WO2011102381A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2011102381A1
WO2011102381A1 PCT/JP2011/053275 JP2011053275W WO2011102381A1 WO 2011102381 A1 WO2011102381 A1 WO 2011102381A1 JP 2011053275 W JP2011053275 W JP 2011053275W WO 2011102381 A1 WO2011102381 A1 WO 2011102381A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
impact
drive device
electromagnetic coil
permanent magnet
Prior art date
Application number
PCT/JP2011/053275
Other languages
French (fr)
Japanese (ja)
Inventor
智士 鈴木
義雄 光武
祐也 長谷川
茂喜 藤原
陽平 石上
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2011102381A1 publication Critical patent/WO2011102381A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • B60R1/062Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position
    • B60R1/07Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators
    • B60R1/072Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators for adjusting the mirror relative to its housing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • the present invention relates to a drive device that changes the posture of an object by supporting and rotating the object.
  • the eddy current is a current that flows in a spiral manner in the metal plate when current flows through an electromagnetic coil disposed near the metal plate such as an aluminum plate, for example.
  • an impact current is supplied to the electromagnetic coil, the interaction between the magnetic field generated by the electromagnetic coil and the eddy current induced in the metal plate generates a repulsive force to repel the metal plate.
  • An impact can be applied to the object through the metal plate by colliding the repelled metal plate with the object.
  • a device or the like in which such a driving device is applied to a micromanipulator, and the micromanipulator is inserted into an egg cell by the micromanipulator (see, for example, Patent Document 4).
  • the device as shown in the above-mentioned patent document 1 has a problem that the entire device becomes large and heavy when the motor is incorporated, and the posture of the object is changed by supporting and rotating the object. It is desirable to realize a compact and lightweight drive device that can Further, there is no known example in which the drive sources as shown in the above-mentioned Patent Documents 2 to 4 are used to change the orientation or attitude of the device.
  • the present invention solves the above-mentioned problems, and it is possible to change the posture of an object by supporting and rotating the object by a compact, simple and inexpensive configuration without making the device heavy. It aims at providing an apparatus.
  • the drive device includes an inclination mechanism for supporting the object in an inclinable manner, and an inclination mechanism in the drive device for changing the posture of the object by supporting and rotating the object.
  • a rotating mechanism that rotatably supports an object to be included, an impact actuator for tilting that applies an impact force to the tilting mechanism to change the tilt angle of the object, and an impact force in the circumferential direction of the rotating mechanism to And an impact actuator for rotation that changes a rotation angle.
  • the tilt mechanism and the rotation mechanism be constituted by a gimbal mechanism having two degrees of freedom.
  • each bearing portion of the inclining mechanism and the rotating mechanism it is preferable that the inclination angle and the rotation angle are maintained by the frictional force in each bearing portion of the inclining mechanism and the rotating mechanism, and each bearing portion is provided with a pressing means for generating the frictional force.
  • the pressing means preferably generates a frictional force by a tightening torque of a screw.
  • the pressing means includes an elastic body to generate a frictional force by its biasing force.
  • the pressing means preferably includes an electromagnet, and the magnetic force preferably generates a frictional force.
  • the pressing means preferably comprises a permanent magnet and generates a frictional force by its magnetic force.
  • the pressing means preferably includes a permanent magnet and an electromagnet, and preferably generates a frictional force by these magnetic forces.
  • the tilting and rotating impact actuators be provided in parallel with each other.
  • this drive device it is preferable to be configured by a ball joint in which the object support portion of the tilt mechanism and the rotation mechanism is shared.
  • a control unit that controls the impact actuator be provided, and the control unit control the impact actuator so as to vibrate the object supported by the tilt mechanism and the rotation mechanism.
  • the drive device of the present invention since rotation about two axes is performed using an impact actuator, there is no need to provide a large structure for mechanical rotational drive such as a gear or a motor. A compact, simple and inexpensive drive device can be realized without making it heavy.
  • the driving device using the impact actuator can use the frictional force for maintaining the posture, that is, maintaining the angle, it is possible to consume no power except during driving.
  • FIG. 1 is a perspective view of a drive device according to a first embodiment of the present invention.
  • 2 (a) to 2 (c) are perspective views showing an example of use of the drive device.
  • 3 (a1) to 3 (c1) are side views showing an operation example of the drive device, and
  • FIGS. 3 (a2) to 3 (c2) are plan views corresponding to (a1) to (c1).
  • 4 (a1) to 4 (c1) are side views showing another operation example of the drive device, and FIGS. 4 (a2) to 4 (c2) are plan views corresponding to (a1) to (c1).
  • 5 (a) and 5 (b) are cross-sectional views for explaining the leftward operation of the impact actuator applied to the drive device, and FIGS.
  • FIG. 5 (c) and 5 (d) are cross-sectional views for explaining the rightward operation of the same impact actuator. is there.
  • FIG. 6 (a) is a perspective view of a modification of the drive device
  • FIGS. 6 (b) and 6 (c) are cross-sectional views for explaining the leftward operation of the impact actuator applied to the modification.
  • FIG. 7 (a) is a cross-sectional view of another impact actuator applied to the drive device
  • FIG. 7 (b) is a schematic view for explaining the operation principle of the same impact actuator.
  • 8 (a), (b) and (d) are cross-sectional views for explaining the operation of still another impact actuator applied to the drive device
  • FIGS. 8 (c) and (e) are for operating the same impact actuator.
  • FIGS. 11 (a) to 11 (c) are side views of partial cross sections showing an operation example of the impact actuator.
  • FIGS. 14 (a1) to 14 (c1) are side views showing an example of the rotational operation around the A2 axis of the drive device, and FIGS. 14 (a2) to 14 (c2) are views from the other side orthogonal to the same rotational operation.
  • Fig.15 (a1)-(c1) is a side view which shows the example of the rotational motion of A1 axis of the drive device, and Fig.15 (a2)-(c2) see the other side which orthogonally crosses the rotational motion.
  • FIG.16 (a) is sectional drawing which shows the example of the bearing part of the drive device which concerns on 1st and 2nd embodiment
  • (b) is sectional drawing which shows the other example of the bearing part.
  • 17 (a) to 17 (c) are cross-sectional views showing still another example of the bearing portion.
  • FIG. 18 is a perspective view of another modification of the drive device according to the first and second embodiments.
  • FIG. 19 is a perspective view showing still another modification of the first embodiment.
  • 20 (a1) and 20 (a2) are side views showing an operation example of the modification
  • FIGS. 20 (b1) and 20 (b2) are plan views corresponding to (a1) and (a2).
  • FIG. 21 is a perspective view showing still another modification of the first embodiment.
  • FIG. 22 is a perspective view showing still another modification of the first embodiment.
  • FIG. 23 is a perspective view showing still another modification of the second embodiment.
  • Fig.24 (a) is a perspective view of the drive device based on 3rd Embodiment
  • FIG.24 (b) is a rear view of the drive device.
  • FIG. 25 is a rear perspective view showing an example of the rotational operation of the drive device.
  • FIG. 26 is a rear perspective view showing an example of the tilting operation of the drive device.
  • FIG. 27 is a perspective view showing a modification of the drive device.
  • FIG. 28 is a block diagram showing another modification of the drive device.
  • FIG. 29 is a cross-sectional view of still another impact actuator applied to the drive device according to the first, second and third embodiments.
  • FIGS. 30 (a) and 30 (b) are partially enlarged cross-sectional views of the same impact actuator.
  • 31 (a) to 31 (d) are side views of partial cross sections showing how the impact actuator operates
  • the drive device 1 includes an inclination mechanism having an inclination bearing 11 b for supporting a short cylindrical object M, and a rotation bearing 12 b for supporting the object M including the inclination mechanism. And impact actuators 11 and 12.
  • the tilt bearing portion 11b tiltably supports the object M around the horizontal rotation axis A1 (for example, in the horizontal left-right direction).
  • the bearing unit 12b for rotation rotatably supports the object M including the tilting mechanism around the vertical rotation axis A2.
  • the impact actuator 11 applies an impact force to the tilt mechanism to change the tilt angle (rotation angle around the horizontal rotation axis A1) of the object from the vertical direction.
  • the impact actuator 12 applies an impact force in the circumferential direction of the rotation mechanism to change the rotation angle of the object M around the vertical rotation axis A2.
  • the horizontal rotation axis A1 and the vertical rotation axis A2 are orthogonal to each other on the central axis of the cylindrical object M.
  • the impact actuators 11 and 12 are drive sources capable of moving the object M in the direction of applying an impact force (impact).
  • Such impact actuators 11 and 12 include those that can be driven only in a single direction and those that can be driven in any direction of the reciprocating direction.
  • the impact actuators 11 and 12 of the drive device 1 either one of a unidirectional specification (one-side drive) or a reciprocating specification (reciprocal drive) can be used.
  • a unidirectional specification one-side drive
  • a reciprocating specification reciprocating drive
  • the tilt bearing 11b supports the object M at its cylindrical left and right outer wall portions.
  • a plate-like arm 11 a extending upward is fixed to the cylindrical upper end face of the object M.
  • the tilt actuator 11 is fixed to the arm 11a so that a rotational moment about the horizontal rotation axis A1 can be effectively applied to the object M.
  • the cylindrical side wall and upper end face of the object M can also be included in the tilting mechanism. When these are included, the tilting mechanism comprises the arm 11a, the bearing portion 11b for tilting, and the cylindrical side wall and the upper end face of the object M.
  • the bearing unit 12b for rotation supports a temple-like suspension member 12a for suspending the object M from the left and right, for example, at the top of the suspension member 12a so as to hang from a ceiling.
  • the left and right lower portions of the suspension member 12a support the tilt bearing 11b.
  • the actuator 12 for rotation is fixed to the suspension member 12 a so that a rotational moment around the vertical rotation axis A2 can be effectively applied to the object M.
  • the rotation mechanism comprises a suspending member 12a and a bearing 12b for rotation.
  • the object M is, for example, a lighting device (hereinafter also referred to as a lighting device M) which is housed inside the ceiling embedded recess frame 9 and which is hung from the ceiling to illuminate the lower side as shown in FIG. Therefore, the driving device 1 supports the lighting device as the object M and rotates the actuators 11 and 12 to operate them, thereby changing the posture as shown in FIGS. 2 (a), (b) and (c). Illumination direction can be changed. More specifically, as shown in FIGS. 3 (a1) to (c2), by operating the actuator 12, the object M can be rotated about the vertical rotation axis to rotate the illumination light. . Further, as shown in FIGS.
  • a lighting device M which is housed inside the ceiling embedded recess frame 9 and which is hung from the ceiling to illuminate the lower side as shown in FIG. Therefore, the driving device 1 supports the lighting device as the object M and rotates the actuators 11 and 12 to operate them, thereby changing the posture as shown in FIGS. 2 (a), (b) and (c
  • the lighting apparatus M can be rotated about the horizontal rotation axis to illuminate the area other than directly below. Further, by operating both of the actuators 11 and 12, the space under the lighting device M can be illuminated sequentially and completely.
  • the actuator since rotation about two axes of the shaft to be tilted and the shaft to be rotated is performed using the actuator, a large structure for mechanical rotation drive such as a gear or a motor can be obtained. It is not necessary to provide, and it is possible to realize the drive device 1 of a compact, simple, inexpensive configuration. For the same reason, these configurations can be realized without adding weight to the device.
  • the driving device 1 using the actuator can use a frictional force, a ratchet mechanism or the like for maintaining the posture, that is, maintaining the angle, in this case, it is necessary not to consume power except during driving. it can.
  • FIG. 5 shows an example of an actuator applied to the drive device 1.
  • the actuator includes left and right electromagnetic coils 31 separated from each other and coaxially disposed facing each other, an elastic body 30 disposed between the electromagnetic coils 31, and each electromagnetic And two conductors 32 disposed between the coil 31 and the elastic body 30.
  • Each conductor 32 is configured to be movable along the axial direction of the electromagnetic coil 31 at least within the range in which the elastic body 30 expands and contracts.
  • the two electromagnetic coils 31 are integrated by a shaft 31a disposed on their central axes, and are respectively accommodated in a coil frame 31b.
  • the conductor 32 is, for example, a doughnut-shaped metal disc made of a good conductor such as aluminum, and the movement direction is restricted by the shaft 31a.
  • the elastic body 30 extends so as to bring the conductor 32 close to the electromagnetic coil 31 when the actuator is not driven.
  • the degree of proximity between the conductor 32 and the electromagnetic coil 31 may be a distance at which the eddy current necessary for driving can be generated in the conductor 32.
  • the elastic body 30 can be configured by, for example, a coil spring or a plate spring, and can be configured using rubber or the like.
  • the actuator is provided with a set including one electromagnetic coil 31 and one electric conductor 32 on both sides of the elastic body 30 along the shaft 31a so as to be in a symmetrical arrangement and a symmetrical configuration.
  • the actuator causes the object M to move in the direction of the shaft 31a (left and right direction in the drawing) by applying an impact to the object M.
  • the electromagnetic coil 31 becomes a generation source of the impact by being supplied with power.
  • the object M is moved to the left by the left set of movements and to the right by the right set of movements. Therefore, first, the operation of the left set will be described.
  • the left conductor 32 is moved to the right by the repulsive force generated due to the eddy current generated in the conductor 32 when the left electromagnetic coil 31 is energized. Be done.
  • the elastic body 30 is compressed by the moving conductor 32, and then the conductor 32 is pushed back to the left by the extension force.
  • the energization of the electromagnetic coil 31 is turned off. Therefore, as shown in FIG. 5B, the conductor 32 collides with the left electromagnetic coil 31, and the collision generates an impact toward the left. The object M is pushed to the left by the impact and moves to the left.
  • the energization control to the electromagnetic coil 31 is controlled so that the current flows at a stroke so as to obtain the required eddy current and the repulsive force resulting therefrom, so that the collision between the conductor 32 and the electromagnetic coil 31 is not disturbed. Control may be performed to turn off the current. In addition, by repeating the energization under such control, it is possible to repetitively impact the object M to move the object M to the left in a pulsed manner.
  • FIG.5 (c) (d) shows the case where the subject M is moved to the right by the operation of the right set.
  • the operation can be considered to be symmetrical as in the case of FIGS. 5 (a) and 5 (b).
  • a mechanism for preventing backtracking is required, and a mechanism for applying a frictional force, a ratchet mechanism, or the like is used as the mechanism.
  • this actuator is an actuator capable of reciprocating movement that can move the object M in any of the left and right directions.
  • the drive device 1 can rotate in either forward or reverse rotational directions about each of the rotation axes of the rotation axes A1 and A2 in FIG. 1.
  • such an actuator can be realized in a small size, light weight and inexpensiveness, and the drive device 1 can be realized in a small size, light weight and inexpensiveness.
  • the object M needs to have an appropriate resistance. There is. For example, it is assumed that the object M receives resistance due to frictional force when moving.
  • the impact of the movement of the conductor 32 to the right and the collision with the elastic body 30 does not exceed the maximum static friction force.
  • the impact of the movement of the conductor 32 to the left and the collision with the electromagnetic coil 31 is made to exceed the maximum static friction force.
  • the actuator can move the object M that satisfies such conditions.
  • the elastic body 30 acts as a damper that cushions the impact by being compressed over time.
  • FIG. 6 (a) shows a modification of the drive device 1 shown in FIG. 1, and FIGS. 6 (b) and 6 (c) show an actuator applied to the modification.
  • this driving device 1 uses two actuators arranged as two actuators 11 and 12 so as to generate rotational moments in opposite directions to each other. It is. The arrangement need not be arranged to face each other as shown, but may be distributed.
  • Such an actuator is configured by arranging the electromagnetic coil 31, the conductor 32, the elastic body 30, and the stopper 30a in this order as shown in FIGS. The electromagnetic coil 31 and the stopper 30a are integrated.
  • This actuator has the same configuration as that of the actuator shown in FIG.
  • the single-sided drive actuator can be configured smaller than the double-sided drive (reciprocal drive) actuator, it has the flexibility to be distributed in a narrow space in the drive device 1.
  • FIG. 7 shows still another actuator applied to the drive unit 1.
  • This actuator is, as shown in FIG. 7A, in the actuator shown in FIG. 5 described above, in which two electric conductors 32 are replaced by two permanent magnets 33 arranged correspondingly. .
  • the replaced permanent magnet 33 is repelled and moved by the repulsive force of the interaction between the coil current flowing by the energization of the electromagnetic coil 31 and the magnetic field of the permanent magnet 33.
  • the permanent magnet 33 is in the shape of a donut disk like the conductor 32, and is magnetized in the radial direction from the center side toward the outer peripheral side.
  • the actuator applies an electric current to the electromagnetic coil 31 so as to apply a repulsive force to the permanent magnet 33 and then turns the electric current off, the permanent magnet 33 is received by the elastic body 30 on the right side and then repelled by the elastic body 30 It collides with the original electromagnetic coil 31. That is, instead of the repulsive force generated due to the eddy current in FIG. 5 described above, the actuator uses the repulsive force due to the interaction between the coil current flowing by energization of the electromagnetic coil 31 and the magnetic field of the permanent magnet 33. And operates similarly to the actuator shown in FIG.
  • one conductor 32 and one permanent magnet 33 may be provided as a compromise between the configuration shown in FIG. 5 and the configuration shown in FIG. 7.
  • the left and right motions and configurations are not necessarily symmetrical to each other.
  • it is possible to optimize the cost and the operating characteristics by making the characteristics of the reciprocation operation different by utilizing the non-symmetry.
  • the elastic force of the elastic body 30 can be substituted by the magnetic repulsive force of the left and right permanent magnets 33 so that the elastic body 30 can be removed ( Not shown).
  • the impact of the collision is mitigated by the damping effect due to the mutual magnetic repulsion.
  • the moving speeds of the permanent magnets 33 in relative movement can continue to accelerate until they collide with the electromagnetic coil 31 by exerting a magnetic force on each other. In consideration of this, the interval between the left and right sets is appropriately set.
  • the actuator using the repulsive force between the permanent magnet 33 and the electromagnetic coil 31 can generate a larger impact and cause a larger movement than in the case of the eddy current. Also, there is no heat generation due to Joule heat in the case of eddy current, and it is possible to operate stably with energy efficiency.
  • FIG. 8 shows still another actuator applied to the drive unit 1.
  • this actuator includes an electromagnetic coil 31, a permanent magnet 33, a stopper 34, and a control device (not shown) for controlling the time of the current supplied to the electromagnetic coil 31.
  • the permanent magnet 33 moves relative to the electromagnetic coil 31 by an electromagnetic action generated by energization of the electromagnetic coil 31.
  • the stopper 34 is integrated with the electromagnetic coil 31 so as to limit the range of relative movement of the permanent magnet 33 to form an impacted body.
  • impact is generated when the permanent magnet 33 collides with the collided body (that is, any one of the electromagnetic coil 31 and the stopper 34) by energization of the electromagnetic coil 31.
  • the term collided body is only used as a name indicating the opponent (permanent relative movement) with which the permanent magnet 33 collides, and has no other meaning.
  • the electromagnetic coil 31 is housed in a coil frame and integrated with the stopper 34 by a shaft 31a disposed on the central axis of the coil frame.
  • the permanent magnet 33 has a donut disk shape and is magnetized in the radial direction from the center side toward the outer peripheral side. In the case of this example, although the center side is the south pole and the outer circumference side is the north pole, it can be reverse polarity. Such a permanent magnet 33 receives repulsion or attraction depending on the direction of the current flowing through the electromagnetic coil 31 (see FIG. 7B described above).
  • the permanent magnet 33 is reciprocated by attractive force (J ⁇ 0, time t3) and repulsive force (J> 0, time t5) by the electromagnetic coil 31 by time controlling the coil current J supplied to the electromagnetic coil 31, and the attractive force
  • the permanent magnet 33 is caused to collide with the electromagnetic coil 31. That is, the permanent magnet 33 moves leftward from the position between the electromagnetic coil 31 and the stopper 34 as shown in FIG. 8A by the attraction force at time t3 in FIG. It collides with the electromagnetic coil 31 as shown in. After that, the permanent magnet 33 returns to the position shown in FIG.
  • FIG. 8C shows an example in which the operation is started by the repulsive force at time t2 from the state (initial state) where the permanent magnet 33 is on the side of the electromagnetic coil 31 as shown in FIG. 8B. Further, times t1 and t4 are drive adjustment times.
  • the permanent magnet 33 is reciprocated by the repulsive force (J> 0, time t4) and the attractive force (J ⁇ 0, time t5) by the electromagnetic coil 31 by time controlling the coil current J supplied to the electromagnetic coil 31 and the repulsive force
  • the permanent magnet 33 is caused to collide with the stopper 34. That is, the permanent magnet 33 moves to the right from the position between the electromagnetic coil 31 and the stopper 34 as shown in FIG. 8A by the repulsive force at time t4 in FIG. And collide with the stopper 34 as shown in FIG. After that, the permanent magnet 33 returns to the position shown in FIG.
  • the coil current J gradually increases and then the coil current J having a constant value flows, as shown at time t2. .
  • the coil current J is gradually increased at the beginning of time t2 in order to suppress the movement of the moving object M to the left due to the reaction caused by the rapid separation.
  • the object M is moved to the left by the permanent magnet 33 colliding with the electromagnetic coil 31 to the left, and is moved to the right by colliding the permanent magnet 33 against the stopper 34 to the right. Therefore, when moving the object M to the left, it is necessary to exert the magnetic force from the electromagnetic coil 31 on the permanent magnet 33 so that the permanent magnet 33 does not collide with the stopper 34. Conversely, when moving the object M to the right, it is necessary to exert the magnetic force from the electromagnetic coil 31 on the permanent magnet 33 so that the permanent magnet 33 does not collide with the electromagnetic coil 31.
  • the control device that controls the coil current J generates a collision in one direction of relative movement of the electromagnetic coil 31 and the permanent magnet 33, avoids the collision in the direction opposite to that one direction, and reverses the direction of relative movement.
  • the control device time-controls the coil current J applied to the electromagnetic coil 31 so as to repeatedly generate an impact only in one direction.
  • Such an actuator can generate an impact due to a collision in any direction of the relative movement of the electromagnetic coil 31 and the permanent magnet 33, so that the reciprocating movement of the object M can be realized.
  • the actuator is formed by combining the permanent magnet 33 and the stopper 34 with one electromagnetic coil 31, the configuration is small and simple. By using this actuator, the drive device 1 can be realized in a small size, light weight and low cost as compared with the case of using a motor, a driving force transmission device or the like.
  • FIG. 9 shows still another actuator applied to the drive unit 1.
  • the electromagnetic coil 31 and the permanent magnet 33 are mutually replaced, and the stopper 34 is replaced with a separate permanent magnet 33.
  • the actuator comprises two disk-like permanent magnets 33 coaxially arranged apart from each other and fixed to both ends of the shaft 31a, and an electromagnetic coil 31 made movable along the shaft 31a.
  • this actuator is provided with a control device (not shown) which controls the time of the current supplied to the electromagnetic coil 31.
  • the electromagnetic coil 31 is housed in a coil frame, and is inserted through a shaft 31a on the central axis.
  • the two permanent magnets 33 are integrated by the shaft 31a to form an object to be collided (in this case, a partner with which the electromagnetic coil 31 collides).
  • the electromagnetic coil 31 moves relative to the two permanent magnets 33 by the electromagnetic action generated by energization of the electromagnetic coil 31.
  • the range of relative movement is limited by the impacted body (by permanent magnets 33 at both ends).
  • the two permanent magnets 33 have a donut disk shape and are magnetized in the radial direction from the center side toward the outer peripheral side. In the case of this example, although the center side is the south pole and the outer circumference side is the north pole, it can be reverse polarity.
  • the operation of the actuator will be described for the case of moving the object M to the left as shown in FIG. 9 (b).
  • the electromagnetic coil 31 sandwiched between the permanent magnets 33 as described above receives a repulsive force from one permanent magnet 33 and an attractive force from the other permanent magnet 33 as shown in FIG. Receive Therefore, depending on the direction of the current flowing through the electromagnetic coil 31, the electromagnetic coil 31 can select the moving direction either to the left or to the right. Therefore, by controlling the coil current of the electromagnetic coil 31 with time by the control device, as shown in FIG. 9B, the electromagnetic coil 31 is caused to collide with the permanent magnet 33 on the left side, and the object M is turned to the left. It can be moved.
  • the electromagnetic coil 31 can be made to collide with the right permanent magnet 33 to move the object M to the right.
  • the controller generates a collision in one direction of relative movement of the electromagnetic coil 31 and the permanent magnet 33, avoids the collision in the direction opposite to the one direction, and reverses the direction of the relative movement.
  • the control device time-controls the current supplied to the electromagnetic coil 31 so as to repeatedly generate an impact only in one direction. By repeating such control, the object M can be moved pulsewise to the right or to the left.
  • this actuator comprises a rectangular flat permanent magnet 33 and two permanent magnets 33 respectively disposed on opposite inner surfaces of a rectangular magnetic circuit 35. It comprises an electromagnetic coil 31 disposed movably between the two, and a control device (not shown). The electromagnetic coil 31 and the two permanent magnets 33 are combined with each other to form a voice coil structure. A magnetic circuit provided inside the magnetic circuit 35 is inserted through the electromagnetic coil 31 (the insertion direction is taken as the X-axis direction), and the magnetic circuit portion serves as an opposing magnetic pole of each permanent magnet 33.
  • the upper part of the electromagnetic coil 31 is rotatably supported by a rotary bearing 31 c. Further, a hammer 34 a is provided below the electromagnetic coil 31 as a part of the electromagnetic coil 31. Stoppers 34 are provided at both ends of the outer periphery of the magnetic circuit 35 in the X-axis direction at positions where the hammers 34 a can collide.
  • the permanent magnet 33 and the stopper 34 are integrated to form an object to be collided.
  • the magnetic field generated by the permanent magnet 33 is set to be in the horizontal direction orthogonal to the X-axis direction. Therefore, when the electromagnetic coil 31 disposed in the magnetic field is energized, the electromagnetic coil 31 moves in the positive direction (right arrow direction) of the X axis or the opposite negative direction according to the direction of the coil current. Receive the force to Therefore, as shown in FIG. 11A, when the electromagnetic coil 31 receives a leftward force, the electromagnetic coil 31 performs a pendulum motion to the left, and the hammer 34a collides with the stopper 34 on the left side. The object M placed on the left is moved in the left direction.
  • the unidirectional movement of the object M in other words, the prevention of retrogression of the object M, is performed by the frictional force between the object M and the surface S.
  • the actuator time-controls the current supplied to the electromagnetic coil 31 so that the time change shown in FIG. 12A is obtained.
  • the coil current J in this figure is in the form of a function in which the time-varying sine function is shifted in the positive direction of the coil current J.
  • the electromagnetic coil 31 swings to the left and collides to the left on the positive side of the coil current J, as shown in FIG. 11A, and on the negative side of the coil current J, as shown in FIG.
  • the neutral point is returned to, and thereafter, the movement to the left and the collision are repeated according to the time change of the coil current J.
  • the coil current J is changed with time shown in FIG. 12 (b), and the electromagnetic coil 31 repeats the state shown in FIG. 11 (b) (c).
  • the actuator is a device for moving the object by giving an impact to the object, and the permanent magnet moves relative to the electromagnetic coil 31 by the electromagnetic coil 31 and the electromagnetic action generated by the energization of the electromagnetic coil 31. 33 and a stopper 34.
  • the stopper 34 is integrated with either the electromagnetic coil 31 or the permanent magnet 33 so as to limit the range of the relative movement, and constitutes an object to be collided.
  • the electromagnetic coil 31 when the electromagnetic coil 31 is energized, the impact is generated when the collided body collides with either the electromagnetic coil 31 or the permanent magnet 33 not integrated with the collided body. It is.
  • the case in which the permanent magnet 33 and the stopper 34 form a collision target is the actuator shown in FIG.
  • the actuator of FIG. 9 is a case where a second permanent magnet 33 is provided as the stopper 34 and the two permanent magnets 33 form a collision target.
  • the case of forming a collision target body by the permanent magnet 33 and the two stoppers 34 is the actuator shown in FIGS.
  • the effect by the actuator by such a general expression is expressed as follows. Since the impact due to the collision can be generated in any direction of the relative movement of the electromagnetic coil 31 and the permanent magnet 33, the reciprocation of the object M can be realized. Further, since the actuator is formed by combining the permanent magnet 33 and the stopper 34 with one electromagnetic coil 31, the configuration is small and simple. By using this actuator, the drive device 1 can be realized in a small size, light weight and low cost as compared with the case of using a motor, a driving force transmission device or the like.
  • the actuator shown above generates an impact magnetically using the electromagnetic coil 31.
  • An actuator using a piezoelectric element can also be applied to the drive device 1 as another actuator.
  • a piezoelectric element and a weight connected to the piezoelectric element are provided, and by applying a time-controlled voltage to the piezoelectric element, the piezoelectric element is rapidly stretched or contracted to move the weight, and the weight is targeted
  • the actuator can be configured to collide with the object M.
  • Second Embodiment 13, 14 and 15 show a drive apparatus according to the second embodiment.
  • the driving device 2 according to the present embodiment is the driving device 1 according to the first embodiment, in which the tilt mechanism and the rotation mechanism are configured by the gimbal mechanism having two degrees of freedom, and the gimbal mechanism rotationally moves the object M It is possible to change its posture.
  • the drive device 2 has an annular ring 20 that freely rotates around the A1 axis, and a bearing portion 21a that supports the annular ring 20 from the fixed side rotatably about the A1 axis. And bearings 22a about the A2 axis, and impact actuators 21 and 22.
  • the bearing portion 22a rotatably supports the object M with respect to the annular ring 20 around the A2 axis orthogonal to the A1 axis.
  • the impact actuator 21 generates a rotational moment about the A1 axis with respect to the annular ring 20.
  • the impact actuator 22 generates a rotational moment about the A2 axis with respect to the object M.
  • the gimbal structure is configured to include an annular ring 20 and bearing portions 21a and 22a. As the actuators 21 and 22, any of the actuators described in the first embodiment described above can be used. Further, in order to exert the function of the drive device 2, bearing adjustment is performed so that an appropriate frictional force is generated in each of the bearing portions 21 a and 22 a.
  • FIGS. 15 (a1) to (c2) show states of rotational drive around the A1 axis.
  • the lighting apparatus can control the tilt of the pan and tilt by operating the actuators 21 and 22.
  • the device 2 can be realized.
  • the driving device 2 can perform posture control such as panning and tilting with a thin and simple configuration by application of the gimbal mechanism.
  • Modification of First and Second Embodiments 16 and 17 show a modification of the first and second embodiments.
  • the modification shown here relates to maintenance of the inclination angle and rotation angle in the drive devices 1 and 2 shown in the first and second embodiments, that is, maintenance of the posture of the object M.
  • the maintenance of the posture is maintained by, for example, the frictional force in the bearing portions 11b and 12b (see FIG. 1) and the bearing portions 21a and 22a (see FIG. 13) of the tilting mechanism and the rotating mechanism.
  • the magnitude of the frictional force is adjusted by pressure contact means for applying pressure between the sliding surfaces sliding in surface contact with each other at each bearing.
  • the pressure contact means is configured using a screw, an elastic body, a permanent magnet, an electromagnet or the like.
  • a relatively simple bearing portion generates a frictional force by tightening torque of a screw and adjusts its size.
  • the bearing portion includes a first member 41 having a bearing hole, a second member 42 having a through internal thread, a bolt 43 rotatably connecting these members, and a locking nut 44. .
  • the lower end portion of the suspension member 12a corresponds to the first member 41
  • the outer wall of the object M corresponds to the second member 42.
  • the frictional force is generated, for example, on the contact surface S with the second member 42 and the contact surface S with the head jaw portion of the bolt 43, which rotate relative to each other relative to the first member 41.
  • the magnitude of the frictional force is adjusted by the tightening torque of a bolt 43 screwed to the through female screw of the second member 42. According to such a bearing portion, the friction force can be adjusted with a simple configuration, and the movement angle per impact force by the impact actuator can be easily reduced by increasing or decreasing the friction force. You can make it bigger.
  • the bearing portion shown in FIG. 16 (b) further includes an elastic body 45 in the bearing portion of FIG. 16 (a) described above.
  • the elastic body 45 is a helical spring, and is disposed under the head jaw portion of the bolt 43, and presses the first member 41 against the second member 42 through the washer 46.
  • the elastic body 45 is not limited to a helical spring, and may be a leaf spring, rubber or the like, as long as it generates a frictional force by its biasing force. According to such a bearing portion, the adjustment of the frictional force becomes easier, and the frictional force can be stabilized.
  • the bearing portion shown in FIG. 17A includes a first member 41 having a bearing hole, a second member 42 having a through female screw, a threaded pin 47 for rotatably connecting these members, and an electromagnet 48. And have.
  • the electromagnet 48 is inserted into the threaded pin 47 and fixed to the second member 42 so as to be disposed between the first member 41 and the second member 42.
  • the electromagnet 48 has a magnetic circuit 48a (yoke), and when energized, the magnetic circuit 48a attracts the first member 41 by the magnetic force, and the contact surface of the first member 41 and the magnetic circuit 48a by the magnetic force. Frictional force is generated on S. Therefore, the first member 41 needs to be made of a magnetic material.
  • the frictional force can be significantly changed by the on / off of the electromagnet 48 and the like, the impact force is small and low power by dynamically reducing the frictional force at the time of posture change. You can even make it work.
  • the bearing portion shown in FIG. 17B corresponds to one in which the electromagnet 48 is replaced with a permanent magnet 49 in the bearing portion of FIG. 17A described above.
  • the permanent magnet 49 is fixed to the second member 42 and generates a frictional force on the contact surface S with the first member 41.
  • the permanent magnet 49 may be provided with a yoke. According to such a bearing portion, it is possible to stably maintain the frictional force with high reliability as long as the magnet has an attractive force without occurrence of a decrease in the frictional force due to loosening of the screw or the like when using the torque of the screw. Can.
  • the bearing shown in FIG. 17 (c) corresponds to a combination of the bearings shown in FIGS. 17 (a) and 17 (b) described above. That is, the inner diameter of the electromagnet 48 is increased, and the permanent magnet 49 is housed in the inner diameter portion.
  • this arrangement or configuration is not limited to this, and the permanent magnet 49 may be provided on the outer periphery of the electromagnet 48 or may be separately provided at a position different from the electromagnet 48. According to such a bearing portion, since the advantage that the permanent magnet 49 can generate the frictional force stably and the advantage of the controllability of the frictional force by the electromagnet 48 are provided, the drive devices 1 and 2 which are easy to use can be provided. realizable.
  • FIG. 16 showed about the frictional force in the contact surface S of planes, the contact surface of not only a plane but a curved surface, for example, the outer peripheral surface of the pin for bearings is made into the contact surface S. A frictional force may be generated on the surface.
  • FIG. 18 shows another modification of the first and second embodiments.
  • the lighting device M supported by the driving device 10 is housed inside the ceiling recessed recess frame 9.
  • the remote control device 5 the sensor 50 for receiving an infrared signal from the remote control device 5, and control And a unit 51.
  • the control unit 51 controls the impact actuators (e.g., 11, 12 in the drive device 1 and 21, 22 in the drive device 2) based on the signal from the sensor 50.
  • the sensor 50 is provided in the vicinity of the main body of the drive device 10.
  • the remote control device 5 has four operation buttons 5a operated to change the tilt angle and the rotation angle in the forward and reverse directions, respectively, and an infrared transmission unit 5b that wirelessly transmits an instruction by the operation of the operation button 5a to the sensor 50. And have. According to this modification, the operator holds the remote control device 5 and goes close to the drive device 10, and adjusts the angle of the lighting device M supported by the drive device 10 in a desired direction from a remote position can do. Instead of infrared communication, radio communication may be used.
  • FIG. 19 and 20 show still another modification of the first embodiment.
  • the tilt actuator 11 and the rotation actuator 12 in the drive device 1 of the first embodiment shown in FIG. It is. That is, as shown in FIG. 19, the drive device 61 of this modification is provided with actuators 23 and 24 of two reciprocation direction specifications (reciprocation drive) on a wide arm 11a provided on the cylindrical upper end face of the object M. It arranges collectively.
  • an axis A3 which constitutes a right-handed coordinate system together with each of the rotation axes A1 and A2 is added, and the axes A1, A2 and A3 are referred to as appropriate.
  • the two actuators 23, 24 are equivalent to each other, and their operating directions (impact generating direction) are aligned in the direction of the axis A3 in a plane not including the rotation axis A1, and the two sides of the rotation axis A2 are mutually It is arranged in symmetrical position.
  • the actuators 23 and 24 arranged in this way operate in opposite directions to rotate the object M around the rotation axis A2, as shown in FIGS. 20 (a1) and 20 (b1), and are shown in FIGS. As shown in b2), the objects M move in the same direction to tilt the object M around the rotation axis A1.
  • the actuators 23 and 24 have no distinction between rotation and tilting, and both are used in cooperation with each other for both rotation and tilting.
  • the drive device 61 of this modification since it is possible to use the couple of two actuators when rotating the object M and to use the resultant of two actuators when tilting it, one actuator The power can be increased compared to the case of single axis control. Further, according to the drive device 61, a simple and compact angle control mechanism can be realized only by attaching two actuators of the same performance.
  • the actuators 23 and 24 may at least satisfy the condition of a configuration and arrangement capable of generating a couple of forces around the axis A2 and capable of generating a resultant of rotation around the axis A1.
  • the actuators 23 and 24 may not be equal to each other, may not be disposed at symmetrical positions on both sides of the rotation axis A2, and the number thereof is not two, three The above may be sufficient.
  • These actuators 23 and 24 are provided to the object M so as to exert an impact force directly on the object M without the intervention of the bearing portion 11 b or the like.
  • the drive device 61 shown in FIG. 21 has four actuators with unidirectional specifications (one-side drive) each of the actuators 23 and 24 with two reciprocating direction specifications (reciprocal drive) in the modification shown in FIG. 19 and FIG. It is replaced with 23, 24 and others are the same. It can be said that this drive device 61 is a modification of the drive device 1 shown in FIG. 6A described above.
  • the drive device 61 shown in FIG. 22 is configured to support the object M by the suspension member 12a in the modification shown in FIG. 19 and FIG. 20 described above in a cantilever support configuration, and further targets the arrangement position of the arm 11a.
  • the positions of the actuators 23 and 24 are changed by changing the position of the arm 11a, and the operation thereof is also changed. That is, the actuators 23, 24 align their operating directions (impact generating direction) in the direction of the axis A3 in a plane not including the rotation axis A2, and are arranged on both sides of the rotation axis A1.
  • the actuators 23 and 24 operate in opposite directions to incline the object M around the rotation axis A1, and operate in the same direction to move the object M around the rotation axis A2. It will be rotated.
  • FIGS. 21 and 22 the same effect as that of the drive device 61 of the modification shown in FIG. 19 is exerted.
  • FIG. 23 shows still another modification of the second embodiment.
  • This modification is a modification in which the two actuators 21 and 22 in the drive device 1 of the second embodiment shown in FIG. 13 are disposed in parallel with each other, and the others are similar. That is, as shown in FIG. 23, the drive device 62 of this modified example arranges actuators 23 and 24 of two reciprocation direction specifications (reciprocation drive) collectively on the upper surface of the object M in parallel.
  • the actuators 23, 24 align their operating directions (impact generating direction) in the direction of the axis A3 in a plane not including the rotation axis A1, and are disposed on both sides of the rotation axis A2.
  • the actuators 23, 24 arranged in this manner operate in opposite directions to rotate the object M around the rotation axis A2, and operate in the same direction to rotate the object M around the rotation axis A1. Both actuators 23 and 24 cooperate with each other to be used for rotation about each axis A1 and A2. According to the drive device 62 of this modification, when the object M is rotated about each of the axes A1 and A2, the couple or combined force of the two actuators can be used, so that one axis control can be performed by one actuator. You can power up compared to the case.
  • Third Embodiment 24, 25 and 26 show a drive apparatus according to a third embodiment.
  • the driving device 7 according to the third embodiment is, for example, used to change the posture (pan and tilt) of the mirror surface of the side mirror of the automobile left, right, up and down, as shown in FIGS. .
  • An object M to be driven is a mirror, which is supported by the ball joint 70 on the side mirror main body 7a at one point on the back surface thereof.
  • the horizontal axis A1 and the axis A2 orthogonal to the axis A1 are defined along the mirror surface, and form an orthogonal coordinate system with an axis A3 (not shown) passing through the ball joint 70.
  • a pan actuator 71 and a tilt actuator 72 are provided on the back side of the object M and on the horizontal side and below the ball joint 70, respectively.
  • any of the actuators described in the above first embodiment can be used.
  • Each of the actuators 71 and 72 is an impact actuator of reciprocation direction specification (reciprocation drive), and their operation direction (impact force generation direction) is a direction (axis A3 direction) orthogonal to the A1-A2 plane.
  • the driving device 7 having such a configuration, the object supporting portions of the tilting mechanism and the rotating mechanism in the first embodiment and the second embodiment described above, that is, the bearing portions 12 b and 11 b and the bearing portions 21 a and 22 a , And a shared ball joint 70.
  • the ball joint 70 one configured by a plurality of pairs of pairs, one configured by a ball joint, or the like can be used. More generally, the ball joint 70 is a mechanism for holding the object M such that, for example, the rotational axis for panning and tilting passes through the approximate center of the rear side of the substantially flat object M. I hope there is.
  • the drive device 7 can rotate the mirror, which is the object M, laterally (panning) as shown by the arrow a2, by operating the actuator 71. Further, as shown in FIG. 26, the drive device 7 can rotate the mirror which is the object M up and down (tilt operation) as shown by the arrow a1 by operating the actuator 72.
  • the mirror surface is arbitrarily positioned about the two axes A1 and A2 and directed in any direction by performing these operations simultaneously or successively. According to the drive device 7 of the third embodiment, the pan and tilt of the mirror surface can be controlled with a simple mechanism, and a small and lightweight side mirror can be realized.
  • FIG. 27 shows a modification of the third embodiment.
  • This modification is a modification in which the two actuators 71 and 72 in the drive device 7 of the third embodiment shown in FIG. 24 and the like are arranged in parallel with each other, and the others are similar. That is, as shown in FIG. 27, the drive device 67 of this modification arranges the actuators 71 and 72 of two reciprocation direction specifications (reciprocation drive) in parallel to the left and right of the axis A2 and in the direction of the axis A1. It is The actuators 71 and 72 arranged in this way operate in opposite directions to rotate the object M (mirror) around the rotation axis A2, and operate in the same direction and rotate around the rotation axis A1.
  • the actuators 71 and 72 are both used in cooperation with each other for rotation about the respective axes A1 and A2.
  • the actuators 71 and 72 in the drive device 7 of the third embodiment described above are also arranged in parallel to each other.
  • the difference between drive 7 and drive 67 is that drive 67 focuses on rotational drive with respect to axes A1 and A2, and drive 7 focuses on rotational drive with respect to an intermediate virtual axis between axes A1 and A2. It can be said.
  • the drive device 7 For example, in the drive device 7, assuming that the direction of alignment of the actuators 71 and 72 is a new axis A1 '(not shown) and the orthogonal axis thereof is a new A2' (not shown), the drive device 7 generates these new It can be said that the focus is on rotational drive with respect to the axes A1 ′ and A2 ′.
  • FIG. 28 shows another modification of the drive device according to the third embodiment.
  • the drive unit 8 of this modification includes a control unit 81 for controlling the actuators 71 and 72 in the drive unit 7 of the third embodiment, and the control unit 81 is the object M.
  • the actuators 71 and 72 are controlled to vibrate the mirror.
  • the control unit 81 includes an input unit 83 having a plurality of buttons for inputting control signals.
  • Each button includes vertical movement buttons 8a and 8b for rotating (tilting) the mirror surface of the object M (mirror) up and down, and left and right movement buttons 8c and 8d for rotating the mirror surface to the left and right (pan movement) And a vibration mode button 8e for vibrating the mirror.
  • control unit 81 controls the power from power supply unit 82 based on the control signal.
  • the actuator 71, 72 is then operated to operate.
  • the control unit 81 causes the one or both of the actuators 71 and 72 to reciprocate (vibration mode operation) at a predetermined cycle, thereby the target M Vibrate the mirror.
  • the vibration mode button 8 e is, for example, a toggle switch, and when pressed again, the vibration mode is stopped.
  • the vibration mode is an operation mode in which the time average attitude of the object M does not change. According to the drive device 8 of this modification, for example, raindrops are repelled by the vibration of the mirror surface in the vibration mode, and the side mirror can be easily seen on a rainy day.
  • vibration mode can be similarly applied and realized in the above-described first and second embodiments, their modifications, or other applications.
  • vibration is generated on the light emitter or the cover so that water droplets adhering to the surface of the light emitter of the outdoor lighting device or the surface of the dustproof or rainproof cover disposed in the light path of the illumination light are dropped by vibration.
  • An impact actuator can be provided as a driving source for driving the motor. These impact actuators may constitute a drive device for attitude control of the illumination device including the light emitter and the cover, and may be shared, or may be separately provided exclusively for vibration mode generation.
  • the actuator 3 is integrated with an electromagnetic coil 31, a stator 35a disposed at both ends thereof, and a shaft 31a reciprocating on the central axes of the electromagnetic coil 31 and the stator 35a. And a moving mass body 3a. The moving mass 3a moves relative to the electromagnetic coil 31 and the stator 35a.
  • the moving mass 3a is disposed on the outside of both permanent magnets 33, an axial rod 31a, two permanent magnets 33 disposed on the inner diameter side of each stator 35a, an iron core 35b inserted between both permanent magnets 33, and A yoke 35c, two collision heads 37, and an impact weight 36 are provided.
  • the collision head piece 37 is disposed in direct contact with one yoke 35c, and the other collision head piece 37 is disposed in the other yoke 35c with the collision head piece 37 interposed.
  • the actuator 3 also includes an outer cylinder (shield case 38) incorporating the electromagnetic coil 31, the stator 35a, and the moving mass 3a, and a bearing plate 39 disposed at both ends of the shield case 38 for supporting the shaft rod 31a. Are further equipped.
  • FIG. 29 shows a state in which the electromagnetic coil 31 is not energized. In this state, the moving mass 3a is located at the neutral point due to the attraction caused by the magnetic field generated by the permanent magnet 33, the iron core 35b, the yoke 35c, and the stator 35a.
  • the shaft 31a is concentric with the electromagnetic coil 31 and the stator 35a.
  • Each component of the moving mass 3a is disposed concentrically with the shaft 31a and integrated with the shaft 31a.
  • the iron core 35 b has a length equal to the length of the electromagnetic coil 31. In other words, the iron core 35b has a length that fits between the two stators 35a.
  • the iron core 35b has a shape provided with a collar part in the both ends of a cylinder, and the diameter of a center part is formed smaller than the diameter of both ends. As a result, a magnetic circuit is formed such that the magnetic resistance becomes low between the two end portions of the iron core 35b and the respective stators 35a adjacent thereto.
  • Each stator 35a is a magnetic body.
  • the permanent magnet 33 has a ring shape and is magnetized in the thickness direction (central axis direction). Also, the two permanent magnets 33 are disposed at both ends of the iron core 35b with the directions of the magnetic poles being opposite to each other. The thickness of the permanent magnet 33 is thinner than the thickness of the stator 35a, and the total thickness of the permanent magnet 33 and the yoke 35c is thicker than the thickness of the stator 35a.
  • the distances D between the two collision head pieces 37 and the bearing plates 39 opposed thereto are equal to each other.
  • the bearing plate 39 is an impacted object collided by the collision head 37, and limits the moving range of the relative movement of the moving mass 3a integrated with the shaft 31a with respect to the electromagnetic coil 31 and the stator 35a. That is, the movable range of the movable mass 3a is twice the distance D (see FIG. 30).
  • This distance D is within a distance within which the moving mass 3a can return to the neutral point by the mutual attraction of the permanent magnet 33 and the stator 35a from the position where the moving mass 3a collides with any of the collision head pieces 37. It is set to.
  • the operating principle of the actuator 3 will be described with reference to FIG.
  • a current is supplied to the electromagnetic coil 31 in a predetermined direction, a magnetic field is generated, for example, as schematically shown by magnetic lines of force B in FIG.
  • the magnetic field of this electromagnetic coil 31 weakens the magnetic field by one of the two permanent magnets 33 and strengthens the magnetic field by the other. Therefore, the magnetic field generated by the electromagnetic coil 31 causes asymmetry in the magnetic force acting on the permanent magnet 33, the iron core 35b, and the yoke 35c, and the moving mass 3a moves as indicated by the outline arrow.
  • a current is supplied to the electromagnetic coil 31 in the direction opposite to the predetermined direction, as shown in FIG. 30 (b), the movable mass 3a moves in the direction opposite to the above.
  • the drive device 1 is attached to a moving object M placed on a horizontal surface S.
  • the shield case 38 is fixed to the moving object M.
  • the moving direction is the left in the figure, the X direction, and the axial direction of the shaft rod 31 is the X direction.
  • the electromagnetic coil 31 is not excited, the moving mass 3a is at the neutral point, and the left end of the moving object M is at the position x0.
  • a current is supplied to the electromagnetic coil 31, as shown in FIG.
  • the moving mass 3a moves and collides with the bearing plate 39, and the impact moves the moving object M together with the actuator 3, and the tip thereof Leads to position x1.
  • the magnitude of the impact depends on the magnitude of the current flowing through the electromagnetic coil 31 and the speed of its rise, and by passing a more rapid and larger current, a larger impact can be generated.
  • the moving mass 3a inside the actuator 3 returns to the neutral point as shown in FIG. 31 (c). Since this return movement is performed slowly by the magnetic force of the permanent magnet 33, there is no reaction that exceeds the maximum static friction force between the movement object M and the friction surface S, and the reverse movement of the movement object M There is no.
  • the movement of the object to be moved M is prevented from occurring when returning to the neutral point.
  • the tip of the moving object M is further moved to reach the position x2 by supplying a current to the electromagnetic coil 31 again.
  • the actuator 3 can intermittently move the moving object M arranged to be pushed or pulled by the actuator 3 by repeating such an operation.
  • the present invention is not limited to the above-described configuration, and various modifications are possible.
  • the rotational moment due to its own weight around the horizontal rotation axis is balanced so as to balance on both sides of the axis. This makes it possible to reduce the frictional force for maintaining the rotation angle, and allows the use of a smaller, low-power impact actuator.
  • the driving devices 1, 2, 10 and the like are not limited to ceilings, and can be attached to any position other than a wall surface, and the posture can also be attached in any direction.
  • drive devices that use impact actuators are targets (products) whose direction you want to adjust, such as the direction of illumination of spotlights, downlights, etc., the direction of camera lenses, adjustment of antenna angles, adjustment of side mirrors of cars, etc. It can apply.
  • the impact actuator is small in power and easy to control, and the remote control can easily control the drive device, and thus the remote control can easily control the orientation of the object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

Disclosed is a drive device which supports an object and changes the attitude of an object by rotating the object, wherein the drive device is configured to be small, light weight, simple and inexpensive. The drive device (1) is provided with a tilt mechanism including a bearing part (11b) for tilting which tiltably supports an object (M) about a horizontal rotary axis (A1), and a rotation mechanism including a bearing part (12b) for rotation which rotatably supports the tilt mechanism about a vertical rotary axis (A2). An impact actuator (11) applies an impact force to the tilt mechanism to vertically change a tilted angle (a rotation angle about the horizontal rotary axis (A1)) of the object. An impact actuator (12) applies an impact force in the circumferential direction of the rotation mechanism to change the rotation angle of the object (M) about the vertical rotary axis (A2). The impact actuators (11, 12) used can be either single direction type (one way drive) actuators or back and forth direction type (back and forth drive) actuators.

Description

駆動装置Drive unit
 本発明は、対象物を支持すると共に回転させることにより対象物の姿勢を変える駆動装置に関する。 The present invention relates to a drive device that changes the posture of an object by supporting and rotating the object.
 従来から、スポットライトやダウンライトなどの照明装置、据え付けカメラのレンズ装置、レーダなどのアンテナ装置などにおいて、各装置の向きや姿勢を変化させることが行われている。これは各装置の照明方向、撮像方向、探知・送信・受信の方向、視野の方向などをリモートコントロールによって最適化するものである。例えば、パンやチルトなどのために角度制御する例として、モータを用いて駆動させる装置が知られている(例えば、特許文献1参照)。ところで、対象物を移動させる駆動源として、回転モータではなく、電磁気的作用に基づく衝撃すなわちインパクトを物体に反復付与してその物体を移動させる駆動装置がある。小さな衝撃であっても反復付与することにより、物体を移動させることができ、また、小さな衝撃の場合に、そのこと故に高精度の位置制御ができる利点もある。衝撃発生の方法として、電歪素子を用いるものや、渦電流を用いるものが知られている(例えば、特許文献2,3参照)。渦電流は、例えば、アルミニューム板などの金属板の近くに配置した電磁コイルに電流を流した際に、金属板に渦状に流れる電流である。電磁コイルに衝撃電流を流したとき、電磁コイルによる磁場と金属板に誘起される渦電流との相互作用によって、金属板を跳ね返す反発力が発生する。反発された金属板を物体に衝突させることにより金属板を介して物体に衝撃を与えることができる。このような駆動装置をマイクロマニピュレータに適用し、そのマイクロマニピュレータによって微小器具を卵細胞内へ挿入するようにした装置などが知られている(例えば、特許文献4参照)。 Conventionally, in lighting devices such as spotlights and downlights, lens devices of stationary cameras, antenna devices such as radar, etc., the direction and posture of each device are changed. This is to optimize the illumination direction of each device, the imaging direction, the direction of detection / transmission / reception, the direction of view, etc. by remote control. For example, as an example of angle control for pan and tilt, a device driven using a motor is known (see, for example, Patent Document 1). By the way, as a drive source for moving an object, there is a drive device for moving an object by repeatedly applying an impact, that is, an impact based on an electromagnetic action, not an electric motor. Even small impacts can be repeatedly applied to move an object, and in the case of small impacts, there is also an advantage that highly accurate position control can be performed. As a method of impact generation, one using an electrostrictive element and one using an eddy current are known (see, for example, Patent Documents 2 and 3). The eddy current is a current that flows in a spiral manner in the metal plate when current flows through an electromagnetic coil disposed near the metal plate such as an aluminum plate, for example. When an impact current is supplied to the electromagnetic coil, the interaction between the magnetic field generated by the electromagnetic coil and the eddy current induced in the metal plate generates a repulsive force to repel the metal plate. An impact can be applied to the object through the metal plate by colliding the repelled metal plate with the object. There is known a device or the like in which such a driving device is applied to a micromanipulator, and the micromanipulator is inserted into an egg cell by the micromanipulator (see, for example, Patent Document 4).
特開2001-102185号公報JP, 2001-102185, A 特開昭60-60582号公報Japanese Patent Application Laid-Open No. 60-60582 特公平5-80685号公報Japanese Examined Patent Publication No. 5-80685 特開2003-25261号公報JP 2003-25261 A
 しかしながら、上述した特許文献1に示されるような装置は、モータを組み込むと装置全体が大きく、重くなってしまうという問題があり、対象物を支持すると共に回転させることにより対象物の姿勢を変えることができる小型軽量の駆動装置の実現が望まれている。また、上述した特許文献2~4に示されるような駆動源を、装置の向きや姿勢を変化させるために用いた例は知られていない。 However, the device as shown in the above-mentioned patent document 1 has a problem that the entire device becomes large and heavy when the motor is incorporated, and the posture of the object is changed by supporting and rotating the object. It is desirable to realize a compact and lightweight drive device that can Further, there is no known example in which the drive sources as shown in the above-mentioned Patent Documents 2 to 4 are used to change the orientation or attitude of the device.
 本発明は、上記課題を解消するものであって、装置を重くすることなく、小型・簡単・安価な構成によって、対象物を支持すると共に回転させることにより対象物の姿勢を変えることができる駆動装置を提供することを目的とする。 The present invention solves the above-mentioned problems, and it is possible to change the posture of an object by supporting and rotating the object by a compact, simple and inexpensive configuration without making the device heavy. It aims at providing an apparatus.
 上記課題を達成するために、本発明の駆動装置は、対象物を支持すると共に回転させることにより対象物の姿勢を変える駆動装置において、対象物を傾斜自在に支持する傾斜機構と、傾斜機構を含む対象物を回転自在に支持する回転機構と、傾斜機構に衝撃力を与えて対象物の傾斜角度を変化させる傾斜用のインパクトアクチュエータと、回転機構の周方向に衝撃力を与えて対象物の回転角度を変化させる回転用のインパクトアクチュエータと、を備えるものである。 In order to achieve the above object, the drive device according to the present invention includes an inclination mechanism for supporting the object in an inclinable manner, and an inclination mechanism in the drive device for changing the posture of the object by supporting and rotating the object. A rotating mechanism that rotatably supports an object to be included, an impact actuator for tilting that applies an impact force to the tilting mechanism to change the tilt angle of the object, and an impact force in the circumferential direction of the rotating mechanism to And an impact actuator for rotation that changes a rotation angle.
 この駆動装置において、傾斜機構と回転機構が2自由度のジンバル機構で構成されることが好ましい。 In this drive device, it is preferable that the tilt mechanism and the rotation mechanism be constituted by a gimbal mechanism having two degrees of freedom.
 この駆動装置において、傾斜角度と回転角度は、傾斜機構と回転機構の各軸受部における摩擦力によって維持されており、各軸受部が前記摩擦力を発生させる圧接手段を備えることが好ましい。 In this drive device, it is preferable that the inclination angle and the rotation angle are maintained by the frictional force in each bearing portion of the inclining mechanism and the rotating mechanism, and each bearing portion is provided with a pressing means for generating the frictional force.
 この駆動装置において、圧接手段は、ネジの締め付けトルクによって摩擦力を発生させることが好ましい。 In this drive device, the pressing means preferably generates a frictional force by a tightening torque of a screw.
 この駆動装置において、圧接手段は、弾性体を備え、その付勢力によって摩擦力を発生させることが好ましい。 In this drive device, it is preferable that the pressing means includes an elastic body to generate a frictional force by its biasing force.
 この駆動装置において、圧接手段は、電磁石を備え、その磁気力によって摩擦力を発生させることが好ましい。 In this drive device, the pressing means preferably includes an electromagnet, and the magnetic force preferably generates a frictional force.
 この駆動装置において、圧接手段は、永久磁石を備え、その磁気力によって摩擦力を発生させることが好ましい。 In this drive device, the pressing means preferably comprises a permanent magnet and generates a frictional force by its magnetic force.
 この駆動装置において、圧接手段は、永久磁石と電磁石とを備え、これらの磁気力によって摩擦力を発生させることが好ましい。 In this drive device, the pressing means preferably includes a permanent magnet and an electromagnet, and preferably generates a frictional force by these magnetic forces.
 この駆動装置において、傾斜用および回転用のインパクトアクチュエータを互いに並列配置して備えることが好ましい。 In this drive device, it is preferable that the tilting and rotating impact actuators be provided in parallel with each other.
 この駆動装置において、傾斜機構および回転機構の対象物支持部が共用されたボールジョイントで構成されていることが好ましい。 In this drive device, it is preferable to be configured by a ball joint in which the object support portion of the tilt mechanism and the rotation mechanism is shared.
 この駆動装置において、インパクトアクチュエータを制御する制御部を備え、制御部は、傾斜機構と回転機構とによって支持した対象物を振動させるようにインパクトアクチュエータを制御することが好ましい。 In this drive device, it is preferable that a control unit that controls the impact actuator be provided, and the control unit control the impact actuator so as to vibrate the object supported by the tilt mechanism and the rotation mechanism.
 本発明の駆動装置によれば、2軸回りの回転をインパクトアクチュエータを用いて行うようにしたので、ギヤやモータなどの機械的な回転駆動のための大きな構造物を備える必要がなく、装置を重くすることなく、小型・簡単・安価な構成の駆動装置を実現できる。また、インパクトアクチュエータを用いる駆動装置は、姿勢維持すなわち角度維持のために摩擦力を用いることができるので、駆動時以外は電力を消費しないようにすることができる。 According to the drive device of the present invention, since rotation about two axes is performed using an impact actuator, there is no need to provide a large structure for mechanical rotational drive such as a gear or a motor. A compact, simple and inexpensive drive device can be realized without making it heavy. In addition, since the driving device using the impact actuator can use the frictional force for maintaining the posture, that is, maintaining the angle, it is possible to consume no power except during driving.
図1は本発明の第1の実施形態に係る駆動装置の斜視図である。FIG. 1 is a perspective view of a drive device according to a first embodiment of the present invention. 図2(a)~(c)は同駆動装置の使用例を示す斜視図である。2 (a) to 2 (c) are perspective views showing an example of use of the drive device. 図3(a1)~(c1)は同駆動装置の動作例を示す側面図であり、図3(a2)~(c2)は(a1)~(c1)に対応する平面図である。3 (a1) to 3 (c1) are side views showing an operation example of the drive device, and FIGS. 3 (a2) to 3 (c2) are plan views corresponding to (a1) to (c1). 図4(a1)~(c1)は同駆動装置の他の動作例を示す側面図であり、図4(a2)~(c2)は(a1)~(c1)に対応する平面図である。4 (a1) to 4 (c1) are side views showing another operation example of the drive device, and FIGS. 4 (a2) to 4 (c2) are plan views corresponding to (a1) to (c1). 図5(a)(b)は同駆動装置に適用されるインパクトアクチュエータの左向き動作を説明する断面図であり、図5(c)(d)は同インパクトアクチュエータの右向き動作を説明する断面図である。5 (a) and 5 (b) are cross-sectional views for explaining the leftward operation of the impact actuator applied to the drive device, and FIGS. 5 (c) and 5 (d) are cross-sectional views for explaining the rightward operation of the same impact actuator. is there. 図6(a)は同駆動装置の変形例の斜視図であり、図6(b)(c)は同変形例に適用されるインパクトアクチュエータの左向き動作を説明する断面図である。FIG. 6 (a) is a perspective view of a modification of the drive device, and FIGS. 6 (b) and 6 (c) are cross-sectional views for explaining the leftward operation of the impact actuator applied to the modification. 図7(a)は同駆動装置に適用される他のインパクトアクチュエータの断面図であり、図7(b)は同インパクトアクチュエータの動作原理を説明する模式図である。FIG. 7 (a) is a cross-sectional view of another impact actuator applied to the drive device, and FIG. 7 (b) is a schematic view for explaining the operation principle of the same impact actuator. 図8(a)(b)(d)は同駆動装置に適用されるさらに他のインパクトアクチュエータの動作を説明する断面図であり、図8(c)(e)は同インパクトアクチュエータを動作させる際に電磁コイルに流す電流の時間変化グラフである。8 (a), (b) and (d) are cross-sectional views for explaining the operation of still another impact actuator applied to the drive device, and FIGS. 8 (c) and (e) are for operating the same impact actuator. It is a time change graph of the current supplied to the electromagnetic coil. 図9(a)(b)は同駆動装置に適用されるさらに他のインパクトアクチュエータの動作を説明する断面図であり、図9(c)は同インパクトアクチュエータの動作原理を説明する模式図である。9 (a) and 9 (b) are cross-sectional views for explaining the operation of still another impact actuator applied to the drive device, and FIG. 9 (c) is a schematic view for explaining the operation principle of the same impact actuator. . 図10(a)は同駆動装置に適用されるさらに他のインパクトアクチュエータの平面断面図であり、図10(b)は(a)のA-A線断面図であり、図10(c)は(b)のB-B線断面図である。FIG. 10 (a) is a plan sectional view of still another impact actuator applied to the drive device, FIG. 10 (b) is a sectional view taken along the line AA of FIG. 10 (a), and FIG. It is a BB sectional view taken on the line of (b). 図11(a)~(c)は同インパクトアクチュエータの動作例を示す一部断面の側面図である。FIGS. 11 (a) to 11 (c) are side views of partial cross sections showing an operation example of the impact actuator. 図12(a)(b)は同インパクトアクチュエータを動作させる際に電磁コイルに流す電流の時間変化グラフである。FIGS. 12 (a) and 12 (b) are time change graphs of the current supplied to the electromagnetic coil when operating the impact actuator. 図13(a)(c)は第2の実施形態に係る駆動装置の動作例を示す斜視図である。13 (a) and 13 (c) are perspective views showing an operation example of the drive device according to the second embodiment. 図14(a1)~(c1)は同駆動装置のA2軸周りの回転動作の例を示す側面図であり、図14(a2)~(c2)は同回転動作を直交する他の側面から見た側面図である。FIGS. 14 (a1) to 14 (c1) are side views showing an example of the rotational operation around the A2 axis of the drive device, and FIGS. 14 (a2) to 14 (c2) are views from the other side orthogonal to the same rotational operation. Side view. 図15(a1)~(c1)は同駆動装置のA1軸周りの回転動作の例を示す側面図であり、図15(a2)~(c2)は同回転動作を直交する他の側面から見た側面図である。Fig.15 (a1)-(c1) is a side view which shows the example of the rotational motion of A1 axis of the drive device, and Fig.15 (a2)-(c2) see the other side which orthogonally crosses the rotational motion. Side view. 図16(a)は第1および第2の実施形態に係る駆動装置の軸受部の例を示す断面図であり、(b)同軸受部の他の例を示す断面図である。Fig.16 (a) is sectional drawing which shows the example of the bearing part of the drive device which concerns on 1st and 2nd embodiment, (b) is sectional drawing which shows the other example of the bearing part. 図17(a)~(c)は同軸受部のさらに他の例を示す断面図である。17 (a) to 17 (c) are cross-sectional views showing still another example of the bearing portion. 図18は第1および第2の実施形態に係る駆動装置の他の変形例の斜視図である。FIG. 18 is a perspective view of another modification of the drive device according to the first and second embodiments. 図19は第1の実施形態のさらに他の変形例を示す斜視図である。FIG. 19 is a perspective view showing still another modification of the first embodiment. 図20(a1)(a2)は同変形例の動作例を示す側面図であり、図20(b1)(b2)は(a1)(a2)に対応する平面図である。20 (a1) and 20 (a2) are side views showing an operation example of the modification, and FIGS. 20 (b1) and 20 (b2) are plan views corresponding to (a1) and (a2). 図21は第1の実施形態のさらに他の変形例を示す斜視図である。FIG. 21 is a perspective view showing still another modification of the first embodiment. 図22は第1の実施形態のさらに他の変形例を示す斜視図である。FIG. 22 is a perspective view showing still another modification of the first embodiment. 図23は第2の実施形態のさらに他の変形例を示す斜視図である。FIG. 23 is a perspective view showing still another modification of the second embodiment. 図24(a)は第3の実施形態に係る駆動装置の斜視図であり、図24(b)は同駆動装置の背面図である。Fig.24 (a) is a perspective view of the drive device based on 3rd Embodiment, FIG.24 (b) is a rear view of the drive device. 図25は同駆動装置の回転動作例を示す裏面斜視図である。FIG. 25 is a rear perspective view showing an example of the rotational operation of the drive device. 図26は同駆動装置の傾斜動作例を示す裏面斜視図である。FIG. 26 is a rear perspective view showing an example of the tilting operation of the drive device. 図27は同駆動装置の変形例を示す斜視図である。FIG. 27 is a perspective view showing a modification of the drive device. 図28は同駆動装置の他の変形例を示す構成図である。FIG. 28 is a block diagram showing another modification of the drive device. 図29は第1,2,3の実施形態に係る駆動装置に適用されるさらに他のインパクトアクチュエータの断面図である。FIG. 29 is a cross-sectional view of still another impact actuator applied to the drive device according to the first, second and third embodiments. 図30(a)(b)は同インパクトアクチュエータの部分拡大断面図である。FIGS. 30 (a) and 30 (b) are partially enlarged cross-sectional views of the same impact actuator. 図31(a)~(d)は同インパクトアクチュエータが動作する様子を示す一部断面の側面図である。31 (a) to 31 (d) are side views of partial cross sections showing how the impact actuator operates.
 (第1の実施形態)
 以下、本発明の実施形態に係る駆動装置について、図面を参照して説明する。図1乃至図4は第1の実施形態に係る駆動装置を示す。図1に示すように、駆動装置1は、短い円筒形の対象物Mを支持する傾斜用の軸受部11bを有する傾斜機構と、傾斜機構を含む対象物Mを支持する回転用の軸受部12bを有する回転機構と、インパクトアクチュエータ11,12と、を備えている。傾斜用の軸受部11bは、対象物Mを水平回転軸A1(例えば、水平左右方向)の回りに傾斜自在に支持する。回転用の軸受部12bは、傾斜機構を含む対象物Mを上下方向回転軸A2の回りに回転自在に支持する。インパクトアクチュエータ11は、傾斜機構に衝撃力を与えて対象物の上下方向からの傾斜角度(水平回転軸A1回りの回転角度)を変化させる。インパクトアクチュエータ12は、回転機構の周方向に衝撃力を与えて対象物Mの上下方向回転軸A2回りの回転角度を変化させる。水平回転軸A1と上下方向回転軸A2とは、円筒形の対象物Mの中心軸上で直交している。インパクトアクチュエータ11,12は、衝撃力(インパクト)を与える方向に対象物Mを移動させることができる駆動源である。このようなインパクトアクチュエータ11,12には、単方向のみ駆動できるものと、往復方向のいずれの方向にも駆動できるものとがある。駆動装置1のインパクトアクチュエータ11,12として、単方向仕様(片側駆動)のものまたは往復方向仕様(往復駆動)のもの、のいずれをも用いることができる。駆動装置1に用いるインパクトアクチュエータ(以下インパクトを省略して、単にアクチュエータと記すこともある)の具体的な構成については、例を挙げて後述する(図5乃至図12等参照)。
First Embodiment
Hereinafter, a drive device according to an embodiment of the present invention will be described with reference to the drawings. 1 to 4 show a drive device according to a first embodiment. As shown in FIG. 1, the drive device 1 includes an inclination mechanism having an inclination bearing 11 b for supporting a short cylindrical object M, and a rotation bearing 12 b for supporting the object M including the inclination mechanism. And impact actuators 11 and 12. The tilt bearing portion 11b tiltably supports the object M around the horizontal rotation axis A1 (for example, in the horizontal left-right direction). The bearing unit 12b for rotation rotatably supports the object M including the tilting mechanism around the vertical rotation axis A2. The impact actuator 11 applies an impact force to the tilt mechanism to change the tilt angle (rotation angle around the horizontal rotation axis A1) of the object from the vertical direction. The impact actuator 12 applies an impact force in the circumferential direction of the rotation mechanism to change the rotation angle of the object M around the vertical rotation axis A2. The horizontal rotation axis A1 and the vertical rotation axis A2 are orthogonal to each other on the central axis of the cylindrical object M. The impact actuators 11 and 12 are drive sources capable of moving the object M in the direction of applying an impact force (impact). Such impact actuators 11 and 12 include those that can be driven only in a single direction and those that can be driven in any direction of the reciprocating direction. As the impact actuators 11 and 12 of the drive device 1, either one of a unidirectional specification (one-side drive) or a reciprocating specification (reciprocal drive) can be used. The specific configuration of an impact actuator (hereinafter, may be simply referred to as an actuator with the impact omitted hereinafter) used for the drive device 1 will be described later with reference to an example (see FIGS. 5 to 12 and the like).
 傾斜用の軸受部11bは、対象物Mをその円筒形の左右外壁部分において支持している。対象物Mの円筒形上部端面には、上方に伸びた板状の腕木11aが固定されている。傾斜用のアクチュエータ11は、水平回転軸A1回りの回転モーメントを対象物Mに効果的に与えることができるように、腕木11aに固定されている。対象物Mの円筒側壁および上部端面を傾斜機構に含めることもできる。これらを含める場合、傾斜機構は、腕木11aと、傾斜用の軸受部11bと、対象物Mの円筒側壁および上部端面とから成る。 The tilt bearing 11b supports the object M at its cylindrical left and right outer wall portions. A plate-like arm 11 a extending upward is fixed to the cylindrical upper end face of the object M. The tilt actuator 11 is fixed to the arm 11a so that a rotational moment about the horizontal rotation axis A1 can be effectively applied to the object M. The cylindrical side wall and upper end face of the object M can also be included in the tilting mechanism. When these are included, the tilting mechanism comprises the arm 11a, the bearing portion 11b for tilting, and the cylindrical side wall and the upper end face of the object M.
 回転用の軸受部12bは、対象物Mを左右から吊り下げるためのつる状の吊り部材12aを、例えば天井からぶら下げるように、吊り部材12aの頂上部において軸支している。吊り部材12aの左右の下部は、傾斜用の軸受部11bを支持している。回転用のアクチュエータ12は、上下方向回転軸A2回りの回転モーメントを対象物Mに効果的に与えることができるように、吊り部材12aに固定されている。回転機構は、吊り部材12aと、回転用の軸受部12bとから成る。 The bearing unit 12b for rotation supports a temple-like suspension member 12a for suspending the object M from the left and right, for example, at the top of the suspension member 12a so as to hang from a ceiling. The left and right lower portions of the suspension member 12a support the tilt bearing 11b. The actuator 12 for rotation is fixed to the suspension member 12 a so that a rotational moment around the vertical rotation axis A2 can be effectively applied to the object M. The rotation mechanism comprises a suspending member 12a and a bearing 12b for rotation.
 対象物Mは、例えば、図2に示すように、天井埋込み凹部枠9の内部に収め、天井からぶら下げて下方を照明する照明装置(以下、照明装置Mとも記す)である。そこで、駆動装置1は、対象物Mである照明装置を支持すると共に、アクチュエータ11,12を動作させることにより回転させ、図2(a)(b)(c)に示すように、姿勢を変えて照明方向を変化させることができる。より具体的に示すと、図3(a1)~(c2)に示すように、アクチュエータ12を動作させることにより、対象物Mを上下回転軸回りに回転させて、照明光を回転させることができる。また、図4(a1)~(c2)に示すように、アクチュエータ11を動作させることにより、照明装置Mを水平回転軸回りに回転させて、真下以外を照明することができる。また、アクチュエータ11,12の両方を動作させることにより、照明装置Mの下方の空間を、順次くまなく照明することができる。 The object M is, for example, a lighting device (hereinafter also referred to as a lighting device M) which is housed inside the ceiling embedded recess frame 9 and which is hung from the ceiling to illuminate the lower side as shown in FIG. Therefore, the driving device 1 supports the lighting device as the object M and rotates the actuators 11 and 12 to operate them, thereby changing the posture as shown in FIGS. 2 (a), (b) and (c). Illumination direction can be changed. More specifically, as shown in FIGS. 3 (a1) to (c2), by operating the actuator 12, the object M can be rotated about the vertical rotation axis to rotate the illumination light. . Further, as shown in FIGS. 4 (a1) to 4 (c2), by operating the actuator 11, the lighting apparatus M can be rotated about the horizontal rotation axis to illuminate the area other than directly below. Further, by operating both of the actuators 11 and 12, the space under the lighting device M can be illuminated sequentially and completely.
 第1の実施形態によれば、傾斜させる軸と回転させる軸の2軸回りの回転をアクチュエータを用いて行うようにしたので、ギヤやモータなどの機械的な回転駆動のための大きな構造物を備える必要がなく、小型・簡単・安価な構成の駆動装置1を実現できる。同理由により、これらの構成は、装置を重くすることなく実現できる。また、アクチュエータを用いる駆動装置1は、姿勢維持すなわち角度維持のために摩擦力やラチェット機構などを用いるようにすることができるので、その場合、駆動時以外は電力を消費しないようにすることができる。 According to the first embodiment, since rotation about two axes of the shaft to be tilted and the shaft to be rotated is performed using the actuator, a large structure for mechanical rotation drive such as a gear or a motor can be obtained. It is not necessary to provide, and it is possible to realize the drive device 1 of a compact, simple, inexpensive configuration. For the same reason, these configurations can be realized without adding weight to the device. In addition, since the driving device 1 using the actuator can use a frictional force, a ratchet mechanism or the like for maintaining the posture, that is, maintaining the angle, in this case, it is necessary not to consume power except during driving. it can.
 (第1の実施形態に適用される渦電流式のインパクトアクチュエータ)
 図5は駆動装置1に適用されるアクチュエータの例を示す。このアクチュエータは、図5(a)に示すように、互いに離間し同軸に対向配置して一体化された左右の電磁コイル31と、電磁コイル31の間に配置された弾性体30と、各電磁コイル31と弾性体30との間に配置された2つの導電体32と、を備えている。各導電体32は、それぞれ少なくとも弾性体30の伸縮する範囲内で電磁コイル31の軸方向に沿って移動自在に構成されている。2つの電磁コイル31は、それらの中心軸上に配置された軸棒31aによって一体化され、それぞれコイル枠31bに納められている。導電体32は、例えばアルミニュームなどの良導電体から成るドーナツ状の金属円板であって、軸棒31aによって移動方向が拘束されている。弾性体30は、アクチュエータが非駆動状態のとき、導電体32を電磁コイル31に近接させるように伸張している。導電体32と電磁コイル31の近接の度合いは、駆動に必要な渦電流を導電体32に発生できる距離であればよい。弾性体30は、例えばコイルバネや板バネによって構成することができ、ゴムなどを用いて構成することができる。アクチュエータは、電磁コイル31と導電体32を1つずつ含む組を、軸棒31aに沿って弾性体30の両側に、互いに対称配置および対称構成となるように備えている。
(Eddy Current Impact Actuator Applied to First Embodiment)
FIG. 5 shows an example of an actuator applied to the drive device 1. As shown in FIG. 5A, the actuator includes left and right electromagnetic coils 31 separated from each other and coaxially disposed facing each other, an elastic body 30 disposed between the electromagnetic coils 31, and each electromagnetic And two conductors 32 disposed between the coil 31 and the elastic body 30. Each conductor 32 is configured to be movable along the axial direction of the electromagnetic coil 31 at least within the range in which the elastic body 30 expands and contracts. The two electromagnetic coils 31 are integrated by a shaft 31a disposed on their central axes, and are respectively accommodated in a coil frame 31b. The conductor 32 is, for example, a doughnut-shaped metal disc made of a good conductor such as aluminum, and the movement direction is restricted by the shaft 31a. The elastic body 30 extends so as to bring the conductor 32 close to the electromagnetic coil 31 when the actuator is not driven. The degree of proximity between the conductor 32 and the electromagnetic coil 31 may be a distance at which the eddy current necessary for driving can be generated in the conductor 32. The elastic body 30 can be configured by, for example, a coil spring or a plate spring, and can be configured using rubber or the like. The actuator is provided with a set including one electromagnetic coil 31 and one electric conductor 32 on both sides of the elastic body 30 along the shaft 31a so as to be in a symmetrical arrangement and a symmetrical configuration.
 アクチュエータの動作を説明する。アクチュエータは、対象物Mに衝撃を与えることにより対象物Mを軸棒31aの方向(図中左右方向)に移動させる。電磁コイル31は、電力を与えられることによりその衝撃の発生源となる。対象物Mは、左方の組の動作によって左方に移動され、右方の組の動作によって右方に移動される。そこで、まず、左方の組の動作を説明する。左方の導電体32は、左方の電磁コイル31の通電によって導電体32に発生する渦電流に起因して発生する反発力によって、図5(a)に示すように、右方に反発移動される。すると、弾性体30は、この移動する導電体32により圧縮され、その後、その伸張力によって導電体32を左方へ押し戻す。この時点で、電磁コイル31の通電はオフされている。従って、導電体32は、図5(b)に示すように、左方の電磁コイル31に衝突し、その衝突によって左方に向かう衝撃が発生する。対象物Mは、この衝撃によって左方に押されて左方に移動する。電磁コイル31への通電制御は、必要な渦電流とこれに起因する反発力とが得られるように電流を一気に流すように制御し、導電体32と電磁コイル31との衝突が邪魔されないように通電をオフする制御を行えばよい。また、このような制御のもとで通電を繰り返すことにより、対象物Mに反復して衝撃を与えて対象物Mをパルス的に左方へ移動させることができる。図5(c)(d)は、右方の組の動作によって対象物Mを右方に移動する場合を示す。その動作は、図5(a)(b)の場合と左右対称に考えることができる。このような衝撃による対象物Mの一方向への移動には、後戻りを防止する機構が必要であり、その機構として摩擦力を付与する機構やラチェット機構などが用いられる。 The operation of the actuator will be described. The actuator causes the object M to move in the direction of the shaft 31a (left and right direction in the drawing) by applying an impact to the object M. The electromagnetic coil 31 becomes a generation source of the impact by being supplied with power. The object M is moved to the left by the left set of movements and to the right by the right set of movements. Therefore, first, the operation of the left set will be described. As shown in FIG. 5A, the left conductor 32 is moved to the right by the repulsive force generated due to the eddy current generated in the conductor 32 when the left electromagnetic coil 31 is energized. Be done. Then, the elastic body 30 is compressed by the moving conductor 32, and then the conductor 32 is pushed back to the left by the extension force. At this point, the energization of the electromagnetic coil 31 is turned off. Therefore, as shown in FIG. 5B, the conductor 32 collides with the left electromagnetic coil 31, and the collision generates an impact toward the left. The object M is pushed to the left by the impact and moves to the left. The energization control to the electromagnetic coil 31 is controlled so that the current flows at a stroke so as to obtain the required eddy current and the repulsive force resulting therefrom, so that the collision between the conductor 32 and the electromagnetic coil 31 is not disturbed. Control may be performed to turn off the current. In addition, by repeating the energization under such control, it is possible to repetitively impact the object M to move the object M to the left in a pulsed manner. FIG.5 (c) (d) shows the case where the subject M is moved to the right by the operation of the right set. The operation can be considered to be symmetrical as in the case of FIGS. 5 (a) and 5 (b). For such movement of the object M in one direction due to an impact, a mechanism for preventing backtracking is required, and a mechanism for applying a frictional force, a ratchet mechanism, or the like is used as the mechanism.
 上述のように、このアクチュエータは、左方と右方のいずれの方向であっても対象物Mを移動させることができる、往復駆動が可能なアクチュエータである。駆動装置1は、このアクチュエータを用いることにより、図1における回転軸A1,A2の各回転軸回りで正逆何れの回転方向にも回転させることができる。また、このようなアクチュエータは、小型・軽量・安価に実現することができ、駆動装置1を小型・軽量・安価に実現することができる。なお、このようなアクチュエータが、対象物Mに衝撃を反復して与えることにより対象物Mを衝撃の方向に一方的に移動させるためには、対象物Mが、適切な抵抗を受けている必要がある。例えば、対象物Mが移動に際して摩擦力による抵抗を受けるものとする。対象物Mを左方に移動させる場合に、右方への導電体32の移動と弾性体30への衝突による衝撃が最大静止摩擦力を超えないようにする。また、左方への導電体32の移動と電磁コイル31への衝突による衝撃が最大静止摩擦力を超えるようにする。アクチュエータは、このような条件を満たす対象物Mを移動させることができる。弾性体30は、時間をかけて圧縮されることにより、衝撃を和らげるダンパの役割をしている。 As described above, this actuator is an actuator capable of reciprocating movement that can move the object M in any of the left and right directions. By using this actuator, the drive device 1 can rotate in either forward or reverse rotational directions about each of the rotation axes of the rotation axes A1 and A2 in FIG. 1. In addition, such an actuator can be realized in a small size, light weight and inexpensiveness, and the drive device 1 can be realized in a small size, light weight and inexpensiveness. In addition, in order for such an actuator to move the object M unilaterally in the direction of the impact by repeatedly applying an impact to the object M, the object M needs to have an appropriate resistance. There is. For example, it is assumed that the object M receives resistance due to frictional force when moving. When the object M is moved to the left, the impact of the movement of the conductor 32 to the right and the collision with the elastic body 30 does not exceed the maximum static friction force. In addition, the impact of the movement of the conductor 32 to the left and the collision with the electromagnetic coil 31 is made to exceed the maximum static friction force. The actuator can move the object M that satisfies such conditions. The elastic body 30 acts as a damper that cushions the impact by being compressed over time.
 (第1の実施形態に適用される片側駆動のインパクトアクチュエータ)
 図6(a)は図1に示した駆動装置1の変形例を示し、図6(b)(c)は同変形例に適用されるアクチュエータを示す。この駆動装置1は、図6(a)に示すように、アクチュエータ11,12として片側駆動のものを、互いに反対向きの回転モーメントを生じることができるように2つずつ配置して用いているものである。その配置は、図示したように互いに向かい合うように配置する必要はなく、分散させて配置させてもよい。このようなアクチュエータは、図6(b)(c)に示すように、電磁コイル31、導電体32、弾性体30、ストッパ30aをこの順番で配置して構成される。電磁コイル31とストッパ30aとは一体化されている。このアクチュエータは、図5に示したアクチュエータにおいて、一方(右方)の電磁コイル31と導電体32などの組を除いた構成と同等であり、その動作も同様である。片側駆動のアクチュエータは、両側駆動(往復駆動)のアクチュエータよりも小型に構成できるので、駆動装置1における狭い空間に分散させて配置することができる融通性がある。
(One-side drive impact actuator applied to the first embodiment)
FIG. 6 (a) shows a modification of the drive device 1 shown in FIG. 1, and FIGS. 6 (b) and 6 (c) show an actuator applied to the modification. As shown in FIG. 6 (a), this driving device 1 uses two actuators arranged as two actuators 11 and 12 so as to generate rotational moments in opposite directions to each other. It is. The arrangement need not be arranged to face each other as shown, but may be distributed. Such an actuator is configured by arranging the electromagnetic coil 31, the conductor 32, the elastic body 30, and the stopper 30a in this order as shown in FIGS. The electromagnetic coil 31 and the stopper 30a are integrated. This actuator has the same configuration as that of the actuator shown in FIG. 5 except for the combination of one (right side) electromagnetic coil 31 and conductor 32, and the operation is also the same. Since the single-sided drive actuator can be configured smaller than the double-sided drive (reciprocal drive) actuator, it has the flexibility to be distributed in a narrow space in the drive device 1.
 (第1の実施形態に適用される永久磁石式のインパクトアクチュエータ)
 図7は駆動装置1に適用されるさらに他のアクチュエータを示す。このアクチュエータは、図7(a)に示すように、上述の図5に示したアクチュエータにおいて、2つの導電体32を、それぞれに対応して配置される2つの永久磁石33によって置き換えたものである。置き換えられた永久磁石33は、電磁コイル31の通電によって流れるコイル電流と永久磁石33の磁界との相互作用による反発力によって反発移動される。永久磁石33は、導電体32と同様にドーナツ円板状であって、中心側から外周側に向けて半径方向に磁化されている。本例の場合、中心側がS極で外周側がN極であるが、逆極性とすることができる。このような永久磁石33は、電磁コイル31に流れる電流の向きによって、図7(b)に示すように、斥力を受けたり、引力を受けたり(不図示)する。なお、図7(b)には、磁力線が有向矢印曲線によって模式的に示されている。
(Permanent Magnet Type Impact Actuator Applied to First Embodiment)
FIG. 7 shows still another actuator applied to the drive unit 1. This actuator is, as shown in FIG. 7A, in the actuator shown in FIG. 5 described above, in which two electric conductors 32 are replaced by two permanent magnets 33 arranged correspondingly. . The replaced permanent magnet 33 is repelled and moved by the repulsive force of the interaction between the coil current flowing by the energization of the electromagnetic coil 31 and the magnetic field of the permanent magnet 33. The permanent magnet 33 is in the shape of a donut disk like the conductor 32, and is magnetized in the radial direction from the center side toward the outer peripheral side. In the case of this example, although the center side is the south pole and the outer circumference side is the north pole, it can be reverse polarity. Such a permanent magnet 33 receives repulsive force or attractive force (not shown) depending on the direction of the current flowing through the electromagnetic coil 31, as shown in FIG. 7 (b). In FIG. 7 (b), magnetic lines of force are schematically shown by directed arrow curves.
 上述のアクチュエータの動作を、例えば、左方の電磁コイル31と永久磁石33との組について説明する。アクチュエータは、永久磁石33に斥力を与えるように、電磁コイル31に電流を流し、その後電流をオフすると、永久磁石33は右方において弾性体30によって受け止められた後、弾性体30によって跳ね返されてもとの電磁コイル31に衝突する。つまり、アクチュエータは、上述の図5における渦電流に起因して発生する反発力に代えて、電磁コイル31の通電によって流れるコイル電流と永久磁石33の磁界との相互作用による反発力を用いるものであり、図5に示したアクチュエータと同様に動作する。従って、図5に示したものと、図7に示したものの折衷構成として、導電体32と永久磁石33とを1つずつ有するものとすることもできる。このような折衷構成の場合、左右の動作や構成が互いに対称的に成るとは限らない。逆に、対称的にならないことを利用して、往復動作の特性を違えて、コストや動作特性の最適化を図ることもできる。 The operation of the above-described actuator will be described, for example, for the combination of the left electromagnetic coil 31 and the permanent magnet 33. When the actuator applies an electric current to the electromagnetic coil 31 so as to apply a repulsive force to the permanent magnet 33 and then turns the electric current off, the permanent magnet 33 is received by the elastic body 30 on the right side and then repelled by the elastic body 30 It collides with the original electromagnetic coil 31. That is, instead of the repulsive force generated due to the eddy current in FIG. 5 described above, the actuator uses the repulsive force due to the interaction between the coil current flowing by energization of the electromagnetic coil 31 and the magnetic field of the permanent magnet 33. And operates similarly to the actuator shown in FIG. Therefore, one conductor 32 and one permanent magnet 33 may be provided as a compromise between the configuration shown in FIG. 5 and the configuration shown in FIG. 7. In such a compromise configuration, the left and right motions and configurations are not necessarily symmetrical to each other. On the contrary, it is possible to optimize the cost and the operating characteristics by making the characteristics of the reciprocation operation different by utilizing the non-symmetry.
 また、図7(a)のアクチュエータにおいて、左右の永久磁石33の互いの磁気反発力によって、弾性体30の反発力を代替させるようにして、弾性体30を除去したものとすることができる(不図示)。この場合、2つの永久磁石33が互いに近づく場合には、相互の磁気反発力に起因するダンピング効果によって衝突の衝撃が和らげられる。2つの永久磁石33が互いに離反する場合には、相対移動中の永久磁石33が相互に磁力を及ぼして、電磁コイル31に衝突するまでの間、その移動速度を加速し続けることができる。このことを考慮して、左右の組の間隔は適宜設定される。以上のように永久磁石33と電磁コイル31との反発力を用いるアクチュエータは、渦電流による場合よりもより大きな衝撃を発生させて大きな移動をさせることができる。また、渦電流による場合のジュール熱による発熱がない点、安定にエネルギ効率良く動作できる。 Further, in the actuator of FIG. 7A, the elastic force of the elastic body 30 can be substituted by the magnetic repulsive force of the left and right permanent magnets 33 so that the elastic body 30 can be removed ( Not shown). In this case, when the two permanent magnets 33 approach each other, the impact of the collision is mitigated by the damping effect due to the mutual magnetic repulsion. In the case where the two permanent magnets 33 move away from each other, the moving speeds of the permanent magnets 33 in relative movement can continue to accelerate until they collide with the electromagnetic coil 31 by exerting a magnetic force on each other. In consideration of this, the interval between the left and right sets is appropriately set. As described above, the actuator using the repulsive force between the permanent magnet 33 and the electromagnetic coil 31 can generate a larger impact and cause a larger movement than in the case of the eddy current. Also, there is no heat generation due to Joule heat in the case of eddy current, and it is possible to operate stably with energy efficiency.
 (第1の実施形態に適用される単コイル式のインパクトアクチュエータ)
 図8は駆動装置1に適用されるさらに他のアクチュエータを示す。このアクチュエータは、図8(a)に示すように、電磁コイル31と、永久磁石33と、ストッパ34と、電磁コイル31に通電する電流を時間制御する制御装置(不図示)と、を備えている。永久磁石33は、電磁コイル31への通電によって生じる電磁作用によって電磁コイル31に対して相対移動する。ストッパ34は、永久磁石33の相対移動の範囲を制限するように電磁コイル31と一体化されて被衝突体をなす。このアクチュエータでは、電磁コイル31への通電により、永久磁石33が被衝突体(すなわち、電磁コイル31とストッパ34のいずれか)と衝突することにより衝撃が発生する。被衝突体の用語は、永久磁石33が衝突する相手(相対移動の相手)を示す名前として用いられているだけであり他の意味はない。電磁コイル31は、コイル枠に納められ、それらの中心軸上に配置された軸棒31aによってストッパ34に一体化されている。永久磁石33は、ドーナツ円板状であって、中心側から外周側に向けて半径方向に磁化されている。本例の場合、中心側がS極で外周側がN極であるが、逆極性とすることができる。このような永久磁石33は、電磁コイル31に流れる電流の向きによって、斥力を受けたり、引力を受けたりする(上述の図7(b)参照)。
(Single-coil impact actuator applied to the first embodiment)
FIG. 8 shows still another actuator applied to the drive unit 1. As shown in FIG. 8A, this actuator includes an electromagnetic coil 31, a permanent magnet 33, a stopper 34, and a control device (not shown) for controlling the time of the current supplied to the electromagnetic coil 31. There is. The permanent magnet 33 moves relative to the electromagnetic coil 31 by an electromagnetic action generated by energization of the electromagnetic coil 31. The stopper 34 is integrated with the electromagnetic coil 31 so as to limit the range of relative movement of the permanent magnet 33 to form an impacted body. In this actuator, impact is generated when the permanent magnet 33 collides with the collided body (that is, any one of the electromagnetic coil 31 and the stopper 34) by energization of the electromagnetic coil 31. The term collided body is only used as a name indicating the opponent (permanent relative movement) with which the permanent magnet 33 collides, and has no other meaning. The electromagnetic coil 31 is housed in a coil frame and integrated with the stopper 34 by a shaft 31a disposed on the central axis of the coil frame. The permanent magnet 33 has a donut disk shape and is magnetized in the radial direction from the center side toward the outer peripheral side. In the case of this example, although the center side is the south pole and the outer circumference side is the north pole, it can be reverse polarity. Such a permanent magnet 33 receives repulsion or attraction depending on the direction of the current flowing through the electromagnetic coil 31 (see FIG. 7B described above).
 上述のアクチュエータの動作を、移動体Mを左方に移動させる場合について、図8(a)(b)(c)を参照して説明する。電磁コイル31に通電するコイル電流Jを時間制御することにより、電磁コイル31による引力(J<0、時間t3)と斥力(J>0、時間t5)によって永久磁石33を往復移動させ、引力によって永久磁石33を電磁コイル31に衝突させる。すなわち、永久磁石33は、図8(a)に示すように電磁コイル31とストッパ34の間にある位置から、図8(c)の時間t3における引力によって左方に移動し、図8(b)に示すように電磁コイル31に衝突する。その後、永久磁石33は、図8(c)の時間t5における斥力によって、図8(a)に示す位置に復帰する。このような永久磁石33の動作(時間t3,t5における動作)が繰り返されて、移動体Mが左方にパルス的に移動する。なお、図8(c)は、永久磁石33が図8(b)に示すように電磁コイル31側にある状態(初期状態)から、時間t2における斥力によって動作を開始する例を示す。また、時間t1,t4は駆動調整時間である。 The operation of the above-described actuator will be described with reference to FIGS. 8 (a), (b) and (c) for the case of moving the movable body M to the left. The permanent magnet 33 is reciprocated by attractive force (J <0, time t3) and repulsive force (J> 0, time t5) by the electromagnetic coil 31 by time controlling the coil current J supplied to the electromagnetic coil 31, and the attractive force The permanent magnet 33 is caused to collide with the electromagnetic coil 31. That is, the permanent magnet 33 moves leftward from the position between the electromagnetic coil 31 and the stopper 34 as shown in FIG. 8A by the attraction force at time t3 in FIG. It collides with the electromagnetic coil 31 as shown in. After that, the permanent magnet 33 returns to the position shown in FIG. 8A by the repulsive force at time t5 in FIG. 8C. The operation of the permanent magnet 33 (operations at times t3 and t5) is repeated, and the movable body M moves in a pulse manner to the left. FIG. 8C shows an example in which the operation is started by the repulsive force at time t2 from the state (initial state) where the permanent magnet 33 is on the side of the electromagnetic coil 31 as shown in FIG. 8B. Further, times t1 and t4 are drive adjustment times.
 移動体Mを右方に移動させる場合について、図8(a)(d)(e)を参照して説明する。電磁コイル31に通電するコイル電流Jを時間制御することにより、電磁コイル31による斥力(J>0、時間t4)と引力(J<0、時間t5)によって永久磁石33を往復移動させ、斥力によって永久磁石33をストッパ34に衝突させる。すなわち、永久磁石33は、図8(a)に示すように電磁コイル31とストッパ34の間にある位置から、図8(e)の時間t4における斥力によって右方に移動し、図8(d)に示すようにストッパ34に衝突する。その後、永久磁石33は、図8(e)の時間t5における引力によって、図8(a)に示す位置に復帰する。このような永久磁石33の動作(時間t4,t5における動作)が繰り返されて、移動体Mが右方にパルス的に移動する。ここで、図8(e)の時間t1,t2における永久磁石33の動作を説明する。時間t1では、永久磁石33が初期状態にあると仮定する。初期状態は、コイル電流Jがゼロであり、永久磁石33が電磁コイル31とストッパ34との中間位置(図8(a)の状態)ではなく、永久磁石33が図8(b)に示すように電磁コイル31側にある状態である。永久磁石33は、その初期状態において移動範囲の左端にある。永久磁石33が左端の初期状態から右方に移動してストッパ34に衝突する最初の衝突では、時間t2に示すように、コイル電流Jは漸増した後、一定値となるコイル電流Jが流される。時間t2の始めにコイル電流Jを漸増させるのは、急激な離反に起因する反動による移動対象物Mの左方への移動を抑制するためである。 The case of moving the movable body M to the right will be described with reference to FIGS. 8 (a), (d) and (e). The permanent magnet 33 is reciprocated by the repulsive force (J> 0, time t4) and the attractive force (J <0, time t5) by the electromagnetic coil 31 by time controlling the coil current J supplied to the electromagnetic coil 31 and the repulsive force The permanent magnet 33 is caused to collide with the stopper 34. That is, the permanent magnet 33 moves to the right from the position between the electromagnetic coil 31 and the stopper 34 as shown in FIG. 8A by the repulsive force at time t4 in FIG. And collide with the stopper 34 as shown in FIG. After that, the permanent magnet 33 returns to the position shown in FIG. 8 (a) by the attractive force at time t5 in FIG. 8 (e). The operation of the permanent magnet 33 (operations at time t4 and time t5) is repeated, and the movable body M moves in a pulsed manner to the right. Here, the operation of the permanent magnet 33 at time t1 and time t2 in FIG. 8E will be described. At time t1, it is assumed that the permanent magnet 33 is in the initial state. In the initial state, the coil current J is zero, and the permanent magnet 33 is not at an intermediate position between the electromagnetic coil 31 and the stopper 34 (the state of FIG. 8A), and the permanent magnet 33 is shown in FIG. In the electromagnetic coil 31 side. The permanent magnet 33 is at its left end in its initial state. In the first collision in which the permanent magnet 33 moves to the right from the initial state at the left end and collides with the stopper 34, the coil current J gradually increases and then the coil current J having a constant value flows, as shown at time t2. . The coil current J is gradually increased at the beginning of time t2 in order to suppress the movement of the moving object M to the left due to the reaction caused by the rapid separation.
 対象物Mは、永久磁石33が左方の電磁コイル31に衝突することによって左方に移動され、永久磁石33が右方のストッパ34に衝突することによって右方に移動される。従って、対象物Mを左方に移動させる場合には、永久磁石33がストッパ34に衝突しないように電磁コイル31からの磁気力を永久磁石33に及ぼす必要がある。逆に、対象物Mを右方に移動させる場合には、永久磁石33が電磁コイル31に衝突しないように電磁コイル31からの磁気力を永久磁石33に及ぼす必要がある。コイル電流Jを制御する制御装置は、電磁コイル31と永久磁石33の相対移動の一方向において衝突を発生させ、その一方向とは反対方向において衝突を回避させると共に相対移動の方向を反転させる。制御装置は、一方向における衝撃のみを反復して発生させるように、電磁コイル31に通電するコイル電流Jを時間制御する。このようなアクチュエータは、電磁コイル31と永久磁石33の相対移動のいずれの向きにおいても衝突による衝撃を発生させることができるので、対象物Mの往復移動を実現することができる。また、アクチュエータが、1つの電磁コイル31に永久磁石33とストッパ34とを組み合わせて成るので、小型かつ簡単な構成となる。このアクチュエータを用いることにより、駆動装置1を、モータや駆動力伝達装置などを用いる場合に比べて小型・軽量・安価に実現することができる。 The object M is moved to the left by the permanent magnet 33 colliding with the electromagnetic coil 31 to the left, and is moved to the right by colliding the permanent magnet 33 against the stopper 34 to the right. Therefore, when moving the object M to the left, it is necessary to exert the magnetic force from the electromagnetic coil 31 on the permanent magnet 33 so that the permanent magnet 33 does not collide with the stopper 34. Conversely, when moving the object M to the right, it is necessary to exert the magnetic force from the electromagnetic coil 31 on the permanent magnet 33 so that the permanent magnet 33 does not collide with the electromagnetic coil 31. The control device that controls the coil current J generates a collision in one direction of relative movement of the electromagnetic coil 31 and the permanent magnet 33, avoids the collision in the direction opposite to that one direction, and reverses the direction of relative movement. The control device time-controls the coil current J applied to the electromagnetic coil 31 so as to repeatedly generate an impact only in one direction. Such an actuator can generate an impact due to a collision in any direction of the relative movement of the electromagnetic coil 31 and the permanent magnet 33, so that the reciprocating movement of the object M can be realized. Further, since the actuator is formed by combining the permanent magnet 33 and the stopper 34 with one electromagnetic coil 31, the configuration is small and simple. By using this actuator, the drive device 1 can be realized in a small size, light weight and low cost as compared with the case of using a motor, a driving force transmission device or the like.
 (第1の実施形態に適用されるコイル移動式のインパクトアクチュエータ)
 図9は駆動装置1に適用されるさらに他のアクチュエータを示す。このアクチュエータは、図9(a)に示すように、上述の図8(a)に示したアクチュエータにおいて、電磁コイル31と永久磁石33とを互いに入れ替え、ストッパ34を別途の永久磁石33に置き換えた構成になっている。すなわち、このアクチュエータは、互いに離間して同軸配置され軸棒31aの両端に固定された円板状の2つの永久磁石33と、軸棒31aに沿って移動自在とされた電磁コイル31と、を備えている。また、このアクチュエータは、電磁コイル31に通電する電流を時間制御する制御装置(不図示)を備えている。電磁コイル31は、コイル枠に納められ、中心軸上を軸棒31aによって挿通されている。2つの永久磁石33は、軸棒31aによって一体化されて被衝突体(この場合、電磁コイル31が衝突する相手)をなしている。電磁コイル31は、電磁コイル31への通電によって生じる電磁作用によって、2つの永久磁石33に対して相対移動する。その相対移動の範囲は被衝突体によって(両端の永久磁石33によって)制限されている。2つの永久磁石33は、ドーナツ円板状であって、中心側から外周側に向けて半径方向に磁化されている。本例の場合、中心側がS極で外周側がN極であるが、逆極性とすることができる。
(Impact actuator of moving coil type applied to the first embodiment)
FIG. 9 shows still another actuator applied to the drive unit 1. In this actuator, as shown in FIG. 9A, in the actuator shown in FIG. 8A described above, the electromagnetic coil 31 and the permanent magnet 33 are mutually replaced, and the stopper 34 is replaced with a separate permanent magnet 33. It is configured. That is, the actuator comprises two disk-like permanent magnets 33 coaxially arranged apart from each other and fixed to both ends of the shaft 31a, and an electromagnetic coil 31 made movable along the shaft 31a. Have. Further, this actuator is provided with a control device (not shown) which controls the time of the current supplied to the electromagnetic coil 31. The electromagnetic coil 31 is housed in a coil frame, and is inserted through a shaft 31a on the central axis. The two permanent magnets 33 are integrated by the shaft 31a to form an object to be collided (in this case, a partner with which the electromagnetic coil 31 collides). The electromagnetic coil 31 moves relative to the two permanent magnets 33 by the electromagnetic action generated by energization of the electromagnetic coil 31. The range of relative movement is limited by the impacted body (by permanent magnets 33 at both ends). The two permanent magnets 33 have a donut disk shape and are magnetized in the radial direction from the center side toward the outer peripheral side. In the case of this example, although the center side is the south pole and the outer circumference side is the north pole, it can be reverse polarity.
 アクチュエータの動作を、図9(b)に示すように、対象物Mを左方に移動させる場合について説明する。上述のような永久磁石33の間に挟まれた電磁コイル31は、通電されると、図9(c)に示すように、一方の永久磁石33から斥力を受け、他方の永久磁石33から引力を受ける。従って、電磁コイル31は、電磁コイル31に流す電流の向きによって、左方または右方のいずれかに移動方向を選択することができる。そこで、制御装置によって、電磁コイル31のコイル電流を時間制御することにより、図9(b)に示すように、電磁コイル31を左方の永久磁石33に衝突させて対象物Mを左方に移動させることができる。同様に、電磁コイル31を右方の永久磁石33に衝突させて対象物Mを右方に移動させることができる。制御装置は、電磁コイル31と永久磁石33の相対移動の一方向において衝突を発生させ、その一方向とは反対方向において衝突を回避させると共に相対移動の方向を反転させる。制御装置は、一方向における衝撃のみを反復して発生させるように電磁コイル31に通電する電流を時間制御する。このような制御を繰り返すことにより、対象物Mを右方または左方へパルス的に移動させることができる。 The operation of the actuator will be described for the case of moving the object M to the left as shown in FIG. 9 (b). The electromagnetic coil 31 sandwiched between the permanent magnets 33 as described above receives a repulsive force from one permanent magnet 33 and an attractive force from the other permanent magnet 33 as shown in FIG. Receive Therefore, depending on the direction of the current flowing through the electromagnetic coil 31, the electromagnetic coil 31 can select the moving direction either to the left or to the right. Therefore, by controlling the coil current of the electromagnetic coil 31 with time by the control device, as shown in FIG. 9B, the electromagnetic coil 31 is caused to collide with the permanent magnet 33 on the left side, and the object M is turned to the left. It can be moved. Similarly, the electromagnetic coil 31 can be made to collide with the right permanent magnet 33 to move the object M to the right. The controller generates a collision in one direction of relative movement of the electromagnetic coil 31 and the permanent magnet 33, avoids the collision in the direction opposite to the one direction, and reverses the direction of the relative movement. The control device time-controls the current supplied to the electromagnetic coil 31 so as to repeatedly generate an impact only in one direction. By repeating such control, the object M can be moved pulsewise to the right or to the left.
 (第1の実施形態に適用されるボイスコイル式のインパクトアクチュエータ)
 図10、図11、図12は駆動装置1に適用されるさらに他のアクチュエータを示す。このアクチュエータは、図10(a)(b)(c)に示すように、矩形の磁気回路35の対向する内面にそれぞれ配設された矩形平板状の永久磁石33と、2つの永久磁石33の間で移動自在に配設された電磁コイル31と、不図示の制御装置と、を備えている。そして、電磁コイル31と2つの永久磁石33とは互いに組み合わされてボイスコイル構造とされている。電磁コイル31は、磁気回路35の内部に設けられた磁気回路が挿通(その挿通方向をX軸方向とする)されており、この磁気回路部分は各永久磁石33の対向磁極となっている。電磁コイル31は、上部を回転軸受31cによって回動自在に支持されている。また、電磁コイル31の下部には、ハンマ34aが電磁コイル31の一部として設けられている。磁気回路35の外周におけるX軸方向の両端には、ハンマ34aが衝突可能な位置に、ストッパ34が設けられている。永久磁石33とストッパ34とが一体化されて被衝突体が形成されている。
(Voice coil type impact actuator applied to the first embodiment)
10, 11 and 12 show still another actuator applied to the drive device 1. FIG. As shown in FIGS. 10 (a), (b) and (c), this actuator comprises a rectangular flat permanent magnet 33 and two permanent magnets 33 respectively disposed on opposite inner surfaces of a rectangular magnetic circuit 35. It comprises an electromagnetic coil 31 disposed movably between the two, and a control device (not shown). The electromagnetic coil 31 and the two permanent magnets 33 are combined with each other to form a voice coil structure. A magnetic circuit provided inside the magnetic circuit 35 is inserted through the electromagnetic coil 31 (the insertion direction is taken as the X-axis direction), and the magnetic circuit portion serves as an opposing magnetic pole of each permanent magnet 33. The upper part of the electromagnetic coil 31 is rotatably supported by a rotary bearing 31 c. Further, a hammer 34 a is provided below the electromagnetic coil 31 as a part of the electromagnetic coil 31. Stoppers 34 are provided at both ends of the outer periphery of the magnetic circuit 35 in the X-axis direction at positions where the hammers 34 a can collide. The permanent magnet 33 and the stopper 34 are integrated to form an object to be collided.
 永久磁石33による磁界は、X軸方向に直交する水平方向となるように設定されている。従って、この磁界中に配設された電磁コイル31に通電されると、電磁コイル31は、そのコイル電流の向きに従って、X軸の正方向(右矢印方向)、またはその反対の負方向に移動させる力を受ける。そこで、図11(a)に示すように、電磁コイル31が左向きの力を受けると、電磁コイル31が左側に振り子運動をして、ハンマ34aが左側のストッパ34に衝突し、水平な面Sに載置された対象物Mが左方向に移動される。対象物Mの一方向移動、言い換えると対象物Mの逆行防止は、対象物Mと面Sとの間の摩擦力によって行われる。アクチュエータは、このような動作を反復して行うために、制御装置(不図示)は、図12(a)に示す時間変化となるように、電磁コイル31に通電する電流を時間制御する。この図のコイル電流Jは、時間変化する正弦関数をコイル電流Jの正方向にシフトさせた関数形になっている。電磁コイル31は、このコイル電流Jの正側では、図11(a)に示すように、左方に振れて左方で衝突し、コイル電流Jの負側では、図11(b)に示すように、中立点に戻り、その後、コイル電流Jの時間変化に従って、左方への移動と衝突を繰り返す。また、対象物Mを右方に移動する場合は、コイル電流Jは、図12(b)に示す時間変化とされ、電磁コイル31は、図11(b)(c)に示す状態を繰り返す。 The magnetic field generated by the permanent magnet 33 is set to be in the horizontal direction orthogonal to the X-axis direction. Therefore, when the electromagnetic coil 31 disposed in the magnetic field is energized, the electromagnetic coil 31 moves in the positive direction (right arrow direction) of the X axis or the opposite negative direction according to the direction of the coil current. Receive the force to Therefore, as shown in FIG. 11A, when the electromagnetic coil 31 receives a leftward force, the electromagnetic coil 31 performs a pendulum motion to the left, and the hammer 34a collides with the stopper 34 on the left side. The object M placed on the left is moved in the left direction. The unidirectional movement of the object M, in other words, the prevention of retrogression of the object M, is performed by the frictional force between the object M and the surface S. In order to repeatedly perform such an operation, the actuator time-controls the current supplied to the electromagnetic coil 31 so that the time change shown in FIG. 12A is obtained. The coil current J in this figure is in the form of a function in which the time-varying sine function is shifted in the positive direction of the coil current J. The electromagnetic coil 31 swings to the left and collides to the left on the positive side of the coil current J, as shown in FIG. 11A, and on the negative side of the coil current J, as shown in FIG. As a result, the neutral point is returned to, and thereafter, the movement to the left and the collision are repeated according to the time change of the coil current J. When the object M is moved to the right, the coil current J is changed with time shown in FIG. 12 (b), and the electromagnetic coil 31 repeats the state shown in FIG. 11 (b) (c).
 上述の、図8乃至図12によって説明したアクチュエータは、より一般的に、次のように表現することができる。すなわち、アクチュエータは、対象物に衝撃を与えることにより該対象物を移動させる装置であり、電磁コイル31と、電磁コイル31への通電によって生じる電磁作用によって電磁コイル31に対して相対移動する永久磁石33と、ストッパ34と、を備えている。ストッパ34は、前記相対移動の範囲を制限するように電磁コイル31または永久磁石33のいずれかと一体化されて被衝突体を構成している。このようなアクチュエータは、電磁コイル31への通電により、被衝突体と該被衝突体に一体化されなかった電磁コイル31または永久磁石33のいずれかとが衝突することにより前記衝撃が発生されるものである。この表現において、永久磁石33とストッパ34とが被衝突体をなす場合が図8のアクチュエータである。また、ストッパ34として2個目の永久磁石33を設けて、2つの永久磁石33によって被衝突体をなす場合が図9のアクチュエータである。また、永久磁石33と2つのストッパ34とによって被衝突体をなす場合が図10、図11のアクチュエータである。このような一般的な表現によるアクチュエータによる効果は、以下のように表現される。電磁コイル31と永久磁石33の相対移動のいずれの向きにおいても衝突による衝撃を発生させることができるので、対象物Mの往復移動を実現することができる。また、アクチュエータが、1つの電磁コイル31に永久磁石33とストッパ34とを組み合わせて成るので、小型かつ簡単な構成となる。このアクチュエータを用いることにより、駆動装置1を、モータや駆動力伝達装置などを用いる場合に比べて小型・軽量・安価に実現することができる。 The actuators described above with reference to FIGS. 8 to 12 can be more generally expressed as follows. That is, the actuator is a device for moving the object by giving an impact to the object, and the permanent magnet moves relative to the electromagnetic coil 31 by the electromagnetic coil 31 and the electromagnetic action generated by the energization of the electromagnetic coil 31. 33 and a stopper 34. The stopper 34 is integrated with either the electromagnetic coil 31 or the permanent magnet 33 so as to limit the range of the relative movement, and constitutes an object to be collided. In such an actuator, when the electromagnetic coil 31 is energized, the impact is generated when the collided body collides with either the electromagnetic coil 31 or the permanent magnet 33 not integrated with the collided body. It is. In this expression, the case in which the permanent magnet 33 and the stopper 34 form a collision target is the actuator shown in FIG. The actuator of FIG. 9 is a case where a second permanent magnet 33 is provided as the stopper 34 and the two permanent magnets 33 form a collision target. Further, the case of forming a collision target body by the permanent magnet 33 and the two stoppers 34 is the actuator shown in FIGS. The effect by the actuator by such a general expression is expressed as follows. Since the impact due to the collision can be generated in any direction of the relative movement of the electromagnetic coil 31 and the permanent magnet 33, the reciprocation of the object M can be realized. Further, since the actuator is formed by combining the permanent magnet 33 and the stopper 34 with one electromagnetic coil 31, the configuration is small and simple. By using this actuator, the drive device 1 can be realized in a small size, light weight and low cost as compared with the case of using a motor, a driving force transmission device or the like.
 (第1の実施形態に適用されるその他のインパクトアクチュエータ)
 上記に示したアクチュエータは、電磁コイル31を用いて磁気的に衝撃を発生させるものである。その他のアクチュエータとして、圧電素子を用いるものを駆動装置1に適用することもできる。例えば、圧電素子と、圧電素子に連結した重りと、を備え、圧電素子に時間制御した電圧を印加することにより、圧電素子を急速に伸ばしたり縮めたりして重りを移動させ、その重りを対象物Mに衝突させるようにアクチュエータを構成することができる。
(Other Impact Actuators Applied to First Embodiment)
The actuator shown above generates an impact magnetically using the electromagnetic coil 31. An actuator using a piezoelectric element can also be applied to the drive device 1 as another actuator. For example, a piezoelectric element and a weight connected to the piezoelectric element are provided, and by applying a time-controlled voltage to the piezoelectric element, the piezoelectric element is rapidly stretched or contracted to move the weight, and the weight is targeted The actuator can be configured to collide with the object M.
 (第2の実施形態)
 図13、図14、図15は第2の実施形態に係る駆動装置を示す。本実施形態の駆動装置2は、第1の実施形態の駆動装置1において、傾斜機構と回転機構が2自由度のジンバル機構で構成されているものであり、ジンバル機構によって対象物Mを回転移動させてその姿勢を変化させることができる。駆動装置2は、図13(a)(b)に示すように、A1軸回りに自在に回転する円環20と、円環20をA1軸回りに回転自在に固定側から支持する軸受部21aと、A2軸回りの軸受部22aと、インパクトアクチュエータ21,22と、を備えている。軸受部22aは、対象物MをA1軸に直交するA2軸回りに円環20に対して回転自在に支持する。インパクトアクチュエータ21は、円環20に対してA1軸回りの回転モーメントを発生させる。インパクトアクチュエータ22は、対象物Mに対してA2軸回りの回転モーメントを発生させる。ジンバル構造体が、円環20と軸受部21a,22aを備えて構成されている。アクチュエータ21,22として、上述の第1の実施形態において説明したアクチュエータのいずれかを用いることができる。また、駆動装置2の機能を発揮させるために、各軸受部21a,22aにおいて、適宜の摩擦力が発生するように軸受け調整がなされている。なお、摩擦力によらずに、各軸受部21a,22aにおける回転が一方向のみに可能となるようにラチェット機構などを設けてもよい。この場合、逆回転させる場合には、ラチェットが動作する向きを逆転させればよい。アクチュエータ21,22の配置位置として、より大きな回転モーメントを発生させることができる位置(腕の長い位置)を設定することにより、より小さな衝撃力のアクチュエータ21,22を用いることができる。図14、図15に示すように、対象物Mが照明装置であり、その取り付け位置が建物の壁や天井の凹部などの場合、対象物M(照明装置)は、その壁や天井の凹部壁を固定側として軸受部21aによって設置される。図14(a1)~(c2)は、A2軸回りの回転駆動の様子を示し、図15(a1)~(c2)は、A1軸回りの回転駆動の様子を示す。照明装置は、アクチュエータ21,22を動作させることによって、パン、チルトの傾斜の制御が可能となる。第2の実施形態によれば、モータや駆動力伝達装置などを用いることなく、小型かつ簡単な構成により、ジンバル機構によって支持した対象物Mの傾斜角や回転角などを制御することができる駆動装置2を実現できる。駆動装置2は、ジンバル機構の適用によって、薄型かつ簡単な構成で、パン、チルトなどの姿勢制御をすることができる。
Second Embodiment
13, 14 and 15 show a drive apparatus according to the second embodiment. The driving device 2 according to the present embodiment is the driving device 1 according to the first embodiment, in which the tilt mechanism and the rotation mechanism are configured by the gimbal mechanism having two degrees of freedom, and the gimbal mechanism rotationally moves the object M It is possible to change its posture. As shown in FIGS. 13 (a) and 13 (b), the drive device 2 has an annular ring 20 that freely rotates around the A1 axis, and a bearing portion 21a that supports the annular ring 20 from the fixed side rotatably about the A1 axis. And bearings 22a about the A2 axis, and impact actuators 21 and 22. The bearing portion 22a rotatably supports the object M with respect to the annular ring 20 around the A2 axis orthogonal to the A1 axis. The impact actuator 21 generates a rotational moment about the A1 axis with respect to the annular ring 20. The impact actuator 22 generates a rotational moment about the A2 axis with respect to the object M. The gimbal structure is configured to include an annular ring 20 and bearing portions 21a and 22a. As the actuators 21 and 22, any of the actuators described in the first embodiment described above can be used. Further, in order to exert the function of the drive device 2, bearing adjustment is performed so that an appropriate frictional force is generated in each of the bearing portions 21 a and 22 a. In addition, you may provide a ratchet mechanism etc. so that rotation in each bearing part 21a, 22a is attained only to one direction irrespective of frictional force. In this case, in the case of reverse rotation, the direction in which the ratchet operates may be reversed. By setting a position (long position of the arm) at which a larger rotational moment can be generated as the arrangement position of the actuators 21 and 22, the actuators 21 and 22 with smaller impact force can be used. As shown in FIGS. 14 and 15, when the object M is a lighting device and the mounting position thereof is a recess of a wall or ceiling of a building, the object M (lighting device) is a recess wall of the wall or ceiling Are fixed by the bearing 21a. FIGS. 14 (a1) to (c2) show the state of rotational drive around the A2 axis, and FIGS. 15 (a1) to (c2) show states of rotational drive around the A1 axis. The lighting apparatus can control the tilt of the pan and tilt by operating the actuators 21 and 22. According to the second embodiment, the drive that can control the tilt angle, rotation angle, etc. of the object M supported by the gimbal mechanism with a small and simple configuration without using a motor, a drive force transmission device, etc. The device 2 can be realized. The driving device 2 can perform posture control such as panning and tilting with a thin and simple configuration by application of the gimbal mechanism.
 (第1および第2の実施形態の変形例)
 図16、図17は第1および第2の実施形態の変形例を示す。ここに示す変形例は、第1および第2の実施形態で示した駆動装置1,2における傾斜角度と回転角度の維持、すなわち対象物Mの姿勢の維持に関する。この姿勢の維持は、例えば、傾斜機構と回転機構の軸受部11b,12b(図1参照)、軸受部21a,22a(図13参照)等における摩擦力によって維持されている。その摩擦力の大きさは、各軸受部において互いに面接触して摺動する摺動面間に圧力を加える圧接手段によって調整される。圧接手段は、ネジ、弾性体、永久磁石、電磁石などを用いて構成される。
(Modification of First and Second Embodiments)
16 and 17 show a modification of the first and second embodiments. The modification shown here relates to maintenance of the inclination angle and rotation angle in the drive devices 1 and 2 shown in the first and second embodiments, that is, maintenance of the posture of the object M. The maintenance of the posture is maintained by, for example, the frictional force in the bearing portions 11b and 12b (see FIG. 1) and the bearing portions 21a and 22a (see FIG. 13) of the tilting mechanism and the rotating mechanism. The magnitude of the frictional force is adjusted by pressure contact means for applying pressure between the sliding surfaces sliding in surface contact with each other at each bearing. The pressure contact means is configured using a screw, an elastic body, a permanent magnet, an electromagnet or the like.
 比較的簡単な軸受部は、図16(a)に示すように、ネジの締め付けトルクによって摩擦力を発生させ、その大きさを調整するものである。この軸受部は、軸受け用孔を有する第1部材41と、貫通雌ネジを有する第2部材42と、これらの部材を回転自在に連結するボルト43と、緩み止めナット44と、を備えている。この軸受部と、例えば、図1の駆動装置1における軸受部11bとにおいて、吊り部材12aの下端部が第1部材41に相当し、対象物Mの外壁が第2部材42に相当する。摩擦力は、例えば、第1部材41に対して互いに相対的に回転移動する、第2部材42との接触面S、およびボルト43の頭のあご部分との接触面Sにおいて発生する。その摩擦力の大きさは、第2部材42の貫通雌ネジに螺合したボルト43の締め付けトルクによって調整される。このような軸受部によれば、簡単な構成で摩擦力を調整でき、摩擦力を大きくしたり小さくしたり調整することにより、インパクトアクチュエータによる衝撃力1回あたりの移動角度を容易に小さくしたり大きくしたりすることができる。 As shown in FIG. 16A, a relatively simple bearing portion generates a frictional force by tightening torque of a screw and adjusts its size. The bearing portion includes a first member 41 having a bearing hole, a second member 42 having a through internal thread, a bolt 43 rotatably connecting these members, and a locking nut 44. . In this bearing portion and, for example, the bearing portion 11b in the drive device 1 of FIG. 1, the lower end portion of the suspension member 12a corresponds to the first member 41, and the outer wall of the object M corresponds to the second member 42. The frictional force is generated, for example, on the contact surface S with the second member 42 and the contact surface S with the head jaw portion of the bolt 43, which rotate relative to each other relative to the first member 41. The magnitude of the frictional force is adjusted by the tightening torque of a bolt 43 screwed to the through female screw of the second member 42. According to such a bearing portion, the friction force can be adjusted with a simple configuration, and the movement angle per impact force by the impact actuator can be easily reduced by increasing or decreasing the friction force. You can make it bigger.
 図16(b)に示す軸受部は、上述の図16(a)の軸受部において、弾性体45をさらに備えたものである。弾性体45は、つるまきバネであって、ボルト43の頭のあご部分の下部に配置され、ワッシャ46を介して第1部材41を第2部材42に対して押圧している。弾性体45は、つるまきバネに限らず、板バネやゴムなどであってもよく、その付勢力によって摩擦力を発生させるものであればよい。このような軸受部によれば、摩擦力の調整がより容易となり、また摩擦力を安定させることができる。 The bearing portion shown in FIG. 16 (b) further includes an elastic body 45 in the bearing portion of FIG. 16 (a) described above. The elastic body 45 is a helical spring, and is disposed under the head jaw portion of the bolt 43, and presses the first member 41 against the second member 42 through the washer 46. The elastic body 45 is not limited to a helical spring, and may be a leaf spring, rubber or the like, as long as it generates a frictional force by its biasing force. According to such a bearing portion, the adjustment of the frictional force becomes easier, and the frictional force can be stabilized.
 図17(a)に示す軸受部は、軸受け用孔を有する第1部材41と、貫通雌ネジを有する第2部材42と、これらの部材を回転自在に連結するネジ付きピン47と、電磁石48と、を備えている。電磁石48は、ネジ付きピン47に挿通され第2部材42に固定されて第1部材41と第2部材42との間に配置されている。電磁石48は、磁気回路48a(ヨーク)を有し、通電されることにより、磁気回路48aが磁力によって第1部材41を吸引して、その磁気力によって第1部材41と磁気回路48aの接触面Sに摩擦力を発生する。従って、第1部材41は磁性体で構成する必要がある。このような軸受部によれば、電磁石48のオン・オフなどによって摩擦力を大幅に変化させることができるので、姿勢変化時に動的に摩擦力を小さくすることにより、小型で低パワーのインパクトアクチュエータであっても動作できるようにすることができる。 The bearing portion shown in FIG. 17A includes a first member 41 having a bearing hole, a second member 42 having a through female screw, a threaded pin 47 for rotatably connecting these members, and an electromagnet 48. And have. The electromagnet 48 is inserted into the threaded pin 47 and fixed to the second member 42 so as to be disposed between the first member 41 and the second member 42. The electromagnet 48 has a magnetic circuit 48a (yoke), and when energized, the magnetic circuit 48a attracts the first member 41 by the magnetic force, and the contact surface of the first member 41 and the magnetic circuit 48a by the magnetic force. Frictional force is generated on S. Therefore, the first member 41 needs to be made of a magnetic material. According to such a bearing portion, since the frictional force can be significantly changed by the on / off of the electromagnet 48 and the like, the impact force is small and low power by dynamically reducing the frictional force at the time of posture change. You can even make it work.
 図17(b)に示す軸受部は、上述の図17(a)の軸受部において、電磁石48を永久磁石49に置き換えたものに相当する。永久磁石49は第2部材42に固定されており、第1部材41との接触面Sに摩擦力を発生する。永久磁石49にヨークを備えてもよい。このような軸受部によれば、ネジのトルクを用いる場合のネジの緩みなどによる摩擦力の低下などが発生することなく、磁石の吸着力がある限り信頼性良く摩擦力を安定に維持することができる。 The bearing portion shown in FIG. 17B corresponds to one in which the electromagnet 48 is replaced with a permanent magnet 49 in the bearing portion of FIG. 17A described above. The permanent magnet 49 is fixed to the second member 42 and generates a frictional force on the contact surface S with the first member 41. The permanent magnet 49 may be provided with a yoke. According to such a bearing portion, it is possible to stably maintain the frictional force with high reliability as long as the magnet has an attractive force without occurrence of a decrease in the frictional force due to loosening of the screw or the like when using the torque of the screw. Can.
 図17(c)に示す軸受部は、上述の図17(a)(b)の軸受部を組み合わせたものに相当する。すなわち、電磁石48の内径を大きくし、その内径部分に永久磁石49を納めた構成となっている。なお、この配置や構成はこれに限るものではなく、永久磁石49を電磁石48の外周に設けたり、電磁石48とは別位置に別個に設けたりしてもよい。このような軸受部によれば、永久磁石49による安定して摩擦力を発生できる利点と、電磁石48による摩擦力の制御性の良さの利点とを備えるので、使い勝手の良い駆動装置1,2を実現できる。例えば、永久磁石49の吸着力のみによって姿勢維持している軸受部に対し、姿勢制御時に永久磁石49の吸着力を弱めて摩擦力を低減するように電磁石48を動作させることにより、姿勢制御時のインパクトアクチュエータへの投入電力を減らすことができる。また、小型で低パワーのインパクトアクチュエータであっても適用できるようにすることができる。なお、上記の図16、図17において、平面同士の接触面Sにおける摩擦力について示したが、平面に限らず曲面の接触面、例えば、軸受け用のピンの外周面を接触面Sとして、その面に摩擦力を発生させるようにしてもよい。 The bearing shown in FIG. 17 (c) corresponds to a combination of the bearings shown in FIGS. 17 (a) and 17 (b) described above. That is, the inner diameter of the electromagnet 48 is increased, and the permanent magnet 49 is housed in the inner diameter portion. In addition, this arrangement or configuration is not limited to this, and the permanent magnet 49 may be provided on the outer periphery of the electromagnet 48 or may be separately provided at a position different from the electromagnet 48. According to such a bearing portion, since the advantage that the permanent magnet 49 can generate the frictional force stably and the advantage of the controllability of the frictional force by the electromagnet 48 are provided, the drive devices 1 and 2 which are easy to use can be provided. realizable. For example, at the time of attitude control by operating the electromagnet 48 to weaken the adsorption force of the permanent magnet 49 and reduce the frictional force at the time of attitude control with respect to the bearing portion maintained by the adsorption force of the permanent magnet 49 only. Input power to the impact actuator can be reduced. In addition, even a small-sized low-power impact actuator can be applied. In addition, although said FIG. 16, FIG. 17 showed about the frictional force in the contact surface S of planes, the contact surface of not only a plane but a curved surface, for example, the outer peripheral surface of the pin for bearings is made into the contact surface S. A frictional force may be generated on the surface.
 (第1および第2の実施形態の他の変形例)
 図18は第1および第2の実施形態の他の変形例を示す。図18の例では、駆動装置10によって支持された照明装置Mが天井埋込み凹部枠9の内部に収められている。ここに示す変形例に係る駆動装置10は、第1または第2の実施形態における駆動装置1,2において、リモートコントロール装置5と、リモートコントロール装置5からの赤外線信号を受信するセンサ50と、制御部51と、を備えるものである。制御部51は、センサ50からの信号に基づいてインパクトアクチュエータ(例えば、駆動装置1における11,12、駆動装置2における21,22)を制御する。センサ50は、駆動装置10の本体近傍に設けられている。リモートコントロール装置5は、傾斜角度と回転角度とをそれぞれ正逆方向に変えるために操作する4つの操作ボタン5aと、操作ボタン5aの操作による指示をセンサ50に向けて無線送信する赤外線送信部5bとを備えている。この変形例によれば、操作者は、リモートコントロール装置5を持って、駆動装置10の近くに行き、離れた位置から、駆動装置10によって支持された照明装置Mの角度を所望の方向に調整することができる。赤外線通信に代えて、電波による通信とすることもできる。
(Other Modifications of First and Second Embodiments)
FIG. 18 shows another modification of the first and second embodiments. In the example of FIG. 18, the lighting device M supported by the driving device 10 is housed inside the ceiling recessed recess frame 9. In the drive device 10 according to the modification shown here, in the drive devices 1 and 2 in the first or second embodiment, the remote control device 5, the sensor 50 for receiving an infrared signal from the remote control device 5, and control And a unit 51. The control unit 51 controls the impact actuators (e.g., 11, 12 in the drive device 1 and 21, 22 in the drive device 2) based on the signal from the sensor 50. The sensor 50 is provided in the vicinity of the main body of the drive device 10. The remote control device 5 has four operation buttons 5a operated to change the tilt angle and the rotation angle in the forward and reverse directions, respectively, and an infrared transmission unit 5b that wirelessly transmits an instruction by the operation of the operation button 5a to the sensor 50. And have. According to this modification, the operator holds the remote control device 5 and goes close to the drive device 10, and adjusts the angle of the lighting device M supported by the drive device 10 in a desired direction from a remote position can do. Instead of infrared communication, radio communication may be used.
 (第1の実施形態のさらに他の変形例)
 図19、図20は第1の実施形態のさらに他の変形例を示す。この変形例は、図1に示した第1の実施形態の駆動装置1における傾斜用のアクチュエータ11と回転用のアクチュエータ12とを互いに並列配置して備えるように変更したものであり、他は同様である。すなわち、この変形例の駆動装置61は、図19に示すように、2つの往復方向仕様(往復駆動)のアクチュエータ23,24を、対象物Mの円筒形上部端面に設けた幅広の腕木11aにまとめて配置している。ここで、説明のため、各回転軸A1,A2に、これらと共に右手系座標系を構成する軸A3を加え、軸A1,A2,A3を適宜参照する。2つのアクチュエータ23,24は、互いに同等のものであり、それらの動作方向(衝撃力発生方向)を回転軸A1を含まない平面内で軸A3方向に揃え、かつ、回転軸A2の両側の互いに対称位置に配置されている。このように配置されたアクチュエータ23,24は、図20(a1)(b1)に示すように、互いに逆方向に動作して対象物Mを回転軸A2周りに回転させ、図20(a2)(b2)に示すように、互いに同方向に動作して対象物Mを回転軸A1周りに傾斜させる。アクチュエータ23,24は、回転用や傾斜用の区別がなく、いずれも互いに協働して回転用および傾斜用の両方に用いられる。この変形例の駆動装置61によれば、対象物Mを回転させるときは2個のアクチュエータの偶力を用い、傾斜させるときは2個のアクチュエータの合力を用いることができるので、1個のアクチュエータで1軸制御する場合に比べてパワーアップすることができる。また、駆動装置61によれば、同等性能のアクチュエータを2個取り付けるだけでシンプルかつ小型の角度制御機構を実現することができる。なお、アクチュエータ23,24は、少なくとも、軸A2周りの偶力を発生でき、軸A1周りに回転させる合力を発生できる構成および配置という条件を満たすものであればよい。従って、この条件を満たす限り、アクチュエータ23,24は、互いに同等のものでなくともよく、回転軸A2の両側の互いに対称位置に配置されていなくともよく、その個数も2つでなく、3つ以上でもよい。これらのアクチュエータ23,24は、軸受部11b等を介さずに直接対象物Mに衝撃力を作用させるように、対象物Mに対して設けられている。
(Still another modification of the first embodiment)
19 and 20 show still another modification of the first embodiment. In this modification, the tilt actuator 11 and the rotation actuator 12 in the drive device 1 of the first embodiment shown in FIG. It is. That is, as shown in FIG. 19, the drive device 61 of this modification is provided with actuators 23 and 24 of two reciprocation direction specifications (reciprocation drive) on a wide arm 11a provided on the cylindrical upper end face of the object M. It arranges collectively. Here, for the sake of explanation, an axis A3 which constitutes a right-handed coordinate system together with each of the rotation axes A1 and A2 is added, and the axes A1, A2 and A3 are referred to as appropriate. The two actuators 23, 24 are equivalent to each other, and their operating directions (impact generating direction) are aligned in the direction of the axis A3 in a plane not including the rotation axis A1, and the two sides of the rotation axis A2 are mutually It is arranged in symmetrical position. The actuators 23 and 24 arranged in this way operate in opposite directions to rotate the object M around the rotation axis A2, as shown in FIGS. 20 (a1) and 20 (b1), and are shown in FIGS. As shown in b2), the objects M move in the same direction to tilt the object M around the rotation axis A1. The actuators 23 and 24 have no distinction between rotation and tilting, and both are used in cooperation with each other for both rotation and tilting. According to the drive device 61 of this modification, since it is possible to use the couple of two actuators when rotating the object M and to use the resultant of two actuators when tilting it, one actuator The power can be increased compared to the case of single axis control. Further, according to the drive device 61, a simple and compact angle control mechanism can be realized only by attaching two actuators of the same performance. The actuators 23 and 24 may at least satisfy the condition of a configuration and arrangement capable of generating a couple of forces around the axis A2 and capable of generating a resultant of rotation around the axis A1. Therefore, as long as this condition is satisfied, the actuators 23 and 24 may not be equal to each other, may not be disposed at symmetrical positions on both sides of the rotation axis A2, and the number thereof is not two, three The above may be sufficient. These actuators 23 and 24 are provided to the object M so as to exert an impact force directly on the object M without the intervention of the bearing portion 11 b or the like.
 (第1の実施形態のさらに他の変形例)
 図21、図22は第1の実施形態のさらに他の変形例を示す。図21に示す駆動装置61は、上記の図19、図20に示した変形例における2つの往復方向仕様(往復駆動)のアクチュエータ23,24を、それぞれ単方向仕様(片側駆動)の4つのアクチュエータ23,24に置き換えたものであり、他は同様である。この駆動装置61は、前述の図6(a)に示した駆動装置1の変形例であるともいえる。また、図22に示す駆動装置61は、上述の図19、図20に示した変形例における吊り部材12aによる対象物Mの支持を片持ち支持の構成とし、さらに、腕木11aの配置位置を対象物Mの円筒形側面位置に変更したものである。アクチュエータ23,24は、腕木11aの位置変更によって位置が変更され、その動作も変更されている。すなわち、アクチュエータ23,24は、それらの動作方向(衝撃力発生方向)を回転軸A2を含まない平面内で軸A3方向に揃え、かつ、回転軸A1の両側に配置されている。このような構成の駆動装置61において、アクチュエータ23,24は互いに逆方向に動作して対象物Mを回転軸A1周りに傾斜させ、互いに同方向に動作して対象物Mを回転軸A2周りに回転させることになる。これらの図21、図22に示した変形例によれば、図19に示した変形例の駆動装置61と同等の効果が奏される。
(Still another modification of the first embodiment)
21 and 22 show still another modification of the first embodiment. The drive device 61 shown in FIG. 21 has four actuators with unidirectional specifications (one-side drive) each of the actuators 23 and 24 with two reciprocating direction specifications (reciprocal drive) in the modification shown in FIG. 19 and FIG. It is replaced with 23, 24 and others are the same. It can be said that this drive device 61 is a modification of the drive device 1 shown in FIG. 6A described above. Moreover, the drive device 61 shown in FIG. 22 is configured to support the object M by the suspension member 12a in the modification shown in FIG. 19 and FIG. 20 described above in a cantilever support configuration, and further targets the arrangement position of the arm 11a. It is changed to the cylindrical side surface position of the object M. The positions of the actuators 23 and 24 are changed by changing the position of the arm 11a, and the operation thereof is also changed. That is, the actuators 23, 24 align their operating directions (impact generating direction) in the direction of the axis A3 in a plane not including the rotation axis A2, and are arranged on both sides of the rotation axis A1. In the drive device 61 having such a configuration, the actuators 23 and 24 operate in opposite directions to incline the object M around the rotation axis A1, and operate in the same direction to move the object M around the rotation axis A2. It will be rotated. According to the modification shown in FIGS. 21 and 22, the same effect as that of the drive device 61 of the modification shown in FIG. 19 is exerted.
 (第2の実施形態のさらに他の変形例)
 図23は第2の実施形態のさらに他の変形例を示す。この変形例は、図13に示した第2の実施形態の駆動装置1における2つのアクチュエータ21,22を互いに並列配置して備えるように変更したものであり、他は同様である。すなわち、この変形例の駆動装置62は、図23に示すように、2つの往復方向仕様(往復駆動)のアクチュエータ23,24を、対象物Mの上面にまとめて並列配置している。アクチュエータ23,24は、それらの動作方向(衝撃力発生方向)を回転軸A1を含まない平面内で軸A3方向に揃え、かつ、回転軸A2の両側に配置されている。このように配置されたアクチュエータ23,24は、互いに逆方向に動作して対象物Mを回転軸A2周りに回転させ、互いに同方向に動作して対象物Mを回転軸A1周りに回転させる。アクチュエータ23,24は、いずれも互いに協働して各軸A1,A2周りの回転に用いられる。この変形例の駆動装置62によれば、対象物Mを各軸A1,A2周りに回転させるときに2個のアクチュエータの偶力または合力を用いることができるので、1個のアクチュエータで1軸制御する場合に比べてパワーアップすることができる。
(Still another modification of the second embodiment)
FIG. 23 shows still another modification of the second embodiment. This modification is a modification in which the two actuators 21 and 22 in the drive device 1 of the second embodiment shown in FIG. 13 are disposed in parallel with each other, and the others are similar. That is, as shown in FIG. 23, the drive device 62 of this modified example arranges actuators 23 and 24 of two reciprocation direction specifications (reciprocation drive) collectively on the upper surface of the object M in parallel. The actuators 23, 24 align their operating directions (impact generating direction) in the direction of the axis A3 in a plane not including the rotation axis A1, and are disposed on both sides of the rotation axis A2. The actuators 23, 24 arranged in this manner operate in opposite directions to rotate the object M around the rotation axis A2, and operate in the same direction to rotate the object M around the rotation axis A1. Both actuators 23 and 24 cooperate with each other to be used for rotation about each axis A1 and A2. According to the drive device 62 of this modification, when the object M is rotated about each of the axes A1 and A2, the couple or combined force of the two actuators can be used, so that one axis control can be performed by one actuator. You can power up compared to the case.
 (第3の実施形態)
 図24、図25、図26は第3の実施形態に係る駆動装置を示す。第3の実施形態の駆動装置7は、図24(a)(b)に示すように、例えば、自動車のサイドミラーの鏡面を左右上下に姿勢変更(パンおよびチルト)するために用いるものである。駆動の対象物Mはミラーであり、その裏面の一点においてボールジョイント70によってサイドミラー本体7aに支持されている。なお、鏡面に沿って水平方向の軸A1と軸A1に直交する軸A2とが定義され、ボールジョイント70を通る軸A3(不図示)と共に直交座標系を成している。対象物Mの裏面におけるボールジョイント70の水平側方および下方に、それぞれパン用のアクチュエータ71とチルト用のアクチュエータ72とが設けられている。これらのアクチュエータ71,72として、上述の第1の実施形態において説明したアクチュエータのいずれかを用いることができる。各アクチュエータ71,72は、往復方向仕様(往復駆動)のインパクトアクチュエータであり、それらの動作方向(衝撃力発生方向)はA1-A2平面に直交する方向(軸A3方向)である。このような構成の駆動装置7は、前述の第1の実施形態や第2の実施形態における傾斜機構および回転機構の対象物支持部、すなわち、軸受部12b、11bや、軸受部21a,22aが、共用されたボールジョイント70で構成されたものとなっている。ボールジョイント70は、複数の対偶の組で構成したものや、球関節で構成したものなどを用いることができる。より一般的には、ボールジョイント70は、例えば略平板状の対象物Mに対し、その裏側の略中央をパンとチルトのための各回転軸が通るように、対象物Mを保持する機構であればよい。
Third Embodiment
24, 25 and 26 show a drive apparatus according to a third embodiment. The driving device 7 according to the third embodiment is, for example, used to change the posture (pan and tilt) of the mirror surface of the side mirror of the automobile left, right, up and down, as shown in FIGS. . An object M to be driven is a mirror, which is supported by the ball joint 70 on the side mirror main body 7a at one point on the back surface thereof. The horizontal axis A1 and the axis A2 orthogonal to the axis A1 are defined along the mirror surface, and form an orthogonal coordinate system with an axis A3 (not shown) passing through the ball joint 70. A pan actuator 71 and a tilt actuator 72 are provided on the back side of the object M and on the horizontal side and below the ball joint 70, respectively. As these actuators 71 and 72, any of the actuators described in the above first embodiment can be used. Each of the actuators 71 and 72 is an impact actuator of reciprocation direction specification (reciprocation drive), and their operation direction (impact force generation direction) is a direction (axis A3 direction) orthogonal to the A1-A2 plane. In the driving device 7 having such a configuration, the object supporting portions of the tilting mechanism and the rotating mechanism in the first embodiment and the second embodiment described above, that is, the bearing portions 12 b and 11 b and the bearing portions 21 a and 22 a , And a shared ball joint 70. As the ball joint 70, one configured by a plurality of pairs of pairs, one configured by a ball joint, or the like can be used. More generally, the ball joint 70 is a mechanism for holding the object M such that, for example, the rotational axis for panning and tilting passes through the approximate center of the rear side of the substantially flat object M. I hope there is.
 駆動装置7は、図25に示すように、アクチュエータ71を動作させることにより、対象物Mであるミラーを矢印a2で示すように左右に回転(パン動作)させることができる。また、駆動装置7は、図26に示すように、アクチュエータ72を動作させることにより、対象物Mであるミラーを矢印a1で示すように上下に回動(チルト動作)させることができる。鏡面は、これらの動作が同時にまたは連続して行われることにより、2軸A1,A2周りで任意の位置決めがなされ、任意の方向に向けられる。第3の実施形態の駆動装置7によれば、簡単な機構で、鏡面のパンとチルトの制御ができ、小型軽量のサイドミラーを実現できる。 As shown in FIG. 25, the drive device 7 can rotate the mirror, which is the object M, laterally (panning) as shown by the arrow a2, by operating the actuator 71. Further, as shown in FIG. 26, the drive device 7 can rotate the mirror which is the object M up and down (tilt operation) as shown by the arrow a1 by operating the actuator 72. The mirror surface is arbitrarily positioned about the two axes A1 and A2 and directed in any direction by performing these operations simultaneously or successively. According to the drive device 7 of the third embodiment, the pan and tilt of the mirror surface can be controlled with a simple mechanism, and a small and lightweight side mirror can be realized.
 (第3の実施形態の変形例)
 図27は第3の実施形態の変形例を示す。この変形例は、図24等に示した第3の実施形態の駆動装置7における2つのアクチュエータ71,72を互いに並列配置して備えるように変更したものであり、他は同様である。すなわち、この変形例の駆動装置67は、図27に示すように、2つの往復方向仕様(往復駆動)のアクチュエータ71,72を、軸A2の左右に、かつ、軸A1の方向に並列に配置したものである。このように配置されたアクチュエータ71,72は、互いに逆方向に動作して対象物M(ミラー)を回転軸A2周りに回転させ、互いに同方向に動作して回転軸A1周りに回転させる。アクチュエータ71,72は、いずれも互いに協働して各軸A1,A2周りの回転に用いられる。なお、上述の第3の実施形態の駆動装置7におけるアクチュエータ71,72も、互いに並列配置した構成になっている。駆動装置7と駆動装置67との違いは、駆動装置67が軸A1,A2に対する回転駆動に注力し、駆動装置7が軸A1,A2の中間の仮想軸に対する回転駆動に注力する点にあるといえる。例えば、駆動装置7において、アクチュエータ71,72の並びの方向を新たな軸A1’(不図示)とし、その直交軸を新たなA2’(不図示)とすると、駆動装置7はこれらの新たな軸A1’,A2’に対する回転駆動に注力するものといえる。
(Modification of the third embodiment)
FIG. 27 shows a modification of the third embodiment. This modification is a modification in which the two actuators 71 and 72 in the drive device 7 of the third embodiment shown in FIG. 24 and the like are arranged in parallel with each other, and the others are similar. That is, as shown in FIG. 27, the drive device 67 of this modification arranges the actuators 71 and 72 of two reciprocation direction specifications (reciprocation drive) in parallel to the left and right of the axis A2 and in the direction of the axis A1. It is The actuators 71 and 72 arranged in this way operate in opposite directions to rotate the object M (mirror) around the rotation axis A2, and operate in the same direction and rotate around the rotation axis A1. The actuators 71 and 72 are both used in cooperation with each other for rotation about the respective axes A1 and A2. The actuators 71 and 72 in the drive device 7 of the third embodiment described above are also arranged in parallel to each other. The difference between drive 7 and drive 67 is that drive 67 focuses on rotational drive with respect to axes A1 and A2, and drive 7 focuses on rotational drive with respect to an intermediate virtual axis between axes A1 and A2. It can be said. For example, in the drive device 7, assuming that the direction of alignment of the actuators 71 and 72 is a new axis A1 '(not shown) and the orthogonal axis thereof is a new A2' (not shown), the drive device 7 generates these new It can be said that the focus is on rotational drive with respect to the axes A1 ′ and A2 ′.
 (第3の実施形態の他の変形例)
 図28は第3の実施形態に係る駆動装置の他の変形例を示す。この変形例の駆動装置8は、図28に示すように、第3の実施形態の駆動装置7において、アクチュエータ71,72を制御する制御部81を備え、制御部81が、対象物Mであるミラーを振動させるようにアクチュエータ71,72を制御するものである。制御部81は、制御信号を入力するための複数のボタンを有する入力部83を備えている。各ボタンは、対象物M(ミラー)の鏡面を上下に回動(チルト動作)させるための上下動ボタン8a,8bと、鏡面を左右に回転(パン動作)させるための左右動ボタン8c,8dと、ミラーを振動動作させるための振動モードボタン8eとである。駆動装置7の使用者が各ボタンを押下することにより、各ボタンに対応する制御信号が制御部81に送信され、制御部81は、その制御信号に基づいて電源部82からの電力を制御してアクチュエータ71,72に供給して動作させる。例えば、制御部81は、振動モードボタン8eが押下されると、アクチュエータ71,72のいずれか一方または両方に対して、所定の周期で往復動作(振動モード動作)をさせることにより、対象物Mであるミラーを振動させる。振動モードボタン8eは、例えばトグルスイッチであり、再度押下すると振動モードが停止される。振動モードは、対象物Mの時間平均姿勢が変化しない動作モードである。この変形例の駆動装置8によれば、その振動モードにおける鏡面の振動によって、例えば、雨滴がはじかれ、雨の日にもサイドミラーが見やすくなる。
(Another modification of the third embodiment)
FIG. 28 shows another modification of the drive device according to the third embodiment. As shown in FIG. 28, the drive unit 8 of this modification includes a control unit 81 for controlling the actuators 71 and 72 in the drive unit 7 of the third embodiment, and the control unit 81 is the object M. The actuators 71 and 72 are controlled to vibrate the mirror. The control unit 81 includes an input unit 83 having a plurality of buttons for inputting control signals. Each button includes vertical movement buttons 8a and 8b for rotating (tilting) the mirror surface of the object M (mirror) up and down, and left and right movement buttons 8c and 8d for rotating the mirror surface to the left and right (pan movement) And a vibration mode button 8e for vibrating the mirror. When the user of driving device 7 presses each button, a control signal corresponding to each button is transmitted to control unit 81, and control unit 81 controls the power from power supply unit 82 based on the control signal. The actuator 71, 72 is then operated to operate. For example, when the vibration mode button 8 e is pressed, the control unit 81 causes the one or both of the actuators 71 and 72 to reciprocate (vibration mode operation) at a predetermined cycle, thereby the target M Vibrate the mirror. The vibration mode button 8 e is, for example, a toggle switch, and when pressed again, the vibration mode is stopped. The vibration mode is an operation mode in which the time average attitude of the object M does not change. According to the drive device 8 of this modification, for example, raindrops are repelled by the vibration of the mirror surface in the vibration mode, and the side mirror can be easily seen on a rainy day.
 また、この振動モードは、上述した第1および第2の実施形態やそれらの変形例、またはこれら以外の応用例においても同様に適用して実現することができる。また、例えば、屋外照明装置の発光体の表面や、照明光の光路中に配置された防塵や防雨用のカバーの表面についた水滴を振動によって落とすように、発光体やカバーに振動を発生させる駆動源としてインパクトアクチュエータを備えることができる。これらのインパクトアクチュエータは、発光体やカバーを含む照明装置の姿勢制御用の駆動装置を構成するもので共用してもよく、別途に振動モード発生用に専用に設けたものでもよい。 Also, this vibration mode can be similarly applied and realized in the above-described first and second embodiments, their modifications, or other applications. In addition, for example, vibration is generated on the light emitter or the cover so that water droplets adhering to the surface of the light emitter of the outdoor lighting device or the surface of the dustproof or rainproof cover disposed in the light path of the illumination light are dropped by vibration. An impact actuator can be provided as a driving source for driving the motor. These impact actuators may constitute a drive device for attitude control of the illumination device including the light emitter and the cover, and may be shared, or may be separately provided exclusively for vibration mode generation.
 (各実施形態に適用されるさらに他のインパクトアクチュエータ)
 図29、図30、図31は、中立点復帰式のインパクトアクチュエータ3を示す。これらのアクチュエータは、上述した第1乃至第3の実施形態およびそれらの変形例に適用することができる。このアクチュエータ3は、図29に示すように、電磁コイル31と、その両端に配置したステータ35aと、これらの電磁コイル31およびステータ35aの中心軸上を往復移動する軸棒31aに一体化されて成る移動質量体3aと、を備えて構成されている。移動質量体3aは、電磁コイル31およびステータ35aに対して相対運動を行う。移動質量体3aは、軸棒31aと、各ステータ35aの内径側に配置された2つの永久磁石33と、両永久磁石33間に挿入された鉄心35bと、両永久磁石33の外側に配置されたヨーク35cと、2つの衝突頭片37と、衝撃増強錘36と、を備えている。一方のヨーク35cには衝突頭片37が直接接して配置され、他方のヨーク35cには衝突頭片37を介在させて他の衝突頭片37が配置されている。また、アクチュエータ3は、電磁コイル31、ステータ35a、および移動質量体3aを内蔵する外筒(シールドケース38)と、シールドケース38の両端に配置されて軸棒31aを軸支する軸受板39とをさらに備えている。電磁コイル31およびステータ35aはシールドケース38の内壁に固定されている。なお、図29は、電磁コイル31が通電されていない状態を示している。この状態において、移動質量体3aは、永久磁石33、鉄心35b、ヨーク35c、およびステータ35aによって生じる磁場に起因する引力によって中立点に位置している。
(Still another impact actuator applied to each embodiment)
29, 30, and 31 show a neutral point return type impact actuator 3. These actuators can be applied to the first to third embodiments described above and their modifications. As shown in FIG. 29, the actuator 3 is integrated with an electromagnetic coil 31, a stator 35a disposed at both ends thereof, and a shaft 31a reciprocating on the central axes of the electromagnetic coil 31 and the stator 35a. And a moving mass body 3a. The moving mass 3a moves relative to the electromagnetic coil 31 and the stator 35a. The moving mass 3a is disposed on the outside of both permanent magnets 33, an axial rod 31a, two permanent magnets 33 disposed on the inner diameter side of each stator 35a, an iron core 35b inserted between both permanent magnets 33, and A yoke 35c, two collision heads 37, and an impact weight 36 are provided. The collision head piece 37 is disposed in direct contact with one yoke 35c, and the other collision head piece 37 is disposed in the other yoke 35c with the collision head piece 37 interposed. The actuator 3 also includes an outer cylinder (shield case 38) incorporating the electromagnetic coil 31, the stator 35a, and the moving mass 3a, and a bearing plate 39 disposed at both ends of the shield case 38 for supporting the shaft rod 31a. Are further equipped. The electromagnetic coil 31 and the stator 35 a are fixed to the inner wall of the shield case 38. FIG. 29 shows a state in which the electromagnetic coil 31 is not energized. In this state, the moving mass 3a is located at the neutral point due to the attraction caused by the magnetic field generated by the permanent magnet 33, the iron core 35b, the yoke 35c, and the stator 35a.
 軸棒31aは、電磁コイル31およびステータ35aと同心である。移動質量体3aの各構成物は、軸棒31aと同心になるように配置されて、軸棒31aと一体化されている。鉄心35bは、その長さが電磁コイル31の長さと同等である。言い換えれば、鉄心35bは、両ステータ35aの間に収まる長さを有している。また、鉄心35bは、円筒の両端部に鍔部を備えた形状を有し、中央部の径が両端部の径よりも小さく形成されている。これにより、鉄心35bの両端部とこれらに近接する各ステータ35aとの間において磁気抵抗が低くなるような磁気回路が形成される。各ステータ35aは磁性体である。永久磁石33は、リング形状を有し、その厚み方向(中心軸方向)に磁化されている。また、2つの永久磁石33は、互いに磁極の方向を逆向きにして鉄心35bの両端に配置されている。永久磁石33の厚みはステータ35aの厚みよりも薄く、永久磁石33およびヨーク35cの厚みの合計はステータ35aの厚みよりも厚い。 The shaft 31a is concentric with the electromagnetic coil 31 and the stator 35a. Each component of the moving mass 3a is disposed concentrically with the shaft 31a and integrated with the shaft 31a. The iron core 35 b has a length equal to the length of the electromagnetic coil 31. In other words, the iron core 35b has a length that fits between the two stators 35a. Moreover, the iron core 35b has a shape provided with a collar part in the both ends of a cylinder, and the diameter of a center part is formed smaller than the diameter of both ends. As a result, a magnetic circuit is formed such that the magnetic resistance becomes low between the two end portions of the iron core 35b and the respective stators 35a adjacent thereto. Each stator 35a is a magnetic body. The permanent magnet 33 has a ring shape and is magnetized in the thickness direction (central axis direction). Also, the two permanent magnets 33 are disposed at both ends of the iron core 35b with the directions of the magnetic poles being opposite to each other. The thickness of the permanent magnet 33 is thinner than the thickness of the stator 35a, and the total thickness of the permanent magnet 33 and the yoke 35c is thicker than the thickness of the stator 35a.
 図29に示す中立状態において、2つの衝突頭片37とこれらに対向する各軸受板39との距離Dは、互いに等距離とされている。軸受板39は、衝突頭片37によって衝突される被衝突体であり、軸棒31aに一体化されて成る移動質量体3aの、電磁コイル31およびステータ35aに対する相対運動の移動範囲を制限する。すなわち、移動質量体3aの可動範囲は距離Dの2倍である(図30参照)。この距離Dは、移動質量体3aがいずれかの衝突頭片37に衝突した位置から、移動質量体3aが永久磁石33とステータ35aとの相互の引力によって中立点に復帰することができる距離以内に設定されている。 In the neutral state shown in FIG. 29, the distances D between the two collision head pieces 37 and the bearing plates 39 opposed thereto are equal to each other. The bearing plate 39 is an impacted object collided by the collision head 37, and limits the moving range of the relative movement of the moving mass 3a integrated with the shaft 31a with respect to the electromagnetic coil 31 and the stator 35a. That is, the movable range of the movable mass 3a is twice the distance D (see FIG. 30). This distance D is within a distance within which the moving mass 3a can return to the neutral point by the mutual attraction of the permanent magnet 33 and the stator 35a from the position where the moving mass 3a collides with any of the collision head pieces 37. It is set to.
 図30によってアクチュエータ3の動作原理を説明する。電磁コイル31に一定方向に電流を流すと、例えば、図30(a)に磁力線Bで模式的に示すように、磁場が発生する。この電磁コイル31の磁場は、2つの永久磁石33の一方による磁場を弱め、他方による磁場を強める。従って、電磁コイル31が発生する磁場によって、永久磁石33、鉄心35b、およびヨーク35cに作用する磁力に非対称性が生じ、移動質量体3aは、白抜き矢印で示すように移動する。電磁コイル31に前記一定方向とは逆方向に電流を流すと、図30(b)に示すように、移動質量体3aは、前記とは逆方向に移動する。また、図30(a)(b)の状態において、コイル電流を切って電磁コイル31による磁場を除くと、移動質量体3aは、永久磁石33とステータ35aとの相互の引力によって、図29に示すように、中立点に復帰する。この場合に、復帰を早めるように、電磁コイル2に適宜の電流を流すようにしてもよい。 The operating principle of the actuator 3 will be described with reference to FIG. When a current is supplied to the electromagnetic coil 31 in a predetermined direction, a magnetic field is generated, for example, as schematically shown by magnetic lines of force B in FIG. The magnetic field of this electromagnetic coil 31 weakens the magnetic field by one of the two permanent magnets 33 and strengthens the magnetic field by the other. Therefore, the magnetic field generated by the electromagnetic coil 31 causes asymmetry in the magnetic force acting on the permanent magnet 33, the iron core 35b, and the yoke 35c, and the moving mass 3a moves as indicated by the outline arrow. When a current is supplied to the electromagnetic coil 31 in the direction opposite to the predetermined direction, as shown in FIG. 30 (b), the movable mass 3a moves in the direction opposite to the above. Further, in the state of FIGS. 30 (a) and 30 (b), when the coil current is turned off and the magnetic field due to the electromagnetic coil 31 is removed, the moving mass 3a receives the mutual attractive force of the permanent magnet 33 and the stator 35a. As shown, return to the neutral point. In this case, an appropriate current may be supplied to the electromagnetic coil 2 so as to accelerate the recovery.
 図31によってアクチュエータ3の動作を説明する。図31(a)に示すように、例えば水平な面Sに載置した移動対象物Mに駆動装置1を取り付ける。具体的には、例えば、シールドケース38を移動対象物Mに固定する。移動方向を、図の左方、X方向とし、軸棒31の軸方向がX方向とされている。この図の状態では、電磁コイル31は励磁されてなく、移動質量体3aは、中立点にあり、移動対象物Mの左方先端は位置x0にある。電磁コイル31に電流を流すと、図31(b)に示すように、移動質量体3aが移動して軸受板39に衝突し、その衝撃によってアクチュエータ3と共に移動対象物Mが移動し、その先端は位置x1に至る。衝撃の大きさは、電磁コイル31に流す電流の大きさとその立ち上がりの速さに依存し、より急激かつより大電流を流すことにより、より大きな衝撃を発生させることができる。衝突後に電磁コイル31に流す電流を停止すると、アクチュエータ3の内部の移動質量体3aが、図31(c)に示すように、中立点に復帰する。この復帰移動は、永久磁石33の磁気力によってゆっくり行われるので、移動対象物Mと摩擦面Sとの間の最大静止摩擦力を超えるような反動はなく、移動対象物Mの逆向きの移動はない。言い換えれば、永久磁石33の磁気力調整や面Sとの摩擦力調整などの条件設定を行うことにより、中立点への復帰の際に移動対象物Mの移動が発生しないようにするのである。以下同様に、電磁コイル31に再び電流を流すことにより、図31(d)に示すように、移動対象物Mの先端がさらに移動して位置x2に至る。アクチュエータ3は、このような動作の繰り返しによって、アクチュエータ3によって押されたり、または、引かれたりするように配置された移動対象物Mを、間欠的に移動させることができる。 The operation of the actuator 3 will be described with reference to FIG. As shown in FIG. 31A, for example, the drive device 1 is attached to a moving object M placed on a horizontal surface S. Specifically, for example, the shield case 38 is fixed to the moving object M. The moving direction is the left in the figure, the X direction, and the axial direction of the shaft rod 31 is the X direction. In the state of this figure, the electromagnetic coil 31 is not excited, the moving mass 3a is at the neutral point, and the left end of the moving object M is at the position x0. When a current is supplied to the electromagnetic coil 31, as shown in FIG. 31 (b), the moving mass 3a moves and collides with the bearing plate 39, and the impact moves the moving object M together with the actuator 3, and the tip thereof Leads to position x1. The magnitude of the impact depends on the magnitude of the current flowing through the electromagnetic coil 31 and the speed of its rise, and by passing a more rapid and larger current, a larger impact can be generated. When the current flowing to the electromagnetic coil 31 is stopped after the collision, the moving mass 3a inside the actuator 3 returns to the neutral point as shown in FIG. 31 (c). Since this return movement is performed slowly by the magnetic force of the permanent magnet 33, there is no reaction that exceeds the maximum static friction force between the movement object M and the friction surface S, and the reverse movement of the movement object M There is no. In other words, by setting the conditions such as the adjustment of the magnetic force of the permanent magnet 33 and the adjustment of the frictional force with the surface S, the movement of the object to be moved M is prevented from occurring when returning to the neutral point. Similarly, as shown in FIG. 31 (d), the tip of the moving object M is further moved to reach the position x2 by supplying a current to the electromagnetic coil 31 again. The actuator 3 can intermittently move the moving object M arranged to be pushed or pulled by the actuator 3 by repeating such an operation.
 なお、本発明は、上記構成に限られることなく種々の変形が可能である。例えば、対象物Mを水平回転軸回りに支持する際に、水平回転軸回りの自重による回転モーメントが軸の両側で釣り合うようにバランスさせておく。これにより、回転角度を維持するための摩擦力を小さくすることができ、また、より小型で低パワーのインパクトアクチュエータを用いることができる。駆動装置1,2,10等は、天井とは限らず、壁面の他、任意の位置に取り付けることができ、その姿勢も任意の方向に向けて取り付けることができる。また、インパクトアクチュエータを用いる駆動装置は、スポットライト、ダウンライトなどの照明の照射方向、カメラレンズの方向、アンテナの角度調節、自動車のサイドミラーの調節など、向きを調整したい対象物(製品)に適用することができる。インパクトアクチュエータは小電力で制御が容易であり、リモートコントロールによって駆動装置を容易に制御することができ、従って、リモートコントロールによって対象物の向きを容易に制御することができる。 The present invention is not limited to the above-described configuration, and various modifications are possible. For example, when supporting the object M around the horizontal rotation axis, the rotational moment due to its own weight around the horizontal rotation axis is balanced so as to balance on both sides of the axis. This makes it possible to reduce the frictional force for maintaining the rotation angle, and allows the use of a smaller, low-power impact actuator. The driving devices 1, 2, 10 and the like are not limited to ceilings, and can be attached to any position other than a wall surface, and the posture can also be attached in any direction. In addition, drive devices that use impact actuators are targets (products) whose direction you want to adjust, such as the direction of illumination of spotlights, downlights, etc., the direction of camera lenses, adjustment of antenna angles, adjustment of side mirrors of cars, etc. It can apply. The impact actuator is small in power and easy to control, and the remote control can easily control the drive device, and thus the remote control can easily control the orientation of the object.
 本願は日本国特許出願2010-31841、および日本国特許出願2010-182756に基づいており、その内容は、上記特許出願の明細書及び図面を参照することによって結果的に本願発明に合体されるべきものである。 This application is based on Japanese Patent Application No. 2010-31841 and Japanese Patent Application No. 2010-182756, the contents of which are to be incorporated into the present invention as a result by referring to the specification and drawings of the above-mentioned patent application. It is a thing.
 1,2,10  駆動装置
 11,12  インパクトアクチュエータ(アクチュエータ)
 21,22  インパクトアクチュエータ(アクチュエータ)
 23,24  インパクトアクチュエータ(アクチュエータ)
 3  インパクトアクチュエータ(アクチュエータ)
 43 ボルト(ネジ、圧接手段)
 45 弾性体(圧接手段)
 48 電磁石(圧接手段)
 49 永久磁石(圧接手段)
 61,62,67  駆動装置
 7,8  駆動装置
 70  ボールジョイント
 71,72  インパクトアクチュエータ(アクチュエータ)
 81  制御部
 M  対象物(照明装置、サイドミラー)
1, 2, 10 Drive 11, 12 Impact actuator (actuator)
21, 22 Impact actuator (actuator)
23, 24 Impact actuator (actuator)
3 Impact actuator (actuator)
43 bolt (screw, pressure contact means)
45 Elastic body (pressure contact means)
48 electromagnet (pressure contact means)
49 Permanent magnet (pressure contact means)
61, 62, 67 Drive 7, 8 Drive 70 Ball joint 71, 72 Impact actuator (actuator)
81 Control Unit M Object (Lighting device, side mirror)

Claims (11)

  1.  対象物を支持すると共に回転させることにより該対象物の姿勢を変える駆動装置において、
     対象物を傾斜自在に支持する傾斜機構と、
     前記傾斜機構を含む対象物を回転自在に支持する回転機構と、
     前記傾斜機構に衝撃力を与えて対象物の傾斜角度を変化させる傾斜用のインパクトアクチュエータと、
     前記回転機構の周方向に衝撃力を与えて対象物の回転角度を変化させる回転用のインパクトアクチュエータと、を備えることを特徴とする駆動装置。
    In the driving device which changes the posture of the object by supporting and rotating the object,
    A tilting mechanism for tiltably supporting the object;
    A rotation mechanism rotatably supporting an object including the tilt mechanism;
    An impact actuator for tilting that applies an impact force to the tilting mechanism to change the tilting angle of the object;
    And an impact actuator for rotation that applies an impact force in the circumferential direction of the rotation mechanism to change the rotation angle of the object.
  2.  前記傾斜機構と回転機構が2自由度のジンバル機構で構成されていることを特徴とする請求項1に記載の駆動装置。 The drive device according to claim 1, wherein the tilt mechanism and the rotation mechanism are configured by a gimbal mechanism having two degrees of freedom.
  3.  前記傾斜角度と回転角度は、前記傾斜機構と回転機構の各軸受部における摩擦力によって維持されており、各軸受部が前記摩擦力を発生させる圧接手段を備えていることを特徴とする請求項1または請求項2に記載の駆動装置。 The angle of inclination and the angle of rotation are maintained by the frictional force in each bearing portion of the inclining mechanism and the rotating mechanism, and each bearing portion is provided with pressure contact means for generating the frictional force. The driving device according to claim 1 or 2.
  4.  前記圧接手段は、ネジの締め付けトルクによって前記摩擦力を発生させることを特徴とする請求項3に記載の駆動装置。 The drive device according to claim 3, wherein the pressure contact means generates the frictional force by a tightening torque of a screw.
  5.  前記圧接手段は、弾性体を備え、その付勢力によって前記摩擦力を発生させることを特徴とする請求項3または請求項4に記載の駆動装置。 The drive device according to claim 3 or 4, wherein the pressure contact means includes an elastic body and generates the frictional force by its biasing force.
  6.  前記圧接手段は、電磁石を備え、その磁気力によって前記摩擦力を発生させることを特徴とする請求項3に記載の駆動装置。 The drive device according to claim 3, wherein the pressure contact means includes an electromagnet, and the frictional force is generated by the magnetic force.
  7.  前記圧接手段は、永久磁石を備え、その磁気力によって前記摩擦力を発生させることを特徴とする請求項3に記載の駆動装置。 The drive device according to claim 3, wherein the pressure contact means comprises a permanent magnet and generates the frictional force by its magnetic force.
  8.  前記圧接手段は、永久磁石と電磁石とを備え、これらの磁気力によって前記摩擦力を発生させることを特徴とする請求項3に記載の駆動装置。 The drive device according to claim 3, wherein the pressure contact means includes a permanent magnet and an electromagnet, and the magnetic force generates the frictional force.
  9.  前記傾斜用および回転用のインパクトアクチュエータを互いに並列配置して備えることを特徴とする請求項1乃至請求項8のいずれか一項に記載の駆動装置。 The drive device according to any one of claims 1 to 8, wherein the tilting and rotating impact actuators are disposed in parallel with each other.
  10.  前記傾斜機構および回転機構の対象物支持部が共用されたボールジョイントで構成されていることを特徴とする請求項1乃至請求項9のいずれか一項に記載の駆動装置。 The driving device according to any one of claims 1 to 9, characterized in that it is configured by a ball joint in which an object support portion of the tilting mechanism and the rotating mechanism is shared.
  11.  前記インパクトアクチュエータを制御する制御部を備え、
     前記制御部は、前記傾斜機構と回転機構とによって支持した対象物を振動させるように前記インパクトアクチュエータを制御することを特徴とする請求項1乃至請求項10のいずれか一項に記載の駆動装置。
    A control unit configured to control the impact actuator;
    The drive unit according to any one of claims 1 to 10, wherein the control unit controls the impact actuator to vibrate an object supported by the tilt mechanism and the rotation mechanism. .
PCT/JP2011/053275 2010-02-16 2011-02-16 Drive device WO2011102381A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010031841 2010-02-16
JP2010-031841 2010-02-16
JP2010-182756 2010-08-18
JP2010182756 2010-08-18

Publications (1)

Publication Number Publication Date
WO2011102381A1 true WO2011102381A1 (en) 2011-08-25

Family

ID=44482966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053275 WO2011102381A1 (en) 2010-02-16 2011-02-16 Drive device

Country Status (1)

Country Link
WO (1) WO2011102381A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247284A (en) * 2016-08-29 2016-12-21 安徽云图信息技术有限公司 It is automatically adjusted the control system of lighting sound
CN106354159A (en) * 2016-08-31 2017-01-25 江苏中利电子信息科技有限公司 Control method of wireless remote control system for police radar
WO2018156019A1 (en) * 2017-02-21 2018-08-30 Mci (Mirror Controls International) Netherlands B.V. Actuator mechanism
JP7479053B2 (en) 2020-11-13 2024-05-08 株式会社Mcs Light Unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269583A (en) * 1989-04-06 1990-11-02 Prima Meat Packers Ltd Micromanipulator
JPH0643040B2 (en) * 1988-12-28 1994-06-08 俊郎 樋口 Joint device
JPH08318482A (en) * 1995-05-19 1996-12-03 Nippondenso Co Ltd Hinge mechanism and micro manipulator using it
JPH10109284A (en) * 1996-10-03 1998-04-28 Denso Corp Micromanipulator and its driving method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643040B2 (en) * 1988-12-28 1994-06-08 俊郎 樋口 Joint device
JPH02269583A (en) * 1989-04-06 1990-11-02 Prima Meat Packers Ltd Micromanipulator
JPH08318482A (en) * 1995-05-19 1996-12-03 Nippondenso Co Ltd Hinge mechanism and micro manipulator using it
JPH10109284A (en) * 1996-10-03 1998-04-28 Denso Corp Micromanipulator and its driving method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247284A (en) * 2016-08-29 2016-12-21 安徽云图信息技术有限公司 It is automatically adjusted the control system of lighting sound
CN106354159A (en) * 2016-08-31 2017-01-25 江苏中利电子信息科技有限公司 Control method of wireless remote control system for police radar
CN106354159B (en) * 2016-08-31 2018-08-07 江苏中利电子信息科技有限公司 A kind of control method of police radar wireless remote-control system
WO2018156019A1 (en) * 2017-02-21 2018-08-30 Mci (Mirror Controls International) Netherlands B.V. Actuator mechanism
NL2018400B1 (en) * 2017-02-21 2018-09-17 Mci Mirror Controls Int Netherlands B V Adjustment instrument and method
CN110290978A (en) * 2017-02-21 2019-09-27 荷兰反光镜控制器国际有限公司 Actuator mechanism
US11590895B2 (en) 2017-02-21 2023-02-28 Mci (Mirror Controls International) Netherlands B.V. Actuator mechanism
JP7479053B2 (en) 2020-11-13 2024-05-08 株式会社Mcs Light Unit

Similar Documents

Publication Publication Date Title
US7804224B2 (en) Piezoelectric motor and piezoelectric motor system
JP5592800B2 (en) Magnetic spring system used in resonant motors
KR100872031B1 (en) Noncontact scanner using a magnetic actuator
JP2017506366A (en) Image stabilizer positioning device
WO2011102381A1 (en) Drive device
WO2011102365A1 (en) Drive device, and movement mechanism using drive device
US9823464B2 (en) Optical module for vibrating light beam
JP4897016B2 (en) Piezoelectric motor
JP4770448B2 (en) Actuator
JP2013005477A (en) Electrically driven runner
RU2429139C1 (en) Etching device (versions)
JP2013020589A (en) Apparatus moving system
CN107949522B (en) Satellite attitude control system
WO2013008738A1 (en) Inertial drive actuator
JP2005261173A (en) Reciprocating linear driver
JP4770447B2 (en) Multi-dimensional motion synthesis unit and actuator using the same
JP2008075796A (en) Magnetic transmission mechanism
WO2013069591A1 (en) Inertial drive actuator
WO2011102366A1 (en) Drive device, and movement mechanism using drive device
CN106483031B (en) Torsional vibration testing system and combined device
WO2013069596A1 (en) Inertial drive actuator
JP2007289911A (en) Resonance motor
JP2007120750A (en) Actuator
WO2021075342A1 (en) Actuator
TWI599149B (en) Vibration generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP