WO2021176517A1 - Actuator and actuator device - Google Patents

Actuator and actuator device Download PDF

Info

Publication number
WO2021176517A1
WO2021176517A1 PCT/JP2020/008693 JP2020008693W WO2021176517A1 WO 2021176517 A1 WO2021176517 A1 WO 2021176517A1 JP 2020008693 W JP2020008693 W JP 2020008693W WO 2021176517 A1 WO2021176517 A1 WO 2021176517A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
actuator
mover
respect
drive unit
Prior art date
Application number
PCT/JP2020/008693
Other languages
French (fr)
Japanese (ja)
Inventor
俊平 林
亮 戸田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to PCT/JP2020/008693 priority Critical patent/WO2021176517A1/en
Publication of WO2021176517A1 publication Critical patent/WO2021176517A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator

Definitions

  • the present invention relates to an actuator and an actuator device.
  • Patent Document 1 describes a conventional actuator.
  • an output unit for outputting the driving force (electric artificial muscle in the same document)
  • an input unit for inputting the driving force (foot part in the same document) are provided.
  • the output unit and the input unit are configured separately (independently). Therefore, there is a limit to the miniaturization of each part, and further miniaturization is desired.
  • an object of the present invention is to provide an actuator and an actuator device that can be made smaller than before.
  • the actuator includes a first stator, a first mover, a second stator, a second mover, and a stator connection portion.
  • the first mover is movably attached to the first stator and driven with respect to the first stator.
  • the second mover is movably attached to the second stator and driven with respect to the second stator.
  • the stator connecting portion connects the first stator and the second stator so that the second stator can move with respect to the first stator.
  • the first stator moves the second stator with respect to the first stator when driven with respect to the first stator.
  • the second stator moves the first stator with respect to the second stator when driven with respect to the second stator.
  • the actuator can be made smaller than before.
  • FIG. 1A It is a figure which shows the actuator 1a of 1st Embodiment. It is a figure which shows the 1st drive part 10 shown in FIG. 1A, and is the figure in the case where the 1st mover 13 is an armature 15. It is a figure which shows the 1st drive part 10 shown in FIG. 1A, and is the figure in the case where the 1st mover 13 is a magnetic monopole 17. It is a figure which shows the operation of the actuator 1a shown in FIG. 1A. It is a figure which shows the bent state of the actuator 1a shown in FIG. 1A. It is a figure which shows the actuator 201a of 2nd Embodiment. It is a figure which shows the bent state of the actuator 201a shown in FIG. 2A.
  • the 1st mover 13 is an armature 15. It is a figure which shows the 1st drive part 10 shown in FIG. 5A, and is the figure in the case where the 1st mover 13 is a magnetic monopole 17. It is a figure which shows the bent state of the actuator device 501 shown in FIG. 5A. It is a figure which shows the actuator device 601 of the 6th Embodiment. It is a figure which looked at the actuator device 701 of 7th Embodiment from the X1 direction. It is a figure which looked at the actuator device 701B of the modification of 7th Embodiment from the X1 direction. It is a figure which shows the actuator device 801 of 8th Embodiment.
  • FIG. 8B is a diagram corresponding to FIG. 8B showing an actuator device 801B of a modified example of the eighth embodiment. It is a figure which shows the bent state of the actuator device 801 shown in FIG. 8A. It is a perspective view which shows the actuator device 901 of the 9th Embodiment. 9A is a view of the actuator device 901 shown in FIG. 9A as viewed from the X1 direction, and is a view taken along the line F9B of FIG. 9A. It is a figure which shows the actuator device 1001 of a tenth embodiment. It is a figure which shows the state which the actuator device 1001 shown in FIG. 10A is extended.
  • the actuator 1a is a device that moves the second drive unit 20 with respect to the first drive unit 10.
  • the actuator 1a may be used, for example, in a robot or a manipulator of a robot.
  • Actuator 1a may be used, for example, in a drone or in a biomimetic drone (for example, a drone that flaps like a bird or an insect, for example, a drone that moves fins like a dolphin or a ray).
  • Actuator 1a may be used in industrial machines and other machines.
  • the actuator 1a includes a first drive unit 10, a second drive unit 20, a stator connection unit 30, and a mover transmission unit 40.
  • the first drive unit 10 drives the first mover 13 with respect to the first stator 11.
  • the first drive unit 10 is, for example, an electric actuator.
  • the first stator 11 movably supports the first mover 13.
  • the first stator 11 has a shape having a longitudinal direction, and may be, for example, a rod shape, a columnar shape, or a rectangular parallelepiped shape (the first stator 13, the second stator 21, and the second stator 23 also have a shape. Similarly).
  • the first stator 11 does not have to have a shape having a longitudinal direction.
  • the first stator 13 is movably attached to the first stator 11 and is driven with respect to the first stator 11.
  • the first mover 13 can move linearly with respect to the first stator 11 (the first drive unit 10 is a linear motor).
  • the first stator 13 is guided by the first stator 11.
  • the first mover 13 can move, for example, in the longitudinal direction of the first stator 11.
  • the first stator 13 is configured to be driven by an electromagnetic force with respect to the first stator 11.
  • the first drive unit 10 includes an armature 15 and a magnetic pole element 17.
  • the armature 15 has a coil 15c.
  • the monopole 17 may include a permanent magnet or a cage conductor (not shown).
  • the magnetic flux line M passes through the armature 15 and the magnetic pole element 17.
  • the patterns shown in FIGS. 1B and 1C can be considered for the combination of the armature 15, the magnetic monopole 17, the first stator 11, and the first mover 13.
  • the first stator 11 is a magnetic monopole 17 and the first mover 13 is an armature 15.
  • the first drive unit 10 is, for example, a DC motor or the like. In this case, power is supplied to the armature 15 using a brush (not shown).
  • the pattern shown in FIG. 1B is more effective than the pattern shown in FIG.
  • the first stator 11 is the armature 15 and the first mover 13 is the magnetic monopole 17.
  • the coil 15c (see FIG. 1B) is omitted.
  • the first drive unit 10 is, for example, a brushless motor or an induction motor. When the first drive unit 10 is a brushless motor, maintainability can be improved as compared with the case where a brush is used.
  • the second drive unit 20 is configured in the same manner as the first drive unit 10.
  • the second drive unit 20 includes a second stator 21 and a second mover 23.
  • the second stator 23 is movably attached to the second stator 21 and is driven with respect to the second stator 21. If the first stator 11 and the second stator 21 are considered as one stator, one stator drives a plurality of movers (first mover 13 and second mover 23) (so to speak, multi). It will be driven).
  • the actuator 1a is, for example, a so-called multi-drive linear motor.
  • the stator connecting portion 30 connects the first stator 11 and the second stator 21 so that the second stator 21 can move with respect to the first stator 11.
  • the stator connecting portion 30 connects the first stator 11 and the second stator 21 with one or more degrees of freedom.
  • the stator connection portion 30 connects the first stator 11 and the second stator 21 so that the second stator 21 can rotate with respect to the first stator 11 (1).
  • the stator connection 30 is a joint).
  • the first stator 11 and the second stator 21 are rotational pairs.
  • the number of rotation axes A of the second stator 21 with respect to the first stator 11 is 1 in the example shown in FIG.
  • the stator connection portion 30 may be 2 or more (see, for example, the stator connection portion 1030 shown in FIG. 10A).
  • the stator connection portion 30 may be, for example, a universal joint (universal joint), a pillow ball, or a spherical joint.
  • the stator connection portion 30 connects the first stator 11 and the second stator 21 so that the second stator 21 can move linearly with respect to the first stator 11. (See, for example, the stator connection 1030 shown in FIG. 10B). In this case, the first stator 11 and the second stator 21 are sliding pairs.
  • the stator connection portion 30 has a first stator 11 and a second stator 21 so that the second stator 21 can rotate and move linearly with respect to the first stator 11. May be connected with.
  • the first stator 11 and the second stator 21 are a rotating pair and a sliding pair.
  • the stator connecting portion 30 may connect the first stator 11 and the second stator 21 by an elastic member (for example, a spring or rubber).
  • an elastic member for example, a spring or rubber
  • the moving direction of the first mover 13 with respect to the first stator 11 is the X1 direction.
  • the moving direction of the second mover 23 with respect to the second stator 21 is the X2 direction.
  • the side from the second stator 21 toward the stator connecting portion 30 is the X2a side, and the opposite side is the X2b side.
  • the direction in which the rotation axis A of the second stator 21 extends with respect to the first stator 11 is defined as the Y direction.
  • the direction orthogonal to each of the X1 direction and the Y direction is defined as the Z direction.
  • the side from the rotation axis A (more specifically, the position of the rotation axis A in the Z direction) to the first mover 13 (more specifically, the position of the first mover 13 in the Z direction) is the Za side.
  • the opposite side is the Zb side.
  • the rotation direction around the rotation axis A is the R2 direction.
  • the direction of rotation of 20 is the R2a side in the R2 direction.
  • the side opposite to the R2a side is the R2b side.
  • the rotation direction (R2 direction) around the rotation axis A is also referred to as the R1 direction
  • the R2a side is also referred to as the R1b side
  • the R2b side is also referred to as the R1a side.
  • the mover transmission unit 40 transmits a force between the first mover 13 and the second mover 23.
  • the mover transmission unit 40 moves the second stator 21 with respect to the first stator 11 (rotational movement in the present embodiment).
  • the mover transmission unit 40 moves the first stator 11 with respect to the second stator 21 (rotational movement in the present embodiment).
  • the mover transmission unit 40 is arranged on the Za side of the stator connection unit 30.
  • the mover transmission portion 40 includes a base portion 40b, a first contact portion 41, and a second contact portion 42.
  • the base portion 40b has a triangular shape when viewed from the Y direction. As shown in FIG. 1D, the base portion 40b is rotatable about the rotation axis A with respect to the first stator 11 and the second stator 21. The base portion 40b is connected to the stator connecting portion 30. The base portion 40b may be fixed to the stator connection portion 30 or may be rotatably connected to the stator connection portion 30.
  • the first contact portion 41 can contact the first mover 13.
  • the first contact portion 41 is a portion (surface) of the base portion 40b facing the first mover 13 side.
  • the first contact portion 41 is not connected to the first mover 13 and can be separated from the first mover 13.
  • the second contact portion 42 can contact the second mover 23.
  • the relationship between the second contact portion 42 and the second mover 23 is the same as the relationship between the first contact portion 41 and the first mover 13.
  • the actuator 1a shown in FIG. 1A is configured to operate as follows. In the following, a state in which the X1a side and the X2b side are in the same direction will be described as an initial state (the same applies to the description of the operation in the other embodiments below). It is not necessary to start the operation of the actuator 1a from the state where the X1a side and the X2b side are in the same direction.
  • the first drive unit 10 shown in FIG. 1D is driven as follows.
  • the first mover 13 moves toward the X1a side with respect to the first stator 11, comes into contact with the first contact portion 41, and pushes the mover transmission portion 40 toward the X1a side.
  • the mover transmission unit 40 rotates toward R2b.
  • the second contact portion 42 pushes the second mover 23 toward R2b.
  • the second drive unit 20 rotates toward R2b. Therefore, as shown in FIG. 1E, the entire actuator 1a is deformed (driven) about the rotation axis A, and more specifically, is bent (bent) about the rotation axis A.
  • the second drive unit 20 shown in FIG. 1D is driven as follows. Similar to the first drive unit 10, when the second mover 23 moves to the X2a side with respect to the second stator 21, the first drive unit 10 rotates to the R1b side. When the first drive unit 10 and the second drive unit 20 are driven, the actuator 1a can be driven with a larger force (thrust) than when only one of them is driven.
  • the first drive unit 10 shown in FIG. 1A also serves as an output unit and an input unit.
  • the details are as follows.
  • the first drive unit 10 is driven, the first mover 13 is driven with respect to the first stator 11, and this driving force is transmitted to the second stator 21, and the second stator with respect to the first stator 11. 21 moves (for example, rotates). Therefore, the first drive unit 10 is an output unit that outputs a driving force to the second drive unit 20.
  • the first stator 11 (a part of the first drive unit 10) moves (for example, rotates) with respect to the second stator 21. Therefore, the first drive unit 10 is also an input unit into which the driving force of the second drive unit 20 is input.
  • the first drive unit 10 also serves as an output unit and an input unit. Therefore, the actuator 1a can be downsized as compared with the case where the output unit and the input unit cannot be combined in the first drive unit 10. As a result of being able to reduce the size of the actuator 1a, the weight of the actuator 1a can be reduced.
  • the second drive unit 20 also serves as an output unit and an input unit. Therefore, the actuator 1a can be further miniaturized.
  • the first drive unit 10 is a support mechanism that supports the second drive unit 20 via the stator connection unit 30. In this case, the first drive unit 10 also serves as a support mechanism, an output unit, and an input unit.
  • the actuator 1a can be driven with a larger force than when only one of them is driven.
  • the required driving force of each of the first drive unit 10 and the second drive unit 20 is smaller than that when only one of them is driven. can. Therefore, each of the first drive unit 10 and the second drive unit 20 can be miniaturized. Therefore, the actuator 1a can be miniaturized.
  • the actuator 1a In general, in order to increase the force (output) generated in the system (actuator 1a in this case), it is necessary to increase the area of the surface that generates the force (the area of the portion that contributes to the generation of the force). Since the actuator 1a is provided with the first drive unit 10 and the second drive unit 20, it is possible to widen the surface for generating force as compared with the case where only one of them is provided. On the other hand, the surface that generates the force is restricted by the outer shape of the system. Therefore, there is a limit to the size of the surface that generates force. Therefore, if the first drive unit 10 and the second drive unit 20 are configured to be flat, the surface for generating force can be increased without increasing the volume as much as possible.
  • the generated force per volume of the actuator 1a can be increased. Therefore, when at least one of the first drive unit 10 and the second drive unit 20 is configured to be flat, the actuator 1a can be further miniaturized.
  • the dimension of the first drive unit 10 in the other direction is larger than the dimension (thickness) of the first drive unit 10 in the direction in which the first stator 11 and the first mover 13 face each other (for example, the Z direction). When it is large, the first drive unit 10 is flat (the same applies to the second drive unit 20).
  • the actuator 1a When the actuator 1a is used, for example, in a personal robot or a collaborative robot that collaborates with a person, the actuator 1a is made small so that the robot can be arranged in a narrow space and in order to prevent injury to the person. Is especially desired. Therefore, the actuator 1a is particularly advantageous when used in these robots.
  • the driving unit (foot portion in the same document) for moving the lower portion (foot portion in the same document) with respect to the upper portion above the joint portion (heel portion).
  • the electric artificial muscle in the same document) is provided only above the joint portion. Therefore, there is a problem that a surface for generating force cannot be sufficiently secured.
  • drive units (first drive unit 10 and second drive unit 20) are provided on both sides (left and right in FIG. 1A) of the stator connection unit 30. Therefore, the surface for generating the force can be made wider than before, which is advantageous for miniaturization of the actuator 1a.
  • the actuator 1a is bent by using a linear motor.
  • a rotary motor is arranged at or near the joint portion (stator connection portion 30 in this embodiment), and the link (first stator 11 and second stator 21 in this embodiment) is used by using this rotary motor.
  • the size of the joint portion does not limit the size of the drive unit (first drive unit 10, second drive unit 20) (it is not necessary to reduce the size of the drive unit for the purpose of reducing the size of the joint portion). .. Therefore, in the present embodiment, the drive unit (first drive unit 10, second drive unit 20) can be made larger than in the case where the size of the drive unit (rotary motor) is restricted by the size of the joint portion. Therefore, the magnitude of the force that can be generated by the actuator 1a can be increased. In this embodiment, only a part of the above-mentioned effects may be obtained.
  • the first drive unit 10 and the second drive unit 20 may be driven not only as an electric motor but also as a generator.
  • the first drive unit 10 it is sufficient that the first mover 13 can be driven with respect to the first stator 11, and the purpose is not to drive the first mover 13 with respect to the first stator 11. It may be good (the same applies to the second drive unit 20).
  • the actuator 1a causes the second stator 21 to move with respect to the first stator 11 when the first mover 13 is driven with respect to the first stator 11. It is composed. In this configuration, when the second stator 21 is moved with respect to the first stator 11, the first mover 13 moves with respect to the first stator 11. Then, the first drive unit 10 can generate electricity.
  • the second drive unit 20 can also generate electricity.
  • the actuator 1a When the actuator 1a is driven as a generator, the actuator 1a may be used as a generator that generates electricity by, for example, wind power or lift. Further, the actuator 1a may be used as a vibration damping device that detects the electric power generated by the actuator 1a and performs vibration damping using the detected value.
  • the effects of the actuator 1a shown in FIG. 1A are as follows.
  • the actuator 1a includes a first stator 11, a first stator 13, a second stator 21, a second stator 23, and a stator connecting portion 30.
  • the first stator 13 is movably attached to the first stator 11 and driven with respect to the first stator 11.
  • the second stator 23 is movably attached to the second stator 21 and driven with respect to the second stator 21.
  • the stator connecting portion 30 connects the first stator 11 and the second stator 21 so that the second stator 21 can move with respect to the first stator 11.
  • the first stator 11 and the first mover 13 function as output units that output the generated force.
  • the second stator 21 and the second mover 23 function as output units that output the generated force.
  • the second stator 21 (a part of the second drive unit 20) is the first stator 11 and the first mover 13 (first drive unit 10). ). Therefore, the second drive unit 20 functions as an input unit to which the force generated by the first drive unit 10 is input.
  • the first drive unit 10 functions as an input unit to which the force generated by the second drive unit 20 is input. Therefore, the first drive unit 10 serves as both an output unit and an input unit, and the second drive unit 20 also serves as an output unit and an input unit. Therefore, the actuator 1a can be downsized as compared with the case where the output unit and the input unit are provided separately. As a result of being able to reduce the size of the actuator 1a, the weight of the actuator 1a may be reduced.
  • the stator connecting portion 30 connects the first stator 11 and the second stator 21 to the first stator 11 so that the second stator 21 can rotate.
  • the actuator 1a in which the second stator 21 can rotate with respect to the first stator 11 can be miniaturized.
  • the actuator 1a is used as compared with the case where it is necessary to provide a motor (rotating motor or the like) in the stator connection portion 30 in order to rotate the second stator 21 with respect to the first stator 11. It can be miniaturized (details are as above).
  • the base portion 40b had a triangular shape when viewed from the Y direction.
  • the base portion 240b shown in FIG. 2A is T-shaped when viewed from the Y direction.
  • the shape of the base portion 240b does not have to be triangular or T-shaped.
  • the actuator 301a of the third embodiment includes a mover connecting portion 350 instead of the mover transmitting portion 40 (see FIG. 1A).
  • the actuator 301a may include a connecting portion connecting portion 360.
  • the mover connection unit 350 connects the first mover 13 and the second mover 23 so that a force can be transmitted between the first mover 13 and the second mover 23.
  • the mover connecting portion 350 moves the second stator 21 with respect to the first stator 11 (rotational movement in the present embodiment) when the first mover 13 is driven with respect to the first stator 11. .. Further, the mover connecting portion 350 moves the first stator 11 with respect to the second stator 21 when the second mover 23 is driven with respect to the second stator 21 (rotational movement in the present embodiment). ).
  • the mover connection unit 350 has more restrictions on the movement of the first mover 13 and the second mover 23 than the mover transmission unit 40 (see FIG. 1A) of the first embodiment.
  • the mover connecting portion 350 connects the first mover 13 and the second mover 23 with one or more degrees of freedom.
  • the mover connecting portion 350 connects the first mover 13 and the second mover 23 so that the first mover 13 can pull the second mover 23.
  • the mover connecting portion 350 connects the first mover 13 and the second mover 23 so that the second mover 23 can pull the first mover 13.
  • the movable element connecting portion 350 includes a movable element connecting link portion 351 and a movable element connecting joint portion 353.
  • the mover connection link portion 351 is a member that connects the first mover 13 and the second mover 23 via the mover connection joint portion 353.
  • the mover connection link portion 351 is substantially linear (for example, rod-shaped, plate-shaped, etc.) when viewed from the Y direction, and does not have to be substantially linear.
  • the mover connection link portion 351 may be rotatably connected to the first mover 13 (the same applies to the second mover 23), or may be fixed to the first mover 13. (The same applies to the second mover 23).
  • the movable element connecting joint portion 353 is a member that makes the movable element connecting link portion 351 bendable.
  • the number of bending rotation axes of the mover connection link portion 351 is 1 in the example shown in FIG. 3C, but may be 2 or more.
  • the direction of the rotation axis of the bending of the mover connection link portion 351 shown in FIG. 3A (the direction of at least one rotation axis when there are a plurality of rotation axes) is the Y direction.
  • the connecting portion connecting portion 360 connects the stator connecting portion 30 and the movable element connecting joint portion 353.
  • the connecting portion connecting portion 360 connects the stator connecting portion 30 and the movable element connecting joint portion 353 so that the movable element connecting joint portion 353 can rotate around the rotation axis A.
  • the first mover 13 shown in FIG. 3D moves to the X1b side
  • the first mover 13 pulls the second mover 23 to the X2a side via the mover connection portion 350.
  • the second stator 21 rotates toward R2a.
  • the second stator 23 moves to the X2b side
  • the second stator 21 rotates to the R1a side.
  • the actuator 301a can be deformed by using the force that the first mover 13 pulls the second mover 23 and the force that the second mover 23 pulls the first mover 13.
  • the actuator 301a includes a mover connecting portion 350.
  • the mover connecting portion 350 connects the first mover 13 and the second mover 23 so that a force can be transmitted between the first mover 13 and the second mover 23.
  • a force can be transmitted from the first mover 13 to the second drive unit 20 via the mover connecting part 350. Further, the force can be transmitted from the second mover 23 to the first drive unit 10 via the mover connecting part 350. Therefore, as compared with the case where the first mover 13 and the second mover 23 are not connected (see, for example, FIG. 1A), it is possible to increase the direction in which the second drive unit 20 can move (drive) with respect to the first drive unit 10. can.
  • the actuator 401a of the fourth embodiment does not include the mover transmission unit 40 (see FIG. 1A) but includes a guide unit 460.
  • the guide unit 460 guides the movement (position) of the first mover 13.
  • the guide portion 460 imposes restrictions on the movement of the first mover 13.
  • the guide portion 460 includes, for example, a pin 461 and a rail 463.
  • the pin 461 is provided on the first mover 13.
  • the pin 461 projects outward from the first mover 13 in the Y direction, for example.
  • the rail 463 may be fixed to the outside (frame, etc.) of the actuator 401a, for example, or may be fixed to the second stator 21, for example.
  • the rail 463 is fixed to the second stator 21 via, for example, the rail connecting portion 463a.
  • the rail 463 is configured to support the pin 461.
  • the rail 463 guides the movement of the pin 461, for example, the pin 461 is moved along the inner surface of the rail 463.
  • the difference between the operation of the actuator 1a of the first embodiment and the operation of the actuator 401a of the present embodiment is as follows.
  • the first stator 13 moves with respect to the first stator 11 while being guided by the guide portion 460.
  • the first stator 13 rotates the first stator 11 with respect to the second stator 21.
  • the first mover 13 rotates to the R1b side.
  • the first stator 11 also rotates toward R1b.
  • the rotation of the first stator 11 to the R1b side with respect to the second stator 21 is considered to be the rotation of the second stator 21 to the R2b side with respect to the first stator 11 when the first stator 11 is fixed. It is a rotation. Therefore, it can be said that the second stator 21 rotates with respect to the first stator 11 by moving the first mover 13 with respect to the first stator 11.
  • the second drive unit 20 uses the same guide unit 460-2 (pin 461-2 and rail 463-2) as the guide unit 460 to rotate the first stator 11 with respect to the second stator 21. May be good. Further, the second drive unit 20 may rotate the first stator 11 with respect to the second stator 21 in the same configuration as shown in FIGS. 1A and 2A.
  • the actuator device 501 of the fifth embodiment includes a plurality of actuators 501a.
  • the movable element connecting portion 550 has a configuration different from that of the movable element connecting portion 350 (see FIG. 3A).
  • the number of actuators 501a provided in the actuator device 501 is 2 in the example shown in FIG. 5A, and may be 3 or more (see FIG. 9A and the like).
  • the actuator device 501 includes a first actuator 501a1 and a second actuator 501a2.
  • the Z direction and the R2 direction shown in FIG. 5A are the Z direction and the R2 direction in the first actuator 501a1.
  • the Z direction and the R2 direction will be the directions in the first actuator 501a1.
  • the directions from the first stator 11 to the first mover 13 are opposite to each other for the first actuator 501a1 and the second actuator 501a2 (the left and right directions are opposite in FIG. 5A), and even if they are not opposite to each other. good.
  • the directions from the first stator 11 to the first mover 13 are opposite to each other in the first actuator 501a1 and the second actuator 501a2 will be described.
  • the first drive unit 10 of the plurality of actuators 501a is configured as follows.
  • the first stators 11 of the plurality of actuators 501a are connected to each other.
  • the first stators 11 of the plurality of actuators 501a may be directly connected (including the case where they are integrally configured) as in the example shown in FIG. 5A, or indirectly via a member (not shown). May be connected.
  • the moving directions (X1 directions) of the first movers 13 of the plurality of actuators 501a are parallel to each other.
  • the first mover 13 of the plurality of actuators 501a constitutes a so-called parallel link mechanism.
  • FIG. 5B shows an example in which the first stator 11 is a magnetic pole element 17 and the first mover 13 is an armature 15.
  • FIG. 5C shows an example in which the first stator 11 is the armature 15 and the first mover 13 is the magnetic pole element 17. In FIGS. 5B and 5C, the coil 15c of the armature 15 (see FIG. 1
  • the second drive unit 20 of the plurality of actuators 501a is configured as follows.
  • the second stators 21 are connected to each other.
  • the moving directions of the second movers 23 of the plurality of actuators 501a are parallel to each other.
  • the mover connection portion 550 is rotatable with respect to each of the first mover 13 and the second mover 23.
  • the movable element connecting portion 550 may be configured to be bendable at a position between the first movable element 13 and the second movable element 23, similarly to the movable element connecting portion 350 (see FIG. 3A). It may be configured as impossible.
  • the stator connection portion 30 may be shared by a plurality of actuators 501a, or may be separately provided for each of the plurality of actuators 501a (not shown).
  • the mover connecting portion 550 may function as the stator connecting portion 30. More specifically, the mover connection portion 550 is a first stator so that the second stator 21 can move with respect to the first stator 11 via the first mover 13 and the second mover 23. 11 and the second stator 21 are connected. Therefore, for example, even if the stator connecting portion 30 shown in FIG. 5D is not provided, the first stator 11 and the second stator 21 are connected by the mover connecting portion 550. For example, in the example shown in FIG. 14, the mover connecting portion 550 and the stator connecting portion 30 are also used.
  • the second stator 21 is moved (for example, rotated) with respect to the first stator 11 by driving a plurality of actuators 501a. Therefore, in the actuator device 501, the surface for generating a force can be widened as compared with the case where only one actuator 501a is provided. Therefore, the second stator 21 is moved with a larger force with respect to the first stator 11 as compared with the case where the second stator 21 is moved with respect to the first stator 11 by driving only one actuator 501a. Can be done. Therefore, as a result of reducing the required driving force of each of the first drive unit 10 and the second drive unit 20, each actuator 501a can be further miniaturized. A part of the actuators 501a among the plurality of actuators 501a may be driven by the other actuators 501a.
  • the actuator device 501 includes a plurality of actuators 501a. A plurality of first stators 11 are connected to each other.
  • the actuator device 501 when a plurality of actuators 501a are provided, the actuator device 501 can be downsized as compared with the case where the plurality of first stators 11 are not connected to each other.
  • the actuator device 701 includes three actuators 501a.
  • the actuator device 701 includes a first actuator 501a1, a second actuator 501a2, and a third actuator 501a3.
  • the directions of the actuators 501a from the first stator 11 to the second mover 23 are different from each other.
  • the first stator 11 of each actuator 501a shares the yoke 711a.
  • the yoke 711a is configured to allow the magnetic flux of each actuator 501a (see magnetic flux line M) to pass through.
  • the first stator 11 of each actuator 501a may be integrated with each other or may be connected to each other via a member (not shown) capable of passing magnetic flux.
  • the yoke 711a is columnar.
  • the yoke 711a extends in the longitudinal direction (for example, the X1 direction) of the first stator 11.
  • the yoke 711a includes a hole 711a1 (more specifically, the inner surface of the hole).
  • the hole 711a1 is formed in the central portion of the yoke 711a.
  • the "central portion of the yoke 711a” is the central portion of the yoke 711a seen from the longitudinal direction (for example, the X1 direction) of the first stator 11.
  • the hole 711a1 extends in the longitudinal direction (for example, the X1 direction) of the first stator 11. Since magnetic flux (see magnetic flux line M) does not pass through the central portion of the yoke 711a, the magnetic force can be secured even if the hole 711a1 is provided in the central portion of the yoke 711a. By forming the hole 711a1 in the yoke 711a, the weight of the yoke 711a can be reduced.
  • the actuator device 701 can be used for a powered suit or the like.
  • the yoke 711a has a triangular shape (including a substantially triangular shape) in the example shown in FIG. 7A, may have a polygonal shape other than a triangle (including a substantially triangular shape), and has a circular shape (substantially circular shape). Includes).
  • FIG. 7B shows an actuator device 701B in which the yokes 711aB of the first stator 11 of each actuator 501a are not connected to each other.
  • a propulsive force is obtained by the interaction of magnetic flux between the first stator 11 and the first mover 13.
  • the magnetic flux of the first actuator 501a1 passes through the first stator 11 and the first mover 13 of the first actuator 501a1 (see magnetic flux line M), and passes through the second actuator 501a2 and the third actuator 501a3.
  • the actuator 501a it is necessary to make the yoke 711aB as small (thin) as possible.
  • the yoke 711aB is too thin, magnetic saturation occurs, so that the force generated by the actuator 501a (the force that can be generated) decreases.
  • the yoke 711aB becomes large (miniaturization is restricted). Therefore, as shown in FIG. 7A, in the actuator device 701, the first stator 11 of each actuator 501a shares the yoke 711a. Therefore, the magnetic flux of the first actuator 501a1 passes through the first stator 11 (yoke 711a) of the actuator 501a (the second actuator 501a2 and the third actuator 501a3) different from the first actuator 501a1.
  • the second stator 21 may be configured in the same manner as the first stator 11, and may be configured in the same manner as the first stator 11.
  • the configuration may be different from that of the child 11.
  • the yokes 711aB of the first stator 11 may not be connected to each other.
  • Each of the plurality of first movers 13 is configured to be driven by an electromagnetic force with respect to the first stator 11.
  • the plurality of first stators 11 share the yoke 711a.
  • the yoke 711a is columnar and includes a hole 711a1 formed in the central portion of the yoke 711a.
  • the actuator device 701 includes the above [configuration 5-1]. Therefore, the magnetic flux passing through the first stator 11 and the first mover 13 of a certain actuator 501a (for example, the first actuator 501a1) passes through the first stator 11 of another actuator 501a (for example, the second actuator 501a2). Can be done. Therefore, the yoke 711a can be miniaturized as compared with the case where each of the plurality of actuators 501a has an individual yoke 711aB (see FIG. 7B). Therefore, the actuator device 701 can be made smaller. Further, the yoke 711a can be further reduced in weight by the hole 711a1 of the above [Structure 5-2]. Therefore, the actuator device 701 can be made lighter.
  • each of the first movers 13 of the plurality of actuators 501a is arranged in the area B surrounded by the plurality of first stators 11.
  • the region B may be a region surrounded by three first stators 11 or may be a region surrounded by four first stators 11 as shown in FIG. 8C, and may be surrounded by five or more first stators 11. It may be a region (not shown) or a region sandwiched between two first stators 11 (not shown).
  • the plurality of first stators 11 forming the region B are arranged in a C shape in the example shown in FIG. 8B, arranged in a square shape in the example shown in FIG. 8C, and have other shapes. It may be arranged.
  • the plurality of first stators 11 forming the region B may be directly connected (integrally formed) or indirectly (via a member).
  • the first mover 13 By arranging the first mover 13 in the area B, the first mover 13 is not exposed to the outside of the first stator 11, or the exposure can be suppressed. As a result, it is possible to prevent an object outside the first stator 11 from interfering with the first stator 11. For example, it is possible to prevent an object outside the first stator 11 from being caught in the first stator 11 or being sandwiched between a member other than the first stator 11 and the first stator 11. Further, as a result of the first mover 13 being arranged in the area B, a portion (driving part) for moving the first mover 13 with respect to the first stator 11 is covered with a plurality of first stators 11. Or it can be covered roughly.
  • the dustproof property and the waterproof property of the driving portion of the first mover 13 with respect to the first stator 11 can be improved.
  • the first drive unit 10 can be easily protected, and each actuator 501a can be easily protected.
  • an object (covering portion) that covers the first mover 13 may be provided. Even when the cover portion is provided, the cover portion can be reduced by arranging the first mover 13 in the area B.
  • FIG. 8D shows a bent state of the actuator device 801.
  • the third actuator 501a3 (see FIG. 8A) is omitted.
  • Each of the plurality of first stators 13 is arranged in the area B surrounded by the plurality of first stators 11.
  • the first mover 13 can be prevented from being exposed to the outside of the first stator 11, or can be made difficult to be exposed. Therefore, the object (covering portion) that covers the first stator 13 does not have to be provided separately from the first stator 11, or the covering portion can be reduced. Therefore, the actuator device 801 can be further miniaturized.
  • the actuator device 901 includes a plurality of actuators 501a.
  • the actuator device 901 includes six devices similar to the actuator device 501 of the fifth embodiment, and 12 actuators 501a.
  • the number of actuators 501a included in the actuator device 901 may be 11 or less or 13 or more.
  • the plurality of actuators 501a constituting the actuator device 901 at least a part of the actuators 501a may form an integrally configured device (such as a device similar to the actuator device 501 of the fifth embodiment).
  • Each of the plurality of actuators 501a constituting the actuator device 901 may be provided separately (not shown).
  • the surface for generating the force can be widened and a large force can be obtained.
  • the actuator device 901 becomes larger. Therefore, a configuration including a large number of actuators 501a is easy to use for a large machine or the like.
  • the outer shape of the system in which the actuator device 901 is provided is relatively large with respect to the size (thickness) of the permanent magnets constituting one first drive unit 10. Things and so on.
  • the plurality of first movers 13 are arranged (arranged) so as to be arranged in a circumferential shape.
  • the plurality of first movers 13 are arranged so as to be arranged in a circumferential shape when viewed from the X1 direction.
  • the above-mentioned "circumferential shape” may be a circumferential shape (including a substantially circumferential shape), an elliptical circumference shape (including a substantially elliptical circumference shape), or a polygonal shape.
  • the actuator device 701 shown in FIG. 7A and the actuator device 801 shown in FIG. 8B are also arranged so that a plurality of first movers 13 are arranged in a circumferential shape. As shown in FIG.
  • the plurality of first stators 11 are also arranged so as to be arranged in a circumferential shape.
  • the plurality of first stators 11 when viewed from the X1 direction, are arranged at positions intersecting the virtual line L extending radially from the center position C of the actuator device 901.
  • the first stator 11 is arranged radially, so to speak.
  • the first mover 13 of each actuator 501a is arranged parallel to or substantially parallel to each other (the same applies to the first stator 11).
  • the second stator 21 and the second mover 23 of each actuator 501a may be configured (arranged) in the same manner as the first stator 11 and the first mover 13 of each actuator 501a, and are configured in the same manner. It does not have to be.
  • the plurality of first movers 13 are arranged so as to be arranged in a circumferential shape.
  • the size (outer shape) of the entire plurality of first movers 13 can be reduced as compared with the case where the first movers 13 of each actuator 501a are arranged so as to be arranged in a straight line. Therefore, the actuator device 901 can be miniaturized.
  • FIGS. 10A and 10B With reference to FIGS. 10A and 10B, the differences between the actuator device 1001 of the tenth embodiment and the actuator device 501 of the fifth embodiment (see FIG. 5A) will be described.
  • the stator connection portion 1030 shown in FIG. 10A is different from the stator connection portion 30 shown in FIG. 5A.
  • the range of the stator connecting portion 1030 is shown by surrounding the stator connecting portion 1030 with a two-dot chain line.
  • the stator connecting portion 1030 connects the second stator 21 to the first stator 11 shown in FIG. 10A so as to be linearly movable.
  • the stator connecting portion 1030 connects the second stator 21 to the first stator 11 so as to be movable in, for example, the X1 direction.
  • the stator connection portion 1030 may be provided with a slidable link, or may be made of an elastic member (spring, rubber, or the like).
  • the first stator 11 and the second stator 21 are sliding pairs.
  • the stator connecting portion 1030 connects the second stator 21 to the first stator 11 so as to be rotatable and movable, similarly to the stator connecting portion 30 of the first embodiment.
  • the rotating shaft A of the stator connecting portion 1030 may be provided on each of the first stator 11 side and the second stator 21 side, or only one may be provided (the stator connecting portion 30 in FIG. 1A). (See), may be provided in 3 or more (not shown).
  • stator connecting portion 1030 connects the second stator 21 to the first stator 11 so as to be linearly movable and rotatable, the first stator 11 and the second stator 21 slide. It becomes paired pair and rotating paired pair.
  • the degree of freedom of the second stator 21 with respect to the first stator 11 is higher than that of the case where the second stator 21 can only move linearly or only rotate with respect to the first stator 11. The degree is high. Therefore, an indirect force (for example, stator connection portion 1030, mover connection portion 550) is applied to the second stator 21 in a direction in which the second stator 21 cannot move with respect to the first stator 11. Damage (for example, destruction) can be suppressed.
  • the rotation shaft A may not be provided. More specifically, the stator connecting portion 1030 may connect the second stator 21 to the first stator 11 so as to be linearly movable and non-rotatable.
  • the differences in the operation of the actuator device 1001 of the present embodiment with respect to the operation of the actuator device 501 (see FIG. 5A) of the fifth embodiment are as follows.
  • the first mover 13 moves to the X1a side.
  • the first stator 11 will move to the X1b side. Therefore, the first stator 11 moves toward the X1b side with respect to the second stator 21 (away from the second stator 21).
  • the actuator device 1001 is stretched.
  • the distance between the first mover 13 and the second mover 23 is constant.
  • the actuator device 1001 contracts due to an operation opposite to the above operation.
  • the second mover 23 moves in the X2 direction
  • the second stator 21 moves in the X2 direction with respect to the first stator 11, and the actuator device 1001 expands and contracts.
  • the actuator device 1101 is configured to be able to regulate the rotation of the second stator 21 with respect to the first stator 11. Specifically, the first stator 11 and the second stator 21 are sandwiched between the two first stators 13 to regulate the rotation of the second stator 21 with respect to the first stator 11. .. By restricting the rotation of the second stator 21 with respect to the first stator 11, it becomes easy to hold the position of the second stator 21 with respect to the first stator 11.
  • the differences in the operation of the actuator device 1101 with respect to the operation of the actuator device 1001 (see FIG. 10A) of the tenth embodiment are as follows.
  • the first mover 13 moves from the first stator 11 to the side (X1a side) toward the stator connection portion 1030.
  • the second mover 23 moves from the stator connection portion 1030 to the side toward the second stator 21 (X2b side).
  • the first mover 13 and the second mover 23 move in the same direction. This operation is performed by the first actuator 501a1 and the second actuator 501a2.
  • the first stator 11 and the second stator 21 are sandwiched between the two first stators 13, so that the second stator 21 with respect to the first stator 11 Rotation is regulated.
  • the rotation of the second stator 21 with respect to the first stator 11 can be regulated by using the two first stators 13. Therefore, in order to regulate the rotation of the second stator 21 with respect to the first stator 11, the actuator device 1101 is smaller than the case where a member different from the first drive unit 10 (or the second drive unit 20) is used. Can be changed.
  • the first stator 11 and the second stator 21 are sandwiched between the two second movers 23 by the operation opposite to the above. Also in this case, the rotation of the second stator 21 with respect to the first stator 11 is restricted. Further, at least one rotation shaft A of the stator connection portion 1030 is provided. When the restriction on the rotation of the second stator 21 with respect to the first stator 11 is lifted, the second stator 21 can rotate with respect to the first stator 11 (for example, the actuator device 501 shown in FIG. 5A). Similarly).
  • the actuator device 1201A (see FIG. 12A) is configured as follows. As shown in FIG. 12A, the first stator 11 (stator integrally or connected to each other) of the first actuator 501a1 and the second actuator 501a2 is referred to as the first stator 1211. In the first stator 1211, the X1 direction of the second actuator 501a2 is tilted with respect to the X1 direction of the first actuator 501a1 (the moving direction of the first mover 13). The two first movers 13 sandwiching the first stator 1211 are inclined (not arranged in parallel) with each other. In the example shown in FIG. 12A, the width of the first stator 1211 in the Z direction becomes wider toward the X1b side. In the example shown in FIG. 12A, in the initial state, the X1 direction is tilted with respect to the X2 direction in each of the first actuator 501a1 and the second actuator 501a2.
  • the first mover 13 and the second mover 23 can be arranged so as to be inclined (not aligned with each other).
  • the second stator 21 may easily rotate with respect to the first stator 11.
  • Actuator device 1201A can be used depending on the arrangement of objects around the actuator device 1201A (mounting requirements).
  • the differences between the actuator device 1201A and the actuator device 1201B of the modified example shown in FIG. 12B are as follows.
  • the width of the first stator 1211 in the Z direction becomes narrower toward the X1b side.
  • the differences between the actuator device 1201A (see FIG. 12A) and the actuator device 1201C of the modified example shown in FIG. 12C are as follows. In the initial state, in the first actuator 501a1, the X1 direction and the X2 direction are the same direction, and in the second actuator 501a2, the X1 direction is inclined with respect to the X2 direction.
  • the difference between the actuator device 1301 of the thirteenth embodiment and the actuator device 501 of the fifth embodiment (see FIG. 5A) will be described.
  • the magnitudes (forces generated) of the plurality of actuators 501a provided in the actuator device 1301 are not uniform.
  • the size of the first actuator 501a1 is different from the size of the second actuator 501a2 (it is non-uniform) and smaller than that of the second actuator 501a2.
  • the force required to be generated by the actuator 501a may differ for each actuator 501a depending on the direction of gravity (own weight) acting on the actuator device 1301 and the range of motion of the stator connection portion 30.
  • the mounting spaces of the plurality of actuators 501a may be different (non-uniform) from each other.
  • the actuator device 1301 having different sizes of the plurality of actuators 501a can be used.
  • the sizes of the first drive unit 10 and the second drive unit 20 may be different.
  • the actuator device 1401 includes, for example, three actuators 501a (not necessarily three).
  • the actuator device 1401 is used for a robot that imitates an animal.
  • the actuator device 1401 can be used to drive a bird's wing (wing) or a fish fin (not shown).
  • the actuator device 1401 may be used for a morphing blade (deformable blade) (not shown) or the like.
  • the actuator device 1401 may be used for a device that imitates an animal joint, an arm, or the like.
  • the above embodiment may be variously modified.
  • the components of different embodiments may be combined.
  • the arrangement and shape of each component may be changed.
  • the number of components may be changed, and some of the components may not be provided.
  • fixing or connecting components may be direct or indirect.
  • what has been described as a plurality of components different from each other may be regarded as one member or part.
  • what has been described as one member or part may be provided separately for a plurality of different members or parts.
  • the type of joint linearly movable, rotationally movable, twistable
  • the number of actuators 501a the difference in the direction and size of a plurality of actuators 501a, and the direction between the first drive unit 10 and the second drive unit 20.
  • the difference in size may be changed in various ways.
  • the first drive unit 10 first stator 11 and first mover 13
  • the second drive unit 20 second stator 21 and second mover 23
  • the matters described as relating to the first drive unit 10 may be applied to the second drive unit 20 (and vice versa).
  • the mover transmission unit 40 (see FIG. 1A) and the mover connection unit 350 (may be the mover connection unit 550) may be combined.
  • the first mover 13 can contact the mover transmission unit 40
  • the second mover 23 is connected to the mover connection unit 350. May be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

A first mobile element (13) is movably attached to a first stator (11) and is driven with respect to the first stator. A second mobile element (23) is movably attached to a second stator (21) and is driven with respect to the second stator. A stator connection part (30) connects the first stator and the second stator such that the second stator can move with respect to the first stator. When the first mobile element is driven with respect to the first stator, the second stator is moved with respect to the first stator. When the second mobile element is driven with respect to the second stator, the first stator is moved with respect to the second stator.

Description

アクチュエータおよびアクチュエータ装置Actuators and actuator devices
 本発明は、アクチュエータおよびアクチュエータ装置に関する。 The present invention relates to an actuator and an actuator device.
 例えば特許文献1などに、従来のアクチュエータが記載されている。同文献の図9に記載の技術では、駆動力を出力する出力部(同文献における電動人工筋肉)と、駆動力が入力される入力部(同文献における足部)と、が設けられる。 For example, Patent Document 1 describes a conventional actuator. In the technique described in FIG. 9 of the same document, an output unit for outputting the driving force (electric artificial muscle in the same document) and an input unit for inputting the driving force (foot part in the same document) are provided.
日本国特許第3976129号公報Japanese Patent No. 3976129
 同文献に記載の技術では、出力部と入力部とが別々に(独立して)構成される。そのため、各部の小型化に限界があり、さらなる小型化が望まれる。 In the technology described in the same document, the output unit and the input unit are configured separately (independently). Therefore, there is a limit to the miniaturization of each part, and further miniaturization is desired.
 そこで、本発明は、従来よりも小型化できるアクチュエータおよびアクチュエータ装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an actuator and an actuator device that can be made smaller than before.
 アクチュエータは、第1固定子と、第1可動子と、第2固定子と、第2可動子と、固定子接続部と、を備える。前記第1可動子は、前記第1固定子に移動可能に取り付けられ、第1固定子に対して駆動される。前記第2可動子は、前記第2固定子に移動可能に取り付けられ、第2固定子に対して駆動される。前記固定子接続部は、前記第1固定子に対して前記第2固定子が移動可能となるように前記第1固定子と前記第2固定子とを接続する。前記第1可動子は、前記第1固定子に対して駆動されたときに、前記第1固定子に対して前記第2固定子を移動させる。前記第2可動子は、前記第2固定子に対して駆動されたときに、前記第2固定子に対して前記第1固定子を移動させる。 The actuator includes a first stator, a first mover, a second stator, a second mover, and a stator connection portion. The first mover is movably attached to the first stator and driven with respect to the first stator. The second mover is movably attached to the second stator and driven with respect to the second stator. The stator connecting portion connects the first stator and the second stator so that the second stator can move with respect to the first stator. The first stator moves the second stator with respect to the first stator when driven with respect to the first stator. The second stator moves the first stator with respect to the second stator when driven with respect to the second stator.
 上記構成により、アクチュエータを従来よりも小型化できる。 With the above configuration, the actuator can be made smaller than before.
第1実施形態のアクチュエータ1aを示す図である。It is a figure which shows the actuator 1a of 1st Embodiment. 図1Aに示す第1駆動部10を示す図であり、第1可動子13が電機子15の場合の図である。It is a figure which shows the 1st drive part 10 shown in FIG. 1A, and is the figure in the case where the 1st mover 13 is an armature 15. 図1Aに示す第1駆動部10を示す図であり、第1可動子13が磁極子17の場合の図である。It is a figure which shows the 1st drive part 10 shown in FIG. 1A, and is the figure in the case where the 1st mover 13 is a magnetic monopole 17. 図1Aに示すアクチュエータ1aの作動を示す図である。It is a figure which shows the operation of the actuator 1a shown in FIG. 1A. 図1Aに示すアクチュエータ1aが曲がった状態を示す図である。It is a figure which shows the bent state of the actuator 1a shown in FIG. 1A. 第2実施形態のアクチュエータ201aを示す図である。It is a figure which shows the actuator 201a of 2nd Embodiment. 図2Aに示すアクチュエータ201aが曲がった状態を示す図である。It is a figure which shows the bent state of the actuator 201a shown in FIG. 2A. 第3実施形態のアクチュエータ301aを示す図である。It is a figure which shows the actuator 301a of 3rd Embodiment. 図3Aに示すアクチュエータ301aの作動を示す図である。It is a figure which shows the operation of the actuator 301a shown in FIG. 3A. 図3Aに示すアクチュエータ301aが曲がった状態を示す図である。It is a figure which shows the bent state of the actuator 301a shown in FIG. 3A. 図3Cに示すアクチュエータ301aが図3Cに示す向きとは逆向きに曲がった状態を示す図である。It is a figure which shows the state which the actuator 301a shown in FIG. 3C is bent in the direction opposite to the direction shown in FIG. 3C. 第4実施形態のアクチュエータ401aを示す図である。It is a figure which shows the actuator 401a of 4th Embodiment. 図4Aに示すアクチュエータ401aが曲がった状態を示す図である。It is a figure which shows the bent state of the actuator 401a shown in FIG. 4A. 第5実施形態のアクチュエータ装置501を示す図である。It is a figure which shows the actuator device 501 of the 5th Embodiment. 図5Aに示す第1駆動部10を示す図であり、第1可動子13が電機子15の場合の図である。It is a figure which shows the 1st drive part 10 shown in FIG. 5A, and is the figure in the case where the 1st mover 13 is an armature 15. 図5Aに示す第1駆動部10を示す図であり、第1可動子13が磁極子17の場合の図である。It is a figure which shows the 1st drive part 10 shown in FIG. 5A, and is the figure in the case where the 1st mover 13 is a magnetic monopole 17. 図5Aに示すアクチュエータ装置501が曲がった状態を示す図である。It is a figure which shows the bent state of the actuator device 501 shown in FIG. 5A. 第6実施形態のアクチュエータ装置601を示す図である。It is a figure which shows the actuator device 601 of the 6th Embodiment. 第7実施形態のアクチュエータ装置701をX1方向から見た図である。It is a figure which looked at the actuator device 701 of 7th Embodiment from the X1 direction. 第7実施形態の変形例のアクチュエータ装置701BをX1方向から見た図である。It is a figure which looked at the actuator device 701B of the modification of 7th Embodiment from the X1 direction. 第8実施形態のアクチュエータ装置801を示す図である。It is a figure which shows the actuator device 801 of 8th Embodiment. 図8AのF8B矢視図である。It is an arrow view of F8B of FIG. 8A. 第8実施形態の変形例のアクチュエータ装置801Bを示す図8B相当図である。FIG. 8B is a diagram corresponding to FIG. 8B showing an actuator device 801B of a modified example of the eighth embodiment. 図8Aに示すアクチュエータ装置801が曲がった状態を示す図である。It is a figure which shows the bent state of the actuator device 801 shown in FIG. 8A. 第9実施形態のアクチュエータ装置901を示す斜視図である。It is a perspective view which shows the actuator device 901 of the 9th Embodiment. 図9Aに示すアクチュエータ装置901をX1方向から見た図であり、図9AのF9B矢視図である。9A is a view of the actuator device 901 shown in FIG. 9A as viewed from the X1 direction, and is a view taken along the line F9B of FIG. 9A. 第10実施形態のアクチュエータ装置1001を示す図である。It is a figure which shows the actuator device 1001 of a tenth embodiment. 図10Aに示すアクチュエータ装置1001が伸びた状態を示す図である。It is a figure which shows the state which the actuator device 1001 shown in FIG. 10A is extended. 第11実施形態のアクチュエータ装置1101を示す図である。It is a figure which shows the actuator device 1101 of 11th Embodiment. 第12実施形態のアクチュエータ装置1201Aを示す図である。It is a figure which shows the actuator device 1201A of the twelfth embodiment. 第12実施形態の変形例のアクチュエータ装置1201Bを示す図である。It is a figure which shows the actuator device 1201B of the modification of the twelfth embodiment. 第12実施形態の変形例のアクチュエータ装置1201Cを示す図である。It is a figure which shows the actuator device 1201C of the modification of the twelfth embodiment. 第13実施形態のアクチュエータ装置1301を示す図である。It is a figure which shows the actuator device 1301 of the thirteenth embodiment. 第14実施形態のアクチュエータ装置1401を示す図である。It is a figure which shows the actuator device 1401 of 14th Embodiment.
 (第1実施形態)
 図1A~図1Eを参照して、第1実施形態のアクチュエータ1aについて説明する。
(First Embodiment)
The actuator 1a of the first embodiment will be described with reference to FIGS. 1A to 1E.
 アクチュエータ1aは、図1Aに示すように、第1駆動部10に対して第2駆動部20を移動させる装置である。アクチュエータ1aは、例えば、ロボットに用いられてもよく、ロボットのマニプレータに用いられてもよい。アクチュエータ1aは、例えば、ドローンに用いられてもよく、バイオミメティックドローン(例えば鳥や昆虫のように羽ばたくドローン、例えばイルカやエイのようにヒレを動かすドローンなど)に用いられてもよい。アクチュエータ1aは、産業機械、その他の機械に用いられてもよい。アクチュエータ1aは、第1駆動部10と、第2駆動部20と、固定子接続部30と、可動子伝達部40と、を備える。 As shown in FIG. 1A, the actuator 1a is a device that moves the second drive unit 20 with respect to the first drive unit 10. The actuator 1a may be used, for example, in a robot or a manipulator of a robot. Actuator 1a may be used, for example, in a drone or in a biomimetic drone (for example, a drone that flaps like a bird or an insect, for example, a drone that moves fins like a dolphin or a ray). Actuator 1a may be used in industrial machines and other machines. The actuator 1a includes a first drive unit 10, a second drive unit 20, a stator connection unit 30, and a mover transmission unit 40.
 第1駆動部10は、第1固定子11に対して第1可動子13が駆動されるものである。第1駆動部10は、例えば電動アクチュエータである。 The first drive unit 10 drives the first mover 13 with respect to the first stator 11. The first drive unit 10 is, for example, an electric actuator.
 第1固定子11は、第1可動子13を移動可能に支持する。第1固定子11は、長手方向を有する形状を有し、例えば、棒状でもよく、柱状でもよく、直方体状でもよい(第1可動子13、第2固定子21、および第2可動子23も同様)。なお、第1固定子11は、長手方向を有する形状を有さなくてもよい。 The first stator 11 movably supports the first mover 13. The first stator 11 has a shape having a longitudinal direction, and may be, for example, a rod shape, a columnar shape, or a rectangular parallelepiped shape (the first stator 13, the second stator 21, and the second stator 23 also have a shape. Similarly). The first stator 11 does not have to have a shape having a longitudinal direction.
 第1可動子13は、第1固定子11に移動可能に取り付けられ、第1固定子11に対して駆動される。第1可動子13は、第1固定子11に対して直線移動可能である(第1駆動部10はリニアモータである)。第1可動子13は、第1固定子11にガイドされる。第1可動子13は、例えば、第1固定子11の長手方向などに移動可能である。第1可動子13は、第1固定子11に対して電磁気力により駆動されるように構成される。具体的には、図1Bに示すように、第1駆動部10は、電機子15と、磁極子17と、を備える。 The first stator 13 is movably attached to the first stator 11 and is driven with respect to the first stator 11. The first mover 13 can move linearly with respect to the first stator 11 (the first drive unit 10 is a linear motor). The first stator 13 is guided by the first stator 11. The first mover 13 can move, for example, in the longitudinal direction of the first stator 11. The first stator 13 is configured to be driven by an electromagnetic force with respect to the first stator 11. Specifically, as shown in FIG. 1B, the first drive unit 10 includes an armature 15 and a magnetic pole element 17.
 電機子15は、コイル15cを有する。磁極子17は、永久磁石を備えてもよく、かご型導体(図示なし)を備えてもよい。磁束線Mが、電機子15および磁極子17を通る。電機子15、磁極子17、第1固定子11、および第1可動子13、の組み合わせには、図1Bおよび図1Cに示すパターンが考えられる。図1Bに示すパターンでは、第1固定子11が磁極子17であり、第1可動子13が電機子15である。この場合、第1駆動部10は、例えば直流モータなどである。この場合、電機子15への給電が、ブラシ(図示なし)を用いて行われる。電源や制御を簡単にしたい場合や、安価に構成したい場合などに、図1Bに示すパターンが、図1Cに示すパターンよりも有効である。図1Cに示すパターンでは、第1固定子11が電機子15であり、第1可動子13が磁極子17である。なお、図1Cではコイル15c(図1B参照)を省略した。この場合、第1駆動部10は、例えばブラシレスモータや誘導モータなどである。第1駆動部10がブラシレスモータである場合は、ブラシを用いた場合に比べ、整備性を向上させることができる。 The armature 15 has a coil 15c. The monopole 17 may include a permanent magnet or a cage conductor (not shown). The magnetic flux line M passes through the armature 15 and the magnetic pole element 17. The patterns shown in FIGS. 1B and 1C can be considered for the combination of the armature 15, the magnetic monopole 17, the first stator 11, and the first mover 13. In the pattern shown in FIG. 1B, the first stator 11 is a magnetic monopole 17 and the first mover 13 is an armature 15. In this case, the first drive unit 10 is, for example, a DC motor or the like. In this case, power is supplied to the armature 15 using a brush (not shown). The pattern shown in FIG. 1B is more effective than the pattern shown in FIG. 1C when it is desired to simplify the power supply and control, or when it is desired to configure the structure at low cost. In the pattern shown in FIG. 1C, the first stator 11 is the armature 15 and the first mover 13 is the magnetic monopole 17. In FIG. 1C, the coil 15c (see FIG. 1B) is omitted. In this case, the first drive unit 10 is, for example, a brushless motor or an induction motor. When the first drive unit 10 is a brushless motor, maintainability can be improved as compared with the case where a brush is used.
 第2駆動部20は、図1Aに示すように、第1駆動部10と同様に構成される。第2駆動部20は、第2固定子21と、第2可動子23と、を備える。第2可動子23は、第2固定子21に移動可能に取り付けられ、第2固定子21に対して駆動される。なお、第1固定子11と第2固定子21とを1つの固定子と考えれば、一つの固定子で複数の可動子(第1可動子13および第2可動子23)を駆動(いわばマルチ駆動)する構成となる。このように考えた場合、アクチュエータ1aは、例えば、いわばマルチ駆動リニアモータである。 As shown in FIG. 1A, the second drive unit 20 is configured in the same manner as the first drive unit 10. The second drive unit 20 includes a second stator 21 and a second mover 23. The second stator 23 is movably attached to the second stator 21 and is driven with respect to the second stator 21. If the first stator 11 and the second stator 21 are considered as one stator, one stator drives a plurality of movers (first mover 13 and second mover 23) (so to speak, multi). It will be driven). When considered in this way, the actuator 1a is, for example, a so-called multi-drive linear motor.
 固定子接続部30は、第1固定子11に対して第2固定子21が移動可能となるように、第1固定子11と第2固定子21とを接続する。固定子接続部30は、第1固定子11と第2固定子21とを、1以上の自由度で接続する。[接続の例1]固定子接続部30は、第1固定子11に対して第2固定子21が回転可能となるように、第1固定子11と第2固定子21とを接続する(固定子接続部30は関節である)。この場合、第1固定子11と第2固定子21とが回転対偶となる。第1固定子11に対する第2固定子21の回転軸Aの数は、図1Aに示す例では1であり、2以上でもよい(例えば図10Aに示す固定子接続部1030を参照)。固定子接続部30は、例えばユニバーサルジョイント(自在継手)でもよく、ピロボールでもよく、球体関節でもよい。[接続の例2]固定子接続部30は、第1固定子11に対して第2固定子21が直線移動可能となるように、第1固定子11と第2固定子21とを接続してもよい(例えば図10Bに示す固定子接続部1030を参照)。この場合、第1固定子11と第2固定子21とが滑り対偶となる。[接続の例3]固定子接続部30は、第1固定子11に対して第2固定子21が、回転移動および直線移動可能となるように、第1固定子11と第2固定子21とを接続してもよい。この場合、第1固定子11と第2固定子21とが、回転対偶かつ滑り対偶となる。固定子接続部30は、弾性部材(例えば、ばねやゴムなど)によって第1固定子11と第2固定子21とを接続するものでもよい。以下では、主に、第1固定子11に対して第2固定子21が回転可能である場合について説明する。 The stator connecting portion 30 connects the first stator 11 and the second stator 21 so that the second stator 21 can move with respect to the first stator 11. The stator connecting portion 30 connects the first stator 11 and the second stator 21 with one or more degrees of freedom. [Connection Example 1] The stator connection portion 30 connects the first stator 11 and the second stator 21 so that the second stator 21 can rotate with respect to the first stator 11 (1). The stator connection 30 is a joint). In this case, the first stator 11 and the second stator 21 are rotational pairs. The number of rotation axes A of the second stator 21 with respect to the first stator 11 is 1 in the example shown in FIG. 1A, and may be 2 or more (see, for example, the stator connection portion 1030 shown in FIG. 10A). The stator connection portion 30 may be, for example, a universal joint (universal joint), a pillow ball, or a spherical joint. [Connection Example 2] The stator connection portion 30 connects the first stator 11 and the second stator 21 so that the second stator 21 can move linearly with respect to the first stator 11. (See, for example, the stator connection 1030 shown in FIG. 10B). In this case, the first stator 11 and the second stator 21 are sliding pairs. [Connection Example 3] The stator connection portion 30 has a first stator 11 and a second stator 21 so that the second stator 21 can rotate and move linearly with respect to the first stator 11. May be connected with. In this case, the first stator 11 and the second stator 21 are a rotating pair and a sliding pair. The stator connecting portion 30 may connect the first stator 11 and the second stator 21 by an elastic member (for example, a spring or rubber). Hereinafter, a case where the second stator 21 is rotatable with respect to the first stator 11 will be mainly described.
 (方向)
 第1固定子11に対する第1可動子13の移動方向を、X1方向とする。X1方向において、第1固定子11から固定子接続部30に向かう側をX1a側とし、その逆側をX1b側とする。第2固定子21に対する第2可動子23の移動方向を、X2方向とする。X2方向において、第2固定子21から固定子接続部30に向かう側をX2a側とし、その逆側をX2b側とする。第1固定子11に対する第2固定子21の回転軸Aが延びる方向を、Y方向とする。X1方向およびY方向のそれぞれに直交する方向を、Z方向とする。Z方向において、回転軸A(さらに詳しくは回転軸AのZ方向における位置)から第1可動子13(さらに詳しくは第1可動子13のZ方向における位置)に向かう側をZa側とし、その逆側をZb側とする。回転軸Aまわりの回転方向をR2方向とする。X1a側とX2b側とが同じ向きの状態(図1Aに示すような状態)から、回転軸Aを中心としてZa側に移動するように第2駆動部20が回転するときの、第2駆動部20の回転の向きを、R2方向におけるR2a側とする。R2方向において、R2a側の逆側を、R2b側とする。説明の便宜上、回転軸Aまわりの回転方向(R2方向)を、R1方向ともいい、R2a側をR1b側ともいい、R2b側をR1a側ともいう。
(direction)
The moving direction of the first mover 13 with respect to the first stator 11 is the X1 direction. In the X1 direction, the side from the first stator 11 toward the stator connecting portion 30 is the X1a side, and the opposite side is the X1b side. The moving direction of the second mover 23 with respect to the second stator 21 is the X2 direction. In the X2 direction, the side from the second stator 21 toward the stator connecting portion 30 is the X2a side, and the opposite side is the X2b side. The direction in which the rotation axis A of the second stator 21 extends with respect to the first stator 11 is defined as the Y direction. The direction orthogonal to each of the X1 direction and the Y direction is defined as the Z direction. In the Z direction, the side from the rotation axis A (more specifically, the position of the rotation axis A in the Z direction) to the first mover 13 (more specifically, the position of the first mover 13 in the Z direction) is the Za side. The opposite side is the Zb side. The rotation direction around the rotation axis A is the R2 direction. The second drive unit when the second drive unit 20 rotates so as to move from the state in which the X1a side and the X2b side are oriented in the same direction (as shown in FIG. 1A) to the Za side with the rotation axis A as the center. The direction of rotation of 20 is the R2a side in the R2 direction. In the R2 direction, the side opposite to the R2a side is the R2b side. For convenience of explanation, the rotation direction (R2 direction) around the rotation axis A is also referred to as the R1 direction, the R2a side is also referred to as the R1b side, and the R2b side is also referred to as the R1a side.
 可動子伝達部40は、第1可動子13と第2可動子23との間で力を伝達させる。可動子伝達部40は、第1固定子11に対して第1可動子13が移動したときに、第1固定子11に対して第2固定子21を移動(本実施形態では回転移動)させる。可動子伝達部40は、第2固定子21に対して第2可動子23が移動したときに、第2固定子21に対して第1固定子11を移動(本実施形態では回転移動)させる。可動子伝達部40は、固定子接続部30よりもZa側に配置される。可動子伝達部40は、ベース部40bと、第1接触部41と、第2接触部42と、を備える。 The mover transmission unit 40 transmits a force between the first mover 13 and the second mover 23. When the first stator 13 moves with respect to the first stator 11, the mover transmission unit 40 moves the second stator 21 with respect to the first stator 11 (rotational movement in the present embodiment). .. When the second stator 23 moves with respect to the second stator 21, the mover transmission unit 40 moves the first stator 11 with respect to the second stator 21 (rotational movement in the present embodiment). .. The mover transmission unit 40 is arranged on the Za side of the stator connection unit 30. The mover transmission portion 40 includes a base portion 40b, a first contact portion 41, and a second contact portion 42.
 ベース部40bは、Y方向から見て三角形状などである。図1Dに示すように、ベース部40bは、第1固定子11および第2固定子21に対して、回転軸Aを中心に回転可能である。ベース部40bは、固定子接続部30に接続される。ベース部40bは、固定子接続部30に固定されてもよく、固定子接続部30に回転可能に接続されてもよい。 The base portion 40b has a triangular shape when viewed from the Y direction. As shown in FIG. 1D, the base portion 40b is rotatable about the rotation axis A with respect to the first stator 11 and the second stator 21. The base portion 40b is connected to the stator connecting portion 30. The base portion 40b may be fixed to the stator connection portion 30 or may be rotatably connected to the stator connection portion 30.
 第1接触部41は、第1可動子13に接触可能である。第1接触部41は、ベース部40bのうち第1可動子13側を向いた部分(面)である。第1接触部41は、第1可動子13に接続されておらず、第1可動子13から離れることが可能である。第2接触部42は、第2可動子23に接触可能である。第2接触部42と第2可動子23との関係は、第1接触部41と第1可動子13との関係と同様である。 The first contact portion 41 can contact the first mover 13. The first contact portion 41 is a portion (surface) of the base portion 40b facing the first mover 13 side. The first contact portion 41 is not connected to the first mover 13 and can be separated from the first mover 13. The second contact portion 42 can contact the second mover 23. The relationship between the second contact portion 42 and the second mover 23 is the same as the relationship between the first contact portion 41 and the first mover 13.
 (作動)
 図1Aに示すアクチュエータ1aは、次のように作動するように構成される。以下では、X1a側とX2b側とが同じ向きである状態を初期状態として説明する(以下の他の実施形態における作動の説明についても同様)。なお、X1a側とX2b側とが同じ向きである状態から、アクチュエータ1aの作動が開始される必要はない。
(Operation)
The actuator 1a shown in FIG. 1A is configured to operate as follows. In the following, a state in which the X1a side and the X2b side are in the same direction will be described as an initial state (the same applies to the description of the operation in the other embodiments below). It is not necessary to start the operation of the actuator 1a from the state where the X1a side and the X2b side are in the same direction.
 図1Dに示す第1駆動部10は、次のように駆動される。第1可動子13が、第1固定子11に対してX1a側に移動し、第1接触部41に接触し、可動子伝達部40をX1a側に押す。すると、可動子伝達部40は、R2b側に回転する。すると、第2接触部42は、第2可動子23をR2b側に押す。すると、第2駆動部20は、R2b側に回転する。したがって、図1Eに示すように、アクチュエータ1a全体が、回転軸Aを中心に変形(駆動)し、さらに詳しくは、回転軸Aを中心に曲がる(折れ曲がる)。 The first drive unit 10 shown in FIG. 1D is driven as follows. The first mover 13 moves toward the X1a side with respect to the first stator 11, comes into contact with the first contact portion 41, and pushes the mover transmission portion 40 toward the X1a side. Then, the mover transmission unit 40 rotates toward R2b. Then, the second contact portion 42 pushes the second mover 23 toward R2b. Then, the second drive unit 20 rotates toward R2b. Therefore, as shown in FIG. 1E, the entire actuator 1a is deformed (driven) about the rotation axis A, and more specifically, is bent (bent) about the rotation axis A.
 図1Dに示す第2駆動部20は、次のように駆動される。第1駆動部10と同様に、第2可動子23が、第2固定子21に対してX2a側に移動すると、第1駆動部10は、R1b側に回転する。第1駆動部10および第2駆動部20を駆動させた場合は、いずれか一方のみを駆動させた場合に比べ、アクチュエータ1aを大きい力(推力)で駆動できる。 The second drive unit 20 shown in FIG. 1D is driven as follows. Similar to the first drive unit 10, when the second mover 23 moves to the X2a side with respect to the second stator 21, the first drive unit 10 rotates to the R1b side. When the first drive unit 10 and the second drive unit 20 are driven, the actuator 1a can be driven with a larger force (thrust) than when only one of them is driven.
 (出入力の兼用)
 図1Aに示す第1駆動部10は、出力部と入力部とを兼ねる。その詳細は次の通りである。第1駆動部10が駆動すると、第1固定子11に対して第1可動子13が駆動し、この駆動力が第2固定子21に伝わり、第1固定子11に対して第2固定子21が移動(例えば回転)する。よって、第1駆動部10は、第2駆動部20に駆動力を出力する、出力部である。また、第2駆動部20が駆動すると、第2固定子21に対して第1固定子11(第1駆動部10の一部)が移動(例えば回転)する。よって、第1駆動部10は、第2駆動部20の駆動力が入力される入力部でもある。よって、第1駆動部10は、出力部と入力部とを兼ねる。よって、第1駆動部10で、出力部と入力部とが兼ねられない場合に比べ、アクチュエータ1aを小型化できる。アクチュエータ1aを小型化できる結果、アクチュエータ1aを軽量化できる。また、第1駆動部10と同様に、第2駆動部20も、出力部と入力部とを兼ねる。よって、アクチュエータ1aをより小型化できる。また、第1駆動部10は、固定子接続部30を介して第2駆動部20を支持する支持機構であると言える。この場合、第1駆動部10は、支持機構と、出力部と、入力部と、を兼ねる。
(Combined use of input and output)
The first drive unit 10 shown in FIG. 1A also serves as an output unit and an input unit. The details are as follows. When the first drive unit 10 is driven, the first mover 13 is driven with respect to the first stator 11, and this driving force is transmitted to the second stator 21, and the second stator with respect to the first stator 11. 21 moves (for example, rotates). Therefore, the first drive unit 10 is an output unit that outputs a driving force to the second drive unit 20. Further, when the second drive unit 20 is driven, the first stator 11 (a part of the first drive unit 10) moves (for example, rotates) with respect to the second stator 21. Therefore, the first drive unit 10 is also an input unit into which the driving force of the second drive unit 20 is input. Therefore, the first drive unit 10 also serves as an output unit and an input unit. Therefore, the actuator 1a can be downsized as compared with the case where the output unit and the input unit cannot be combined in the first drive unit 10. As a result of being able to reduce the size of the actuator 1a, the weight of the actuator 1a can be reduced. Further, like the first drive unit 10, the second drive unit 20 also serves as an output unit and an input unit. Therefore, the actuator 1a can be further miniaturized. Further, it can be said that the first drive unit 10 is a support mechanism that supports the second drive unit 20 via the stator connection unit 30. In this case, the first drive unit 10 also serves as a support mechanism, an output unit, and an input unit.
 (アクチュエータ1aの小型化など)
 上記のように、第1駆動部10および第2駆動部20を駆動させた場合は、いずれか一方のみを駆動させた場合に比べ、アクチュエータ1aを大きい力で駆動できる。第1駆動部10および第2駆動部20を駆動させた場合は、いずれか一方のみを駆動させた場合に比べ、第1駆動部10および第2駆動部20のそれぞれの必要な駆動力を小さくできる。よって、第1駆動部10、および第2駆動部20のそれぞれを小型化できる。よって、アクチュエータ1aを小型化できる。
(Miniaturization of actuator 1a, etc.)
As described above, when the first drive unit 10 and the second drive unit 20 are driven, the actuator 1a can be driven with a larger force than when only one of them is driven. When the first drive unit 10 and the second drive unit 20 are driven, the required driving force of each of the first drive unit 10 and the second drive unit 20 is smaller than that when only one of them is driven. can. Therefore, each of the first drive unit 10 and the second drive unit 20 can be miniaturized. Therefore, the actuator 1a can be miniaturized.
 一般に、系(ここではアクチュエータ1a)に生じる力(出力)を増加させるには、力を発生させる面の面積(力の発生に寄与する部分の面積)を増加させる必要がある。アクチュエータ1aでは、第1駆動部10および第2駆動部20が設けられるので、いずれか一方のみが設けられる場合に比べ、力を発生させる面を広くできる。一方、力を発生させる面は、系の外形に制約される。そのため、力を発生させる面の広さには限界がある。そこで、第1駆動部10および第2駆動部20を扁平に構成すれば、できるだけ体積を増やさずに、力を発生させる面を増やせる。その結果、アクチュエータ1aの体積あたりの発生力を増加させることができる。よって、第1駆動部10および第2駆動部20の少なくともいずれかを扁平に構成した場合は、アクチュエータ1aをより小型化できる。なお、第1固定子11と第1可動子13とが対向する方向(例えばZ方向)における第1駆動部10の寸法(厚さ)よりも、他の方向における第1駆動部10の寸法が大きい場合、第1駆動部10は扁平である(第2駆動部20についても同様)。 In general, in order to increase the force (output) generated in the system (actuator 1a in this case), it is necessary to increase the area of the surface that generates the force (the area of the portion that contributes to the generation of the force). Since the actuator 1a is provided with the first drive unit 10 and the second drive unit 20, it is possible to widen the surface for generating force as compared with the case where only one of them is provided. On the other hand, the surface that generates the force is restricted by the outer shape of the system. Therefore, there is a limit to the size of the surface that generates force. Therefore, if the first drive unit 10 and the second drive unit 20 are configured to be flat, the surface for generating force can be increased without increasing the volume as much as possible. As a result, the generated force per volume of the actuator 1a can be increased. Therefore, when at least one of the first drive unit 10 and the second drive unit 20 is configured to be flat, the actuator 1a can be further miniaturized. The dimension of the first drive unit 10 in the other direction is larger than the dimension (thickness) of the first drive unit 10 in the direction in which the first stator 11 and the first mover 13 face each other (for example, the Z direction). When it is large, the first drive unit 10 is flat (the same applies to the second drive unit 20).
 アクチュエータ1aが、例えばパーソナルロボットや、人との協業を行う協業ロボットなどに用いられる場合は、ロボットを狭いスペースに配置できるように、また、人を傷つけることを抑制するために、アクチュエータ1aの小型化が特に望まれる。よって、アクチュエータ1aは、これらのロボットに用いられた場合に特に有利である。 When the actuator 1a is used, for example, in a personal robot or a collaborative robot that collaborates with a person, the actuator 1a is made small so that the robot can be arranged in a narrow space and in order to prevent injury to the person. Is especially desired. Therefore, the actuator 1a is particularly advantageous when used in these robots.
 上記の特許文献1の図9に記載の技術では、関節部分(かかと部)よりも上側部分に対して、関節部分よりも下側部分(同文献における足部)を移動させるための駆動部(同文献における電動人工筋肉)は、関節部分よりも上側にのみ設けられている。そのため、力を発生させる面を十分確保できない問題がある。一方、本実施形態では、固定子接続部30の両側(図1Aでは左右)に、駆動部(第1駆動部10および第2駆動部20)が設けられる。よって、従来よりも、力を発生させる面を広くでき、アクチュエータ1aの小型化に有利である。 In the technique described in FIG. 9 of Patent Document 1, the driving unit (foot portion in the same document) for moving the lower portion (foot portion in the same document) with respect to the upper portion above the joint portion (heel portion). The electric artificial muscle in the same document) is provided only above the joint portion. Therefore, there is a problem that a surface for generating force cannot be sufficiently secured. On the other hand, in the present embodiment, drive units (first drive unit 10 and second drive unit 20) are provided on both sides (left and right in FIG. 1A) of the stator connection unit 30. Therefore, the surface for generating the force can be made wider than before, which is advantageous for miniaturization of the actuator 1a.
 (回転モータでリンクを曲げる場合との対比)
 上記実施形態では、リニアモータを用いて、アクチュエータ1aを曲げた。一方、関節部分(本実施形態では固定子接続部30)またはその近傍に回転モータを配置し、この回転モータを用いてリンク(本実施形態では、第1固定子11および第2固定子21)を曲げる場合について検討する。回転モータで、より大きい力を得るには、モータを大型化する必要がある。減速機が用いられる場合は、さらに減速機も大型化する必要がある。そのため、関節部分またはその近傍部分が大型化するおそれがある。また、回転モータを用いてリンクを曲げる構成が、例えばパーソナルロボットや、協業ロボットなどに用いられる場合は、バックドライバビリティ(人にぶつかったなど外乱の影響を検出し対応できる能力)が必要となるため、減速機が設けられないことが多い。減速機が設けられない場合、回転モータのみで駆動に必要な力を出力する必要がある。そのため、減速機が設けられる場合に比べ、モータを大型化する必要がある。一方、本実施形態では、固定子接続部30およびその周辺部(関節部分)に、回転モータを設ける必要がない。よって、関節部分を小型化できる。また、関節部分の大きさで、駆動部(第1駆動部10、第2駆動部20)の大きさが制約されない(関節部分を小型化することを目的として駆動部を小さくする必要がない)。よって、本実施形態では、関節部分の大きさで駆動部(回転モータ)の大きさが制約される場合に比べ、駆動部(第1駆動部10、第2駆動部20)を大きくできる。よって、アクチュエータ1aにより発生可能な力の大きさを大きくできる。なお、本実施形態では、上記の各作用効果のうち、一部のみが得られてもよい。
(Comparison with bending the link with a rotary motor)
In the above embodiment, the actuator 1a is bent by using a linear motor. On the other hand, a rotary motor is arranged at or near the joint portion (stator connection portion 30 in this embodiment), and the link (first stator 11 and second stator 21 in this embodiment) is used by using this rotary motor. Consider the case of bending. In order to obtain a larger force with a rotary motor, it is necessary to increase the size of the motor. When a speed reducer is used, it is necessary to further increase the size of the speed reducer. Therefore, the joint portion or a portion in the vicinity thereof may become large. In addition, when a configuration that bends a link using a rotary motor is used for, for example, a personal robot or a collaborative robot, back drivability (ability to detect and respond to the influence of disturbance such as hitting a person) is required. Therefore, a speed reducer is often not provided. If a speed reducer is not provided, it is necessary to output the force required for driving only with the rotary motor. Therefore, it is necessary to increase the size of the motor as compared with the case where the speed reducer is provided. On the other hand, in the present embodiment, it is not necessary to provide a rotary motor in the stator connection portion 30 and its peripheral portion (joint portion). Therefore, the joint portion can be miniaturized. Further, the size of the joint portion does not limit the size of the drive unit (first drive unit 10, second drive unit 20) (it is not necessary to reduce the size of the drive unit for the purpose of reducing the size of the joint portion). .. Therefore, in the present embodiment, the drive unit (first drive unit 10, second drive unit 20) can be made larger than in the case where the size of the drive unit (rotary motor) is restricted by the size of the joint portion. Therefore, the magnitude of the force that can be generated by the actuator 1a can be increased. In this embodiment, only a part of the above-mentioned effects may be obtained.
 (発電駆動)
 第1駆動部10および第2駆動部20は、電動機として駆動するだけでなく、発電機として駆動してもよい。第1駆動部10では、第1可動子13が第1固定子11に対して駆動可能であればよく、第1固定子11に対して第1可動子13を駆動させることを目的としなくてもよい(第2駆動部20についても同様)。さらに詳しくは、上記のように、アクチュエータ1aは、第1固定子11に対して第1可動子13が駆動したときに、第1固定子11に対して第2固定子21を移動させるように構成される。この構成では、第1固定子11に対して第2固定子21を移動させると、第1固定子11に対して第1可動子13が移動する。すると、第1駆動部10で発電できる。同様に、第2駆動部20でも発電できる。アクチュエータ1aが発電機として駆動する場合は、例えば風力や揚力により発電する発電機として、アクチュエータ1aが用いられてもよい。また、アクチュエータ1aが発電した電力を検出し、検出値を利用して制振を行う制振装置として、アクチュエータ1aが用いられてもよい。
(Power generation drive)
The first drive unit 10 and the second drive unit 20 may be driven not only as an electric motor but also as a generator. In the first drive unit 10, it is sufficient that the first mover 13 can be driven with respect to the first stator 11, and the purpose is not to drive the first mover 13 with respect to the first stator 11. It may be good (the same applies to the second drive unit 20). More specifically, as described above, the actuator 1a causes the second stator 21 to move with respect to the first stator 11 when the first mover 13 is driven with respect to the first stator 11. It is composed. In this configuration, when the second stator 21 is moved with respect to the first stator 11, the first mover 13 moves with respect to the first stator 11. Then, the first drive unit 10 can generate electricity. Similarly, the second drive unit 20 can also generate electricity. When the actuator 1a is driven as a generator, the actuator 1a may be used as a generator that generates electricity by, for example, wind power or lift. Further, the actuator 1a may be used as a vibration damping device that detects the electric power generated by the actuator 1a and performs vibration damping using the detected value.
 (第1の発明の効果)
 図1Aに示すアクチュエータ1aによる効果は次の通りである。アクチュエータ1aは、第1固定子11と、第1可動子13と、第2固定子21と、第2可動子23と、固定子接続部30と、を備える。
(Effect of the first invention)
The effects of the actuator 1a shown in FIG. 1A are as follows. The actuator 1a includes a first stator 11, a first stator 13, a second stator 21, a second stator 23, and a stator connecting portion 30.
 [構成1-1]第1可動子13は、第1固定子11に移動可能に取り付けられ、第1固定子11に対して駆動される。 [Structure 1-1] The first stator 13 is movably attached to the first stator 11 and driven with respect to the first stator 11.
 [構成1-2]第2可動子23は、第2固定子21に移動可能に取り付けられ、第2固定子21に対して駆動される。 [Structure 1-2] The second stator 23 is movably attached to the second stator 21 and driven with respect to the second stator 21.
 [構成1-3]固定子接続部30は、第1固定子11に対して第2固定子21が移動可能となるように第1固定子11と第2固定子21とを接続する。 [Structure 1-3] The stator connecting portion 30 connects the first stator 11 and the second stator 21 so that the second stator 21 can move with respect to the first stator 11.
 [構成1-4]第1可動子13は、第1固定子11に対して駆動されたときに、第1固定子11に対して第2固定子21を移動させる。 [Structure 1-4] When the first stator 13 is driven with respect to the first stator 11, the second stator 21 is moved with respect to the first stator 11.
 [構成1-5]第2可動子23は、第2固定子21に対して駆動されたときに、第2固定子21に対して第1固定子11を移動させる。 [Structure 1-5] When the second stator 23 is driven with respect to the second stator 21, the first stator 11 is moved with respect to the second stator 21.
 上記[構成1-1]では、第1固定子11および第1可動子13(第1駆動部10)は、発生させた力を出力する、出力部として機能する。上記[構成1-2]では、第2固定子21および第2可動子23(第2駆動部20)は、発生させた力を出力する、出力部として機能する。上記[構成1-3]および[構成1-4]では、第2固定子21(第2駆動部20の一部)は、第1固定子11および第1可動子13(第1駆動部10)により駆動される。よって、第2駆動部20は、第1駆動部10が発生させた力が入力される、入力部として機能する。同様に、上記[構成1-3]および[構成1-5]により、第1駆動部10は、第2駆動部20が発生させた力が入力される、入力部として機能する。よって、第1駆動部10は、出力部と入力部とを兼ね、第2駆動部20は、出力部と入力部とを兼ねる。よって、出力部と入力部とが別々に設けられる場合に比べ、アクチュエータ1aを小型化できる。アクチュエータ1aを小型化できる結果、アクチュエータ1aを軽量化できてもよい。 In the above [Structure 1-1], the first stator 11 and the first mover 13 (first drive unit 10) function as output units that output the generated force. In the above [Structure 1-2], the second stator 21 and the second mover 23 (second drive unit 20) function as output units that output the generated force. In the above [Structure 1-3] and [Structure 1-4], the second stator 21 (a part of the second drive unit 20) is the first stator 11 and the first mover 13 (first drive unit 10). ). Therefore, the second drive unit 20 functions as an input unit to which the force generated by the first drive unit 10 is input. Similarly, according to the above [Structure 1-3] and [Structure 1-5], the first drive unit 10 functions as an input unit to which the force generated by the second drive unit 20 is input. Therefore, the first drive unit 10 serves as both an output unit and an input unit, and the second drive unit 20 also serves as an output unit and an input unit. Therefore, the actuator 1a can be downsized as compared with the case where the output unit and the input unit are provided separately. As a result of being able to reduce the size of the actuator 1a, the weight of the actuator 1a may be reduced.
 (第2の発明の効果)
 [構成2]固定子接続部30は、第1固定子11に対して第2固定子21が回転可能となるように第1固定子11と第2固定子21とを接続する。
(Effect of the second invention)
[Structure 2] The stator connecting portion 30 connects the first stator 11 and the second stator 21 to the first stator 11 so that the second stator 21 can rotate.
 上記[構成2]では、第1固定子11に対して第2固定子21が回転可能なアクチュエータ1aを、小型化できる。具体的には例えば、第1固定子11に対して第2固定子21を回転させるために、固定子接続部30にモータ(回転モータなど)を設ける必要がある場合などに比べ、アクチュエータ1aを小型化できる(詳細は上記の通り)。 In the above [configuration 2], the actuator 1a in which the second stator 21 can rotate with respect to the first stator 11 can be miniaturized. Specifically, for example, the actuator 1a is used as compared with the case where it is necessary to provide a motor (rotating motor or the like) in the stator connection portion 30 in order to rotate the second stator 21 with respect to the first stator 11. It can be miniaturized (details are as above).
 (第2実施形態)
 図2A~図2Bを参照して、第2実施形態のアクチュエータ201aについて、第1実施形態のアクチュエータ1a(図1A参照)との相違点を説明する。なお、アクチュエータ201aのうち、第1実施形態との共通点については、第1実施形態と同一の符号を付すなどして、説明を省略した。共通点の説明を省略する点については、後述する他の実施形態の説明も同様である。相違点は、可動子伝達部40のベース部240bの形状である。
(Second Embodiment)
The difference between the actuator 201a of the second embodiment and the actuator 1a of the first embodiment (see FIG. 1A) will be described with reference to FIGS. 2A to 2B. Of the actuators 201a, the common points with the first embodiment are designated by the same reference numerals as those of the first embodiment, and the description thereof has been omitted. The same applies to the description of other embodiments described later in that the description of the common points is omitted. The difference is the shape of the base portion 240b of the mover transmission portion 40.
 図1Aに示す例では、ベース部40bは、Y方向から見て三角形状であった。一方、図2Aに示すベース部240bは、Y方向から見てT字状である。なお、ベース部240bの形状は、三角形状やT字状でなくてもよい。 In the example shown in FIG. 1A, the base portion 40b had a triangular shape when viewed from the Y direction. On the other hand, the base portion 240b shown in FIG. 2A is T-shaped when viewed from the Y direction. The shape of the base portion 240b does not have to be triangular or T-shaped.
 (第3実施形態)
図3A~図3Dを参照して、第3実施形態のアクチュエータ301aについて、第1実施形態との相違点を説明する。図3Aに示すように、本実施形態のアクチュエータ301aは、可動子伝達部40(図1A参照)に代えて可動子接続部350を備える。アクチュエータ301aは、接続部連結部360を備えてもよい。
(Third Embodiment)
The difference between the actuator 301a of the third embodiment and that of the first embodiment will be described with reference to FIGS. 3A to 3D. As shown in FIG. 3A, the actuator 301a of the present embodiment includes a mover connecting portion 350 instead of the mover transmitting portion 40 (see FIG. 1A). The actuator 301a may include a connecting portion connecting portion 360.
 可動子接続部350は、第1可動子13と第2可動子23との間で力を伝達可能に、第1可動子13と第2可動子23とを接続する。可動子接続部350は、第1固定子11に対して第1可動子13が駆動したときに、第1固定子11に対して第2固定子21を移動(本実施形態では回転移動)させる。また、可動子接続部350は、第2固定子21に対して第2可動子23が駆動したときに、第2固定子21に対して第1固定子11を移動(本実施形態では回転移動)させる。可動子接続部350は、第1実施形態の可動子伝達部40(図1A参照)よりも、第1可動子13および第2可動子23の移動の制約を多くする。可動子接続部350は、1以上の自由度を持った状態で、第1可動子13と第2可動子23とを接続する。可動子接続部350は、第1可動子13が第2可動子23を引くことが可能に、第1可動子13と第2可動子23とを接続する。可動子接続部350は、第2可動子23が第1可動子13を引くことが可能に、第1可動子13と第2可動子23とを接続する。可動子接続部350は、可動子接続リンク部351と、可動子接続関節部353と、を備える。 The mover connection unit 350 connects the first mover 13 and the second mover 23 so that a force can be transmitted between the first mover 13 and the second mover 23. The mover connecting portion 350 moves the second stator 21 with respect to the first stator 11 (rotational movement in the present embodiment) when the first mover 13 is driven with respect to the first stator 11. .. Further, the mover connecting portion 350 moves the first stator 11 with respect to the second stator 21 when the second mover 23 is driven with respect to the second stator 21 (rotational movement in the present embodiment). ). The mover connection unit 350 has more restrictions on the movement of the first mover 13 and the second mover 23 than the mover transmission unit 40 (see FIG. 1A) of the first embodiment. The mover connecting portion 350 connects the first mover 13 and the second mover 23 with one or more degrees of freedom. The mover connecting portion 350 connects the first mover 13 and the second mover 23 so that the first mover 13 can pull the second mover 23. The mover connecting portion 350 connects the first mover 13 and the second mover 23 so that the second mover 23 can pull the first mover 13. The movable element connecting portion 350 includes a movable element connecting link portion 351 and a movable element connecting joint portion 353.
 可動子接続リンク部351は、可動子接続関節部353を介して第1可動子13と第2可動子23とを接続する部材である。可動子接続リンク部351は、図3Aに示す例ではY方向から見て略直線状(例えば棒状、板状など)であり、略直線状でなくてもよい。可動子接続リンク部351は、第1可動子13に対して回転可能に接続されてもよく(第2可動子23に対しても同様)、第1可動子13に対して固定されてもよい(第2可動子23に対しても同様)。可動子接続関節部353は、可動子接続リンク部351を折り曲げ可能にする部材である。可動子接続リンク部351の折り曲げの回転軸の数は、図3Cに示す例では1であるが、2以上でもよい。図3Aに示す可動子接続リンク部351の折り曲げの回転軸の方向(回転軸が複数の場合は少なくとも1つの回転軸の方向)は、Y方向である。 The mover connection link portion 351 is a member that connects the first mover 13 and the second mover 23 via the mover connection joint portion 353. In the example shown in FIG. 3A, the mover connection link portion 351 is substantially linear (for example, rod-shaped, plate-shaped, etc.) when viewed from the Y direction, and does not have to be substantially linear. The mover connection link portion 351 may be rotatably connected to the first mover 13 (the same applies to the second mover 23), or may be fixed to the first mover 13. (The same applies to the second mover 23). The movable element connecting joint portion 353 is a member that makes the movable element connecting link portion 351 bendable. The number of bending rotation axes of the mover connection link portion 351 is 1 in the example shown in FIG. 3C, but may be 2 or more. The direction of the rotation axis of the bending of the mover connection link portion 351 shown in FIG. 3A (the direction of at least one rotation axis when there are a plurality of rotation axes) is the Y direction.
 接続部連結部360は、固定子接続部30と可動子接続関節部353とを連結する。接続部連結部360は、回転軸Aを中心に可動子接続関節部353が回転可能となるように、固定子接続部30と可動子接続関節部353とを接続する。 The connecting portion connecting portion 360 connects the stator connecting portion 30 and the movable element connecting joint portion 353. The connecting portion connecting portion 360 connects the stator connecting portion 30 and the movable element connecting joint portion 353 so that the movable element connecting joint portion 353 can rotate around the rotation axis A.
 (作動)
 第1実施形態のアクチュエータ1a(図1A参照)に対する、アクチュエータ301aの作動の相違点は、次の通りである。図3Bに示すように、第1可動子13がX1a側に移動すると、第1可動子13は、可動子接続リンク部351を介して可動子接続関節部353をX1a側に押す。すると、可動子接続関節部353は、回転軸Aを中心にR1a側(R2b側)に回転し、可動子接続リンク部351を介して第2可動子23をR2b側に押す。すると、第2固定子21は、R2b側に回転する。よって、図3Cに示すように、アクチュエータ301a全体が、回転軸Aを中心に変形する(折れ曲がる)。同様に、第2可動子23がX2a側に移動すると、第1固定子11は、R1b側に回転する。
(Operation)
The differences in the operation of the actuator 301a with respect to the actuator 1a (see FIG. 1A) of the first embodiment are as follows. As shown in FIG. 3B, when the first mover 13 moves to the X1a side, the first mover 13 pushes the mover connection joint portion 353 to the X1a side via the mover connection link portion 351. Then, the movable element connecting joint portion 353 rotates about the rotation axis A toward the R1a side (R2b side), and pushes the second movable element 23 toward the R2b side via the movable element connecting link portion 351. Then, the second stator 21 rotates toward R2b. Therefore, as shown in FIG. 3C, the entire actuator 301a is deformed (bent) about the rotation axis A. Similarly, when the second stator 23 moves to the X2a side, the first stator 11 rotates to the R1b side.
 図3Dに示す第1可動子13がX1b側に移動すると、第1可動子13は、可動子接続部350を介して第2可動子23をX2a側に引く。すると、第2固定子21は、R2a側に回転する。同様に、第2可動子23がX2b側に移動すると、第2固定子21がR1a側に回転する。このように、第1可動子13が第2可動子23を引く力、および、第2可動子23が第1可動子13を引く力を利用して、アクチュエータ301aを変形させることができる。 When the first mover 13 shown in FIG. 3D moves to the X1b side, the first mover 13 pulls the second mover 23 to the X2a side via the mover connection portion 350. Then, the second stator 21 rotates toward R2a. Similarly, when the second stator 23 moves to the X2b side, the second stator 21 rotates to the R1a side. In this way, the actuator 301a can be deformed by using the force that the first mover 13 pulls the second mover 23 and the force that the second mover 23 pulls the first mover 13.
 (第3の発明の効果)
 図3Aに示すアクチュエータ301aによる効果は次の通りである。
(Effect of the third invention)
The effects of the actuator 301a shown in FIG. 3A are as follows.
 [構成3]アクチュエータ301aは、可動子接続部350を備える。可動子接続部350は、第1可動子13と第2可動子23との間で力を伝達可能に、第1可動子13と第2可動子23とを接続する。 [Structure 3] The actuator 301a includes a mover connecting portion 350. The mover connecting portion 350 connects the first mover 13 and the second mover 23 so that a force can be transmitted between the first mover 13 and the second mover 23.
 上記[構成3]により、第1可動子13から、可動子接続部350を介して、第2駆動部20に力を伝えることができる。また、第2可動子23から、可動子接続部350を介して、第1駆動部10に力を伝えることができる。よって、第1可動子13と第2可動子23とが接続されない場合(例えば図1A参照)に比べ、第1駆動部10に対する第2駆動部20の移動(駆動)可能な方向を増やすことができる。 According to the above [configuration 3], a force can be transmitted from the first mover 13 to the second drive unit 20 via the mover connecting part 350. Further, the force can be transmitted from the second mover 23 to the first drive unit 10 via the mover connecting part 350. Therefore, as compared with the case where the first mover 13 and the second mover 23 are not connected (see, for example, FIG. 1A), it is possible to increase the direction in which the second drive unit 20 can move (drive) with respect to the first drive unit 10. can.
 (第4実施形態)
 図4Aおよび図4Bを参照して、第4実施形態のアクチュエータ401aについて、第1実施形態のアクチュエータ1a(図1A参照)との相違点を説明する。図4Aに示すように、第4実施形態のアクチュエータ401aは、可動子伝達部40(図1A参照)を備えず、ガイド部460を備える。
(Fourth Embodiment)
The difference between the actuator 401a of the fourth embodiment and the actuator 1a of the first embodiment (see FIG. 1A) will be described with reference to FIGS. 4A and 4B. As shown in FIG. 4A, the actuator 401a of the fourth embodiment does not include the mover transmission unit 40 (see FIG. 1A) but includes a guide unit 460.
 ガイド部460は、第1可動子13の移動(位置)をガイドする。ガイド部460は、第1可動子13の移動に制約を設けるものである。ガイド部460は、例えば、ピン461と、レール463と、を備える。ピン461は、第1可動子13に設けられる。ピン461は、例えば、第1可動子13からY方向外側に突出する。レール463は、例えばアクチュエータ401aの外部(フレームなど)に対して固定されてもよく、例えば第2固定子21に対して固定されてもよい。レール463は、例えばレール接続部463aを介して第2固定子21に対して固定される。レール463は、ピン461を支持可能に構成される。レール463は、ピン461の移動をガイドし、例えば、ピン461をレール463の内面に沿って移動させる。 The guide unit 460 guides the movement (position) of the first mover 13. The guide portion 460 imposes restrictions on the movement of the first mover 13. The guide portion 460 includes, for example, a pin 461 and a rail 463. The pin 461 is provided on the first mover 13. The pin 461 projects outward from the first mover 13 in the Y direction, for example. The rail 463 may be fixed to the outside (frame, etc.) of the actuator 401a, for example, or may be fixed to the second stator 21, for example. The rail 463 is fixed to the second stator 21 via, for example, the rail connecting portion 463a. The rail 463 is configured to support the pin 461. The rail 463 guides the movement of the pin 461, for example, the pin 461 is moved along the inner surface of the rail 463.
 (作動)
 第1実施形態のアクチュエータ1aの作動に対する、本実施形態のアクチュエータ401aの作動の相違点は、次の通りである。図4Bに示すように、第1可動子13は、ガイド部460にガイドされながら第1固定子11に対して移動する。これにより、第1可動子13は、第2固定子21に対して第1固定子11を回転させる。具体的には例えば、第1可動子13がX1b側に移動するのにしたがって、第1可動子13は、R1b側に回転する。第1可動子13のR1b側への回転に伴い、第1固定子11もR1b側に回転する。ここで、第2固定子21に対する第1固定子11のR1b側への回転は、第1固定子11を固定して考えれば、第1固定子11に対する第2固定子21のR2b側への回転である。よって、第1固定子11に対して第1可動子13が移動することで、第1固定子11に対して第2固定子21が回転すると言える。
(Operation)
The difference between the operation of the actuator 1a of the first embodiment and the operation of the actuator 401a of the present embodiment is as follows. As shown in FIG. 4B, the first stator 13 moves with respect to the first stator 11 while being guided by the guide portion 460. As a result, the first stator 13 rotates the first stator 11 with respect to the second stator 21. Specifically, for example, as the first mover 13 moves to the X1b side, the first mover 13 rotates to the R1b side. As the first stator 13 rotates toward R1b, the first stator 11 also rotates toward R1b. Here, the rotation of the first stator 11 to the R1b side with respect to the second stator 21 is considered to be the rotation of the second stator 21 to the R2b side with respect to the first stator 11 when the first stator 11 is fixed. It is a rotation. Therefore, it can be said that the second stator 21 rotates with respect to the first stator 11 by moving the first mover 13 with respect to the first stator 11.
 なお、第2駆動部20は、ガイド部460と同様のガイド部460-2(ピン461-2およびレール463-2)により、第2固定子21に対して第1固定子11を回転させてもよい。また、第2駆動部20は、図1Aや図2Aなどに示す構成と同様の構成により、第2固定子21に対して第1固定子11を回転させてもよい。 The second drive unit 20 uses the same guide unit 460-2 (pin 461-2 and rail 463-2) as the guide unit 460 to rotate the first stator 11 with respect to the second stator 21. May be good. Further, the second drive unit 20 may rotate the first stator 11 with respect to the second stator 21 in the same configuration as shown in FIGS. 1A and 2A.
 (第5実施形態)
 図5A~図5Dを参照して、第5実施形態のアクチュエータ装置501について、主に第3実施形態のアクチュエータ301aとの相違点を説明する。図5Aに示すように、アクチュエータ装置501は、複数のアクチュエータ501aを備える。また、可動子接続部550は、可動子接続部350(図3A参照)とは異なる構成を備える。
(Fifth Embodiment)
With reference to FIGS. 5A to 5D, the difference between the actuator device 501 of the fifth embodiment and the actuator 301a of the third embodiment will be described. As shown in FIG. 5A, the actuator device 501 includes a plurality of actuators 501a. Further, the movable element connecting portion 550 has a configuration different from that of the movable element connecting portion 350 (see FIG. 3A).
 アクチュエータ装置501に設けられるアクチュエータ501aの数は、図5Aに示す例では2であり、3以上でもよい(図9Aなどを参照)。アクチュエータ装置501は、第1アクチュエータ501a1と、第2アクチュエータ501a2と、を備える。図5Aに示すZ方向およびR2方向は、第1アクチュエータ501a1におけるZ方向およびR2方向である。以下では、Z方向およびR2方向については、第1アクチュエータ501a1における方向とする。第1固定子11から第1可動子13に向かう向きは、第1アクチュエータ501a1と第2アクチュエータ501a2とで互いに逆向きであり(図5Aでは左右逆向きであり)、互いに逆向きでなくてもよい。以下では、第1固定子11から第1可動子13に向かう向きが、第1アクチュエータ501a1と第2アクチュエータ501a2とで互いに逆向きである場合について説明する。 The number of actuators 501a provided in the actuator device 501 is 2 in the example shown in FIG. 5A, and may be 3 or more (see FIG. 9A and the like). The actuator device 501 includes a first actuator 501a1 and a second actuator 501a2. The Z direction and the R2 direction shown in FIG. 5A are the Z direction and the R2 direction in the first actuator 501a1. In the following, the Z direction and the R2 direction will be the directions in the first actuator 501a1. The directions from the first stator 11 to the first mover 13 are opposite to each other for the first actuator 501a1 and the second actuator 501a2 (the left and right directions are opposite in FIG. 5A), and even if they are not opposite to each other. good. Hereinafter, a case where the directions from the first stator 11 to the first mover 13 are opposite to each other in the first actuator 501a1 and the second actuator 501a2 will be described.
 複数のアクチュエータ501aの第1駆動部10は、次のように構成される。複数のアクチュエータ501aの第1固定子11どうしは、互いに接続される。複数のアクチュエータ501aの第1固定子11どうしは、図5Aに示す例のように直接的に接続(一体的に構成される場合を含む)されてもよく、部材(図示なし)を介して間接的に接続されてもよい。複数のアクチュエータ501aの第1可動子13の移動方向(X1方向)は、互いに平行である。複数のアクチュエータ501aの第1可動子13は、いわばパラレルリンク機構を構成する。図5Bに、第1固定子11が磁極子17であり、第1可動子13が電機子15である場合の例を示す。図5Cに、第1固定子11が電機子15であり、第1可動子13が磁極子17である場合の例を示す。なお、図5Bおよび図5Cでは、電機子15のコイル15c(図1B参照)を省略した。 The first drive unit 10 of the plurality of actuators 501a is configured as follows. The first stators 11 of the plurality of actuators 501a are connected to each other. The first stators 11 of the plurality of actuators 501a may be directly connected (including the case where they are integrally configured) as in the example shown in FIG. 5A, or indirectly via a member (not shown). May be connected. The moving directions (X1 directions) of the first movers 13 of the plurality of actuators 501a are parallel to each other. The first mover 13 of the plurality of actuators 501a constitutes a so-called parallel link mechanism. FIG. 5B shows an example in which the first stator 11 is a magnetic pole element 17 and the first mover 13 is an armature 15. FIG. 5C shows an example in which the first stator 11 is the armature 15 and the first mover 13 is the magnetic pole element 17. In FIGS. 5B and 5C, the coil 15c of the armature 15 (see FIG. 1B) is omitted.
 複数のアクチュエータ501aの第2駆動部20は、図5Aに示すように、次のように構成される。第2固定子21どうしは、互いに接続される。複数のアクチュエータ501aの第2可動子23の移動方向は、互いに平行である。 As shown in FIG. 5A, the second drive unit 20 of the plurality of actuators 501a is configured as follows. The second stators 21 are connected to each other. The moving directions of the second movers 23 of the plurality of actuators 501a are parallel to each other.
 可動子接続部550は、図5Dに示すように、第1可動子13および第2可動子23のそれぞれに対して回転可能である。なお、可動子接続部550は、可動子接続部350(図3A参照)と同様に、第1可動子13と第2可動子23との間の位置で折り曲げ可能に構成されてもよく、折り曲げ不可能に構成されてもよい。固定子接続部30は、図5Dに示すように複数のアクチュエータ501aで共用されてもよく、複数のアクチュエータ501aごとに別々に設けられてもよい(図示なし)。 As shown in FIG. 5D, the mover connection portion 550 is rotatable with respect to each of the first mover 13 and the second mover 23. The movable element connecting portion 550 may be configured to be bendable at a position between the first movable element 13 and the second movable element 23, similarly to the movable element connecting portion 350 (see FIG. 3A). It may be configured as impossible. As shown in FIG. 5D, the stator connection portion 30 may be shared by a plurality of actuators 501a, or may be separately provided for each of the plurality of actuators 501a (not shown).
 なお、複数のアクチュエータ501aが設けられる場合は、可動子接続部550が、固定子接続部30として機能してもよい。さらに詳しくは、可動子接続部550は、第1可動子13および第2可動子23を介して、第1固定子11に対して第2固定子21が移動可能となるように第1固定子11と第2固定子21とを接続する。そのため、例えば図5Dに示す固定子接続部30が設けられなくても、第1固定子11と第2固定子21とは、可動子接続部550によって接続されることになる。例えば図14に示す例では、可動子接続部550と固定子接続部30とが兼用される。 When a plurality of actuators 501a are provided, the mover connecting portion 550 may function as the stator connecting portion 30. More specifically, the mover connection portion 550 is a first stator so that the second stator 21 can move with respect to the first stator 11 via the first mover 13 and the second mover 23. 11 and the second stator 21 are connected. Therefore, for example, even if the stator connecting portion 30 shown in FIG. 5D is not provided, the first stator 11 and the second stator 21 are connected by the mover connecting portion 550. For example, in the example shown in FIG. 14, the mover connecting portion 550 and the stator connecting portion 30 are also used.
 (作動)
 図3Aに示すアクチュエータ301aの作動に対する、本実施形態の図5Dに示すアクチュエータ装置501の作動の相違点は、次の通りである。第1アクチュエータ501a1では、第1可動子13はX1b側に移動し、第2可動子23はX2b側に移動する。また、第2アクチュエータ501a2では、第1可動子13はX1a側(第1アクチュエータ501a1の第1可動子13の移動と逆側)に移動し、第2可動子23はX2a側(第2アクチュエータ501a2の第2可動子23の移動と逆側)に移動する。すると、第2固定子21がR2a側に回転する。
(Operation)
The differences in the operation of the actuator device 501 shown in FIG. 5D of the present embodiment with respect to the operation of the actuator 301a shown in FIG. 3A are as follows. In the first actuator 501a1, the first mover 13 moves to the X1b side, and the second mover 23 moves to the X2b side. Further, in the second actuator 501a2, the first mover 13 moves to the X1a side (opposite to the movement of the first mover 13 of the first actuator 501a1), and the second mover 23 moves to the X2a side (second actuator 501a2). Moves to the opposite side of the movement of the second actuator 23). Then, the second stator 21 rotates toward R2a.
 アクチュエータ装置501では、複数のアクチュエータ501aの駆動により、第1固定子11に対して第2固定子21を移動(例えば回転)させる。よって、アクチュエータ装置501では、アクチュエータ501aが1つのみ設けられる場合に比べ、力を発生させる面を広くできる。よって、1つのアクチュエータ501aのみの駆動により第1固定子11に対して第2固定子21を移動させる場合に比べ、第1固定子11に対して第2固定子21を大きい力で移動させることができる。よって、第1駆動部10および第2駆動部20のそれぞれの必要な駆動力を小さくできる結果、各アクチュエータ501aをより小型化できる。なお、複数のアクチュエータ501aのうちの一部のアクチュエータ501aを、他のアクチュエータ501aの駆動に従動させてもよい。 In the actuator device 501, the second stator 21 is moved (for example, rotated) with respect to the first stator 11 by driving a plurality of actuators 501a. Therefore, in the actuator device 501, the surface for generating a force can be widened as compared with the case where only one actuator 501a is provided. Therefore, the second stator 21 is moved with a larger force with respect to the first stator 11 as compared with the case where the second stator 21 is moved with respect to the first stator 11 by driving only one actuator 501a. Can be done. Therefore, as a result of reducing the required driving force of each of the first drive unit 10 and the second drive unit 20, each actuator 501a can be further miniaturized. A part of the actuators 501a among the plurality of actuators 501a may be driven by the other actuators 501a.
 (第4の発明の効果)
 図5Aに示すアクチュエータ装置501による効果は次の通りである。
(Effect of Fourth Invention)
The effects of the actuator device 501 shown in FIG. 5A are as follows.
 [構成4]アクチュエータ装置501は、アクチュエータ501aを複数備える。複数の第1固定子11どうしが接続される。 [Structure 4] The actuator device 501 includes a plurality of actuators 501a. A plurality of first stators 11 are connected to each other.
 上記[構成4]により、アクチュエータ501aを複数備える場合に、複数の第1固定子11どうしが接続されない場合に比べ、アクチュエータ装置501を小型化できる。 According to the above [configuration 4], when a plurality of actuators 501a are provided, the actuator device 501 can be downsized as compared with the case where the plurality of first stators 11 are not connected to each other.
 (第6実施形態)
 図6を参照して、第6実施形態のアクチュエータ装置601について、第5実施形態のアクチュエータ装置501(図5D参照)との相違点を説明する。図5Dに示すアクチュエータ装置501では、複数のアクチュエータ501aの第2固定子21どうしが接続された。一方、図6に示すように、本実施形態のアクチュエータ装置601では、複数のアクチュエータ501aの第2固定子21どうしは接続されない。よって、第1アクチュエータ501a1の第2固定子21と第2アクチュエータ501a2の第2固定子21とを、異なる方向に移動(例えば回転)させることができる。
(Sixth Embodiment)
The difference between the actuator device 601 of the sixth embodiment and the actuator device 501 of the fifth embodiment (see FIG. 5D) will be described with reference to FIG. In the actuator device 501 shown in FIG. 5D, the second stators 21 of the plurality of actuators 501a are connected to each other. On the other hand, as shown in FIG. 6, in the actuator device 601 of the present embodiment, the second stators 21 of the plurality of actuators 501a are not connected to each other. Therefore, the second stator 21 of the first actuator 501a1 and the second stator 21 of the second actuator 501a2 can be moved (for example, rotated) in different directions.
 (第7実施形態)
 図7Aおよび図7Bを参照して、第7実施形態のアクチュエータ装置701について、第5実施形態のアクチュエータ装置501(図5A参照)との相違点を説明する。
(7th Embodiment)
The difference between the actuator device 701 of the seventh embodiment and the actuator device 501 of the fifth embodiment (see FIG. 5A) will be described with reference to FIGS. 7A and 7B.
 アクチュエータ装置701は、図7Aに示すように、3つのアクチュエータ501aを備える。アクチュエータ装置701は、第1アクチュエータ501a1と、第2アクチュエータ501a2と、第3アクチュエータ501a3と、を備える。各アクチュエータ501aの、第1固定子11から第2可動子23に向かう向きは、互いに異なる向きである。 As shown in FIG. 7A, the actuator device 701 includes three actuators 501a. The actuator device 701 includes a first actuator 501a1, a second actuator 501a2, and a third actuator 501a3. The directions of the actuators 501a from the first stator 11 to the second mover 23 are different from each other.
 各アクチュエータ501aの第1固定子11は、ヨーク711aを共有する。ヨーク711aは、各アクチュエータ501aの磁束(磁束線Mを参照)が通ることが可能に構成される。各アクチュエータ501aの第1固定子11は、互いに一体でもよく、磁束を通すことが可能な部材(図示なし)を介して互いに接続されてもよい。ヨーク711aは、柱状である。ヨーク711aは、第1固定子11の長手方向(例えばX1方向)に延びる。ヨーク711aは、孔711a1(さらに詳しくは孔の内面)を備える。孔711a1は、ヨーク711aの中央部に形成される。上記「ヨーク711aの中央部」は、第1固定子11の長手方向(例えばX1方向)から見たヨーク711aの中央部である。孔711a1は、第1固定子11の長手方向(例えばX1方向)に延びる。ヨーク711aの中央部には磁束(磁束線Mを参照)が通らないので、ヨーク711aの中央部に孔711a1が設けられても磁力を確保できる。ヨーク711aに孔711a1が形成されることで、ヨーク711aを軽量化できる。また、例えば、孔711a1の中に人などが入れるようにアクチュエータ装置701を構成することで、アクチュエータ装置701をパワードスーツなどに用いることができる。ヨーク711aは、X1方向から見たとき、図7Aに示す例では三角形状(略三角形状を含む)であり、三角形以外の多角形状(略多角形状を含む)でもよく、円形状(略円形状を含む)でもよい。 The first stator 11 of each actuator 501a shares the yoke 711a. The yoke 711a is configured to allow the magnetic flux of each actuator 501a (see magnetic flux line M) to pass through. The first stator 11 of each actuator 501a may be integrated with each other or may be connected to each other via a member (not shown) capable of passing magnetic flux. The yoke 711a is columnar. The yoke 711a extends in the longitudinal direction (for example, the X1 direction) of the first stator 11. The yoke 711a includes a hole 711a1 (more specifically, the inner surface of the hole). The hole 711a1 is formed in the central portion of the yoke 711a. The "central portion of the yoke 711a" is the central portion of the yoke 711a seen from the longitudinal direction (for example, the X1 direction) of the first stator 11. The hole 711a1 extends in the longitudinal direction (for example, the X1 direction) of the first stator 11. Since magnetic flux (see magnetic flux line M) does not pass through the central portion of the yoke 711a, the magnetic force can be secured even if the hole 711a1 is provided in the central portion of the yoke 711a. By forming the hole 711a1 in the yoke 711a, the weight of the yoke 711a can be reduced. Further, for example, by configuring the actuator device 701 so that a person or the like can enter the hole 711a1, the actuator device 701 can be used for a powered suit or the like. When viewed from the X1 direction, the yoke 711a has a triangular shape (including a substantially triangular shape) in the example shown in FIG. 7A, may have a polygonal shape other than a triangle (including a substantially triangular shape), and has a circular shape (substantially circular shape). Includes).
 (磁束の詳細)
 図7Bに、各アクチュエータ501aの第1固定子11のヨーク711aBが互いに接続されないアクチュエータ装置701Bを示す。電動のアクチュエータ501aでは、第1固定子11と第1可動子13との間での磁束の相互作用により推進力が得られる。アクチュエータ装置701Bでは、第1アクチュエータ501a1の磁束は、第1アクチュエータ501a1の第1固定子11および第1可動子13を通り(磁束線Mを参照)、第2アクチュエータ501a2および第3アクチュエータ501a3を通らない。ここで、アクチュエータ501aをできるだけ小型化にするには、ヨーク711aBをできるだけ小さく(薄く)構成する必要がある。しかし、ヨーク711aBが薄すぎると磁気飽和が生じることで、アクチュエータ501aで発生する力(発生させることが可能な力)が低下する。一方、アクチュエータ501aで発生する力を確保しようとすると、ヨーク711aBが大型化する(小型化が制約される)。そこで、図7Aに示すように、アクチュエータ装置701では、各アクチュエータ501aの第1固定子11が、ヨーク711aを共有する。よって、第1アクチュエータ501a1の磁束は、第1アクチュエータ501a1とは別のアクチュエータ501a(第2アクチュエータ501a2、および第3アクチュエータ501a3)の、第1固定子11(ヨーク711a)を通る。これにより、図7Bに示すように各アクチュエータ501aの第1固定子11ごとにヨーク711aBを設けた場合よりも、磁気飽和を低減できる。よって、図7Aに示すヨーク711aを小型化でき、かつ、アクチュエータ501aで発生する力を確保できる。
(Details of magnetic flux)
FIG. 7B shows an actuator device 701B in which the yokes 711aB of the first stator 11 of each actuator 501a are not connected to each other. In the electric actuator 501a, a propulsive force is obtained by the interaction of magnetic flux between the first stator 11 and the first mover 13. In the actuator device 701B, the magnetic flux of the first actuator 501a1 passes through the first stator 11 and the first mover 13 of the first actuator 501a1 (see magnetic flux line M), and passes through the second actuator 501a2 and the third actuator 501a3. No. Here, in order to make the actuator 501a as small as possible, it is necessary to make the yoke 711aB as small (thin) as possible. However, if the yoke 711aB is too thin, magnetic saturation occurs, so that the force generated by the actuator 501a (the force that can be generated) decreases. On the other hand, when trying to secure the force generated by the actuator 501a, the yoke 711aB becomes large (miniaturization is restricted). Therefore, as shown in FIG. 7A, in the actuator device 701, the first stator 11 of each actuator 501a shares the yoke 711a. Therefore, the magnetic flux of the first actuator 501a1 passes through the first stator 11 (yoke 711a) of the actuator 501a (the second actuator 501a2 and the third actuator 501a3) different from the first actuator 501a1. As a result, magnetic saturation can be reduced as compared with the case where the yoke 711aB is provided for each first stator 11 of each actuator 501a as shown in FIG. 7B. Therefore, the yoke 711a shown in FIG. 7A can be miniaturized, and the force generated by the actuator 501a can be secured.
 なお、各アクチュエータ501aの第1固定子11のヨーク711aが共有される場合に、第2固定子21(図5A参照)は、第1固定子11と同様に構成されてもよく、第1固定子11とは異なる構成でもよい。なお、変形例として、図7Bに示すように、各第1固定子11のヨーク711aBどうしが接続されなくてもよい。 When the yoke 711a of the first stator 11 of each actuator 501a is shared, the second stator 21 (see FIG. 5A) may be configured in the same manner as the first stator 11, and may be configured in the same manner as the first stator 11. The configuration may be different from that of the child 11. As a modification, as shown in FIG. 7B, the yokes 711aB of the first stator 11 may not be connected to each other.
 (第5の発明の効果)
 図7Aに示すアクチュエータ装置701による効果は次の通りである。
(Effect of the fifth invention)
The effects of the actuator device 701 shown in FIG. 7A are as follows.
 [構成5-1]複数の第1可動子13のそれぞれは、第1固定子11に対して電磁気力により駆動されるように構成される。複数の第1固定子11は、ヨーク711aを共有する。 [Structure 5-1] Each of the plurality of first movers 13 is configured to be driven by an electromagnetic force with respect to the first stator 11. The plurality of first stators 11 share the yoke 711a.
 [構成5-2]ヨーク711aは、柱状であり、ヨーク711aの中央部に形成された孔711a1を備える。 [Structure 5-2] The yoke 711a is columnar and includes a hole 711a1 formed in the central portion of the yoke 711a.
 アクチュエータ装置701は、上記[構成5-1]を備える。よって、あるアクチュエータ501a(例えば第1アクチュエータ501a1)の第1固定子11および第1可動子13を通る磁束が、他のアクチュエータ501a(例えば第2アクチュエータ501a2など)の第1固定子11を通ることができる。よって、複数のアクチュエータ501aのそれぞれが個別のヨーク711aB(図7B参照)を有する場合に比べ、ヨーク711aを小型化できる。よって、アクチュエータ装置701をより小型化できる。また、上記[構成5-2]の孔711a1により、ヨーク711aをより軽量化できる。よって、アクチュエータ装置701をより軽量化できる。 The actuator device 701 includes the above [configuration 5-1]. Therefore, the magnetic flux passing through the first stator 11 and the first mover 13 of a certain actuator 501a (for example, the first actuator 501a1) passes through the first stator 11 of another actuator 501a (for example, the second actuator 501a2). Can be done. Therefore, the yoke 711a can be miniaturized as compared with the case where each of the plurality of actuators 501a has an individual yoke 711aB (see FIG. 7B). Therefore, the actuator device 701 can be made smaller. Further, the yoke 711a can be further reduced in weight by the hole 711a1 of the above [Structure 5-2]. Therefore, the actuator device 701 can be made lighter.
 (第8実施形態)
 図8A~図8Dを参照して、第8実施形態のアクチュエータ装置801について、主に図5Aに示す第5実施形態のアクチュエータ装置501との相違点を説明する。第5実施形態のアクチュエータ装置501の複数のアクチュエータ501aの配置に対して、図8Aに示す本実施形態のアクチュエータ装置801の複数のアクチュエータ501aの配置は異なる。
(8th Embodiment)
With reference to FIGS. 8A to 8D, the difference between the actuator device 801 of the eighth embodiment and the actuator device 501 of the fifth embodiment shown mainly in FIG. 5A will be described. The arrangement of the plurality of actuators 501a of the actuator device 801 of the present embodiment shown in FIG. 8A is different from the arrangement of the plurality of actuators 501a of the actuator device 501 of the fifth embodiment.
 複数のアクチュエータ501aの第1可動子13のそれぞれは、図8Bに示すように、複数の第1固定子11に囲まれた領域B内に配置される。領域Bは、3つの第1固定子11に囲まれた領域でもよく、図8Cに示すように4つの第1固定子11に囲まれた領域でもよく、5以上の第1固定子11に囲まれた領域(図示なし)でもよく、2つの第1固定子11に挟まれた領域(図示なし)でもよい。X1方向から見たとき、領域Bを形成する複数の第1固定子11は、図8Bに示す例ではC字状に配置され、図8Cに示す例では四角形状に配置され、その他の形状に配置されてもよい。領域Bを形成する複数の第1固定子11どうしは、直接的に接続(一体的に形成)されてもよく、間接的に(部材を介して)接続されてもよい。 As shown in FIG. 8B, each of the first movers 13 of the plurality of actuators 501a is arranged in the area B surrounded by the plurality of first stators 11. The region B may be a region surrounded by three first stators 11 or may be a region surrounded by four first stators 11 as shown in FIG. 8C, and may be surrounded by five or more first stators 11. It may be a region (not shown) or a region sandwiched between two first stators 11 (not shown). When viewed from the X1 direction, the plurality of first stators 11 forming the region B are arranged in a C shape in the example shown in FIG. 8B, arranged in a square shape in the example shown in FIG. 8C, and have other shapes. It may be arranged. The plurality of first stators 11 forming the region B may be directly connected (integrally formed) or indirectly (via a member).
 第1可動子13が領域B内に配置されることで、第1可動子13が、第1固定子11の外に露出しない、または、露出を抑制できる。その結果、第1固定子11の外部の物が、第1固定子11と干渉することを抑制できる。例えば、第1固定子11の外部の物が、第1固定子11に巻き込まれることや、第1固定子11以外の部材と第1固定子11との間に挟まれることなどを抑制できる。また、第1可動子13が領域B内に配置される結果、第1固定子11に対して第1可動子13を移動させる部分(駆動部分)を、複数の第1固定子11で覆う、または略覆うことができる。よって、第1固定子11に対する第1可動子13の駆動部分の、防塵性や防水性を向上させることができる。その結果、第1駆動部10を容易に保護でき、各アクチュエータ501aを容易に保護できる。なお、第1固定子11とは別に、第1可動子13を覆う物(覆い部)が設けられてもよい。覆い部が設けられる場合でも、第1可動子13が領域B内に配置されることにより、覆い部を減らすことができる。 By arranging the first mover 13 in the area B, the first mover 13 is not exposed to the outside of the first stator 11, or the exposure can be suppressed. As a result, it is possible to prevent an object outside the first stator 11 from interfering with the first stator 11. For example, it is possible to prevent an object outside the first stator 11 from being caught in the first stator 11 or being sandwiched between a member other than the first stator 11 and the first stator 11. Further, as a result of the first mover 13 being arranged in the area B, a portion (driving part) for moving the first mover 13 with respect to the first stator 11 is covered with a plurality of first stators 11. Or it can be covered roughly. Therefore, the dustproof property and the waterproof property of the driving portion of the first mover 13 with respect to the first stator 11 can be improved. As a result, the first drive unit 10 can be easily protected, and each actuator 501a can be easily protected. In addition to the first stator 11, an object (covering portion) that covers the first mover 13 may be provided. Even when the cover portion is provided, the cover portion can be reduced by arranging the first mover 13 in the area B.
 なお、第1固定子11に囲まれた領域B内に第1可動子13が配置される場合に、図8Aに示すように、第2固定子21に囲まれた領域内に第2可動子23が配置されてもよく、配置されなくてもよい。また、図8Dに、アクチュエータ装置801が曲がった状態を示す。図8Dでは、第3アクチュエータ501a3(図8A参照)を省略した。 When the first mover 13 is arranged in the area B surrounded by the first stator 11, the second mover is placed in the area surrounded by the second stator 21 as shown in FIG. 8A. 23 may or may not be arranged. Further, FIG. 8D shows a bent state of the actuator device 801. In FIG. 8D, the third actuator 501a3 (see FIG. 8A) is omitted.
 (第6の発明の効果)
 図8Bに示すアクチュエータ装置801による効果は次の通りである。
(Effect of the sixth invention)
The effects of the actuator device 801 shown in FIG. 8B are as follows.
 [構成6]複数の第1可動子13のそれぞれは、複数の第1固定子11に囲まれた領域B内に配置される。 [Structure 6] Each of the plurality of first stators 13 is arranged in the area B surrounded by the plurality of first stators 11.
 上記[構成6]により、第1可動子13が、第1固定子11の外部に露出しないようにできる、または露出しにくくできる。よって、第1可動子13を覆う物(覆い部)を、第1固定子11とは別に設けなくてもよい、または、覆い部を減らすことができる。よって、アクチュエータ装置801をより小型化できる。 According to the above [Structure 6], the first mover 13 can be prevented from being exposed to the outside of the first stator 11, or can be made difficult to be exposed. Therefore, the object (covering portion) that covers the first stator 13 does not have to be provided separately from the first stator 11, or the covering portion can be reduced. Therefore, the actuator device 801 can be further miniaturized.
 (第9実施形態)
 図9Aおよび図9Bを参照して、第9実施形態のアクチュエータ装置901について、主に第5実施形態のアクチュエータ装置501(図5A参照)との相違点を説明する。
(9th Embodiment)
With reference to FIGS. 9A and 9B, the difference between the actuator device 901 of the ninth embodiment and the actuator device 501 of the fifth embodiment (see FIG. 5A) will be described.
 アクチュエータ装置901は、図9Aに示すように、複数のアクチュエータ501aを備える。アクチュエータ装置901は、図9Aに示す例では、第5実施形態のアクチュエータ装置501と同様の装置を6つ備え、12のアクチュエータ501aを備える。アクチュエータ装置901が備えるアクチュエータ501aの数は、11以下または13以上でもよい。アクチュエータ装置901を構成する複数のアクチュエータ501aのうち、少なくとも一部のアクチュエータ501aが、一体的に構成された装置(第5実施形態のアクチュエータ装置501と同様の装置など)を構成してもよい。アクチュエータ装置901を構成する複数のアクチュエータ501aのそれぞれが、別々に設けられてもよい(図示なし)。アクチュエータ装置901を構成するアクチュエータ501aの数を増やすほど、力を発生させる面を広くでき、大きな力を得ることができる。一方、アクチュエータ501aの数を増やすほど、アクチュエータ装置901は大きくなる。そのため、多数のアクチュエータ501aを備える構成は、大きな機械などに用いやすい。上記「大きな機械など」は、具体的には例えば、1つの第1駆動部10を構成する永久磁石の大きさ(厚み)などに対して、アクチュエータ装置901が設けられる系の外形が比較的大きいものなどである。 As shown in FIG. 9A, the actuator device 901 includes a plurality of actuators 501a. In the example shown in FIG. 9A, the actuator device 901 includes six devices similar to the actuator device 501 of the fifth embodiment, and 12 actuators 501a. The number of actuators 501a included in the actuator device 901 may be 11 or less or 13 or more. Of the plurality of actuators 501a constituting the actuator device 901, at least a part of the actuators 501a may form an integrally configured device (such as a device similar to the actuator device 501 of the fifth embodiment). Each of the plurality of actuators 501a constituting the actuator device 901 may be provided separately (not shown). As the number of actuators 501a constituting the actuator device 901 is increased, the surface for generating the force can be widened and a large force can be obtained. On the other hand, as the number of actuators 501a is increased, the actuator device 901 becomes larger. Therefore, a configuration including a large number of actuators 501a is easy to use for a large machine or the like. Specifically, in the above-mentioned "large machine or the like", specifically, the outer shape of the system in which the actuator device 901 is provided is relatively large with respect to the size (thickness) of the permanent magnets constituting one first drive unit 10. Things and so on.
 複数の第1可動子13は、図9Bに示すように、周状に並ぶように配置される(配列される)。複数の第1可動子13は、X1方向から見たときに、周状に並ぶように配置される。上記「周状」は、円周状(略円周状を含む)でもよく、楕円周状(略楕円周状を含む)でもよく、多角形状でもよい。なお、図7Aに示すアクチュエータ装置701および図8Bに示すアクチュエータ装置801も、複数の第1可動子13が周状に並ぶように配置されたものである。図9Bに示すように、複数の第1可動子13と同様に、複数の第1固定子11も、周状に並ぶように配置される。図9Bに示す例では、X1方向から見たとき、複数の第1固定子11は、アクチュエータ装置901の中心位置Cから放射状に広がる仮想線Lと交わる位置に配置される。第1固定子11は、いわば放射状に配置される。図9Aに示すように、各アクチュエータ501aの第1可動子13は、互いに平行または略平行に配置される(第1固定子11についても同様)。なお、各アクチュエータ501aの第2固定子21および第2可動子23は、各アクチュエータ501aの第1固定子11および第1可動子13と同様に構成(配置)されてもよく、同様に構成されなくてもよい。 As shown in FIG. 9B, the plurality of first movers 13 are arranged (arranged) so as to be arranged in a circumferential shape. The plurality of first movers 13 are arranged so as to be arranged in a circumferential shape when viewed from the X1 direction. The above-mentioned "circumferential shape" may be a circumferential shape (including a substantially circumferential shape), an elliptical circumference shape (including a substantially elliptical circumference shape), or a polygonal shape. The actuator device 701 shown in FIG. 7A and the actuator device 801 shown in FIG. 8B are also arranged so that a plurality of first movers 13 are arranged in a circumferential shape. As shown in FIG. 9B, similarly to the plurality of first movers 13, the plurality of first stators 11 are also arranged so as to be arranged in a circumferential shape. In the example shown in FIG. 9B, when viewed from the X1 direction, the plurality of first stators 11 are arranged at positions intersecting the virtual line L extending radially from the center position C of the actuator device 901. The first stator 11 is arranged radially, so to speak. As shown in FIG. 9A, the first mover 13 of each actuator 501a is arranged parallel to or substantially parallel to each other (the same applies to the first stator 11). The second stator 21 and the second mover 23 of each actuator 501a may be configured (arranged) in the same manner as the first stator 11 and the first mover 13 of each actuator 501a, and are configured in the same manner. It does not have to be.
 (第7の発明の効果)
 図9Bに示すアクチュエータ装置901による効果は次の通りである。
(Effect of the seventh invention)
The effects of the actuator device 901 shown in FIG. 9B are as follows.
 [構成7]複数の第1可動子13は、周状に並ぶように配置される。 [Structure 7] The plurality of first movers 13 are arranged so as to be arranged in a circumferential shape.
 上記[構成7]により、例えば各アクチュエータ501aの第1可動子13を直線状に並ぶように配置した場合などに比べ、複数の第1可動子13全体の大きさ(外形)を小さくできる。よって、アクチュエータ装置901を小型化できる。 According to the above [Structure 7], the size (outer shape) of the entire plurality of first movers 13 can be reduced as compared with the case where the first movers 13 of each actuator 501a are arranged so as to be arranged in a straight line. Therefore, the actuator device 901 can be miniaturized.
 (第10実施形態)
 図10Aおよび図10Bを参照して、第10実施形態のアクチュエータ装置1001について、主に第5実施形態のアクチュエータ装置501(図5A参照)との相違点を説明する。図5Aに示す固定子接続部30に対して、図10Aに示す固定子接続部1030は異なる。なお、図10Aおよび図10Bにおいて、固定子接続部1030の周囲を二点鎖線で囲うことで、固定子接続部1030の範囲を示した。
(10th Embodiment)
With reference to FIGS. 10A and 10B, the differences between the actuator device 1001 of the tenth embodiment and the actuator device 501 of the fifth embodiment (see FIG. 5A) will be described. The stator connection portion 1030 shown in FIG. 10A is different from the stator connection portion 30 shown in FIG. 5A. In addition, in FIG. 10A and FIG. 10B, the range of the stator connecting portion 1030 is shown by surrounding the stator connecting portion 1030 with a two-dot chain line.
 固定子接続部1030は、図10Aに示す第1固定子11に対して、第2固定子21を直線移動可能に接続する。固定子接続部1030は、第1固定子11に対して第2固定子21を、例えばX1方向に移動可能に接続する。固定子接続部1030は、例えば、スライド可能なリンクを備えるものでもよく、弾性部材(ばねやゴムなど)により構成されたものなどでもよい。アクチュエータ装置1001では、第1固定子11と第2固定子21とが滑り対偶となる。固定子接続部1030は、第1実施形態の固定子接続部30と同様に、第1固定子11に対して、第2固定子21を回転移動可能に接続する。固定子接続部1030の回転軸Aは、第1固定子11側および第2固定子21側のそれぞれに設けられてもよく、1つのみ設けられてもよく(図1Aの固定子接続部30を参照)、3以上設けられてもよい(図示なし)。 The stator connecting portion 1030 connects the second stator 21 to the first stator 11 shown in FIG. 10A so as to be linearly movable. The stator connecting portion 1030 connects the second stator 21 to the first stator 11 so as to be movable in, for example, the X1 direction. The stator connection portion 1030 may be provided with a slidable link, or may be made of an elastic member (spring, rubber, or the like). In the actuator device 1001, the first stator 11 and the second stator 21 are sliding pairs. The stator connecting portion 1030 connects the second stator 21 to the first stator 11 so as to be rotatable and movable, similarly to the stator connecting portion 30 of the first embodiment. The rotating shaft A of the stator connecting portion 1030 may be provided on each of the first stator 11 side and the second stator 21 side, or only one may be provided (the stator connecting portion 30 in FIG. 1A). (See), may be provided in 3 or more (not shown).
 この固定子接続部1030が、第1固定子11に対して第2固定子21を、直線移動可能かつ回転移動可能に接続する場合は、第1固定子11および第2固定子21は、滑り対偶および回転対偶となる。この場合、第1固定子11に対して第2固定子21が、直線移動のみ可能である場合や、回転移動のみ可能である場合に比べ、第1固定子11に対する第2固定子21の自由度が高い。よって、第1固定子11に対して第2固定子21が移動できない方向の力(外乱)が第2固定子21にかかることによる、間接(例えば固定子接続部1030、可動子接続部550)の破損(例えば破壊)を抑制できる。また、アクチュエータ装置1001を用いて、例えば動物の関節などを再現しやすい。なお、回転軸Aは、設けられなくてもよい。さらに詳しくは、固定子接続部1030は、第1固定子11に対して、第2固定子21を、直線移動可能かつ、回転不可能に接続してもよい。 When the stator connecting portion 1030 connects the second stator 21 to the first stator 11 so as to be linearly movable and rotatable, the first stator 11 and the second stator 21 slide. It becomes paired pair and rotating paired pair. In this case, the degree of freedom of the second stator 21 with respect to the first stator 11 is higher than that of the case where the second stator 21 can only move linearly or only rotate with respect to the first stator 11. The degree is high. Therefore, an indirect force (for example, stator connection portion 1030, mover connection portion 550) is applied to the second stator 21 in a direction in which the second stator 21 cannot move with respect to the first stator 11. Damage (for example, destruction) can be suppressed. Further, it is easy to reproduce, for example, an animal joint by using the actuator device 1001. The rotation shaft A may not be provided. More specifically, the stator connecting portion 1030 may connect the second stator 21 to the first stator 11 so as to be linearly movable and non-rotatable.
 (作動)
 第5実施形態のアクチュエータ装置501(図5A参照)の作動に対する、本実施形態のアクチュエータ装置1001の作動の相違点は、次の通りである。図10Bに示すように、第1可動子13が、X1a側に移動する。このとき、第1可動子13を固定して考えると、第1固定子11が、X1b側に移動することになる。よって、第1固定子11は、第2固定子21に対して、X1b側に移動する(第2固定子21から離れる)。その結果、アクチュエータ装置1001は伸びる。なお、ここでは、第1可動子13と第2可動子23との距離は一定である。上記の動作とは逆の動作により、アクチュエータ装置1001が縮む。同様に、第2可動子23がX2方向に移動すると、第1固定子11に対して第2固定子21がX2方向に移動し、アクチュエータ装置1001が伸縮する。
(Operation)
The differences in the operation of the actuator device 1001 of the present embodiment with respect to the operation of the actuator device 501 (see FIG. 5A) of the fifth embodiment are as follows. As shown in FIG. 10B, the first mover 13 moves to the X1a side. At this time, if the first stator 13 is fixed and considered, the first stator 11 will move to the X1b side. Therefore, the first stator 11 moves toward the X1b side with respect to the second stator 21 (away from the second stator 21). As a result, the actuator device 1001 is stretched. Here, the distance between the first mover 13 and the second mover 23 is constant. The actuator device 1001 contracts due to an operation opposite to the above operation. Similarly, when the second mover 23 moves in the X2 direction, the second stator 21 moves in the X2 direction with respect to the first stator 11, and the actuator device 1001 expands and contracts.
 (第11実施形態)
 図11を参照して、第11実施形態のアクチュエータ装置1101について、主に第10実施形態のアクチュエータ装置1001(図10A参照)との相違点を説明する。
(11th Embodiment)
With reference to FIG. 11, the difference between the actuator device 1101 of the eleventh embodiment and the actuator device 1001 of the tenth embodiment (see FIG. 10A) will be described.
 アクチュエータ装置1101は、第1固定子11に対する第2固定子21の回転を規制可能に構成される。具体的には、第1固定子11および第2固定子21が、2つの第1可動子13の間に挟まれることで、第1固定子11に対する第2固定子21の回転が規制される。第1固定子11に対する第2固定子21の回転が規制されることで、第1固定子11に対する第2固定子21の位置保持が容易になる。 The actuator device 1101 is configured to be able to regulate the rotation of the second stator 21 with respect to the first stator 11. Specifically, the first stator 11 and the second stator 21 are sandwiched between the two first stators 13 to regulate the rotation of the second stator 21 with respect to the first stator 11. .. By restricting the rotation of the second stator 21 with respect to the first stator 11, it becomes easy to hold the position of the second stator 21 with respect to the first stator 11.
 (作動)
 第10実施形態のアクチュエータ装置1001(図10A参照)の作動に対する、アクチュエータ装置1101の作動の相違点などは、次の通りである。第1可動子13が、第1固定子11から固定子接続部1030に向かう側(X1a側)に移動する。第2可動子23は、固定子接続部1030から第2固定子21に向かう側(X2b側)に移動する。このとき、X1方向とX2方向とが同じ方向であるため、第1可動子13と第2可動子23とが同じ方向に移動する。この作動が、第1アクチュエータ501a1および第2アクチュエータ501a2で行われる。すると、第1固定子11および第2固定子21(および固定子接続部1030)が、2つの第1可動子13の間に挟まれることで、第1固定子11に対する第2固定子21の回転が規制される。このように、2つの第1可動子13を利用して、第1固定子11に対する第2固定子21の回転を規制できる。よって、第1固定子11に対する第2固定子21の回転を規制するために、第1駆動部10(または第2駆動部20)とは別の部材を用いる場合に比べ、アクチュエータ装置1101を小型化できる。
(Operation)
The differences in the operation of the actuator device 1101 with respect to the operation of the actuator device 1001 (see FIG. 10A) of the tenth embodiment are as follows. The first mover 13 moves from the first stator 11 to the side (X1a side) toward the stator connection portion 1030. The second mover 23 moves from the stator connection portion 1030 to the side toward the second stator 21 (X2b side). At this time, since the X1 direction and the X2 direction are the same direction, the first mover 13 and the second mover 23 move in the same direction. This operation is performed by the first actuator 501a1 and the second actuator 501a2. Then, the first stator 11 and the second stator 21 (and the stator connecting portion 1030) are sandwiched between the two first stators 13, so that the second stator 21 with respect to the first stator 11 Rotation is regulated. In this way, the rotation of the second stator 21 with respect to the first stator 11 can be regulated by using the two first stators 13. Therefore, in order to regulate the rotation of the second stator 21 with respect to the first stator 11, the actuator device 1101 is smaller than the case where a member different from the first drive unit 10 (or the second drive unit 20) is used. Can be changed.
 なお、上記とは逆の作動により、第1固定子11および第2固定子21(および固定子接続部1030)が、2つの第2可動子23の間に挟まれる。この場合も、第1固定子11に対する第2固定子21の回転が規制される。また、固定子接続部1030の回転軸Aは、少なくとも1つ設けられる。第1固定子11に対する第2固定子21の回転の規制が解除された場合、第1固定子11に対して第2固定子21が回転可能となる(例えば図5Aに示すアクチュエータ装置501などと同様)。 The first stator 11 and the second stator 21 (and the stator connection portion 1030) are sandwiched between the two second movers 23 by the operation opposite to the above. Also in this case, the rotation of the second stator 21 with respect to the first stator 11 is restricted. Further, at least one rotation shaft A of the stator connection portion 1030 is provided. When the restriction on the rotation of the second stator 21 with respect to the first stator 11 is lifted, the second stator 21 can rotate with respect to the first stator 11 (for example, the actuator device 501 shown in FIG. 5A). Similarly).
 (第12実施形態)
 図12A~図12Cを参照して、第12実施形態のアクチュエータ装置1201Aなどについて、主に第5実施形態のアクチュエータ装置501(図5A参照)との相違点を説明する。
(12th Embodiment)
With reference to FIGS. 12A to 12C, the differences between the actuator device 1201A and the like of the twelfth embodiment and the actuator device 501 of the fifth embodiment (see FIG. 5A) will be described.
 アクチュエータ装置1201A(図12A参照)は、次のように構成される。図12Aに示すように、第1アクチュエータ501a1および第2アクチュエータ501a2の第1固定子11(互いに一体または接続された固定子)を、第1固定子1211とする。第1固定子1211では、第1アクチュエータ501a1のX1方向(第1可動子13の移動方向)に対して、第2アクチュエータ501a2のX1方向が傾斜する。第1固定子1211を挟む2つの第1可動子13どうしが、互いに傾斜する(平行に配置されない)。図12Aに示す例では、第1固定子1211のZ方向の幅は、X1b側ほど広くなる。図12Aに示す例では、初期状態で、第1アクチュエータ501a1および第2アクチュエータ501a2のそれぞれで、X2方向に対してX1方向が傾斜する。 The actuator device 1201A (see FIG. 12A) is configured as follows. As shown in FIG. 12A, the first stator 11 (stator integrally or connected to each other) of the first actuator 501a1 and the second actuator 501a2 is referred to as the first stator 1211. In the first stator 1211, the X1 direction of the second actuator 501a2 is tilted with respect to the X1 direction of the first actuator 501a1 (the moving direction of the first mover 13). The two first movers 13 sandwiching the first stator 1211 are inclined (not arranged in parallel) with each other. In the example shown in FIG. 12A, the width of the first stator 1211 in the Z direction becomes wider toward the X1b side. In the example shown in FIG. 12A, in the initial state, the X1 direction is tilted with respect to the X2 direction in each of the first actuator 501a1 and the second actuator 501a2.
 アクチュエータ装置1201Aでは、複数のアクチュエータ501aのうち少なくとも一部のアクチュエータ501aにおいて、第1可動子13と第2可動子23とが互いに傾斜するように(一直線上に並ばないように)配置できる。これにより、例えば第1固定子11に対して第2固定子21が回転しやすくなる場合がある。また、アクチュエータ装置1201Aの周囲の物の配置など(搭載要件)によっては、第1固定子11を挟む2つの第1可動子13どうしに傾斜を設ける必要が生じる場合があり、この様な場合にアクチュエータ装置1201Aを用いることができる。 In the actuator device 1201A, in at least a part of the actuators 501a among the plurality of actuators 501a, the first mover 13 and the second mover 23 can be arranged so as to be inclined (not aligned with each other). As a result, for example, the second stator 21 may easily rotate with respect to the first stator 11. Further, depending on the arrangement of objects around the actuator device 1201A (mounting requirements), it may be necessary to provide an inclination between the two first movers 13 sandwiching the first stator 11. In such a case. Actuator device 1201A can be used.
 アクチュエータ装置1201Aに対する、図12Bに示す変形例のアクチュエータ装置1201Bの相違点は次の通りである。第1固定子1211のZ方向の幅は、X1b側ほど狭くなる。 The differences between the actuator device 1201A and the actuator device 1201B of the modified example shown in FIG. 12B are as follows. The width of the first stator 1211 in the Z direction becomes narrower toward the X1b side.
 アクチュエータ装置1201A(図12A参照)に対する、図12Cに示す変形例のアクチュエータ装置1201Cの相違点は次の通りである。初期状態で、第1アクチュエータ501a1ではX1方向とX2方向とが同じ方向であり、第2アクチュエータ501a2ではX2方向に対してX1方向が傾斜する。 The differences between the actuator device 1201A (see FIG. 12A) and the actuator device 1201C of the modified example shown in FIG. 12C are as follows. In the initial state, in the first actuator 501a1, the X1 direction and the X2 direction are the same direction, and in the second actuator 501a2, the X1 direction is inclined with respect to the X2 direction.
 (第13実施形態)
 図13を参照して、第13実施形態のアクチュエータ装置1301について、主に第5実施形態のアクチュエータ装置501(図5A参照)との相違点を説明する。アクチュエータ装置1301に設けられる複数のアクチュエータ501aの大きさ(発生させる力)は、均一でない。例えば図13に示す例では、第1アクチュエータ501a1の大きさは、第2アクチュエータ501a2の大きさとは異なり(不均一であり)、第2アクチュエータ501a2よりも小さい。
(13th Embodiment)
With reference to FIG. 13, the difference between the actuator device 1301 of the thirteenth embodiment and the actuator device 501 of the fifth embodiment (see FIG. 5A) will be described. The magnitudes (forces generated) of the plurality of actuators 501a provided in the actuator device 1301 are not uniform. For example, in the example shown in FIG. 13, the size of the first actuator 501a1 is different from the size of the second actuator 501a2 (it is non-uniform) and smaller than that of the second actuator 501a2.
 例えば、アクチュエータ装置1301に作用する重力(自重)の向きや、固定子接続部30の可動域などによっては、アクチュエータ501aが発生させる必要のある力が、アクチュエータ501aごとに相違する場合がある。また、例えば、複数のアクチュエータ501aの搭載スペースが互いに異なる(不均一である)場合などがある。このような場合に、複数のアクチュエータ501aの大きさを相違させたアクチュエータ装置1301を用いることができる。なお、複数のアクチュエータ501aの大きさを相違させるのと同様に、第1駆動部10と第2駆動部20との大きさを相違させてもよい。 For example, the force required to be generated by the actuator 501a may differ for each actuator 501a depending on the direction of gravity (own weight) acting on the actuator device 1301 and the range of motion of the stator connection portion 30. Further, for example, the mounting spaces of the plurality of actuators 501a may be different (non-uniform) from each other. In such a case, the actuator device 1301 having different sizes of the plurality of actuators 501a can be used. In the same way that the sizes of the plurality of actuators 501a are different, the sizes of the first drive unit 10 and the second drive unit 20 may be different.
 (第14実施形態)
 図14を参照して、第14実施形態のアクチュエータ装置1401について、主に第5実施形態のアクチュエータ装置501(図5A参照)などとの相違点を説明する。アクチュエータ装置1401は、アクチュエータ501aを例えば3つ備える(3つでなくてもよい)。アクチュエータ装置1401は、動物を模したロボットに用いられる。例えば、鳥の翼(羽根)や魚のヒレ(図示なし)の駆動などにアクチュエータ装置1401を利用できる。また、モーフィング翼(変形可能な翼)(図示なし)などにアクチュエータ装置1401が用いられてもよい。動物の関節や腕などを模倣した装置などにアクチュエータ装置1401が用いられてもよい。
(14th Embodiment)
With reference to FIG. 14, the difference between the actuator device 1401 of the 14th embodiment and the actuator device 501 of the 5th embodiment (see FIG. 5A) and the like will be described. The actuator device 1401 includes, for example, three actuators 501a (not necessarily three). The actuator device 1401 is used for a robot that imitates an animal. For example, the actuator device 1401 can be used to drive a bird's wing (wing) or a fish fin (not shown). Further, the actuator device 1401 may be used for a morphing blade (deformable blade) (not shown) or the like. The actuator device 1401 may be used for a device that imitates an animal joint, an arm, or the like.
 (変形例)
 上記実施形態は様々に変形されてもよい。例えば、互いに異なる実施形態の構成要素どうしが組み合わされてもよい。例えば、各構成要素の配置や形状が変更されてもよい。例えば、構成要素の数が変更されてもよく、構成要素の一部が設けられなくてもよい。例えば、構成要素どうしの固定や連結などは、直接的でも間接的でもよい。例えば、互いに異なる複数の構成要素として説明したものが、一つの部材や部分とされてもよい。例えば、一つの部材や部分として説明したものが、互いに異なる複数の部材や部分に分けて設けられてもよい。
(Modification example)
The above embodiment may be variously modified. For example, the components of different embodiments may be combined. For example, the arrangement and shape of each component may be changed. For example, the number of components may be changed, and some of the components may not be provided. For example, fixing or connecting components may be direct or indirect. For example, what has been described as a plurality of components different from each other may be regarded as one member or part. For example, what has been described as one member or part may be provided separately for a plurality of different members or parts.
 例えば、関節の種類(直線移動可能、回転移動可能、ねじり可能)、アクチュエータ501aの数、複数のアクチュエータ501aどうしの方向や大きさの相違、第1駆動部10と第2駆動部20との方向や大きさの相違などは、様々に変更されてもよい。例えば、上記の説明における第1駆動部10(第1固定子11および第1可動子13)と第2駆動部20(第2固定子21および第2可動子23)とを読み替えてもよい。第1駆動部10に関するものとして説明した事項を、第2駆動部20に適用してもよい(逆も同様)。可動子伝達部40(図1A参照)と、可動子接続部350(可動子接続部550でもよい)とが組み合わされてもよい。具体的には例えば、図1Aに示すように、第1可動子13が可動子伝達部40に接触可能であり、図3Aに示すように、第2可動子23が可動子接続部350に接続されてもよい。 For example, the type of joint (linearly movable, rotationally movable, twistable), the number of actuators 501a, the difference in the direction and size of a plurality of actuators 501a, and the direction between the first drive unit 10 and the second drive unit 20. And the difference in size may be changed in various ways. For example, the first drive unit 10 (first stator 11 and first mover 13) and the second drive unit 20 (second stator 21 and second mover 23) in the above description may be read as replacements. The matters described as relating to the first drive unit 10 may be applied to the second drive unit 20 (and vice versa). The mover transmission unit 40 (see FIG. 1A) and the mover connection unit 350 (may be the mover connection unit 550) may be combined. Specifically, for example, as shown in FIG. 1A, the first mover 13 can contact the mover transmission unit 40, and as shown in FIG. 3A, the second mover 23 is connected to the mover connection unit 350. May be done.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood. Further, each component in the above-described embodiment may be arbitrarily combined as long as the gist of the invention is not deviated.
 なお、本出願は、2018年9月5日出願の日本特許出願(特願2018-166284)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on the Japanese patent application (Japanese Patent Application No. 2018-166284) filed on September 5, 2018, the contents of which are incorporated herein by reference.
 1a、201a、301a、401a、501a アクチュエータ
 11、1211 第1固定子
 13 第1可動子
 21 第2固定子
 23 第2可動子
 30、1030 固定子接続部
 350、550 可動子接続部
 501、601、701、701B、801、801B、901、1001、1101、1201A、1201B、1201C、1301、1401 アクチュエータ装置
 711a ヨーク
 B 領域
1a, 201a, 301a, 401a, 501a Actuator 11, 1211 1st stator 13 1st mover 21 2nd stator 23 2nd mover 30, 1030 Stator connection 350, 550 Movable connection 501, 601 701, 701B, 801, 801B, 901, 1001, 1101, 1201A, 1201B, 1201C, 1301, 1401 Actuator device 711a York B area

Claims (7)

  1.  第1固定子と、
     前記第1固定子に移動可能に取り付けられ、前記第1固定子に対して駆動される第1可動子と、
     第2固定子と、
     前記第2固定子に移動可能に取り付けられ、前記第2固定子に対して駆動される第2可動子と、
     前記第1固定子に対して前記第2固定子が移動可能となるように前記第1固定子と前記第2固定子とを接続する固定子接続部と、
     を備え、
     前記第1可動子は、前記第1固定子に対して駆動されたときに、前記第1固定子に対して前記第2固定子を移動させ、
     前記第2可動子は、前記第2固定子に対して駆動されたときに、前記第2固定子に対して前記第1固定子を移動させる、
     アクチュエータ。
    With the first stator,
    A first mover movably attached to the first stator and driven with respect to the first stator,
    With the second stator,
    A second mover movably attached to the second stator and driven with respect to the second stator,
    A stator connecting portion that connects the first stator and the second stator so that the second stator can move with respect to the first stator.
    With
    When the first stator is driven with respect to the first stator, the first stator moves the second stator with respect to the first stator.
    The second stator moves the first stator with respect to the second stator when driven with respect to the second stator.
    Actuator.
  2.  請求項1に記載のアクチュエータであって、
     前記固定子接続部は、前記第1固定子に対して前記第2固定子が回転可能となるように前記第1固定子と前記第2固定子とを接続する、
     アクチュエータ。
    The actuator according to claim 1.
    The stator connecting portion connects the first stator and the second stator to the first stator so that the second stator can rotate.
    Actuator.
  3.  請求項1に記載のアクチュエータであって、
     前記第1可動子と前記第2可動子との間で力を伝達可能に、前記第1可動子と前記第2可動子とを接続する可動子接続部を備える、
     アクチュエータ。
    The actuator according to claim 1.
    A movable element connecting portion for connecting the first movable element and the second movable element is provided so that a force can be transmitted between the first movable element and the second movable element.
    Actuator.
  4.  請求項1に記載の前記アクチュエータを複数備え、
     複数の前記第1固定子どうしが接続される、
     アクチュエータ装置。
    The actuator according to claim 1 is provided with a plurality of the actuators.
    A plurality of the first stators are connected to each other,
    Actuator device.
  5.  請求項4に記載のアクチュエータ装置であって、
     複数の前記第1可動子のそれぞれは、前記第1固定子に対して電磁気力により駆動されるように構成され、
     複数の前記第1固定子は、ヨークを共有し、
     前記ヨークは、柱状であり、前記ヨークの中央部に形成された孔を備える、
     アクチュエータ装置。
    The actuator device according to claim 4.
    Each of the plurality of first movers is configured to be driven by an electromagnetic force with respect to the first stator.
    The plurality of first stators share a yoke and
    The yoke is columnar and has a hole formed in the center of the yoke.
    Actuator device.
  6.  請求項4に記載のアクチュエータ装置であって、
     複数の前記第1可動子のそれぞれは、複数の前記第1固定子に囲まれた領域内に配置される、
     アクチュエータ装置。
    The actuator device according to claim 4.
    Each of the plurality of first movers is arranged in an area surrounded by the plurality of first stators.
    Actuator device.
  7.  請求項4に記載のアクチュエータ装置であって、
     複数の前記第1可動子は、周状に並ぶように配置される、
     アクチュエータ装置。
    The actuator device according to claim 4.
    The plurality of first movers are arranged so as to be arranged in a circumferential shape.
    Actuator device.
PCT/JP2020/008693 2020-03-02 2020-03-02 Actuator and actuator device WO2021176517A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008693 WO2021176517A1 (en) 2020-03-02 2020-03-02 Actuator and actuator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/008693 WO2021176517A1 (en) 2020-03-02 2020-03-02 Actuator and actuator device

Publications (1)

Publication Number Publication Date
WO2021176517A1 true WO2021176517A1 (en) 2021-09-10

Family

ID=77613130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008693 WO2021176517A1 (en) 2020-03-02 2020-03-02 Actuator and actuator device

Country Status (1)

Country Link
WO (1) WO2021176517A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056075A (en) * 2010-08-11 2012-03-22 Kyushu Univ Manipulator and method of controlling the same
JP2013529558A (en) * 2010-06-28 2013-07-22 シュヴァブ・マーチン Hexapod

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013529558A (en) * 2010-06-28 2013-07-22 シュヴァブ・マーチン Hexapod
JP2012056075A (en) * 2010-08-11 2012-03-22 Kyushu Univ Manipulator and method of controlling the same

Similar Documents

Publication Publication Date Title
JP4546894B2 (en) Tactile information presentation actuator
US20080111791A1 (en) Self-propelled haptic mouse system
JP7076201B2 (en) Multi-degree-of-freedom electromagnetic machine and its control method
US20020053849A1 (en) Motor assembly allowing output in multiple degrees of freedom
WO2014004588A1 (en) Robotic finger
JP7221986B2 (en) Oscillating motors and electrical devices
US20190296606A1 (en) High force rotary actuator
WO2021176517A1 (en) Actuator and actuator device
KR101138649B1 (en) Hybrid type driving apparatus having multi-degrees of freedom
KR102250049B1 (en) Optical module for light beam scan
JP2008092758A (en) Spherical surface stepping motor
WO1999019971A1 (en) Three-degrees-of-freedom motor
JP2020039237A (en) Actuator and actuator device
CN107317446B (en) experience platform drive device and virtual reality experience chair
Bolognesi et al. Electromagnetic actuators featuring multiple degrees of freedom: a survey
US20110266904A1 (en) Permanent magnet actuator for adaptive actuation
JP2011217540A (en) Electromagnetic actuator
US20080297934A1 (en) Optical actuator
KR101431383B1 (en) Multi Joint Actuating Device And Multi-Leg Walking Robot Having The Same
JP2003116255A (en) Drive apparatus and lens drive mechanism
JP6982486B2 (en) Linear vibration motor
CN112968630B (en) Multifunctional multi-freedom-degree spherical driver
JP2003324936A (en) Spherical surface motor
KR101766576B1 (en) Driving apparatus having multi-degrees of freedom
JP5439663B2 (en) Electromagnetic actuator and joint device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP