WO2011102361A1 - 振動発電機 - Google Patents

振動発電機 Download PDF

Info

Publication number
WO2011102361A1
WO2011102361A1 PCT/JP2011/053217 JP2011053217W WO2011102361A1 WO 2011102361 A1 WO2011102361 A1 WO 2011102361A1 JP 2011053217 W JP2011053217 W JP 2011053217W WO 2011102361 A1 WO2011102361 A1 WO 2011102361A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
electrode terminal
casing
vibration generator
unit
Prior art date
Application number
PCT/JP2011/053217
Other languages
English (en)
French (fr)
Inventor
竜太 飯島
一郎 佐々木
亮也 高橋
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010035856A external-priority patent/JP5375658B2/ja
Priority claimed from JP2010125117A external-priority patent/JP2011254591A/ja
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Priority to EP11744647.6A priority Critical patent/EP2541743B1/en
Publication of WO2011102361A1 publication Critical patent/WO2011102361A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems

Definitions

  • the present invention relates to a vibration generator that generates power by vibration.
  • vibration generators that convert kinetic energy due to vibration into electrical energy have been proposed.
  • an induced current is generated in the coil as the permanent magnet vibrates in the coil.
  • the generated induced current is stored in a power storage device such as a capacitor.
  • the vibration generator can supply the current to the load. Note that the power generation efficiency of the vibration power generator is improved as the stroke of the permanent magnet is increased.
  • Patent Document 1 proposes a generator including a rectification unit including a permanent magnet, a coil, a rectification bridge circuit, and a capacitor. Permanent magnets and coils are provided in approximately half the area inside the casing. A rectifying unit is provided in the remaining half of the area. An alternating current is induced in the coil by the vibration of the permanent magnet. The alternating current is converted into a direct current by a rectifying bridge circuit. The direct current is stored in the capacitor.
  • the area in which the rectifying unit is accommodated limits the movable range of the permanent magnet, so the stroke during vibration of the permanent magnet is shortened. Therefore, there is a problem that the power generation efficiency of the generator is lowered.
  • the size of the vibration power generator is limited, for example, when it is housed in a case defined in the standard, the influence of the region occupied by the rectifying unit on the power generation efficiency becomes significant.
  • An object of the present invention is to provide a vibration generator with high power generation efficiency by increasing the movable range of a permanent magnet as much as possible.
  • a vibration generator includes a first power generation unit including at least a cylindrical member around which a coil is wound, and a permanent magnet provided so as to be capable of reciprocating in the cylindrical member; A housing that houses the first power generation unit, the first housing having two conductive electrode terminals, a rectifying unit that rectifies current, a power storage unit that stores current from the rectifying unit, and the power storage A housing containing at least a portion, a second housing comprising a positive terminal and a negative terminal, and a current induced in the coil by the reciprocating movement of the permanent magnet housed in the first housing
  • a vibration generator including a supply path that supplies power to the power storage unit, and when one of the electrode terminal and the negative electrode terminal is electrically connected, the power storage unit stores the power through the supply path and the rectifying unit.
  • the other electrode terminal and the positive electrode When the one electrode terminal and the positive electrode terminal are electrically connected to the external device from the child, the electricity stored in the power storage unit via the supply path and the rectification unit is the other electrode It supplies to an external apparatus from a terminal and the said negative electrode terminal.
  • the vibration generator includes a first housing and a second housing.
  • a first power generation unit is accommodated in the first housing.
  • the power storage unit is housed in the second housing. Therefore, the area where the first power generation unit is accommodated can be increased. Since the stroke of the permanent magnet moving in the coil can be increased, a large induced current can be generated in the coil. A large current can be stored in the power storage unit.
  • the vibration power generator can increase the amount of current that can be stored by reciprocating motion, and can increase power generation efficiency.
  • the two electrode terminals provided in the first housing are electrically connected. Therefore, when one electrode terminal and the negative electrode terminal are conducted, electric power can be taken out from the other electrode terminal and the positive electrode terminal. Moreover, when one electrode terminal and the positive electrode terminal are conducted, electric power can be taken out from the other electrode terminal and the negative electrode terminal.
  • the first casing may be a conductor.
  • the two electrode terminals are connected to the first casing, whereby the two electrode terminals are electrically connected.
  • the electrode terminals can be easily conducted.
  • the first housing may be a magnetic body.
  • the magnetic field lines radiated from the permanent magnet can be absorbed by the first casing. Since the magnetic flux density in the first housing can be increased, the induced current generated in the coil can be further increased. The power generation efficiency of the vibration generator can be further improved.
  • a second power generation unit comprising at least a cylindrical member around which a coil is wound and a permanent magnet provided so as to be capable of reciprocating within the cylindrical member.
  • the second power generation unit may be accommodated in the second housing.
  • the vibration generator can generate power with the second power generation unit in addition to the first power generation unit.
  • the vibration power generator can efficiently store more current in the power storage unit.
  • the rectifying unit may be accommodated in the second casing. Since the rectifying unit is accommodated in the second casing, the area where the first power generation unit is accommodated can be maintained in a wide state. Since the stroke of the permanent magnet can be increased, a large induced current can be generated in the coil.
  • the vibration power generator can store a larger current in the power storage unit, and can further increase power generation efficiency.
  • the first housing includes a plurality of the first housings, and the second housing houses the rectifying unit corresponding to each of the first power generation units housed in the plurality of first housings. May be. Since the first power generation unit generates power in each of the plurality of first housings, the vibration power generator can efficiently store more current in the power storage unit in a short time. The rectifying units corresponding to the respective first power generation units are collectively accommodated in the second housing. Therefore, the area in which the first power generation unit is accommodated can be maintained in a wide state. The vibration generator can further increase the power generation efficiency.
  • a plurality of the first casings may be provided, and the rectifying unit may be accommodated in each of the plurality of first casings. Since the first power generation unit generates power in each of the plurality of first housings, the vibration power generator can efficiently store more current in the power storage unit in a short time. The rectifier corresponding to each first power generation unit is accommodated in the first housing. By connecting a plurality of first casings each including the first power generation unit and the rectification unit, the power generation amount of the vibration generator can be easily increased.
  • the two electrode terminals may have the same shape as the positive electrode terminal.
  • the electrodes fitted to the external device can have the same shape.
  • the first casing or the second casing may be provided with a storage portion that stores the supply path inside or on the outer periphery of the casing.
  • a storage portion that stores the supply path inside or on the outer periphery of the casing.
  • the storage portion may be provided inside or on the outer periphery of the second housing.
  • the storage portion includes a recess provided in the outer periphery of the first housing or the second housing so that the supply path can be disposed, and having a groove deeper than the diameter of the supply path. May be.
  • the surplus conducting wire is stored inside the outer periphery of the housing by the recess provided on the outer periphery of the housing. Therefore, after arrange
  • the first housing or the second housing in which the storage unit is provided has a cylindrical shape, and the concave portion of the storage unit is formed on the first housing or the second housing.
  • the supply path may be provided so as to be wound along the outer periphery. As a result, the surplus conductive wire is wound around the storage portion along the outer periphery of the housing and stored. Accordingly, the supply path can be easily accommodated by simply rotating the housing after the first housing and the second housing are installed according to the usage pattern.
  • a convex portion or a planar portion is formed on at least one end side along the cylindrical shape of the first casing, and on at least one end side along the cylindrical shape of the second casing.
  • a planar portion or a convex portion is formed, and the supply path includes one end side of the first casing and the second casing on which the convex portion is formed, the first casing and the first casing.
  • the other housings of the two housings may be pulled out from one end side where the flat surface portion is formed, and the storage portion may be provided in the vicinity of one end side where the supply path is pulled out.
  • FIG. 4 is a perspective view showing an arrangement form of the vibration generator 6 in the battery box 150.
  • FIG. 4 is a perspective view showing an arrangement form of the vibration generator 6 in the battery box 150.
  • FIG. 3 is a wiring diagram of a battery box 150 and a vibration generator 6.
  • FIG. It is a perspective view which shows the modification of the accommodating part of the vibration generator 6 in 6th embodiment.
  • vibration generators 1 to 6 vibration generators 1 to 6
  • the referenced drawings are used to explain technical features that can be adopted by the present invention.
  • the configuration of the apparatus described is not intended to be limited to that, but merely an illustrative example.
  • the vibration power generator 1 includes a first housing 11 and a second housing 21.
  • the shapes of the first casing 11 and the second casing 21 are substantially cylindrical.
  • casing 21 have the shape normalized as dry batteries, such as single 1 form, single 2 form, and single 3 form.
  • the first housing 11 and the second housing 21 are arranged with the left-right direction as the longitudinal direction.
  • casing 21 are arrange
  • Electrode terminals are provided on both substantially cylindrical wall portions of the first housing 11.
  • the electrode terminal 12a is provided in the 1st wall part 11a which is a right wall part.
  • An electrode terminal 12b is provided on the second wall portion 11b which is the left wall portion.
  • the first housing 11 has conductivity.
  • the electrode terminal 12a and the electrode terminal 12b are connected to the first casing 11, respectively. Therefore, the electrode terminal 12a and the electrode terminal 12b are electrically connected.
  • Electrode terminals are provided on both substantially cylindrical walls of the second housing 21.
  • a positive electrode terminal 22a is provided on the first wall portion 21a which is the left wall portion.
  • a negative electrode terminal 22b is provided on the second wall portion 21b which is the right wall portion.
  • a well-known metal can be used as the material of the first housing 11. Resin or the like can be used as the material of the second housing 21. As a material for the terminals 12a, 12b, 22a, 22b, a known metal can be used.
  • the electrode terminal 12a and the positive electrode terminal 22a have a shape standardized as a positive electrode terminal of a dry battery.
  • the electrode terminal 12b and the negative electrode terminal 22b have a shape standardized as a negative electrode terminal of a dry battery.
  • the first housing 11 accommodates the power generation unit 13 therein.
  • the power generation unit 13 includes a cylindrical member 14, a coil 15, and a permanent magnet 16.
  • the shape of the cylindrical member 14 is a substantially cylindrical shape.
  • the outer diameter of the cylindrical member 14 is slightly smaller than the inner diameter of the first housing 11.
  • the length of the cylindrical member 14 in the longitudinal direction is substantially the same as the length of the first housing 11 in the longitudinal direction.
  • the coil 15 is wound around the outer surface of the cylindrical member 14.
  • the permanent magnet 16 is provided so as to be freely movable in the longitudinal direction in the cylindrical member 14.
  • the shape of the permanent magnet 16 is a substantially cylindrical shape.
  • the outer diameter of the permanent magnet 16 is slightly smaller than the inner diameter of the cylindrical member 14.
  • the material of the cylindrical member 14 a nonmagnetic material such as acrylic resin, copper, aluminum, or brass can be used.
  • the shapes of the cylindrical member 14 and the permanent magnet 16 are not limited to a cylindrical shape.
  • the cylindrical member 14 and the permanent magnet 16 may have other polygonal cylindrical shapes such as an elliptical cylindrical shape and a square cylindrical shape.
  • Buffer members 17 a and 17 b are provided inside the wall portions at both ends of the cylindrical member 14.
  • a buffer member 17a is provided inside the right wall portion.
  • a buffer member 17b is provided inside the left wall portion.
  • the buffer members 17a and 17b reduce the impact applied to the wall portion when the permanent magnet 16 moves.
  • a well-known elastic material can be used as the material of the buffer members 17a and 17b.
  • isoprene rubber, nitrile rubber, butadiene rubber or the like can be used as the material of the buffer members 17a and 17b.
  • the coil 15 is wound around and fixed to the outer peripheral surface of the substantially central portion on the left and right sides of the cylindrical member 14 in a direction orthogonal to the longitudinal direction of the cylindrical member 14. Both ends of the coil 15 are connected to the external wiring 18.
  • copper can be used as the material of the coil 15.
  • the coil 15 may be wound around the entire circumference of the tubular member 14.
  • the magnetization direction of the permanent magnet 16 is the same direction as the movement direction (left-right direction in FIG. 1).
  • the permanent magnet 16 may have a configuration including a plurality of permanent magnets arranged with the same poles facing each other.
  • the second casing 21 accommodates the rectifying unit 23 and the power storage unit 24 therein.
  • External wiring 18 extending from both ends of the coil 15 is connected to the input portion of the rectifying unit 23.
  • the rectifying unit 23 can convert an alternating current transmitted through the external wiring 18 into a direct current.
  • a diode bridge can be used as the rectifying unit 23.
  • the DC terminal unit is connected to the power storage unit 24 via wiring.
  • the power storage unit 24 can store the current rectified by the rectification unit 23.
  • a capacitor or a secondary battery can be used as the power storage unit 24.
  • the direct current terminal unit and the power storage unit 24 of the rectification unit 23 are connected to the positive terminal 22a and the negative terminal 22b through wiring.
  • the rectifying unit 23 can output the rectified current directly to the outside via the positive terminal 22a and the negative terminal 22b.
  • the power storage unit 24 can output the stored current to the outside via the positive terminal 22a and the negative terminal 22b.
  • the vibration generator 1 is attached to an external device in a state in which the first housing 11 and the second housing 21 are arranged.
  • the electrode terminal 12a and the negative electrode terminal 22b are disposed on the same side.
  • the electrode terminal 12b and the positive electrode terminal 22a are disposed on the same side.
  • a connection terminal 27 provided in the external device is connected between the electrode terminal 12b and the positive electrode terminal 22a.
  • the electrode terminal 12b and the positive electrode terminal 22a are short-circuited.
  • the electrode terminal 12 a and the electrode terminal 12 b are electrically connected via the first housing 11. Therefore, the positive electrode terminal 22a and the electrode terminal 12a are in a conductive state.
  • Kinetic energy is applied to the first housing 11.
  • Kinetic energy is transmitted to the permanent magnet 16 via the buffer members 17a and 17b.
  • the permanent magnet 16 reciprocates in the longitudinal direction in the cylindrical member 14.
  • the permanent magnet 16 enters and exits the space covered with the coil 15.
  • the magnetic flux lines generated by the permanent magnet 16 are orthogonal to the coil 15.
  • an induced current is generated in the coil 15.
  • an alternating current is generated in the coil 15.
  • the movable length of the permanent magnet 16 is substantially the same as the length of the cylindrical member 14 in the longitudinal direction.
  • the length of the cylindrical member 14 in the longitudinal direction is substantially the same as the length of the first housing 11 in the longitudinal direction. Therefore, the permanent magnet 16 moves using the internal area of the first housing 11 to the maximum extent. Since the stroke of the permanent magnet 16 is increased, the alternating current generated in the coil 15 is increased.
  • the rectifier 23 converts the alternating current into direct current by full-wave rectification.
  • the direct current is stored in the power storage unit 24.
  • connection terminal 26 connected to the load 28 of the external device is connected between the electrode terminal 12a and the negative electrode terminal 22b.
  • the current stored in the power storage unit 24 is input / output from the positive terminal 22a and the negative terminal 22b.
  • the positive terminal 22 a is electrically connected to the electrode terminal 12 b through the connection terminal 27.
  • the electrode terminal 12 b and the electrode terminal 12 a are electrically connected via the first housing 11. Therefore, the current output from the positive terminal 22a and the negative terminal 22b is supplied to the load 28 from the electrode terminal 12a and the negative terminal 22b.
  • the external device is driven by the supplied current.
  • the rectifying unit 23 and the power storage unit 24 are accommodated in the second casing 21. Since the rectifying unit 23 and the power storage unit 24 do not occupy the area in the first casing 11, the usable area in the first casing 11 can be increased.
  • the permanent magnet 16 can reciprocate using the area in the first housing 11 to the maximum. Thereby, the stroke of the permanent magnet 16 can be increased. Therefore, the induced current generated in the coil 15 can be increased. A large current can be stored in the power storage unit 24.
  • the vibration generator 1 can increase the amount of current that can be stored by reciprocating motion, and can increase the power generation efficiency. Moreover, since the area
  • a remote controller driven by dry batteries as shown in Fig. 1, multiple dry batteries are stored side by side with their + and-pole terminals facing away from each other. And may be used.
  • Current is taken out from a plurality of batteries in a state in which the adjacent positive electrode terminal and negative electrode terminal are electrically connected and connected in series.
  • the electrode terminal 12 a and the electrode terminal 12 b of the first housing 11 are electrically connected via the first housing 11. Therefore, by short-circuiting the positive electrode terminal 22a and the electrode terminal 12b on the external device side, current can be taken out from the electrode terminal 12a and the negative electrode terminal 22b. Therefore, the vibration generator 1 can be easily applied to the above-described general electric equipment.
  • connection terminal 27 In the above description, the case where the positive terminal 22a and the electrode terminal 12b are short-circuited by the connection terminal 27 is illustrated, but the present invention is not limited to this.
  • the electrode terminal 12 a and the negative electrode terminal 22 b may be connected by the connection terminal 27. In this case, current is input / output to / from the positive terminal 22a and the electrode terminal 12b.
  • the load 28 connected to the vibration generator 1 is supplied with the current stored in the power storage unit 24, but the present invention is not limited to this.
  • the direct current output from the direct current terminal portion of the rectifying unit 23 may be directly supplied to the load 28.
  • the number of power generation units 13 accommodated in the first housing 11 is one, but the present invention is not limited to this. Two or more power generation units may be accommodated in the first housing 11.
  • the second casing 21 further accommodates the power generation unit 33 and the rectifying unit 39 therein.
  • the power generation unit 33 and the rectifying unit 39 are accommodated in an area inside the second housing 21 excluding the rectifying unit 23 and the power storage unit 24.
  • the power generation unit 33 is an example of the second power generation unit of the present invention.
  • the power generation unit 33 includes a cylindrical member 34, a coil 35, and a permanent magnet 36.
  • the length of the cylindrical member 34 in the longitudinal direction is substantially half of the length of the second casing 21 in the longitudinal direction.
  • the coil 35 is wound around the outer surface of the cylindrical member 34. Both ends of the coil 35 are connected to the wiring 38.
  • the permanent magnet 36 is provided so as to be freely movable in the longitudinal direction in the cylindrical member 34.
  • Buffer members 37 a and 37 b are provided inside the wall portions at both ends of the cylindrical member 34.
  • a buffer member 37a is provided inside the right wall portion.
  • a buffer member 37b is provided inside the left wall portion.
  • a wiring 38 is connected to the input of the rectifier 39.
  • the DC terminal portion of the rectifying unit 39 is connected to the power storage unit 24 via a wiring.
  • the power storage unit 24 can store the current rectified by the rectification unit 39.
  • the DC terminal portions of the rectifying units 23 and 39 and the power storage unit 24 are connected to the positive terminal 22a and the negative terminal 22b through wiring.
  • the rectifier 39 can directly output the rectified current to the outside via the positive terminal 22a and the negative terminal 22b.
  • the vibration generator 2 is attached to an external device.
  • the user vibrates the external device so that the first housing 11 and the second housing 21 vibrate in the longitudinal direction.
  • Kinetic energy is applied to the first housing 11 and the second housing 21.
  • Kinetic energy is transmitted to the permanent magnets 16 and 36.
  • the permanent magnet 16 reciprocates in the longitudinal direction in the cylindrical member 14.
  • the permanent magnet 36 reciprocates in the longitudinal direction in the cylindrical member 34.
  • An alternating current is generated in the coils 15 and 35.
  • the permanent magnets 16 and 36 can be vibrated at the same time, so that the vibration generator 2 can simultaneously generate more alternating current.
  • the alternating current generated in the coil 15 is transmitted to the rectifying unit 23 via the external wiring 18.
  • the alternating current generated in the coil 35 is transmitted to the rectifying unit 39 via the wiring 38.
  • the alternating current is full-wave rectified and converted into a direct current.
  • the direct current is stored in the power storage unit 24.
  • the current stored in the power storage unit 24 is input / output from the electrode terminal 12a and the negative electrode terminal 22b to the outside.
  • a current is supplied to the load 28.
  • the external device is driven by the supplied current.
  • an alternating current can be generated simultaneously for the coil 15 housed in the first housing 11 and the coil 15 housed in the second housing 21.
  • the vibration power generator 2 can efficiently store more current in the power storage unit 24.
  • the vibration generator 2 can further increase the amount of current that can be stored by reciprocating motion, and can increase power generation efficiency.
  • the number of power generation units 33 accommodated in the second housing 21 is one, but the present invention is not limited to this. Two or more power generation units may be accommodated in the second housing 21.
  • a vibration generator 3 according to a third embodiment of the present invention will be described with reference to FIG. The following description will be given only on the points different from the first embodiment described above, and the same parts will be denoted by the same reference numerals and the description thereof will be omitted.
  • the vibration generator 3 further includes a third casing 51 and a fourth casing 61 in addition to the first embodiment.
  • the shapes of the third casing 51 and the fourth casing 61 are the same as those of the first casing 11.
  • the first casing 11, the third casing 51, the fourth casing 61, and the second casing 21 are, in order from the upper side of the page, the first casing 11, the third casing 51, the fourth casing 61, and Arranged in order of the second housing 21.
  • Electrode terminals are provided on both substantially cylindrical wall portions of the third casing 51.
  • the electrode terminal 52a is provided in the 1st wall part 51a which is a left wall part.
  • An electrode terminal 52b is provided on the second wall portion 51b which is the right wall portion.
  • the third housing 51 has conductivity.
  • the electrode terminal 52a and the electrode terminal 52b are connected to the third casing 51, respectively.
  • the electrode terminal 52a and the electrode terminal 52b are electrically connected.
  • Electrode terminals are provided on both substantially cylindrical wall portions of the fourth housing 61.
  • An electrode terminal 62a is provided on the first wall 61a which is the right wall.
  • An electrode terminal 62b is provided on the second wall 61b which is the right wall.
  • the fourth housing 61 has conductivity.
  • the electrode terminal 62a and the electrode terminal 62b are connected to the fourth casing 61, respectively.
  • the electrode terminal 62a and the electrode terminal 62b are electrically connected.
  • the third housing 51 accommodates the power generation unit 53.
  • the power generation unit 53 includes a cylindrical member 54, a coil 55, and a permanent magnet 56. Buffer members 57 a and 57 b are provided inside the wall portions at both ends of the cylindrical member 54. Both ends of the coil 55 are connected to the external wiring 58.
  • the fourth housing 61 accommodates the power generation unit 63.
  • the power generation unit 63 includes a cylindrical member 64, a coil 65, and a permanent magnet 66. Buffer members 67 a and 67 b are provided inside the wall portions at both ends of the cylindrical member 64. Both ends of the coil 65 are connected to the external wiring 68.
  • the configuration of the power generation units 53 and 63 is the same as that of the power generation unit 13 housed in the first housing 11.
  • the second casing 21 further accommodates rectifying units 71 and 72 therein.
  • External wiring 58 extending from both ends of the coil 55 is connected to the input of the rectifying unit 71.
  • External wires 68 extending from both ends of the coil 65 are connected to the input portion of the rectifier 72.
  • Respective DC terminal portions of the rectifying units 71 and 72 are connected to the power storage unit 24 via wiring.
  • the power storage unit 24 can store the current rectified by the rectifying units 23, 71, and 72.
  • the DC terminal portions of the rectifying units 71 and 72 are connected to the positive terminal 22a and the negative terminal 22b through wiring.
  • the rectifying units 71 and 72 can directly input and output the rectified DC current to the outside through the positive terminal 22a and the negative terminal 22b.
  • the vibration generator 3 is attached to an external device in a state where the first housing 11 to the fourth housing 61 are arranged.
  • the electrode terminal 12a, the electrode terminal 52b, the electrode terminal 62a, and the negative electrode terminal 22b are disposed on the same side.
  • the electrode terminal 12b, the electrode terminal 52a, the electrode terminal 62b, and the positive electrode terminal 22a are disposed on the same side.
  • a connection terminal 75 provided in the external device is connected between the electrode terminal 12b and the electrode terminal 52a.
  • the electrode terminal 12b and the electrode terminal 52a are short-circuited.
  • a connection terminal 76 included in the external device is connected between the electrode terminal 52b and the electrode terminal 62a.
  • the electrode terminal 52b and the electrode terminal 62a are short-circuited.
  • a connection terminal 77 provided in the external device is connected between the electrode terminal 62b and the positive electrode terminal 22a.
  • the electrode terminal 62b and the positive electrode terminal 22a are short-circuited.
  • the electrode terminal 12 a and the electrode terminal 12 b are electrically connected via the first housing 11.
  • the electrode terminal 52 a and the electrode terminal 52 b are electrically connected via the third housing 51.
  • the electrode terminal 62 a and the electrode terminal 62 b are electrically connected via the fourth housing 61. Therefore, the electrode terminal 12a and the positive electrode terminal 22a are in a conductive state.
  • Kinetic energy is applied from the first housing 11 to the fourth housing 61.
  • Kinetic energy is transmitted to the permanent magnets 16, 56, 66.
  • the permanent magnet 16 reciprocates in the longitudinal direction in the cylindrical member 14.
  • the permanent magnet 56 reciprocates in the longitudinal direction in the cylindrical member 54.
  • the permanent magnet 66 reciprocates in the longitudinal direction in the cylindrical member 64.
  • An alternating current is generated in the coils 15, 55 and 65. Since the permanent magnets 16, 56, and 66 can be vibrated at the same time, the vibration power generator 3 can generate more alternating currents simultaneously.
  • the alternating current generated in the coil 15 is transmitted to the rectifying unit 23 via the external wiring 18.
  • the alternating current generated in the coil 55 is transmitted to the rectifying unit 71 via the external wiring 58.
  • the alternating current generated in the coil 65 is transmitted to the rectifying unit 72 via the external wiring 68.
  • the rectifying units 23, 71, 72 the alternating current is converted into a direct current and stored in the power storage unit 24.
  • connection terminal 78 connected to the load 79 of the external device is connected between the electrode terminal 12a and the negative electrode terminal 22b.
  • the current stored in the power storage unit 24 is output to the outside from the positive terminal 22a and the negative terminal 22b.
  • the positive electrode terminal 22a and the electrode terminal 12a are in a conductive state. Accordingly, the current input / output from the positive terminal 22a and the negative terminal 22b is input / output to the load 79 from the electrode terminal 12a and the negative terminal 22b.
  • the external device is driven by the supplied current.
  • the power generation units 53 and 63 can also generate an alternating current.
  • the vibration power generator 3 can store more current in the power storage unit 24 efficiently.
  • the vibration generator 2 can further increase the amount of current that can be stored by reciprocating motion, and can increase power generation efficiency.
  • the rectifying units 71 and 72 that rectify the alternating current generated in the power generation units 53 and 63 are accommodated in the second casing 21. Thereby, a large area in the casings 51 and 61 in which the power generation units 53 and 63 are accommodated can be secured.
  • the permanent magnet 56 can reciprocate using the area in the casings 51 and 61 to the maximum. As a result, the strokes of the permanent magnets 56 and 66 can be increased.
  • the vibration power generator 3 can realize even better power generation efficiency.
  • the vibration generator 3 has a configuration including three housings in which the power generation units are accommodated, but the present invention is not limited to this.
  • the number of housings in which the power generation units are accommodated may be two, or may be four or more.
  • a vibration generator 4 according to a fourth embodiment of the present invention will be described with reference to FIG. The following description will be made only on points different from the third embodiment described above, and the same parts will be denoted by the same reference numerals and description thereof will be omitted.
  • the first housing 11 further includes a rectifying unit 81.
  • the rectification unit 81 rectifies the alternating current generated in the coil 15 of the power generation unit 13. Both ends of the coil 15 and the input part of the rectifying unit 81 are connected via a wiring 84.
  • the DC terminal portion of the rectifying unit 81 and the power storage unit 24 accommodated in the second housing 21 are connected via an external wiring 87.
  • the direct current output from the DC terminal portion of the rectifying unit 81 is transmitted to the power storage unit 24 via the external wiring 87 and stored in the power storage unit 24.
  • the third casing 51 further includes a rectifying unit 82.
  • the rectifying unit 82 rectifies the alternating current generated in the coil 55 of the power generation unit 53. Both ends of the coil 55 and the input unit of the rectifying unit 82 are connected via a wiring 85.
  • the DC terminal portion of the rectifying unit 82 and the power storage unit 24 are connected via an external wiring 88.
  • the direct current output from the DC terminal portion of the rectifying unit 82 is transmitted to the power storage unit 24 via the external wiring 88 and stored in the power storage unit 24.
  • the fourth housing 61 further includes a rectifying unit 83.
  • the rectification unit 83 rectifies the alternating current generated in the coil 65 of the power generation unit 63. Both ends of the coil 65 and the input portion of the rectifying unit 83 are connected via a wiring 86.
  • the DC terminal portion of the rectifying unit 83 and the power storage unit 24 are connected via an external wiring 89.
  • the direct current output from the DC terminal portion of the rectifying unit 83 is transmitted to the power storage unit 24 via the external wiring 89 and stored in the power storage unit 24.
  • the DC terminal portions of the rectifying units 81, 82, and 83 and the power storage unit 24 are connected to the positive terminal 22a and the negative terminal 22b through wiring.
  • the rectifiers 81, 82, and 83 can directly input and output the rectified direct current to the outside via the positive terminal 22a and the negative terminal 22b.
  • the rectification units (rectification units 81, 82, 83) corresponding to the respective power generation units are the housings (first housing 11, The three housings 51 and the fourth housing 61) are accommodated respectively. Since a direct current can be output for each housing, it is possible to easily add additional housings. Thereby, the power generation amount of the vibration power generator 4 can be easily increased.
  • the vibration generator 4 has a configuration in which the rectification unit is not accommodated in the second casing 21, but the present invention is not limited to this.
  • a rectifying unit corresponding to each power generation unit may be further accommodated in the second housing 21.
  • the alternating current can be rectified using the rectification part accommodated in the second casing 21.
  • the vibration power generator 4 can be additionally provided with both a housing that accommodates the rectification unit and a housing that does not accommodate the rectification unit.
  • a vibration generator 5 according to a fifth embodiment of the present invention will be described with reference to FIG. The following description will be given only on the points different from the first embodiment described above, and the same parts will be denoted by the same reference numerals and the description thereof will be omitted.
  • the first housing 11 and the second housing 21 of the vibration generator 5 are arranged in a straight line in the left-right direction with the left-right direction as the longitudinal direction.
  • the first housing 11 is disposed on the left side.
  • a second housing 21 is disposed on the right side.
  • An electrode terminal 12c is provided on the second wall 11b of the first housing 11 instead of the electrode terminal 12b.
  • the electrode terminal 12c and the electrode terminal 12a have the same shape as the positive electrode terminal 22a.
  • the positive electrode terminal 22a of the second housing 21 and the electrode terminal 12a of the first housing 11 are in contact with each other.
  • the vibration generator 5 is accommodated in the battery accommodating portion 91 of the external device.
  • the battery housing part 91 includes a container part 92 whose upper part is open.
  • the vibration generator 5 is accommodated in the container portion 92.
  • the electrode terminal 12 c of the first housing 11 is fitted in a recess 94 provided inside the left wall of the battery accommodating portion 91.
  • the negative terminal 22 b of the second housing 21 is fitted with a recess 95 provided on the inner side of the right wall of the battery housing portion 91.
  • a load 96 of an external device is connected between the recess 94 and the recess 95.
  • the battery housing part 91 is provided with an extending part 93 extending in the right horizontal direction from the upper end part of the left wall part.
  • the extending portion 93 is provided to prevent the vibration power generator 5 from being detached from the container portion 92.
  • the external wiring 18 is connected across the upper right portion of the first housing 11 and the upper left portion of the second housing 21. The external wiring 18 protrudes from each housing at a substantially right and left central portion of the container portion 92.
  • the current accumulated in the power storage unit 24 of the second casing 21 shown in FIG. 1 is input / output from the positive terminal 22a and the negative terminal 22b.
  • the positive electrode terminal 22a and the electrode terminal 12a are in contact with each other.
  • the electrode terminal 12 a and the electrode terminal 12 c are electrically connected via the first housing 11. Therefore, the current output from the positive terminal 22a and the negative terminal 22b is supplied to the load 96 from the electrode terminal 12a and the negative terminal 22b.
  • the external device is driven by the supplied current.
  • the first housing 11 is housed in the opposite direction.
  • the extended portion 93 covers the connection portion of the external wiring 18 in the first housing 11, the external wiring 18 cannot be taken out to the outside.
  • the vibration generator 5 cannot be accommodated in the battery accommodating portion 91.
  • the vibration power generator 5 since the vibration power generator 5 includes the electrode terminals 12a and 12c having the same shape as the positive electrode terminal 22a, the first housing 11 can be accommodated by switching left and right. Even when the first housing 11 is accommodated with the left and right being exchanged, the electrode terminal 12c can be reliably fitted in the recess 94.
  • the electrode terminal 12a and the electrode terminal 12c have the same shape as the positive electrode terminal 22a. Therefore, when the positive electrode terminal 22a of the second housing 21 and the electrode terminal of the first housing 11 are brought into contact with each other and the first housing 11 and the second housing 21 are connected in series, the first housing is used. Even if the direction of the body 11 is changed, the electrode terminal can be reliably fitted into the recess 94 of the battery housing portion 91. Therefore, for example, when the extending portion 93 covers a portion where the external wiring 18 is removed from the first housing 11, the orientation of the first housing 11 can be changed. Therefore, the vibration power generator 5 can be used by being reliably incorporated into the battery housing portion 91 regardless of the shape of the battery housing portion 91.
  • FIGS. A vibration generator 6 according to a sixth embodiment of the present invention will be described with reference to FIGS.
  • the configuration of the vibration generator 6 will be described using the left-right direction, the front-rear direction, and the up-down direction shown in these drawings. The following description will be given only on the points different from the first embodiment described above, and the same parts will be denoted by the same reference numerals and the description thereof will be omitted.
  • the vibration generator 6 described in the sixth embodiment includes a storage portion 136 in which the external wiring 18 is stored.
  • the storage unit 136 may be provided in any of the vibration generators 1 to 5.
  • FIG. 6 is a perspective view showing the entirety of the vibration power generator 6 of the sixth embodiment.
  • the vibration power generator 6 includes a first housing 11 and a second housing 21.
  • the electric power generated in the power generation unit 100 in the first housing 11 is supplied to the rectifying unit 23 in the second housing 21 through the external wiring 18.
  • the first housing 11 and the second housing 21 are arranged with the left-right direction as the longitudinal direction.
  • the first casing 11 and the second casing 21 are both the same shape and the same dimensions as the AA battery standardized as a dry battery.
  • the first housing 11 is provided with an electrode terminal 12b at the right end 110R and an electrode terminal 12a at the left end 110L.
  • the electrode terminal 12b is a planar terminal standardized as a negative electrode terminal of the battery.
  • the electrode terminal 12a is a convex terminal standardized as a positive electrode terminal of the battery.
  • a lead hole 110H is provided at the left end 110L of the first housing 11.
  • the negative terminal 22b is provided at the right end 130R of the second casing 21, and the positive terminal 22a is provided at the left end 130L.
  • the negative electrode terminal 22b is a planar terminal standardized as a negative electrode terminal of the battery.
  • the positive electrode terminal 22a is a convex terminal standardized as a positive electrode terminal of the battery.
  • the negative electrode terminal 22b and the positive electrode terminal 22a are formed of a conductive metal material.
  • the power storage unit 24 is electrically connected to the negative electrode terminal 22 b and the lead wire R. Further, the power storage unit 24 is electrically connected to the positive electrode terminal 22a and the lead wire R.
  • the second casing 21 is provided with a storage portion 136 described later on the outer periphery thereof, and a drawer hole 130 ⁇ / b> H is formed in a part of the storage portion 136.
  • one end of the external wiring 18 is connected to the coil 15 in the first housing 11, and the other end of the external wiring 18 is connected to the input portion of the rectifying unit 23 in the second housing 21. .
  • the ends of the external wiring 18 are drawn out from the drawing holes 110H and 130H, respectively.
  • the external wiring 18 has a length that can correspond to various usage forms of the vibration power generator 6 and various arrangement forms of the rectifying units in the power generation units 100 and the second housing 21.
  • the length of the external wiring 18 is, for example, a length longer than the length of the first casing 21 and the second casing 21 in the left-right direction.
  • the vibration generator 6 is connected to the external wiring 18 so that the electrode terminal 12a side of the first housing 11 and the negative electrode terminal 22b side of the second housing 21 face each other. .
  • the storage portion 136 is formed on the outer peripheral surface of the second housing 21 in an area of about 10% of the entire left and right direction of the second housing 21 from the right end 130R side.
  • the storage portion 136 includes a storage end portion 136a formed at the right end 130R and a concave portion 136b formed in a region adjacent to the storage end portion 136a.
  • the recess 136b is a groove formed over the entire outer peripheral surface of the second housing 21. The depth of this groove is larger than the diameter of the external wiring 18.
  • the external wiring 18 can be wired on the side surface of the storage end portion 136a, and the concave portion 136b is configured to wind the external wiring 18.
  • FIG. 7A is a view showing a cross section of the storage end portion 136a of the second casing 21 along the line AA in FIG. 6 and the external wiring 18 wired on the side surface of the storage end portion 136a.
  • 7A shows the dimensions of the outer diameter AR of the second housing 21, the outer diameter br of the storage end 136a, and the diameter CR of the external wiring 18 when the external wiring 18 is wired on the side surface of the storage end 136a. Relationships are indicated by arrows.
  • the outer diameter br of the storage end 136a is formed to be smaller than the difference between the outer diameter AR of the second housing 21 and the diameter CR of the external wiring 18. This is because when the external wiring 18 drawn out from the drawer 130 hole H is wired on the side surface of the storage end portion 136a, the external wiring 18 is surely not protruded from the outer diameter of the second housing 21. This is for wiring.
  • FIG. 7B shows a cross section of the recess 136b of the second housing 21 along the line BB in FIG. 6, and shows a state in which the external wiring 18 is wound along the circumference of the recess 136b.
  • 7B shows the dimensional relationship between the outer diameter AR of the second housing 21, the outer diameter dr of the recess 136b, and the diameter CR of the external wiring 18 when the external wiring 18 is wound along the recess 136b.
  • the recess 136b is formed so that the outer diameter dr of the recess 136b is smaller than the difference between the outer diameter AR of the second housing 21 and twice the diameter CR of the external wiring 18.
  • the storage unit 136 according to the present embodiment is an example of the storage unit according to the present invention.
  • the vibration generator 6 is used for a remote control or the like as shown in FIGS. 8A and 8B for remotely operating an electric appliance.
  • the remote control includes a predetermined battery box 150.
  • the battery box 150 includes storage areas 151a and 151b that can store two AA batteries. Two AA batteries are stored in the storage areas 151 a and 151 b of the battery box 150. In this stored state, the two AA batteries are connected in series.
  • the first casing 11 and the second casing 21 of the vibration power generator 6 are stored and used in the storage areas 151a and 151b.
  • 8A and 8B are perspective views showing the arrangement of the vibration generator 6 housed in the battery box 150.
  • FIG. FIG. 9 is a schematic diagram showing electrical wiring of the vibration generator 6 and the battery box 150.
  • the battery box 150 includes a storage area 151a on the right side and a storage area 151b on the left side.
  • Connection terminals 152a and 152b are provided at both ends of the storage area 151a
  • connection terminals 152c and 152d are provided at both ends of the storage area 151b.
  • the connection terminals 152d and 152a and the connection terminals 152b and 152c are electrically connected by lead wires as shown in FIG.
  • an external load 153 is provided between the connection terminals 152d and 152a.
  • the first casing 11 is disposed in the storage area 151a of the battery box 150, and the second casing 21 is disposed in the storage area 151b.
  • the electrode terminal 12b of the first housing 11 contacts the right connection terminal 152a of the storage area 151a
  • the electrode terminal 12a of the first housing 11 contacts the left connection terminal 152b.
  • the negative terminal 22b of the second housing 21 abuts on the connection terminal 152c on the right side of the storage area 151b
  • the positive terminal 22a of the second housing 21 abuts on the left side of the connection terminal 152d.
  • the first housing 11 and the second housing 21 are clamped by the connection terminals 151a and 151b, the connection terminals 151c and the connection terminals 151d from both sides of the storage area 151a and the storage area 151b, and fixed. Is done.
  • FIG. 9 is a wiring diagram of the vibration generator 6 disposed in the battery box 150.
  • the electric power stored in the power storage unit 24 in the second housing 21 is output to the negative terminal 22b and the positive terminal 22a through the lead wire R. Therefore, the current output from the positive terminal 22a passes through the connection terminal 152d, the external load 153, the connection terminal 152a, the electrode terminal 12b, the first housing 11, the electrode terminal 12a, the connection terminal 152b, and the connection terminal 152c in order, Input to the terminal 22b.
  • the negative electrode terminal 22 b is connected to the power storage unit 24 via the lead wire R.
  • the external wiring 18 is not stored in the battery box 150 as shown in FIG. It is located above.
  • the battery box 150 is provided with an unillustrated lid or the like for protecting the first casing 11 and the second casing 21 from the outside. Therefore, it is necessary to store the external wiring 18 so as not to interfere with the lid installed corresponding to the first housing 11 and the second housing 21.
  • the vibration power generator 6 of the sixth embodiment includes a storage portion 136 formed on the outer periphery of the second housing 21.
  • the external wiring 18 is configured to be wound along the concave portion 136 b of the storage portion 136 and stored in the battery box 150.
  • most of the external wiring 18 connected to the power generation unit 100 and the input unit of the rectification unit 23 is located above the battery box 150 as shown in FIG. 8A. Is located.
  • the user performs a storing operation for storing the external wiring 18 in the space of the battery box 150.
  • the storage operation is an operation of rotating the second casing 21 including the storage unit 136 in the front-rear direction.
  • the user moves the side surface 121a to rotate with respect to the second casing 21 fixed by the connection terminal 152c and the connection terminal 152d.
  • the second housing 21 is in a state where the negative electrode terminal 22b and the positive electrode terminal 22a serve as a fulcrum, and is rotated about a straight line passing through the negative electrode terminal 22b and the positive electrode terminal 22a as a rotation axis.
  • the position of the extraction hole 130H is also rotated.
  • the other end of the external wiring 18 is fixed to the rectifying unit 23 and led out from the lead hole 130H.
  • the external wiring 18 between the lead hole 130H and one end of the external wiring 18 connected to the power generation unit 100 is wound along the recess 136b of the second casing 21. It is done. Furthermore, the length of the external wiring 18 positioned above the battery box 150 is gradually shortened with the rotation of the second casing 21, and the length corresponding to the distance between the lead hole 110H and the lead hole 130H. Is wound around the recess 136b.
  • the extraction hole 110 ⁇ / b> H and the extraction hole The external wiring 18 having an extra length other than the length corresponding to the distance to 130H is wound up and stored in the recess 136b of the second housing 21.
  • the vibration power generator 6 of the sixth embodiment includes a first housing 11 and a second housing 21 which are standardized AA battery shapes.
  • a storage portion 136 is formed on the outer periphery of the second housing 21.
  • the external wiring 18 of the vibration generator 6 has a sufficient length such that the arrangement relationship between the first housing 11 and the second housing 21 is variable. For this reason, when the vibration generator 6 is housed in the battery box 150 or the like and used, the use of the vibration generator 6 is not limited by the length of the external wiring 18. That is, the first housing 11 and the second housing 21 can be arranged according to the shape and usage pattern of the battery box 150. In addition, after the vibration generator 6 is disposed in the battery box 150, the external wiring 18 is wound around and stored in the storage unit 136.
  • the diameter br of the storage end 136a is smaller than the diameter AR of the outer periphery of the second housing 21.
  • the vibration generator 6 of the sixth embodiment has the above-described configuration, but is not limited thereto.
  • the shape of the first housing 11 and the second housing 21 of the sixth embodiment may be any cylindrical shape that allows the permanent magnet 16 to reciprocate in the longitudinal direction.
  • the shape of the first housing 11 and the second housing 21 may be a shape standardized as a battery, that is, a single shape, a single shape, a single shape, etc.
  • a member having a square tube shape or a polygonal tube shape may be used.
  • casing 11 was cylindrical shape, it is not restricted to this.
  • the cylindrical member 14 may be a cylindrical shape around which the coil 15 can be wound, or may be a polygonal cylindrical shape.
  • the coil 15 should just be the structure wound over part or the whole of the cylindrical member 14.
  • the permanent magnet 16 has a cylindrical shape, but is not limited thereto, and may have a polygonal column shape or a cylindrical shape.
  • the first casing 11 and the permanent magnet 16 are preferably cylindrical and have the same shape.
  • the external wiring 18 is connected to the power generation unit 100 and the input portion of the rectifying unit 23 in the second housing 21, and Wiring suitable for the form in which the two casings 21 are connected in series by the battery box 150 is provided.
  • the external wiring 18 does not necessarily have to be a wiring suitable for a form in which the left end 110L of the first casing 11 and the right end 130R of the second casing 130 are connected. That is, the external wiring 18 connects the right end 110R of the first casing 11 and the right end 130R of the second casing 21 or the left end 110L of the first casing 11 and the left end 130L of the second casing 21.
  • Wiring suitable for the form of connecting to each other may be provided. Further, it is only necessary that one convex end surface and the other planar end surface are connected to each other, and the left end 110L of the first housing 11 and the right end 130R of the second housing 21 are connected by the external wiring 18. It may be configured to be connected.
  • the power storage unit 24 that stores electric power is provided inside the second casing 21.
  • the positive electrode terminal 135 and the negative electrode terminal 134 may be provided at least in the second housing 21. That is, the 1st housing
  • the configuration may be such that a shaped electrode terminal is provided.
  • the storage portion 136 has a configuration in which the concave portion 136a is provided along the outer periphery of the second housing 21, but the present invention is not limited thereto.
  • it may be provided along the outer periphery of the first housing 11.
  • the housing is accommodated in either the first housing 11 or the second housing 21 that is hollow inside.
  • An area may be provided, and the storage area may be configured to store the external wiring 18.
  • FIG. 10 is a configuration diagram in which the storage unit 360 is provided in a partial region inside the first housing 311 as an example of a configuration in which the storage unit is provided inside one of the housings.
  • the external wiring 18 is stored in the storage unit 360.
  • the storage unit 360 is provided in the second housing 21
  • the movable region of the permanent magnet 16 is sufficiently secured as compared with the case where the storage portion 360 is provided in the first housing 11. Thereby, power generation with high power generation efficiency can be performed.
  • the configuration in which the external wiring 18 is wound and stored is not essential.
  • a groove capable of embedding the external wiring 18 is formed on the outer peripheral surface of one of the housings.
  • the external wiring 18 may be accommodated.
  • the accommodating part 136 is the structure provided in a predetermined area
  • a storage portion that can store the external wiring 18 may be provided over the central portion in the longitudinal direction of the housing or the entire region of the housing.
  • the external wiring 18 in FIG. 1, the external wirings 58 and 68 in FIG. 3, and the wirings 84, 85 and 86 in FIG. 4 correspond to the “supply path” of the present invention.
  • the first casing 11 in FIG. 1, the third casing 51 and the fourth casing 61 in FIGS. 3 and 4 correspond to the “first casing” of the present invention.
  • the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made.
  • a material of the first casing 11, the third casing 51, and the fourth casing 61 for example, a material that is a conductor and is a magnetic body may be used.
  • a non-magnetic material is used as the casing, the magnetic flux lines emitted from the permanent magnet are radiated to the outside through the casing. For this reason, the space
  • the magnetic body when a magnetic body is used as the casing, the magnetic flux lines generated by the permanent magnet are absorbed in the casing. Accordingly, the interval between the magnetic flux lines is narrowed.
  • casing of the magnetic flux line which a permanent magnet emits can be raised.
  • the current generated in the coil by the movement of the permanent magnet is proportional to the magnetic flux density of the magnetic flux lines orthogonal to the coil. Therefore, the induced current generated in the coil can be further increased by using the magnetic material as the casing.
  • the power generation efficiency of the vibration generator can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

永久磁石の可動範囲をできるだけ大きくすることにより、発電効率の高い振動発電機を提供する。振動発電機1は、第一筐体11と第二筐体21とを備えている。第一筐体11は、導通した電極端子12a,12bが接続されている。第一筐体11には、筒状部材14、コイル15、永久磁石16を備える発電ユニット13が収容されている。第二筐体21は、正極端子22aと負極端子22bとが接続されている。第二筐体21には、整流部23と蓄電部24とが収容されている。永久磁石16がコイル15内を往復移動することで、コイル15に交流電流が発生する。交流電流は、整流部23で整流され、蓄電部24に蓄電される。電極端子12bと正極端子22aとが短絡される。正極端子22aと電極端子12aとが同電位となる。蓄電部24に蓄電された電流は、電極端子12aと負極端子22bとを介して外部に出力される。

Description

振動発電機
 本発明は、振動によって発電する振動発電機に関する。
 従来、振動による運動エネルギーを電気エネルギーに変換する振動発電機が提案されている。振動発電機では、永久磁石がコイル内で振動することで、コイルに誘導電流が発生する。発生した誘導電流は、コンデンサなどの蓄電装置に蓄電される。蓄電された蓄電装置から電流が取り出されることで、振動発電機は負荷に電流を供給できる。なお、振動発電機の発電効率は、永久磁石の振動時のストロークの増加に伴い、向上する。
 例えば特許文献1では、永久磁石、コイル、及び整流ブリッジ回路とコンデンサとを含む整流ユニットを備えた発電機が提案されている。ケーシング内の約半分の領域に、永久磁石及びコイルが設けられている。残りの半分の領域に、整流ユニットが設けられている。永久磁石の振動によって、コイルに交流電流が誘起される。交流電流は、整流ブリッジ回路によって直流電流に変換される。直流電流は、コンデンサに蓄電される。
特開平7-177718号公報
 しかしながら上述の機器では、整流ユニットの収容される領域が永久磁石の可動範囲を制限するので、永久磁石の振動時のストロークが短くなる。従って発電機の発電効率が低下するという問題点がある。標準規格で規定された形状のケース内に収容される場合など振動発電機の大きさが限定される場合、整流ユニットが占める領域が発電効率に与える影響は顕著となる。
 本発明の目的は、永久磁石の可動範囲をできるだけ大きくすることにより、発電効率の高い振動発電機を提供することにある。
 本発明の第一態様に係る振動発電機は、コイルが巻回された筒状部材と、前記筒状部材内を往復移動可能に設けられた永久磁石とを少なくとも備えた第一発電ユニットと、前記第一発電ユニットを収容する筐体であって、導通した二つの電極端子を備える第一筐体と、電流を整流する整流部と、前記整流部からの電流を蓄電する蓄電部と前記蓄電部を少なくとも収容する筐体であって、正極端子と負極端子とを備える第二筐体と、前記第一筐体に収容された前記永久磁石の往復移動によって前記コイルに誘起した電流を前記整流部に供給する供給路とを備えた振動発電機であって、一方の前記電極端子と前記負極端子とが導通された場合、前記供給路と前記整流部とを介して前記蓄電部に蓄電された電気は、他方の前記電極端子と前記正極端子とから外部機器に供給され、一方の前記電極端子と前記正極端子とが導通された場合、前記供給路と前記整流部とを介して前記蓄電部に蓄電された電気は、他方の前記電極端子と前記負極端子とから外部機器に供給されることを特徴とする。
 第一態様によれば、振動発電機は、第一筐体と第二筐体とを備えている。第一筐体には、第一発電ユニットが収容されている。蓄電部は、第二筐体に収容されている。従って、第一発電ユニットが収容される領域を大きくできる。コイル内を移動する永久磁石のストロークを大きくできるので、大きな誘導電流をコイルに発生させることができる。蓄電部に大きな電流を蓄電できる。このように振動発電機は、往復運動によって蓄電可能な電流の量を大きくでき、発電効率を高めることができる。また、第一筐体が備える二つの電極端子は導通している。従って、一方の電極端子と負極端子とが導通された場合、他方の電極端子と正極端子とから電力を取り出すことができる。又、一方の電極端子と正極端子とが導通された場合、他方の電極端子と負極端子とから電力を取り出すことができる。
 また、第一態様において、前記第一筐体は、導電体であってもよい。これにより、二つの前記電極端子が、前記第一筐体に接続されることで二つの前記電極端子同士が導通する。第一筐体に電極端子を接続することで、電極端子同士を容易に導通させることができる。
 また、第一態様において、前記第一筐体は磁性体としてもよい。これによって、永久磁石から放射される磁力線を第一筐体に吸収させることができる。第一筐体内の磁束密度を高めることができるので、コイルに発生させる誘導電流を更に大きくできる。振動発電機の発電効率をさらに向上させることができる。
 また、第一態様において、前記第一発電ユニットとは異なり、コイルが巻回された筒状部材と、前記筒状部材内を往復移動可能に設けられた永久磁石とを少なくとも備える第二発電ユニットを備え、前記第二発電ユニットは、前記第二筐体内に収容されていてもよい。これによって振動発電機は、第一発電ユニットに加え、第二発電ユニットでも発電できる。振動発電機は、より多くの電流を効率的に蓄電部に蓄電できる。
 また、第一態様において、前記整流部は、前記第二筐体に収容されていてもよい。整流部は第二筐体に収容されるので、第一発電ユニットが収容される領域を広い状態で維持できる。永久磁石のストロークを大きくできるので、大きな誘導電流をコイルに発生させることができる。振動発電機は、さらに大きな電流を蓄電部に蓄電でき、発電効率をさらに高めることができる。
 また、第一態様において、前記第一筐体を複数備え、前記第二筐体は、複数の前記第一筐体に収容された前記第一発電ユニットの其々に対応する前記整流部を収容してもよい。複数の第一筐体内の其々で第一発電ユニットが発電するので、振動発電機は、より多くの電流を短時間で効率的に蓄電部に蓄電できる。其々の第一発電ユニットに対応する整流部は、第二筐体内にまとめて収容されている。従って、第一発電ユニットが収容される領域を広い状態で維持できる。振動発電機は、発電効率をさらに高めることができる。
 また、第一態様において、前記第一筐体を複数備え、前記整流部は、複数の前記第一筐体の其々に収容されてもよい。複数の第一筐体内の其々で第一発電ユニットが発電するので、振動発電機は、より多くの電流を短時間で効率的に蓄電部に蓄電できる。其々の第一発電ユニットに対応する整流部は、第一筐体内に収容される。第一発電ユニット及び整流部を備える第一筐体を複数接続することで、容易に振動発電機の発電量を増加させることができる。
 また、第一態様において、二つの前記電極端子は、前記正極端子と同一形状であってもよい。これによって、第一筐体の向きに関わらず、外部機器に嵌合する電極を同一形状とすることができる。第二筐体の正極端子側に第一筐体の電極端子を接触させ、第一筐体と第二筐体とを直列に接続して使用する場合、第一筐体の向きに関わらず、振動発電機を外部機器に組み込み、電源として使用できる。
また、第一態様において、前記第一筐体又は前記第二筐体には、前記筐体の内部または外周に、前記供給路を収納する収納部が設けられてもよい。これにより、永久磁石の移動領域を大きく確保できるため、大きな誘導電流をコイルに発生させることができる。従って、効率の高い発電をすることができる。また、供給路は、第一筐体及び第二筐体を使用形態に応じて配置する際に供給路の長さが必要とされる場合であっても、配置後は、収納部によって余剰な供給路を収納することができる。よって、ユーザは、供給路が使用の邪魔にならない状態で、振動発電機を使用することができる。
 また、第一態様において、前記収納部は、前記第二筐体の内部または外周に設けられてもよい。これにより、第一筐体に収容される永久磁石は、可動領域を最大限に確保して第一筐体内を移動する。これにより、大きな誘導電流がコイルに発生する。従って、発電効率の高い形態の振動発電機を実現することができる。
 また、第一態様において、前記収納部は、前記第一筐体又は前記第二筐体の外周に前記供給路を配置可能に設けられ、前記供給路の径より深い溝を備える凹部を有してもよい。これにより、筐体の外周に設けられる凹部によって、余剰な導線が筐体の外周より内側に収納される。従って、振動発電機を配置させた後に、使用形態に応じて導線を収納させることができる。
 また、第一態様において、前記収納部が設けられる前記第一筐体又は前記第二筐体は円筒形状であり、前記収納部の前記凹部は、前記第一筐体又は前記第二筐体の外周に沿って、前記供給路を巻回可能に設けられてもよい。これにより、余剰な導線が筐体の外周に沿って収納部に巻きつけられて収納される。従って、第一筐体及び第二筐体を使用形態に応じて設置した後に、筐体を回転させるのみで、供給路を容易に収納させることができる。
 また、第一態様において、前記第一筐体の前記筒状に沿った少なくとも一端側には凸部もしくは平面部が形成され、前記第二筐体の前記筒状に沿った少なくとも一端側には平面部もしくは凸部が形成され、前記供給路は、前記第一筐体及び前記第二筐体の一方の筐体の、凸部が形成される一端側と、前記第一筐体及び前記第二筐体の他方の筐体の、平面部が形成される一端側とからそれぞれ引き出されており、前記収納部は、前記供給路が引き出された一端側近傍に設けられてもよい。これにより、供給路を、使用される可能性の高い形態に適して合理的に配線及び収納させ、利便性の高い振動発電機を実現することができる。
第一実施形態における振動発電機1の構成を示す図である。 第二実施形態における振動発電機2の構成を示す図である。 第三実施形態における振動発電機3の構成を示す図である。 第四実施形態における振動発電機4の構成を示す図である。 第五実施形態における振動発電機5の構成を示す図である。 第六実施形態における振動発電機6の斜視図である。 振動発電機6の収納端部136aの縦断面を示す図である。 振動発電機6の凹部136bの縦断面を示す図である。 電池ボックス150における振動発電機6の配置形態を示す斜視図である。 電池ボックス150における振動発電機6の配置形態を示す斜視図である。 電池ボックス150及び振動発電機6の配線図である。 第六実施形態における振動発電機6の収納部の変形例を示す斜視図である。
 以下、本発明の一実施形態における振動発電機(振動発電機1~6)について、図面を参照して説明する。参照される図面は、本発明が採用しうる技術的特徴を説明するために用いられるものである。記載されている装置の構成は、それのみに限定する趣旨ではなく、単なる説明例である。
<第一実施形態>
 本発明の第一実施形態における振動発電機1について、図1を参照して説明する。紙面左右方向を、振動発電機1の左右方向と定義する。振動発電機1は、第一筐体11と第二筐体21とを備えている。第一筐体11及び第二筐体21の形状は略円筒形である。例えば、第一筐体11及び第二筐体21は、単1形、単2形、単3形などの乾電池として規格化された形状を有している。図1では、第一筐体11と第二筐体21とは、左右方向を長手方向として配置している。第一筐体11と第二筐体21とは、其々の周壁部分を近接させた状態で、並んで配置している。
 第一筐体11の略円筒形の両壁部に、電極端子が設けられている。右側の壁部である第一壁部11aに、電極端子12aが設けられている。左側の壁部である第二壁部11bに電極端子12bが設けられている。第一筐体11は、導電性を有している。電極端子12aと電極端子12bとは、其々第一筐体11に接続している。それ故、電極端子12aと電極端子12bとは導通している。第二筐体21の略円筒形の両壁に、電極端子が設けられている。左側の壁部である第一壁部21aに、正極端子22aが設けられている。右側の壁部である第二壁部21bに、負極端子22bが設けられている。
 第一筐体11の材料として、周知の金属が使用できる。第二筐体21の材料として、樹脂等が使用できる。端子12a、12b、22a、22bの材料として、周知の金属が使用できる。電極端子12a及び正極端子22aは、乾電池の+極端子として規格化された形状を有している。電極端子12b及び負極端子22bは、乾電池の-極端子として規格化された形状を有している。
 第一筐体11は、発電ユニット13を内部に収容している。発電ユニット13は、筒状部材14、コイル15、及び永久磁石16を備えている。筒状部材14の形状は、略円筒形である。筒状部材14の外径は、第一筐体11の内径と比較して僅かに小さい。筒状部材14の長手方向の長さは、第一筐体11の長手方向の長さと略同一である。コイル15は、筒状部材14の外面に巻回されている。永久磁石16は、筒状部材14内を長手方向に自在に移動可能に設けられている。永久磁石16の形状は、略円柱形である。永久磁石16の外径は、筒状部材14の内径と比較して僅かに小さい。
 筒状部材14の材料として、アクリル樹脂、銅、アルミニウム、真鍮等の非磁性材料が使用できる。筒状部材14及び永久磁石16の形状は、円筒形に限定されない。例えば、筒状部材14及び永久磁石16の形状は、楕円筒形状、四角筒等その他の多角筒形状であってもよい。
 筒状部材14の両端の壁部の内側に、緩衝部材17a、17bが設けられている。右側の壁部の内側に、緩衝部材17aが設けられている。左側の壁部の内側に、緩衝部材17bが設けられている。永久磁石16が左右方向に移動した場合、緩衝部材17a、17bは永久磁石16と接触する。緩衝部材17a、17bは、永久磁石16の移動時に壁部に加わる衝撃を和らげる。緩衝部材17a、17bの材料として、弾力性のある周知の材料が使用できる。例えば、イソプレンゴム、ニトリルゴム、ブタジエンゴム等が使用できる。
 コイル15は、筒状部材14の左右略中央部分の外周面に、筒状部材14の長手方向と直交する方向に巻回され固定されている。コイル15の両端は、外部配線18に接続している。コイル15の材料として、例えば銅が使用できる。コイル15は、例えば筒状部材14の全周にわたって巻回されていてもよい。
 永久磁石16の磁化方向は、移動方向(図1における左右方向)と同一方向である。永久磁石16は、例えば、同極同士を対向させて配置した複数の永久磁石を備えた構成であってもよい。
 第二筐体21は、整流部23と蓄電部24とを内部に収容している。整流部23の入力部には、コイル15の両端から伸びる外部配線18が接続されている。整流部23は、外部配線18を伝わる交流電流を直流電流に変換できる。整流部23として、例えばダイオードブリッジが使用できる。整流部23のうち、直流端子部は、蓄電部24と配線を介して接続している。蓄電部24は、整流部23によって整流された電流を蓄電できる。蓄電部24として、例えばコンデンサや二次電池が使用できる。整流部23の直流端子部及び蓄電部24は、正極端子22a及び負極端子22bと配線を介して接続している。整流部23は、正極端子22a及び負極端子22bを介して、整流された電流を直接外部に出力できる。蓄電部24は、正極端子22a及び負極端子22bを介して、蓄電した電流を外部に出力できる。
 振動発電機1の動作について説明する。振動発電機1は、第一筐体11と第二筐体21とを並べた状態で、外部機器に取り付けられる。電極端子12aと負極端子22bとは同じ側に配置される。電極端子12bと正極端子22aとは同じ側に配置される。外部機器が備える接続端子27が、電極端子12bと正極端子22aとの間に接続される。電極端子12bと正極端子22aとは短絡する。電極端子12aと電極端子12bとは、第一筐体11を介して導通している。それ故、正極端子22aと電極端子12aとは導通した状態となる。
 ユーザは、第一筐体11及び第二筐体21が長手方向に振動するように、外部機器を振動させる。運動エネルギーが、第一筐体11に加えられる。永久磁石16には緩衝部材17a、17bなどを介して、運動エネルギーが永久磁石16に伝達する。永久磁石16は、筒状部材14内を長手方向に往復移動する。永久磁石16は、コイル15に覆われた空間を出入りする。永久磁石16がコイル15内の空間を通過する際、永久磁石16が発する磁束線がコイル15を直交する。これによって、コイル15に誘導電流が発生する。永久磁石16がコイル15内の空間への出入りを繰り返すことで、コイル15に交流電流が発生する。永久磁石16の移動可能な長さは、筒状部材14の長手方向の長さと略同一である。筒状部材14の長手方向の長さは、第一筐体11の長手方向の長さと略同一である。従って永久磁石16は、第一筐体11の内部領域を最大限利用して移動する。永久磁石16のストロークが大きくなるので、コイル15に発生する交流電流は大きくなる。
 コイル15に発生した交流電流は、外部配線18を介して整流部23に伝達する。整流部23は、交流電流を全波整流することで直流電流に変換する。直流電流は、蓄電部24に蓄電される。
 外部機器の負荷28に接続した接続端子26が、電極端子12aと負極端子22bとの間に接続される。蓄電部24に蓄電された電流は、正極端子22aと負極端子22bとから出入力される。正極端子22aは、接続端子27を介して電極端子12bと導通している。電極端子12bと電極端子12aとは、第一筐体11を介して導通している。従って、正極端子22aと負極端子22bとから出力された電流は、電極端子12aと負極端子22bとから負荷28に供給される。外部機器は、供給された電流によって駆動する。
 以上説明したように、振動発電機1では、整流部23及び蓄電部24が第二筐体21に収容される。整流部23及び蓄電部24が第一筐体11内の領域を占有しないので、利用可能な第一筐体11内の領域を大きくできる。永久磁石16は、第一筐体11内の領域を最大限利用して往復移動できる。これによって、永久磁石16のストロークを大きくできる。従って、コイル15に発生させる誘導電流を大きくできる。蓄電部24に大きな電流を蓄電できる。このように、振動発電機1は、往復運動によって蓄電可能な電流の量を大きくでき、発電効率を高めることができる。また、蓄電部24を収容するための領域を大きくできるので、容量の大きな蓄電部24を使用することができる。
 また、乾電池で駆動するリモートコントローラーなどの一般的な電気機器において、図1に示すように、複数の乾電池が、其々の+極端子と-極端子とを反対側に向けた状態で並べて格納され使用される場合がある。隣接する+極端子と-極端子とが導通され、直列に接続された状態で、複数の電池から電流が取り出される。ここで、第一筐体11の電極端子12aと電極端子12bとが第一筐体11を介して導通している。従って、外部機器側で正極端子22aと電極端子12bとを短絡させることで、電極端子12aと負極端子22bとから電流を取り出すことができる。従って、上述の一般的な電気機器に対して振動発電機1を容易に適用できる。
 なお上述では、正極端子22aと電極端子12bとが接続端子27によって短絡される場合を例示したが、本発明はこれに限定されない。電極端子12aと負極端子22bとが接続端子27によって接続されてもよい。この場合、正極端子22aと電極端子12bとから電流が外部に出入力される。
 上述では、振動発電機1に接続された負荷28には、蓄電部24に蓄電された電流が供給されたが、本発明はこれに限定されない。整流部23の直流端子部から出力される直流電流が、負荷28に直接供給されてもよい。
 上述では、第一筐体11に収容される発電ユニット13は一つであったが、本発明はこれに限定されない。二つ以上の発電ユニットを第一筐体11内に収容してもよい。
<第二実施形態>
 本発明の第二実施形態における振動発電機2について、図2を参照して説明する。以降の説明は、上述した第一実施形態と異なる点についてのみ行い、同様の部分については、同一符号を付し、説明を省略する。
 第二筐体21は、発電ユニット33と整流部39とをさらに内部に収容している。発電ユニット33と整流部39とは、第二筐体21の内部の領域のうち、整流部23と蓄電部24とを除く領域に収容されている。発電ユニット33が本発明の第二発電ユニットの一例である。
 発電ユニット33は、筒状部材34、コイル35、及び永久磁石36を備えている。筒状部材34の長手方向の長さは、第二筐体21の長手方向の長さの略半分である。コイル35は、筒状部材34の外面に巻回されている。コイル35の両端は、配線38に接続している。永久磁石36は、筒状部材34内を長手方向に自在に移動可能に設けられている。筒状部材34の両端の壁部の内側に、緩衝部材37a、37bが設けられている。右側の壁部の内側に、緩衝部材37aが設けられている。左側の壁部の内側に、緩衝部材37bが設けられている。整流部39の入力部には、配線38が接続されている。整流部39の直流端子部は、蓄電部24と配線を介して接続している。蓄電部24は、整流部39によって整流された電流を蓄電できる。整流部23,39の直流端子部、及び蓄電部24は、正極端子22a及び負極端子22bと配線を介して接続している。整流部39は、正極端子22a及び負極端子22bを介して、整流された電流を直接外部に出力できる。
 振動発電機2の動作について説明する。振動発電機2は、外部機器に取り付けられる。ユーザは、第一筐体11及び第二筐体21が長手方向に振動するように、外部機器を振動させる。運動エネルギーが、第一筐体11及び第二筐体21に加えられる。運動エネルギーが、永久磁石16,36に伝達する。永久磁石16は、筒状部材14内を長手方向に往復移動する。永久磁石36は、筒状部材34内を長手方向に往復移動する。コイル15、35に交流電流が発生する。振動発電機2を振動させることで、永久磁石16,36を同時に振動させることができるので、振動発電機2は、より多くの交流電流を同時に発生させることができる。コイル15に発生した交流電流は、外部配線18を介して整流部23に伝達する。コイル35に発生した交流電流は、配線38を介して整流部39に伝達する。整流部23,39において、交流電流は全波整流され、直流電流に変換される。直流電流は、蓄電部24に蓄電される。蓄電部24に蓄電された電流は、電極端子12aと負極端子22bとから外部に出入力される。負荷28に電流が供給される。外部機器は、供給された電流によって駆動する。
 以上説明したように、振動発電機2では、第一筐体11に収容されたコイル15と、第二筐体21に収容されたコイル15とに対して同時に交流電流を発生させることができる。振動発電機2は、より多くの電流を効率的に蓄電部24に蓄電できる。振動発電機2は、往復運動によって蓄電可能な電流の量をさらに大きくでき、発電効率を高めることができる。
 なお上述では、第二筐体21に収容される発電ユニット33は一つであったが、本発明はこれに限定されない。二つ以上の発電ユニットを第二筐体21内に収容してもよい。
<第三実施形態>
 本発明の第三実施形態における振動発電機3について、図3を参照して説明する。以降の説明は、上述した第一実施形態と異なる点についてのみ行い、同様の部分については、同一符号を付し、説明を省略する。
 振動発電機3は、第一実施形態に加え、第三筐体51と第四筐体61とを更に備えている。第三筐体51及び第四筐体61の形状は、第一筐体11と同一である。第一筐体11、第三筐体51、第四筐体61、及び第二筐体21は、紙面上側から順に、第一筐体11、第三筐体51、第四筐体61、及び第二筐体21の順で並んで配置されている。第三筐体51の略円筒形の両壁部に、電極端子が設けられている。左側の壁部である第一壁部51aに、電極端子52aが設けられている。右側の壁部である第二壁部51bに、電極端子52bが設けられている。第三筐体51は、導電性を有している。電極端子52aと電極端子52bとは、其々第三筐体51に接続している。電極端子52aと電極端子52bとは導通している。第四筐体61の略円筒形の両壁部に、電極端子が設けられている。右側の壁部である第一壁部61aに、電極端子62aが設けられている。右側の壁部である第二壁部61bに、電極端子62bが設けられている。第四筐体61は、導電性を有している。電極端子62aと電極端子62bとは、其々第四筐体61に接続している。電極端子62aと電極端子62bとは導通している。
 第三筐体51は、発電ユニット53を収容している。発電ユニット53は、筒状部材54、コイル55、及び永久磁石56を備えている。筒状部材54の両端の壁部の内側に、緩衝部材57a、57bが設けられている。コイル55の両端は、外部配線58に接続している。第四筐体61は、発電ユニット63を収容している。発電ユニット63は、筒状部材64、コイル65、及び永久磁石66を備えている。筒状部材64の両端の壁部の内側に、緩衝部材67a、67bが設けられている。コイル65の両端は、外部配線68に接続している。発電ユニット53,63の構成は、第一筐体11内に収容された発電ユニット13と同一である。
 第二筐体21には、整流部71、72がさらに内部に収容されている。整流部71の入力部には、コイル55の両端から伸びる外部配線58が接続されている。整流部72の入力部には、コイル65の両端から伸びる外部配線68が接続されている。整流部71、72の其々の直流端子部は、蓄電部24と配線を介して接続している。蓄電部24は、整流部23、71、72によって整流された電流を蓄電できる。整流部71,72の直流端子部は、正極端子22a及び負極端子22bと配線を介して接続している。整流部71,72は、正極端子22a及び負極端子22bを介して、整流された直流電流を直接外部に出入力できる。
 振動発電機3の動作について説明する。振動発電機3は、第一筐体11から第四筐体61を並べた状態で、外部機器に取り付けられる。電極端子12a、電極端子52b、電極端子62a、及び負極端子22bが同じ側に配置される。電極端子12b、電極端子52a、電極端子62b及び正極端子22aが同じ側に配置される。
 外部機器が備える接続端子75が、電極端子12bと電極端子52aとの間に接続される。電極端子12bと電極端子52aとは短絡する。外部機器が備える接続端子76が、電極端子52bと電極端子62aとの間に接続される。電極端子52bと電極端子62aとは短絡する。外部機器が備える接続端子77が、電極端子62bと正極端子22aとの間に接続される。電極端子62bと正極端子22aとは短絡する。電極端子12aと電極端子12bとは、第一筐体11を介して導通している。電極端子52aと電極端子52bとは、第三筐体51を介して導通している。電極端子62aと電極端子62bとは、第四筐体61を介して導通している。それ故、電極端子12aと正極端子22aとは導通した状態となる。
 ユーザは、第一筐体11から第四筐体61が長手方向に振動するように、外部機器を振動させる。運動エネルギーが、第一筐体11から第四筐体61に加えられる。運動エネルギーは、永久磁石16,56,66に伝達する。永久磁石16は、筒状部材14内を長手方向に往復移動する。永久磁石56は、筒状部材54内を長手方向に往復移動する。永久磁石66は、筒状部材64内を長手方向に往復移動する。コイル15,55,65に交流電流が発生する。永久磁石16,56,66を同時に振動させることができるので、振動発電機3は、さらに多くの交流電流を同時に発生させることができる。また永久磁石16,56,66は、各筐体内の領域を最大限利用して往復移動するので、永久磁石16,56,66のストロークを大きくできる。コイル15に発生した交流電流は、外部配線18を介して整流部23に伝達する。コイル55に発生した交流電流は、外部配線58を介して整流部71に伝達する。コイル65に発生した交流電流は、外部配線68を介して整流部72に伝達する。整流部23,71,72において、交流電流は直流電流に変換され、蓄電部24に蓄電される。
 外部機器の負荷79に接続した接続端子78が、電極端子12aと負極端子22bとの間に接続される。蓄電部24に蓄電された電流は、正極端子22aと負極端子22bとから外部に出力される。正極端子22aと電極端子12aとは導通した状態となっている。従って、正極端子22aと負極端子22bとから出入力された電流は、電極端子12aと負極端子22bとから負荷79に出入力される。外部機器は、供給された電流によって駆動する。
 以上説明したように、振動発電機3では、発電ユニット13に加えて、発電ユニット53,63でも交流電流を発生させることができる。振動発電機3は、さらに多くの電流を効率的に蓄電部24に蓄電できる。振動発電機2は、往復運動によって蓄電可能な電流の量をさらに大きくでき、発電効率を高めることができる。
 発電ユニット53,63において発生した交流電流を整流する整流部71,72は、第二筐体21に収容される。これによって、発電ユニット53,63が収容される筐体51,61内の領域を大きく確保できる。永久磁石56は,66は、筐体51,61内の領域を最大限利用して往復移動できる。これによって、永久磁石56,66のストロークを大きくできる。振動発電機3は、さらに良好な発電効率を実現できる。
 なお上述では、振動発電機3は、発電ユニットが収容された筐体を三つ備えた構成であったが、本発明はこれに限定されない。発電ユニットが収容された筐体の数は二つであってもよいし、四つ以上であってもよい。
<第四実施形態>
 本発明の第四実施形態における振動発電機4について、図4を参照して説明する。以降の説明は、上述した第三実施形態と異なる点についてのみ行い、同様の部分については、同一符号を付し、説明を省略する。
 振動発電機4では、第一筐体11は整流部81をさらに備えている。整流部81は、発電ユニット13のコイル15に発生した交流電流を整流する。コイル15の両端と整流部81の入力部とは、配線84を介して接続している。整流部81の直流端子部と、第二筐体21に収容された蓄電部24とは、外部配線87を介して接続している。整流部81の直流端子部から出力された直流電流は、外部配線87を介して蓄電部24に伝達し、蓄電部24に蓄電される。
 第三筐体51は整流部82をさらに備えている。整流部82は、発電ユニット53のコイル55に発生した交流電流を整流する。コイル55の両端と整流部82の入力部とは、配線85を介して接続している。整流部82の直流端子部と蓄電部24とは、外部配線88を介して接続している。整流部82の直流端子部から出力された直流電流は、外部配線88を介して蓄電部24に伝達し、蓄電部24に蓄電される。
 第四筐体61は整流部83をさらに備えている。整流部83は、発電ユニット63のコイル65に発生した交流電流を整流する。コイル65の両端と整流部83の入力部とは、配線86を介して接続している。整流部83の直流端子部と蓄電部24とは、外部配線89を介して接続している。整流部83の直流端子部から出力された直流電流は、外部配線89を介して蓄電部24に伝達し、蓄電部24に蓄電される。
 整流部81、82,83の直流端子部、及び蓄電部24は、正極端子22a及び負極端子22bと配線を介して接続している。整流部81,82,83は、正極端子22a及び負極端子22bを介して、整流された直流電流を直接外部に出入力できる。
 以上説明したように、振動発電機4では、其々の発電ユニットに対応する整流部(整流部81,82,83)は、各発電ユニットが収容された筐体(第一筐体11、第三筐体51、第四筐体61)内に其々収容されている。筐体毎に直流電流を出力できるので、筐体を追加増設することが容易に可能となる。これによって、容易に振動発電機4の発電量を増加させることができる。
 なお上述では、振動発電機4は第二筐体21に整流部が収容されていない構成であったが、本発明はこれに限定されない。各発電ユニットに対応する整流部が第二筐体21に更に収容されていてもよい。これによって、追加増設される筐体に整流部が収容されていない場合に、第二筐体21に収容された整流部を使用して交流電流を整流できる。振動発電機4は、整流部を収容する筐体と、整流部を収容しない筐体との両方を追加増設できる。
<第五実施形態>
 本発明の第五実施形態における振動発電機5について、図5を参照して説明する。以降の説明は、上述した第一実施形態と異なる点についてのみ行い、同様の部分については、同一符号を付し、説明を省略する。
 図5では、振動発電機5の第一筐体11と第二筐体21とは、左右方向を長手方向とする向きで、左右方向に一直線上に並んで配置されている。左側に第一筐体11が配置されている。右側に第二筐体21が配置されている。第一筐体11の第二壁部11bに、電極端子12bの代わりに電極端子12cが設けられている。電極端子12c及び電極端子12aは、正極端子22aと同一形状を有している。第二筐体21の正極端子22aと、第一筐体11の電極端子12aとが接触している。
 振動発電機5は、外部機器の電池収容部91内に収容されている。電池収容部91は、上部が開口した容器部92を内部に備えている。振動発電機5は、容器部92内に収容されている。振動発電機5が容器部92内に収容された状態で、第一筐体11の電極端子12cは、電池収容部91の左壁の内側に設けられた凹部94に嵌合している。第二筐体21の負極端子22bは、電池収容部91の右壁の内側に設けられた凹部95と嵌合している。凹部94と凹部95との間に、外部機器の負荷96が接続されている。
 電池収容部91は、左壁部の上端部分から右方水平方向に延設する延設部93を備えている。延設部93は、振動発電機5が容器部92内から外れてしまうことを防止するために設けられている。外部配線18が、第一筐体11の右上部分と、第二筐体21の左上部分とに亙って接続されている。外部配線18は、容器部92の左右略中央部分において各筐体から突出している。
 図1に示す第二筐体21の蓄電部24に蓄積された電流は、正極端子22aと負極端子22bとから出入力される。正極端子22aと電極端子12aとは接触している。電極端子12aと電極端子12cとは、第一筐体11を介して導通している。従って、正極端子22aと負極端子22bとから出力された電流は、電極端子12aと負極端子22bとから負荷96に供給される。外部機器は、供給された電流によって駆動する。
 第一筐体11が、左右逆向きに収容された場合を想定する。この場合、第一筐体11のうち外部配線18の接続部分を延設部93が覆ってしまうため、外部配線18を外部に取り出すことができない。このため、振動発電機5は電池収容部91に収容できない。これに対して振動発電機5は、正極端子22aと同一形状を有する電極端子12a,12cを備えているので、第一筐体11を左右入れ替えて収容できる。第一筐体11を左右入れ替えて収容した場合であっても、電極端子12cを確実に凹部94に嵌めることができる。
 以上説明したように、振動発電機5では、電極端子12aと電極端子12cとは正極端子22aと同一形状を有している。従って、第二筐体21の正極端子22aと第一筐体11の電極端子を接触させ、第一筐体11と第二筐体21とを直列に接続して使用される場合、第一筐体11の向きを入れ替えても、電池収容部91の凹部94に電極端子を確実に嵌合させることができる。従って例えば、第一筐体11における外部配線18の取り出し部分を延設部93が覆ってしまう場合、第一筐体11の向きを入れ替えることができる。従って振動発電機5は、電池収容部91の形状に依らず、確実に電池収容部91に組み込んで使用できる。
<第六実施形態>
 本発明の第六実施形態における振動発電機6について、図6~図10を参照して説明する。これらの図に示す左右方向、前後方向及び上下方向を用いて、振動発電機6の構成を説明する。以降の説明は、上述した第一実施形態と異なる点についてのみ行い、同様の部分については、同一符号を付し、説明を省略する。第六実施形態に記載の振動発電機6は、外部配線18が収納される収納部136を備える。この収納部136は、いずれの振動発電機1~5に備えられてもよい。
 図6は、第六実施形態の振動発電機6の全体を示す斜視図である。振動発電機6は、第一筐体11と、第二筐体21とを備える。第一筐体11内の発電ユニット100において発電された電力は外部配線18により第二筐体21内の整流部23に供給される。図6では、第一筐体11及び第二筐体21は、左右方向を長手方向として配置している。尚、第一筐体11及び第二筐体21は、共に乾電池として規格された単三形の電池と同じ形状且つ同じ寸法である。
 また、第一筐体11は、右端110Rに、電極端子12bが設けられ、左端110Lに、電極端子12aが設けられる。電極端子12bは、電池の-極端子として規格化された平面形状の端子である。電極端子12aが、電池の+極端子として規格化された凸形状の端子である。第一筐体11の左端110Lには、引き出し孔110Hが設けられる。
 第二筐体21の右端130Rに、負極端子22bが設けられ、左端130Lに、正極端子22aが設けられる。負極端子22bは、電池の-極端子として規格化された平面形状の端子である。正極端子22aは、電池の+極端子として規格化された凸形状の端子である。負極端子22b及び正極端子22aは、導電性の金属材料により形成される。第二筐体21の内部において、蓄電部24は、負極端子22bとリード線Rにより電気的に接続されている。さらに、蓄電部24は、正極端子22aとリード線Rにより電気的に接続されている。第二筐体21には、その外周に後述する収納部136が設けられ、収納部136の一部に、引き出し孔130Hが形成される。
図6に示すように、外部配線18の一端が第一筐体11内のコイル15に接続され、外部配線18の他端が第二筐体21内の整流部23の入力部に接続される。外部配線18の端部は、それぞれ引き出し孔110H及び130Hから引き出されている。外部配線18は、振動発電機6の様々な使用形態、及び様々な発電ユニット100及び第二筐体21内の整流部の配置形態に応じて対応可能な長さを備える。この外部配線18長さとは、例えば第一筐体21及び第二筐体21の左右方向の長さよりも長い長さである。また、第六実施形態において振動発電機6は、第一筐体11の電極端子12a側と、第二筐体21の負極端子22b側とが対向するように、外部配線18が接続されている。
 収納部136が、第二筐体21の外周面に、右端130R側から前記第二筐体21の左右方向の全体の約1割程度の領域に形成される。収納部136は、右端130Rに形成される収納端部136aと、収納端部136aに隣接する領域に形成される凹部136bとを備える。凹部136bは、第二筐体21の外周面を一周に渡って形成された溝である。この溝の深さは、外部配線18の径より大きい。収納端部136aの側面に外部配線18が配線可能であり、凹部136bは、外部配線18を巻回可能な構成である。
 図7Aを用いて収納端部136aを詳細に説明する。図7Bを用いて凹部136bを詳細に説明する。図7Aは、図6のA-A線に沿う第二筐体21の収納端部136a及び、収納端部136aの側面に配線される外部配線18の断面を示す図である。図7Aに、第二筐体21の外径ARと、収納端部136aの外径brと、収納端部136aの側面に外部配線18が配線されたときにおける外部配線18の径CRとの寸法関係を矢印により示す。収納端部136aの外径brは、第二筐体21の外径ARと外部配線18の径CRとの差より小さく形成される。これは、引き出し130孔Hから引き出される外部配線18を、収納端部136aの側面に配線させる場合に、外部配線18が確実に第二筐体21の外径よりはみ出さないように外部配線18を配線させるためである。
 図7Bは、図6のB-B線に沿う第二筐体21の凹部136bの断面を示し、外部配線18が、凹部136bの周に沿って巻回された状態を示す図である。図7Bに、第二筐体21の外径ARと、凹部136bの外径drと、凹部136bに沿って外部配線18が巻回されたときにおける外部配線18の径CRとの寸法関係を矢印により示す。第二筐体21の外径ARと、外部配線18の径CRの二倍との差より凹部136bの外径drが小さくなるように凹部136bが形成される。これにより、凹部136bの周に沿って外部配線18が巻回される場合に、外部配線18が第二筐体21の外径からはみ出さない。尚、本実施形態の収納部136が、本発明の収納部の一例である。
[使用例]
 次に、図8A、図8B及び図9を用いて、振動発電機6の使用例を説明する。振動発電機6は、電気器具を遠隔操作する図8A及び図8Bに示すようなリモートコントロール等に用いられる。リモートコントロールは、所定の電池ボックス150を備える。この電池ボックス150は、2個の単三形電池を収納可能な収納領域151a及び151bを備える。2個の単三電池は、この電池ボックス150の収納領域151a及び151bに収納される。この収納状態では、2個の単三電池は、直列に接続される。第六実施形態においては、振動発電機6の第一筐体11及び第二筐体21が、収納領域151a及び151bに収納されて使用される。図8A及び8Bは、電池ボックス150内に収納される振動発電機6の配置を示す斜視図である。図9は、振動発電機6及び電池ボックス150の電気的な配線を示す概略図である。
 図8Aに示す左右方向、前後方向及び上下方向を用いて、電池ボックス150内に収納される振動発電機6の配置を説明する。図8Aに示すように、電池ボックス150は、右側に収納領域151aを備え、左側に収納領域151bを備える。収納領域151aの両端に接続端子152a及び152bが設けられ、収納領域151bの両端に接続端子152c及び152dが設けられる。電池ボックス150は、2個の単三形電池を直列接続するために、接続端子152dと152a、及び接続端子152bと152cが、図9に示すようにそれぞれリード線で電気接続されている。さらに、接続端子152dと152aとの間には外部負荷153が設けられている。
 第六実施形態において、電池ボックス150の収納領域151aに、第一筐体11が配置され、収納領域151bに第二筐体21が配置される。このとき、収納領域151aの右側の接続端子152aに第一筐体11の電極端子12bが当接し、左側の接続端子152bに第一筐体11の電極端子12aが当接する。収納領域151bの右側の接続端子152cに第二筐体21の負極端子22bが当接し、左側に接続端子152dに第二筐体21の正極端子22aが当接する。第一筐体11と第二筐体21とは、接続端子151a及び接続端子151bと、接続端子151c及び接続端子151dとにより、収納領域151a及び収納領域151bの左右方向の両側から挟持され、固定される。
 図9は、電池ボックス150に配置された振動発電機6の配線図である。第二筐体21内の蓄電部24に蓄電される電力は、リード線Rを通って負極端子22b及び正極端子22aへ出力される。よって、正極端子22aから出力された電流は、接続端子152d、外部負荷153、接続端子152a、電極端子12b、第1筐体11、電極端子12a、接続端子152b、接続端子152cを順に通り、負極端子22bに入力される。尚、図9に示すように、負極端子22bは、リード線Rを介して蓄電部24に接続されている。
 第一筐体11及び第二筐体21が、電池ボックス150の収納領域151a及び151bに配置されるとき、図8Aに示すように外部配線18は、電池ボックス150に収納されず、電池ボックス150の上方に位置する。しかしながら、振動発電機6が使用されるとき、電池ボックス150には、第一筐体11及び第二筐体21を外部から保護するための図示外の蓋等が設置される。そのため、外部配線18は、第一筐体11及び第二筐体21に対応して設置される蓋に干渉しないように収納させる必要がある。
 そこで、第六実施形態の振動発電機6は、第二筐体21の外周に形成される収納部136を備える。外部配線18は、収納部136の凹部136bに沿って巻回されて、電池ボックス150内に収納されることが可能な構成とした。振動発電機6が電池ボックス150に配置された時点では、発電ユニット100と整流部23の入力部とに接続された外部配線18の大部分は、図8Aに示すように、電池ボックス150の上方に位置している。ここで、ユーザは、外部配線18を電池ボックス150の空間内に収納させるための収納動作を行う。収納動作とは、具体的には、収納部136を備える第二筐体21を、前後方向に回転させる動作である。
 ユーザは、接続端子152c、及び接続端子152dにより固定された第二筐体21に対し、側面121aを回転させるように動かす。第二筐体21は、負極端子22b及び正極端子22aが支点となった状態であり、負極端子22bと正極端子22aとを通る直線を回転軸として、回転される。このとき、第二筐体21が回転されると、引き出し孔130Hの位置も回転される。外部配線18は、他端が整流部23に固定され、引き出し孔130Hから導出されている。このため、第二筐体21の回転に伴い、引き出し孔130Hと発電ユニット100に接続された外部配線18の一端との間の外部配線18が、第二筐体21の凹部136bに沿って巻き付けられる。さらに、外部配線18は、第二筐体21の回転に伴って、電池ボックス150の上方に位置する長さが次第に短くなり、引き出し孔110Hと引き出し孔130Hとの間の距離に相当する長さを残して、凹部136bの周囲に巻回される。このように、収納動作が行われると、振動発電機6が電池ボックス150に配置された時点で電池ボックス150の上方に位置していた外部配線18の長さのうち、引き出し孔110Hと引き出し孔130Hとの間の距離に相当する長さ以外である余剰な長さの外部配線18が、第二筐体21の凹部136bに巻き取られ、収納される
 第六実施形態の振動発電機6は、規格化された単三形の電池の形状である第一筐体11と第二筐体21とを備える。この第二筐体21の外周に収納部136が形成される。振動発電機6の外部配線18は、第一筐体11と第二筐体21との配置関係を可変であるような十分な長さを備えている。このため、振動発電機6を電池ボックス150等に収納して使用する場合に、外部配線18の長さにより振動発電機6の使用が制限されることはない。すなわち、第一筐体11と第二筐体21とを電池ボックス150の形状及び使用形態に応じて配置することができる。また、振動発電機6が電池ボックス150に配置された後は、収納部136に外部配線18が巻回されて収納される。従って、第一筐体11及び第二筐体21の外周よりはみ出して、外部配線18が配線されることを防止できる。また、収納端部136aの径brは第二筐体21の外周の径ARより小さい。この構成により、外部配線18が、電池ボックス150に配置される蓋等に影響することなく収納端部136aの側面に配線されることが可能であり、第一筐体11及び第二筐体21を固定することができる。
[変形例]
 第六実施形態の振動発電機6は上述した構成であるが、これに限らない。第六実施形態の第一筐体11及び第二筐体21の形状は、長手方向に永久磁石16が往復移動可能な筒形状であればよい。詳細には、第一筐体11及び第二筐体21の形状は、電池として規格化された形状、即ち、単一形、単二形、単三形などであればよく、円筒形状の他にも、例えば、四角筒形状や多角筒形状の部材であってもよい。また、本実施形態において、第一筐体11に封入される筒状部材14は円筒形状であったが、これに限らない。例えば、筒状部材14は、コイル15を巻回可能な筒形状であればよく、多角筒形状であってもよい。また、コイル15は、筒状部材14の一部または全体にわたって、巻回される構成であればよい。また、本実施形態において、永久磁石16は円柱形状であったが、これに限らず、多角柱形状や、筒形状であってもよい。尚、第一筐体11と、永久磁石16は、筒状且つ、同一形状であることが望ましい。
 また、第六実施形態の振動発電機6においては、外部配線18が、発電ユニット100と第二筐体21内の整流部23の入力部とに接続されており、第一筐体11と第二筐体21とが、電池ボックス150によって直列接続される形態に適した配線がされている。しかしながら、外部配線18は、必ずしも第一筐体11の左端110Lと、第二筐体130の右端130Rとが接続される形態に適した配線がされる必要はない。すなわち、外部配線18が、第一筐体11の右端110Rと、第二筐体21の右端130Rとを接続する形態、又は第一筐体11の左端110Lと、第二筐体21の左端130Lとを接続する形態に適した配線がされてもよい。また、一方の凸形状の端面と、他方の平面形状の端面とが互いに接続されていればよく、第一筐体11の左端110Lと第二筐体21の右端130Rとが、外部配線18により接続される構成であっても良い。
 また、第六実施形態において、電力を蓄える蓄電部24は、第二筐体21の内部に設けられる。正極端子135と負極端子134は、少なくとも第二筐体21に設けられればよい。すなわち、第一筐体11は、導通される構成であり、収納領域151a又は151bの左右両側から挟持される構成であればよい。すなわち、第一筐体11の両端は、正極と負極とが区別されず、共に乾電池として規格された+極端子として規格化された凸形状の電極端子、又は-極端子として規格化された平面形状の電極端子が設けられる構成であってもよい。
 また、第六実施形態において、収納部136は、第二筐体21の外周に沿って凹部136aが設けられる構成であるが、これに限らない。例えば、第一筐体11の外周に沿って設けられていてもよい。第一筐体11または第二筐体21の外周に設ける構成以外にも、内側が空洞となっている第一筐体11または第二筐体21のいずれか一方の筐体の内部に、収納領域が設けられ、この収納領域が外部配線18を収納可能とする構成であってもよい。図10には、いずれか一方の筐体の内部に収納部を設けた構成の一例として、第一筐体311の内部の一部の領域に、収納部360が設けられた構成図を示す。発電ユニット310では、この収納部360に外部配線18が納められる。収納部360が第二筐体21に設けられる場合は、第一筐体11に設けられる場合に比べて、永久磁石16の可動領域が十分に確保される。これにより、発電効率の高い発電を行うことができる。
 また、第六実施形態のように、収納部136が、第二筐体21の外周に設けられる場合であっても、外部配線18が巻回されて収納される構成は必須ではない。例えば、第六実施形態のような、第二筐体21の外周に沿って溝が設けられる構成の他に、いずれか一方の筐体の外周面に、外部配線18を埋め込み可能な溝が形成され、外部配線18が収納される構成であってもよい。また、第六実施形態では、収納部136が第二筐体21において、端部から所定の領域に設けられる構成であるが、これに限られない。筐体の長手方向の中心部または、筐体の全体領域にわたって、外部配線18を収納可能とする収納部が設けられてもよい。
 図1の外部配線18、図3の外部配線58,68、図4の配線84,85,86が、本発明の「供給路」に相当する。図1の第一筐体11、図3及び図4の第三筐体51、第四筐体61が本発明の「第一筐体」に相当する。
 なお本発明は、上述の実施形態及び変形例に限定されるものではなく、種々の変更が可能である。第一筐体11、第三筐体51及び第四筐体61の材料として、例えば導電体であり且つ磁性体である材料を使用してもよい。筐体として非磁性体が使用された場合、永久磁石から発せられる磁束線は、筐体を通過して外部に放射される。このため、磁束線間の間隔は広くなる。これに対し、筐体として磁性体が使用された場合、永久磁石が発する磁束線は、筐体内に吸収される。従って、磁束線間の間隔は狭くなる。永久磁石が発する磁束線の筐体内における磁束密度を高めることができる。永久磁石が移動することでコイルに発生する電流は、コイルを直交する磁束線の磁束密度に比例する。従って、磁性体材料を筐体として使用することで、コイルに発生させる誘導電流を更に大きくできる。振動発電機の発電効率をさらに向上させることができる。
1,2,3,4,5、6 振動発電機
11 第一筐体
12a,12b,12c,52a,52b,62a,62b 電極端子
13,33,53,63、100 発電ユニット
14,34,54,64 筒状部材
15,35,55,65 コイル
16,36,56,66 永久磁石
18,58,68 外部配線
21 第二筐体
22a 正極端子
22b 負極端子
23,39,71,72,81,82,83 整流部
24  蓄電部
38,84,85,86 配線
51 第三筐体
61 第四筐体
110H 引き出し孔
130H 引き出し孔
136 収納部
136a 収納端部
136b 凹部
AR 外径
br 外径
CR 径
dr 外径
R リード線

Claims (13)

  1.  コイルが巻回された筒状部材と、前記筒状部材内を往復移動可能に設けられた永久磁石とを少なくとも備えた第一発電ユニットと、
     前記第一発電ユニットを収容する筐体であって、導通した二つの電極端子を備える第一筐体と、
     電流を整流する整流部と、
     前記整流部からの電流を蓄電する蓄電部と
     前記蓄電部を少なくとも収容する筐体であって、正極端子と負極端子とを備える第二筐体と、
     前記第一筐体に収容された前記永久磁石の往復移動によって前記コイルに誘起した電流を前記整流部に供給する供給路と
    を備えた振動発電機であって、
     一方の前記電極端子と前記負極端子とが導通された場合、前記供給路と前記整流部とを介して前記蓄電部に蓄電された電力は、他方の前記電極端子と前記正極端子とから外部機器に供給され、
     一方の前記電極端子と前記正極端子とが導通された場合、前記供給路と前記整流部とを介して前記蓄電部に蓄電された電力は、他方の前記電極端子と前記負極端子とから外部機器に供給されることを特徴とする振動発電機。
  2.  前記第一筐体は、導電体であり、
     二つの前記電極端子は、前記第一筐体に接続することで導通することを特徴とする請求項1に記載の振動発電機。
  3.  前記第一筐体は磁性体であることを特徴とする請求項2に記載の振動発電機。
  4.  前記第一発電ユニットとは異なり、コイルが巻回された筒状部材と、前記筒状部材内を往復移動可能に設けられた永久磁石とを少なくとも備える第二発電ユニットを備え、
     前記第二発電ユニットは、
     前記第二筐体内に収容されていることを特徴とする請求項1に記載の振動発電機。
  5.  前記整流部は、前記第二筐体に収容されていることを特徴とする請求項1に記載の振動発電機。
  6.  前記第一筐体を複数備え、
     前記第二筐体は、
     複数の前記第一筐体に収容された前記第一発電ユニットの其々に対応する前記整流部を収容することを特徴とする請求項5に記載の振動発電機。
  7.  前記第一筐体を複数備え、
     前記整流部は、
     複数の前記第一筐体の其々に収容されていることを特徴とする請求項1に記載の振動発電機。
  8.  二つの前記電極端子は、前記正極端子と同一形状であることを特徴とする請求項1に記載の振動発電機。
  9. 前記第一筐体又は前記第二筐体には、前記筐体の内部または外周に、前記供給路を収納する収納部が設けられることを特徴とする請求項1に振動発電機。
  10.  前記収納部は、前記第二筐体の内部または外周に設けられることを特徴とする請求項9記載の振動発電機。
  11.  前記収納部は、前記第一筐体又は前記第二筐体の外周に前記供給路を配置可能に設けられ、前記供給路の径より深い溝を備える凹部を有することを特徴とする請求項9に記載の振動発電機。
  12.  前記収納部が設けられる前記第一筐体又は前記第二筐体は円筒形状であり、
     前記収納部の前記凹部は、前記第一筐体又は前記第二筐体の外周に沿って、前記供給路を巻回可能に設けられることを特徴とする請求項11に記載の振動発電機。
  13.  前記第一筐体の前記筒状に沿った少なくとも一端側には凸部もしくは平面部が形成され、
     前記第二筐体の前記筒状に沿った少なくとも一端側には平面部もしくは凸部が形成され、
     前記供給路は、前記第一筐体及び前記第二筐体の一方の筐体の、凸部が形成される一端側と、前記第一筐体及び前記第二筐体の他方の筐体の、平面部が形成される一端側とからそれぞれ引き出されており、
     前記収納部は、前記供給路が引き出された一端側近傍に設けられることを特徴とする請求項9に記載の振動発電機。
     
PCT/JP2011/053217 2010-02-22 2011-02-16 振動発電機 WO2011102361A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11744647.6A EP2541743B1 (en) 2010-02-22 2011-02-16 Oscillating power generator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010035856A JP5375658B2 (ja) 2010-02-22 2010-02-22 振動発電機
JP2010-035856 2010-02-22
JP2010125117A JP2011254591A (ja) 2010-05-31 2010-05-31 振動発電機
JP2010-125117 2010-05-31

Publications (1)

Publication Number Publication Date
WO2011102361A1 true WO2011102361A1 (ja) 2011-08-25

Family

ID=44482946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053217 WO2011102361A1 (ja) 2010-02-22 2011-02-16 振動発電機

Country Status (2)

Country Link
EP (1) EP2541743B1 (ja)
WO (1) WO2011102361A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171733A (ja) * 2015-03-16 2016-09-23 Ntn株式会社 自己発電型ユニット、自己発電型ユニット用の本体、および自己発電型ユニット用の発電カセット

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104295650B (zh) * 2014-08-18 2016-08-24 宁波鸿裕工业有限公司 直线型发电式减振器
GB2598371A (en) * 2020-08-28 2022-03-02 8Power Ltd Vibrational energy harvester
CN113691658A (zh) * 2021-08-24 2021-11-23 维沃移动通信有限公司 移动终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177718A (ja) 1993-12-22 1995-07-14 Hatakeyama Seisakusho:Kk 簡易発電器
JPH10323006A (ja) * 1997-05-14 1998-12-04 Sharp Corp 発電電池
JP2003534759A (ja) * 2000-04-07 2003-11-18 エービービー アクチボラゲット 電気機械
US6664759B1 (en) * 2002-08-14 2003-12-16 Hewlett-Packard Development Company, L.P. Manually rechargeable power system
JP2005094832A (ja) * 2003-09-12 2005-04-07 Sony Corp 発電装置
JP2006296144A (ja) * 2005-04-14 2006-10-26 Shinichi Hayashizaki 振動発電機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148583B1 (en) * 2005-09-05 2006-12-12 Jeng-Jye Shau Electrical power generators
CN201018388Y (zh) * 2006-12-06 2008-02-06 英业达股份有限公司 自发电电池
US20080218128A1 (en) * 2007-03-08 2008-09-11 Leo Hipom Kim Self-generation type charging battery assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177718A (ja) 1993-12-22 1995-07-14 Hatakeyama Seisakusho:Kk 簡易発電器
JPH10323006A (ja) * 1997-05-14 1998-12-04 Sharp Corp 発電電池
JP2003534759A (ja) * 2000-04-07 2003-11-18 エービービー アクチボラゲット 電気機械
US6664759B1 (en) * 2002-08-14 2003-12-16 Hewlett-Packard Development Company, L.P. Manually rechargeable power system
JP2005094832A (ja) * 2003-09-12 2005-04-07 Sony Corp 発電装置
JP2006296144A (ja) * 2005-04-14 2006-10-26 Shinichi Hayashizaki 振動発電機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171733A (ja) * 2015-03-16 2016-09-23 Ntn株式会社 自己発電型ユニット、自己発電型ユニット用の本体、および自己発電型ユニット用の発電カセット

Also Published As

Publication number Publication date
EP2541743A1 (en) 2013-01-02
EP2541743A4 (en) 2016-12-07
EP2541743B1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
KR102192018B1 (ko) 내부 원주상 및 외부 환상 자석 모션 블럭을 가진 진동형 발전기의 전력저장장치
JP5989867B1 (ja) 振動ダイナモ装置
JP2012034475A (ja) 振動発電機
JP2005094832A (ja) 発電装置
JP2012205497A5 (ja)
JP2013172503A (ja) コイルユニット及び非接触給電システム
WO2011102361A1 (ja) 振動発電機
JP5327095B2 (ja) 振動発電機
JP2012039824A (ja) 振動発電機
JP2013055714A (ja) 振動発電機
JP5375658B2 (ja) 振動発電機
JP2011160507A (ja) 発光部付き振動発電機
WO2013014975A1 (ja) 振動発電機
JP5370285B2 (ja) 振動発電機
KR101232788B1 (ko) 패키징 칩에 의한 무접점 배터리 장치 및 충전 시스템
JP2013055716A (ja) 振動発電機
JP2014050204A (ja) 振動発電機
KR20130062483A (ko) 계자를 회전시켜 발전하는 발전기
KR20140064516A (ko) 진동을 이용한 자가발전장치
KR101529220B1 (ko) 배터리 팩 및 무접점 충전 시스템
KR20130092852A (ko) 자가발전장치
JP5742860B2 (ja) 振動発電機
CN111979703B (zh) 衣物处理设备
JP2011172391A (ja) 振動発電機
WO2014192201A1 (ja) 非接触式の電力伝送システム及び受電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011744647

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE