WO2011102443A1 - Water treatment device - Google Patents

Water treatment device Download PDF

Info

Publication number
WO2011102443A1
WO2011102443A1 PCT/JP2011/053450 JP2011053450W WO2011102443A1 WO 2011102443 A1 WO2011102443 A1 WO 2011102443A1 JP 2011053450 W JP2011053450 W JP 2011053450W WO 2011102443 A1 WO2011102443 A1 WO 2011102443A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water
container
seawater
pipe
Prior art date
Application number
PCT/JP2011/053450
Other languages
French (fr)
Japanese (ja)
Inventor
穣 森田
光太郎 北村
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Publication of WO2011102443A1 publication Critical patent/WO2011102443A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/103Details relating to membrane envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a water treatment apparatus, and more particularly to a water treatment apparatus that treats seawater into fresh water using a reverse osmosis membrane (hereinafter referred to as RO (Reverse Osmosis) membrane).
  • RO reverse Osmosis
  • a RO membrane is filled in a cylindrically configured vessel.
  • the seawater to be desalted flows into the vessel from the discharge port of the seawater supply piping (hereinafter referred to as piping) connected to the end of the vessel.
  • piping seawater supply piping
  • the diameter of the piping is Since it is significantly smaller than the inner diameter, a rapidly expanding flow of seawater is formed in the vessel.
  • the distance between the discharge port of the pipe and the inlet end surface of the RO membrane is set to be sufficiently short from the viewpoint of improving the installation efficiency.
  • Seawater that has flowed into the RO membrane is desalted by permeating the RO membrane, and the desalted permeated water penetrates into the core tube disposed at the center of the RO membrane and passes from the core tube to the outside of the vessel. It is taken out.
  • the RO membrane As the RO membrane, a spiral membrane in which a filtration membrane and a mesh-like support are overlapped and closed in a bag shape and wound in a roll cake shape around a core tube is known (for example, Patent Document 2). A membrane using a large number of hollow fiber membranes is also well known. Further, in the vessel, the pressure applied to the seawater is 5 MPa or more, and the vessel is composed of a high-pressure vessel made of stainless steel or the like so as to withstand this pressure.
  • a flow distribution plate is provided on the inlet end face of the RO membrane.
  • this flow distribution plate has many holes formed in the inflow direction of the seawater, it is inevitable that the seawater hits the inlet end face of the RO membrane perpendicularly.
  • seawater permeates radially from the outer surface of the RO membrane.
  • This invention is made in view of such a situation, and it aims at providing the water treatment apparatus which can improve the processing performance of RO membrane with which the container was filled.
  • the present invention includes a cylindrical container to which water to be treated is supplied, an RO membrane that fills the cylindrical container and processes the supplied water to be treated, and is connected to an end surface of the container to the container.
  • a water treatment apparatus comprising: a pipe for supplying water to be treated; and a rectifying member that is provided at a discharge port of the pipe and diffuses the water to be treated flowing from the discharge port into the container in a radial direction of the container.
  • the problem with the conventional water treatment apparatus is that the ratio of the diameter of the discharge port of the pipe to the inner diameter of the container is large, and due to this large ratio, a jet is generated immediately after the discharge port. Due to the short distance from the inlet end surface of the RO membrane, the water to be treated collides with the inlet end surface of the RO membrane in the vertical direction in a state where the flow velocity component of the treated water is not attenuated.
  • the water to be treated that has collided with the inlet end face of the RO membrane moves to the downstream portion of the RO membrane as it is, while the permeated water permeates into the membrane from the surface of the RO membrane.
  • the water to be treated moves through the RO membrane, if the RO membrane is a spiral RO membrane, a flow velocity component is generated not only in the axial direction of the container but also in the circumferential direction due to the characteristics of the structure. For this reason, from the entrance to the exit of the RO membrane, the water to be treated that has collided only near the axial center on the entrance end surface of the RO membrane is also dispersed in the circumferential direction of the container.
  • the spiral RO membrane has a structure like a narrow channel in which filtration membrane bodies are wound in multiple layers, movement of the container in the radial direction is small. For this reason, if the collision area of to-be-processed water in the entrance end surface of RO membrane is small, the area
  • the inflow direction component of the water to be treated with respect to the RO membrane inlet end face is immediately attenuated in the container, so that the flow velocity distribution of the water to be treated when colliding with the RO membrane inlet end face is uniform over the entire inlet end face.
  • a rectifying member that is biased toward the outer peripheral side of the inlet end face.
  • the specific rectifying member changes the flow direction of the water to be treated flowing into the container from the discharge port of the pipe to the radial direction of the container.
  • the to-be-processed water which flowed in in the container flows toward the inner peripheral surface of the container after being diffused in the radial direction.
  • the flow velocity distribution of this flow is substantially uniform with respect to the axial direction of the flow, or is biased toward the outer peripheral side of the RO membrane. Therefore, due to the action of this rectifying member, the flow velocity distribution at the time of collision with the RO membrane inlet end surface becomes substantially uniform over the entire inlet end surface, or is biased toward the outer peripheral side of the RO membrane, thereby improving the RO membrane processing performance.
  • One aspect of the rectifying member is a cylindrical container having a bottom and having an outlet on the outer peripheral surface thereof.
  • the water to be treated that flows in from the discharge port of the pipe collides with the bottom of the cylindrical container and diffuses in the radial direction of the container from the outlet.
  • one mode of the rectifying member is a guide member having a conical guide surface.
  • the treated water flowing from the discharge port of the pipe is diffused in the radial direction of the container by the guide surface of the guide member.
  • the present invention is suitable for a water treatment apparatus for desalinating seawater.
  • the water treatment device of the present invention since the flow direction of the water to be treated flowing into the container from the discharge port of the pipe can be changed to the radial direction of the container, Can collide uniformly, or a high flow velocity distribution can be generated in the outer peripheral portion of the inlet end face. As a result, according to the present invention, the water to be treated can permeate substantially the entire area of the RO membrane, so that the treatment performance of the RO membrane is improved.
  • the surface of the RO membrane is uniformly exposed to the water to be treated, and only a part of the membrane surface is not exposed. For this reason, efficient water treatment operation by the RO membrane becomes possible.
  • the uniform exposure to such a film surface causes the occurrence of fouling to progress uniformly and gradually, thereby reducing the occlusion time due to fouling.
  • FIG. 1 is a block diagram of a seawater desalination treatment system in which a water treatment apparatus according to an embodiment is installed;
  • FIG. 2 is a perspective view showing the configuration of the elements of the water treatment device of the embodiment;
  • 3 is a perspective view of a module in which the element shown in FIG. 2 is incorporated in a vessel;
  • 4 is a front view of the element showing a state before the RO membrane of the element shown in FIG. 2 is wound;
  • FIG. 5 is a front view of the element shown in FIG. 2;
  • FIG. 6 is a side sectional view showing a part of the module shown in FIG.
  • FIG. 7 is a perspective view showing the configuration of the rectifying member of the first aspect;
  • FIG. 1 is a block diagram of a seawater desalination treatment system in which a water treatment apparatus according to an embodiment is installed;
  • FIG. 2 is a perspective view showing the configuration of the elements of the water treatment device of the embodiment;
  • 3 is a perspective view of a module
  • FIG. 8 is an explanatory view showing an example of the flow velocity distribution of seawater generated by the rectifying member
  • FIG. 9 is an explanatory view showing an example of the flow velocity distribution of seawater generated by the rectifying member
  • FIG. 10 is an explanatory view showing the configuration of the rectifying member of the second aspect.
  • FIG. 1 is a block diagram of a seawater desalination treatment system 20 in which a water treatment apparatus 10 according to an embodiment is incorporated.
  • a seawater desalination treatment system 20 shown in FIG. 1 includes a tank 12 in which seawater is stored, a high-pressure pump 14, and a water treatment device 10. Seawater in the tank 12 is supplied to the water treatment device 10 at a high pressure by the high pressure pump 14, and desalted by reverse osmosis treatment (desalination treatment) by an RO membrane (treatment membrane) described later of the water treatment device 10. The permeated water 16 is separated into the concentrated water 18 having a concentrated salt content. The permeated water 16 thus obtained is sent to the outside of the water treatment device 10.
  • seawater is supplied to the water treatment apparatus 10 at a high pressure by the high pressure pump 14.
  • a high pressure suction pump is connected to the permeate outlet side of the water treatment apparatus 10. The seawater may be introduced into the water treatment apparatus 10 from the tank 12 by this suction pump. Moreover, you may provide both the high-pressure pump 14 and a suction pump.
  • raw seawater may be used as it is, but it is preferable to use seawater that has been pretreated to remove turbid components contained in the raw seawater.
  • pretreatment include use of a filter, introduction of raw seawater into a sedimentation basin, addition of a sterilizing agent such as chlorine, precipitation removal of particles in the raw seawater, and sterilization of microorganisms.
  • seawater obtained by adding a flocculant such as iron chloride to the raw seawater to aggregate the turbid component and filtering it off may be used.
  • the water treatment apparatus 10 connects one or a plurality of elements 22 shown in FIG. 2 in series, fills the container 24 shown in FIG. 3 into a module 26, and connects the module 26 alone or in parallel. It is constituted by doing.
  • a predetermined operating pressure is applied to the module 26 by the high-pressure pump 14.
  • 3 shows a module 26 in which three elements 22, 22... Are connected in series, the number of elements 22 is not limited to three.
  • the container 24 is made of super stainless steel (a steel type having a PREN value (pitting corrosion coefficient) of 40 or more) so as to withstand high pressure (5 MPa or more).
  • the element 22 includes an RO membrane unit 32 including an RO membrane 28 and a treated water pipe 30 arranged around a water collection pipe 34.
  • the RO membrane unit 32 has four bag-like RO membranes 28, 28... Radially connected to the outer periphery of the water collecting pipe 34. These RO membranes 28, 28. It is constituted by winding around the water collecting pipe 34 in a spiral shape.
  • One end of the bag-like RO membrane 28 is opened, and the RO membrane 28 is bonded to the water collection tube 34 so that the opening communicates with the through hole 36 of the water collection tube 34 shown in FIG. Seawater, which is the water to be treated, flows through the outer surface of the RO membrane 28 and is desalted by passing through the RO membrane 28.
  • reference numeral 38 in FIG. 4 is a mesh spacer disposed inside the RO membrane 28.
  • the spacer 38 holds the RO membrane 28 so that the inner space of the RO membrane 28 is not crushed even if the RO membrane 28 is wound in a spiral shape.
  • Reference numeral 40 denotes a mesh-like spacer disposed between the adjacent RO membranes 28 and 28. The spacers 40 are also radially bonded to the outer periphery of the water collecting pipe 34 in the same manner as the RO membrane 28.
  • a pipe 42 is connected to the end face on one end side of the container 24. Seawater is supplied by the high-pressure pump 14 from the tank 12 of FIG.
  • the pipe 42 is connected to a lid 48 that closes the opening on one end side of the container 24 in the side sectional view of the module 26 shown in FIG. 6 and the perspective view shown in FIG.
  • the pipe 42 is connected to the lid 48 so that the axis a of the pipe 42 is coaxial with or parallel to the central axis b of the container 24. Further, the discharge port 46 of the pipe 42 is formed on the same surface as the inner surface of the lid 48.
  • the seawater supplied into the container 24 from the discharge port 46 of the pipe 42 is guided to the RO membrane unit 32 of the element 22 through a rectifying member 50 described later, and sequentially passes through the RO membranes 28, 28.
  • the water is collected in the water collecting pipe 34 and taken out from the treated water pipe 30 to the outside of the module 26.
  • the concentrated water that has not permeated through the RO membranes 28, 28... Is sequentially guided to the downstream elements 22, 22, and is separated into permeated water and concentrated water in the same manner as described above, and finally the concentrated water is discharged. It is discharged from the tube 44 to the outside of the module 26.
  • the concentrated water discharge pipe 44 is connected to the outer peripheral portion on the other end side of the container 24.
  • the module 26 is provided with a seawater rectifying member 50.
  • the rectifying member 50 diffuses seawater flowing into the container 24 from the discharge port 46 of the pipe 42 in the radial direction of the container 24, and is fixed to the inner surface of the lid 48.
  • the first mode of the rectifying member 50 is a cylindrical container having a bottom and provided with a plurality of outlets 52, 52.
  • the rectifying member 50 is fixed to the lid 48 so that the axis c of the rectifying member 50 is coaxial with the axis a of the pipe 42, and the bottom 54 of the rectifying member 50 is the discharge port 46 of the pipe 42 as shown in the perspective view of FIG. 7.
  • the flow velocity distribution as in the water treatment apparatus of Patent Document 1 is between the discharge port 46 of the pipe 42 and the inlet end surface 28A of the RO membrane 28. Does not occur.
  • FIG. 8 shows the flow velocity distribution of seawater with respect to the inlet end surface 28A of the RO membrane 28 of the water treatment device 10 of the embodiment by arrows.
  • seawater flowing into the container 24 from the discharge port 46 of the pipe 42 collides with the bottom 54 of the rectifying member 50 and is discharged from the outlets 52, 52. 24 diffuses in the radial direction.
  • the inflow direction component with respect to the inlet end surface 28 ⁇ / b> A of the RO membrane 28 is small. Disappears or significantly attenuates while flowing toward the inner peripheral surface 24B. Then, the seawater collides with the inner peripheral surface 24B of the container 24 and becomes a flow in which the axis b direction is mainstream in the container 24. During this time, the seawater flowing out from the respective outlets 52, 52... Interacts with the seawater fluid so that the flow velocity distribution of the seawater in the direction of the axis b is substantially uniform in the direction of the axis b, or the RO membrane 28.
  • FIG. 10 shows a second mode of the rectifying member 60.
  • the rectifying member 60 has a substantially conical shape.
  • the rectifying member 60 is arranged such that the axis a of the pipe 42 and the axis d thereof are coaxially arranged, and the top portion 60 ⁇ / b> A is opposed to the discharge port 46 with a predetermined distance therebetween.
  • the rectifying member 60 is fixed to the pipe 42 by a fixing member 68 including a screw rod 62, a nut 64, and a holding member 66.
  • the fixing part of the rectifying member 60 may be the lid 48.
  • the seawater flowing from the discharge port 46 of the pipe 42 is diffused in the radial direction of the container 24 by the inclined conical surface (guide surface) 60B of the rectifying member 60. Since the subsequent operation is the same as that of the rectifying member 50, the description thereof is omitted here.
  • the flow regulating member 60 is configured in a conical shape, the shape is not limited to this, and the shape is provided with a guide surface that can diffuse seawater flowing from the discharge port 46 of the pipe 42 in the radial direction of the container 24. I just need it.
  • a plate material whose surface faces the discharge port 46 may be used. The surface of the plate material becomes the guide surface.
  • seawater is sufficiently exposed to the entire surface of the RO membrane 28 at the inlet end surface 28A of the RO membrane 28 by the action of the rectifying members 50 and 60, and moves toward the inside of the element 22 and the outlet as it is. For this reason, the entire surface of the RO membrane 28 is efficiently exposed to seawater. As a result, the occurrence of fouling of the RO film 28 progresses uniformly and gradually, so that the blocking time due to fouling can be reduced.
  • the treatment performance of the RO membrane 28 is improved as compared with the water treatment device of Patent Document 1.
  • Such a water treatment apparatus 10 has a high ratio (enlargement ratio) between the diameter ⁇ 1 of the discharge port 46 of the pipe 42 and the inner diameter ⁇ 2 of the vessel 24 in FIG. 6, and the inlet end surface 28A of the discharge port 46 and the RO membrane 28. This is effective when the distance L is short.
  • the inner diameter ⁇ 2 of the container 24 is 5 to 10 times the diameter ⁇ 1 of the discharge port 46, and the distance L is not more than five times the inner diameter ⁇ 2 of the container 24.
  • the water treatment apparatus that desalinates seawater using the RO membrane has been described, but the membrane is not limited to the RO membrane, and a hollow fiber membrane may be applied. That is, the configuration of the present invention can be applied to any apparatus that uses a membrane to treat water to be treated.
  • the water to be treated is not limited to seawater, and it may be a water treatment device that removes dissolved substances, turbidity, microorganisms, etc. in tap water using membranes such as RO membranes and hollow fiber membranes.
  • the configuration of the present invention can be applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Disclosed is a water treatment device which improves and stabilises the treatment performance of a reverse osmosis membrane housed in a container. In the water treatment device (10), sea water that flows in from the discharge outlet (46) of a pipe (42) is made to flow radially in the radial direction of the container (24), thereby temporarily eliminating the inflow direction component of the sea water in relation to the inlet end surface (28A) of the reverse osmosis membrane (28) Subsequently, the sea water flows in the axial direction of the container (24). During this interval, the axial-direction flow speed component of the sea water flowing in the axial direction is substantially equalized over the entire inlet end surface (28A) of the reverse osmosis membrane (28). Thus, the entire surface of the reverse osmosis membrane (28) is efficiently exposed to the sea water, thereby improving the treatment performance of the reverse osmosis membrane (28).

Description

水処理装置Water treatment equipment
 本発明は水処理装置に関し、特に逆浸透膜(以下、RO(Reverse Osmosis)膜)を使用して海水を淡水に処理する水処理装置に関する。 The present invention relates to a water treatment apparatus, and more particularly to a water treatment apparatus that treats seawater into fresh water using a reverse osmosis membrane (hereinafter referred to as RO (Reverse Osmosis) membrane).
 RO膜を使用した従来の淡水化装置では、逆浸透圧を利用するため、特許文献1の如く、円筒状に構成されたベッセル内にRO膜が充填されている。脱塩される海水は、ベッセルの端部に連結された海水供給用配管(以下、配管)の吐出口からベッセル内に流入するが、一般的な淡水化装置の場合、配管の径はベッセルの内径に比べて著しく小さいため、海水の急拡大流れがベッセル内に形成される。また、RO膜はベッセル内に充填される際、設置効率をよくする観点から、配管の吐出口とRO膜の入口端面との距離が十分に短く設定されている。これらの理由により、配管の吐出口とRO膜の入口端面との間には、海水の助走区間の短い急拡大流れが形成される。これにより、海水は吐出口から減速することなく、RO膜の入口端面の略中心部に衝突してRO膜内に流入する。つまり、特許文献1の水処理装置では、海水の流入方向が、RO膜の入口端面に対して垂直方向に設定されている。 In a conventional desalination apparatus using an RO membrane, in order to utilize reverse osmosis pressure, as in Patent Document 1, a RO membrane is filled in a cylindrically configured vessel. The seawater to be desalted flows into the vessel from the discharge port of the seawater supply piping (hereinafter referred to as piping) connected to the end of the vessel. In the case of a general desalination apparatus, the diameter of the piping is Since it is significantly smaller than the inner diameter, a rapidly expanding flow of seawater is formed in the vessel. Further, when the RO membrane is filled in the vessel, the distance between the discharge port of the pipe and the inlet end surface of the RO membrane is set to be sufficiently short from the viewpoint of improving the installation efficiency. For these reasons, a short suddenly expanding flow of the seawater running section is formed between the discharge port of the pipe and the inlet end surface of the RO membrane. Thereby, seawater collides with the approximate center part of the inlet end surface of the RO membrane and flows into the RO membrane without decelerating from the discharge port. That is, in the water treatment apparatus of Patent Document 1, the inflow direction of seawater is set in a direction perpendicular to the inlet end surface of the RO membrane.
 RO膜に流入した海水は、RO膜に浸透することにより脱塩され、脱塩された透過水は、RO膜の中央部に配置されている芯管に浸透し、芯管からベッセルの外部に取り出される。 Seawater that has flowed into the RO membrane is desalted by permeating the RO membrane, and the desalted permeated water penetrates into the core tube disposed at the center of the RO membrane and passes from the core tube to the outside of the vessel. It is taken out.
 なお、RO膜としては、濾過膜とメッシュ状のサポートとを重ね合わせて袋状に閉じた濾過膜体を、芯管を中心にロールケーキ状に巻いたスパイラル膜が知られている(例えば、特許文献2)。また、多数本の中空糸膜を使用した膜も周知である。更に、ベッセル内において、海水に加える圧力は5MPa以上であり、この圧力に耐え得るようにベッセルは、ステンレス製等の高圧容器で構成されている。 As the RO membrane, a spiral membrane in which a filtration membrane and a mesh-like support are overlapped and closed in a bag shape and wound in a roll cake shape around a core tube is known (for example, Patent Document 2). A membrane using a large number of hollow fiber membranes is also well known. Further, in the vessel, the pressure applied to the seawater is 5 MPa or more, and the vessel is composed of a high-pressure vessel made of stainless steel or the like so as to withstand this pressure.
特表2008-534271号公報Special table 2008-534271 gazette 特表2008-534270号公報Special table 2008-534270
 前述の如く、特許文献1の水処理装置では、ベッセルの内部において、海水の急拡大流れがRO膜の入口端面の略中心部付近に衝突する。このため、RO膜内を移動する海水の流れも、軸中心付近を移動することになる。よって、特許文献1の水処理装置では、RO膜の中心付近のみ主として使用され、RO膜の全域(面積)を有効に利用することができないという問題があった。また、特許文献1の水処理装置では、使用される限定された膜面のみが早期に汚染されて目詰まりが進行するため、海水の加圧力(透過水の吸引圧力)が短時間で増加する。この不具合により、特許文献1の水処理装置では、装置の運転が不安定になり易いという問題があった。 As described above, in the water treatment apparatus disclosed in Patent Document 1, the suddenly expanding flow of seawater collides with the vicinity of the substantially central portion of the RO membrane inlet end surface inside the vessel. For this reason, the flow of seawater that moves in the RO membrane also moves in the vicinity of the axial center. Therefore, in the water treatment apparatus of Patent Document 1, only the vicinity of the center of the RO membrane is mainly used, and there is a problem that the entire area (area) of the RO membrane cannot be used effectively. Moreover, in the water treatment apparatus of patent document 1, since only the limited membrane surface used is contaminated early and clogging progresses, the seawater pressurization pressure (permeated water suction pressure) increases in a short time. . Due to this problem, the water treatment apparatus of Patent Document 1 has a problem that the operation of the apparatus tends to become unstable.
 ところで、特許文献1の水処理装置では、RO膜の入口端面に流れ分配板が設けられている。しかしながら、この流れ分配板は、海水の流入方向に多数の孔が形成されているものなので、海水がRO膜の入口端面に垂直に当たることは避けられない。海水の効率のよい淡水化に関しては、海水をRO膜の外表面から半径方向に浸透させることが理想的である。 Incidentally, in the water treatment apparatus of Patent Document 1, a flow distribution plate is provided on the inlet end face of the RO membrane. However, since this flow distribution plate has many holes formed in the inflow direction of the seawater, it is inevitable that the seawater hits the inlet end face of the RO membrane perpendicularly. For efficient desalination of seawater, it is ideal that seawater permeates radially from the outer surface of the RO membrane.
 一方で、水処理装置が大型化した場合、すなわち、ベッセルが大口径化した場合であっても、ベッセルの拡大率に従って配管の径を大きくすることは非現実的である。つまり、海水タンクからベッセルに至るまでの配管の途中にはエルボ管、ベルブ等の付帯部品が設けられているので、配管の大口径化には技術的、施工的に限界があるからである。また、このような配管は耐圧管であるため高価であり、配管を大口径化すれば、装置の価格が嵩み費用面でも非現実的である。 On the other hand, even when the water treatment apparatus is enlarged, that is, when the vessel has a large diameter, it is unrealistic to increase the diameter of the pipe according to the expansion ratio of the vessel. In other words, there are technical and construction limitations in increasing the diameter of the pipes because auxiliary parts such as elbow pipes and bellbs are provided in the middle of the pipes from the seawater tank to the vessel. Moreover, since such a pipe is a pressure tube, it is expensive, and if the pipe is made large in diameter, the price of the apparatus increases and the cost is unrealistic.
 本発明は、このような事情に鑑みてなされたもので、容器に充填されたRO膜の処理性能を向上させることができる水処理装置を提供することを目的とする。 This invention is made in view of such a situation, and it aims at providing the water treatment apparatus which can improve the processing performance of RO membrane with which the container was filled.
 本発明は、被処理水が供給される円筒状の容器と、前記円筒状の容器に充填され前記供給された被処理水を処理するRO膜と、前記容器の端面に接続され前記容器に前記被処理水を供給する配管と、前記配管の吐出口に設けられ該吐出口から前記容器内に流入する前記被処理水を前記容器の径方向に拡散する整流部材と、を備える水処理装置を提供する。 The present invention includes a cylindrical container to which water to be treated is supplied, an RO membrane that fills the cylindrical container and processes the supplied water to be treated, and is connected to an end surface of the container to the container. A water treatment apparatus comprising: a pipe for supplying water to be treated; and a rectifying member that is provided at a discharge port of the pipe and diffuses the water to be treated flowing from the discharge port into the container in a radial direction of the container. provide.
 従来の水処理装置の問題点は、配管の吐出口の径と容器の内径の比が大きく、この比が大きいことに起因して、吐出口の直後に噴流が発生し、また、吐出口とRO膜の入口端面との間の距離が短いことに起因して、被処理水の流速成分が減衰しない状態で、被処理水がRO膜の入口端面に垂直方向に衝突することにある。 The problem with the conventional water treatment apparatus is that the ratio of the diameter of the discharge port of the pipe to the inner diameter of the container is large, and due to this large ratio, a jet is generated immediately after the discharge port. Due to the short distance from the inlet end surface of the RO membrane, the water to be treated collides with the inlet end surface of the RO membrane in the vertical direction in a state where the flow velocity component of the treated water is not attenuated.
 RO膜の入口端面に衝突した被処理水は、そのままRO膜の下流部まで移動しながら、その間にRO膜の表面から透過水が膜内に浸透する。被処理水がRO膜を移動する際、RO膜がスパイラル状のRO膜であると、その構造の特徴から、容器の軸方向だけでなく周方向にも流速成分が発生する。このため、RO膜の入口から出口にかけて、RO膜の入口端面において軸中心付近にしか衝突していなかった被処理水は、容器の周方向にも分散される。しかしながら、スパイラル状のRO膜は、濾過膜体を多重に巻回した狭小流路のような構造なので、容器の径方向への移動は少ない。このため、RO膜の入口端面における被処理水の衝突面積が小さいと、被処理水が流れる領域が狭範囲に限定されてしまい、上述した不具合が発生する。 The water to be treated that has collided with the inlet end face of the RO membrane moves to the downstream portion of the RO membrane as it is, while the permeated water permeates into the membrane from the surface of the RO membrane. When the water to be treated moves through the RO membrane, if the RO membrane is a spiral RO membrane, a flow velocity component is generated not only in the axial direction of the container but also in the circumferential direction due to the characteristics of the structure. For this reason, from the entrance to the exit of the RO membrane, the water to be treated that has collided only near the axial center on the entrance end surface of the RO membrane is also dispersed in the circumferential direction of the container. However, since the spiral RO membrane has a structure like a narrow channel in which filtration membrane bodies are wound in multiple layers, movement of the container in the radial direction is small. For this reason, if the collision area of to-be-processed water in the entrance end surface of RO membrane is small, the area | region where to-be-processed water flows will be limited to a narrow range, and the malfunction mentioned above will generate | occur | produce.
 そこで本発明では、RO膜の入口端面に対する被処理水の流入方向成分を容器内で直ちに減衰させることにより、RO膜の入口端面に衝突する際の被処理水の流速分布を入口端面全域において均一化できる整流部材、又は入口端面の外周側に偏らせるような整流部材を備える。 Therefore, in the present invention, the inflow direction component of the water to be treated with respect to the RO membrane inlet end face is immediately attenuated in the container, so that the flow velocity distribution of the water to be treated when colliding with the RO membrane inlet end face is uniform over the entire inlet end face. Or a rectifying member that is biased toward the outer peripheral side of the inlet end face.
 具体的な整流部材は、配管の吐出口から容器内に流入する被処理水の流れ方向を容器の径方向に変更するものである。これにより、容器内に流入した被処理水は、径方向に拡散された後容器の内周面に向けて流れる。この流れの流速分布は、流れの軸方向に関して略均一、又はRO膜の外周側に偏る。したがって、この整流部材の作用により、RO膜の入口端面に衝突する際の流速分布が入口端面全域において略均一になり、又はRO膜の外周側に偏るため、RO膜の処理性能が向上する。 The specific rectifying member changes the flow direction of the water to be treated flowing into the container from the discharge port of the pipe to the radial direction of the container. Thereby, the to-be-processed water which flowed in in the container flows toward the inner peripheral surface of the container after being diffused in the radial direction. The flow velocity distribution of this flow is substantially uniform with respect to the axial direction of the flow, or is biased toward the outer peripheral side of the RO membrane. Therefore, due to the action of this rectifying member, the flow velocity distribution at the time of collision with the RO membrane inlet end surface becomes substantially uniform over the entire inlet end surface, or is biased toward the outer peripheral side of the RO membrane, thereby improving the RO membrane processing performance.
 整流部材の一態様は、有底でその外周面に流出口を備えた筒状容器である。配管の吐出口から流入する被処理水は、筒状容器の底部に衝突して流出口から容器の径方向に拡散する。 One aspect of the rectifying member is a cylindrical container having a bottom and having an outlet on the outer peripheral surface thereof. The water to be treated that flows in from the discharge port of the pipe collides with the bottom of the cylindrical container and diffuses in the radial direction of the container from the outlet.
 また、整流部材の一態様は、円錐状のガイド面を有するガイド部材である。配管の吐出口から流入する処理水は、ガイド部材のガイド面によって容器の径方向に拡散される。 Also, one mode of the rectifying member is a guide member having a conical guide surface. The treated water flowing from the discharge port of the pipe is diffused in the radial direction of the container by the guide surface of the guide member.
 本発明は、海水を淡水化処理する水処理装置に好適である。 The present invention is suitable for a water treatment apparatus for desalinating seawater.
 本発明の水処理装置によれば、配管の吐出口から容器内に流入する被処理水の流れ方向を容器の径方向に変更することができるので、RO膜の入口端面全域に、被処理水が均一に衝突、又は入口端面の外周部に高い流速分布を生じさせることができる。これによって、本発明によれば、被処理水をRO膜の略全域に浸透させることができるので、RO膜の処理性能が向上する。 According to the water treatment device of the present invention, since the flow direction of the water to be treated flowing into the container from the discharge port of the pipe can be changed to the radial direction of the container, Can collide uniformly, or a high flow velocity distribution can be generated in the outer peripheral portion of the inlet end face. As a result, according to the present invention, the water to be treated can permeate substantially the entire area of the RO membrane, so that the treatment performance of the RO membrane is improved.
 本発明によれば、RO膜の表面が被処理水に一様に曝露され、一部の膜面のみが曝露されることは無い。このため、RO膜による効率的な水処理運転が可能となる。また、このような膜面への一様な曝露がなされることにより、ファウリングの発生が一様かつ徐々に進んでいくことで、ファウリングによる閉塞時間を減少させることができる。 According to the present invention, the surface of the RO membrane is uniformly exposed to the water to be treated, and only a part of the membrane surface is not exposed. For this reason, efficient water treatment operation by the RO membrane becomes possible. In addition, the uniform exposure to such a film surface causes the occurrence of fouling to progress uniformly and gradually, thereby reducing the occlusion time due to fouling.
図1は実施の形態の水処理装置が設置された海水淡水化処理システムのブロック図であり;FIG. 1 is a block diagram of a seawater desalination treatment system in which a water treatment apparatus according to an embodiment is installed; 図2は実施の形態の水処理装置のエレメントの構成を示した斜視図であり;FIG. 2 is a perspective view showing the configuration of the elements of the water treatment device of the embodiment; 図3は図2に示したエレメントがベッセルに組み込まれたモジュールの斜視図であり;3 is a perspective view of a module in which the element shown in FIG. 2 is incorporated in a vessel; 図4は図2に示したエレメントのRO膜が巻回される前の状態を示したエレメントの正面図であり;4 is a front view of the element showing a state before the RO membrane of the element shown in FIG. 2 is wound; 図5は図2に示したエレメントの正面図であり;FIG. 5 is a front view of the element shown in FIG. 2; 図6は図3に示したモジュールの一部を判断して示した側面断面図であり;FIG. 6 is a side sectional view showing a part of the module shown in FIG. 図7は第1の態様の整流部材の構成を示した斜視図であり;FIG. 7 is a perspective view showing the configuration of the rectifying member of the first aspect; 図8は整流部材によって発生する海水の流速分布の一例を示した説明図であり;FIG. 8 is an explanatory view showing an example of the flow velocity distribution of seawater generated by the rectifying member; 図9は整流部材によって発生する海水の流速分布の一例を示した説明図であり;FIG. 9 is an explanatory view showing an example of the flow velocity distribution of seawater generated by the rectifying member; 図10は第2の態様の整流部材の構成を示した説明図である。FIG. 10 is an explanatory view showing the configuration of the rectifying member of the second aspect.
 以下、添付図面に従って本発明に係る水処理装置の好ましい実施の形態について説明する。 Hereinafter, preferred embodiments of the water treatment apparatus according to the present invention will be described with reference to the accompanying drawings.
 図1は、実施の形態の水処理装置10が組み込まれた海水淡水化処理システム20のブロック図である。 FIG. 1 is a block diagram of a seawater desalination treatment system 20 in which a water treatment apparatus 10 according to an embodiment is incorporated.
 同図に示す海水淡水化処理システム20は、海水が貯留されたタンク12、高圧ポンプ14、及び水処理装置10から構成される。タンク12の海水は、高圧ポンプ14によって水処理装置10に高圧で供給され、水処理装置10の後述するRO膜(処理膜)によって逆浸透処理(脱塩処理)されることにより、脱塩された透過水16と、塩分が濃縮された濃縮水18とに分離される。このようにして得られた透過水16は、水処理装置10の外部に送液される。なお、実施の形態の海水淡水化処理システム20は、高圧ポンプ14によって海水を水処理装置10に高圧で供給しているが、水処理装置10の透過水出口側に高圧の吸引ポンプを接続し、この吸引ポンプによってタンク12から海水を水処理装置10に導入させるようにしてもよい。また、高圧ポンプ14及び吸引ポンプの双方を設けてもよい。 A seawater desalination treatment system 20 shown in FIG. 1 includes a tank 12 in which seawater is stored, a high-pressure pump 14, and a water treatment device 10. Seawater in the tank 12 is supplied to the water treatment device 10 at a high pressure by the high pressure pump 14, and desalted by reverse osmosis treatment (desalination treatment) by an RO membrane (treatment membrane) described later of the water treatment device 10. The permeated water 16 is separated into the concentrated water 18 having a concentrated salt content. The permeated water 16 thus obtained is sent to the outside of the water treatment device 10. In the seawater desalination treatment system 20 according to the embodiment, seawater is supplied to the water treatment apparatus 10 at a high pressure by the high pressure pump 14. A high pressure suction pump is connected to the permeate outlet side of the water treatment apparatus 10. The seawater may be introduced into the water treatment apparatus 10 from the tank 12 by this suction pump. Moreover, you may provide both the high-pressure pump 14 and a suction pump.
 タンク12内の海水としては、原海水をそのまま使用してもよいが、前処理を施して原海水に含まれる濁質成分等を除去した海水を使用することが好ましい。前処理としては、フィルタ利用、沈殿池に原海水を導入して塩素等の殺菌剤を添加し、原海水中の粒子を沈殿除去するとともに微生物を殺菌する等の処理がある。また、原海水に塩化鉄等の凝集剤を添加して濁質成分を凝集させ、これを濾過して除去した海水を使用してもよい。 As the seawater in the tank 12, raw seawater may be used as it is, but it is preferable to use seawater that has been pretreated to remove turbid components contained in the raw seawater. Examples of pretreatment include use of a filter, introduction of raw seawater into a sedimentation basin, addition of a sterilizing agent such as chlorine, precipitation removal of particles in the raw seawater, and sterilization of microorganisms. Further, seawater obtained by adding a flocculant such as iron chloride to the raw seawater to aggregate the turbid component and filtering it off may be used.
 水処理装置10は、図2に示すエレメント22を単数、又は複数個直列に接続し、これを図3に示す容器24に充填してモジュール26とし、このモジュール26を単独で、又は並列に接続することにより構成される。そして、モジュール26には、高圧ポンプ14によって所定の操作圧力が負荷されるようになっている。なお、図3には、3個のエレメント22、22…を直列に接続したモジュール26が示されているが、エレメント22の個数は3個に限定されるものではない。また、容器24は、高圧(5MPa以上)に耐え得るようにスーパーステンレス(PREN値(孔食係数)が40以上の鋼種)によって構成されている。 The water treatment apparatus 10 connects one or a plurality of elements 22 shown in FIG. 2 in series, fills the container 24 shown in FIG. 3 into a module 26, and connects the module 26 alone or in parallel. It is constituted by doing. A predetermined operating pressure is applied to the module 26 by the high-pressure pump 14. 3 shows a module 26 in which three elements 22, 22... Are connected in series, the number of elements 22 is not limited to three. The container 24 is made of super stainless steel (a steel type having a PREN value (pitting corrosion coefficient) of 40 or more) so as to withstand high pressure (5 MPa or more).
 図2に示すようにエレメント22は、RO膜28と処理水管30とを含むRO膜ユニット32が集水管34の周囲に配置されて構成されている。RO膜ユニット32は図4の如く、4枚の袋体状のRO膜28、28…が集水管34の外周部に放射状に接続され、これらのRO膜28、28…を、図5の如く集水管34の周囲にスパイラル状に巻回することにより構成される。袋体状のRO膜28の一端は開口され、この開口部が図4に示す集水管34の透孔36と連通するようにRO膜28が集水管34に接着されている。被処理水である海水は、RO膜28の外表面を流れ、RO膜28を透過することにより脱塩される。そして、RO膜28を透過した脱塩後の透過水は、RO膜28の内側からRO膜28の開口、及び集水管34の透孔36を介して集水管34内に集水され、集水管34から処理水管30を介してエレメント22から排出される。なお、図4の符号38は、RO膜28の内部に配置されるメッシュ状のスペーサーである。このスペーサー38によって、RO膜28がスパイラル状に巻かれてもRO膜28の内部空間が潰れないように保持される。また、符号40は、隣接するRO膜28、28の間に配置されたメッシュ状のスペーサーである。このスペーサー40もRO膜28と同様に集水管34の外周部に放射状に接着されている。 As shown in FIG. 2, the element 22 includes an RO membrane unit 32 including an RO membrane 28 and a treated water pipe 30 arranged around a water collection pipe 34. As shown in FIG. 4, the RO membrane unit 32 has four bag- like RO membranes 28, 28... Radially connected to the outer periphery of the water collecting pipe 34. These RO membranes 28, 28. It is constituted by winding around the water collecting pipe 34 in a spiral shape. One end of the bag-like RO membrane 28 is opened, and the RO membrane 28 is bonded to the water collection tube 34 so that the opening communicates with the through hole 36 of the water collection tube 34 shown in FIG. Seawater, which is the water to be treated, flows through the outer surface of the RO membrane 28 and is desalted by passing through the RO membrane 28. Then, the desalted permeated water that has passed through the RO membrane 28 is collected from the inside of the RO membrane 28 into the water collecting pipe 34 through the opening of the RO membrane 28 and the through hole 36 of the water collecting pipe 34, and the water collecting pipe 34 is discharged from the element 22 through the treated water pipe 30. Note that reference numeral 38 in FIG. 4 is a mesh spacer disposed inside the RO membrane 28. The spacer 38 holds the RO membrane 28 so that the inner space of the RO membrane 28 is not crushed even if the RO membrane 28 is wound in a spiral shape. Reference numeral 40 denotes a mesh-like spacer disposed between the adjacent RO membranes 28 and 28. The spacers 40 are also radially bonded to the outer periphery of the water collecting pipe 34 in the same manner as the RO membrane 28.
 図3の如く、容器24の一端側の端面には、配管42が接続されている。この配管42を介して、図1のタンク12から容器24内に海水が高圧ポンプ14によって供給される。 As shown in FIG. 3, a pipe 42 is connected to the end face on one end side of the container 24. Seawater is supplied by the high-pressure pump 14 from the tank 12 of FIG.
 配管42は、図6に示すモジュール26の側面側の断面図及び図7に示す斜視図において、容器24の一端側の開口を閉塞する蓋48に接続される。また、配管42は、配管42の軸aが容器24の中心軸bと同軸上、又は平行になるように蓋48に接続されている。また、配管42の吐出口46は、蓋48の内側面と同一面上に形成されている。 The pipe 42 is connected to a lid 48 that closes the opening on one end side of the container 24 in the side sectional view of the module 26 shown in FIG. 6 and the perspective view shown in FIG. The pipe 42 is connected to the lid 48 so that the axis a of the pipe 42 is coaxial with or parallel to the central axis b of the container 24. Further, the discharge port 46 of the pipe 42 is formed on the same surface as the inner surface of the lid 48.
 配管42の吐出口46から容器24内に供給された海水は、後述する整流部材50を介してエレメント22のRO膜ユニット32に導かれ、RO膜28、28…を順次透過したのち、前述の如く集水管34に集水されて処理水管30からモジュール26の外部に取り出される。また、RO膜28、28…を透過しなかった濃縮水は、下流側のエレメント22、22に順に導かれて、上記と同様に透過水と濃縮水とに分離され、最終的に濃縮水排出管44からモジュール26の外部に排出される。この濃縮水排出管44は、容器24の他端側の外周部に接続されている。 The seawater supplied into the container 24 from the discharge port 46 of the pipe 42 is guided to the RO membrane unit 32 of the element 22 through a rectifying member 50 described later, and sequentially passes through the RO membranes 28, 28. Thus, the water is collected in the water collecting pipe 34 and taken out from the treated water pipe 30 to the outside of the module 26. Further, the concentrated water that has not permeated through the RO membranes 28, 28... Is sequentially guided to the downstream elements 22, 22, and is separated into permeated water and concentrated water in the same manner as described above, and finally the concentrated water is discharged. It is discharged from the tube 44 to the outside of the module 26. The concentrated water discharge pipe 44 is connected to the outer peripheral portion on the other end side of the container 24.
 ところで、実施の形態の水処理装置10では、モジュール26に海水の整流部材50が備えられている。 By the way, in the water treatment apparatus 10 of the embodiment, the module 26 is provided with a seawater rectifying member 50.
 この整流部材50は、配管42の吐出口46から容器24内に流入する海水を容器24の径方向に拡散するものであり、蓋48の内側面に固定されている。 The rectifying member 50 diffuses seawater flowing into the container 24 from the discharge port 46 of the pipe 42 in the radial direction of the container 24, and is fixed to the inner surface of the lid 48.
 整流部材50の第1の態様は、有底でその周面に複数の流出口52、52…を備えた筒状容器である。整流部材50は、整流部材50の軸cが配管42の軸aと同軸上に位置するように蓋48に固定され、図7の斜視の如く整流部材50の底部54が配管42の吐出口46と対向配置されている。よって、配管42の吐出口46から容器24内に流入する海水は、整流部材50の底部54に衝突して流出口52、52…から容器24の径方向に拡散する。 The first mode of the rectifying member 50 is a cylindrical container having a bottom and provided with a plurality of outlets 52, 52. The rectifying member 50 is fixed to the lid 48 so that the axis c of the rectifying member 50 is coaxial with the axis a of the pipe 42, and the bottom 54 of the rectifying member 50 is the discharge port 46 of the pipe 42 as shown in the perspective view of FIG. 7. Are arranged opposite to each other. Therefore, the seawater flowing into the container 24 from the discharge port 46 of the pipe 42 collides with the bottom 54 of the rectifying member 50 and diffuses in the radial direction of the container 24 from the outlets 52, 52.
 ところで、特許文献1の水処理装置では、配管の吐出口から流入する海水は、その流速が減衰しないまま噴流状態でRO膜の入口端面に進入する。この際、RO膜の入口端面と配管の吐出口との間の助走区間が短いため、吐出口から流入する海水は、容器内において半径方向に広がらない状態で、かつ流速の高い軸方向成分を保ちながらRO膜の入口端面に衝突し、RO膜内に進入していく。この作用により、特許文献1の水処理装置では、RO膜の処理性能を向上させることができなかった。 By the way, in the water treatment apparatus of Patent Document 1, seawater flowing in from the discharge port of the pipe enters the RO membrane inlet end face in a jet state without the flow velocity being attenuated. At this time, since the run-up section between the RO membrane inlet end face and the piping outlet is short, the seawater flowing from the outlet does not spread in the radial direction in the container and has a high flow velocity axial component. While maintaining, it collides with the entrance end face of the RO membrane and enters the RO membrane. Due to this action, the water treatment apparatus of Patent Document 1 cannot improve the treatment performance of the RO membrane.
 次に、前記の如く構成された実施の形態の水処理装置10の作用について説明する。 Next, the operation of the water treatment apparatus 10 according to the embodiment configured as described above will be described.
 実施の形態の水処理装置10では、整流部材50を設けているので、特許文献1の水処理装置のような流速分布が配管42の吐出口46とRO膜28の入口端面28Aとの間に生じない。 In the water treatment apparatus 10 according to the embodiment, since the rectifying member 50 is provided, the flow velocity distribution as in the water treatment apparatus of Patent Document 1 is between the discharge port 46 of the pipe 42 and the inlet end surface 28A of the RO membrane 28. Does not occur.
 図8に実施の形態の水処理装置10の、RO膜28の入口端面28Aに対する海水の流速分布を矢印で示す。 FIG. 8 shows the flow velocity distribution of seawater with respect to the inlet end surface 28A of the RO membrane 28 of the water treatment device 10 of the embodiment by arrows.
 この水処理装置10では、整流部材50を設けているので、配管42の吐出口46から容器24内に流入する海水は、整流部材50の底部54に衝突して流出口52、52…から容器24の径方向に拡散する。 In this water treatment apparatus 10, since the rectifying member 50 is provided, seawater flowing into the container 24 from the discharge port 46 of the pipe 42 collides with the bottom 54 of the rectifying member 50 and is discharged from the outlets 52, 52. 24 diffuses in the radial direction.
 これにより、容器24内に流入した海水は、容器24の内周面に向けて放射状に流れるので、RO膜28の入口端面28Aに対する流入方向成分は小さく、また、この流入方向成分は、容器24の内周面24Bに向けて流れる間に消滅、或いは著しく減衰する。そして、海水は容器24の内周面24Bに衝突し、容器24内において軸b方向を主流とした流れとなる。この間、各流出口52、52…から流出する海水により、海水流体間の合流抵抗が相互に働くことから、軸b方向に向う海水の流速分布は、軸b方向に関して略均一、又はRO膜28の外周側に偏る。したがって、この整流部材50の作用により、RO膜28の入口端面28Aに衝突する際の流速分布が入口端面28A全域において略均一になり、又は図9に示すように流速分布がRO膜28の外周側に偏るため、RO膜28の処理性能が向上する。 Thereby, since the seawater that has flowed into the container 24 flows radially toward the inner peripheral surface of the container 24, the inflow direction component with respect to the inlet end surface 28 </ b> A of the RO membrane 28 is small. Disappears or significantly attenuates while flowing toward the inner peripheral surface 24B. Then, the seawater collides with the inner peripheral surface 24B of the container 24 and becomes a flow in which the axis b direction is mainstream in the container 24. During this time, the seawater flowing out from the respective outlets 52, 52... Interacts with the seawater fluid so that the flow velocity distribution of the seawater in the direction of the axis b is substantially uniform in the direction of the axis b, or the RO membrane 28. It is biased toward the outer peripheral side. Therefore, due to the action of the rectifying member 50, the flow velocity distribution when colliding with the inlet end face 28A of the RO membrane 28 becomes substantially uniform over the entire inlet end face 28A, or the flow velocity distribution becomes the outer periphery of the RO membrane 28 as shown in FIG. Since it is biased to the side, the processing performance of the RO membrane 28 is improved.
 図10には、整流部材60の第2の態様が示されている。 FIG. 10 shows a second mode of the rectifying member 60.
 この整流部材60は、略円錐形状に構成されている。この整流部材60は、配管42の軸aと、その軸dが同軸上に配置されるとともに、その頂部60Aが吐出口46に所定距離離間して対向配置されている。また、整流部材60は、ねじ棒62、ナット64、保持部材66からなる固定部材68によって、配管42に固定されている。なお、整流部材60の固定箇所は蓋48であってもよい。 The rectifying member 60 has a substantially conical shape. The rectifying member 60 is arranged such that the axis a of the pipe 42 and the axis d thereof are coaxially arranged, and the top portion 60 </ b> A is opposed to the discharge port 46 with a predetermined distance therebetween. The rectifying member 60 is fixed to the pipe 42 by a fixing member 68 including a screw rod 62, a nut 64, and a holding member 66. The fixing part of the rectifying member 60 may be the lid 48.
 配管42の吐出口46から流入する海水は、整流部材60の傾斜した円錐面(ガイド面)60Bによって容器24の径方向に拡散される。以降の作用は、整流部材50と同様であるので、ここではその説明を省略する。なお、整流部材60を円錐形状に構成したが、形状はこれに限定されるものではなく、配管42の吐出口46から流入する海水を容器24の径方向に拡散できるガイド面を備えた形状であればよい。例えば、吐出口46にその面が対向する板材であってもよい。板材の表面がガイド面となる。 The seawater flowing from the discharge port 46 of the pipe 42 is diffused in the radial direction of the container 24 by the inclined conical surface (guide surface) 60B of the rectifying member 60. Since the subsequent operation is the same as that of the rectifying member 50, the description thereof is omitted here. Although the flow regulating member 60 is configured in a conical shape, the shape is not limited to this, and the shape is provided with a guide surface that can diffuse seawater flowing from the discharge port 46 of the pipe 42 in the radial direction of the container 24. I just need it. For example, a plate material whose surface faces the discharge port 46 may be used. The surface of the plate material becomes the guide surface.
 以上の如く、整流部材50、60の作用により、RO膜28の入口端面28Aにおいて、海水がRO膜28の全面に十分に暴露され、そのままエレメント22内と出口に向けて移動していく。このため、RO膜28の表面全体が効率よく海水に暴露される。これにより、RO膜28のファウリングの発生が一様かつ徐々に進んでいくことで、ファウリングによる閉塞時間を減少させることができる。 As described above, seawater is sufficiently exposed to the entire surface of the RO membrane 28 at the inlet end surface 28A of the RO membrane 28 by the action of the rectifying members 50 and 60, and moves toward the inside of the element 22 and the outlet as it is. For this reason, the entire surface of the RO membrane 28 is efficiently exposed to seawater. As a result, the occurrence of fouling of the RO film 28 progresses uniformly and gradually, so that the blocking time due to fouling can be reduced.
 したがって、実施の形態の水処理装置10によれば、特許文献1の水処理装置と比較してRO膜28の処理性能が向上する。 Therefore, according to the water treatment device 10 of the embodiment, the treatment performance of the RO membrane 28 is improved as compared with the water treatment device of Patent Document 1.
 このような水処理装置10は、図6において配管42の吐出口46の口径φ1と容器24の内径φ2との比(拡大率)が高く、かつ吐出口46とRO膜28の入口端面28Aとの距離Lが短い場合に有効である。例えば、容器24の内径φ2は、吐出口46の口径φ1の5~10倍であり、距離Lは容器24の内径φ2の5倍以下である。 Such a water treatment apparatus 10 has a high ratio (enlargement ratio) between the diameter φ1 of the discharge port 46 of the pipe 42 and the inner diameter φ2 of the vessel 24 in FIG. 6, and the inlet end surface 28A of the discharge port 46 and the RO membrane 28. This is effective when the distance L is short. For example, the inner diameter φ2 of the container 24 is 5 to 10 times the diameter φ1 of the discharge port 46, and the distance L is not more than five times the inner diameter φ2 of the container 24.
 実施の形態では、RO膜を使用して海水を淡水化処理する水処理装置について説明したが、膜はRO膜に限定されるものではなく、中空糸膜を適用してものでもよい。すなわち、膜を使用して被処理水を水処理する装置であれば、本発明の構成を適用できる。また、被処理水は海水に限定されるものではなく、RO膜、中空糸膜等の膜を使用して、水道水中の溶存物質、濁質、微生物等を除去する水処理装置であっても、本発明の構成を適用できる。 In the embodiment, the water treatment apparatus that desalinates seawater using the RO membrane has been described, but the membrane is not limited to the RO membrane, and a hollow fiber membrane may be applied. That is, the configuration of the present invention can be applied to any apparatus that uses a membrane to treat water to be treated. In addition, the water to be treated is not limited to seawater, and it may be a water treatment device that removes dissolved substances, turbidity, microorganisms, etc. in tap water using membranes such as RO membranes and hollow fiber membranes. The configuration of the present invention can be applied.
 10…水処理装置、12…タンク、14…高圧ポンプ、16…透過水、18…濃縮水、20…海水淡水化処理システム、22…エレメント、24…容器、26…モジュール、28…RO膜、30…処理水管、32…RO膜ユニット、34…集水管、36…透孔、38…スペーサー、40…スペーサー、42…配管、44…濃縮水排出管、46…吐出口、48…蓋、50…整流部材、52…流出口、54…底部、60…整流部材、62…ねじ棒、64…ナット、66…、保持部材、68…固定部材 DESCRIPTION OF SYMBOLS 10 ... Water treatment apparatus, 12 ... Tank, 14 ... High pressure pump, 16 ... Permeated water, 18 ... Concentrated water, 20 ... Seawater desalination processing system, 22 ... Element, 24 ... Container, 26 ... Module, 28 ... RO membrane, 30 ... treated water pipe, 32 ... RO membrane unit, 34 ... water collecting pipe, 36 ... through hole, 38 ... spacer, 40 ... spacer, 42 ... piping, 44 ... concentrated water discharge pipe, 46 ... discharge port, 48 ... lid, 50 ... rectifying member, 52 ... outlet, 54 ... bottom, 60 ... rectifying member, 62 ... screw rod, 64 ... nut, 66 ..., holding member, 68 ... fixing member

Claims (3)

  1.  被処理水が供給される円筒状の容器と、
     前記円筒状の容器に充填され前記供給された被処理水を処理するRO膜と、
     前記容器の端面に接続され前記容器に前記被処理水を供給する配管と、
     前記配管の吐出口に設けられ該吐出口から前記容器内に流入する前記被処理水を前記容器の径方向に拡散する整流部材と、
     を備える水処理装置。
    A cylindrical container to which the water to be treated is supplied;
    RO membrane filled in the cylindrical container and treating the supplied treated water;
    A pipe connected to the end face of the container for supplying the treated water to the container;
    A rectifying member that is provided at a discharge port of the pipe and diffuses the water to be treated flowing from the discharge port into the container in a radial direction of the container;
    A water treatment apparatus comprising:
  2.  前記整流部材は、外周面に流出口を備えた筒状容器であり、
     前記配管の吐出口から流入する被処理水は、前記筒状容器の底部に衝突して前記流出口から前記容器の径方向に拡散する請求項1に記載の水処理装置。
    The rectifying member is a cylindrical container having an outlet on the outer peripheral surface,
    The water treatment apparatus according to claim 1, wherein the water to be treated that flows in from the discharge port of the pipe collides with a bottom portion of the cylindrical container and diffuses in the radial direction of the container from the outlet.
  3.  前記整流部材は、略円錐状のガイド部材であり、
     前記配管の吐出口から流入する被処理水は、前記ガイド部材によって前記容器の径方向に拡散される請求項1に記載の水処理装置。
    The rectifying member is a substantially conical guide member,
    The water treatment apparatus according to claim 1, wherein the water to be treated which flows from the discharge port of the pipe is diffused in the radial direction of the container by the guide member.
PCT/JP2011/053450 2010-02-22 2011-02-18 Water treatment device WO2011102443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-036414 2010-02-22
JP2010036414A JP2011167669A (en) 2010-02-22 2010-02-22 Water treatment apparatus

Publications (1)

Publication Number Publication Date
WO2011102443A1 true WO2011102443A1 (en) 2011-08-25

Family

ID=44483028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053450 WO2011102443A1 (en) 2010-02-22 2011-02-18 Water treatment device

Country Status (2)

Country Link
JP (1) JP2011167669A (en)
WO (1) WO2011102443A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018460A1 (en) * 2014-03-11 2015-09-18 Air Liquide DEVICE FOR SEPARATING GAS AND AIRCRAFT PROVIDED WITH SUCH A DEVICE
WO2017050638A1 (en) * 2015-09-24 2017-03-30 Fujifilm Manufacturing Europe B.V. Fluid separation membrane module assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386683A (en) * 1976-12-14 1978-07-31 Kurita Water Ind Ltd Separating apparatus of semipermeable membrane
JPS63104617A (en) * 1986-10-13 1988-05-10 アクゾ・エヌ・ヴエー Mass exchange apparatus
JPH08224450A (en) * 1995-02-17 1996-09-03 Suido Kiko Kaisha Ltd Device for stabilizing inflow water quantity for membrane module of membrane casing housing type
JP2010162496A (en) * 2009-01-16 2010-07-29 Panasonic Electric Works Co Ltd Water purification cartridge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5386683A (en) * 1976-12-14 1978-07-31 Kurita Water Ind Ltd Separating apparatus of semipermeable membrane
JPS63104617A (en) * 1986-10-13 1988-05-10 アクゾ・エヌ・ヴエー Mass exchange apparatus
JPH08224450A (en) * 1995-02-17 1996-09-03 Suido Kiko Kaisha Ltd Device for stabilizing inflow water quantity for membrane module of membrane casing housing type
JP2010162496A (en) * 2009-01-16 2010-07-29 Panasonic Electric Works Co Ltd Water purification cartridge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018460A1 (en) * 2014-03-11 2015-09-18 Air Liquide DEVICE FOR SEPARATING GAS AND AIRCRAFT PROVIDED WITH SUCH A DEVICE
WO2017050638A1 (en) * 2015-09-24 2017-03-30 Fujifilm Manufacturing Europe B.V. Fluid separation membrane module assembly

Also Published As

Publication number Publication date
JP2011167669A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5687561B2 (en) Water treatment equipment
WO2012086479A1 (en) Reverse osmosis processing device
JPS63284328A (en) Water feed apparatus
US10954140B2 (en) Apparatus for generating cavitation in a liquid
US20190135671A1 (en) Systems and Methods for Multi-Stage Fluid Separation
JP2011072939A (en) Membrane treatment equipment
WO2011102443A1 (en) Water treatment device
WO2011102464A1 (en) Water processing device
KR101743642B1 (en) Water treating apparatus including bubble generator
JP2016150283A (en) Membrane treatment apparatus and method
JP6344114B2 (en) Water treatment apparatus and water treatment equipment cleaning method
KR102357812B1 (en) Reverse osmosis apparatus and seawater desalination system comprising the same
US11648496B2 (en) Treatment module and operating method therefor
WO2011102438A1 (en) Water processing device
AU2008200413A1 (en) Water treatment process
JP2014094359A (en) Water treatment system
US10876085B2 (en) System and method for purification of drinking water, ethanol and alcohol beverages of impurities
RU2018127556A (en) The method of purification of water for domestic use
KR102391733B1 (en) Reverse osmosis apparatus and seawater desalination system comprising the same
JP5996057B2 (en) Reverse osmosis processing equipment
JP2016215205A (en) Reverse osmosis treatment device
KR20220048616A (en) Water treatment apparatus and method for decreasing fouling
CN110697923A (en) Intelligent water purification system and intelligent water purification method
PH22020050318U1 (en) Activated carbon and cat-ion and an-ion filter system
WO2020120829A1 (en) Arrangement in cross-flow membrane separation unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744729

Country of ref document: EP

Kind code of ref document: A1