WO2021075342A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2021075342A1
WO2021075342A1 PCT/JP2020/038093 JP2020038093W WO2021075342A1 WO 2021075342 A1 WO2021075342 A1 WO 2021075342A1 JP 2020038093 W JP2020038093 W JP 2020038093W WO 2021075342 A1 WO2021075342 A1 WO 2021075342A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
actuator
curved surface
actuator according
operator
Prior art date
Application number
PCT/JP2020/038093
Other languages
French (fr)
Japanese (ja)
Inventor
圭一 平野
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2021075342A1 publication Critical patent/WO2021075342A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • This disclosure relates to actuators.
  • Robot devices that imitate the movements of living things by mechanical or electromagnetic mechanisms are widespread in various fields. It is desirable that the joints of such a robot device be composed of a mechanism having two or more degrees of freedom (Degree of Freedom: DoF) in order to imitate the complicated movement of an organism.
  • DoF Degree of Freedom
  • a mechanism having two or more degrees of freedom a mechanism in which another gimbal is provided inside a ring-shaped gimbal (that is, a hanging frame) via a bearing can be exemplified.
  • a mechanism by providing a rotary motor on the rotary shaft of each gimbal, it is possible to secure a degree of freedom according to the number of gimbals.
  • Patent Document 1 a multi-degree-of-freedom actuator that realizes two or more degrees of freedom without using a rotary motor has been studied.
  • the multi-degree-of-freedom actuator tends to have a complicated structure, a large size, or a heavy weight. Therefore, a smaller and lighter multi-degree-of-freedom actuator is desired.
  • the actuator according to the embodiment of the present disclosure can control the generation of a magnetic field, a stator having a concave curved surface, a rotor having a convex curved surface sliding with the concave curved surface, and the said one along the concave curved surface. It includes an electromagnetic portion in which at least three poles are arranged inside the stator, and an actuator provided inside the rotor and interacted with by the magnetic field generated by the electromagnetic portion.
  • the electromagnetic portion in which at least three poles are arranged along the concave curved surface of the stator and the actuated element provided inside the rotor are magnetically interacted with each other.
  • the rotor can be rotated.
  • the actuator according to the embodiment of the present disclosure can control the rotation of the rotor by controlling the generation of the magnetic field by each of the electromagnetic parts.
  • FIG. 1 is a schematic vertical sectional view showing the configuration of the actuator 10 according to the present embodiment.
  • the actuator 10 includes, for example, a stator 100 provided with a plurality of electromagnetic portions 110, and a rotor 200 provided with an operator 210 and an imaging unit 220. ..
  • the direction in which the stator 100 places the rotor 200 is defined as the z direction, and the plane perpendicular to the z direction is defined as the xy plane. Further, the vertical direction is the y direction facing FIG. 1, and the depth direction of the paper surface orthogonal to the y direction is the x direction.
  • the stator 100 is a member having a concave curved surface and holding the rotor 200 on the concave curved surface
  • the rotor 200 is a substantially spherical member having a convex curved surface sliding with the concave curved surface of the stator 100. is there.
  • the stator 100 may hold the rotor 200 slidably by the ball joint bearing structure. According to this, the stator 100 can rotatably hold the rotor 200.
  • the electromagnetic part 110 is an electromagnet that generates a magnetic field by energization, and is provided so that at least three poles or more are arranged inside the stator 100 along a concave curved surface.
  • the electromagnetic portion 110 is an electromagnet composed of a core 112 extending in the z direction toward a concave curved surface and a coil 111 wound around the core 112 along the extending direction of the core 112. May be good.
  • the core 112 may be made of an iron-based material such as silicon steel
  • the coil 111 may be made of an electric wire made of copper, a copper alloy, or the like.
  • the electromagnetic unit 110 can generate a magnetic interaction with the operator 210 by generating a magnetic field by energizing the coil 111.
  • the solenoid portion 110 provided with at least three poles exerts a magnetic interaction on the actuated element 210 provided in the rotor 200 rotatably held on the concave curved surface of the stator 100. Therefore, it is possible to generate a driving force for rotating the rotor 200.
  • the actuated element 210 is a member that receives magnetic interaction by the magnetic field generated by the electromagnetic unit 110, and is provided inside the rotor 200.
  • the operator 210 may be a member made of a soft magnetic material such as iron through which magnetic lines of force easily pass.
  • a reluctance force acts on the operator 210 due to the magnetic field from the electromagnetic unit 110, so that an attractive force attracted to the electromagnetic unit 110 that generated the magnetic field acts. Therefore, the rotor 200 including the operator 210 can receive a driving force for rotating with respect to the stator 100 by the magnetic field from the electromagnetic unit 110.
  • the imaging unit 220 is a uniform state of the sensing unit, and is provided on the rotor 200 to sense the surrounding environment. Specifically, the imaging unit 220 may be provided so as to image the outside of the rotor 200 at a position facing the operator 210 inside the rotor 200.
  • the imaging unit 220 may be various cameras such as a visible light camera, an infrared camera, or a polarized camera that images the surrounding environment.
  • the imaging unit 220 may be a distance measuring sensor such as a ToF (Time of Flight) sensor, a radar, or an ultrasonic sensor.
  • ToF Time of Flight
  • the end of the electromagnetic portion 110 facing the concave curved surface of the core 112 may be, for example, a curved surface along the concave curved surface of the stator 100.
  • the solenoid unit 110 efficiently guides the magnetic field lines of the generated magnetic field to the operator 210 by reducing the gap formed between the rotor 200 and the operator 210. Can be done.
  • the operator 210 may be provided in a shape that does not create a gap between the rotor 210 and the convex curved surface of the rotor 200. According to this, since the operator 210 can reduce the gap generated between the actuator 210 and the solenoid portion 110 provided in the stator 100, the magnetic field lines of the magnetic field generated in the solenoid portion 110 are efficiently taken in. be able to. That is, the electromagnetic unit 110 and the operator 210 are provided so that the gap generated between the solenoid unit 110 and the operator 210 is reduced, so that the magnetic interaction can be more efficiently applied to each other. it can.
  • FIG. 2 is a schematic vertical sectional view illustrating the rotation of the rotor 200 via the operator 210 by the magnetic field from the electromagnetic unit 110.
  • the upper electromagnetic part 110 facing FIG. 2 is designated by the reference numeral 110A
  • the lower electromagnetic part 110 facing FIG. 2 is designated by the reference numeral 110B. Is attached.
  • both the electromagnetic parts 110A and 110B are in a non-energized state, the operator 210 is assumed to exist at a neutral position between the electromagnetic parts 110A and 110B (left figure in FIG. 2).
  • the electromagnetic part 110A is energized (lower right figure of FIG. 2), the reluctance force due to the magnetic field generated by the electromagnetic part 110A acts on the operator 210, so that the operator 210 acts on the electromagnetic part 110A. Gravitate.
  • the rotor 200 rotates so as to face downward in FIG. 2.
  • the electromagnetic part 110B is energized (upper right figure of FIG.
  • the actuator 10 since the rotor 200 is rotatably held by the concave curved surface of the stator 100, the actuated element 210 provided inside the rotor 200 is moved along the concave curved surface. As a result, the rotor 200 can be rotated along the concave curved surface.
  • the rotor 200 can be rotated with two degrees of freedom by arranging the electromagnetic portions 110 along the concave curved surface at least three poles or more.
  • the x-axis extending in the depth direction of the paper surface facing FIG. 1 with the center point of the sphere when the convex curved surface of the rotor 200 is a spherical surface as the origin, and upward facing FIG.
  • the y-axis to be stretched is defined.
  • the actuator 10 arranges the electromagnetic portions 110 having three or more poles two-dimensionally along the concave curved surface in the rotation angle direction centered on the x-axis and the rotation angle direction centered on the y-axis.
  • a force can be applied from the electromagnetic part 110 to the actuated element 210. Therefore, the actuator 10 can rotate the rotor 200 with two degrees of freedom, that is, a rotation angle centered on the x-axis and a rotation angle centered on the y-axis.
  • FIG. 3 is a schematic top view showing the positional relationship between the electromagnetic portion 110 and the operator 210 in the xy plane.
  • the position of the operator 210 in FIG. 3 is a position when the rotor 200 is not rotating.
  • each of the electromagnetic portions 110 may be isotropically arranged with respect to the operator 210 provided in the rotor 200.
  • each of the electromagnetic portions 110 may be arranged at the position of the apex of an equilateral triangle having the operator 210 provided in the rotor 200 as the center of gravity. According to this, each of the electromagnetic portions 110 can generate an isotropic attractive force with respect to the operator 210.
  • the actuator 10 rotates by the magnetic interaction between the two-dimensionally arranged electromagnetic portions 110 having three or more poles and the actuated element 210 without providing a driving unit such as a rotary motor.
  • the child 200 can be rotated with two degrees of freedom. Therefore, the actuator 10 according to the present embodiment can rotate the rotor 200 with two degrees of freedom with a simpler configuration.
  • the actuator 10 according to the present embodiment since the rotor 200 has a simpler and lighter structure, the rotor 200 can be rotated with higher response and higher speed. Therefore, the actuator 10 according to the present embodiment can be suitably used for a sensing application that changes the observation field of view at high speed and with high response. For example, the actuator 10 according to the present embodiment can be suitably used for rotating a camera that imitates the eyeball of a human or an animal, or stabilizing the posture of a camera that is exposed to frequent shaking.
  • FIG. 4 is a vertical cross-sectional view schematically showing the configuration of the actuator 10A according to the present modification.
  • the actuator 10A includes, for example, a stator 100 provided with a plurality of electromagnetic portions 110, and a rotor 200A provided with an operator 210 and a mirror 230.
  • the actuator 10A according to this modification is different from the actuator 10 shown in FIG. 1 in that the rotor 200A has a substantially hemispherical shape and a mirror 230 is provided in place of the imaging unit 220.
  • the actuator 10A according to this modification is the same as the actuator 10 shown in FIG. 1, and therefore the description thereof will be omitted here.
  • the rotor 200A is provided, for example, in a substantially hemispherical shape having a convex curved surface that fits with the stator 100 on a part of the surface.
  • the surface opposite to the convex curved surface may be formed of either a curved surface or a flat surface as long as the region in contact with the stator 100 is formed of a convex curved surface.
  • the mirror 230 is a uniform state of the sensing unit, and is provided to guide the light of the surrounding environment to an external imaging device. Specifically, the mirror 230 is provided on a plane opposite to the convex curved surface of the rotor 200, and reflects light incident from the outside of the rotor 200A. The light reflected by the mirror 230 is guided to various cameras such as a visible light camera, an infrared camera, or a polarized camera provided outside the rotor 200A, and is used for sensing the surrounding environment.
  • various cameras such as a visible light camera, an infrared camera, or a polarized camera provided outside the rotor 200A, and is used for sensing the surrounding environment.
  • the size of the rotor 200A is reduced to about half as compared with the actuator 10 shown in FIG. 1, and the sensing unit mounted on the rotor 200A is lighter than the imaging unit 220. It becomes the mirror 230 of.
  • the actuator 10A according to the present modification can further reduce the mass of the rotor 200A. Therefore, the actuator 10A according to the present modification can rotate the rotor 200A with a higher response and a higher speed than the actuator 10 shown in FIG.
  • FIG. 5 is a schematic vertical sectional view showing the configuration of the actuator 20 according to the present embodiment.
  • the actuator 20 includes, for example, a stator 100 provided with a plurality of electromagnetic portions 110, and a rotor 200 provided with an operator 211 and an imaging unit 220. ..
  • the direction in which the stator 100 places the rotor 200 is defined as the z direction, and the plane perpendicular to the z direction is defined as the xy plane. Further, the vertical direction is defined as the y direction facing FIG. 5, and the depth direction of the paper surface orthogonal to the y direction is defined as the x direction.
  • the actuator 20 according to the first embodiment is different from the actuator 10 according to the first embodiment in that the operator 211 is made of a hard magnetic material instead of a soft magnetic material.
  • the actuator 20 according to the present embodiment is the same as the actuator 10 according to the first embodiment, and thus the description thereof will be omitted here.
  • the operator 211 is made of a hard magnetic material as described above.
  • the actuated element 211 may be a permanent magnet such as an alnico magnet, a neodymium magnet, or a ferrite magnet in which one of the magnetic poles is directed toward the convex curved surface of the rotor 200.
  • an attractive force or a repulsive force that is, Lorentz force
  • the actuator 20 can rotate the rotor 200 provided with the actuated element 211 with respect to the stator 100 by the Lorentz force.
  • FIG. 5 shows an example in which the operator 211 is provided so that the north pole faces the convex curved surface of the rotor 200, but the actuator 20 according to the present embodiment is not limited to such an example.
  • the operator 211 may be provided so that the S pole faces a convex curved surface.
  • the actuator 20 according to the present embodiment since the operator 211 is made of a hard magnetic material instead of a soft magnetic material, not only an attractive force but also a repulsive force is generated between the electromagnetic portion 110 and the operator 211. be able to. According to this, since the actuator 20 according to the present embodiment can apply a complicated force from the electromagnetic unit 110 to the operator 211, the position of the operator 211 can be controlled more highly. Further, the actuator 20 according to the present embodiment prevents the actuated element 211 from rotating to a position where it is difficult for the magnetic interaction from the electromagnetic unit 110 to act (that is, a position where a deadlock state occurs). can do.
  • the actuator 20 since a magnetic field is constantly generated from the actuated element 211, the actuated element 211 and the core 112 of the electromagnetic unit 110 are connected even when the electromagnetic part 110 is in a non-energized state. Magnetic interactions can occur between them. According to this, in the actuator 20 according to the present embodiment, the position of the rotor 200 can be fixed even when the electromagnetic portion 110 is in a non-energized state, so that the rotor 200 unintentionally rotates. Can be prevented.
  • FIG. 6 is a schematic vertical sectional view illustrating the rotation of the rotor 200 in the present embodiment.
  • the upper electromagnetic part 110 faces FIG. 6 with a reference numeral 110A
  • the lower electromagnetic part 110 facing FIG. 6 is designated with a 110B reference numeral. Is attached. It is assumed that the operator 211 is provided with the N pole facing the convex curved surface of the rotor 200.
  • both the electromagnetic parts 110A and 110B are in a non-energized state, the operator 211 is assumed to exist at a neutral position between the electromagnetic parts 110A and 110B (left figure in FIG. 6).
  • a magnetic field is generated in the solenoid portion 110A so that the end on the concave curved surface side becomes the S pole (lower right figure in FIG. 6)
  • the operator 211 is acted on because an attractive force acts on the solenoid portion 110A.
  • the child 211 is attracted to the electromagnetic unit 110A.
  • the rotor 200 rotates so as to face downward with reference to FIG.
  • the solenoid portion 110B supports the rotation of the rotor 200 by generating a magnetic field in which the end portion on the concave curved surface side becomes an N pole and applying a repulsive force to the solenoid portion 110B on the operator 211. May be good.
  • a magnetic field is generated in the solenoid portion 110B so that the end portion on the concave curved surface side becomes the S pole (upper right figure in FIG. 6)
  • an attractive force acts on the operator 211 on the solenoid portion 110B.
  • the operator 211 is attracted to the electromagnetic part 110B.
  • the rotor 200 rotates so as to face upward with respect to FIG.
  • the solenoid portion 110A supports the rotation of the rotor 200 by generating a magnetic field in which the end portion on the concave curved surface side becomes the S pole and applying a repulsive force to the solenoid portion 110A on the operator 211. May be good.
  • the actuator 20 according to the present embodiment can rotate the rotor 200 in the same manner as the actuator 10 according to the first embodiment even when a hard magnetic material is used for the operator 211. is there.
  • FIG. 7 is a schematic vertical sectional view showing a first configuration example of the actuator 31 according to the present embodiment.
  • FIG. 8 is a schematic vertical sectional view showing a second configuration example of the actuator 32 according to the present embodiment.
  • the actuator according to the present embodiment further enhances the degree of freedom and controllability of rotation of the rotor 200 by giving the operator 212 and 213 multiple polarities in the in-plane direction of the concave curved surface of the rotor 200. It is a thing.
  • the direction in which the stator 100 places the rotor 200 is defined as the z direction, and the plane perpendicular to the z direction is defined as the xy plane.
  • the vertical direction is defined as the y direction facing FIG. 7 or FIG. 8
  • the depth direction of the paper surface orthogonal to the y direction is defined as the x direction.
  • the x-axis extending in the depth direction of the paper surface facing FIG. 7 or FIG.
  • a y-axis extending upward is defined.
  • the origin is perpendicular to the xy plane including the x-axis and the y-axis, and the rotor 200 extends in the direction from the stator 100 toward the rotor 200.
  • the z-axis Define the z-axis.
  • the actuator 31 of the first configuration example includes, for example, a stator 100 provided with an electromagnetic unit array 120 in which a plurality of electromagnetic units 110 are arranged in an array, an operator 212, and an imaging unit. It includes a rotor 200 provided with 220.
  • the actuated element 212 is a member that receives magnetic interaction by the magnetic field generated by the electromagnetic part array 120, and is provided inside the rotor 200.
  • the operator 212 may be a member made of a soft magnetic material such as iron through which magnetic lines of force easily pass.
  • the operator 212 is provided in a shape having two or more salient poles that are convex toward the convex curved surface of the rotor 200. According to this, the solenoid unit array 120 can also apply attractive forces in different directions or magnitudes in the plane of the convex curved surface of the rotor 200 to each of the salient poles of the operator 212.
  • the rotor 200 provided with the actuated element 212 can not only rotate in two degrees of rotation centered on the x-axis and a rotation angle centered on the y-axis, but also rotates on the z-axis. It can also rotate in the direction of the center of rotation. Therefore, the actuator 10 can rotate the rotor 200 with three degrees of freedom: a rotation angle centered on the x-axis, a rotation angle centered on the y-axis, and a rotation angle centered on the z-axis.
  • the actuator 31 can cause the rotor 200 to perform more complicated rotation.
  • the actuator 32 of the second configuration example includes, for example, a stator 100 provided with an electromagnetic unit array 120 in which a plurality of electromagnetic units 110 are arranged in an array, an operator 213, and an imaging unit. It includes a rotor 200 provided with 220.
  • the actuated element 213 is provided with a hard magnetic material that functions as a permanent magnet such as an alnico magnet, a ferrite magnet, or a neodymium magnet.
  • the operator 213 is provided so that both magnetic poles face each other in parallel toward the convex curved surface of the rotor 200.
  • the solenoid unit array 120 can also apply attractive or repulsive forces in different directions or magnitudes in the plane of the convex curved surface of the rotor 200 to each of the magnetic poles of the actuated element 213.
  • the rotor 200 provided with the actuated element 213 can not only rotate with two degrees of rotation centered on the x-axis and a rotation angle centered on the y-axis, but also rotates on the z-axis. It can also rotate in the direction of the center of rotation. Therefore, the actuator 10 can rotate the rotor 200 with three degrees of freedom: a rotation angle centered on the x-axis, a rotation angle centered on the y-axis, and a rotation angle centered on the z-axis.
  • the actuator 32 can perform more complicated rotation with respect to the rotor 200.
  • FIG. 9 is a top view showing the configuration of the solenoid section array 120.
  • the solenoid section array 120 may be configured by regularly arranging a plurality of solenoid sections 110.
  • the solenoid section array 120 may be configured by arranging a plurality of solenoid sections 110 in a hexagonal close-packed arrangement. According to this, since the actuator according to the present embodiment can control the rotation of the rotor 200 by each of the electromagnetic units 110 arranged in the electromagnetic unit array 120, the rotation of the rotor 200 is highly advanced. Can be controlled to.
  • the arrangement pattern of the electromagnetic parts 110 in the electromagnetic part array 120 is not limited to the hexagonal close-packed arrangement shown in FIG.
  • the arrangement pattern of the electromagnetic unit 110 may be, for example, a four-way grid pattern, or a pattern in which adjacent rows are shifted by half a pitch from the four-way grid pattern.
  • FIG. 10 is a schematic top view showing the configuration of the electromagnetic part array 121 included in the actuator according to the first modification.
  • the electromagnetic part 110 may be configured by winding the core 112 with a plurality of coils 111.
  • the solenoid unit 110 may be configured by winding the cores 112 in an overlapping manner with a plurality of coils 111 that wind the plurality of adjacent cores 112 together.
  • the solenoid portion 110 is configured by overlapping one core 112 with three different coils 111 wound along the outer circumference of the three cores 112 arranged at the positions of the vertices of a triangle. May be done.
  • the electromagnetic unit 110 does not have to be provided so that the core 112 and the coil 111 have a one-to-one correspondence.
  • the core 112 may be wound around a plurality of coils 111.
  • the coil 111 may wind a plurality of cores 112. If it is established as an electromagnet, the winding method of the coil 111 with respect to the core 112 can take various variations.
  • a magnetic field can be generated all at once in a plurality of cores 112 wound by the same coil 111. Therefore, in the actuator according to this modification, the rate of change of the magnetic field in the in-plane direction of the concave curved surface of the stator 100 can be moderated, so that the actuators 212 and 213 are suppressed from excessively reacting to the magnetic field. can do.
  • the actuator according to this modification since one core 112 is wound by a plurality of coils 111, the strength of the magnetic field generated in the core 112 is controlled stepwise by each of the winding coils 111. Can be done. According to this, since the actuator according to the present modification can generate a more complicated magnetic field, the rotation of the rotor 200 can be controlled to a higher degree.
  • FIG. 11 is a vertical cross-sectional view showing the configuration of the actuator according to the second modification.
  • FIG. 12 is a schematic top view showing the configuration of the electromagnetic parts arrays 122 and 123 included in the actuator according to the second modification.
  • the actuator 33 includes, for example, a stator 100 provided with electromagnetic unit arrays 122 and 123 in which a plurality of electromagnetic unit 110s are arranged, and a rotor provided with an operator 210 and an imaging unit 220. It includes 200 and a maintenance unit 300.
  • the electromagnetic unit arrays 122 and 123 are configured by regularly arranging a plurality of electromagnetic unit 110s in different regions.
  • the solenoid unit array 122 is configured by arranging a plurality of solenoid units 110 in a two-dimensional manner in a periodic arrangement, and is used, for example, to rotate the rotor 200 when the field of view of the imaging unit 220 is changed.
  • the electromagnetic unit array 123 is configured by arranging a plurality of electromagnetic units 110 in a predetermined direction, and is used, for example, to rotate the imaging unit 220 to a position corresponding to the maintenance unit 300.
  • the maintenance unit 300 performs maintenance-related operations such as removing stains on the lens of the imaging unit 220, for example.
  • the maintenance unit 300 is provided, for example, at a position outside the target field of view of sensing by the imaging unit 220.
  • the region where the electromagnetic unit arrays 122 and 123 are provided does not have to be isotropic and can be arbitrarily set.
  • the electromagnetic unit array 123 may be provided in which the electromagnetic unit 110 is extended in one direction and arranged so as to correspond to the specific angle.
  • FIG. 13 is a schematic vertical sectional view showing the configuration of the actuator 40 according to the present embodiment.
  • the actuator 40 includes, for example, a stator 100 provided with a plurality of electromagnetic portions 110, a rotor 200 provided with an operator 210 and an imaging unit 220, and an encoder. It is equipped with 400.
  • the actuator 40 according to the present embodiment may be an actuator in which the rotor 200 rotates with two degrees of freedom, as shown in the third embodiment.
  • the rotor 200 may be an actuator capable of rotating with three degrees of freedom.
  • the direction in which the stator 100 places the rotor 200 is defined as the z direction, and the plane perpendicular to the z direction is defined as the xy plane. Further, the vertical direction is defined as the y direction facing FIG. 13, and the depth direction of the paper surface orthogonal to the y direction is defined as the x direction.
  • the actuator 40 according to the present embodiment is different from the actuators according to the first to third embodiments in that it further includes an encoder 400 that detects the direction and angle of rotation of the rotor 200.
  • the actuator 40 according to the present embodiment is the same as the actuator 40 according to the first to third embodiments, and thus the description thereof will be omitted here.
  • the encoder 400 is a sensor that specifies the coordinates on the convex curved surface of the rotor 200.
  • the encoder 400 may be a sensor that acquires information for specifying the absolute coordinates on the convex curved surface of the rotor 200 by sensing the convex curved surface of the rotor 200. Therefore, the actuator 40 according to the present embodiment can feedback control the rotation of the rotor 200 based on the coordinates on the convex curved surface specified by the encoder 400. Further, the actuator 40 according to the present embodiment can grasp the rotation direction and rotation angle of the rotor 200 with higher accuracy based on the coordinates on the convex curved surface specified by the encoder 400. become. Therefore, the actuator 40 according to the present embodiment can control the rotation of the rotor 200 with higher accuracy.
  • the following method can be exemplified as a method for detecting the absolute coordinates on the convex curved surface of the rotor 200.
  • the hue corresponding to an arbitrary color space for example, CIELAB color space
  • the hue of the rotor 200 is detected by the encoder 400 to detect the rotor.
  • Absolute coordinates on 200 convex surfaces can be detected.
  • the absolute coordinates of the convex curved surface of the rotor 200 can be detected by rotating the rotor 200 using a gimbal mechanism and providing an absolute rotary encoder on each rotation axis.
  • the encoder 400 may be a sensor that acquires information for specifying relative coordinates on the convex curved surface of the rotor 200 by sensing the convex curved surface of the rotor 200.
  • the encoder 400 may be a sensor that detects the rotation direction and rotation angle of the rotor 200 from the initial state. Even in such a case, since the actuator 40 according to the present embodiment can feedback-control the rotation of the rotor 200, it is possible to control the rotation of the rotor 200 with higher accuracy. ..
  • FIGS. 14 to 16 are explanatory views schematically showing an object to which the actuator according to the first to fourth embodiments of the present disclosure is applied.
  • the actuators according to the first to fourth embodiments of the present disclosure can be used to control the camera 2 mounted on the eyeball of the humanoid robot 1.
  • the actuators according to the first to fourth embodiments of the present disclosure can operate the camera 2 mounted on the eyeball of the humanoid robot 1 with high response and high speed, similarly to the human eyeball.
  • the actuators according to the first to fourth embodiments of the present disclosure are used to control the camera 2 corresponding to the eyeball, so that the line of sight is directed to an arbitrary position from a wide-angle field of view with respect to the camera 2. It is possible to perform behaviors such as zooming at high speed.
  • the humanoid robot 1 by mounting the camera 2 at a position corresponding to the eyeball, it becomes possible to easily perform stereoscopic recognition of an object by a stereo camera.
  • the camera 2 mounted at a position corresponding to the eyeball can also be tilted, as in the case of a human.
  • the actuators according to the first to fourth embodiments of the present disclosure can be used for controlling the object recognition camera 4 mounted on the flying object 3 such as a drone.
  • the actuators according to the first to fourth embodiments of the present disclosure make the object recognition camera 4 highly responsive and high-speed so as to offset the shaking of the flying object 3 due to wind or the like or the body tilt of the flying object 3 during flight. It can be rotated. Therefore, according to the actuators according to the first to fourth embodiments of the present disclosure, the object recognition camera 4 mounted on the flying object 3 can perform more stable imaging and object recognition.
  • the actuators according to the first to fourth embodiments of the present disclosure can be used for rotating the object recognition camera mounted on the quadruped walking robot 5.
  • the actuator according to the first to fourth embodiments of the present disclosure can rotate the object recognition camera with high response and high speed so as to offset the shaking of the quadruped walking robot 5. Therefore, according to the actuators according to the first to fourth embodiments of the present disclosure, the object recognition camera mounted on the quadruped walking robot 5 can perform more stable imaging and object recognition. Therefore, the quadruped walking robot 5 can stably walk on rough terrain and the like.
  • the terms used in this specification include those used only for convenience of explanation and not limiting the configuration and operation.
  • the terms “right”, “left”, “top”, and “bottom” only indicate the direction on the referenced drawing.
  • the terms “inside” and “outside” indicate a direction toward the center of the attention element and a direction away from the center of the attention element, respectively. The same applies to terms similar to these and terms having a similar purpose.
  • the technology according to the present disclosure can also have the following configuration.
  • Each 210 can be made to interact magnetically. Therefore, according to the technique according to the present disclosure, it is possible to provide an actuator that realizes two or more degrees of freedom with a simpler mechanism.
  • the effects produced by the techniques according to the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described in the present disclosure.
  • the rotor has a substantially spherical shape or a substantially hemispherical shape.
  • each core of the electromagnet has a shape along the curved surface shape of the concave curved surface.
  • the core of the electromagnetic part is wound by one coil at a time.
  • each of the cores of the electromagnetic part is wound by a plurality of coils.
  • each of the electromagnetic portions is arranged in a hexagonal close-packed arrangement.

Abstract

An actuator according to an embodiment of the present disclosure is provided with: a stator which has a concave surface; a rotor which has a convex surface that slides on the concave surface; an electromagnetic unit which is capable of controlling the generation of a magnetic field and in which at least three poles are arranged inside the stator and along the concave surface; and an acted-on part which is provided inside the rotor and which receives an interaction due to the magnetic field generated by the electromagnetic unit.

Description

アクチュエータActuator
 本開示は、アクチュエータに関する。 This disclosure relates to actuators.
 機械的又は電磁的な機構によって生物の動作を模倣するロボット装置が様々な分野で普及している。このようなロボット装置の関節は、生物の複雑な動作を模倣するために、2以上の自由度(Degree of Freedom:DoF)を有する機構で構成されることが望ましい。 Robot devices that imitate the movements of living things by mechanical or electromagnetic mechanisms are widespread in various fields. It is desirable that the joints of such a robot device be composed of a mechanism having two or more degrees of freedom (Degree of Freedom: DoF) in order to imitate the complicated movement of an organism.
 2以上の自由度を有する機構としては、リング状のジンバル(すなわち、吊枠)の内部に、ベアリングを介して別のジンバルを設けた機構を例示することができる。このような機構では、各ジンバルの回転軸にそれぞれ回転モータを設けることで、ジンバルの数に応じた自由度を確保することができる。 As a mechanism having two or more degrees of freedom, a mechanism in which another gimbal is provided inside a ring-shaped gimbal (that is, a hanging frame) via a bearing can be exemplified. In such a mechanism, by providing a rotary motor on the rotary shaft of each gimbal, it is possible to secure a degree of freedom according to the number of gimbals.
 ただし、回転軸ごとに回転モータを設けた場合、機構が大型化してしまうため、機構が搭載されるロボット装置への負荷が大きくなってしまう。そこで、回転モータを使用せずに、2以上の自由度を実現する多自由度アクチュエータが検討されている(例えば、特許文献1)。 However, if a rotary motor is provided for each rotary shaft, the mechanism will become large, and the load on the robot device on which the mechanism will be mounted will increase. Therefore, a multi-degree-of-freedom actuator that realizes two or more degrees of freedom without using a rotary motor has been studied (for example, Patent Document 1).
特開2017-22976号公報Japanese Unexamined Patent Publication No. 2017-22976
 上述したように多自由度アクチュエータは、構造が複雑化、大型化、又は重量化しやすい。そのため、より小型化かつ軽量化された多自由度アクチュエータが望まれている。 As described above, the multi-degree-of-freedom actuator tends to have a complicated structure, a large size, or a heavy weight. Therefore, a smaller and lighter multi-degree-of-freedom actuator is desired.
 したがって、より簡素な機構にて2以上の自由度を実現するアクチュエータを提供することが望ましい。 Therefore, it is desirable to provide an actuator that realizes two or more degrees of freedom with a simpler mechanism.
 本開示の一実施形態に係るアクチュエータは、凹曲面を有する固定子と、前記凹曲面と摺動する凸曲面を有する回転子と、磁界の発生を制御可能であり、前記凹曲面に沿って前記固定子の内部に少なくとも3極以上配列された電磁部と、前記回転子の内部に設けられ、前記電磁部が発生させた前記磁界によって相互作用を受ける被作用子とを備える。 The actuator according to the embodiment of the present disclosure can control the generation of a magnetic field, a stator having a concave curved surface, a rotor having a convex curved surface sliding with the concave curved surface, and the said one along the concave curved surface. It includes an electromagnetic portion in which at least three poles are arranged inside the stator, and an actuator provided inside the rotor and interacted with by the magnetic field generated by the electromagnetic portion.
 本開示の一実施形態に係るアクチュエータでは、固定子の凹曲面に沿って少なくとも3極以上配列された電磁部と、回転子の内部に設けられた被作用子との磁気的な相互作用にて回転子を回動させることができる。これにより、本開示の一実施形態に係るアクチュエータは、電磁部の各々による磁界の発生を制御することで、回転子の回動を制御することができる。 In the actuator according to the embodiment of the present disclosure, the electromagnetic portion in which at least three poles are arranged along the concave curved surface of the stator and the actuated element provided inside the rotor are magnetically interacted with each other. The rotor can be rotated. Thereby, the actuator according to the embodiment of the present disclosure can control the rotation of the rotor by controlling the generation of the magnetic field by each of the electromagnetic parts.
本開示の第1の実施形態に係るアクチュエータの構成を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the structure of the actuator which concerns on 1st Embodiment of this disclosure. 同実施形態における電磁部による回転子の回動を説明する模式的な縦断面図である。It is a schematic vertical sectional view explaining the rotation of a rotor by an electromagnetic part in the same embodiment. 同実施形態におけるxy平面上の電磁部と、被作用子との位置関係を示す模式的な上面図である。It is a schematic top view which shows the positional relationship between the electromagnetic part on the xy plane and the operator in the same embodiment. 同実施形態の変形例に係るアクチュエータの構成を模式的に示す縦断面図である。It is a vertical cross-sectional view which shows typically the structure of the actuator which concerns on the modification of this embodiment. 本開示の第2の実施形態に係るアクチュエータの構成を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the structure of the actuator which concerns on 2nd Embodiment of this disclosure. 同実施形態における回転子の回動を説明する模式的な縦断面図である。It is a schematic vertical sectional view explaining the rotation of a rotor in the same embodiment. 本開示の第3の実施形態に係るアクチュエータの第1の構成例を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the 1st structural example of the actuator which concerns on 3rd Embodiment of this disclosure. 本開示の第3の実施形態に係るアクチュエータの第2の構成例を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the 2nd structural example of the actuator which concerns on 3rd Embodiment of this disclosure. 同実施形態における電磁部アレイの構成を示す上面図である。It is a top view which shows the structure of the electromagnetic part array in the same embodiment. 同実施形態の第1の変形例に係るアクチュエータが有する電磁部アレイの構成を示す模式的な上面図である。It is a schematic top view which shows the structure of the electromagnetic part array which the actuator which concerns on 1st modification of the same Embodiment has. 同実施形態の第2の変形例に係るアクチュエータの構成を示す縦断面図である。It is a vertical sectional view which shows the structure of the actuator which concerns on the 2nd modification of the same embodiment. 同実施形態の第2の変形例に係るアクチュエータが有する電磁部アレイの構成を示す模式的な上面図である。It is a schematic top view which shows the structure of the electromagnetic part array which the actuator which concerns on 2nd modification of the same Embodiment has. 本開示の第4の実施形態に係るアクチュエータの構成を示す模式的な縦断面図である。It is a schematic vertical sectional view which shows the structure of the actuator which concerns on 4th Embodiment of this disclosure. 本開示の第1~第4の実施形態に係るアクチュエータが適用される対象の一例を模式的に示した説明図である。It is explanatory drawing which shows typically an example of the object to which the actuator which concerns on 1st to 4th Embodiment of this disclosure is applied. 本開示の第1~第4の実施形態に係るアクチュエータが適用される対象の一例を模式的に示した説明図である。It is explanatory drawing which shows typically an example of the object to which the actuator which concerns on 1st to 4th Embodiment of this disclosure is applied. 本開示の第1~第4の実施形態に係るアクチュエータが適用される対象の一例を模式的に示した説明図である。It is explanatory drawing which shows typically an example of the object to which the actuator which concerns on 1st to 4th Embodiment of this disclosure is applied.
 以下、本開示における実施形態について、図面を参照して詳細に説明する。以下で説明する実施形態は本開示の一具体例であって、本開示にかかる技術が以下の態様に限定されるものではない。また、本開示の各図に示す各構成要素の配置、寸法、及び寸法比等についても、各図に示すものに限定されるものではない。 Hereinafter, the embodiments in the present disclosure will be described in detail with reference to the drawings. The embodiments described below are specific examples of the present disclosure, and the technique according to the present disclosure is not limited to the following aspects. Further, the arrangement, dimensions, dimensional ratio, etc. of each component shown in each figure of the present disclosure are not limited to those shown in each figure.
 なお、説明は以下の順序で行う。
 1.第1の実施形態
  1.1.アクチュエータの構成
  1.2.変形例
 2.第2の実施形態
 3.第3の実施形態
  3.1.アクチュエータの構成
  3.2.変形例
 4.第4の実施形態
 5.適用例
The explanation will be given in the following order.
1. 1. First Embodiment 1.1. Actuator configuration 1.2. Modification example 2. Second embodiment 3. Third Embodiment 3.1. Actuator configuration 3.2. Modification example 4. Fourth embodiment 5. Application example
 <1.第1の実施形態>
 (1.1.アクチュエータの構成)
 まず、図1~図3を参照して、本開示の第1の実施形態に係るアクチュエータの構成について説明する。図1は、本実施形態に係るアクチュエータ10の構成を示す模式的な縦断面図である。
<1. First Embodiment>
(1.1. Actuator configuration)
First, the configuration of the actuator according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 3. FIG. 1 is a schematic vertical sectional view showing the configuration of the actuator 10 according to the present embodiment.
 図1に示すように、本実施形態に係るアクチュエータ10は、例えば、複数の電磁部110が設けられた固定子100と、被作用子210及び撮像部220が設けられた回転子200とを備える。 As shown in FIG. 1, the actuator 10 according to the present embodiment includes, for example, a stator 100 provided with a plurality of electromagnetic portions 110, and a rotor 200 provided with an operator 210 and an imaging unit 220. ..
 なお、以下では、固定子100が回転子200を載置する方向をz方向とし、z方向に垂直な平面をxy平面とする。また、図1に正対して上下方向をy方向とし、y方向と直交する紙面の奥行方向をx方向とする。 In the following, the direction in which the stator 100 places the rotor 200 is defined as the z direction, and the plane perpendicular to the z direction is defined as the xy plane. Further, the vertical direction is the y direction facing FIG. 1, and the depth direction of the paper surface orthogonal to the y direction is the x direction.
 固定子100は、凹曲面を有し、凹曲面にて回転子200を保持する部材であり、回転子200は、固定子100の凹曲面と摺動する凸曲面を有する略球体形状の部材である。例えば、固定子100は、ボールジョイントベアリング構造によって、回転子200を摺動可能に保持してもよい。これによれば、固定子100は、回転子200を回動自在に保持することができる。 The stator 100 is a member having a concave curved surface and holding the rotor 200 on the concave curved surface, and the rotor 200 is a substantially spherical member having a convex curved surface sliding with the concave curved surface of the stator 100. is there. For example, the stator 100 may hold the rotor 200 slidably by the ball joint bearing structure. According to this, the stator 100 can rotatably hold the rotor 200.
 電磁部110は、通電によって磁界を発生させる電磁石であり、凹曲面に沿って固定子100の内部に少なくとも3極以上配列されて設けられる。具体的には、電磁部110は、凹曲面に向かってz方向に延伸するコア112、及びコア112の延伸方向に沿ってコア112に巻き回されたコイル111にて構成された電磁石であってもよい。例えば、コア112は、ケイ素鋼などの鉄系材料にて構成され、コイル111は、銅又は銅合金等からなる電線にて構成されてもよい。 The electromagnetic part 110 is an electromagnet that generates a magnetic field by energization, and is provided so that at least three poles or more are arranged inside the stator 100 along a concave curved surface. Specifically, the electromagnetic portion 110 is an electromagnet composed of a core 112 extending in the z direction toward a concave curved surface and a coil 111 wound around the core 112 along the extending direction of the core 112. May be good. For example, the core 112 may be made of an iron-based material such as silicon steel, and the coil 111 may be made of an electric wire made of copper, a copper alloy, or the like.
 電磁部110は、コイル111への通電によって磁界を発生させることで、被作用子210に対して磁気的な相互作用を発生させることができる。これにより、少なくとも3極以上設けられた電磁部110は、固定子100の凹曲面に回動可能に保持された回転子200内に設けられた被作用子210に磁気的な相互作用を働かせることができるため、回転子200を回動させる駆動力を発生させることができる。 The electromagnetic unit 110 can generate a magnetic interaction with the operator 210 by generating a magnetic field by energizing the coil 111. As a result, the solenoid portion 110 provided with at least three poles exerts a magnetic interaction on the actuated element 210 provided in the rotor 200 rotatably held on the concave curved surface of the stator 100. Therefore, it is possible to generate a driving force for rotating the rotor 200.
 被作用子210は、電磁部110が発生させた磁界によって磁気的な相互作用を受ける部材であり、回転子200の内部に設けられる。具体的には、被作用子210は、磁力線を通しやすい鉄などの軟質磁性材料で構成された部材であってもよい。これにより、被作用子210には、電磁部110からの磁界によってリラクタンス力が働くため、磁界を発生させた電磁部110に引き寄せられる引力が働くことになる。したがって、被作用子210を含む回転子200は、電磁部110からの磁界によって、固定子100に対して回動するための駆動力を受けることができる。 The actuated element 210 is a member that receives magnetic interaction by the magnetic field generated by the electromagnetic unit 110, and is provided inside the rotor 200. Specifically, the operator 210 may be a member made of a soft magnetic material such as iron through which magnetic lines of force easily pass. As a result, a reluctance force acts on the operator 210 due to the magnetic field from the electromagnetic unit 110, so that an attractive force attracted to the electromagnetic unit 110 that generated the magnetic field acts. Therefore, the rotor 200 including the operator 210 can receive a driving force for rotating with respect to the stator 100 by the magnetic field from the electromagnetic unit 110.
 撮像部220は、センシング部の一様態であり、周囲の環境をセンシングするために回転子200に設けられる。具体的には、撮像部220は、回転子200の内部の被作用子210と対向する位置に、回転子200の外部を撮像するように設けられてもよい。例えば、撮像部220は、周囲の環境を撮像する可視光カメラ、赤外線カメラ、又は偏光カメラなどの各種カメラであってもよい。また、撮像部220は、ToF(Time of Flight)センサなどの測距センサ、レーダー、又は超音波センサであってもよい。 The imaging unit 220 is a uniform state of the sensing unit, and is provided on the rotor 200 to sense the surrounding environment. Specifically, the imaging unit 220 may be provided so as to image the outside of the rotor 200 at a position facing the operator 210 inside the rotor 200. For example, the imaging unit 220 may be various cameras such as a visible light camera, an infrared camera, or a polarized camera that images the surrounding environment. Further, the imaging unit 220 may be a distance measuring sensor such as a ToF (Time of Flight) sensor, a radar, or an ultrasonic sensor.
 電磁部110のコア112の凹曲面に対向する端部は、例えば、固定子100の凹曲面に沿った曲面となっていてもよい。これによれば、電磁部110は、回転子200に設けられた被作用子210との間に生じる隙間を減少させることで、発生させた磁界の磁力線を効率的に被作用子210に導くことができる。また、被作用子210は、回転子200の凸曲面との間に隙間が生じない形状で設けられてもよい。これによれば、被作用子210は、固定子100に設けられた電磁部110との間に生じる隙間を減少させることができるため、電磁部110にて発生した磁界の磁力線を効率的に取り込むことができる。すなわち、電磁部110、及び被作用子210は、電磁部110及び被作用子210の間に生じる隙間が小さくなるように設けられることで、より効率的に磁気的な相互作用を及ぼし合うことができる。 The end of the electromagnetic portion 110 facing the concave curved surface of the core 112 may be, for example, a curved surface along the concave curved surface of the stator 100. According to this, the solenoid unit 110 efficiently guides the magnetic field lines of the generated magnetic field to the operator 210 by reducing the gap formed between the rotor 200 and the operator 210. Can be done. Further, the operator 210 may be provided in a shape that does not create a gap between the rotor 210 and the convex curved surface of the rotor 200. According to this, since the operator 210 can reduce the gap generated between the actuator 210 and the solenoid portion 110 provided in the stator 100, the magnetic field lines of the magnetic field generated in the solenoid portion 110 are efficiently taken in. be able to. That is, the electromagnetic unit 110 and the operator 210 are provided so that the gap generated between the solenoid unit 110 and the operator 210 is reduced, so that the magnetic interaction can be more efficiently applied to each other. it can.
 電磁部110からの磁界による被作用子210を介した回転子200の回動について、図2を参照してより具体的に説明する。図2は、電磁部110からの磁界による被作用子210を介した回転子200の回動を説明する模式的な縦断面図である。図2では、電磁部110の各々を区別するために、図2に正対して上側の電磁部110に110Aの符号を付し、図2に正対して下側の電磁部110に110Bの符号を付す。 The rotation of the rotor 200 via the operator 210 due to the magnetic field from the electromagnetic unit 110 will be described more specifically with reference to FIG. FIG. 2 is a schematic vertical sectional view illustrating the rotation of the rotor 200 via the operator 210 by the magnetic field from the electromagnetic unit 110. In FIG. 2, in order to distinguish each of the electromagnetic parts 110, the upper electromagnetic part 110 facing FIG. 2 is designated by the reference numeral 110A, and the lower electromagnetic part 110 facing FIG. 2 is designated by the reference numeral 110B. Is attached.
 電磁部110A、110Bの双方が非通電状態である場合、被作用子210は、電磁部110A、及び110Bの間の中立的な位置に存在するものとする(図2の左図)。電磁部110Aが通電状態となる場合(図2の右下図)、被作用子210には、電磁部110Aにて発生した磁界によるリラクタンス力が作用するため、被作用子210は、電磁部110Aに引き寄せられる。これにより、回転子200は、図2に正対して下側を向くように回動する。一方、電磁部110Bが通電状態となる場合(図2の右上図)、被作用子210には、電磁部110Bにて発生した磁界によるリラクタンス力が作用するため、被作用子210は、電磁部110Bに引き寄せられる。これにより、回転子200は、図2に正対して上側を向くように回動する。 When both the electromagnetic parts 110A and 110B are in a non-energized state, the operator 210 is assumed to exist at a neutral position between the electromagnetic parts 110A and 110B (left figure in FIG. 2). When the electromagnetic part 110A is energized (lower right figure of FIG. 2), the reluctance force due to the magnetic field generated by the electromagnetic part 110A acts on the operator 210, so that the operator 210 acts on the electromagnetic part 110A. Gravitate. As a result, the rotor 200 rotates so as to face downward in FIG. 2. On the other hand, when the electromagnetic part 110B is energized (upper right figure of FIG. 2), the reluctance force due to the magnetic field generated by the electromagnetic part 110B acts on the operator 210, so that the operator 210 is the electromagnetic part. Attracted to 110B. As a result, the rotor 200 rotates so as to face upward with respect to FIG.
 このように、アクチュエータ10では、回転子200が固定子100の凹曲面に回動自在に保持されているため、回転子200の内部に設けられた被作用子210を凹曲面に沿って移動させることで、凹曲面に沿って回転子200を回動させることができる。 In this way, in the actuator 10, since the rotor 200 is rotatably held by the concave curved surface of the stator 100, the actuated element 210 provided inside the rotor 200 is moved along the concave curved surface. As a result, the rotor 200 can be rotated along the concave curved surface.
 ここで、本実施形態に係るアクチュエータ10は、電磁部110を凹曲面に沿って少なくとも3極以上配列させることで、回転子200を2自由度で回動させることが可能となる。具体的には、回転子200の凸曲面を球面とした場合の球の中心点を原点として、図1に正対して紙面の奥行方向に延伸するx軸、図1に正対して上方向に延伸するy軸を定義する。このとき、アクチュエータ10は、3極以上の電磁部110を凹曲面に沿って二次元的に配列させることで、x軸を中心とする回転角方向、及びy軸を中心とする回転角方向に電磁部110から被作用子210に力を作用させることができる。したがって、アクチュエータ10は、x軸を中心とする回転角、及びy軸を中心とする回転角の2自由度で回転子200を回動させることができる。 Here, in the actuator 10 according to the present embodiment, the rotor 200 can be rotated with two degrees of freedom by arranging the electromagnetic portions 110 along the concave curved surface at least three poles or more. Specifically, the x-axis extending in the depth direction of the paper surface facing FIG. 1 with the center point of the sphere when the convex curved surface of the rotor 200 is a spherical surface as the origin, and upward facing FIG. The y-axis to be stretched is defined. At this time, the actuator 10 arranges the electromagnetic portions 110 having three or more poles two-dimensionally along the concave curved surface in the rotation angle direction centered on the x-axis and the rotation angle direction centered on the y-axis. A force can be applied from the electromagnetic part 110 to the actuated element 210. Therefore, the actuator 10 can rotate the rotor 200 with two degrees of freedom, that is, a rotation angle centered on the x-axis and a rotation angle centered on the y-axis.
 ここで、電磁部110と、被作用子210との位置関係について図3を参照して説明する。図3は、xy平面における電磁部110と、被作用子210との位置関係を示す模式的な上面図である。なお、図3における被作用子210の位置は、回転子200が回動していない場合の位置である。 Here, the positional relationship between the electromagnetic unit 110 and the operator 210 will be described with reference to FIG. FIG. 3 is a schematic top view showing the positional relationship between the electromagnetic portion 110 and the operator 210 in the xy plane. The position of the operator 210 in FIG. 3 is a position when the rotor 200 is not rotating.
 図3に示すように、回転子200、及び被作用子210は、規則的に配列された電磁部110の各々の間に被作用子210が配置されるように設けられてもよい。具体的には、電磁部110の各々は、回転子200内に設けられた被作用子210に対して等方的に配列されてもよい。例えば、電磁部110の各々は、回転子200内に設けられた被作用子210を重心とする正三角形の頂点の位置に配置されてもよい。これによれば、電磁部110の各々は、被作用子210に対して等方的に引力を発生させることができる。 As shown in FIG. 3, the rotor 200 and the actuated element 210 may be provided so that the actuated element 210 is arranged between each of the electromagnetic portions 110 arranged regularly. Specifically, each of the electromagnetic portions 110 may be isotropically arranged with respect to the operator 210 provided in the rotor 200. For example, each of the electromagnetic portions 110 may be arranged at the position of the apex of an equilateral triangle having the operator 210 provided in the rotor 200 as the center of gravity. According to this, each of the electromagnetic portions 110 can generate an isotropic attractive force with respect to the operator 210.
 以上の構成によれば、アクチュエータ10は、回転モータ等の駆動部を設けずとも、二次元に配列された3極以上の電磁部110と、被作用子210との磁気的な相互作用によって回転子200を2自由度で回動させることができる。したがって、本実施形態に係るアクチュエータ10は、より簡素な構成によって回転子200を2自由度で回動させることができる。 According to the above configuration, the actuator 10 rotates by the magnetic interaction between the two-dimensionally arranged electromagnetic portions 110 having three or more poles and the actuated element 210 without providing a driving unit such as a rotary motor. The child 200 can be rotated with two degrees of freedom. Therefore, the actuator 10 according to the present embodiment can rotate the rotor 200 with two degrees of freedom with a simpler configuration.
 また、本実施形態に係るアクチュエータ10は、回転子200がより簡素かつ軽量な構造となるため、より高応答かつ高速で回転子200を回動させることができる。したがって、本実施形態に係るアクチュエータ10は、高速かつ高応答にて観測視野を変更するセンシング用途に好適に用いることができる。例えば、本実施形態に係るアクチュエータ10は、人間又は動物の眼球を模したカメラの回動、又は頻繁な揺れに曝されるカメラの姿勢安定化などに好適に用いることができる。 Further, in the actuator 10 according to the present embodiment, since the rotor 200 has a simpler and lighter structure, the rotor 200 can be rotated with higher response and higher speed. Therefore, the actuator 10 according to the present embodiment can be suitably used for a sensing application that changes the observation field of view at high speed and with high response. For example, the actuator 10 according to the present embodiment can be suitably used for rotating a camera that imitates the eyeball of a human or an animal, or stabilizing the posture of a camera that is exposed to frequent shaking.
 (1.2.変形例)
 続いて、図4を参照して、本実施形態に係るアクチュエータ10の変形例について説明する。図4は、本変形例に係るアクチュエータ10Aの構成を模式的に示す縦断面図である。
(1.2. Modification example)
Subsequently, a modified example of the actuator 10 according to the present embodiment will be described with reference to FIG. FIG. 4 is a vertical cross-sectional view schematically showing the configuration of the actuator 10A according to the present modification.
 図4に示すように、本変形例に係るアクチュエータ10Aは、例えば、複数の電磁部110が設けられた固定子100と、被作用子210及びミラー230が設けられた回転子200Aとを備える。 As shown in FIG. 4, the actuator 10A according to this modification includes, for example, a stator 100 provided with a plurality of electromagnetic portions 110, and a rotor 200A provided with an operator 210 and a mirror 230.
 本変形例に係るアクチュエータ10Aは、回転子200Aが略半球形形状であり、撮像部220に替えてミラー230が設けられる点が図1にて示したアクチュエータ10と異なる。上記以外の構成については、本変形例に係るアクチュエータ10Aは、図1にて示したアクチュエータ10と同様であるため、ここでの説明を省略する。 The actuator 10A according to this modification is different from the actuator 10 shown in FIG. 1 in that the rotor 200A has a substantially hemispherical shape and a mirror 230 is provided in place of the imaging unit 220. Regarding the configurations other than the above, the actuator 10A according to this modification is the same as the actuator 10 shown in FIG. 1, and therefore the description thereof will be omitted here.
 回転子200Aは、例えば、表面の一部に固定子100と嵌合する凸曲面を有する略半球形形状にて設けられる。回転子200Aは、少なくとも固定子100と接触する領域が凸曲面で構成されていれば、凸曲面と反対側の面は、曲面又は平面のいずれで構成されてもよい。 The rotor 200A is provided, for example, in a substantially hemispherical shape having a convex curved surface that fits with the stator 100 on a part of the surface. In the rotor 200A, the surface opposite to the convex curved surface may be formed of either a curved surface or a flat surface as long as the region in contact with the stator 100 is formed of a convex curved surface.
 ミラー230は、センシング部の一様態であり、周囲の環境の光を外部の撮像装置に導くために設けられる。具体的には、ミラー230は、回転子200の凸曲面と反対側の平面に設けられており、回転子200Aの外部から入射した光を反射する。ミラー230にて反射された光は、例えば、回転子200Aの外部に設けられた可視光カメラ、赤外線カメラ、又は偏光カメラなどの各種カメラに導かれることで、周囲の環境のセンシングに用いられる。 The mirror 230 is a uniform state of the sensing unit, and is provided to guide the light of the surrounding environment to an external imaging device. Specifically, the mirror 230 is provided on a plane opposite to the convex curved surface of the rotor 200, and reflects light incident from the outside of the rotor 200A. The light reflected by the mirror 230 is guided to various cameras such as a visible light camera, an infrared camera, or a polarized camera provided outside the rotor 200A, and is used for sensing the surrounding environment.
 本変形例に係るアクチュエータ10Aでは、図1に示すアクチュエータ10と比較して、回転子200Aの大きさが約半分に縮小され、かつ回転子200Aに搭載されるセンシング部が撮像部220よりも軽量のミラー230となる。これにより、本変形例に係るアクチュエータ10Aは、回転子200Aの質量をさらに小さくすることができる。したがって、本変形例に係るアクチュエータ10Aは、図1に示すアクチュエータ10よりも、さらに高応答かつ高速で回転子200Aを回動させることが可能となる。 In the actuator 10A according to this modification, the size of the rotor 200A is reduced to about half as compared with the actuator 10 shown in FIG. 1, and the sensing unit mounted on the rotor 200A is lighter than the imaging unit 220. It becomes the mirror 230 of. As a result, the actuator 10A according to the present modification can further reduce the mass of the rotor 200A. Therefore, the actuator 10A according to the present modification can rotate the rotor 200A with a higher response and a higher speed than the actuator 10 shown in FIG.
 <2.第2の実施形態>
 次に、図5及び図6を参照して、本開示の第2の実施形態に係るアクチュエータの構成について説明する。図5は、本実施形態に係るアクチュエータ20の構成を示す模式的な縦断面図である。
<2. Second embodiment>
Next, the configuration of the actuator according to the second embodiment of the present disclosure will be described with reference to FIGS. 5 and 6. FIG. 5 is a schematic vertical sectional view showing the configuration of the actuator 20 according to the present embodiment.
 図5に示すように、本実施形態に係るアクチュエータ20は、例えば、複数の電磁部110が設けられた固定子100と、被作用子211及び撮像部220が設けられた回転子200とを備える。 As shown in FIG. 5, the actuator 20 according to the present embodiment includes, for example, a stator 100 provided with a plurality of electromagnetic portions 110, and a rotor 200 provided with an operator 211 and an imaging unit 220. ..
 なお、以下では、固定子100が回転子200を載置する方向をz方向とし、z方向に垂直な平面をxy平面とする。また、図5に正対して上下方向をy方向とし、y方向と直交する紙面の奥行方向をx方向とする。 In the following, the direction in which the stator 100 places the rotor 200 is defined as the z direction, and the plane perpendicular to the z direction is defined as the xy plane. Further, the vertical direction is defined as the y direction facing FIG. 5, and the depth direction of the paper surface orthogonal to the y direction is defined as the x direction.
 本実施形態に係るアクチュエータ20は、被作用子211が軟質磁性材料ではなく、硬質磁性材料で構成される点が第1の実施形態に係るアクチュエータ10と異なる。上記以外の構成については、本実施形態に係るアクチュエータ20は、第1の実施形態に係るアクチュエータ10と同様であるため、ここでの説明を省略する。 The actuator 20 according to the first embodiment is different from the actuator 10 according to the first embodiment in that the operator 211 is made of a hard magnetic material instead of a soft magnetic material. Regarding the configurations other than the above, the actuator 20 according to the present embodiment is the same as the actuator 10 according to the first embodiment, and thus the description thereof will be omitted here.
 被作用子211は、上述したように硬質磁性材料で構成される。具体的には、被作用子211は、磁極の一方を回転子200の凸曲面に向けたアルニコ磁石、ネオジム磁石、又はフェライト磁石などの永久磁石であってもよい。これによれば、被作用子211には、電磁部110からの磁界によって引力又は斥力(すなわち、ローレンツ力)が働くことなる。したがって、アクチュエータ20は、ローレンツ力によって、被作用子211が設けられた回転子200を固定子100に対して回動させることができる。 The operator 211 is made of a hard magnetic material as described above. Specifically, the actuated element 211 may be a permanent magnet such as an alnico magnet, a neodymium magnet, or a ferrite magnet in which one of the magnetic poles is directed toward the convex curved surface of the rotor 200. According to this, an attractive force or a repulsive force (that is, Lorentz force) acts on the operator 211 due to the magnetic field from the electromagnetic part 110. Therefore, the actuator 20 can rotate the rotor 200 provided with the actuated element 211 with respect to the stator 100 by the Lorentz force.
 図5では、N極が回転子200の凸曲面を向くように被作用子211が設けられた例を示したが、本実施形態に係るアクチュエータ20は、かかる例示に限定されない。被作用子211は、S極が凸曲面を向くように設けられてもよい。 FIG. 5 shows an example in which the operator 211 is provided so that the north pole faces the convex curved surface of the rotor 200, but the actuator 20 according to the present embodiment is not limited to such an example. The operator 211 may be provided so that the S pole faces a convex curved surface.
 本実施形態に係るアクチュエータ20は、被作用子211が軟質磁性材料ではなく、硬質磁性材料で構成されるため、電磁部110と被作用子211との間に引力だけでなく、斥力も発生させることができる。これによれば、本実施形態に係るアクチュエータ20は、電磁部110から被作用子211により複雑な力を作用させることができるため、被作用子211の位置をより高度に制御することができる。また、本実施形態に係るアクチュエータ20は、電磁部110からの磁気的な相互作用を作用させにくい位置(すなわち、デッドロック状態となる位置)に被作用子211が回動してしまうことを回避することができる。 In the actuator 20 according to the present embodiment, since the operator 211 is made of a hard magnetic material instead of a soft magnetic material, not only an attractive force but also a repulsive force is generated between the electromagnetic portion 110 and the operator 211. be able to. According to this, since the actuator 20 according to the present embodiment can apply a complicated force from the electromagnetic unit 110 to the operator 211, the position of the operator 211 can be controlled more highly. Further, the actuator 20 according to the present embodiment prevents the actuated element 211 from rotating to a position where it is difficult for the magnetic interaction from the electromagnetic unit 110 to act (that is, a position where a deadlock state occurs). can do.
 さらに、本実施形態に係るアクチュエータ20は、被作用子211から磁界が常時発生しているため、電磁部110が非通電状態である場合でも被作用子211と、電磁部110のコア112との間に磁気的な相互作用を生じさせることができる。これによれば、本実施形態に係るアクチュエータ20は、電磁部110が非通電状態である場合でも回転子200の位置を固定することができるため、回転子200が意図せず回動してしまうことを防止することができる。 Further, in the actuator 20 according to the present embodiment, since a magnetic field is constantly generated from the actuated element 211, the actuated element 211 and the core 112 of the electromagnetic unit 110 are connected even when the electromagnetic part 110 is in a non-energized state. Magnetic interactions can occur between them. According to this, in the actuator 20 according to the present embodiment, the position of the rotor 200 can be fixed even when the electromagnetic portion 110 is in a non-energized state, so that the rotor 200 unintentionally rotates. Can be prevented.
 本実施形態における回転子200の回動について、図6を参照してより具体的に説明する。図6は、本実施形態における回転子200の回動を説明する模式的な縦断面図である。図6では、電磁部110の各々を区別するために、図6に正対して上側の電磁部110に110Aの符号を付し、図6に正対して下側の電磁部110に110Bの符号を付す。なお、被作用子211は、N極を回転子200の凸曲面に向けて設けられているものとする。 The rotation of the rotor 200 in this embodiment will be described more specifically with reference to FIG. FIG. 6 is a schematic vertical sectional view illustrating the rotation of the rotor 200 in the present embodiment. In FIG. 6, in order to distinguish each of the electromagnetic parts 110, the upper electromagnetic part 110 faces FIG. 6 with a reference numeral 110A, and the lower electromagnetic part 110 facing FIG. 6 is designated with a 110B reference numeral. Is attached. It is assumed that the operator 211 is provided with the N pole facing the convex curved surface of the rotor 200.
 電磁部110A、110Bの双方が非通電状態である場合、被作用子211は、電磁部110A、及び110Bの間の中立的な位置に存在するものとする(図6の左図)。電磁部110Aにて凹曲面側の端部がS極となる磁界を発生させた場合(図6の右下図)、被作用子211には、電磁部110Aへの引力が作用するため、被作用子211は、電磁部110Aに引き寄せられる。これにより、回転子200は、図6に正対して下側を向くように回動する。このとき、電磁部110Bは、凹曲面側の端部がN極となる磁界を発生させ、被作用子211に電磁部110Bに対する斥力を作用させることで、回転子200の回動をサポートしてもよい。一方、電磁部110Bにて凹曲面側の端部がS極となる磁界を発生させた場合(図6の右上図)、被作用子211には、電磁部110Bへの引力が作用するため、被作用子211は、電磁部110Bに引き寄せられる。これにより、回転子200は、図6に正対して上側を向くように回動する。このとき、電磁部110Aは、凹曲面側の端部がS極となる磁界を発生させ、被作用子211に電磁部110Aに対する斥力を作用させることで、回転子200の回動をサポートしてもよい。 When both the electromagnetic parts 110A and 110B are in a non-energized state, the operator 211 is assumed to exist at a neutral position between the electromagnetic parts 110A and 110B (left figure in FIG. 6). When a magnetic field is generated in the solenoid portion 110A so that the end on the concave curved surface side becomes the S pole (lower right figure in FIG. 6), the operator 211 is acted on because an attractive force acts on the solenoid portion 110A. The child 211 is attracted to the electromagnetic unit 110A. As a result, the rotor 200 rotates so as to face downward with reference to FIG. At this time, the solenoid portion 110B supports the rotation of the rotor 200 by generating a magnetic field in which the end portion on the concave curved surface side becomes an N pole and applying a repulsive force to the solenoid portion 110B on the operator 211. May be good. On the other hand, when a magnetic field is generated in the solenoid portion 110B so that the end portion on the concave curved surface side becomes the S pole (upper right figure in FIG. 6), an attractive force acts on the operator 211 on the solenoid portion 110B. The operator 211 is attracted to the electromagnetic part 110B. As a result, the rotor 200 rotates so as to face upward with respect to FIG. At this time, the solenoid portion 110A supports the rotation of the rotor 200 by generating a magnetic field in which the end portion on the concave curved surface side becomes the S pole and applying a repulsive force to the solenoid portion 110A on the operator 211. May be good.
 このように、本実施形態に係るアクチュエータ20は、被作用子211に硬質磁性材料を用いた場合でも、第1の実施形態に係るアクチュエータ10と同様に回転子200を回動させることが可能である。 As described above, the actuator 20 according to the present embodiment can rotate the rotor 200 in the same manner as the actuator 10 according to the first embodiment even when a hard magnetic material is used for the operator 211. is there.
 <3.第3の実施形態>
 (3.1.アクチュエータの構成)
 続いて、図7及び図8を参照して、本開示の第3の実施形態に係るアクチュエータの構成について説明する。図7は、本実施形態に係るアクチュエータ31の第1の構成例を示す模式的な縦断面図である。図8は、本実施形態に係るアクチュエータ32の第2の構成例を示す模式的な縦断面図である。
<3. Third Embodiment>
(3.1. Actuator configuration)
Subsequently, the configuration of the actuator according to the third embodiment of the present disclosure will be described with reference to FIGS. 7 and 8. FIG. 7 is a schematic vertical sectional view showing a first configuration example of the actuator 31 according to the present embodiment. FIG. 8 is a schematic vertical sectional view showing a second configuration example of the actuator 32 according to the present embodiment.
 本実施形態に係るアクチュエータは、回転子200の凹曲面の面内方向で被作用子212、213に多極性を持たせることで、回転子200の回動の自由度、及び制御性をさらに高めるものである。 The actuator according to the present embodiment further enhances the degree of freedom and controllability of rotation of the rotor 200 by giving the operator 212 and 213 multiple polarities in the in-plane direction of the concave curved surface of the rotor 200. It is a thing.
 なお、以下では、固定子100が回転子200を載置する方向をz方向とし、z方向に垂直な平面をxy平面とする。また、図7又は図8に正対して上下方向をy方向とし、y方向と直交する紙面の奥行方向をx方向とする。また、回転子200の凸曲面を球面とした場合の球の中心点を原点として、図7又は図8に正対して紙面の奥行方向に延伸するx軸、図7又は図8に正対して上方向に延伸するy軸を定義する。さらに、回転子200の凸曲面を球面とした場合の球の中心点を原点として、x軸及びy軸を含むxy平面に垂直であり、かつ固定子100から回転子200に向かう方向に延伸するz軸を定義する。 In the following, the direction in which the stator 100 places the rotor 200 is defined as the z direction, and the plane perpendicular to the z direction is defined as the xy plane. Further, the vertical direction is defined as the y direction facing FIG. 7 or FIG. 8, and the depth direction of the paper surface orthogonal to the y direction is defined as the x direction. Further, with the center point of the sphere when the convex curved surface of the rotor 200 is a spherical surface as the origin, the x-axis extending in the depth direction of the paper surface facing FIG. 7 or FIG. A y-axis extending upward is defined. Further, with the center point of the sphere when the convex curved surface of the rotor 200 is a spherical surface, the origin is perpendicular to the xy plane including the x-axis and the y-axis, and the rotor 200 extends in the direction from the stator 100 toward the rotor 200. Define the z-axis.
 まず、図7を参照して、本実施形態に係るアクチュエータの第1の構成例について説明する。図7に示すように、第1の構成例のアクチュエータ31は、例えば、複数の電磁部110をアレイ状に配列した電磁部アレイ120が設けられた固定子100と、被作用子212及び撮像部220が設けられた回転子200とを備える。 First, a first configuration example of the actuator according to the present embodiment will be described with reference to FIG. 7. As shown in FIG. 7, the actuator 31 of the first configuration example includes, for example, a stator 100 provided with an electromagnetic unit array 120 in which a plurality of electromagnetic units 110 are arranged in an array, an operator 212, and an imaging unit. It includes a rotor 200 provided with 220.
 被作用子212は、電磁部アレイ120が発生させた磁界によって磁気的な相互作用を受ける部材であり、回転子200の内部に設けられる。具体的には、被作用子212は、磁力線を通しやすい鉄などの軟質磁性材料で構成された部材であってもよい。本実施形態に係るアクチュエータ31では、被作用子212は、回転子200の凸曲面に向かって凸となる2つ以上の突極を有する形状にて設けられる。これによれば、電磁部アレイ120は、被作用子212の突極の各々に対して、回転子200の凸曲面の面内で互いに異なる方向又は大きさの引力を作用させることもできる。したがって、被作用子212が設けられた回転子200は、x軸を中心とする回転角、及びy軸を中心とする回転角の2自由度で回動することができるだけでなく、z軸を中心とする回転角方向にも回動することができる。よって、アクチュエータ10は、x軸を中心とする回転角、y軸を中心とする回転角、及びz軸を中心とする回転角の3自由度で回転子200を回動させることができる。 The actuated element 212 is a member that receives magnetic interaction by the magnetic field generated by the electromagnetic part array 120, and is provided inside the rotor 200. Specifically, the operator 212 may be a member made of a soft magnetic material such as iron through which magnetic lines of force easily pass. In the actuator 31 according to the present embodiment, the operator 212 is provided in a shape having two or more salient poles that are convex toward the convex curved surface of the rotor 200. According to this, the solenoid unit array 120 can also apply attractive forces in different directions or magnitudes in the plane of the convex curved surface of the rotor 200 to each of the salient poles of the operator 212. Therefore, the rotor 200 provided with the actuated element 212 can not only rotate in two degrees of rotation centered on the x-axis and a rotation angle centered on the y-axis, but also rotates on the z-axis. It can also rotate in the direction of the center of rotation. Therefore, the actuator 10 can rotate the rotor 200 with three degrees of freedom: a rotation angle centered on the x-axis, a rotation angle centered on the y-axis, and a rotation angle centered on the z-axis.
 また、被作用子212は、突極の各々にて電磁部アレイ120からの磁気的な相互作用を受けることができるため、電磁部アレイ120から被作用子212により複雑な力を作用させることができる。これにより、本実施形態に係るアクチュエータ31は、回転子200に対してより複雑な回動を行わせることが可能である。 Further, since the operator 212 can receive a magnetic interaction from the solenoid part array 120 at each of the salient poles, it is possible to apply a complicated force from the electromagnetic part array 120 to the operator 212. it can. As a result, the actuator 31 according to the present embodiment can cause the rotor 200 to perform more complicated rotation.
 次に、図8を参照して、本実施形態に係るアクチュエータの第2の構成例について説明する。図8に示すように、第2の構成例のアクチュエータ32は、例えば、複数の電磁部110をアレイ状に配列した電磁部アレイ120が設けられた固定子100と、被作用子213及び撮像部220が設けられた回転子200とを備える。 Next, a second configuration example of the actuator according to the present embodiment will be described with reference to FIG. As shown in FIG. 8, the actuator 32 of the second configuration example includes, for example, a stator 100 provided with an electromagnetic unit array 120 in which a plurality of electromagnetic units 110 are arranged in an array, an operator 213, and an imaging unit. It includes a rotor 200 provided with 220.
 被作用子213は、アルニコ磁石、フェライト磁石、又はネオジム磁石などの永久磁石として機能する硬質磁性材料で設けられる。本実施形態に係るアクチュエータ32では、被作用子213は、回転子200の凸曲面に向かって、磁極の双方が並行して対向するように設けられる。これによれば、電磁部アレイ120は、被作用子213の磁極の各々に対して、回転子200の凸曲面の面内で互いに異なる方向又は大きさの引力又は斥力を作用させることもできる。したがって、被作用子213が設けられた回転子200は、x軸を中心とする回転角、及びy軸を中心とする回転角の2自由度で回動することができるだけでなく、z軸を中心とする回転角方向にも回動することができる。よって、アクチュエータ10は、x軸を中心とする回転角、y軸を中心とする回転角、及びz軸を中心とする回転角の3自由度で回転子200を回動させることができる。 The actuated element 213 is provided with a hard magnetic material that functions as a permanent magnet such as an alnico magnet, a ferrite magnet, or a neodymium magnet. In the actuator 32 according to the present embodiment, the operator 213 is provided so that both magnetic poles face each other in parallel toward the convex curved surface of the rotor 200. According to this, the solenoid unit array 120 can also apply attractive or repulsive forces in different directions or magnitudes in the plane of the convex curved surface of the rotor 200 to each of the magnetic poles of the actuated element 213. Therefore, the rotor 200 provided with the actuated element 213 can not only rotate with two degrees of rotation centered on the x-axis and a rotation angle centered on the y-axis, but also rotates on the z-axis. It can also rotate in the direction of the center of rotation. Therefore, the actuator 10 can rotate the rotor 200 with three degrees of freedom: a rotation angle centered on the x-axis, a rotation angle centered on the y-axis, and a rotation angle centered on the z-axis.
 また、被作用子213は、磁極の各々にて電磁部アレイ120からのローレンツ力による引力又は斥力を受けることができるため、電磁部アレイ120から被作用子213により複雑な力を作用させることができる。これにより、本実施形態に係るアクチュエータ32は、回転子200に対してより複雑な回動を行われることが可能である。 Further, since the operator 213 can receive an attractive force or a repulsive force due to the Lorentz force from the electromagnetic part array 120 at each of the magnetic poles, it is possible to apply a complicated force from the electromagnetic part array 120 to the operator 213. it can. As a result, the actuator 32 according to the present embodiment can perform more complicated rotation with respect to the rotor 200.
 図7及び図8にて示した電磁部アレイ120について、図9を参照してより具体的に説明する。図9は、電磁部アレイ120の構成を示す上面図である。 The solenoid section array 120 shown in FIGS. 7 and 8 will be described more specifically with reference to FIG. FIG. 9 is a top view showing the configuration of the solenoid section array 120.
 図9に示すように、電磁部アレイ120は、複数の電磁部110を規則的に配列することで構成されてもよい。例えば、電磁部アレイ120は、複数の電磁部110を六方最密配置にて配列することで構成されてもよい。これによれば、本実施形態に係るアクチュエータは、電磁部アレイ120に配列された電磁部110の各々にて回転子200の回動を制御することができるため、回転子200の回動を高度に制御することができる。 As shown in FIG. 9, the solenoid section array 120 may be configured by regularly arranging a plurality of solenoid sections 110. For example, the solenoid section array 120 may be configured by arranging a plurality of solenoid sections 110 in a hexagonal close-packed arrangement. According to this, since the actuator according to the present embodiment can control the rotation of the rotor 200 by each of the electromagnetic units 110 arranged in the electromagnetic unit array 120, the rotation of the rotor 200 is highly advanced. Can be controlled to.
 ただし、電磁部アレイ120における電磁部110の配列パターンは、図9に示す六方最密配置に限定されない。電磁部110の配列パターンは、例えば、四方格子パターン、又は四方格子パターンから隣接する列を半ピッチずつずらしたパターンなどであってもよい。 However, the arrangement pattern of the electromagnetic parts 110 in the electromagnetic part array 120 is not limited to the hexagonal close-packed arrangement shown in FIG. The arrangement pattern of the electromagnetic unit 110 may be, for example, a four-way grid pattern, or a pattern in which adjacent rows are shifted by half a pitch from the four-way grid pattern.
 (3.2.変形例)
 次に、図10~図12を参照して、本実施形態に係るアクチュエータの第1及び第2の変形例について説明する。
(3.2. Modification example)
Next, first and second modification examples of the actuator according to the present embodiment will be described with reference to FIGS. 10 to 12.
 (第1の変形例)
 図10は、第1の変形例に係るアクチュエータが有する電磁部アレイ121の構成を示す模式的な上面図である。
(First modification)
FIG. 10 is a schematic top view showing the configuration of the electromagnetic part array 121 included in the actuator according to the first modification.
 図10に示すように、本変形例に係る電磁部アレイ121では、電磁部110は、コア112を複数のコイル111で巻き回すことで構成されてもよい。具体的には、電磁部110は、隣接する複数のコア112をまとめて巻き回す複数のコイル111にてコア112を重複して巻き回すことで構成されてもよい。例えば、電磁部110は、三角形の頂点の位置に配置された3つのコア112の外周に沿って巻き回された異なる3つのコイル111にて、1つのコア112を重複して巻き回すことで構成されてもよい。 As shown in FIG. 10, in the electromagnetic part array 121 according to the present modification, the electromagnetic part 110 may be configured by winding the core 112 with a plurality of coils 111. Specifically, the solenoid unit 110 may be configured by winding the cores 112 in an overlapping manner with a plurality of coils 111 that wind the plurality of adjacent cores 112 together. For example, the solenoid portion 110 is configured by overlapping one core 112 with three different coils 111 wound along the outer circumference of the three cores 112 arranged at the positions of the vertices of a triangle. May be done.
 すなわち、本変形例に係る電磁部アレイ121では、電磁部110は、コア112と、コイル111とが一対一対応するように設けられなくともよい。例えば、コア112は、複数のコイル111にて巻き回されてもよい。また、コイル111は、複数のコア112を巻き回してもよい。電磁石として成立するのであれば、コア112に対するコイル111の巻き回し方は、種々のバリエーションを採ることが可能である。 That is, in the electromagnetic unit array 121 according to this modification, the electromagnetic unit 110 does not have to be provided so that the core 112 and the coil 111 have a one-to-one correspondence. For example, the core 112 may be wound around a plurality of coils 111. Further, the coil 111 may wind a plurality of cores 112. If it is established as an electromagnet, the winding method of the coil 111 with respect to the core 112 can take various variations.
 これによれば、本変形例に係るアクチュエータでは、同じコイル111にて巻き回された複数のコア112に一斉に磁界を発生させることができる。したがって、本変形例に係るアクチュエータは、固定子100の凹曲面の面内方向における磁界の変化率を緩やかにすることができるため、被作用子212、213が過度に磁界に反応することを抑制することができる。 According to this, in the actuator according to this modification, a magnetic field can be generated all at once in a plurality of cores 112 wound by the same coil 111. Therefore, in the actuator according to this modification, the rate of change of the magnetic field in the in-plane direction of the concave curved surface of the stator 100 can be moderated, so that the actuators 212 and 213 are suppressed from excessively reacting to the magnetic field. can do.
 また、本変形例に係るアクチュエータでは、1つのコア112を複数のコイル111で巻き回しているため、コア112にて発生する磁界の強度を巻き回すコイル111の各々にて段階的に制御することができる。これによれば、本変形例に係るアクチュエータは、より複雑な磁界を発生させることができるため、回転子200の回動をより高度に制御することができる。 Further, in the actuator according to this modification, since one core 112 is wound by a plurality of coils 111, the strength of the magnetic field generated in the core 112 is controlled stepwise by each of the winding coils 111. Can be done. According to this, since the actuator according to the present modification can generate a more complicated magnetic field, the rotation of the rotor 200 can be controlled to a higher degree.
 (第2の変形例)
 図11は、第2の変形例に係るアクチュエータの構成を示す縦断面図である。図12は、第2の変形例に係るアクチュエータが有する電磁部アレイ122、123の構成を示す模式的な上面図である。
(Second modification)
FIG. 11 is a vertical cross-sectional view showing the configuration of the actuator according to the second modification. FIG. 12 is a schematic top view showing the configuration of the electromagnetic parts arrays 122 and 123 included in the actuator according to the second modification.
 図11に示すように、アクチュエータ33は、例えば、複数の電磁部110を配列した電磁部アレイ122、123が設けられた固定子100と、被作用子210及び撮像部220が設けられた回転子200と、メンテナンス部300とを備える。 As shown in FIG. 11, the actuator 33 includes, for example, a stator 100 provided with electromagnetic unit arrays 122 and 123 in which a plurality of electromagnetic unit 110s are arranged, and a rotor provided with an operator 210 and an imaging unit 220. It includes 200 and a maintenance unit 300.
 図12に示すように、電磁部アレイ122、123は、それぞれ異なる領域に複数の電磁部110を規則的に配列することで構成される。 As shown in FIG. 12, the electromagnetic unit arrays 122 and 123 are configured by regularly arranging a plurality of electromagnetic unit 110s in different regions.
 電磁部アレイ122は、複数の電磁部110を周期的な配列で二次元に配列することで構成され、例えば、撮像部220の視野変更の際に回転子200を回動させるために用いられる。また、電磁部アレイ123は、複数の電磁部110を所定の方向に配列することで構成され、例えば、撮像部220をメンテナンス部300に対応する位置に回動させるために用いられる。 The solenoid unit array 122 is configured by arranging a plurality of solenoid units 110 in a two-dimensional manner in a periodic arrangement, and is used, for example, to rotate the rotor 200 when the field of view of the imaging unit 220 is changed. Further, the electromagnetic unit array 123 is configured by arranging a plurality of electromagnetic units 110 in a predetermined direction, and is used, for example, to rotate the imaging unit 220 to a position corresponding to the maintenance unit 300.
 メンテナンス部300は、例えば、撮像部220のレンズの汚れの除去などのメンテナンスに係る動作を行う。メンテナンス部300は、例えば、撮像部220によるセンシングの対象視野から外れた位置に設けられる。 The maintenance unit 300 performs maintenance-related operations such as removing stains on the lens of the imaging unit 220, for example. The maintenance unit 300 is provided, for example, at a position outside the target field of view of sensing by the imaging unit 220.
 すなわち、本変形例に係るアクチュエータに示すように、電磁部アレイ122、123が設けられる領域は、等方的でなくともよく、任意に設定することが可能である。例えば、回転子200を特定の角度に回動させる場合には、特定の角度に対応するように電磁部110を一方向に延伸して配列した電磁部アレイ123を設けてもよい。 That is, as shown in the actuator according to the present modification, the region where the electromagnetic unit arrays 122 and 123 are provided does not have to be isotropic and can be arbitrarily set. For example, when the rotor 200 is rotated at a specific angle, the electromagnetic unit array 123 may be provided in which the electromagnetic unit 110 is extended in one direction and arranged so as to correspond to the specific angle.
 <4.第4の実施形態>
 次に、図13を参照して、本開示の第4の実施形態に係るアクチュエータの構成について説明する。図13は、本実施形態に係るアクチュエータ40の構成を示す模式的な縦断面図である。
<4. Fourth Embodiment>
Next, the configuration of the actuator according to the fourth embodiment of the present disclosure will be described with reference to FIG. FIG. 13 is a schematic vertical sectional view showing the configuration of the actuator 40 according to the present embodiment.
 図13に示すように、本実施形態に係るアクチュエータ40は、例えば、複数の電磁部110が設けられた固定子100と、被作用子210及び撮像部220が設けられた回転子200と、エンコーダ400とを備える。本実施形態に係るアクチュエータ40は、第1及び第2の実施形態で示したように、回転子200が2自由度で回動するアクチュエータであってもよく、第3の実施形態で示したように、回転子200が3自由度で回動することが可能なアクチュエータであってもよい。 As shown in FIG. 13, the actuator 40 according to the present embodiment includes, for example, a stator 100 provided with a plurality of electromagnetic portions 110, a rotor 200 provided with an operator 210 and an imaging unit 220, and an encoder. It is equipped with 400. As shown in the first and second embodiments, the actuator 40 according to the present embodiment may be an actuator in which the rotor 200 rotates with two degrees of freedom, as shown in the third embodiment. In addition, the rotor 200 may be an actuator capable of rotating with three degrees of freedom.
 なお、以下では、固定子100が回転子200を載置する方向をz方向とし、z方向に垂直な平面をxy平面とする。また、図13に正対して上下方向をy方向とし、y方向と直交する紙面の奥行方向をx方向とする。 In the following, the direction in which the stator 100 places the rotor 200 is defined as the z direction, and the plane perpendicular to the z direction is defined as the xy plane. Further, the vertical direction is defined as the y direction facing FIG. 13, and the depth direction of the paper surface orthogonal to the y direction is defined as the x direction.
 本実施形態に係るアクチュエータ40は、回転子200の回動の方向及び角度を検出するエンコーダ400をさらに備える点が第1~第3の実施形態に係るアクチュエータと異なる。上記以外の構成については、本実施形態に係るアクチュエータ40は、第1~第3の実施形態に係るアクチュエータと同様であるため、ここでの説明を省略する。 The actuator 40 according to the present embodiment is different from the actuators according to the first to third embodiments in that it further includes an encoder 400 that detects the direction and angle of rotation of the rotor 200. Regarding the configurations other than the above, the actuator 40 according to the present embodiment is the same as the actuator 40 according to the first to third embodiments, and thus the description thereof will be omitted here.
 エンコーダ400は、回転子200の凸曲面における座標を特定するセンサである。具体的には、エンコーダ400は、回転子200の凸曲面をセンシングすることで、回転子200の凸曲面における絶対座標を特定するための情報を取得するセンサであってもよい。したがって、本実施形態に係るアクチュエータ40は、エンコーダ400にて特定された凸曲面上の座標に基づいて、回転子200の回動をフィードバック制御することが可能になる。また、本実施形態に係るアクチュエータ40は、エンコーダ400にて特定された凸曲面上の座標に基づいて、回転子200の回動方向及び回動角度などをより高精度に把握することができるようになる。よって、本実施形態に係るアクチュエータ40は、回転子200の回動をより高い精度で制御することが可能となる。 The encoder 400 is a sensor that specifies the coordinates on the convex curved surface of the rotor 200. Specifically, the encoder 400 may be a sensor that acquires information for specifying the absolute coordinates on the convex curved surface of the rotor 200 by sensing the convex curved surface of the rotor 200. Therefore, the actuator 40 according to the present embodiment can feedback control the rotation of the rotor 200 based on the coordinates on the convex curved surface specified by the encoder 400. Further, the actuator 40 according to the present embodiment can grasp the rotation direction and rotation angle of the rotor 200 with higher accuracy based on the coordinates on the convex curved surface specified by the encoder 400. become. Therefore, the actuator 40 according to the present embodiment can control the rotation of the rotor 200 with higher accuracy.
 回転子200の凸曲面における絶対座標を検出する方法としては、以下の方法を例示することができる。例えば、任意の色空間(例えば、CIELAB色空間など)に対応した色相を略球形状の回転子200の凸曲面に配色し、エンコーダ400にて回転子200の色相を検出することで、回転子200の凸曲面における絶対座標を検出することができる。 The following method can be exemplified as a method for detecting the absolute coordinates on the convex curved surface of the rotor 200. For example, the hue corresponding to an arbitrary color space (for example, CIELAB color space) is arranged on the convex curved surface of the substantially spherical rotor 200, and the hue of the rotor 200 is detected by the encoder 400 to detect the rotor. Absolute coordinates on 200 convex surfaces can be detected.
 なお、回転子200の凸曲面における絶対座標を検出する方法としては、他の公知の方法を用いることも可能である。例えば、ジンバル機構を用いて回転子200を回転させ、各回転軸にアブソリュート型のロータリーエンコーダを設けることでも、回転子200の凸曲面における絶対座標を検出することができる。 It should be noted that other known methods can also be used as a method for detecting the absolute coordinates on the convex curved surface of the rotor 200. For example, the absolute coordinates of the convex curved surface of the rotor 200 can be detected by rotating the rotor 200 using a gimbal mechanism and providing an absolute rotary encoder on each rotation axis.
 また、エンコーダ400は、回転子200の凸曲面をセンシングすることで、回転子200の凸曲面における相対座標を特定する情報を取得するセンサであってもよい。具体的には、エンコーダ400は、回転子200の初期状態からの回動方向及び回動角度を検出するセンサであってもよい。このような場合でも、本実施形態に係るアクチュエータ40は、回転子200の回動をフィードバック制御することが可能であるため、回転子200の回動をより高い精度で制御することが可能となる。 Further, the encoder 400 may be a sensor that acquires information for specifying relative coordinates on the convex curved surface of the rotor 200 by sensing the convex curved surface of the rotor 200. Specifically, the encoder 400 may be a sensor that detects the rotation direction and rotation angle of the rotor 200 from the initial state. Even in such a case, since the actuator 40 according to the present embodiment can feedback-control the rotation of the rotor 200, it is possible to control the rotation of the rotor 200 with higher accuracy. ..
 <5.適用例>
 さらに、図14~図16を参照して、本開示の第1~第4の実施形態に係るアクチュエータの適用例について説明する。図14~図16は、本開示の第1~第4の実施形態に係るアクチュエータが適用される対象を模式的に示した説明図である。
<5. Application example>
Further, an application example of the actuator according to the first to fourth embodiments of the present disclosure will be described with reference to FIGS. 14 to 16. 14 to 16 are explanatory views schematically showing an object to which the actuator according to the first to fourth embodiments of the present disclosure is applied.
 図14に示すように、本開示の第1~第4の実施形態に係るアクチュエータは、人型ロボット1の眼球に搭載されたカメラ2の制御に用いることができる。 As shown in FIG. 14, the actuators according to the first to fourth embodiments of the present disclosure can be used to control the camera 2 mounted on the eyeball of the humanoid robot 1.
 本開示の第1~第4の実施形態に係るアクチュエータは、人の眼球と同様に、人型ロボット1の眼球に搭載されたカメラ2を高応答かつ高速で動作させることができる。例えば、本開示の第1~第4の実施形態に係るアクチュエータは、眼球に対応するカメラ2の制御に用いられることで、カメラ2に対して広角の視野から任意の箇所に視線を向け直してズームをかける等の挙動を高速で行わせることが可能である。 The actuators according to the first to fourth embodiments of the present disclosure can operate the camera 2 mounted on the eyeball of the humanoid robot 1 with high response and high speed, similarly to the human eyeball. For example, the actuators according to the first to fourth embodiments of the present disclosure are used to control the camera 2 corresponding to the eyeball, so that the line of sight is directed to an arbitrary position from a wide-angle field of view with respect to the camera 2. It is possible to perform behaviors such as zooming at high speed.
 また、人型ロボット1では、眼球に対応する位置にカメラ2を搭載することで、ステレオカメラによる物体の立体認識を容易に行うことができるようになる。人型ロボット1では、人と同様に、頭部を傾けた際に、眼球に対応する位置に搭載されたカメラ2も傾けることができる。 Further, in the humanoid robot 1, by mounting the camera 2 at a position corresponding to the eyeball, it becomes possible to easily perform stereoscopic recognition of an object by a stereo camera. In the humanoid robot 1, when the head is tilted, the camera 2 mounted at a position corresponding to the eyeball can also be tilted, as in the case of a human.
 図15に示すように、本開示の第1~第4の実施形態に係るアクチュエータは、ドローン等の飛行体3に搭載される物体認識カメラ4の制御に用いることができる。 As shown in FIG. 15, the actuators according to the first to fourth embodiments of the present disclosure can be used for controlling the object recognition camera 4 mounted on the flying object 3 such as a drone.
 本開示の第1~第4の実施形態に係るアクチュエータは、風等による飛行体3の揺れ、又は飛行時の飛行体3の機体傾きを相殺するように物体認識カメラ4を高応答かつ高速で回動させることができる。したがって、本開示の第1~第4の実施形態に係るアクチュエータによれば、飛行体3に搭載される物体認識カメラ4は、より安定した撮像、及び物体認識を行うことができる。 The actuators according to the first to fourth embodiments of the present disclosure make the object recognition camera 4 highly responsive and high-speed so as to offset the shaking of the flying object 3 due to wind or the like or the body tilt of the flying object 3 during flight. It can be rotated. Therefore, according to the actuators according to the first to fourth embodiments of the present disclosure, the object recognition camera 4 mounted on the flying object 3 can perform more stable imaging and object recognition.
 図16に示すように、本開示の第1~第4の実施形態に係るアクチュエータは、四足歩行ロボット5に搭載される物体認識カメラの回動に用いることができる。 As shown in FIG. 16, the actuators according to the first to fourth embodiments of the present disclosure can be used for rotating the object recognition camera mounted on the quadruped walking robot 5.
 本開示の第1~第4の実施形態に係るアクチュエータは、四足歩行ロボット5の機体揺れを相殺するように物体認識カメラを高応答かつ高速で回動させることができる。したがって、本開示の第1~第4の実施形態に係るアクチュエータによれば、四足歩行ロボット5に搭載される物体認識カメラは、より安定した撮像、及び物体認識を行うことができる。したがって、四足歩行ロボット5は、不整地等を安定して歩行することができるようになる。 The actuator according to the first to fourth embodiments of the present disclosure can rotate the object recognition camera with high response and high speed so as to offset the shaking of the quadruped walking robot 5. Therefore, according to the actuators according to the first to fourth embodiments of the present disclosure, the object recognition camera mounted on the quadruped walking robot 5 can perform more stable imaging and object recognition. Therefore, the quadruped walking robot 5 can stably walk on rough terrain and the like.
 以上、第1~第4の実施形態、及び変形例を挙げて、本開示にかかる技術を説明した。ただし、本開示にかかる技術は、上記実施の形態等に限定されるものではなく、種々の変形が可能である。 The techniques related to the present disclosure have been described above with reference to the first to fourth embodiments and modified examples. However, the technique according to the present disclosure is not limited to the above-described embodiment and the like, and various modifications can be made.
 また、上記の第1~第4の実施形態、及び変形例は、互いに組み合わせることも可能である。 Further, the above-mentioned first to fourth embodiments and modifications can be combined with each other.
 さらに、各実施形態で説明した構成および動作の全てが本開示の構成および動作として必須であるとは限らない。たとえば、各実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素として理解されるべきである。 Furthermore, not all of the configurations and operations described in each embodiment are essential as the configurations and operations of the present disclosure. For example, among the components in each embodiment, the components not described in the independent claims indicating the highest level concept of the present disclosure should be understood as arbitrary components.
 本明細書および添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。 The terms used throughout this specification and the appended claims should be construed as "non-limiting" terms. For example, the term "contains" or "contains" should be construed as "not limited to what is described as being included." The term "have" should be construed as "not limited to what is described as having."
 本明細書で使用した用語には、単に説明の便宜のために用いたものであって、構成および動作を限定したものではないものが含まれる。たとえば、「右」、「左」、「上」、「下」といった用語は、参照している図面上での方向を示しているにすぎない。また、「内側」、「外側」という用語は、それぞれ、注目要素の中心に向かう方向、注目要素の中心から離れる方向を示す。これらに類似する用語や同様の趣旨の用語についても同様である。 The terms used in this specification include those used only for convenience of explanation and not limiting the configuration and operation. For example, the terms "right", "left", "top", and "bottom" only indicate the direction on the referenced drawing. Further, the terms "inside" and "outside" indicate a direction toward the center of the attention element and a direction away from the center of the attention element, respectively. The same applies to terms similar to these and terms having a similar purpose.
 なお、本開示に係る技術は、以下のような構成を取ることも可能である。以下の構成を備える本開示に係る技術によれば、固定子100の凹曲面に沿ってxy平面に配列された3極以上の電磁部110から、回転子200の内部に設けられた被作用子210にそれぞれ磁気的な相互作用を作用させることができる。したがって、本開示に係る技術によれば、より簡素な機構にて2以上の自由度を実現するアクチュエータを提供することができる。本開示にかかる技術が奏する効果は、ここに記載された効果に必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。
(1)
 凹曲面を有する固定子と、
 前記凹曲面と摺動する凸曲面を有する回転子と、
 磁界の発生を制御可能であり、前記凹曲面に沿って前記固定子の内部に少なくとも3極以上配列された電磁部と、
 前記回転子の内部に設けられ、前記電磁部が発生させた前記磁界によって相互作用を受ける被作用子と
を備えた、アクチュエータ。
(2)
 前記回転子は、略球形形状、又は略半球形形状である、上記(1)に記載のアクチュエータ。
(3)
 前記被作用子は、軟質磁性材料で構成される、上記(1)又は(2)に記載のアクチュエータ。
(4)
 前記被作用子は、前記凸曲面に向かって凸となる2以上の突極を有する形状にて設けられる、上記(3)に記載のアクチュエータ。
(5)
 前記被作用子は、硬質磁性材料である、上記(1)又は(2)に記載のアクチュエータ。
(6)
 前記被作用子は、前記凸曲面に磁極の一方が対向するように配置される、上記(5)に記載のアクチュエータ。
(7)
 前記被作用子は、前記凸曲面に磁極の双方が並行して対向するように配置される、上記(5)に記載のアクチュエータ。
(8)
 前記電磁部は、それぞれ前記凹曲面に磁極の一方を向けた電磁石を含む、上記(1)~(7)のいずれか一項に記載のアクチュエータ。
(9)
 前記電磁石のコアは、それぞれ前記凹曲面の曲面形状に沿った形状を有する、上記(8)に記載のアクチュエータ。
(10)
 前記電磁部のコアは、複数個ずつ1つのコイルにて巻き回される、上記(8)又は(9)に記載のアクチュエータ。
(11)
 前記電磁部のコアの各々は、複数のコイルにて巻き回される、上記(8)~(10)のいずれか一項に記載のアクチュエータ。
(12)
 前記電磁部の各々は、六方最密配置にて配列される、上記(1)~(11)のいずれか一項に記載のアクチュエータ。
(13)
 前記回転子の前記凸曲面における座標を検出するエンコーダをさらに備える、上記(1)~(12)のいずれか一項に記載のアクチュエータ。
(14)
 前記回転子には、周囲の環境をセンシングするためのセンシング部がさらに設けられる、上記(1)~(13)のいずれか一項に記載のアクチュエータ。
(15)
 前記センシング部は、周囲の環境を撮像するカメラ、又は外部カメラに周囲の環境の光を導光するミラーである、上記(14)に記載のアクチュエータ。
The technology according to the present disclosure can also have the following configuration. According to the technique according to the present disclosure having the following configuration, actuators provided inside the rotor 200 from electromagnetic portions 110 having three or more poles arranged in an xy plane along a concave curved surface of the stator 100. Each 210 can be made to interact magnetically. Therefore, according to the technique according to the present disclosure, it is possible to provide an actuator that realizes two or more degrees of freedom with a simpler mechanism. The effects produced by the techniques according to the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described in the present disclosure.
(1)
A stator with a concave curved surface and
A rotor having a convex curved surface that slides on the concave curved surface,
A solenoid portion that can control the generation of a magnetic field and has at least three poles arranged inside the stator along the concave curved surface, and
An actuator provided inside the rotor and provided with an actuator that is interacted with by the magnetic field generated by the electromagnetic part.
(2)
The actuator according to (1) above, wherein the rotor has a substantially spherical shape or a substantially hemispherical shape.
(3)
The actuator according to (1) or (2) above, wherein the operator is made of a soft magnetic material.
(4)
The actuator according to (3) above, wherein the operator is provided in a shape having two or more salient poles that are convex toward the convex curved surface.
(5)
The actuator according to (1) or (2) above, wherein the operator is a hard magnetic material.
(6)
The actuator according to (5) above, wherein the operator is arranged so that one of the magnetic poles faces the convex curved surface.
(7)
The actuator according to (5) above, wherein the operator is arranged on the convex curved surface so that both magnetic poles face each other in parallel.
(8)
The actuator according to any one of (1) to (7) above, wherein each of the electromagnetic portions includes an electromagnet having one of the magnetic poles directed to the concave curved surface.
(9)
The actuator according to (8) above, wherein each core of the electromagnet has a shape along the curved surface shape of the concave curved surface.
(10)
The actuator according to (8) or (9) above, wherein the core of the electromagnetic part is wound by one coil at a time.
(11)
The actuator according to any one of (8) to (10) above, wherein each of the cores of the electromagnetic part is wound by a plurality of coils.
(12)
The actuator according to any one of (1) to (11) above, wherein each of the electromagnetic portions is arranged in a hexagonal close-packed arrangement.
(13)
The actuator according to any one of (1) to (12) above, further comprising an encoder for detecting the coordinates of the rotor on the convex curved surface.
(14)
The actuator according to any one of (1) to (13) above, wherein the rotor is further provided with a sensing unit for sensing the surrounding environment.
(15)
The actuator according to (14) above, wherein the sensing unit is a camera that images the surrounding environment or a mirror that guides the light of the surrounding environment to an external camera.
 「本出願は、日本国特許庁において2019年10月16日に出願された日本特許出願番号第2019-189363号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。」 "This application claims priority on the basis of Japanese Patent Application No. 2019-189363 filed on October 16, 2019 at the Japan Patent Office, by reference to all the contents of this application. Incorporated in this application. "
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 One of ordinary skill in the art can conceive of various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are included in the appended claims and their equivalents. It is understood that it is something to be done.

Claims (15)

  1.  凹曲面を有する固定子と、
     前記凹曲面と摺動する凸曲面を有する回転子と、
     磁界の発生を制御可能であり、前記凹曲面に沿って前記固定子の内部に少なくとも3極以上配列された電磁部と、
     前記回転子の内部に設けられ、前記電磁部が発生させた前記磁界によって相互作用を受ける被作用子と
    を備えた、アクチュエータ。
    A stator with a concave curved surface and
    A rotor having a convex curved surface that slides on the concave curved surface,
    A solenoid portion that can control the generation of a magnetic field and has at least three poles arranged inside the stator along the concave curved surface, and
    An actuator provided inside the rotor and provided with an actuator that is interacted with by the magnetic field generated by the electromagnetic part.
  2.  前記回転子は、略球形形状、又は略半球形形状である、請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein the rotor has a substantially spherical shape or a substantially hemispherical shape.
  3.  前記被作用子は、軟質磁性材料で構成される、請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein the operator is made of a soft magnetic material.
  4.  前記被作用子は、前記凸曲面に向かって凸となる2以上の突極を有する形状にて設けられる、請求項3に記載のアクチュエータ。 The actuator according to claim 3, wherein the operator is provided in a shape having two or more salient poles that are convex toward the convex curved surface.
  5.  前記被作用子は、硬質磁性材料である、請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein the operator is a hard magnetic material.
  6.  前記被作用子は、前記凸曲面に磁極の一方が対向するように配置される、請求項5に記載のアクチュエータ。 The actuator according to claim 5, wherein the operator is arranged so that one of the magnetic poles faces the convex curved surface.
  7.  前記被作用子は、前記凸曲面に磁極の双方が並行して対向するように配置される、請求項5に記載のアクチュエータ。 The actuator according to claim 5, wherein the operator is arranged on the convex curved surface so that both magnetic poles face each other in parallel.
  8.  前記電磁部は、それぞれ前記凹曲面に磁極の一方を向けた電磁石を含む、請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein each of the electromagnetic portions includes an electromagnet having one of the magnetic poles directed to the concave curved surface.
  9.  前記電磁石のコアは、それぞれ前記凹曲面の曲面形状に沿った形状を有する、請求項8に記載のアクチュエータ。 The actuator according to claim 8, wherein each core of the electromagnet has a shape along the curved surface shape of the concave curved surface.
  10.  前記電磁部のコアは、複数個ずつ1つのコイルにて巻き回される、請求項8に記載のアクチュエータ。 The actuator according to claim 8, wherein a plurality of cores of the electromagnetic part are wound by one coil.
  11.  前記電磁部のコアの各々は、複数のコイルにて巻き回される、請求項8に記載のアクチュエータ。 The actuator according to claim 8, wherein each of the cores of the electromagnetic part is wound by a plurality of coils.
  12.  前記電磁部の各々は、六方最密配置にて配列される、請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein each of the electromagnetic parts is arranged in a hexagonal close-packed arrangement.
  13.  前記回転子の前記凸曲面における座標を検出するエンコーダをさらに備える、請求項1に記載のアクチュエータ。 The actuator according to claim 1, further comprising an encoder that detects the coordinates of the rotor on the convex curved surface.
  14.  前記回転子には、周囲の環境をセンシングするためのセンシング部がさらに設けられる、請求項1に記載のアクチュエータ。 The actuator according to claim 1, wherein the rotor is further provided with a sensing unit for sensing the surrounding environment.
  15.  前記センシング部は、周囲の環境を撮像するカメラ、又は外部カメラに周囲の環境の光を導光するミラーである、請求項14に記載のアクチュエータ。 The actuator according to claim 14, wherein the sensing unit is a camera that images the surrounding environment or a mirror that guides the light of the surrounding environment to an external camera.
PCT/JP2020/038093 2019-10-16 2020-10-08 Actuator WO2021075342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-189363 2019-10-16
JP2019189363 2019-10-16

Publications (1)

Publication Number Publication Date
WO2021075342A1 true WO2021075342A1 (en) 2021-04-22

Family

ID=75537972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038093 WO2021075342A1 (en) 2019-10-16 2020-10-08 Actuator

Country Status (1)

Country Link
WO (1) WO2021075342A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917860A (en) * 1982-07-22 1984-01-30 Toshiba Corp Stepping motor
JPH0564417A (en) * 1991-08-30 1993-03-12 Mitsubishi Heavy Ind Ltd Motor having spherical rotor
JPH07308056A (en) * 1994-05-12 1995-11-21 Isuzu Motors Ltd Magnet generator
JPH09168275A (en) * 1995-12-15 1997-06-24 Mitsubishi Heavy Ind Ltd Motor with multiple-degree of freedom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917860A (en) * 1982-07-22 1984-01-30 Toshiba Corp Stepping motor
JPH0564417A (en) * 1991-08-30 1993-03-12 Mitsubishi Heavy Ind Ltd Motor having spherical rotor
JPH07308056A (en) * 1994-05-12 1995-11-21 Isuzu Motors Ltd Magnet generator
JPH09168275A (en) * 1995-12-15 1997-06-24 Mitsubishi Heavy Ind Ltd Motor with multiple-degree of freedom

Similar Documents

Publication Publication Date Title
US7804224B2 (en) Piezoelectric motor and piezoelectric motor system
US6803738B2 (en) Magnetic actuation and positioning
US7675208B2 (en) Global pointing actuator
KR101473598B1 (en) Suspended input system
JP5099020B2 (en) Optical scanning apparatus and image forming apparatus
US6879082B2 (en) Electromagnetic positioning
EP3331141B1 (en) Three degree-of-freedom electromagnetic machine control system and method
KR20090020626A (en) An artificial eye system with drive means inside the eye-ball
US20170254473A1 (en) Gimbals
GB2358524A (en) Two-axis pointing motor
US9442185B2 (en) Non-contacting electro-magnetic spherical planar motor providing 3-axis control of a ball joint gimbal mounted electro-optic system
US20190267880A1 (en) Actuator and camera device
WO2021075342A1 (en) Actuator
JP5488131B2 (en) Electromagnetic actuator
KR20040004727A (en) Spherical motor device
JP2018072657A (en) Optical unit
KR100825949B1 (en) 3 degrees of freedom actuator
US20120301130A1 (en) Magnetic array control system for angular orientation of an instrument
Heya et al. Two-degree-of-freedom actuator for robotic eyes
JP5439663B2 (en) Electromagnetic actuator and joint device
WO2021176517A1 (en) Actuator and actuator device
CN113138460A (en) Imager and imaging system
JP5099021B2 (en) Optical scanning device, non-contact optical scanning control mechanism, and image forming apparatus
Lim Modeling using magnetic dipole moment principle and orientation sensing of an electromagnetic spherical actuator
JP2020039237A (en) Actuator and actuator device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP