯ウエイトの回転が自動的に同期するようになり、同期したバイブレータの振動にビームが共振する。 4 and 5, a vibrationmotor type vibrator 3 is fixed to the lower surfaces of both ends of an H-shaped steel beam 1 with bolts (not shown), and small H-shaped at two locations on the inner upper surface thereof. The steel mounting portion 2 is fixed by welding. Therefore, the vibrator 3 is fixed to the outer side in the beam length direction of the mounting portions 2 and 2, and the vibrators 3 and 3 and the mounting portions 2 and 2 are in symmetrical positions with respect to the center in the beam length direction.
When the two vibrators are operated at the same rotational speed, the rotation of the eccentric weight of each vibrator is automatically synchronized by the vibration of the beam, and the beam resonates with the vibration of the synchronized vibrator.
2台のバイブレータを同じ回転速度で作動させると、ビームの振動によって各バイブレータの偏芯ウエイトの回転が自動的に同期するようになり、同期したバイブレータの振動にビームが共振する。 4 and 5, a vibration
When the two vibrators are operated at the same rotational speed, the rotation of the eccentric weight of each vibrator is automatically synchronized by the vibration of the beam, and the beam resonates with the vibration of the synchronized vibrator.
図6の加振装置Cは、ビーム1が平行な2本の梁部材1a(H形鋼)と、その中央を連結する繋ぎ材1b(H形鋼と鉄板の組み合わせ)からなる。各梁部材1aの両端付近上面に小型H形鋼の取付部2を溶接固定し、各梁部材1aの中央部外側面に振動モータ型バイブレータ3をボルト(図示せず)により固定している。
この加振装置は、バイブレータ3がビーム(梁部材1a)の中央に配置され、さらに繋ぎ材1bがウエイトとして作用するので、非常に大きな振動力を発現する。 The vibration device C in FIG. 6 includes twobeam members 1a (H-shaped steel) in which the beams 1 are parallel and a connecting member 1b (a combination of H-shaped steel and an iron plate) that connects the centers thereof. A small H-shaped steel mounting portion 2 is welded and fixed to the upper surface in the vicinity of both ends of each beam member 1a, and a vibration motor type vibrator 3 is fixed to the outer surface of the central portion of each beam member 1a with a bolt (not shown).
In this vibration exciter, thevibrator 3 is arranged at the center of the beam (beam member 1a), and the connecting member 1b acts as a weight, so that a very large vibration force is expressed.
この加振装置は、バイブレータ3がビーム(梁部材1a)の中央に配置され、さらに繋ぎ材1bがウエイトとして作用するので、非常に大きな振動力を発現する。 The vibration device C in FIG. 6 includes two
In this vibration exciter, the
図7~9の加振装置Dは、大型の型枠に用いて好適なものである。ビーム1は、2本の梁部材1a(H形鋼)を対向させ、2本の繋ぎ材1b(H形鋼)で四辺形状に溶接一体化したものである。各梁部材1a,1aの上面には、2個所の取付部2,2’が溶接固定され、その外側の梁部材側面に合計4台の振動モータ型バイブレータ3がボルト(図示せず)固定されている。さらに外側の梁部材両端部には金属製のウエイト5が溶接により固定されている。取付部2,2は、ビームの長さ方向に対して同じ位置であり、取付部2’,2’も同様である。各バイブレータ及び取付部2,2’はビーム長さ方向中央に対して対称の位置にある。
4台のバイブレータを作動させると、ビームの振動によって各バイブレータの偏芯ウエイトの回転が自動的に同期するようになり、同期したバイブレータの振動にビームが共振する。 The vibration device D shown in FIGS. 7 to 9 is suitable for use in a large formwork. Thebeam 1 has two beam members 1a (H-shaped steel) opposed to each other and is welded and integrated into a quadrilateral shape with two connecting members 1b (H-shaped steel). Two attachment portions 2 and 2 'are welded and fixed to the upper surface of each beam member 1a and 1a, and a total of four vibration motor type vibrators 3 are fixed to bolts (not shown) on the side surface of the outer beam member. ing. Further, metal weights 5 are fixed to both ends of the outer beam member by welding. The attachment portions 2 and 2 are at the same position with respect to the length direction of the beam, and the attachment portions 2 ′ and 2 ′ are the same. The vibrators and the mounting portions 2 and 2 'are in symmetrical positions with respect to the center in the beam length direction.
When the four vibrators are operated, the rotation of the eccentric weight of each vibrator is automatically synchronized by the vibration of the beam, and the beam resonates with the vibration of the synchronized vibrator.
4台のバイブレータを作動させると、ビームの振動によって各バイブレータの偏芯ウエイトの回転が自動的に同期するようになり、同期したバイブレータの振動にビームが共振する。 The vibration device D shown in FIGS. 7 to 9 is suitable for use in a large formwork. The
When the four vibrators are operated, the rotation of the eccentric weight of each vibrator is automatically synchronized by the vibration of the beam, and the beam resonates with the vibration of the synchronized vibrator.
図9は、加振装置Dをコンクリート二次製品(セグメント)を成形する型枠4の底部に取り付けた例を示している。型枠4は、コンクリートを充填するキャビティー部4a、キャビティー部を支える底部4b及び脚部4cからなる。
取付部2を、型枠の底部4bを構成するH形鋼に溶接など任意の手段で取り付け固定する。ビーム1は、弓なり変形可能に底部4bに吊り下げられた形となっている。
バイブレータ3のモータ軸は水平方向を向いており、バイブレータを作動するとビームは垂直な(モータ軸と直角方向の)面内で振動し、この振動が型枠に伝わって型枠全体が振動する。 FIG. 9 shows an example in which the vibration exciter D is attached to the bottom of themold 4 for molding a concrete secondary product (segment). The mold 4 includes a cavity portion 4a for filling concrete, a bottom portion 4b for supporting the cavity portion, and a leg portion 4c.
Theattachment portion 2 is attached and fixed to the H-section steel constituting the bottom portion 4b of the mold by any means such as welding. The beam 1 has a shape suspended from the bottom 4b so as to be deformed like a bow.
The motor shaft of thevibrator 3 is oriented in the horizontal direction, and when the vibrator is operated, the beam vibrates in a vertical plane (perpendicular to the motor shaft), and this vibration is transmitted to the mold and vibrates the entire mold.
取付部2を、型枠の底部4bを構成するH形鋼に溶接など任意の手段で取り付け固定する。ビーム1は、弓なり変形可能に底部4bに吊り下げられた形となっている。
バイブレータ3のモータ軸は水平方向を向いており、バイブレータを作動するとビームは垂直な(モータ軸と直角方向の)面内で振動し、この振動が型枠に伝わって型枠全体が振動する。 FIG. 9 shows an example in which the vibration exciter D is attached to the bottom of the
The
The motor shaft of the
図10~12の加振装置Eは、ビーム1が、2本の梁部材(金属製角材)を対向させ、その両端部を2本の繋ぎ材(鉄板)で四辺形状に溶接一体化したものである。梁部材1a,1aの中央部には金属製のウエイト5が固定され、ウエイト5に振動モータ型バイブレータ3が固定されている。ビーム1の両端部には、合計4個所の取付部2,2,2’,2’が溶接固定されている。取付部2,2は、ビームの長さ方向に対して同じ位置であり、取付部2’,2’も同様である。取付部2,2’はビーム長さ方向中央に対して対称の位置にある。
10 to 12, the beam 1 has two beam members (metal square members) opposed to each other, and both ends thereof are welded and integrated into a quadrilateral shape with two connecting members (iron plates). It is. A metal weight 5 is fixed to the central portion of the beam members 1 a and 1 a, and the vibration motor type vibrator 3 is fixed to the weight 5. A total of four attachment portions 2, 2, 2 ', 2' are fixed to both ends of the beam 1 by welding. The attachment portions 2 and 2 are at the same position in the beam length direction, and the attachment portions 2 'and 2' are the same. The attachment portions 2 and 2 'are in symmetrical positions with respect to the center in the beam length direction.
図11,12は、加振装置Eをコンクリート二次製品(ヒューム管)を成形する型枠4に取り付けた例を示している。加振装置Eは、取付部2,2’を型枠4のキャビティー部4aの両端を閉塞するドーナツ形の端板4fにボルト(図示せず)によって固定され、梁部材1aは弓なり変形可能になっている。
バイブレータ3のモータ軸は垂直方向を向いており、バイブレータを作動するとビームは水平な(モータ軸と直角方向の)面内で振動し、この振動が型枠に伝わって型枠全体が振動する。 11 and 12 show an example in which the vibration exciter E is attached to amold 4 for molding a concrete secondary product (fume pipe). In the vibration exciter E, the mounting portions 2 and 2 'are fixed to a donut-shaped end plate 4f that closes both ends of the cavity portion 4a of the mold 4 by bolts (not shown), and the beam member 1a can be deformed as a bow. It has become.
The motor shaft of thevibrator 3 is oriented in the vertical direction, and when the vibrator is operated, the beam vibrates in a horizontal plane (perpendicular to the motor shaft), and this vibration is transmitted to the mold and vibrates the entire mold.
バイブレータ3のモータ軸は垂直方向を向いており、バイブレータを作動するとビームは水平な(モータ軸と直角方向の)面内で振動し、この振動が型枠に伝わって型枠全体が振動する。 11 and 12 show an example in which the vibration exciter E is attached to a
The motor shaft of the
図13は、前記の加振装置Dを硫黄コンクリート二次製品を成形する型枠4の底部に取り付けた例を示している。型枠4は、硫黄コンクリートを充填するキャビティー部4a、キャビティー部を支える底部4b及び脚部4cからなる。脚部4cと地面の間には防振ゴム4dが設けられている。また、高温の硫黄コンクリートを流し込むための湯口4eが設けられている。
湯口4eから流し込まれた硫黄コンクリートがキャビティー内全体に行き渡るように、キャビティー部4aは傾けて設置されている。
湯口4eから流し込まれた硫黄コンクリートは、型枠に接触して却されて硬化する。硫黄コンクリートは硬化したときの収縮率が大きいので、硬化した硫黄コンクリート内に空隙が生じないように、型枠をキャビティーの軸方向に振動させることが望まれる。
本実施例において、加振装置Dは、傾いた底部4bの下部に同じ傾きで取り付けられているので、同図に矢印で示すように、加振方向がキャビティーの軸方向になる。
このように、本発明の加振装置は、被加振物品を所望の方向に加振させることができる。 FIG. 13 shows an example in which the vibration exciter D is attached to the bottom of themold 4 for forming the sulfur concrete secondary product. The mold 4 includes a cavity portion 4a filled with sulfur concrete, a bottom portion 4b that supports the cavity portion, and a leg portion 4c. Anti-vibration rubber 4d is provided between the leg 4c and the ground. Moreover, the gate 4e for pouring high temperature sulfur concrete is provided.
Thecavity portion 4a is inclined and installed so that the sulfur concrete poured from the gate 4e spreads throughout the cavity.
The sulfur concrete poured from thegate 4e comes into contact with the mold and is cured. Since sulfur concrete has a large shrinkage ratio when cured, it is desirable to vibrate the mold in the axial direction of the cavity so that no voids are formed in the cured sulfur concrete.
In the present embodiment, since the vibration exciter D is attached to the lower portion of theinclined bottom portion 4b with the same inclination, the excitation direction is the axial direction of the cavity as shown by the arrows in FIG.
Thus, the vibration exciter of the present invention can vibrate the article to be vibrated in a desired direction.
湯口4eから流し込まれた硫黄コンクリートがキャビティー内全体に行き渡るように、キャビティー部4aは傾けて設置されている。
湯口4eから流し込まれた硫黄コンクリートは、型枠に接触して却されて硬化する。硫黄コンクリートは硬化したときの収縮率が大きいので、硬化した硫黄コンクリート内に空隙が生じないように、型枠をキャビティーの軸方向に振動させることが望まれる。
本実施例において、加振装置Dは、傾いた底部4bの下部に同じ傾きで取り付けられているので、同図に矢印で示すように、加振方向がキャビティーの軸方向になる。
このように、本発明の加振装置は、被加振物品を所望の方向に加振させることができる。 FIG. 13 shows an example in which the vibration exciter D is attached to the bottom of the
The
The sulfur concrete poured from the
In the present embodiment, since the vibration exciter D is attached to the lower portion of the
Thus, the vibration exciter of the present invention can vibrate the article to be vibrated in a desired direction.
図14,15は、前記の加振装置Aを振動フィーダ11の搬送路11aの下面に取り付けた例を示している。
振動フィーダ11は、鉄板を樋状に加工した搬送路11aを支持部材(図示せず)で傾斜した状態で支持したもので、ホッパ12から排出したコンクリートを搬送し、型枠4内に供給するものである。
搬送路11aの下面には、鋼材を加工し、側面形状が三角形状をなす下面補強部11bが固定され、これに前記の加振装置Aを横にした状態で取り付けている。
これにより、振動フィーダ11の搬送路11aが水平方向に加振され、ホッパ12から排出されたコンクリートが搬送路11a内を搬送され、型枠4内に流れ込む。 14 and 15 show an example in which the vibration exciter A is attached to the lower surface of theconveyance path 11 a of the vibration feeder 11.
Thevibration feeder 11 supports a conveyance path 11 a obtained by processing a steel plate into a bowl shape in an inclined state with a support member (not shown), conveys the concrete discharged from the hopper 12, and supplies it into the mold 4. Is.
On the lower surface of thetransport path 11a, a steel material is processed, and a lower surface reinforcing portion 11b having a triangular side surface shape is fixed. The vibration device A is attached to the lower surface reinforcing portion 11b.
Thereby, theconveyance path 11a of the vibration feeder 11 is vibrated in the horizontal direction, and the concrete discharged from the hopper 12 is conveyed in the conveyance path 11a and flows into the mold 4.
振動フィーダ11は、鉄板を樋状に加工した搬送路11aを支持部材(図示せず)で傾斜した状態で支持したもので、ホッパ12から排出したコンクリートを搬送し、型枠4内に供給するものである。
搬送路11aの下面には、鋼材を加工し、側面形状が三角形状をなす下面補強部11bが固定され、これに前記の加振装置Aを横にした状態で取り付けている。
これにより、振動フィーダ11の搬送路11aが水平方向に加振され、ホッパ12から排出されたコンクリートが搬送路11a内を搬送され、型枠4内に流れ込む。 14 and 15 show an example in which the vibration exciter A is attached to the lower surface of the
The
On the lower surface of the
Thereby, the
本発明の加振装置は、コンクリート二次製品用型枠、振動フィーダの搬送路に限らず、種々の物品を振動させるために使用することができる。
The vibration exciter of the present invention is not limited to the concrete secondary product formwork and the conveying path of the vibration feeder, and can be used to vibrate various articles.
1 ビーム
1a 梁部材
1b 繋ぎ材
2 取付部
2’ 取付部
3 バイブレータ
4 型枠
4a キャビティー部
4b 底部
4c 脚部
4d 防振ゴム
4e 湯口
4f 端板
5 ウエイト
6 ボルト
7 ヒズミゲージ
8 台座
9 鉄床
10 加速度センサ
11 振動フィーダ
11a 搬送路
11b 下面補強部
12 ホッパ
31 回転軸
32 偏芯ウエイト
32a 固定ウエイト
32b 調整ウエイト
32c 調整穴
A 加振装置
B 加振装置
C 加振装置
D 加振装置
E 加振装置 DESCRIPTION OFSYMBOLS 1 Beam 1a Beam member 1b Connecting material 2 Attachment part 2 'Attachment part 3 Vibrator 4 Formwork 4a Cavity part 4b Bottom part 4c Leg part 4d Anti-vibration rubber 4e Sprue 4f End plate 5 Weight 6 Bolt 7 Strain gauge 8 Base 10 Acceleration base 9 Sensor 11 Vibrating feeder 11a Conveying path 11b Lower surface reinforcing portion 12 Hopper 31 Rotating shaft 32 Eccentric weight 32a Fixed weight 32b Adjusting weight 32c Adjusting hole A Exciting device B Exciting device C Exciting device D Exciting device E Exciting device
1a 梁部材
1b 繋ぎ材
2 取付部
2’ 取付部
3 バイブレータ
4 型枠
4a キャビティー部
4b 底部
4c 脚部
4d 防振ゴム
4e 湯口
4f 端板
5 ウエイト
6 ボルト
7 ヒズミゲージ
8 台座
9 鉄床
10 加速度センサ
11 振動フィーダ
11a 搬送路
11b 下面補強部
12 ホッパ
31 回転軸
32 偏芯ウエイト
32a 固定ウエイト
32b 調整ウエイト
32c 調整穴
A 加振装置
B 加振装置
C 加振装置
D 加振装置
E 加振装置 DESCRIPTION OF
Claims (13)
- 長さ方向の2つの位置に被加振物品への取付部を有するビームと、
該ビームの長さ方向の前記取付部と異なる位置に固定したバイブレータを有する加振装置であって、
前記バイブレータが加振装置における前記ビームの固有値で振動できるものであることを特徴とする物品の加振装置。 A beam having attachment portions to the article to be vibrated at two positions in the length direction;
A vibration device having a vibrator fixed at a position different from the mounting portion in the length direction of the beam,
A vibrator for an article, wherein the vibrator can vibrate with the eigenvalue of the beam in the vibrator. - 前記取付部が前記ビーム長さ方向中央に対して対称の位置にあり、前記バイブレータがビームの長さ方向中央に固定されている請求項1に記載の加振装置。 2. The vibration device according to claim 1, wherein the attachment portion is in a symmetrical position with respect to the center in the beam length direction, and the vibrator is fixed at the center in the beam length direction.
- 前記バイブレータが前記各取付部のビーム長さ方向外側に固定されており、
前記各バイブレータ及び取付部が前記ビーム長さ方向中央に対して対称の位置にある請求項1に記載の加振装置。 The vibrator is fixed to the outside of each attachment portion in the beam length direction,
2. The vibration device according to claim 1, wherein each of the vibrators and the attachment portion is in a symmetrical position with respect to the center in the beam length direction. - 前記ビームの中央にウエイトを固定した請求項2に記載の加振装置。 The vibration device according to claim 2, wherein a weight is fixed at a center of the beam.
- 前記ビームの両端にウエイトを固定した請求項3に記載の加振装置。 The vibration device according to claim 3, wherein weights are fixed to both ends of the beam.
- 前記バイブレータが、振動数を変えることができるものである請求項1~5のいずれかに記載の加振装置。 The vibration device according to any one of claims 1 to 5, wherein the vibrator is capable of changing a vibration frequency.
- 前記1~6に記載のいずれかの加振装置を取り付けたコンクリート二次製品を成形する型枠であって、前記バイブレータの振動に伴って前記ビームが共振することを特徴とするコンクリート二次製品用型枠。 A formwork for molding a concrete secondary product to which any of the vibration exciters described in 1 to 6 above is attached, wherein the beam resonates with the vibration of the vibrator. Formwork for.
- 前記加振装置を型枠の底部に固定した請求項7に記載の型枠。 The formwork of Claim 7 which fixed the said vibration exciting apparatus to the bottom part of the formwork.
- 前記1~6に記載のいずれかの加振装置を搬送路に取り付けた振動フィーダであって、前記バイブレータの振動に伴って前記ビームが共振することを特徴とする振動フィーダ。 7. A vibration feeder having the vibration device according to any one of 1 to 6 attached to a conveyance path, wherein the beam resonates with vibration of the vibrator.
- 前記加振装置を搬送路の下面に固定した請求項9に記載の振動フィーダ。 The vibration feeder according to claim 9, wherein the vibration exciter is fixed to a lower surface of the conveyance path.
- 請求項6に記載の加振装置を物品に取り付け、該加振装置の固有値近辺の振動数とビーム加速度の関係に基づいて前記バイブレータの振動数を調整して物品を振動させることを特徴とする物品の加振方法。 The vibration device according to claim 6 is attached to an article, and the article is vibrated by adjusting the vibration frequency of the vibrator based on the relationship between the vibration frequency around the eigenvalue of the vibration apparatus and the beam acceleration. A method of vibrating an article.
- 請求項6に記載の加振装置を型枠に取り付け、該加振装置の固有値近辺の振動数とビーム加速度の関係に基づいて前記バイブレータの振動数を調整して型枠を振動させることを特徴とするコンクリート二次製品用型枠の加振方法。 The vibration device according to claim 6 is attached to a mold, and the vibration of the vibrator is adjusted by adjusting the vibration frequency based on the relationship between the vibration frequency near the eigenvalue of the vibration device and the beam acceleration. Exciting method for formwork for concrete secondary products.
- 請求項6に記載の加振装置を振動フィーダの搬送路に取り付け、該加振装置の固有値近辺の振動数とビーム加速度の関係に基づいて前記バイブレータの振動数を調整して前記搬送路を振動させることを特徴とする振動フィーダの加振方法。
The vibration device according to claim 6 is attached to the conveyance path of the vibration feeder, and the vibration frequency of the vibrator is adjusted based on the relationship between the vibration frequency near the eigenvalue of the vibration device and the beam acceleration to vibrate the conveyance path. A method of exciting a vibration feeder, characterized in that:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012501554A JP5175999B2 (en) | 2010-02-23 | 2010-02-23 | Excitation method of goods |
PCT/JP2010/052743 WO2011104815A1 (en) | 2010-02-23 | 2010-02-23 | Object vibration device, mold for secondary concrete products, and method for vibrating objects and vibrating feeders |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/052743 WO2011104815A1 (en) | 2010-02-23 | 2010-02-23 | Object vibration device, mold for secondary concrete products, and method for vibrating objects and vibrating feeders |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011104815A1 true WO2011104815A1 (en) | 2011-09-01 |
Family
ID=44506262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/052743 WO2011104815A1 (en) | 2010-02-23 | 2010-02-23 | Object vibration device, mold for secondary concrete products, and method for vibrating objects and vibrating feeders |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5175999B2 (en) |
WO (1) | WO2011104815A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103302723A (en) * | 2013-07-05 | 2013-09-18 | 中铁三局集团有限公司 | Adsorption-type prefabricated bridge bottom mould vibration trolley |
JP2014125854A (en) * | 2012-12-27 | 2014-07-07 | Takenaka Komuten Co Ltd | Ground vibration control device |
JP2017029898A (en) * | 2015-07-30 | 2017-02-09 | 日本電産コパル株式会社 | Piezoelectric vibration actuator |
CN112895066A (en) * | 2021-03-11 | 2021-06-04 | 河北建设集团卓诚路桥工程有限公司 | Prefabricated box girder vibration die block |
CN113977736A (en) * | 2021-12-28 | 2022-01-28 | 常州智砼绿色建筑科技有限公司 | Conveying mechanism for processing and producing laminated slab and processing technology thereof |
WO2022250448A1 (en) * | 2021-05-25 | 2022-12-01 | 젠틀에너지 주식회사 | Device and method for designing amplifier |
EP4096845A1 (en) * | 2020-01-31 | 2022-12-07 | Metso Outotec Finland Oy | Vibrating arrangement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002302232A (en) * | 2001-04-09 | 2002-10-18 | Shinko Electric Co Ltd | Piezoelectric element driving type feeder |
JP2005199228A (en) * | 2004-01-19 | 2005-07-28 | Shimizu Corp | Shape controlling method of structural body, variable shaping instrument, and oscillator |
JP2006272812A (en) * | 2005-03-30 | 2006-10-12 | Ooike Co Ltd | Shaking device |
JP2008185408A (en) * | 2007-01-29 | 2008-08-14 | Sumitomo Osaka Cement Co Ltd | Filling performance evaluation method of fresh concrete |
JP2008200726A (en) * | 2007-02-21 | 2008-09-04 | Kobe Steel Ltd | Mold oscillator |
JP2008265905A (en) * | 2007-04-17 | 2008-11-06 | Rhythm Corp | Part conveying device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5539066A (en) * | 1978-09-13 | 1980-03-18 | Mitsubishi Electric Corp | Vibration tester |
US7322569B2 (en) * | 2003-01-08 | 2008-01-29 | General Kinematics Corporation | Linear drive for vibratory apparatus |
-
2010
- 2010-02-23 WO PCT/JP2010/052743 patent/WO2011104815A1/en active Application Filing
- 2010-02-23 JP JP2012501554A patent/JP5175999B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002302232A (en) * | 2001-04-09 | 2002-10-18 | Shinko Electric Co Ltd | Piezoelectric element driving type feeder |
JP2005199228A (en) * | 2004-01-19 | 2005-07-28 | Shimizu Corp | Shape controlling method of structural body, variable shaping instrument, and oscillator |
JP2006272812A (en) * | 2005-03-30 | 2006-10-12 | Ooike Co Ltd | Shaking device |
JP2008185408A (en) * | 2007-01-29 | 2008-08-14 | Sumitomo Osaka Cement Co Ltd | Filling performance evaluation method of fresh concrete |
JP2008200726A (en) * | 2007-02-21 | 2008-09-04 | Kobe Steel Ltd | Mold oscillator |
JP2008265905A (en) * | 2007-04-17 | 2008-11-06 | Rhythm Corp | Part conveying device |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014125854A (en) * | 2012-12-27 | 2014-07-07 | Takenaka Komuten Co Ltd | Ground vibration control device |
CN103302723A (en) * | 2013-07-05 | 2013-09-18 | 中铁三局集团有限公司 | Adsorption-type prefabricated bridge bottom mould vibration trolley |
CN103302723B (en) * | 2013-07-05 | 2016-06-01 | 中铁三局集团有限公司 | Adsorption type precast bridge bed die vibration chassis |
JP2017029898A (en) * | 2015-07-30 | 2017-02-09 | 日本電産コパル株式会社 | Piezoelectric vibration actuator |
EP4096845A1 (en) * | 2020-01-31 | 2022-12-07 | Metso Outotec Finland Oy | Vibrating arrangement |
CN112895066A (en) * | 2021-03-11 | 2021-06-04 | 河北建设集团卓诚路桥工程有限公司 | Prefabricated box girder vibration die block |
WO2022250448A1 (en) * | 2021-05-25 | 2022-12-01 | 젠틀에너지 주식회사 | Device and method for designing amplifier |
JP2023531903A (en) * | 2021-05-25 | 2023-07-26 | ジェントル・エナジー・コーポレーション | Amplifier design apparatus and method |
JP7485409B2 (en) | 2021-05-25 | 2024-05-16 | ジェントル・エナジー・コーポレーション | Amplifier design apparatus and method |
CN113977736A (en) * | 2021-12-28 | 2022-01-28 | 常州智砼绿色建筑科技有限公司 | Conveying mechanism for processing and producing laminated slab and processing technology thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5175999B2 (en) | 2013-04-03 |
JPWO2011104815A1 (en) | 2013-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5175999B2 (en) | Excitation method of goods | |
EP0881172A1 (en) | Excited base conveyor system | |
TWI457264B (en) | Vibrating conveyor | |
CN101357364B (en) | Anti-resonance vibrating sifter | |
US20150217217A1 (en) | Vibrating screen | |
US6659267B2 (en) | Two-mass, base-excited conveyor | |
JP2019002731A (en) | Vibration testing apparatus | |
JP5697876B2 (en) | Power generator | |
CN101530847B (en) | Anti-resonance type resonance screen | |
KR20210145146A (en) | screening device | |
JP5838986B2 (en) | Operation control method of vibration sieve device | |
JP4635120B2 (en) | Vibration reduction device for vibrating conveyor | |
EP3785001B1 (en) | Resonant fatigue testing | |
JP5583233B2 (en) | Vibration support base | |
CN108136711B (en) | Ultrasonic anvil with low transmissibility | |
JP2017190211A (en) | Article conveyance device | |
RU2314159C1 (en) | Vibroimpact crushing device | |
JP5463053B2 (en) | Vibration support base | |
JP5522558B1 (en) | A casting sand filling method using a vibrating table and a casting sand filling device used for the casting sand filling method. | |
JPH0122163B2 (en) | ||
JP5314930B2 (en) | Linear feeder, fixing method thereof, and combination weigher provided with the same | |
KR20180037825A (en) | Vibratingly stirring apparatus for casting | |
JP4975486B2 (en) | Resin metering device | |
JP2001088928A (en) | Energy saving type vibrating feeder | |
JP2023158896A (en) | Centrifugal load tester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10846482 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012501554 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10846482 Country of ref document: EP Kind code of ref document: A1 |