WO2011102464A1 - Water processing device - Google Patents

Water processing device Download PDF

Info

Publication number
WO2011102464A1
WO2011102464A1 PCT/JP2011/053506 JP2011053506W WO2011102464A1 WO 2011102464 A1 WO2011102464 A1 WO 2011102464A1 JP 2011053506 W JP2011053506 W JP 2011053506W WO 2011102464 A1 WO2011102464 A1 WO 2011102464A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water
seawater
container
water treatment
Prior art date
Application number
PCT/JP2011/053506
Other languages
French (fr)
Japanese (ja)
Inventor
穣 森田
盛典 富樫
修大 塚田
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Publication of WO2011102464A1 publication Critical patent/WO2011102464A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a water treatment apparatus, and more particularly to a water treatment apparatus that treats water to be treated using a membrane.
  • RO reverse Osmosis membrane
  • piping seawater supply piping
  • the distance between the discharge port of the pipe and the inlet end surface of the RO membrane is set to be sufficiently short from the viewpoint of improving the installation efficiency. For these reasons, a short suddenly expanding flow of the seawater running section is formed between the discharge port of the pipe and the inlet end surface of the RO membrane. Thereby, seawater collides with the approximate center part of the inlet end surface of the RO membrane and flows into the RO membrane without decelerating from the discharge port. That is, in the water treatment apparatus of Patent Document 1, the inflow direction of seawater is set in a direction perpendicular to the inlet end surface of the RO membrane.
  • Seawater that has flowed into the RO membrane is desalted by permeating the RO membrane, and the desalted permeated water penetrates into the core tube disposed at the center of the RO membrane and passes from the core tube to the outside of the vessel. It is taken out.
  • the RO membrane As the RO membrane, a spiral membrane in which a filtration membrane and a mesh-like support are overlapped and closed in a bag shape and wound in a roll cake shape around a core tube is known (for example, Patent Document 2). A membrane using a large number of hollow fiber membranes is also well known. Further, in the vessel, the pressure applied to the seawater is 5 MPa or more, and the vessel is composed of a high-pressure vessel made of stainless steel or the like so as to withstand this pressure.
  • a flow distribution plate is provided on the inlet end face of the RO membrane.
  • this flow distribution plate has many holes formed in the inflow direction of the seawater, it is inevitable that the seawater hits the inlet end face of the RO membrane perpendicularly.
  • seawater permeates radially from the outer surface of the RO membrane.
  • This invention is made in view of such a situation, and it aims at providing the water treatment apparatus which can improve the processing performance of RO membrane with which the container was filled.
  • an RO membrane for treating water to be treated in order to achieve the above object, a cylindrical container filled with the RO membrane, and an inner peripheral surface of the container on an outer peripheral surface of the container
  • a water treatment apparatus including a pipe for supplying the water to be treated in a tangential direction with respect to a surface.
  • the present invention is suitable for a water treatment apparatus for desalinating seawater.
  • the problem with the conventional water treatment apparatus is that the ratio of the diameter of the discharge port of the pipe to the inner diameter of the container is large, and due to this large ratio, a jet is generated immediately after the discharge port. Due to the short distance from the inlet end surface of the RO membrane, the water to be treated collides with the inlet end surface of the RO membrane in the vertical direction in a state where the flow velocity component of the treated water is not attenuated.
  • the treated water that collides with the inlet end surface of the RO membrane moves to the downstream portion of the RO membrane as it is, while the permeated water permeates into the RO membrane from the surface of the RO membrane.
  • the water to be treated moves through the RO membrane, if the RO membrane is a spiral RO membrane, a flow velocity component is generated not only in the axial direction of the container but also in the circumferential direction due to the characteristics of the structure. For this reason, from the entrance to the exit of the RO membrane, the water to be treated that has collided only near the axial center on the entrance end surface of the RO membrane is also dispersed in the circumferential direction of the container.
  • the spiral RO membrane has a structure like a narrow channel in which filtration membrane bodies are wound in multiple layers, movement of the container in the radial direction is small. For this reason, if the collision area of to-be-processed water in the entrance end surface of RO membrane is small, the area
  • the water to be treated when impinging on the inlet end surface of the RO membrane is immediately attenuated in the container by the vertical component of the water flow to be treated with respect to the inlet end surface of the RO membrane.
  • a specific rectifying mechanism is a mode in which piping is provided on the outer peripheral surface of the container and tangential to the inner peripheral surface of the container.
  • the treated water that has flowed into the container becomes a swirling flow along the inner peripheral surface of the container, so that the vertical component is small, and this vertical component is generated when the treated water swirls. It disappears or attenuates significantly. Therefore, due to the action of this rectifying mechanism, the flow velocity distribution at the time of collision with the RO membrane inlet end surface becomes substantially uniform throughout the inlet end surface, or is biased toward the outer peripheral side of the RO membrane, thereby improving the RO membrane processing performance.
  • the inner diameter of the cylindrical container is preferably not less than 5 times and not more than 10 times the diameter of the discharge port of the pipe.
  • the water to be treated can flow along the inner peripheral surface of the container, the water to be treated uniformly collides with the entire inlet end surface of the RO membrane, or the outer peripheral portion of the inlet end surface. A high flow velocity distribution can be produced. As a result, according to the present invention, the water to be treated can permeate substantially the entire area of the RO membrane, so that the treatment performance of the RO membrane is improved.
  • the surface of the RO membrane is uniformly exposed to the water to be treated, and only part of the RO membrane surface is not exposed. For this reason, efficient water treatment operation by the RO membrane becomes possible.
  • the occurrence of fouling progresses uniformly and gradually, so that the occlusion time due to fouling can be reduced.
  • FIG. 1 is a block diagram of a seawater desalination treatment system in which a water treatment apparatus according to an embodiment is installed.
  • FIG. 2 is a perspective view illustrating a configuration of elements of the water treatment apparatus according to the embodiment.
  • FIG. 3 is a perspective view of a module in which the element shown in FIG. 2 is incorporated in a container.
  • FIG. 4 is a front view of the element showing a state before the RO membrane of the element shown in FIG. 2 is wound.
  • FIG. 5 is a front view of the element shown in FIG.
  • FIG. 6 is a side cross-sectional view showing a part of the module shown in FIG.
  • FIG. 7A is a cross-sectional view of the module of FIG. 6 taken along line 7-7.
  • FIG. 7B is a perspective view of a main part of the module of FIG.
  • FIG. 8 is an explanatory diagram showing an example of the flow velocity distribution of seawater generated by the rectifying mechanism.
  • FIG. 9 is an explanatory view showing an example of the flow velocity distribution of seawater generated by the rectifying mechanism.
  • FIG. 1 is a block diagram of a seawater desalination treatment system 20 in which a water treatment apparatus 10 according to an embodiment is incorporated.
  • a seawater desalination treatment system 20 shown in FIG. 1 includes a tank 12 in which seawater is stored, a high-pressure pump 14, and a water treatment device 10. Seawater in the tank 12 is supplied to the water treatment device 10 at a high pressure by the high-pressure pump 14 and reverse osmosis treatment (desalination treatment) is performed by an RO membrane (to be described later) of the water treatment device 10, thereby desalted permeated water 16. And concentrated water 18 in which the salinity is concentrated. The permeated water 16 thus obtained is sent to the outside of the water treatment device 10.
  • seawater is supplied to the water treatment apparatus 10 at a high pressure by the high pressure pump 14.
  • a high pressure suction pump is connected to the permeate outlet side of the water treatment apparatus 10.
  • the seawater may be introduced into the water treatment apparatus 10 from the tank 12 by this suction pump.
  • you may provide both the high-pressure pump 14 and a suction pump.
  • raw seawater may be used as it is, but it is preferable to use seawater that has been pretreated to remove turbid components contained in the raw seawater.
  • pretreatment include use of a filter, introduction of raw seawater into a sedimentation basin, addition of a sterilizing agent such as chlorine, precipitation removal of particles in the raw seawater, and sterilization of microorganisms.
  • seawater obtained by adding a flocculant such as iron chloride to the raw seawater to aggregate the turbid component and filtering it off may be used.
  • the water treatment apparatus 10 connects one or a plurality of elements 22 shown in FIG. 2 in series, fills the container 24 shown in FIG. 3 into a module 26, and connects the module 26 alone or in parallel. It is constituted by doing.
  • a predetermined operating pressure is applied to the module 26 by the high-pressure pump 14.
  • 3 shows a module 26 in which three elements 22, 22... Are connected in series, the number of elements 22 is not limited to three.
  • the container 24 is made of super stainless steel (a steel type having a PREN value (pitting corrosion coefficient) (Pitting Resistance Equivalent Number) of 40 or more) so as to withstand high pressure (5 MPa or more).
  • the element 22 includes an RO membrane unit 32 including an RO membrane 28 and a treated water pipe 30 arranged around a water collection pipe 34.
  • the RO membrane unit 32 has four bag-like RO membranes 28, 28... Radially connected to the outer periphery of the water collecting pipe 34. These RO membranes 28, 28. It is constituted by winding around the water collecting pipe 34 in a spiral shape.
  • One end of the bag-like RO membrane 28 is opened, and the RO membrane 28 is bonded to the water collection tube 34 so that the opening communicates with the through hole 36 of the water collection tube 34 shown in FIG. Seawater, which is the water to be treated, flows through the outer surface of the RO membrane 28 and is desalted by passing through the RO membrane 28.
  • reference numeral 38 in FIG. 4 is a mesh spacer disposed inside the RO membrane 28.
  • the spacer 38 holds the RO membrane 28 so that the inner space of the RO membrane 28 is not crushed even if the RO membrane 28 is wound in a spiral shape.
  • Reference numeral 40 denotes a mesh-like spacer disposed between the adjacent RO membranes 28 and 28. The spacers 40 are also radially bonded to the outer periphery of the water collecting pipe 34 in the same manner as the RO membrane 28.
  • a pipe 42 is connected to the outer peripheral portion on one end side of the container 24.
  • Seawater is supplied by the high-pressure pump 14 from the tank 12 of FIG.
  • the seawater supplied into the container 24 is guided to the RO membrane unit 32 of the element 22 and sequentially passes through the RO membranes 28, 28..., And then collected in the water collecting pipe 34 as described above and from the treated water pipe 30 to the module 26. It is taken out outside.
  • the concentrated water that has not permeated through the RO membranes 28, 28... Is sequentially guided to the downstream elements 22, 22, and is separated into permeated water and concentrated water in the same manner as described above, and finally the concentrated water is discharged. It is discharged from the tube 44 to the outside of the module 26.
  • the concentrated water discharge pipe 44 is connected to the outer peripheral portion on the other end side of the container 24.
  • the module 26 is provided with a seawater rectification structure.
  • This rectifying structure is configured by providing a pipe 42 on the outer peripheral surface 24A of the container 24 in the cross-sectional view of the side surface of the module 26 shown in FIG.
  • the pipe 42 is arranged in a direction in which the axis a of the pipe 42 is orthogonal to the long axis b of the container 24.
  • the pipe 42 is connected to the outer peripheral surface 24A of the container 24 in a posture in which the axis a is oriented in a tangential direction with respect to the inner peripheral surface 24B of the container 24 in the cross-sectional view of the module 26 shown in FIG. 7A.
  • the discharge port 46 of the pipe 42 is formed flush with the inner peripheral surface 24 ⁇ / b> B of the container 24.
  • the seawater injected from the discharge port 46 of the pipe 42 flows in the container 24 as a swirl flow along the inner peripheral surface 24B of the container 24 as shown by the arrow in FIG. 7A, and the RO membranes 28, 28.
  • To the inlet end face 28A (same as the inlet end face of the element 22).
  • the pipe 42 is provided on the outer peripheral surface 24A of the container 24, and the axis a of the pipe 42 is provided in the tangential direction with respect to the inner peripheral surface 24B of the container 24.
  • the flow velocity distribution as in the water treatment apparatus of Document 1 does not occur between the discharge port 46 of the pipe 42 and the inlet end surface 28A of the RO membrane 28.
  • FIG. 8 shows the flow velocity distribution of seawater with respect to the inlet end surface 28A of the RO membrane 28 of the water treatment device 10 of the embodiment by arrows.
  • the pipe 42 is provided on the outer peripheral surface of the container 24 and is provided in a tangential direction with respect to the inner peripheral surface 24 ⁇ / b> B of the container 24. It becomes a swirl flow along the inner peripheral surface 24B. For this reason, the vertical component of the seawater flow with respect to the inlet end surface 28A of the RO membrane 28 once disappears. Thereafter, the seawater moves in the axial direction of the container 24 while turning along the inner peripheral surface 24 ⁇ / b> B of the container 24.
  • the axial component of the flow velocity in the axial direction of the seawater flow is substantially uniform as shown in FIG. 8, or the position near the inner peripheral surface 24B of the container 24 increases as shown in FIG. 9 when the flow velocity of the seawater is increased. .
  • seawater is sufficiently exposed to the entire surface of the RO membrane 28 at the inlet end face 28A of the RO membrane 28 and moves toward the inside of the element 22 and the outlet as it is, so that the entire surface of the RO membrane 28 is efficiently obtained. Exposed to seawater. As a result, the occurrence of fouling of the RO film 28 progresses uniformly and gradually, so that the blocking time due to fouling can be reduced.
  • the treatment performance of the RO membrane 28 is improved as compared with the water treatment device of Patent Document 1.
  • the axis a of the pipe 42 may be slightly inclined with respect to the long axis b of the container 24. Further, the flow direction of the swirl flow may be the same as the winding direction of the RO membrane 28, but by making the direction reverse, the crevice flow pressure prevents the gap between the RO membrane 28 and the RO membrane 28 from being crushed. Therefore, seawater desalination treatment by the RO membrane 28 is stabilized. Further, the pipe 42 may be provided on a lid for closing the inlet opening of the container 24.
  • Such a water treatment apparatus 10 has a high ratio (enlargement ratio) between the diameter ⁇ 1 of the discharge port 46 of the pipe 42 and the inner diameter ⁇ 2 of the vessel 24 in FIG. 6, and the inlet end surface 28A of the discharge port 46 and the RO membrane 28. This is effective when the distance L is short.
  • the inner diameter ⁇ 2 of the container 24 is 5 to 10 times the diameter ⁇ 1 of the discharge port 46, and the distance L is not more than five times the inner diameter ⁇ 2 of the container 24.
  • the water treatment apparatus that desalinates seawater using the RO membrane has been described, but the membrane is not limited to the RO membrane. That is, the configuration of the present invention can be applied to any apparatus that uses a membrane to treat water to be treated. Further, the water to be treated is not limited to seawater, and even a water treatment apparatus that uses a membrane such as an RO membrane to remove dissolved substances, turbidity, microorganisms, etc. in tap water can be used in the present invention. Configuration can be applied.
  • SYMBOLS 10 Water treatment apparatus, 12 ... Tank, 14 ... High pressure pump, 16 ... Permeated water, 18 ... Concentrated water, 20 ... Seawater desalination processing system, 22 ... Element, 24 ... Container, 26 ... Module, 28 ... RO membrane, 30 ... treated water pipe, 32 ... RO membrane unit, 34 ... water collecting pipe, 36 ... through hole, 38 ... spacer, 40 ... spacer, 42 ... piping, 44 ... concentrated water discharge pipe, 46 ... discharge port

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Disclosed is a water processing device (10) comprised of a reverse osmosis membrane (28), a cylindrical container (24) with the reverse osmosis membrane (28) housed therein, and a supply pipe (42) for the water processing device connected to outer surface of the container (24) such that it is tangential to the inner surface of the container (24). This embodiment allows the whole face of the reverse osmosis membrane (28) to be efficiently exposed to the water for treatment, which improves treatment performance of the reverse osmosis membrane (28).

Description

水処理装置Water treatment equipment
 本発明は水処理装置に関し、特に膜を使用して被処理水を処理する水処理装置に関する。 The present invention relates to a water treatment apparatus, and more particularly to a water treatment apparatus that treats water to be treated using a membrane.
 膜として逆浸透膜(以下、RO(Reverse Osmosis)膜という)を使用した従来の淡水化装置では、逆浸透圧を利用するため、特許文献1の如く、円筒状に構成されたベッセル内にRO膜が充填されている。脱塩される海水は、ベッセルの端部に連結された海水供給用配管(以下、配管)の吐出口からベッセル内に流入するが、一般的な淡水化装置の場合、配管の径はベッセルの内径に比べて著しく小さいため、海水の急拡大流れがベッセル内に形成される。また、RO膜はベッセル内に充填される際、設置効率をよくする観点から、配管の吐出口とRO膜の入口端面との距離が十分に短く設定されている。これらの理由により、配管の吐出口とRO膜の入口端面との間には、海水の助走区間の短い急拡大流れが形成される。これにより、海水は吐出口から減速することなく、RO膜の入口端面の略中心部に衝突してRO膜内に流入する。つまり、特許文献1の水処理装置では、海水の流入方向が、RO膜の入口端面に対して垂直方向に設定されている。 In a conventional desalination apparatus using a reverse osmosis membrane (hereinafter referred to as RO (Reverse Osmosis) membrane) as a membrane, reverse osmotic pressure is used. Therefore, as in Patent Document 1, RO is placed in a cylindrical vessel. The membrane is filled. The seawater to be desalted flows into the vessel from the discharge port of the seawater supply piping (hereinafter referred to as piping) connected to the end of the vessel. In the case of a general desalination apparatus, the diameter of the piping is Since it is significantly smaller than the inner diameter, a rapidly expanding flow of seawater is formed in the vessel. Further, when the RO membrane is filled in the vessel, the distance between the discharge port of the pipe and the inlet end surface of the RO membrane is set to be sufficiently short from the viewpoint of improving the installation efficiency. For these reasons, a short suddenly expanding flow of the seawater running section is formed between the discharge port of the pipe and the inlet end surface of the RO membrane. Thereby, seawater collides with the approximate center part of the inlet end surface of the RO membrane and flows into the RO membrane without decelerating from the discharge port. That is, in the water treatment apparatus of Patent Document 1, the inflow direction of seawater is set in a direction perpendicular to the inlet end surface of the RO membrane.
 RO膜に流入した海水は、RO膜に浸透することにより脱塩され、脱塩された透過水は、RO膜の中央部に配置されている芯管に浸透し、芯管からベッセルの外部に取り出される。 Seawater that has flowed into the RO membrane is desalted by permeating the RO membrane, and the desalted permeated water penetrates into the core tube disposed at the center of the RO membrane and passes from the core tube to the outside of the vessel. It is taken out.
 なお、RO膜としては、濾過膜とメッシュ状のサポートとを重ね合わせて袋状に閉じた濾過膜体を、芯管を中心にロールケーキ状に巻いたスパイラル膜が知られている(例えば、特許文献2)。また、多数本の中空糸膜を使用した膜も周知である。更に、ベッセル内において、海水に加える圧力は5MPa以上であり、この圧力に耐え得るようにベッセルは、ステンレス製等の高圧容器で構成されている。 As the RO membrane, a spiral membrane in which a filtration membrane and a mesh-like support are overlapped and closed in a bag shape and wound in a roll cake shape around a core tube is known (for example, Patent Document 2). A membrane using a large number of hollow fiber membranes is also well known. Further, in the vessel, the pressure applied to the seawater is 5 MPa or more, and the vessel is composed of a high-pressure vessel made of stainless steel or the like so as to withstand this pressure.
特表2008-534271号公報Special table 2008-534271 gazette 特表2008-534270号公報Special table 2008-534270
 前述の如く、特許文献1の水処理装置では、ベッセルの内部において、海水の急拡大流れがRO膜の入口端面の略中心部付近に衝突する。このため、RO膜内を移動する海水の流れも、軸中心付近を移動することになる。よって、特許文献1の水処理装置では、RO膜の中心付近のみ主として使用され、RO膜の全域(面積)を有効に利用することができないという問題があった。また、特許文献1の水処理装置では、使用される限定された膜面のみが早期に汚染されて目詰まりが進行するため、海水の加圧力(透過水の吸引圧力)が短時間で増加する。この不具合により、特許文献1の水処理装置では、装置の運転が不安定になり易いという問題があった。 As described above, in the water treatment apparatus disclosed in Patent Document 1, the suddenly expanding flow of seawater collides with the vicinity of the substantially central portion of the RO membrane inlet end surface inside the vessel. For this reason, the flow of seawater that moves in the RO membrane also moves in the vicinity of the axial center. Therefore, in the water treatment apparatus of Patent Document 1, only the vicinity of the center of the RO membrane is mainly used, and there is a problem that the entire area (area) of the RO membrane cannot be used effectively. Moreover, in the water treatment apparatus of patent document 1, since only the limited membrane surface used is contaminated early and clogging progresses, the seawater pressurization pressure (permeated water suction pressure) increases in a short time. . Due to this problem, the water treatment apparatus of Patent Document 1 has a problem that the operation of the apparatus tends to become unstable.
 ところで、特許文献1の水処理装置では、RO膜の入口端面に流れ分配板が設けられている。しかしながら、この流れ分配板は、海水の流入方向に多数の孔が形成されているものなので、海水がRO膜の入口端面に垂直に当たることは避けられない。海水の効率のよい淡水化に関しては、海水をRO膜の外表面から半径方向に浸透させることが理想的である。 Incidentally, in the water treatment apparatus of Patent Document 1, a flow distribution plate is provided on the inlet end face of the RO membrane. However, since this flow distribution plate has many holes formed in the inflow direction of the seawater, it is inevitable that the seawater hits the inlet end face of the RO membrane perpendicularly. For efficient desalination of seawater, it is ideal that seawater permeates radially from the outer surface of the RO membrane.
 一方で、水処理装置が大型化した場合、すなわち、ベッセルが大口径化した場合であっても、ベッセルの拡大率に従って配管の径を大きくすることは非現実的である。つまり、海水タンクからベッセルに至るまでの配管の途中にはエルボ管、ベルブ等の付帯部品が設けられているので、配管の大口径化には技術的、施工的に限界があるからである。また、このような配管は耐圧管であるため高価であり、配管を大口径化すれば、装置の価格が嵩み費用面でも非現実的である。 On the other hand, even when the water treatment apparatus is enlarged, that is, when the vessel has a large diameter, it is unrealistic to increase the diameter of the pipe according to the expansion ratio of the vessel. In other words, there are technical and construction limitations in increasing the diameter of the pipes because auxiliary parts such as elbow pipes and bellbs are provided in the middle of the pipes from the seawater tank to the vessel. Moreover, since such a pipe is a pressure tube, it is expensive, and if the pipe is made large in diameter, the price of the apparatus increases and the cost is unrealistic.
 本発明は、このような事情に鑑みてなされたもので、容器に充填されたRO膜の処理性能を向上させることができる水処理装置を提供することを目的とする。 This invention is made in view of such a situation, and it aims at providing the water treatment apparatus which can improve the processing performance of RO membrane with which the container was filled.
 本発明の1態様は、前記目的を達成するために、被処理水を処理するRO膜と、前記RO膜が充填された円筒状の容器と、該容器の外周面に、前記容器の内周面に対して接線方向に前記被処理水を供給する配管を備える水処理装置を提供する。 In one aspect of the present invention, in order to achieve the above object, an RO membrane for treating water to be treated, a cylindrical container filled with the RO membrane, and an inner peripheral surface of the container on an outer peripheral surface of the container Provided is a water treatment apparatus including a pipe for supplying the water to be treated in a tangential direction with respect to a surface.
 本発明は、海水を淡水化処理する水処理装置に好適である。 The present invention is suitable for a water treatment apparatus for desalinating seawater.
 従来の水処理装置の問題点は、配管の吐出口の径と容器の内径の比が大きく、この比が大きいことに起因して、吐出口の直後に噴流が発生し、また、吐出口とRO膜の入口端面との間の距離が短いことに起因して、被処理水の流速成分が減衰しない状態で、被処理水がRO膜の入口端面に垂直方向に衝突することにある。 The problem with the conventional water treatment apparatus is that the ratio of the diameter of the discharge port of the pipe to the inner diameter of the container is large, and due to this large ratio, a jet is generated immediately after the discharge port. Due to the short distance from the inlet end surface of the RO membrane, the water to be treated collides with the inlet end surface of the RO membrane in the vertical direction in a state where the flow velocity component of the treated water is not attenuated.
 RO膜の入口端面に衝突した被処理水は、そのままRO膜の下流部まで移動しながら、その間にRO膜の表面から透過水がRO膜内に浸透する。被処理水がRO膜を移動する際、RO膜がスパイラル状のRO膜であると、その構造の特徴から、容器の軸方向だけでなく周方向にも流速成分が発生する。このため、RO膜の入口から出口にかけて、RO膜の入口端面において軸中心付近にしか衝突していなかった被処理水は、容器の周方向にも分散される。しかしながら、スパイラル状のRO膜は、濾過膜体を多重に巻回した狭小流路のような構造なので、容器の径方向への移動は少ない。このため、RO膜の入口端面における被処理水の衝突面積が小さいと、被処理水が流れる領域が狭範囲に限定されてしまい、上述した不具合が発生する。 The treated water that collides with the inlet end surface of the RO membrane moves to the downstream portion of the RO membrane as it is, while the permeated water permeates into the RO membrane from the surface of the RO membrane. When the water to be treated moves through the RO membrane, if the RO membrane is a spiral RO membrane, a flow velocity component is generated not only in the axial direction of the container but also in the circumferential direction due to the characteristics of the structure. For this reason, from the entrance to the exit of the RO membrane, the water to be treated that has collided only near the axial center on the entrance end surface of the RO membrane is also dispersed in the circumferential direction of the container. However, since the spiral RO membrane has a structure like a narrow channel in which filtration membrane bodies are wound in multiple layers, movement of the container in the radial direction is small. For this reason, if the collision area of to-be-processed water in the entrance end surface of RO membrane is small, the area | region where to-be-processed water flows will be limited to a narrow range, and the malfunction mentioned above will generate | occur | produce.
 そこで、本発明の1態様に係る水処理装置では、RO膜の入口端面に対する被処理水流の垂直方向成分を容器内で直ちに減衰させることにより、RO膜の入口端面に衝突する際の被処理水の流速分布を入口端面全域において均一化できる整流機構、又は入口端面の外周側に偏らせるような整流機構を備える。 Therefore, in the water treatment apparatus according to one aspect of the present invention, the water to be treated when impinging on the inlet end surface of the RO membrane is immediately attenuated in the container by the vertical component of the water flow to be treated with respect to the inlet end surface of the RO membrane. Is provided with a rectifying mechanism that can equalize the flow velocity distribution over the entire area of the inlet end face, or a rectifying mechanism that biases the flow velocity distribution toward the outer peripheral side of the inlet end face.
 具体的な整流機構は、配管を容器の外周面に設けるとともに容器の内周面に対して接線方向に設けた態様である。これにより、容器内に流入した被処理水は、容器の内周面に沿った旋回流となるので、前記垂直方向成分は小さく、また、この垂直方向成分は、被処理水が旋回する際に消滅、或いは著しく減衰する。したがって、この整流機構の作用により、RO膜の入口端面に衝突する際の流速分布が入口端面全域において略均一になり、又はRO膜の外周側に偏るため、RO膜の処理性能が向上する。また、旋回流の流速を上げることによって、RO膜の入口端面の外周側に高い流速分布を発生させることができるので、RO膜がスパイラル状のRO膜の場合に、そのRO膜の処理性能が一層向上する。ここで、円筒状の容器の内径は、配管の吐出口の口径の5倍以上10倍以下であることが好ましい。 A specific rectifying mechanism is a mode in which piping is provided on the outer peripheral surface of the container and tangential to the inner peripheral surface of the container. As a result, the treated water that has flowed into the container becomes a swirling flow along the inner peripheral surface of the container, so that the vertical component is small, and this vertical component is generated when the treated water swirls. It disappears or attenuates significantly. Therefore, due to the action of this rectifying mechanism, the flow velocity distribution at the time of collision with the RO membrane inlet end surface becomes substantially uniform throughout the inlet end surface, or is biased toward the outer peripheral side of the RO membrane, thereby improving the RO membrane processing performance. In addition, by increasing the flow velocity of the swirl flow, a high flow velocity distribution can be generated on the outer peripheral side of the RO membrane inlet end surface. Therefore, when the RO membrane is a spiral RO membrane, the processing performance of the RO membrane is Further improvement. Here, the inner diameter of the cylindrical container is preferably not less than 5 times and not more than 10 times the diameter of the discharge port of the pipe.
 本発明の水処理装置によれば、被処理水を容器の内周面に沿って流すことができるので、RO膜の入口端面全域に、被処理水が均一に衝突、又は入口端面の外周部に高い流速分布を生じさせることができる。これによって、本発明によれば、被処理水をRO膜の略全域に浸透させることができるので、RO膜の処理性能が向上する。 According to the water treatment device of the present invention, since the water to be treated can flow along the inner peripheral surface of the container, the water to be treated uniformly collides with the entire inlet end surface of the RO membrane, or the outer peripheral portion of the inlet end surface. A high flow velocity distribution can be produced. As a result, according to the present invention, the water to be treated can permeate substantially the entire area of the RO membrane, so that the treatment performance of the RO membrane is improved.
 本発明によれば、RO膜の表面が被処理水に一様に曝露され、一部のRO膜面のみが曝露されることは無い。このため、RO膜による効率的な水処理運転が可能となる。また、このようなRO膜面への一様な曝露がなされることにより、ファウリングの発生が一様かつ徐々に進んでいくことで、ファウリングによる閉塞時間を減少させることができる。 According to the present invention, the surface of the RO membrane is uniformly exposed to the water to be treated, and only part of the RO membrane surface is not exposed. For this reason, efficient water treatment operation by the RO membrane becomes possible. In addition, by performing such uniform exposure to the RO membrane surface, the occurrence of fouling progresses uniformly and gradually, so that the occlusion time due to fouling can be reduced.
図1は、実施の形態の水処理装置が設置された海水淡水化処理システムのブロック図である。FIG. 1 is a block diagram of a seawater desalination treatment system in which a water treatment apparatus according to an embodiment is installed. 図2は、実施の形態の水処理装置のエレメントの構成を示した斜視図である。FIG. 2 is a perspective view illustrating a configuration of elements of the water treatment apparatus according to the embodiment. 図3は、図2に示したエレメントが容器に組み込まれたモジュールの斜視図である。FIG. 3 is a perspective view of a module in which the element shown in FIG. 2 is incorporated in a container. 図4は、図2に示したエレメントのRO膜が巻回される前の状態を示したエレメントの正面図である。FIG. 4 is a front view of the element showing a state before the RO membrane of the element shown in FIG. 2 is wound. 図5は、図2に示したエレメントの正面図である。FIG. 5 is a front view of the element shown in FIG. 図6は、図3に示したモジュールの一部を切断して示した側面断面図である。FIG. 6 is a side cross-sectional view showing a part of the module shown in FIG. 図7Aは、図6のモジュールの7-7線に沿う断面図である。FIG. 7A is a cross-sectional view of the module of FIG. 6 taken along line 7-7. 図7Bは、図6のモジュールの要部斜視図である。FIG. 7B is a perspective view of a main part of the module of FIG. 図8は、整流機構によって発生する海水の流速分布の一例を示した説明図である。FIG. 8 is an explanatory diagram showing an example of the flow velocity distribution of seawater generated by the rectifying mechanism. 図9は、整流機構によって発生する海水の流速分布の一例を示した説明図である。FIG. 9 is an explanatory view showing an example of the flow velocity distribution of seawater generated by the rectifying mechanism.
 以下、添付図面に従って本発明に係る水処理装置の好ましい実施の形態について説明する。 Hereinafter, preferred embodiments of the water treatment apparatus according to the present invention will be described with reference to the accompanying drawings.
 図1は、実施の形態の水処理装置10が組み込まれた海水淡水化処理システム20のブロック図である。 FIG. 1 is a block diagram of a seawater desalination treatment system 20 in which a water treatment apparatus 10 according to an embodiment is incorporated.
 同図に示す海水淡水化処理システム20は、海水が貯留されたタンク12、高圧ポンプ14、及び水処理装置10から構成される。タンク12の海水は、高圧ポンプ14によって水処理装置10に高圧で供給され、水処理装置10の後述するRO膜によって逆浸透処理(脱塩処理)されることにより、脱塩された透過水16と、塩分が濃縮された濃縮水18とに分離される。このようにして得られた透過水16は、水処理装置10の外部に送液される。なお、実施の形態の海水淡水化処理システム20は、高圧ポンプ14によって海水を水処理装置10に高圧で供給しているが、水処理装置10の透過水出口側に高圧の吸引ポンプを接続し、この吸引ポンプによってタンク12から海水を水処理装置10に導入させるようにしてもよい。また、高圧ポンプ14及び吸引ポンプの双方を設けてもよい。 A seawater desalination treatment system 20 shown in FIG. 1 includes a tank 12 in which seawater is stored, a high-pressure pump 14, and a water treatment device 10. Seawater in the tank 12 is supplied to the water treatment device 10 at a high pressure by the high-pressure pump 14 and reverse osmosis treatment (desalination treatment) is performed by an RO membrane (to be described later) of the water treatment device 10, thereby desalted permeated water 16. And concentrated water 18 in which the salinity is concentrated. The permeated water 16 thus obtained is sent to the outside of the water treatment device 10. In the seawater desalination treatment system 20 according to the embodiment, seawater is supplied to the water treatment apparatus 10 at a high pressure by the high pressure pump 14. A high pressure suction pump is connected to the permeate outlet side of the water treatment apparatus 10. The seawater may be introduced into the water treatment apparatus 10 from the tank 12 by this suction pump. Moreover, you may provide both the high-pressure pump 14 and a suction pump.
 タンク12内の海水としては、原海水をそのまま使用してもよいが、前処理を施して原海水に含まれる濁質成分等を除去した海水を使用することが好ましい。前処理としては、フィルタ利用、沈殿池に原海水を導入して塩素等の殺菌剤を添加し、原海水中の粒子を沈殿除去するとともに微生物を殺菌する等の処理がある。また、原海水に塩化鉄等の凝集剤を添加して濁質成分を凝集させ、これを濾過して除去した海水を使用してもよい。 As the seawater in the tank 12, raw seawater may be used as it is, but it is preferable to use seawater that has been pretreated to remove turbid components contained in the raw seawater. Examples of pretreatment include use of a filter, introduction of raw seawater into a sedimentation basin, addition of a sterilizing agent such as chlorine, precipitation removal of particles in the raw seawater, and sterilization of microorganisms. Further, seawater obtained by adding a flocculant such as iron chloride to the raw seawater to aggregate the turbid component and filtering it off may be used.
 水処理装置10は、図2に示すエレメント22を単数、又は複数個直列に接続し、これを図3に示す容器24に充填してモジュール26とし、このモジュール26を単独で、又は並列に接続することにより構成される。そして、モジュール26には、高圧ポンプ14によって所定の操作圧力が負荷されるようになっている。なお、図3には、3個のエレメント22、22…を直列に接続したモジュール26が示されているが、エレメント22の個数は3個に限定されるものではない。また、容器24は、高圧(5MPa以上)に耐え得るようにスーパーステンレス(PREN値(孔食係数)(Pitting Resistance Equivalent Number)が40以上の鋼種)によって構成されている。 The water treatment apparatus 10 connects one or a plurality of elements 22 shown in FIG. 2 in series, fills the container 24 shown in FIG. 3 into a module 26, and connects the module 26 alone or in parallel. It is constituted by doing. A predetermined operating pressure is applied to the module 26 by the high-pressure pump 14. 3 shows a module 26 in which three elements 22, 22... Are connected in series, the number of elements 22 is not limited to three. The container 24 is made of super stainless steel (a steel type having a PREN value (pitting corrosion coefficient) (Pitting Resistance Equivalent Number) of 40 or more) so as to withstand high pressure (5 MPa or more).
 図2に示すようにエレメント22は、RO膜28と処理水管30とを含むRO膜ユニット32が集水管34の周囲に配置されて構成されている。RO膜ユニット32は図4の如く、4枚の袋体状のRO膜28、28…が集水管34の外周部に放射状に接続され、これらのRO膜28、28…を、図5の如く集水管34の周囲にスパイラル状に巻回することにより構成される。袋体状のRO膜28の一端は開口され、この開口部が図4に示す集水管34の透孔36と連通するようにRO膜28が集水管34に接着されている。被処理水である海水は、RO膜28の外表面を流れ、RO膜28を透過することにより脱塩される。そして、RO膜28を透過した脱塩後の透過水は、RO膜28の内側からRO膜28の開口、及び集水管34の透孔36を介して集水管34内に集水され、集水管34から処理水管30を介してエレメント22から排出される。なお、図4の符号38は、RO膜28の内部に配置されるメッシュ状のスペーサーである。このスペーサー38によって、RO膜28がスパイラル状に巻かれてもRO膜28の内部空間が潰れないように保持される。また、符号40は、隣接するRO膜28、28の間に配置されたメッシュ状のスペーサーである。このスペーサー40もRO膜28と同様に集水管34の外周部に放射状に接着されている。 As shown in FIG. 2, the element 22 includes an RO membrane unit 32 including an RO membrane 28 and a treated water pipe 30 arranged around a water collection pipe 34. As shown in FIG. 4, the RO membrane unit 32 has four bag- like RO membranes 28, 28... Radially connected to the outer periphery of the water collecting pipe 34. These RO membranes 28, 28. It is constituted by winding around the water collecting pipe 34 in a spiral shape. One end of the bag-like RO membrane 28 is opened, and the RO membrane 28 is bonded to the water collection tube 34 so that the opening communicates with the through hole 36 of the water collection tube 34 shown in FIG. Seawater, which is the water to be treated, flows through the outer surface of the RO membrane 28 and is desalted by passing through the RO membrane 28. Then, the desalted permeated water that has passed through the RO membrane 28 is collected from the inside of the RO membrane 28 into the water collecting pipe 34 through the opening of the RO membrane 28 and the through hole 36 of the water collecting pipe 34, and the water collecting pipe 34 is discharged from the element 22 through the treated water pipe 30. Note that reference numeral 38 in FIG. 4 is a mesh spacer disposed inside the RO membrane 28. The spacer 38 holds the RO membrane 28 so that the inner space of the RO membrane 28 is not crushed even if the RO membrane 28 is wound in a spiral shape. Reference numeral 40 denotes a mesh-like spacer disposed between the adjacent RO membranes 28 and 28. The spacers 40 are also radially bonded to the outer periphery of the water collecting pipe 34 in the same manner as the RO membrane 28.
 図3の如く、容器24の一端側の外周部には、配管42が接続されている。この配管42を介して、図1のタンク12から容器24内に海水が高圧ポンプ14によって供給される。容器24内に供給された海水は、エレメント22のRO膜ユニット32に導かれ、RO膜28、28…を順次透過したのち、前述の如く集水管34に集水されて処理水管30からモジュール26の外部に取り出される。また、RO膜28、28…を透過しなかった濃縮水は、下流側のエレメント22、22に順に導かれて、上記と同様に透過水と濃縮水とに分離され、最終的に濃縮水排出管44からモジュール26の外部に排出される。この濃縮水排出管44は、容器24の他端側の外周部に接続されている。 As shown in FIG. 3, a pipe 42 is connected to the outer peripheral portion on one end side of the container 24. Seawater is supplied by the high-pressure pump 14 from the tank 12 of FIG. The seawater supplied into the container 24 is guided to the RO membrane unit 32 of the element 22 and sequentially passes through the RO membranes 28, 28..., And then collected in the water collecting pipe 34 as described above and from the treated water pipe 30 to the module 26. It is taken out outside. Further, the concentrated water that has not permeated through the RO membranes 28, 28... Is sequentially guided to the downstream elements 22, 22, and is separated into permeated water and concentrated water in the same manner as described above, and finally the concentrated water is discharged. It is discharged from the tube 44 to the outside of the module 26. The concentrated water discharge pipe 44 is connected to the outer peripheral portion on the other end side of the container 24.
 ところで、実施の形態の水処理装置10では、モジュール26に海水の整流構造が備えられている。 Incidentally, in the water treatment apparatus 10 of the embodiment, the module 26 is provided with a seawater rectification structure.
 この整流構造は、図6に示すモジュール26の側面側の断面図において、容器24の外周面24Aに配管42を設けることにより構成される。この配管42は、配管42の軸aが容器24の長軸bに対して直交する方向に配置されている。また、配管42はその軸aが、図7Aに示すモジュール26の正面側の断面図において、容器24の内周面24Bに対して接線方向に向けられた姿勢で容器24の外周面24Aに接続されている。更に、図7Bに示す斜視図の如く、配管42の吐出口46は、容器24の内周面24Bと面一に形成されている。 This rectifying structure is configured by providing a pipe 42 on the outer peripheral surface 24A of the container 24 in the cross-sectional view of the side surface of the module 26 shown in FIG. The pipe 42 is arranged in a direction in which the axis a of the pipe 42 is orthogonal to the long axis b of the container 24. The pipe 42 is connected to the outer peripheral surface 24A of the container 24 in a posture in which the axis a is oriented in a tangential direction with respect to the inner peripheral surface 24B of the container 24 in the cross-sectional view of the module 26 shown in FIG. 7A. Has been. Further, as shown in the perspective view of FIG. 7B, the discharge port 46 of the pipe 42 is formed flush with the inner peripheral surface 24 </ b> B of the container 24.
 したがって、配管42の吐出口46から噴射された海水は、図7Aの矢印に示すように容器24の内周面24Bに沿った旋回流となって容器24内を流れ、RO膜28、28…の入口端面28A(エレメント22の入口端面と同一)に導かれる。 Therefore, the seawater injected from the discharge port 46 of the pipe 42 flows in the container 24 as a swirl flow along the inner peripheral surface 24B of the container 24 as shown by the arrow in FIG. 7A, and the RO membranes 28, 28. To the inlet end face 28A (same as the inlet end face of the element 22).
 ところで、特許文献1の水処理装置では、配管の吐出口から噴射した海水は、その流速が減衰しないまま噴流状態でRO膜の入口端面に進入する。この際、RO膜の入口端面と配管の吐出口との間の助走区間が短いため、吐出口から噴射した海水は、容器内において半径方向に広がらない状態で、かつ流速の高い軸方向成分を保ちながらRO膜の入口端面に衝突し、RO膜内に進入していく。この作用により、特許文献1の水処理装置では、RO膜の処理性能を向上させることができなかった。 By the way, in the water treatment device of Patent Document 1, seawater injected from the discharge port of the pipe enters the RO membrane inlet end face in a jet state without the flow velocity being attenuated. At this time, since the run-up section between the RO membrane inlet end surface and the piping outlet is short, the seawater injected from the outlet does not spread in the radial direction in the container and has a high flow velocity axial component. While maintaining, it collides with the entrance end face of the RO membrane and enters the RO membrane. Due to this action, the water treatment apparatus of Patent Document 1 cannot improve the treatment performance of the RO membrane.
 次に、前記の如く構成された実施の形態の水処理装置10の作用について説明する。 Next, the operation of the water treatment apparatus 10 according to the embodiment configured as described above will be described.
 実施の形態の水処理装置10では、配管42を容器24の外周面24Aに設けるとともに、配管42の軸aを容器24の内周面24Bに対し、接線方向に向けて設けているので、特許文献1の水処理装置のような流速分布が配管42の吐出口46とRO膜28の入口端面28Aとの間に生じない。 In the water treatment apparatus 10 of the embodiment, the pipe 42 is provided on the outer peripheral surface 24A of the container 24, and the axis a of the pipe 42 is provided in the tangential direction with respect to the inner peripheral surface 24B of the container 24. The flow velocity distribution as in the water treatment apparatus of Document 1 does not occur between the discharge port 46 of the pipe 42 and the inlet end surface 28A of the RO membrane 28.
 図8に実施の形態の水処理装置10の、RO膜28の入口端面28Aに対する海水の流速分布を矢印で示す。この水処理装置10では、配管42を容器24の外周面に設けるとともに、容器24の内周面24Bに対して接線方向に設けているので、吐出口46から噴射された海水は、容器24の内周面24Bに沿った旋回流となる。このため、RO膜28の入口端面28Aに対する海水流の垂直方向成分は一度消滅する。その後、海水は、容器24の内周面24Bに沿って旋回しながら容器24の軸方向に向かう。この間、軸方向に向かう海水流の流速軸方向成分は、図8に示すように略均一、或いは海水の流速を上げると図9に示すように容器24の内周面24Bに近い位置が高くなる。 FIG. 8 shows the flow velocity distribution of seawater with respect to the inlet end surface 28A of the RO membrane 28 of the water treatment device 10 of the embodiment by arrows. In this water treatment apparatus 10, the pipe 42 is provided on the outer peripheral surface of the container 24 and is provided in a tangential direction with respect to the inner peripheral surface 24 </ b> B of the container 24. It becomes a swirl flow along the inner peripheral surface 24B. For this reason, the vertical component of the seawater flow with respect to the inlet end surface 28A of the RO membrane 28 once disappears. Thereafter, the seawater moves in the axial direction of the container 24 while turning along the inner peripheral surface 24 </ b> B of the container 24. During this time, the axial component of the flow velocity in the axial direction of the seawater flow is substantially uniform as shown in FIG. 8, or the position near the inner peripheral surface 24B of the container 24 increases as shown in FIG. 9 when the flow velocity of the seawater is increased. .
 このことから、RO膜28の入口端面28Aにおいて、海水がRO膜28の全面に十分に暴露され、そのままエレメント22内と出口に向けて移動していくため、RO膜28の表面全体が効率よく海水に暴露される。これにより、RO膜28のファウリングの発生が一様かつ徐々に進んでいくことで、ファウリングによる閉塞時間を減少させることができる。 For this reason, seawater is sufficiently exposed to the entire surface of the RO membrane 28 at the inlet end face 28A of the RO membrane 28 and moves toward the inside of the element 22 and the outlet as it is, so that the entire surface of the RO membrane 28 is efficiently obtained. Exposed to seawater. As a result, the occurrence of fouling of the RO film 28 progresses uniformly and gradually, so that the blocking time due to fouling can be reduced.
 したがって、実施の形態の水処理装置10によれば、特許文献1の水処理装置と比較してRO膜28の処理性能が向上する。なお、旋回流の外周方向の速度成分を、中心付近に対して2~10倍に設定することが、RO膜28の処理性能を向上させる点で好ましい。 Therefore, according to the water treatment device 10 of the embodiment, the treatment performance of the RO membrane 28 is improved as compared with the water treatment device of Patent Document 1. Note that it is preferable to set the velocity component in the outer circumferential direction of the swirling flow to 2 to 10 times the vicinity of the center from the viewpoint of improving the processing performance of the RO membrane 28.
 なお、配管42の軸aが、容器24の長軸bに対して若干量傾斜していてもよい。また、旋回流の流れ方向を、RO膜28の巻き方向と同一としてもよいが、逆方向とすることにより、旋回流の圧力によってRO膜28とRO膜28との隙間が潰れることを防止することができるので、RO膜28による海水の淡水化処理が安定化する。更に、配管42は、容器24の入口開口部を閉塞するための蓋に設けてもよい。 Note that the axis a of the pipe 42 may be slightly inclined with respect to the long axis b of the container 24. Further, the flow direction of the swirl flow may be the same as the winding direction of the RO membrane 28, but by making the direction reverse, the crevice flow pressure prevents the gap between the RO membrane 28 and the RO membrane 28 from being crushed. Therefore, seawater desalination treatment by the RO membrane 28 is stabilized. Further, the pipe 42 may be provided on a lid for closing the inlet opening of the container 24.
 このような水処理装置10は、図6において配管42の吐出口46の口径φ1と容器24の内径φ2との比(拡大率)が高く、かつ吐出口46とRO膜28の入口端面28Aとの距離Lが短い場合に有効である。例えば、容器24の内径φ2は、吐出口46の口径φ1の5~10倍であり、距離Lは容器24の内径φ2の5倍以下である。 Such a water treatment apparatus 10 has a high ratio (enlargement ratio) between the diameter φ1 of the discharge port 46 of the pipe 42 and the inner diameter φ2 of the vessel 24 in FIG. 6, and the inlet end surface 28A of the discharge port 46 and the RO membrane 28. This is effective when the distance L is short. For example, the inner diameter φ2 of the container 24 is 5 to 10 times the diameter φ1 of the discharge port 46, and the distance L is not more than five times the inner diameter φ2 of the container 24.
 実施の形態では、RO膜を使用して海水を淡水化処理する水処理装置について説明したが、膜はRO膜に限定されるものではない。すなわち、膜を使用して被処理水を水処理する装置であれば、本発明の構成を適用できる。また、被処理水は海水に限定されるものではなく、RO膜等の膜を使用して、水道水中の溶存物質、濁質、微生物等を除去する水処理装置であっても、本発明の構成を適用できる。 In the embodiment, the water treatment apparatus that desalinates seawater using the RO membrane has been described, but the membrane is not limited to the RO membrane. That is, the configuration of the present invention can be applied to any apparatus that uses a membrane to treat water to be treated. Further, the water to be treated is not limited to seawater, and even a water treatment apparatus that uses a membrane such as an RO membrane to remove dissolved substances, turbidity, microorganisms, etc. in tap water can be used in the present invention. Configuration can be applied.
 10…水処理装置、12…タンク、14…高圧ポンプ、16…透過水、18…濃縮水、20…海水淡水化処理システム、22…エレメント、24…容器、26…モジュール、28…RO膜、30…処理水管、32…RO膜ユニット、34…集水管、36…透孔、38…スペーサー、40…スペーサー、42…配管、44…濃縮水排出管、46…吐出口 DESCRIPTION OF SYMBOLS 10 ... Water treatment apparatus, 12 ... Tank, 14 ... High pressure pump, 16 ... Permeated water, 18 ... Concentrated water, 20 ... Seawater desalination processing system, 22 ... Element, 24 ... Container, 26 ... Module, 28 ... RO membrane, 30 ... treated water pipe, 32 ... RO membrane unit, 34 ... water collecting pipe, 36 ... through hole, 38 ... spacer, 40 ... spacer, 42 ... piping, 44 ... concentrated water discharge pipe, 46 ... discharge port

Claims (2)

  1.  水処理装置であって、
    被処理水を処理するRO膜と、
    前記RO膜が充填された円筒状の容器と、
    該容器の外周面に、前記容器の内周面に対して接線方向に前記被処理水を供給する配管を備える水処理装置。
    A water treatment device,
    An RO membrane for treating the water to be treated;
    A cylindrical container filled with the RO membrane;
    A water treatment apparatus comprising a pipe for supplying the water to be treated in a tangential direction to the inner peripheral surface of the container on the outer peripheral surface of the container.
  2.  前記円筒状の容器の内径は、前記配管の吐出口の口径の5倍以上10倍以下である請求項1に記載の水処理装置。 The water treatment apparatus according to claim 1, wherein an inner diameter of the cylindrical container is not less than 5 times and not more than 10 times a diameter of a discharge port of the pipe.
PCT/JP2011/053506 2010-02-22 2011-02-18 Water processing device WO2011102464A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010036413A JP2011167668A (en) 2010-02-22 2010-02-22 Water treatment apparatus
JP2010-036413 2010-02-22

Publications (1)

Publication Number Publication Date
WO2011102464A1 true WO2011102464A1 (en) 2011-08-25

Family

ID=44483049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053506 WO2011102464A1 (en) 2010-02-22 2011-02-18 Water processing device

Country Status (2)

Country Link
JP (1) JP2011167668A (en)
WO (1) WO2011102464A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135374A1 (en) * 2014-04-24 2017-03-01 Panasonic Intellectual Property Management Co., Ltd. Ion exchange membrane, ion exchange membrane laminated body provided with ion exchange membrane, electrochemical cell provided with ion exchange membrane laminated body, and water treatment apparatus provided with electrochemical cell
US11518692B2 (en) * 2018-01-19 2022-12-06 Curt Johnson Electrocoagulation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786361A (en) * 1980-11-20 1982-05-29 Kogyo Gijutsuin Blood treatment device with hollow fiber membrane bundle
JPS63205106A (en) * 1987-02-19 1988-08-24 Toshiba Corp Filter
JPS6417246U (en) * 1987-07-17 1989-01-27
JPH09103606A (en) * 1995-10-12 1997-04-22 Miura Co Ltd Gas separation membrane module
JP2005219023A (en) * 2004-02-09 2005-08-18 Nitto Denko Corp Vessel for spiral type membrane element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786361A (en) * 1980-11-20 1982-05-29 Kogyo Gijutsuin Blood treatment device with hollow fiber membrane bundle
JPS63205106A (en) * 1987-02-19 1988-08-24 Toshiba Corp Filter
JPS6417246U (en) * 1987-07-17 1989-01-27
JPH09103606A (en) * 1995-10-12 1997-04-22 Miura Co Ltd Gas separation membrane module
JP2005219023A (en) * 2004-02-09 2005-08-18 Nitto Denko Corp Vessel for spiral type membrane element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135374A1 (en) * 2014-04-24 2017-03-01 Panasonic Intellectual Property Management Co., Ltd. Ion exchange membrane, ion exchange membrane laminated body provided with ion exchange membrane, electrochemical cell provided with ion exchange membrane laminated body, and water treatment apparatus provided with electrochemical cell
EP3135374A4 (en) * 2014-04-24 2017-10-11 Panasonic Intellectual Property Management Co., Ltd. Ion exchange membrane, ion exchange membrane laminated body provided with ion exchange membrane, electrochemical cell provided with ion exchange membrane laminated body, and water treatment apparatus provided with electrochemical cell
US11518692B2 (en) * 2018-01-19 2022-12-06 Curt Johnson Electrocoagulation system

Also Published As

Publication number Publication date
JP2011167668A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5687561B2 (en) Water treatment equipment
JP5923294B2 (en) Reverse osmosis processing equipment
WO2012086479A1 (en) Reverse osmosis processing device
JPS63284328A (en) Water feed apparatus
US20190135671A1 (en) Systems and Methods for Multi-Stage Fluid Separation
US10954140B2 (en) Apparatus for generating cavitation in a liquid
WO2011102464A1 (en) Water processing device
WO2011102443A1 (en) Water treatment device
JP2018089598A (en) Water treating device
JP6344114B2 (en) Water treatment apparatus and water treatment equipment cleaning method
WO2011102438A1 (en) Water processing device
WO2014126156A1 (en) Membrane separation treatment method and membrane separation treatment system
US11498860B2 (en) Reverse osmosis apparatus and seawater desalination system having the same
US11648496B2 (en) Treatment module and operating method therefor
JP2007203144A (en) Water treatment method and water treatment equipment
JP2013034971A (en) Drinking water supply device
US20200377832A1 (en) System and method for purification of drinking water, ethanol and alcohol beverages of impurities
RU2018127556A (en) The method of purification of water for domestic use
EP3894050B1 (en) Arrangement in cross-flow membrane separation unit
JP2016215205A (en) Reverse osmosis treatment device
KR102122007B1 (en) Filterless water purification system
JP5996057B2 (en) Reverse osmosis processing equipment
KR20220048616A (en) Water treatment apparatus and method for decreasing fouling
PH22020050318U1 (en) Activated carbon and cat-ion and an-ion filter system
CN110697923A (en) Intelligent water purification system and intelligent water purification method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744750

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744750

Country of ref document: EP

Kind code of ref document: A1