WO2011102346A1 - Agent and method for selectively anchoring halogenated aromatic compound contained in medium - Google Patents

Agent and method for selectively anchoring halogenated aromatic compound contained in medium Download PDF

Info

Publication number
WO2011102346A1
WO2011102346A1 PCT/JP2011/053163 JP2011053163W WO2011102346A1 WO 2011102346 A1 WO2011102346 A1 WO 2011102346A1 JP 2011053163 W JP2011053163 W JP 2011053163W WO 2011102346 A1 WO2011102346 A1 WO 2011102346A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
halogenated aromatic
aromatic compound
organic
polymer
Prior art date
Application number
PCT/JP2011/053163
Other languages
French (fr)
Japanese (ja)
Inventor
栄一 加藤
祐樹 野口
和博 宮脇
信二 久保
英幸 友田
満 明石
敏之 木田
Original Assignee
株式会社ネオス
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ネオス, 国立大学法人大阪大学 filed Critical 株式会社ネオス
Priority to CN201180009823.5A priority Critical patent/CN102762294B/en
Priority to JP2012500601A priority patent/JP5532359B2/en
Priority to KR1020127022270A priority patent/KR101437252B1/en
Publication of WO2011102346A1 publication Critical patent/WO2011102346A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/16Cyclodextrin; Derivatives thereof

Definitions

  • the present invention can collect a halogenated aromatic compound contained in an organic medium typified by insulating oil, machine oil, heat medium, lubricating oil, plasticizer, paint and ink, and mixtures thereof.
  • the present invention relates to a selective fixing agent and a method for obtaining an organic medium containing almost no halogenated aromatic compound using the selective fixing agent. More specifically, a novel structure that can be obtained by condensing cyclodextrin with an organic dibasic acid and esterifying alcohols, aryl alcohols, or phenols at the terminal of the resulting condensation polymer has a novel structure.
  • the present invention relates to a method for selectively fixing a halogenated aromatic compound contained in an organic medium using a porous cyclodextrin polymer having the same. Furthermore, this invention relates to the cyclodextrin polymer which has said novel structure, and its manufacturing method.
  • the polymer according to the present invention has a characteristic spherical porous shape, whereby various compounds contained in an organic medium can be selectively and efficiently fixed.
  • Halogenated aromatic compounds are compounds that are highly toxic to humans, animals and plants, and many of them are designated by the Law on Waste Disposal and Cleaning as hazardous substances, especially because of the potential for teratogenicity. . When these compounds are present in soil, groundwater, incineration ash, washing water, machine oil, etc., it is strictly determined that some treatment must be applied to reduce their concentration below the reference value.
  • an organic medium such as insulating oil containing a halogenated aromatic compound has been chemically treated as it is (Patent No. 2611900, Patent No. 3247505).
  • PCB polychlorinated biphenyls
  • reclaimed oil without a PCB it does not contain a PCB or a certificate that does not contain a PCB.
  • Insulating oils new oils and reclaimed oils
  • trace amounts about 0.5 to 100 ppm, especially about 0.5 to 10 ppm
  • an organic medium containing a halogenated aromatic compound can be incinerated, but there are many difficult issues such as dioxin countermeasures, and there are still doubts about environmental safety.
  • halogenated aromatic compound processing technology not only a medium containing a trace amount of a halogenated aromatic compound but also a technology for processing a halogenated aromatic compound itself has been established.
  • a process (hereinafter referred to as “high concentration treatment”) for directly treating a high concentration medium containing an aromatic compound at a high concentration (1% or more) has started to operate (Japanese Patent Laid-Open No. 2003-112034) .
  • the halogenated aromatic compound is concentrated by selectively fixing the halogenated aromatic compound contained in a trace amount, only the halogenated aromatic compound is efficiently treated by the above-described high concentration treatment.
  • the medium from which the halogenated aromatic compound has been removed can be used as a non-contained medium, and the storage place of the medium before processing can be saved.
  • JP-A-5-31212 discloses a method for collecting an organic halogen compound that forms an organic halogen compound inclusion complex using a modified cyclodextrin.
  • the method described in JP-A-5-31212 relates to a method for collecting an organic halogen compound contained in an aqueous solution using the hydrophilic modified cyclodextrin, and the method using the modified cyclodextrin that is not lipophilic. It is difficult to apply as it is to an organic medium system.
  • Japanese Patent No. 3010602 discloses various methods for synthesizing cyclodextrin polymers. However, it is disclosed that these compounds are brought into contact with an organic medium to selectively fix a halogenated aromatic compound contained therein. Not done.
  • cyclodextrin is well known as a compound that can include various compounds.
  • Cyclodextrins are cyclic oligosaccharides in which 6, 7, or 8 glucoses are linked in a cyclic manner and are called ⁇ -, ⁇ -, or ⁇ -cyclodextrin, respectively.
  • Cyclodextrins have the property of enclosing various compounds in their cyclic vacancies. Due to this property, a hydrophobic substance can be included in cyclodextrin and dissolved in water, or used for various adsorption / separation operations.
  • cyclodextrin is highly water-soluble, its use in organic solvents is limited. Various attempts have been made to make cyclodextrin water insoluble.
  • JP-A-2009-95792 discloses the production of a polymer that interacts with a halogenated aromatic compound by suction by condensing a cyclodextrin and an organic dibasic acid. As described above, the polymer produced in JP-A-2009-95792 is terminated with a carboxyl group derived from phthalic dichloride.
  • Patent No. 3010602 discloses that cyclodextrin and terephthalic acid are reacted to form a polymer.
  • a method for producing a cyclodextrin polymer having a terminal carboxyl group derived from terephthaloyl dichloride by condensing cyclodextrin and terephthaloyl dichloride, condensing cyclodextrin and dimethyl terephthalate Discloses a method for producing a cyclodextrin polymer, which is a methyl ester derived from dimethyl terephthalate, and a method for producing a crosslinked cyclodextrin polymer by condensing cyclodextrin and various organic dibasic acids.
  • the example of Japanese Patent No. 3010602 describes that the cyclodextrin polymer thus produced can be formed into a film and decomposed by a specific enzyme.
  • the present invention makes it easy to decompose only a halogenated aromatic compound by selectively fixing a halogenated aromatic compound contained in an organic medium and removing or concentrating the halogenated aromatic compound from the organic medium. It is an object of the present invention to provide a selective fixing agent that can be used. Further, the present invention selectively collects a halogenated aromatic compound contained in an organic medium using such a selective fixing agent, and thus recovers an organic medium that does not contain a halogenated aromatic compound at a high recovery rate. Provide a way to get at rates.
  • the inventors have selected a halogenated aromatic compound contained in an organic medium using a novel water-insoluble porous cyclodextrin polymer produced from a water-soluble cyclodextrin as a selective fixing agent. It was found that an organic medium containing no halogenated aromatic compound can be obtained at a high recovery rate.
  • aspects of the present invention are as follows: 1. Porous that interacts with halogenated aromatic compounds in an attractive manner by reacting alcohols, aryl alcohols or phenols at the end of the polymer condensed with cyclodextrin and organic dibasic acid or organic dibasic acid halide Selective fixing agent for halogenated aromatic compounds contained in an organic medium, comprising a high-quality cyclodextrin polymer. 2.
  • the organic dibasic acid or organic dibasic acid halide is selected from terephthalic acid, isophthalic acid, maleic acid, malic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, phthalic acid or their halides 2.
  • the alcohol is selected from an alkyl group having 1 to 10 carbon atoms
  • the aryl alcohol is selected from benzyl alcohol, or benzyl alcohol substituted with an alkyl, aryl, or acyl group
  • the phenol is phenol, alkyl, aryl, or aryl Or a selective sticking agent according to claim 1 or 2, selected from phenols substituted with acyl groups. 4).
  • the organic medium is selected from the group consisting of an organic liquid, an insulating oil, a heat medium, a lubricating oil, a plasticizer, a paint and an ink, and a mixture thereof. 7).
  • a selective fixing agent for a halogenated aromatic compound containing a cyclodextrin polymer of the above and an organic medium containing a halogenated aromatic compound are brought into contact with each other, and the halogenated aromatic compound contained in the organic medium is subjected to the halogenation.
  • a method characterized in that an organic medium containing no halogenated aromatic compound is obtained by fixing to a porous cyclodextrin polymer that interacts with an aromatic compound in an aspiration manner.
  • the organic dibasic acid or organic dibasic acid halide is selected from terephthalic acid, isophthalic acid, maleic acid, malic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, phthalic acid or their halides 8.
  • the method according to 7 above. 9 The alcohol is selected from alkyl groups having 1 to 10 carbon atoms, the aryl alcohol is selected from benzyl alcohol, or benzyl alcohol substituted with an alkyl, aryl, or acyl group, and the phenol is phenol, alkyl, aryl, or aryl Or the method according to 7 or 8 above, which is selected from phenol substituted with an acyl group. 10. 10.
  • Method. 11 The method according to any one of 7 to 10 above, wherein the halogenated aromatic compound is dioxins, polychlorobiphenyls, or polychlorobenzenes. 12
  • the organic medium is selected from the group consisting of organic liquid, insulating oil, machine oil, heat medium, lubricating oil, plasticizer, paint and ink, and mixtures thereof.
  • organic dibasic acid or organic dibasic acid halide-containing organic solvent dropwise to cyclodextrin dissolved in organic solvent, and then add alcohols, aryl alcohols, or phenols for esterification reaction A process for producing a porous cyclodextrin polymer.
  • the organic dibasic acid or organic dibasic acid halide is selected from terephthalic acid, isophthalic acid, maleic acid, malic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, phthalic acid or their halides 14. The method according to 13 above. 15.
  • the alcohol is selected from aliphatic alcohols having 1 to 10 carbon atoms
  • the aryl alcohol is selected from benzyl alcohol or substituted benzyl alcohol
  • the phenol is selected from phenol or substituted phenols.
  • the organic solvent for dissolving cyclodextrin is selected from pyridine, dimethyl sulfoxide, dimethylformamide, and 1-methylimidazole
  • the organic solvent for dissolving organic dibasic acid or organic dibasic acid halide is tetrahydrofuran, dichloromethane, 1, 16.
  • the “halogenated aromatic compound” refers to all compounds in which an aromatic compound is substituted with one or more of fluorine, chlorine, bromine and iodine.
  • PCB polychlorobiphenyls
  • dioxins dioxins
  • chlorofluorocarbons polychloronaphthalenes
  • polychlorobenzenes polychlorobenzenes and the like are indicated.
  • PCB is a general term for compounds in which several chlorine atoms are substituted on the biphenyl skeleton, and there are many isomers depending on the substitution position and the number of substitutions of chlorine atoms.
  • Dioxins refer to specific compounds specified by the Special Measures for Countermeasures against Dioxins in a narrow sense, but in the present invention, all halogenated compounds suspected as so-called endocrine disrupting substances (environmental hormones) are included.
  • an “organic medium” containing a halogenated aromatic compound is generally an organic solvent, and particularly an organic solvent that dissolves a halogenated aromatic compound well. From the aspect, it means an insulating oil, a machine oil, a heat medium, a lubricating oil, a plasticizer, a paint and an ink, a mixture thereof, and the like that are highly likely to contain a halogenated aromatic compound.
  • the “organic medium” may be the majority of the organic medium (for example, 60% or more), and may contain water depending on the case. However, the organic medium containing the halogenated aromatic compound may be used. The property of the medium as a whole is not that of an aqueous solution but that of an organic solution.
  • halogenated aromatic compounds contained in solid substances eg paper, wood, incinerated ash, rocks, soil, etc.
  • Those transferred to an organic medium can also be an “organic medium containing a halogenated aromatic compound” to be treated with the selective fixing agent of the present invention.
  • interacting with a halogenated aromatic compound in an attractive manner means interacting with the above-described halogenated aromatic compound in an attractive manner (that is, not repulsive).
  • the compounds having such properties are collectively referred to as “compounds that interact with a halogenated aromatic compound in an attractive manner”.
  • Such compounds have cyclic moieties, substituents, sequences, etc. that interact with the halogenated aromatic compounds in an attractive manner.
  • the “compound that interacts with a halogenated aromatic compound in an attractive manner” is sometimes simply abbreviated as “attractive interactive compound”, “interactive compound” or “interacting compound”. May be described.
  • “selectively fixing” a halogenated aromatic compound means that only a halogenated aromatic compound contained in the organic medium by dissolution, dispersion, or the like, or an organic medium containing the halogenated aromatic compound therein. Interacts with the association of molecules to take in or fix them.
  • adheresion includes all chemical bonding and adhesion, and physical adsorption, suction, or just being caught, and does not necessarily mean that it is always adhered. .
  • the “selective sticking agent” of the present invention means that the active ingredient contained in the selective sticking agent interacts with the halogenated aromatic compound contained in the organic medium strongly and attractively, In addition to drugs that are firmly incorporated or anchored into the molecular structure of the active ingredient, such active ingredients must be in at least temporary contact with the halogenated aromatic compound or maintained in close proximity. Means a drug that can
  • the selective fixing agent of the present invention includes a composition capable of fixing these by attracting interaction with the halogenated aromatic compound.
  • a composition capable of fixing these by attracting interaction with the halogenated aromatic compound.
  • an active ingredient of such a composition there can be mentioned a porous cyclodextrin polymer obtained by reacting alcohols, aryl alcohols or phenols at the terminal of a polymer obtained by condensing cyclodextrin and an organic dibasic acid.
  • the compound that interacts with the halogenated aromatic compound exemplified here is a compound having in its molecule a cyclic part of cyclodextrin capable of interacting with the halogenated aromatic compound in the molecular structure.
  • the interactive compound can be at least dispersed in an organic medium.
  • An interactively interacting moiety present in the molecule of the interacting compound i.e., the cyclic part of cyclodextrin interacts with the halogenated aromatic compound, thereby allowing the halogenated aromatic compound to interact with or near the interacting part. Secure to.
  • the selective fixing agent of the present invention contains, as an active ingredient, a compound that interacts with the halogenated aromatic compound in an aspirate manner, and may contain auxiliary agents such as a carrier, a substrate, and a diluent as necessary. .
  • the compound that interacts with the halogenated aromatic compound, which is the active ingredient, in an attractive manner may be immobilized on a carrier or a substrate as the case may be.
  • compounds that interact with halogenated aromatic compounds in aspiration on solid supports such as silica gel, polymer beads, ion exchange resins, glass, filters, membranes, various network or lattice structures, foams, porous materials, etc. Can be immobilized.
  • Immobilization of a compound that interacts with a halogenated aromatic compound to a carrier or a substrate can be carried out by using a relatively strong chemical bond represented by, for example, covalent bond or ionic bond, as well as hydrophobic interaction, van der It can also be performed by physical interaction with a relatively weak force such as a Waals force.
  • a relatively strong chemical bond represented by, for example, covalent bond or ionic bond, as well as hydrophobic interaction, van der It can also be performed by physical interaction with a relatively weak force such as a Waals force.
  • Examples of the compound that interacts with the halogenated aromatic compound in an attractive manner include a polymer obtained by reacting an alcohol, an aryl alcohol, or a phenol with a terminal of a polymer obtained by condensing a cyclodextrin and an organic dibasic acid.
  • Cyclodextrins are cyclic oligosaccharides in which 6, 7 or 8 glucoses are cyclically linked, and are called ⁇ -, ⁇ - or ⁇ -cyclodextrin, respectively.
  • Organic dibasic acids include, for example, aliphatic dicarboxylic acids, aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and fatty acids, and in the present invention, they react with the —CH 2 OH group in the cyclodextrin molecule to sequentially condense. It is a compound that can form a polymer.
  • organic dibasic acids include terephthalic acid, isophthalic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, and phthalic acid.
  • the organic dibasic acid halide refers to an acid halide of the above organic dibasic acid.
  • terephthalic acid which is an organic dibasic acid or terephthalic acid dichloride (terephthaloyl dichloride) which is an organic dibasic acid halide.
  • Reacting alcohols, aryl alcohols or phenols at the polymer end means end-capping the carboxyl group derived from the organic dibasic acid remaining at the end of the condensation polymer with a specific substituent.
  • carboxyl group derived from the organic dibasic acid remaining at the end of the condensation polymer with a specific substituent.
  • alcohols, aryl alcohols or phenols can be reacted and esterified.
  • the terminal is reacted with alcohols, aryl alcohols or phenols, for example, alcohols selected from alcohols having 1 to 10 carbon atoms, aryl alcohols selected from benzyl alcohol or substituted benzyl alcohols, Or it means reacting phenols selected from phenol or substituted phenols with carboxyl end groups to alkyl esters, aryl esters or phenyl esters.
  • alcohols selected from alcohols having 1 to 10 carbon atoms
  • aryl alcohols selected from benzyl alcohol or substituted benzyl alcohols or reacting phenols selected from phenol or substituted phenols with carboxyl end groups to alkyl esters, aryl esters or phenyl esters.
  • the end group is methyl ester (—COOMe)
  • —COOEt ethyl ester
  • benzyl alcohol benzyl ester
  • the porous cyclodextrin polymer of the present invention may be a composition in which polymers having different molecular weights are mixed.
  • the chemical structural formula of the cyclodextrin polymer used in the present invention can be represented, for example, by the following formula:
  • the cyclodextrin part is represented by a truncated cone, and terephthalic acid is used as the organic dibasic acid. Hydroxyl groups and organic dibasic acids in cyclodextrin are alternately bonded by ester bonds to form a network structure. The polymer ends are capped with methyl groups as a result of reaction with methanol.
  • One acid chloride group (—COCl) of terephthaloyl dichloride reacts with the —CH 2 OH group of ⁇ -cyclodextrin to form an ester bond.
  • the other acid chloride group then reacts with the —CH 2 OH group of another ⁇ -cyclodextrin. This is repeated to obtain a condensation polymer.
  • the substituent involved in the condensation is a moiety of —CH 2 OH, and such groups are 6 for ⁇ -cyclodextrin and 7 for ⁇ -cyclodextrin. In the case of ⁇ -cyclodextrin, there are 8 molecules in the molecule.
  • the obtained condensate may have a crosslinked structure or a three-dimensional network structure in addition to the one in which cyclodextrin and organic dibasic acid are alternately condensed.
  • the terminal acid chloride group becomes —COOCH 3 .
  • a polymer having a spherical porous shape that is finally obtained as a selective fixing agent of the present invention is obtained.
  • Stirring is performed using a magnetic stirrer or a stirrer bar.
  • a stirrer equipped with a stirring blade can be used to stir evenly so that there is no difference in the stirring speed between the upper part and the lower part of the reaction solution. It is convenient to use a stirrer. For example, as shown in FIG. 4, when using Max Blend with four blades attached at the top, the top and bottom in the reactor can be stirred uniformly.
  • the stirring blade can increase the stirring efficiency
  • various shapes of the stirring blade can be used.
  • the porous shape generally means a shape in which small pores are opened in the polymer.
  • the spherical porous shape means that sphere-shaped minute lumps are aggregated to form a shape having small pores as a whole.
  • FIG. 1 an electron micrograph of the spherical porous cyclodextrin polymer produced in Synthesis Example 1 (end-capped with a methyl group on a condensation polymer of ⁇ -cyclodextrin and terephthaloyl dichloride) used in the present invention is shown in FIG. To According to FIG. 1, it can be seen that the polymer used in the present invention has a porous shape in which fine spherical crystals are aggregated.
  • a chemical method such as acid / alkali treatment or a foaming method during production is well known.
  • the polymer used as the selective fixing agent of the present invention can have a special shape by stirring during condensation.
  • FIG. 2 shows an electron micrograph of the condensation polymer of ⁇ -cyclodextrin and terephthaloyl dichloride produced in Comparative Synthesis Example 1 (a polymer whose terminal is not end-capped with alcohol or the like). It can be seen that the polymer of FIG. 2 also has a porous shape, but the spherical crystal spheres are incomplete. The polymer in FIG. 2 is shaped like a fusion of spheres, and can be said to have a smaller surface area than the polymer in FIG. Further, an electron micrograph of the polymer synthesized in Comparative Synthesis Example 2 is shown in FIG. It is surprising that a slight difference in the microstructure of the polymer shows a difference in the performance of the halogenated aromatic compound contained in the organic medium as a selective fixing agent.
  • FIG. 1 is an electron micrograph of a porous cyclodextrin polymer (terephthalic acid ⁇ -CD-methyl polymer) of the present invention.
  • FIG. 2 is an electron micrograph of a condensation polymer (Comparative Synthesis Example 1) produced by a method according to JP-A-2009-95792.
  • FIG. 3 is an electron micrograph of a polymer produced by the method according to Japanese Patent No. 3010602 (Comparative Synthesis Example 2).
  • FIG. 4 is a schematic view of an example of a stirring blade used in the method of the present invention.
  • FIG. 4a is a side view of a stirring blade that can be used in the method of the present invention.
  • FIG. 4b is a top view of a stirring blade that can be used in the method of the present invention.
  • a cyclodextrin polymer obtained by condensing a cyclodextrin and an organic dibasic acid and reacting an alcohol, an aryl alcohol or a phenol with a terminal is exemplified by the following method: Can be manufactured with: ⁇ -cyclodextrin is dissolved in an organic solvent (for example, pyridine, dimethyl sulfoxide, dimethylformamide, etc., preferably dry pyridine).
  • an organic solvent for example, pyridine, dimethyl sulfoxide, dimethylformamide, etc., preferably dry pyridine.
  • terephthaloyl dichloride is dissolved in an organic solvent (for example, tetrahydrofuran, dichloromethane, 1,4-dioxane, etc., preferably dry tetrahydrofuran) and added dropwise to the previously prepared ⁇ -cyclodextrin solution.
  • an organic solvent for example, tetrahydrofuran, dichloromethane, 1,4-dioxane, etc., preferably dry tetrahydrofuran
  • the reactor is then placed in a 50-70 ° C. water bath and the reaction mixture is stirred vigorously.
  • the temperature in the reaction vessel is slightly lowered (approximately 5 to 10 ° C.), alcohols (alcohols having 1 to 10 carbon atoms such as methanol, ethanol, propanol, butanol, octanol), aryl alcohols (benzyl alcohol or Benzyl alcohol substituted with alkyl, aryl or acyl groups) or phenols (phenols substituted with phenol, alkyl, aryl or acyl groups) are added and stirring is continued.
  • the obtained crystals are washed with a washing liquid such as alcohols, water, and acetone, and dried.
  • ⁇ -cyclodextrin and terephthalic acid are condensed to form cyclohexane in which alcohols, aryl alcohols, or phenols are reacted at the terminal.
  • a dextrin polymer can be obtained.
  • ⁇ -cyclodextrin ⁇ - and ⁇ -cyclodextrin can form similar condensation polymers.
  • the polymers thus obtained are referred to as “terephthalic acid- ⁇ -CD-methyl polymer” (when the terminal is treated with methanol), “terephthalic acid- ⁇ -CD-ethyl polymer” (terminal is ethanol).
  • ⁇ -CD ⁇ -cyclodextrin
  • terephthalic acid- ⁇ -CD terephthalic acid- ⁇ -CD
  • TPGCDM polymer a polymer obtained by condensing a commercially available ⁇ -cyclodextrin (hereinafter referred to as “ ⁇ -CD”) and terephthaloyl dichloride with a methyl group
  • TPGCDM polymer a specific synthesis method of “methyl polymer” or “TPGCDM polymer”.
  • ⁇ -CD is dissolved in an organic solvent (for example, pyridine, dimethyl sulfoxide, dimethylformamide, 1-methylimidazole, etc.).
  • concentration of ⁇ -CD in the organic solvent is preferably 5 to 20% by weight.
  • terephthaloyl dichloride prepared ⁇ -CD in an organic solvent (eg, tetrahydrofuran, dichloromethane, 1,4-dioxane, xylene, dimethylformamide, toluene, etc.) at a concentration of 10 to 40 wt. It is dissolved in% and added dropwise to the previously prepared ⁇ -CD solution and stirred vigorously. Stirring is performed using a magnetic stirrer or a stirrer bar. Especially, a stirrer equipped with a stirring blade can be used to stir evenly so that there is no difference in the stirring speed between the upper part and the lower part of the reaction solution. It is convenient to use a stirrer.
  • an organic solvent eg, tetrahydrofuran, dichloromethane, 1,4-dioxane, xylene, dimethylformamide, toluene, etc.
  • the top and bottom in the reactor can be stirred uniformly.
  • various shapes of the stirring blade can be used.
  • the ⁇ -CD solution is preferably dropped while being cooled in an ice bath or the like.
  • the temperature in the reaction vessel is maintained in the range of about 0-20 ° C. After the dropwise addition, the temperature in the reaction vessel is raised to a range of about 40 to 70 ° C. and stirred.
  • the temperature in the reaction vessel is slightly lowered to about 60 to 65 ° C., and then an alcohol (preferably an aliphatic having 1 to 10 carbon atoms) in an amount of 30 to 80% by weight with respect to ⁇ -CD.
  • Alcohols preferably an aliphatic having 1 to 10 carbon atoms
  • aryl alcohols preferably benzyl alcohol or substituted benzyl alcohol
  • phenols preferably phenol or substituted phenols
  • the precipitated crystals are collected by filtration, washed with water and acetone, and the cyclodextrin polymer of the present invention (terephthalic acid- ⁇ -CD-methyl). Polymer) can be obtained.
  • the obtained polymer can be identified by infrared absorption, and the morphology can be observed with an electron microscope.
  • the cyclodextrin polymer of the present invention Comparing the cyclodextrin polymer of the present invention with the cyclodextrin polymer prepared by the conventional method and the conventional condensation polymer without end caps, the cyclodextrin polymer of the present invention has a form in which fine spherical crystals are assembled. You can see that The cyclodextrin polymer of the present invention has a more complete spherical shape, and no collapse or distortion is observed. The cyclodextrin polymer of the present invention has a larger surface area than conventional polymers and can be brought into contact with more organic liquid.
  • the compound that interacts with the halogenated aromatic compound obtained by such a method in an attractive manner can be used as it is as a selective fixing agent, and it is selectively fixed with various additives or auxiliaries added as necessary. It can be set as an agent composition.
  • the cyclodextrin polymer of the present invention is used for the separation of a compound contained in an organic liquid, the cyclodextrin polymer is packed in, for example, a column and the desired liquid can be simply passed through the organic liquid. Compounds can be separated.
  • the organic medium containing the halogenated aromatic compound used in the present invention contains at least one halogenated aromatic compound described above.
  • the halogenated aromatic compound may be dissolved at any concentration in the organic medium.
  • trace amount particularly when the content of the halogenated aromatic compound is about 0.5 to 1%, “trace amount”, “trace amount” or “low concentration” It is said to contain.
  • an organic medium containing a low concentration of a halogenated aromatic compound has a very small volume of the halogenated aromatic compound to be treated, but the volume of the organic medium itself becomes very large, thus making storage difficult. Chemical treatment takes a lot of time.
  • halogenated aromatic compound dissolved in an extremely small amount can be concentrated and separated from an organic medium and separated into a halogenated aromatic compound to be treated and a reusable organic medium, the halogenated aromatic compound While the processing efficiency of the compound increases, the problem of storage of such organic media can also be solved.
  • Organic media that are particularly likely to contain a halogenated aromatic compound include various organic liquids, insulating oils, machine oils, heat media, lubricating oils, plasticizers, paints, inks, and mixtures thereof.
  • An organic medium containing a halogenated aromatic compound is placed in a reaction vessel. You may use the storage container which stores these organic media as a reaction container as it is.
  • the present invention includes a compound that interacts with a halogenated aromatic compound in an attractive manner 10 times to 50 times, preferably 50 to 200 times (molar basis) with respect to the contained halogenated aromatic compound. Add the selective fixing agent and stir well.
  • a compound that interacts with the halogenated aromatic compound, which is an active component in the selective fixing agent of the present invention, or a composition containing such a compound is dispersed in an organic medium and halogenated in the organic medium.
  • the halogenated aromatic compound is fixed to or near the attractive interaction portion by the interaction with the attractive interaction portion in the compound that interacts with the halogenated aromatic compound.
  • the contact can be generally made by a method such as stirring for 5 hours to several days.
  • the fixing reaction can be suitably performed at room temperature, and can be heated as necessary.
  • the attractive interaction compound to which the halogenated aromatic compound is fixed Only (or the composition containing the compound) is isolated.
  • Separation may be performed using an existing solid-liquid separation technique, for example, a method using a centrifugal separator or a pressure filter.
  • the filter for separation can be performed using a commercially available filter, glass filter, membrane, absorbent cotton, metal, resin or the like. Any filter or membrane may be used as long as it has a pore size capable of separating the inclusion compounds contained in the selective fixing agent of the present invention, but in consideration of the particle size of a general interaction compound. It is preferable to use one having a pore diameter of about 0.1-100 ⁇ m.
  • the aspiration interaction compound to which the halogenated aromatic compound obtained by separation is fixed is separated from the halogenated aromatic compound, which is fixed, if necessary, and the halogenated aromatic compound to which the suction interaction compound is fixed or After the halogenated aromatic compound obtained by the desorption operation is diluted as necessary, it can be decomposed by a chemical processing method such as a chemical extraction decomposition method.
  • the active component a compound that interacts with the halogenated aromatic compound in a suction manner, for example, silica gel, polymer beads, ion exchange resin, foam, film, membrane, various lattice-like structures and Those immobilized on a carrier such as a net-like structure or a porous material can be preferably used.
  • a solid carrier such as silica gel, polymer beads, or ion exchange resin, on which the attractive interaction compound of the present invention is supported, is laminated in a column, and an organic medium containing a halogenated aromatic compound is placed under normal pressure or By flowing under pressure and interacting with the attractive interaction compound, it becomes possible to effectively remove the halogenated aromatic compound contained in the organic medium.
  • the organic medium containing a halogenated aromatic compound is filtered into the organic medium at normal pressure or reduced pressure using a solid carrier such as a filter or membrane that supports the suction interaction compound of the present invention. It becomes possible to remove the halogenated aromatic compound by fixing the contained halogenated aromatic compound to the membrane or filter.
  • a solid carrier such as a foam, a net-like structure, a lattice-like structure, or a porous material that is loaded with the attractive interaction compound of the present invention is put into an organic medium containing a halogenated aromatic compound.
  • the organic carrier is absorbed in the net-like portion, lattice-like portion or pore portion of the solid support, the contained halogenated aromatic compound is fixed, and then the solid support is pressurized (for example, squeezed, if necessary) Etc.) to obtain an organic medium from which the halogenated aromatic compound has been removed.
  • composition in which a compound that interacts with the halogenated aromatic compound of the present invention in an attractive manner is immobilized on a solid support is obtained by batch treatment from an organic medium containing a halogenated aromatic compound.
  • a method for removing a compound it is also very suitably used in a method for continuous treatment.
  • a porous polymer itself which is an active component, which interacts with a halogenated aromatic compound in a suction manner, is packed in a column or the like, and an organic medium containing the halogenated aromatic compound is subjected to normal pressure. It is also possible to remove the halogenated aromatic compound from the organic medium by flowing under pressure.
  • the selective fixing agent of the present invention can selectively fix the halogenated aromatic compound contained in the organic medium and remove it from the organic medium.
  • the selective fixing agent of the present invention only a halogenated aromatic compound that requires strict decomposition treatment is required from an organic medium that must be stored because a trace amount of the halogenated aromatic compound is dissolved. Can be removed and concentrated, so that the decomposition efficiency of halogenated aromatic compounds is dramatically increased, while the safe organic medium recovered efficiently can be processed or reused in the usual way It becomes.
  • the method for removing the halogenated aromatic compound contained in the organic medium using the selective fixing agent of the present invention is the method of introducing and dispersing the selective fixing agent in the organic medium, and stirring the halogenated aromatic compound by stirring or the like.
  • the selective fixing agent of the present invention when a substance in which a compound that interacts with a halogenated aromatic compound is fixed to various solid carriers is used, the halogenated aromatic compound contained in the organic medium is continuously added. It can be removed.
  • terephthaloyl dichloride (78.3 g, 0.39 mol, Tokyo Chemical Industry) dissolved in special grade tetrahydrofuran (220 mL, Wako Pure Chemical Industries) was added dropwise over 1 hour. After dropping, the ice bath was removed, and the mixture was stirred for 3 hours at an internal temperature of 70 ° C. with a hot water bath (70 ° C.). After completion of the reaction, the internal temperature was lowered to 65 ° C., primary methanol (100 ml, Pure Chemical Industries) was added, and the mixture was stirred for 2 hours.
  • TPGCDM terephthalic acid- ⁇ -CD-methyl polymer
  • Example 1 2,2 ', 3,3', 5,5'-hexachlorobiphenyl (hereinafter referred to as "2,2'3,3'5,5'-HECBP") using TPGCDM polymer.
  • Selective fixing A stainless steel column (4mm ID x 10mm length) packed with TPGCDM polymer (240mg) is installed in an oven with temperature control, and 2,2 ', 3,3', 5,5'-HECBP in the column
  • the contained insulating oil (concentration: 100 ppm, total weight: 400 mg, high-pressure insulating oil from Taniguchi Oil Refinery Co., Ltd.) was poured in with nitrogen gas and poured at 130 ° C. to obtain 349 mg of insulating oil.
  • PCB polychlorinated biphenyl
  • TPBCDE terephthalic acid- ⁇ -CD-ethyl polymer
  • primary ethanol Pure Chemical
  • TPBCDP terephthalic acid- ⁇ -CD-propyl polymer
  • terephthalic acid- ⁇ -CD-benzyl polymer (hereinafter referred to as “TPBCDB”) was synthesized using special grade 2-benzyl alcohol (Pure Chemical) (Synthesis Example 5).
  • TPBCDO terephthalic acid- ⁇ -CD-octyl polymer
  • TPBCDO terephthalic acid- ⁇ -CD-octyl polymer
  • Example 3 Selective fixation of 2,2'3,3'5,5'-HECBP with TPBCDM polymer Stainless steel column (inner diameter 4 mm) packed with TPBCDM polymer (350 mg) obtained in Synthesis Example 2 above ⁇ 10 mm in length) installed in an oven with temperature control, and 2,2 ', 3,3', 5,5'-HECBP-containing insulating oil (concentration: 100 ppm, total weight: 350 mg) in the column
  • the insulating oil was Taniguchi Petroleum Refining Co., Ltd., high-pressure insulating oil) which was poured with nitrogen gas and poured out at 130 ° C. to obtain 269 mg of insulating oil.
  • Example 8 Selective fixing of PCB with TPBCDM polymer A stainless steel column (inner diameter 8 mm x length 300 mm) packed with the TPBCDM polymer (2.0 g) obtained in Synthesis Example 2 was mounted in an oven with temperature control. The actual liquid (PCB concentration: 26.5 ppm, total weight: 2.0 g) used in Example 2 was poured into the column with nitrogen gas and poured out at 130 ° C. to obtain 962 mg of insulating oil. When the PCB concentration of the insulating oil was measured by gas chromatography, it did not contain PCB. The results are listed in Table 2.
  • terephthalic acid- ⁇ -CD polymer Synthesis of condensation polymer of ⁇ -CD and terephthalic acid (hereinafter referred to as “terephthalic acid- ⁇ -CD polymer”) As a comparative example, the terminal is not treated with alcohols or the like.
  • Terephthalic acid ⁇ -CD was synthesized according to the method described in Synthesis Example 1 of JP-A-2009-95792.
  • TPGCD terephthalic acid- ⁇ -CD polymer
  • the TPGCD polymer (the porous cyclodextrin polymer reacted with methanol at the end according to the present invention) has better adsorption performance than the TPGCD polymer (the polymer not reacted with methanol at the end). I found it.
  • Comparative Synthesis Example 2 A stainless steel column (inner diameter 4 mm x length 10 mm) packed with polymer (350 mg) was installed in a temperature-controlled oven, and 2,2 ', 3,3', 5,5 Insulating oil (100 ppm, 350 mg) containing '-hexachlorobiphenyl (2,2', 3,3 ', 5,5'-HECBP) was poured with nitrogen gas and poured out at 130 ° C to give 298 mg of insulating oil was gotten. The 2,2 ', 3,3', 5,5'-HECBP concentration of the insulating oil was measured by gas chromatography, and the 2,2 ', 3,3', 5,5'-HECBP concentration was 96.1 ppm. Met. That is, it was found that the polymer synthesized in Comparative Synthesis Example 2 cannot effectively adsorb the halogenated aromatic compound.
  • Comparative Synthesis Example 2 A stainless steel column (inner diameter 8 mm x length 300 mm) packed with polymer (2.0 g) was mounted in an oven with temperature control, and the actual liquid (26.5 ppm, 2.0 g) was placed in the column with nitrogen gas. After pouring and pouring at 130 ° C., 0.96 g of insulating oil was obtained. When the PCB concentration of the insulating oil was measured by gas chromatography, the PCB concentration was 26.2 ppm. That is, it was found that the polymer synthesized in Comparative Synthesis Example 2 cannot effectively adsorb PCB in the actual liquid.
  • insulating oil heat medium, lubricating oil, plasticizer, paint, ink, etc. that may contain halogenated aromatic compounds as toxic substances such as dioxins and polychlorobiphenyls that cannot be easily released to the environment.
  • halogenated aromatic compounds as toxic substances such as dioxins and polychlorobiphenyls that cannot be easily released to the environment.
  • the simultaneous disassembling process and saving of the storage space for such a medium can be realized at the same time.

Abstract

An agent for selectively anchoring a halogenated aromatic compound contained in an organic medium, which comprises a porous cyclodextrin polymer, wherein the porous cyclodextrin polymer is produced by reacting the terminal of a polymer produced by the condensation of cyclodextrin with an organic dibasic acid or a halogenated organic dibasic acid with an alcohol, an aryl alcohol or a phenol and can interact with a halogenated aromatic compound in an attractive manner; and a selective anchoring agent which can selectively anchor a halogenated aromatic compound contained in an organic medium to remove or concentrate the halogenated aromatic compound from the organic medium, whereby the decomposition of the halogenated aromatic compound can be achieved in a simple manner.

Description

媒体に含有されるハロゲン化芳香族化合物の選択固着剤及び選択固着方法Selective fixing agent and selective fixing method of halogenated aromatic compound contained in medium
 本発明は、絶縁油、機械油、熱媒体、潤滑油、可塑剤、塗料及びインキ及びこれらの混合物等に代表される有機媒体中に含有されたハロゲン化芳香族化合物を捕集することのできる選択固着剤、及び、これを用いてハロゲン化芳香族化合物をほとんど含有しない有機媒体を得る方法に関する。より詳細には、シクロデキストリンと有機二塩基酸とを縮合させ、得られた縮合ポリマーの末端にアルコール類、アリールアルコール類、またはフェノール類をエステル化させることにより得ることができる、新規な構造を有する多孔質のシクロデキストリンポリマーを用いて、有機媒体に含有されたハロゲン化芳香族化合物を選択的に固着する方法に関する。さらに本発明は、上記の新規な構造を有するシクロデキストリンポリマーならびにその製造方法に関する。本発明に係るポリマーは、特徴的な球状多孔質形状を有し、これにより有機媒体中に含有された各種化合物を選択的かつ効率的に固着することが出来る。 The present invention can collect a halogenated aromatic compound contained in an organic medium typified by insulating oil, machine oil, heat medium, lubricating oil, plasticizer, paint and ink, and mixtures thereof. The present invention relates to a selective fixing agent and a method for obtaining an organic medium containing almost no halogenated aromatic compound using the selective fixing agent. More specifically, a novel structure that can be obtained by condensing cyclodextrin with an organic dibasic acid and esterifying alcohols, aryl alcohols, or phenols at the terminal of the resulting condensation polymer has a novel structure. The present invention relates to a method for selectively fixing a halogenated aromatic compound contained in an organic medium using a porous cyclodextrin polymer having the same. Furthermore, this invention relates to the cyclodextrin polymer which has said novel structure, and its manufacturing method. The polymer according to the present invention has a characteristic spherical porous shape, whereby various compounds contained in an organic medium can be selectively and efficiently fixed.
 ハロゲン化芳香族化合物は、人体、動植物に対して強い毒性を示す化合物であり、特に催奇形性などのおそれから、有害物質として廃棄物の処理及び清掃に関する法律により指定されているものが多数ある。これら化合物が土壌、地下水、焼却灰、洗浄水、機械油等に存在する場合は、何らかの処理を施してこれらの濃度を基準値以下に減少させなければならないことが厳密に定められている。 Halogenated aromatic compounds are compounds that are highly toxic to humans, animals and plants, and many of them are designated by the Law on Waste Disposal and Cleaning as hazardous substances, especially because of the potential for teratogenicity. . When these compounds are present in soil, groundwater, incineration ash, washing water, machine oil, etc., it is strictly determined that some treatment must be applied to reduce their concentration below the reference value.
 従来、ハロゲン化芳香族化合物が含有された絶縁油等の有機媒体は、原姿のまま化学処理されていた(特許第2611900号、特許第3247505号)。ところが、近年、日本国内において、ポリクロロビフェニル類(以下、「PCB」と称する)の不含見解書又はPCB不含証明書のない再生油はもとより、PCB不含見解書又はPCB不含証明書のある絶縁油(新油、再生油)からも、極微量(0.5―100ppm程度、特に0.5~10ppm程度)のハロゲン化芳香族化合物を含有する有機媒体が次々と確認されている。このような大量の有機媒体を従来方法にて化学的に処理するには多大な時間と有用なエネルギーを要することから効率的そして経済的にも問題が残る。 Conventionally, an organic medium such as insulating oil containing a halogenated aromatic compound has been chemically treated as it is (Patent No. 2611900, Patent No. 3247505). However, in recent years, in Japan, as well as reclaimed oil without polychlorinated biphenyls (hereinafter referred to as “PCB”) or reclaimed oil without a PCB, it does not contain a PCB or a certificate that does not contain a PCB. Insulating oils (new oils and reclaimed oils) that have a large number of organic media containing halogenated aromatic compounds in trace amounts (about 0.5 to 100 ppm, especially about 0.5 to 10 ppm) have been confirmed one after another. The chemical treatment of such a large amount of organic medium by a conventional method requires a great deal of time and useful energy, so that there remains a problem efficiently and economically.
 一方、ハロゲン化芳香族化合物を含有する有機媒体を焼却する方法もとりうるが、ダイオキシン対策等の困難な課題が多く、環境に対する安全性に疑問が残る。 On the other hand, an organic medium containing a halogenated aromatic compound can be incinerated, but there are many difficult issues such as dioxin countermeasures, and there are still doubts about environmental safety.
 現在、ハロゲン化芳香族化合物処理技術は、ハロゲン化芳香族化合物を微量に含有する媒体のみならず、ハロゲン化芳香族化合物自体を処理する技術も確立されており、ハロゲン化芳香族化合物及びハロゲン化芳香族化合物を高濃度(1%以上)に含有する高濃度含有媒体を直接処理するプロセス(以下「高濃度処理」と記載することとする)が稼働し始めている(特開2003-112034号)。 Currently, as for halogenated aromatic compound processing technology, not only a medium containing a trace amount of a halogenated aromatic compound but also a technology for processing a halogenated aromatic compound itself has been established. A process (hereinafter referred to as “high concentration treatment”) for directly treating a high concentration medium containing an aromatic compound at a high concentration (1% or more) has started to operate (Japanese Patent Laid-Open No. 2003-112034) .
 そこで、極微量に含有されるハロゲン化芳香族化合物を選択的に固着することにより該ハロゲン化芳香族化合物を濃縮すれば、上述の高濃度処理によりハロゲン化芳香族化合物のみを効率的に処理することが可能となり、ハロゲン化芳香族化合物を除去した媒体は該不含有として用途の道が開けるとともに処理前の媒体の保管場所を節約することができる。 Therefore, if the halogenated aromatic compound is concentrated by selectively fixing the halogenated aromatic compound contained in a trace amount, only the halogenated aromatic compound is efficiently treated by the above-described high concentration treatment. As a result, the medium from which the halogenated aromatic compound has been removed can be used as a non-contained medium, and the storage place of the medium before processing can be saved.
 特開平5-31212号には、修飾シクロデキストリンを用いて有機ハロゲン化合物包接錯体を形成する有機ハロゲン化合物の捕集方法が開示されている。しかし特開平5-31212号に記載される方法は、親水性の該修飾シクロデキストリンを用いて水溶液に含まれる有機ハロゲン化合物を捕集する方法に関し、親油性でない該修飾シクロデキストリンを用いる当該方法を有機媒体系にそのまま適用することは困難である。 JP-A-5-31212 discloses a method for collecting an organic halogen compound that forms an organic halogen compound inclusion complex using a modified cyclodextrin. However, the method described in JP-A-5-31212 relates to a method for collecting an organic halogen compound contained in an aqueous solution using the hydrophilic modified cyclodextrin, and the method using the modified cyclodextrin that is not lipophilic. It is difficult to apply as it is to an organic medium system.
 このような観点から、本発明者らは、特に有機媒体に含有されるハロゲン化芳香族化合物と吸引的に相互作用することによってハロゲン化芳香族化合物を選択的に固着することができる化合物を鋭意探索し、シクロデキストリンと有機二塩基酸とを縮合させて得たポリマーを含有する選択固着剤を提案した(特開2009-95792号)。シクロデキストリンと有機二塩基酸とを縮合させて得たポリマーを含有するポリマーは、有機媒体に含有されたハロゲン化芳香族化合物を選択的に固着することができ、これとハロゲン化芳香族化合物を含有する有機媒体とを接触させることによりハロゲン化芳香族化合物をほとんど含有しない有機媒体を得ることが出来ることが実施例にて明らかにされている。しかしながら本先行技術では、ハロゲン化芳香族化合物をほとんど含有しない有機媒体の回収率がさほど高くないため(実施例では21~34%)、有機媒体の回収率をより高めることのできる選択固着剤の開発が望まれる。 From this point of view, the present inventors have earnestly devised a compound that can selectively fix a halogenated aromatic compound by interacting with a halogenated aromatic compound contained in an organic medium in an attractive manner. In search, a selective fixing agent containing a polymer obtained by condensing cyclodextrin and organic dibasic acid was proposed (Japanese Patent Laid-Open No. 2009-95792). A polymer containing a polymer obtained by condensing a cyclodextrin and an organic dibasic acid can selectively fix a halogenated aromatic compound contained in an organic medium. It has been clarified in the Examples that an organic medium containing almost no halogenated aromatic compound can be obtained by bringing the organic medium into contact therewith. However, in this prior art, since the recovery rate of the organic medium containing almost no halogenated aromatic compound is not so high (21 to 34% in the examples), the selective fixing agent that can further increase the recovery rate of the organic medium. Development is desired.
 一方、特許第3010602号には、種々のシクロデキストリンポリマーの合成方法が開示されているが、これらを有機媒体と接触させ、含有されたハロゲン化芳香族化合物を選択的に固着させることについては開示していない。 On the other hand, Japanese Patent No. 3010602 discloses various methods for synthesizing cyclodextrin polymers. However, it is disclosed that these compounds are brought into contact with an organic medium to selectively fix a halogenated aromatic compound contained therein. Not done.
 上記の特開平5-31212号、特開2009-95792号および特許第3010602号にも開示されているとおり、種々の化合物を包接することのできる化合物として、シクロデキストリンがよく知られている。シクロデキストリンは、6個、7個、または8個のグルコースが環状に結合した環状オリゴ糖であり、それぞれα-、β-またはγ-シクロデキストリンと称される。シクロデキストリンは、その環状空孔内に種々の化合物を包接する性質を有している。この性質により、シクロデキストリンに疎水性の物質を包接させて水に溶解させたり、あるいは各種吸着・分離の操作等に用いたりすることができる。しかしながらシクロデキストリンは水溶性が高いため、有機溶媒中での用途は限られている。そこでシクロデキストリンを水不溶性にする試みが種々行われている。 As disclosed in JP-A-5-31212, JP-A-2009-95792 and Japanese Patent No. 3010602, cyclodextrin is well known as a compound that can include various compounds. Cyclodextrins are cyclic oligosaccharides in which 6, 7, or 8 glucoses are linked in a cyclic manner and are called α-, β-, or γ-cyclodextrin, respectively. Cyclodextrins have the property of enclosing various compounds in their cyclic vacancies. Due to this property, a hydrophobic substance can be included in cyclodextrin and dissolved in water, or used for various adsorption / separation operations. However, since cyclodextrin is highly water-soluble, its use in organic solvents is limited. Various attempts have been made to make cyclodextrin water insoluble.
 シクロデキストリンを水不溶性にする試みとして、高分子化する方法が挙げられる。これまでにクロロメチルポリスチレンにシクロデキストリン誘導体を反応させたものや、水不溶性高分子化合物にシクロデキストリンを固定化させたものが古くから知られている。またシクロデキストリンをエピクロロヒドリンで架橋させて高分子化合物としたものもよく知られている。 As an attempt to make cyclodextrin water insoluble, there is a method of polymerizing it. So far, the reaction of chloromethylpolystyrene with a cyclodextrin derivative and the immobilization of cyclodextrin on a water-insoluble polymer compound have been known for a long time. In addition, a polymer compound obtained by crosslinking cyclodextrin with epichlorohydrin is well known.
 特開2009-95792号は、シクロデキストリンと有機二塩基酸とを縮合させてハロゲン化芳香族化合物と吸引的に相互作用するポリマーの製造について開示する。上にも述べたとおり、特開2009-95792号で製造されるポリマーは、末端が二塩化フタル酸由来のカルボキシル基である。 JP-A-2009-95792 discloses the production of a polymer that interacts with a halogenated aromatic compound by suction by condensing a cyclodextrin and an organic dibasic acid. As described above, the polymer produced in JP-A-2009-95792 is terminated with a carboxyl group derived from phthalic dichloride.
 特許第3010602号は、シクロデキストリンとテレフタル酸とを反応させ、高分子化することを開示している。特許第3010602号では、シクロデキストリンと二塩化テレフタロイルとを縮合させて、末端が二塩化テレフタロイル由来のカルボキシル基であるシクロデキストリンポリマーを製造する方法、シクロデキストリンとテレフタル酸ジメチルとを縮合させて、末端がテレフタル酸ジメチル由来のメチルエステルであるシクロデキストリンポリマーを製造する方法、ならびにシクロデキストリンと各種有機二塩基酸とを縮合させて架橋化シクロデキストリンポリマーを製造する方法についてそれぞれ開示している。特許第3010602号の実施例には、このように製造されたシクロデキストリンポリマーはフィルム状に成形することができ、特定の酵素によって分解することが記載されている。 Patent No. 3010602 discloses that cyclodextrin and terephthalic acid are reacted to form a polymer. In Patent No. 3010602, a method for producing a cyclodextrin polymer having a terminal carboxyl group derived from terephthaloyl dichloride by condensing cyclodextrin and terephthaloyl dichloride, condensing cyclodextrin and dimethyl terephthalate, Discloses a method for producing a cyclodextrin polymer, which is a methyl ester derived from dimethyl terephthalate, and a method for producing a crosslinked cyclodextrin polymer by condensing cyclodextrin and various organic dibasic acids. The example of Japanese Patent No. 3010602 describes that the cyclodextrin polymer thus produced can be formed into a film and decomposed by a specific enzyme.
 本発明は、有機媒体に含有されるハロゲン化芳香族化合物を選択的に固着し、有機媒体からハロゲン化芳香族化合物を除去するあるいは濃縮することにより、ハロゲン化芳香族化合物のみの分解処理を容易にすることを可能とする選択固着剤を提供することを目的とする。また本発明は、かかる選択固着剤を使用して、有機媒体中に含有されるハロゲン化芳香族化合物を選択的に捕集し、以ってハロゲン化芳香族化合物を含有しない有機媒体を高い回収率で得る方法を提供する。 The present invention makes it easy to decompose only a halogenated aromatic compound by selectively fixing a halogenated aromatic compound contained in an organic medium and removing or concentrating the halogenated aromatic compound from the organic medium. It is an object of the present invention to provide a selective fixing agent that can be used. Further, the present invention selectively collects a halogenated aromatic compound contained in an organic medium using such a selective fixing agent, and thus recovers an organic medium that does not contain a halogenated aromatic compound at a high recovery rate. Provide a way to get at rates.
 本発明者らは、水溶性であるシクロデキストリンから生成した、水不溶性の新規な多孔質のシクロデキストリンポリマーを選択固着剤として使用して、有機媒体中に含有されるハロゲン化芳香族化合物を選択的に捕集し、ハロゲン化芳香族化合物を含有しない有機媒体を高い回収率で得ることができることを見いだした。 The inventors have selected a halogenated aromatic compound contained in an organic medium using a novel water-insoluble porous cyclodextrin polymer produced from a water-soluble cyclodextrin as a selective fixing agent. It was found that an organic medium containing no halogenated aromatic compound can be obtained at a high recovery rate.
 本発明の態様は、以下の通りである:
1.シクロデキストリンと有機二塩基酸または有機二塩基酸ハロゲン化物とを縮合させたポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させた、ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーを含有する、有機媒体に含有されるハロゲン化芳香族化合物の選択固着剤。
2.有機二塩基酸または有機二塩基酸ハロゲン化物が、テレフタル酸、イソフタル酸、マレイン酸、リンゴ酸、マロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、フタル酸またはこれらのハロゲン化物から選択される、上記1に記載の選択固着剤。
3.アルコール類が炭素数1~10のアルキル基から選択され、アリールアルコール類がベンジルアルコール、またはアルキル、アリール、またはアシル基で置換されたベンジルアルコール類から選択され、フェノール類がフェノール、またはアルキル、アリール、またはアシル基で置換されたフェノールから選択される、請求項1または2に記載の選択固着剤。
4.ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーが、固体担体に固定化されている、上記1~3のいずれかに記載の選択固着剤。
5.ハロゲン化芳香族化合物が、ダイオキシン類、ポリクロロビフェニル類、またはポリクロロベンゼン類である、上記1~4のいずれかに記載の選択固着剤。
6.有機媒体が、有機液体、絶縁油、熱媒体、潤滑油、可塑剤、塗料及びインキ及びこれらの混合物からなる群から選択される、上記1~5のいずれかに記載の選択固着剤。
7.シクロデキストリンと有機二塩基酸または有機二塩基酸ハロゲン化物とを縮合したポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させた、ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーを含有する、ハロゲン化芳香族化合物の選択固着剤と、ハロゲン化芳香族化合物を含有する有機媒体とを接触させ、該有機媒体に含有されたハロゲン化芳香族化合物を該ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーに固着させて、ハロゲン化芳香族化合物を含有しない有機媒体を得ることを特徴とする、方法。
8.有機二塩基酸または有機二塩基酸ハロゲン化物が、テレフタル酸、イソフタル酸、マレイン酸、リンゴ酸、マロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、フタル酸またはこれらのハロゲン化物から選択される、上記7に記載の方法。
9.アルコール類が炭素数1~10のアルキル基から選択され、アリールアルコール類がベンジルアルコール、またはアルキル、アリール、またはアシル基で置換されたベンジルアルコール類から選択され、フェノール類がフェノール、またはアルキル、アリール、またはアシル基で置換されたフェノールから選択される、上記7または8に記載の方法。
10.ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーが、固体担体に固定化されていることを特徴とする選択固着剤を使用する、上記7~9のいずれかに記載の方法。
11.ハロゲン化芳香族化合物が、ダイオキシン類、ポリクロロビフェニル類、またはポリクロロベンゼン類である、上記7~10のいずれかに記載の方法。
12.有機媒体が、有機液体、絶縁油、機械油、熱媒体、潤滑油、可塑剤、塗料及びインキ及びこれらの混合物からなる群から選択される、上記7~11のいずれかに記載の方法。
13.有機溶媒中に溶解したシクロデキストリンに、有機二塩基酸または有機二塩基酸ハロゲン化物含有有機溶媒を滴下して撹拌し、次いでアルコール類、アリールアルコール類、またはフェノール類を添加してエステル化反応させることを含む、多孔質のシクロデキストリンポリマーの製造方法。
14.有機二塩基酸または有機二塩基酸ハロゲン化物が、テレフタル酸、イソフタル酸、マレイン酸、リンゴ酸、マロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、フタル酸またはこれらのハロゲン化物から選択される、上記13に記載の方法。
15.アルコール類が、炭素数1~10を有する脂肪族アルコール類から選択され、アリールアルコール類がベンジルアルコールまたは置換ベンジルアルコールから選択され、フェノール類がフェノールまたは置換フェノール類から選択される、上記13または14に記載の方法。
16.シクロデキストリンを溶解させる有機溶媒が、ピリジン、ジメチルスルホキシド、ジメチルホルムアミド、および1-メチルイミダゾールから選択され、有機二塩基酸または有機二塩基酸ハロゲン化物を溶解させる有機溶媒が、テトラヒドロフラン、ジクロロメタン、1,4-ジオキサン、キシレン、ジメチルホルムアミドおよびトルエンから選択される、上記13~15のいずれかに記載の方法。
Aspects of the present invention are as follows:
1. Porous that interacts with halogenated aromatic compounds in an attractive manner by reacting alcohols, aryl alcohols or phenols at the end of the polymer condensed with cyclodextrin and organic dibasic acid or organic dibasic acid halide Selective fixing agent for halogenated aromatic compounds contained in an organic medium, comprising a high-quality cyclodextrin polymer.
2. The organic dibasic acid or organic dibasic acid halide is selected from terephthalic acid, isophthalic acid, maleic acid, malic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, phthalic acid or their halides 2. The selective fixing agent according to 1 above.
3. The alcohol is selected from an alkyl group having 1 to 10 carbon atoms, the aryl alcohol is selected from benzyl alcohol, or benzyl alcohol substituted with an alkyl, aryl, or acyl group, and the phenol is phenol, alkyl, aryl, or aryl Or a selective sticking agent according to claim 1 or 2, selected from phenols substituted with acyl groups.
4). 4. The selective fixing agent according to any one of 1 to 3 above, wherein a porous cyclodextrin polymer that interacts with a halogenated aromatic compound in an aspiration manner is immobilized on a solid support.
5. 5. The selective fixing agent according to any one of 1 to 4 above, wherein the halogenated aromatic compound is dioxins, polychlorobiphenyls, or polychlorobenzenes.
6). 6. The selective fixing agent according to any one of the above 1 to 5, wherein the organic medium is selected from the group consisting of an organic liquid, an insulating oil, a heat medium, a lubricating oil, a plasticizer, a paint and an ink, and a mixture thereof.
7). Porous that interacts with halogenated aromatic compounds in an attractive manner by reacting alcohols, aryl alcohols or phenols at the end of a polymer obtained by condensing cyclodextrin with organic dibasic acid or organic dibasic acid halide A selective fixing agent for a halogenated aromatic compound containing a cyclodextrin polymer of the above and an organic medium containing a halogenated aromatic compound are brought into contact with each other, and the halogenated aromatic compound contained in the organic medium is subjected to the halogenation. A method characterized in that an organic medium containing no halogenated aromatic compound is obtained by fixing to a porous cyclodextrin polymer that interacts with an aromatic compound in an aspiration manner.
8). The organic dibasic acid or organic dibasic acid halide is selected from terephthalic acid, isophthalic acid, maleic acid, malic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, phthalic acid or their halides 8. The method according to 7 above.
9. The alcohol is selected from alkyl groups having 1 to 10 carbon atoms, the aryl alcohol is selected from benzyl alcohol, or benzyl alcohol substituted with an alkyl, aryl, or acyl group, and the phenol is phenol, alkyl, aryl, or aryl Or the method according to 7 or 8 above, which is selected from phenol substituted with an acyl group.
10. 10. The selective fixing agent according to any one of the above 7 to 9, wherein a selective fixing agent is used, wherein the porous cyclodextrin polymer that interacts with the halogenated aromatic compound in a suction manner is immobilized on a solid support. Method.
11. 11. The method according to any one of 7 to 10 above, wherein the halogenated aromatic compound is dioxins, polychlorobiphenyls, or polychlorobenzenes.
12 12. The method according to any one of 7 to 11 above, wherein the organic medium is selected from the group consisting of organic liquid, insulating oil, machine oil, heat medium, lubricating oil, plasticizer, paint and ink, and mixtures thereof.
13. Add organic dibasic acid or organic dibasic acid halide-containing organic solvent dropwise to cyclodextrin dissolved in organic solvent, and then add alcohols, aryl alcohols, or phenols for esterification reaction A process for producing a porous cyclodextrin polymer.
14 The organic dibasic acid or organic dibasic acid halide is selected from terephthalic acid, isophthalic acid, maleic acid, malic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, phthalic acid or their halides 14. The method according to 13 above.
15. 13 or 14 above, wherein the alcohol is selected from aliphatic alcohols having 1 to 10 carbon atoms, the aryl alcohol is selected from benzyl alcohol or substituted benzyl alcohol, and the phenol is selected from phenol or substituted phenols. The method described in 1.
16. The organic solvent for dissolving cyclodextrin is selected from pyridine, dimethyl sulfoxide, dimethylformamide, and 1-methylimidazole, and the organic solvent for dissolving organic dibasic acid or organic dibasic acid halide is tetrahydrofuran, dichloromethane, 1, 16. The method according to any one of the above 13 to 15, which is selected from 4-dioxane, xylene, dimethylformamide and toluene.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明において「ハロゲン化芳香族化合物」とは、芳香族化合物にフッ素、塩素、臭素及びヨウ素が1以上置換した化合物全般を指す。本発明では、例えばポリクロロビフェニル類(PCB)、ダイオキシン類、フロン類、ポリクロロナフタレン類およびポリクロロベンゼン類等を指す。PCBとは、ビフェニル骨格に塩素原子が数個置換した化合物の総称であり、塩素原子の置換位置、置換数により多数の異性体が存在する。またダイオキシン類とは、狭義の意味ではダイオキシン類対策特別措置法で指定される特定の化合物を指すが、本発明では、いわゆる内分泌撹乱物質(環境ホルモン)として疑われるハロゲン化化合物を全て含む。 In the present invention, the “halogenated aromatic compound” refers to all compounds in which an aromatic compound is substituted with one or more of fluorine, chlorine, bromine and iodine. In the present invention, for example, polychlorobiphenyls (PCB), dioxins, chlorofluorocarbons, polychloronaphthalenes, polychlorobenzenes and the like are indicated. PCB is a general term for compounds in which several chlorine atoms are substituted on the biphenyl skeleton, and there are many isomers depending on the substitution position and the number of substitutions of chlorine atoms. Dioxins refer to specific compounds specified by the Special Measures for Countermeasures against Dioxins in a narrow sense, but in the present invention, all halogenated compounds suspected as so-called endocrine disrupting substances (environmental hormones) are included.
 本発明においてハロゲン化芳香族化合物を含有する「有機媒体」とは、広く一般的に有機溶剤のことであり、特にハロゲン化芳香族化合物を良好に溶解する有機溶剤、さらに詳細には、使用の態様から、ハロゲン化芳香族化合物を含有する可能性の高い絶縁油、機械油、熱媒体、潤滑油、可塑剤、塗料及びインキ及びこれらの混合物等を意味する。本発明において「有機媒体」とは、その大部分(例えば6割以上)が前記の有機媒体であればよく、場合によっては水を含むことがあるが、当該ハロゲン化芳香族化合物を含有する有機媒体全体としての性質は、水溶液でなく、あくまで有機溶液のそれである。 In the present invention, an “organic medium” containing a halogenated aromatic compound is generally an organic solvent, and particularly an organic solvent that dissolves a halogenated aromatic compound well. From the aspect, it means an insulating oil, a machine oil, a heat medium, a lubricating oil, a plasticizer, a paint and an ink, a mixture thereof, and the like that are highly likely to contain a halogenated aromatic compound. In the present invention, the “organic medium” may be the majority of the organic medium (for example, 60% or more), and may contain water depending on the case. However, the organic medium containing the halogenated aromatic compound may be used. The property of the medium as a whole is not that of an aqueous solution but that of an organic solution.
 また、固体物質(例えば紙、木材、焼却灰、岩石、土壌等)に含有されたハロゲン化芳香族化合物を分解処理するために、これら固体物質に含有されたハロゲン化芳香族化合物を抽出して有機媒体に移行させたものも、本発明の選択固着剤の処理対象となる「ハロゲン化芳香族化合物を含有する有機媒体」となりうる。 In addition, in order to decompose halogenated aromatic compounds contained in solid substances (eg paper, wood, incinerated ash, rocks, soil, etc.), the halogenated aromatic compounds contained in these solid substances are extracted. Those transferred to an organic medium can also be an “organic medium containing a halogenated aromatic compound” to be treated with the selective fixing agent of the present invention.
 本明細書において「ハロゲン化芳香族化合物と吸引的に相互作用する」とは、上述のハロゲン化芳香族化合物と吸引的に(すなわち、斥力ではないことを意味する)相互作用することを意味し、このような特性を有する化合物を「ハロゲン化芳香族化合物と吸引的に相互作用する化合物」と総称する。このような化合物は、ハロゲン化芳香族化合物と吸引的に相互作用する環状部分、置換基、シーケンスなどを有する。本明細書において「ハロゲン化芳香族化合物と吸引的に相互作用する化合物」のことを、場合により、単に「吸引的相互作用化合物」「相互作用化合物」あるいは「相互作用する化合物」などと省略して記載することがある。 In the present specification, “interacting with a halogenated aromatic compound in an attractive manner” means interacting with the above-described halogenated aromatic compound in an attractive manner (that is, not repulsive). The compounds having such properties are collectively referred to as “compounds that interact with a halogenated aromatic compound in an attractive manner”. Such compounds have cyclic moieties, substituents, sequences, etc. that interact with the halogenated aromatic compounds in an attractive manner. In the present specification, the “compound that interacts with a halogenated aromatic compound in an attractive manner” is sometimes simply abbreviated as “attractive interactive compound”, “interactive compound” or “interacting compound”. May be described.
 本発明において、ハロゲン化芳香族化合物を「選択的に固着」するとは、有機媒体に溶解、分散等により含有されたハロゲン化芳香族化合物のみ、あるいは当該ハロゲン化芳香族化合物を内部に含む有機媒体分子の会合体と相互作用して、これを取り込むあるいは定着させることをいう。本明細書において「固着」とは、化学的結合や接着、ならびに物理的吸着や吸引、あるいは単に引っかかった状態であるものなどを全て含み、必ずしも定常的に接着されていることを意味するものでない。たとえば、ハロゲン化芳香族化合物と吸引的に相互作用し、所定の時間ごく近距離に位置した状態となる場合や、吸引的な相互作用により所定の時間接触した状態であれば、広い意味で本明細書にいう「固着」した状態に該当するものとする。すなわち本発明の「選択固着剤」とは、選択固着剤に含有される活性成分が、有機媒体中に含有されるハロゲン化芳香族化合物と吸引的に強く相互作用し、ハロゲン化芳香族化合物を活性成分分子構造内にしっかりと取り込むあるいは定着させるような薬剤のほか、かかる活性成分が、ハロゲン化芳香族化合物と少なくとも一時的に接触した状態にあるか、至近距離に位置した状態を維持することができる薬剤を意味する。 In the present invention, “selectively fixing” a halogenated aromatic compound means that only a halogenated aromatic compound contained in the organic medium by dissolution, dispersion, or the like, or an organic medium containing the halogenated aromatic compound therein. Interacts with the association of molecules to take in or fix them. In this specification, “adhesion” includes all chemical bonding and adhesion, and physical adsorption, suction, or just being caught, and does not necessarily mean that it is always adhered. . For example, if it interacts with a halogenated aromatic compound and is located at a very short distance for a predetermined time, or if it is in contact for a predetermined time by an attractive interaction, this It shall correspond to the “fixed” state referred to in the specification. That is, the “selective sticking agent” of the present invention means that the active ingredient contained in the selective sticking agent interacts with the halogenated aromatic compound contained in the organic medium strongly and attractively, In addition to drugs that are firmly incorporated or anchored into the molecular structure of the active ingredient, such active ingredients must be in at least temporary contact with the halogenated aromatic compound or maintained in close proximity. Means a drug that can
 したがって本発明の選択固着剤は、ハロゲン化芳香族化合物と吸引的に相互作用することによりこれらを固着することができる組成物を含む。かかる組成物の活性成分として、シクロデキストリンと有機二塩基酸とを縮合させたポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させた多孔質のシクロデキストリンポリマーが挙げられる。ここに例示するハロゲン化芳香族化合物と吸引的に相互作用する化合物は、分子構造内にハロゲン化芳香族化合物と吸引的に相互作用することが可能なシクロデキストリンの環状部分を分子内に有する化合物であり、この相互作用化合物は、有機媒体に少なくとも分散させることができる。相互作用化合物分子内に存在する吸引的に相互作用する部分、すなわちシクロデキストリンの環状部分と、ハロゲン化芳香族化合物とが相互作用することにより、ハロゲン化芳香族化合物を当該相互作用部分またはその近傍に固着させる。 Therefore, the selective fixing agent of the present invention includes a composition capable of fixing these by attracting interaction with the halogenated aromatic compound. As an active ingredient of such a composition, there can be mentioned a porous cyclodextrin polymer obtained by reacting alcohols, aryl alcohols or phenols at the terminal of a polymer obtained by condensing cyclodextrin and an organic dibasic acid. The compound that interacts with the halogenated aromatic compound exemplified here is a compound having in its molecule a cyclic part of cyclodextrin capable of interacting with the halogenated aromatic compound in the molecular structure. And the interactive compound can be at least dispersed in an organic medium. An interactively interacting moiety present in the molecule of the interacting compound, i.e., the cyclic part of cyclodextrin interacts with the halogenated aromatic compound, thereby allowing the halogenated aromatic compound to interact with or near the interacting part. Secure to.
 本発明の選択固着剤は、前記のハロゲン化芳香族化合物と吸引的に相互作用する化合物を活性成分として含むほか、必要に応じて担体、基材、希釈剤等の助剤を含むことができる。また活性成分であるハロゲン化芳香族化合物と吸引的に相互作用する化合物は、場合により担体または基材に固定化されていても良い。たとえばシリカゲル、ポリマービーズ、イオン交換樹脂、ガラス、フィルタ、メンブレン、各種網状構造物又は格子状構造物、発泡体、多孔質物質などの固体担体にハロゲン化芳香族化合物と吸引的に相互作用する化合物を固定化させることができる。ハロゲン化芳香族化合物と吸引的に相互作用する化合物の担体又は基材への固定化は、たとえば共有結合あるいはイオン結合などに代表される比較的強い化学結合の他、疎水性相互作用、ファンデルワールス力などの比較的弱い力での物理的相互作用によっても行うことができる。 The selective fixing agent of the present invention contains, as an active ingredient, a compound that interacts with the halogenated aromatic compound in an aspirate manner, and may contain auxiliary agents such as a carrier, a substrate, and a diluent as necessary. . In addition, the compound that interacts with the halogenated aromatic compound, which is the active ingredient, in an attractive manner may be immobilized on a carrier or a substrate as the case may be. For example, compounds that interact with halogenated aromatic compounds in aspiration on solid supports such as silica gel, polymer beads, ion exchange resins, glass, filters, membranes, various network or lattice structures, foams, porous materials, etc. Can be immobilized. Immobilization of a compound that interacts with a halogenated aromatic compound to a carrier or a substrate can be carried out by using a relatively strong chemical bond represented by, for example, covalent bond or ionic bond, as well as hydrophobic interaction, van der It can also be performed by physical interaction with a relatively weak force such as a Waals force.
 ハロゲン化芳香族化合物と吸引的に相互作用する化合物として、シクロデキストリンと有機二塩基酸類とを縮合させたポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させたポリマーが挙げられる。シクロデキストリンとは、6個、7個または8個のグルコースが環状に結合した環状オリゴ糖のことであり、それぞれα-、β-またはγ-シクロデキストリンと称される。有機二塩基酸類とは、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸、脂環族ジカルボン酸、脂肪酸を含み、本発明においては、シクロデキストリン分子中の-CHOH基と反応して逐次縮合し、ポリマーを形成しうる化合物のことである。このような有機二塩基酸類として、例えばテレフタル酸、イソフタル酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、フタル酸が挙げられる。有機二塩基酸ハロゲン化物とは、上記の有機二塩基酸類の酸ハロゲン化物を指す。本発明では特に有機二塩基酸であるテレフタル酸、又は有機二塩基酸ハロゲン化物であるテレフタル酸ジクロライド(二塩化テレフタロイル)を用いることが好適である。 Examples of the compound that interacts with the halogenated aromatic compound in an attractive manner include a polymer obtained by reacting an alcohol, an aryl alcohol, or a phenol with a terminal of a polymer obtained by condensing a cyclodextrin and an organic dibasic acid. Cyclodextrins are cyclic oligosaccharides in which 6, 7 or 8 glucoses are cyclically linked, and are called α-, β- or γ-cyclodextrin, respectively. Organic dibasic acids include, for example, aliphatic dicarboxylic acids, aromatic dicarboxylic acids, alicyclic dicarboxylic acids, and fatty acids, and in the present invention, they react with the —CH 2 OH group in the cyclodextrin molecule to sequentially condense. It is a compound that can form a polymer. Examples of such organic dibasic acids include terephthalic acid, isophthalic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, and phthalic acid. The organic dibasic acid halide refers to an acid halide of the above organic dibasic acid. In the present invention, it is particularly preferable to use terephthalic acid which is an organic dibasic acid or terephthalic acid dichloride (terephthaloyl dichloride) which is an organic dibasic acid halide.
 アルコール類、アリールアルコール類またはフェノール類をポリマー末端に反応させる、とは、縮合ポリマーの末端に残る有機二塩基酸由来のカルボキシル基を、特定の置換基でエンドキャップすることを意味する。カルボキシル基をエンドキャップするために、アルコール類、アリールアルコール類またはフェノール類を反応させ、エステル化することができる。本発明において末端にアルコール類、アリールアルコール類またはフェノール類を反応させる、とは、例えば炭素数1~10のアルコールから選択されるアルコール類、ベンジルアルコールまたは置換ベンジルアルコールから選択されるアリールアルコール類、またはフェノールまたは置換フェノール類から選択されるフェノール類をカルボキシル末端基に反応させて、アルキルエステル、アリールエステルまたはフェニルエステルにすることを意味する。例えば縮合ポリマーをメタノールと反応させれば末端基はメチルエステル(-COOMe)となり、エタノールと反応させればエチルエステル(-COOEt)となり、ベンジルアルコールと反応させればベンジルエステル(-COOBz)となる。 Reacting alcohols, aryl alcohols or phenols at the polymer end means end-capping the carboxyl group derived from the organic dibasic acid remaining at the end of the condensation polymer with a specific substituent. To endcap the carboxyl group, alcohols, aryl alcohols or phenols can be reacted and esterified. In the present invention, the terminal is reacted with alcohols, aryl alcohols or phenols, for example, alcohols selected from alcohols having 1 to 10 carbon atoms, aryl alcohols selected from benzyl alcohol or substituted benzyl alcohols, Or it means reacting phenols selected from phenol or substituted phenols with carboxyl end groups to alkyl esters, aryl esters or phenyl esters. For example, when a condensation polymer is reacted with methanol, the end group is methyl ester (—COOMe), when reacted with ethanol, is ethyl ester (—COOEt), and when reacted with benzyl alcohol is benzyl ester (—COOBz). .
 ここで、複数のシクロデキストリンと有機二塩基酸類とが逐次縮合し、この末端をアルコール類、アリールアルコール類またはフェノール類で処理したものであれば、例えばシクロデキストリンと有機二塩基酸類とが合計で数個~10個程度縮合した、いわゆる一般的には「オリゴマー」と呼ばれるような化合物であっても、本明細書では全て「ポリマー」と総称するものとする。本発明の多孔質のシクロデキストリンポリマーは、分子量の異なる重合体が混合した組成物であってもよい。
本発明で用いるシクロデキストリンポリマーの化学構造式は、例えば以下の式で表すことができる:
Here, if a plurality of cyclodextrins and organic dibasic acids are sequentially condensed and this end is treated with alcohols, aryl alcohols or phenols, for example, cyclodextrin and organic dibasic acids in total. Even so-called compounds generally called “oligomers” condensed by several to 10 are collectively referred to as “polymers” in the present specification. The porous cyclodextrin polymer of the present invention may be a composition in which polymers having different molecular weights are mixed.
The chemical structural formula of the cyclodextrin polymer used in the present invention can be represented, for example, by the following formula:
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 この式において、シクロデキストリンの部分は、円錐台形で表されており、有機二塩基酸としてテレフタル酸が用いられている。シクロデキストリン中の水酸基と有機二塩基酸とがエステル結合により交互に結合し、網目状の構造を形成している。そしてポリマーの末端は、メタノールと反応させた結果として、メチル基でキャップされている。 In this formula, the cyclodextrin part is represented by a truncated cone, and terephthalic acid is used as the organic dibasic acid. Hydroxyl groups and organic dibasic acids in cyclodextrin are alternately bonded by ester bonds to form a network structure. The polymer ends are capped with methyl groups as a result of reaction with methanol.
 例えば、γ-シクロデキストリンと、有機二塩基酸ハロゲン化物として二塩化テレフタロイルとを縮合させ、次いで末端にメタノールを反応させた場合、以下のようなスキームで反応が進行し、ポリマーを得ることができる: For example, when γ-cyclodextrin is condensed with terephthaloyl dichloride as an organic dibasic acid halide and then reacted with methanol at the terminal, the reaction proceeds according to the following scheme, and a polymer can be obtained. :
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 二塩化テレフタロイルの一方の酸クロライド基(-COCl)は、γ-シクロデキストリンの-CHOH基と反応し、エステル結合する。そしてもう一方の酸クロライド基は、別のγ-シクロデキストリンの-CHOH基と反応する。これを繰り返し、縮合ポリマーが得られる。シクロデキストリンには多数の水酸基が存在するが、縮合に関与する置換基は-CHOHの部分であり、このような基はα-シクロデキストリンの場合6個、β-シクロデキストリンの場合7個、そしてγ-シクロデキストリンの場合8個分子内に存在する。得られる縮合体は、シクロデキストリンと有機二塩基酸とが交互に縮合したもののほか、架橋構造や3次元網目構造となる場合もある。縮合反応の終了時にメタノールを反応させると、末端の酸クロライド基は-COOCHとなる。 One acid chloride group (—COCl) of terephthaloyl dichloride reacts with the —CH 2 OH group of γ-cyclodextrin to form an ester bond. The other acid chloride group then reacts with the —CH 2 OH group of another γ-cyclodextrin. This is repeated to obtain a condensation polymer. Although many hydroxyl groups exist in cyclodextrins, the substituent involved in the condensation is a moiety of —CH 2 OH, and such groups are 6 for α-cyclodextrin and 7 for β-cyclodextrin. In the case of γ-cyclodextrin, there are 8 molecules in the molecule. The obtained condensate may have a crosslinked structure or a three-dimensional network structure in addition to the one in which cyclodextrin and organic dibasic acid are alternately condensed. When methanol is reacted at the end of the condensation reaction, the terminal acid chloride group becomes —COOCH 3 .
 ここで、シクロデキストリンと有機二塩基酸(又は有機二塩基酸ハロゲン化物)との縮合反応の際に激しく撹拌すると、最終的に得られる本発明の選択固着剤として好適な球状多孔質形状のポリマーを得ることができることを見出した。撹拌は、磁気撹拌子や撹拌棒などを用いて行うが、特に撹拌羽根を備えた撹拌棒を用い、反応液の上部と下部とで撹拌速度に差が出ないよう、満遍なく撹拌することができる撹拌装置を用いて行うと好都合である。例として図4に示すような、上部に4枚羽根を取り付けたマックスブレンドを使用すると、反応器中の上部と下部とで均一に撹拌できる。このほか、撹拌効率を高めることができる撹拌羽根であれば、種々の形状の撹拌羽根を使用することができる。ハロゲン化芳香族化合物の選択的固着剤として使用するためには、多孔質形状、特に球状多孔質の形状のポリマーが得られることが重要であることがわかった。ここで多孔質形状とは、一般にポリマー中に小さい孔が開いている形状のことを意味する。球状多孔質形状とは、球体形状の微小の塊が凝集し、全体として小さい孔が開いた形状を形成していることを意味する。例として、合成例1で製造した本発明に使用する球状多孔質のシクロデキストリンポリマー(γ-シクロデキストリンと二塩化テレフタロイルとの縮合ポリマーにメチル基でエンドキャップしたもの)の電子顕微鏡写真を図1に挙げる。図1によると、本発明に使用するポリマーは、細かい球形の結晶が集合した多孔質形状をしていることがわかる。一般に有機高分子多孔質体を得る方法として、酸・アルカリ処理などの化学的方法や製造時の発泡法などがよく知られている。本発明の選択固着剤として使用するポリマーは、縮合時の撹拌により特殊な形状を有することができる。 Here, when vigorously stirred during the condensation reaction between cyclodextrin and organic dibasic acid (or organic dibasic acid halide), a polymer having a spherical porous shape that is finally obtained as a selective fixing agent of the present invention is obtained. Found that you can get. Stirring is performed using a magnetic stirrer or a stirrer bar. Especially, a stirrer equipped with a stirring blade can be used to stir evenly so that there is no difference in the stirring speed between the upper part and the lower part of the reaction solution. It is convenient to use a stirrer. For example, as shown in FIG. 4, when using Max Blend with four blades attached at the top, the top and bottom in the reactor can be stirred uniformly. In addition, as long as the stirring blade can increase the stirring efficiency, various shapes of the stirring blade can be used. In order to use as a selective fixing agent for halogenated aromatic compounds, it has been found that it is important to obtain a polymer having a porous shape, particularly a spherical porous shape. Here, the porous shape generally means a shape in which small pores are opened in the polymer. The spherical porous shape means that sphere-shaped minute lumps are aggregated to form a shape having small pores as a whole. As an example, an electron micrograph of the spherical porous cyclodextrin polymer produced in Synthesis Example 1 (end-capped with a methyl group on a condensation polymer of γ-cyclodextrin and terephthaloyl dichloride) used in the present invention is shown in FIG. To According to FIG. 1, it can be seen that the polymer used in the present invention has a porous shape in which fine spherical crystals are aggregated. In general, as a method for obtaining a porous organic polymer, a chemical method such as acid / alkali treatment or a foaming method during production is well known. The polymer used as the selective fixing agent of the present invention can have a special shape by stirring during condensation.
 なお、比較のために、比較合成例1で製造した、γ-シクロデキストリンと二塩化テレフタロイルとの縮合ポリマー(末端をアルコールなどでエンドキャップしていないポリマー)の電子顕微鏡写真を図2に示す。図2のポリマーも多孔質形状を有していることがわかるが、球状結晶の球体が不完全であることがわかる。図2のポリマーは球体が融合したような形状であり、図1のポリマーよりも表面積は狭いと云える。さらに比較合成例2で合成したポリマーの電子顕微鏡写真を図3に示す。ポリマーの微細構造のわずかな違いにより、有機媒体に含有されたハロゲン化芳香族化合物の選択固着剤としての性能に違いが見られることは驚くべきことである。 For comparison, FIG. 2 shows an electron micrograph of the condensation polymer of γ-cyclodextrin and terephthaloyl dichloride produced in Comparative Synthesis Example 1 (a polymer whose terminal is not end-capped with alcohol or the like). It can be seen that the polymer of FIG. 2 also has a porous shape, but the spherical crystal spheres are incomplete. The polymer in FIG. 2 is shaped like a fusion of spheres, and can be said to have a smaller surface area than the polymer in FIG. Further, an electron micrograph of the polymer synthesized in Comparative Synthesis Example 2 is shown in FIG. It is surprising that a slight difference in the microstructure of the polymer shows a difference in the performance of the halogenated aromatic compound contained in the organic medium as a selective fixing agent.
図1は、本発明の多孔質のシクロデキストリンポリマー(テレフタル酸γ-CD-メチル高分子)の電子顕微鏡写真である。FIG. 1 is an electron micrograph of a porous cyclodextrin polymer (terephthalic acid γ-CD-methyl polymer) of the present invention. 図2は、特開2009-95792号に従う方法で製造した縮合ポリマー(比較合成例1)の電子顕微鏡写真である。FIG. 2 is an electron micrograph of a condensation polymer (Comparative Synthesis Example 1) produced by a method according to JP-A-2009-95792. 図3は、特許第3010602号に従う方法で製造したポリマー(比較合成例2)の電子顕微鏡写真である。FIG. 3 is an electron micrograph of a polymer produced by the method according to Japanese Patent No. 3010602 (Comparative Synthesis Example 2). 図4は、本発明の方法に使用する撹拌羽根の例の模式図である。図4aは、本発明の方法に使用できる撹拌羽根を横から見た図である。図4bは、本発明の方法に使用できる撹拌羽根を上から見た図である。FIG. 4 is a schematic view of an example of a stirring blade used in the method of the present invention. FIG. 4a is a side view of a stirring blade that can be used in the method of the present invention. FIG. 4b is a top view of a stirring blade that can be used in the method of the present invention.
 本発明の選択固着剤の活性成分としての、シクロデキストリンと有機二塩基酸類とを縮合させ、末端にアルコール類、アリールアルコール類またはフェノール類を反応させたシクロデキストリンポリマーは、例えば以下のような方法で製造することができる:
 γ-シクロデキストリンを有機溶媒(例えばピリジン、ジメチルスルホキシド、ジメチルホルムアミド等。好ましくは乾燥ピリジン)に溶解させる。一方、二塩化テレフタロイルを有機溶媒(例えばテトラヒドロフラン、ジクロロメタン、1,4-ジオキサン等。好ましくは乾燥テトラヒドロフラン)に溶解させ、これを先に用意したγ-シクロデキストリン溶液に滴下する。この際、縮合反応による熱が発生するので、γ-シクロデキストリン溶液を氷浴などで冷却しながら滴下することが望ましい。その後50~70℃の湯浴に反応器をつけて、反応液を激しく撹拌する。反応終了後、反応容器内温を若干(およそ5~10℃)下げ、アルコール類(メタノール、エタノール、プロパノール、ブタノール、オクタノール等の炭素数1~10のアルコール類)、アリールアルコール類(ベンジルアルコールまたはアルキル、アリール、またはアシル基で置換されたベンジルアルコール)またはフェノール類(フェノール、アルキル、アリールまたはアシル基で置換されたフェノール類)を加え、さらに撹拌を続ける。得られた結晶をアルコール類、水、アセトンなどの洗浄液体で洗浄し、乾燥すると、γ-シクロデキストリンとテレフタル酸とを縮合させ、末端にアルコール類、アリールアルコール類またはフェノール類を反応させたシクロデキストリンポリマーを得ることができる。γ-シクロデキストリンの他、α-及びβ-シクロデキストリンでも同様の縮合ポリマーを形成することができる。本明細書では、このように得たポリマーを「テレフタル酸-γ-CD-メチル高分子」(末端をメタノールで処理した場合)、「テレフタル酸-γ-CD-エチル高分子」(末端をエタノールで処理した場合)、「テレフタル酸-γ-CD-ベンジル高分子」(末端をベンジルアルコールで処理した場合)、「テレフタル酸-γ-CD-フェニル高分子」(末端をフェノールで処理した場合)等と略称することがあるが、いずれも本願発明で使用する、ハロゲン化芳香族化合物と吸引的に相互作用する化合物である、多孔質のシクロデキストリンポリマーのことである。
As an active ingredient of the selective fixing agent of the present invention, a cyclodextrin polymer obtained by condensing a cyclodextrin and an organic dibasic acid and reacting an alcohol, an aryl alcohol or a phenol with a terminal is exemplified by the following method: Can be manufactured with:
γ-cyclodextrin is dissolved in an organic solvent (for example, pyridine, dimethyl sulfoxide, dimethylformamide, etc., preferably dry pyridine). On the other hand, terephthaloyl dichloride is dissolved in an organic solvent (for example, tetrahydrofuran, dichloromethane, 1,4-dioxane, etc., preferably dry tetrahydrofuran) and added dropwise to the previously prepared γ-cyclodextrin solution. At this time, since heat is generated by the condensation reaction, it is desirable to drop the γ-cyclodextrin solution while cooling with an ice bath or the like. The reactor is then placed in a 50-70 ° C. water bath and the reaction mixture is stirred vigorously. After completion of the reaction, the temperature in the reaction vessel is slightly lowered (approximately 5 to 10 ° C.), alcohols (alcohols having 1 to 10 carbon atoms such as methanol, ethanol, propanol, butanol, octanol), aryl alcohols (benzyl alcohol or Benzyl alcohol substituted with alkyl, aryl or acyl groups) or phenols (phenols substituted with phenol, alkyl, aryl or acyl groups) are added and stirring is continued. The obtained crystals are washed with a washing liquid such as alcohols, water, and acetone, and dried. Then, γ-cyclodextrin and terephthalic acid are condensed to form cyclohexane in which alcohols, aryl alcohols, or phenols are reacted at the terminal. A dextrin polymer can be obtained. In addition to γ-cyclodextrin, α- and β-cyclodextrin can form similar condensation polymers. In the present specification, the polymers thus obtained are referred to as “terephthalic acid-γ-CD-methyl polymer” (when the terminal is treated with methanol), “terephthalic acid-γ-CD-ethyl polymer” (terminal is ethanol). ), “Terephthalic acid-γ-CD-benzyl polymer” (when terminal is treated with benzyl alcohol), “terephthalic acid-γ-CD-phenyl polymer” (when terminal is treated with phenol) Although these may be abbreviated as “etc.”, they are porous cyclodextrin polymers that are used in the present invention and are compounds that interact with a halogenated aromatic compound in an attractive manner.
 次に、市販のγ-シクロデキストリン(以下、「γ-CD」と称する。)と二塩化テレフタロイルとを縮合させたポリマーの末端をメチル基で処理したポリマー(以下、「テレフタル酸-γ-CD-メチル高分子」あるいは「TPGCDM高分子」と称する。)の具体的な合成方法を示す:
まずγ-CDを有機溶媒(例えばピリジン、ジメチルスルホキシド、ジメチルホルムアミド、1-メチルイミダゾール等)に溶解させる。γ-CDの有機溶媒中の濃度は5~20重量%であることが好ましい。一方、用意したγ-CDの4~12倍量(mol)の二塩化テレフタロイルを有機溶媒(例えばテトラヒドロフラン、ジクロロメタン、1,4-ジオキサン、キシレン、ジメチルホルムアミド、トルエン等)に、濃度10~40重量%で溶解させ、これを先に用意したγ-CD溶液に滴下し、激しく撹拌する。撹拌は、磁気撹拌子や撹拌棒などを用いて行うが、特に撹拌羽根を備えた撹拌棒を用い、反応液の上部と下部とで撹拌速度に差が出ないよう、満遍なく撹拌することができる撹拌装置を用いて行うと好都合である。例として図4に示すような、上部に4枚羽根を取り付けたマックスブレンドを使用すると、反応器中の上部と下部とで均一に撹拌できる。このほか、撹拌効率を高めることができる撹拌羽根であれば、種々の形状の撹拌羽根を使用することができる。γ-CDと二塩化テレフタロイルとの縮合反応が進行するにつれ、熱が発生するので、γ-CD溶液を氷浴などで冷却しながら滴下を行うのが好ましい。好ましくは反応容器内の温度は約0~20℃の範囲を維持するようにする。滴下後、反応容器内の温度を約40~70℃の範囲まで上げて、攪拌する。次に、反応容器内温度を若干下げて約60~65℃にし、次いでここにγ-CDに対して30~80重量%の量の、アルコール類(好ましくは炭素数1~10を有する脂肪族アルコール類)、アリールアルコール類(好ましくはベンジルアルコールまたは置換ベンジルアルコール)、またはフェノール類(好ましくはフェノールまたは置換フェノール類)を、添加する。例えば、アルコール類としてメタノールを加えた場合は、約1~24時間撹拌を続けることができる。こうして、メチル基でエンドキャップされたシクロデキストリンポリマーの結晶が析出するので、析出した結晶を濾取し、水およびアセトンで洗浄して、本発明のシクロデキストリンポリマー(テレフタル酸-γ-CD-メチル高分子)を得ることができる。得られるポリマーの同定は赤外吸収により行うことができ、形態の観察は電子顕微鏡で行うことができる。
Next, a polymer obtained by condensing a commercially available γ-cyclodextrin (hereinafter referred to as “γ-CD”) and terephthaloyl dichloride with a methyl group (hereinafter referred to as “terephthalic acid-γ-CD”). A specific synthesis method of “methyl polymer” or “TPGCDM polymer”) is shown:
First, γ-CD is dissolved in an organic solvent (for example, pyridine, dimethyl sulfoxide, dimethylformamide, 1-methylimidazole, etc.). The concentration of γ-CD in the organic solvent is preferably 5 to 20% by weight. On the other hand, 4 to 12 times (mol) terephthaloyl dichloride prepared γ-CD in an organic solvent (eg, tetrahydrofuran, dichloromethane, 1,4-dioxane, xylene, dimethylformamide, toluene, etc.) at a concentration of 10 to 40 wt. It is dissolved in% and added dropwise to the previously prepared γ-CD solution and stirred vigorously. Stirring is performed using a magnetic stirrer or a stirrer bar. Especially, a stirrer equipped with a stirring blade can be used to stir evenly so that there is no difference in the stirring speed between the upper part and the lower part of the reaction solution. It is convenient to use a stirrer. For example, as shown in FIG. 4, when using Max Blend with four blades attached at the top, the top and bottom in the reactor can be stirred uniformly. In addition, as long as the stirring blade can increase the stirring efficiency, various shapes of the stirring blade can be used. As the condensation reaction between γ-CD and terephthaloyl dichloride proceeds, heat is generated. Therefore, the γ-CD solution is preferably dropped while being cooled in an ice bath or the like. Preferably, the temperature in the reaction vessel is maintained in the range of about 0-20 ° C. After the dropwise addition, the temperature in the reaction vessel is raised to a range of about 40 to 70 ° C. and stirred. Next, the temperature in the reaction vessel is slightly lowered to about 60 to 65 ° C., and then an alcohol (preferably an aliphatic having 1 to 10 carbon atoms) in an amount of 30 to 80% by weight with respect to γ-CD. Alcohols), aryl alcohols (preferably benzyl alcohol or substituted benzyl alcohol), or phenols (preferably phenol or substituted phenols) are added. For example, when methanol is added as an alcohol, stirring can be continued for about 1 to 24 hours. In this way, crystals of cyclodextrin polymer endcapped with methyl groups are precipitated. The precipitated crystals are collected by filtration, washed with water and acetone, and the cyclodextrin polymer of the present invention (terephthalic acid-γ-CD-methyl). Polymer) can be obtained. The obtained polymer can be identified by infrared absorption, and the morphology can be observed with an electron microscope.
 本発明のシクロデキストリンポリマーと、従来法で作製したシクロデキストリンポリマーや、末端基をエンドキャップしていない従来の縮合ポリマーとを比較すると、本発明のシクロデキストリンポリマーは細かい球状結晶が集合した形態をとっていることがわかる。本発明のシクロデキストリンポリマーは、球の形態がより完全な球形であり、つぶれや歪みなどが観察されない。本発明のシクロデキストリンポリマーは、従来のポリマーに比べて表面積が広く、より多くの有機液体と接触させることができる。よってこのような方法で得たハロゲン化芳香族化合物と吸引的に相互作用する化合物を、そのまま選択固着剤として使用することができ、また必要に応じて各種添加剤または助剤を加えた選択固着剤組成物とすることができる。本発明のシクロデキストリンポリマーを有機液体中に含有される化合物の分離のために使用する場合は、該シクロデキストリンポリマーを例えばカラムなどに充填し、ここに有機液体を流通させることにより簡便に所望の化合物を分離することができる。 Comparing the cyclodextrin polymer of the present invention with the cyclodextrin polymer prepared by the conventional method and the conventional condensation polymer without end caps, the cyclodextrin polymer of the present invention has a form in which fine spherical crystals are assembled. You can see that The cyclodextrin polymer of the present invention has a more complete spherical shape, and no collapse or distortion is observed. The cyclodextrin polymer of the present invention has a larger surface area than conventional polymers and can be brought into contact with more organic liquid. Therefore, the compound that interacts with the halogenated aromatic compound obtained by such a method in an attractive manner can be used as it is as a selective fixing agent, and it is selectively fixed with various additives or auxiliaries added as necessary. It can be set as an agent composition. When the cyclodextrin polymer of the present invention is used for the separation of a compound contained in an organic liquid, the cyclodextrin polymer is packed in, for example, a column and the desired liquid can be simply passed through the organic liquid. Compounds can be separated.
 次に本発明の選択固着剤を使用して、有機媒体中からハロゲン化芳香族化合物を選択的に除去する方法を具体的に説明する。 Next, a method for selectively removing a halogenated aromatic compound from an organic medium using the selective fixing agent of the present invention will be specifically described.
 本発明に使用するハロゲン化芳香族化合物を含有する有機媒体は、上述のハロゲン化芳香族化合物を少なくとも1種含有している。ハロゲン化芳香族化合物は、有機媒体中いかなる濃度で溶解していても良いが、特にハロゲン化芳香族化合物の含有量が0.5-1%程度の場合に「極微量」「微量」あるいは「低濃度で」含有していると称される。特にハロゲン化芳香族化合物を低濃度で含有する有機媒体は、処理すべきハロゲン化芳香族化合物は極少量であるのに、有機媒体自体の体積が非常に大きくなり、したがって貯蔵に困難をきたすとともに化学的に処理するには多大な時間を要する。よって、極微量に溶解しているハロゲン化芳香族化合物を有機媒体から濃縮分離して、処理すべきハロゲン化芳香族化合物と、再利用可能な有機媒体とに分けることができれば、ハロゲン化芳香族化合物の処理効率が上がる一方、かかる有機媒体の貯蔵の問題も解決することができる。 The organic medium containing the halogenated aromatic compound used in the present invention contains at least one halogenated aromatic compound described above. The halogenated aromatic compound may be dissolved at any concentration in the organic medium. However, particularly when the content of the halogenated aromatic compound is about 0.5 to 1%, “trace amount”, “trace amount” or “low concentration” It is said to contain. In particular, an organic medium containing a low concentration of a halogenated aromatic compound has a very small volume of the halogenated aromatic compound to be treated, but the volume of the organic medium itself becomes very large, thus making storage difficult. Chemical treatment takes a lot of time. Therefore, if a halogenated aromatic compound dissolved in an extremely small amount can be concentrated and separated from an organic medium and separated into a halogenated aromatic compound to be treated and a reusable organic medium, the halogenated aromatic compound While the processing efficiency of the compound increases, the problem of storage of such organic media can also be solved.
 ハロゲン化芳香族化合物を特に含有しやすい有機媒体は、各種有機液体のほか、絶縁油、機械油、熱媒体、潤滑油、可塑剤、塗料、インク及びこれらの混合物である。ハロゲン化芳香族化合物を含有する有機媒体を反応容器に入れる。これら有機媒体を貯蔵する貯蔵容器をそのまま反応容器として使用しても良い。ここに、含有されているハロゲン化芳香族化合物に対して10倍-50倍、好ましくは50-200倍(モル基準)のハロゲン化芳香族化合物と吸引的に相互作用する化合物を含む本発明の選択固着剤を投入し、よく攪拌する。本発明の選択固着剤中の活性成分であるハロゲン化芳香族化合物と吸引的に相互作用する化合物またはかかる化合物を含む組成物は、有機媒体中に分散し、有機媒体中に含有されるハロゲン化芳香族化合物と接触する。ハロゲン化芳香族化合物と吸引的に相互作用する化合物中の吸引的相互作用部分との相互作用によりハロゲン化芳香族化合物が当該吸引的相互作用部分またはその近傍に固着される。処理する有機媒体の量やハロゲン化芳香族化合物の濃度、及び本発明の選択固着剤の量にもよるが、一般的には5時間~数日間にわたり攪拌等による方法で接触させることができる。固着反応は常温で好適に行うことができ、必要に応じて加熱することもできる。 Organic media that are particularly likely to contain a halogenated aromatic compound include various organic liquids, insulating oils, machine oils, heat media, lubricating oils, plasticizers, paints, inks, and mixtures thereof. An organic medium containing a halogenated aromatic compound is placed in a reaction vessel. You may use the storage container which stores these organic media as a reaction container as it is. Here, the present invention includes a compound that interacts with a halogenated aromatic compound in an attractive manner 10 times to 50 times, preferably 50 to 200 times (molar basis) with respect to the contained halogenated aromatic compound. Add the selective fixing agent and stir well. A compound that interacts with the halogenated aromatic compound, which is an active component in the selective fixing agent of the present invention, or a composition containing such a compound is dispersed in an organic medium and halogenated in the organic medium. Contact with aromatic compounds. The halogenated aromatic compound is fixed to or near the attractive interaction portion by the interaction with the attractive interaction portion in the compound that interacts with the halogenated aromatic compound. Depending on the amount of the organic medium to be treated, the concentration of the halogenated aromatic compound, and the amount of the selective fixing agent of the present invention, the contact can be generally made by a method such as stirring for 5 hours to several days. The fixing reaction can be suitably performed at room temperature, and can be heated as necessary.
 このようにハロゲン化芳香族化合物と吸引的に相互作用する化合物に有機媒体中に含有されるハロゲン化芳香族化合物が固着された後、ハロゲン化芳香族化合物が固着された当該吸引的相互作用化合物(または当該化合物を含む組成物)のみを分離する。分離は既存の固液分離技術を用いて行えばよく、例えば、遠心分離機、加圧濾過機を使用する方法があげられる。分離する際のフィルタは、市販のフィルタ、ガラスフィルタ、メンブレン、脱脂綿、金属、樹脂等を用いて行うことができる。本発明の選択固着剤に含まれる包接化合物類を分離することができる孔径のものであれば、いかなるフィルタ、メンブレンを用いても良いが、一般的な相互作用化合物の粒径を考慮して、孔径約0.1-100μmのものを使用することが好ましい。 After the halogenated aromatic compound contained in the organic medium is fixed to the compound that interacts with the halogenated aromatic compound in this manner, the attractive interaction compound to which the halogenated aromatic compound is fixed Only (or the composition containing the compound) is isolated. Separation may be performed using an existing solid-liquid separation technique, for example, a method using a centrifugal separator or a pressure filter. The filter for separation can be performed using a commercially available filter, glass filter, membrane, absorbent cotton, metal, resin or the like. Any filter or membrane may be used as long as it has a pore size capable of separating the inclusion compounds contained in the selective fixing agent of the present invention, but in consideration of the particle size of a general interaction compound. It is preferable to use one having a pore diameter of about 0.1-100 μm.
 分離により得たハロゲン化芳香族化合物を固着した吸引的相互作用化合物は、必要に応じて固着したハロゲン化芳香族化合物のみを脱離し、吸引的相互作用化合物に固着されたハロゲン化芳香族化合物又は前記脱離操作により得たハロゲン化芳香族化合物を、必要に応じて希釈した後、例えば化学抽出分解法などの化学的処理方法により分解処理を行うことができる。 The aspiration interaction compound to which the halogenated aromatic compound obtained by separation is fixed is separated from the halogenated aromatic compound, which is fixed, if necessary, and the halogenated aromatic compound to which the suction interaction compound is fixed or After the halogenated aromatic compound obtained by the desorption operation is diluted as necessary, it can be decomposed by a chemical processing method such as a chemical extraction decomposition method.
 ハロゲン化芳香族化合物を固着した吸引的相互作用化合物を分離した後に得られた有機媒体は、ハロゲン化芳香族化合物が実質的に完全に除去されている。したがって、ハロゲン化芳香族化合物が含まれているが故に従来は保管せざるをえなかった有機媒体を、再利用可能なものは再利用し、あるいは通常の方法、例えば焼却処分等により廃棄することができる。 In the organic medium obtained after separating the attractive interaction compound to which the halogenated aromatic compound is fixed, the halogenated aromatic compound is substantially completely removed. Therefore, organic media that had previously been stored due to the inclusion of halogenated aromatic compounds should be reused if they can be reused, or disposed of by ordinary methods such as incineration. Can do.
 本発明の選択固着剤として、活性成分である、ハロゲン化芳香族化合物と吸引的に相互作用する化合物をたとえばシリカゲル、ポリマービーズ、イオン交換樹脂、発泡体、フィルム、メンブレン、各種格子状構造物及び網状構造物、多孔質物質などの担体に固定化させたものを好適に使用することができる。たとえばシリカゲル、ポリマービーズ又はイオン交換樹脂等の固体担体に本発明の吸引的相互作用化合物を担持させたものをカラム内に積層し、ここにハロゲン化芳香族化合物を含有する有機媒体を常圧下または加圧下にて流し、当該吸引的相互作用化合物と相互作用させ、有機媒体中に含有されたハロゲン化芳香族化合物を効果的に除去することが可能となる。あるいはフィルタ、メンブレンなどの固体担体に本発明の吸引的相互作用化合物を担持させたものを用いて、ハロゲン化芳香族化合物を含有する有機媒体を常圧または減圧濾過することにより、有機媒体中に含有されるハロゲン化芳香族化合物をメンブレン又はフィルタに固着させて、ハロゲン化芳香族化合物を除去することが可能となる。あるいは発泡体、網状構造物、格子状構造物、多孔質物質などの固体担体に本発明の吸引的相互作用化合物を担持させたものをハロゲン化芳香族化合物を含有する有機媒体中に投入して、当該固体担体の網状部分、格子状部分、あるいは孔部分に有機媒体を吸収させ、含有されたハロゲン化芳香族化合物を固着させ、ついで必要に応じて当該固体担体に圧力をかけて(たとえば搾る等の操作を行って)、ハロゲン化芳香族化合物が除かれた有機媒体を得ることができる。 As the selective fixing agent of the present invention, the active component, a compound that interacts with the halogenated aromatic compound in a suction manner, for example, silica gel, polymer beads, ion exchange resin, foam, film, membrane, various lattice-like structures and Those immobilized on a carrier such as a net-like structure or a porous material can be preferably used. For example, a solid carrier such as silica gel, polymer beads, or ion exchange resin, on which the attractive interaction compound of the present invention is supported, is laminated in a column, and an organic medium containing a halogenated aromatic compound is placed under normal pressure or By flowing under pressure and interacting with the attractive interaction compound, it becomes possible to effectively remove the halogenated aromatic compound contained in the organic medium. Alternatively, the organic medium containing a halogenated aromatic compound is filtered into the organic medium at normal pressure or reduced pressure using a solid carrier such as a filter or membrane that supports the suction interaction compound of the present invention. It becomes possible to remove the halogenated aromatic compound by fixing the contained halogenated aromatic compound to the membrane or filter. Alternatively, a solid carrier such as a foam, a net-like structure, a lattice-like structure, or a porous material that is loaded with the attractive interaction compound of the present invention is put into an organic medium containing a halogenated aromatic compound. The organic carrier is absorbed in the net-like portion, lattice-like portion or pore portion of the solid support, the contained halogenated aromatic compound is fixed, and then the solid support is pressurized (for example, squeezed, if necessary) Etc.) to obtain an organic medium from which the halogenated aromatic compound has been removed.
 このように本発明のハロゲン化芳香族化合物と吸引的に相互作用する化合物を固体担体に固定化させた組成物は、ハロゲン化芳香族化合物を含有する有機媒体からバッチ処理にてハロゲン化芳香族化合物を除去する方法に用いられる他、連続的に処理する方法にも非常に好適に用いられる。 Thus, a composition in which a compound that interacts with the halogenated aromatic compound of the present invention in an attractive manner is immobilized on a solid support is obtained by batch treatment from an organic medium containing a halogenated aromatic compound. In addition to being used in a method for removing a compound, it is also very suitably used in a method for continuous treatment.
 本発明の選択固着剤として、活性成分である、ハロゲン化芳香族化合物と吸引的に相互作用する多孔質ポリマー自体を、カラムなどに充填し、ハロゲン化芳香族化合物を含有する有機媒体を常圧下または加圧下に流すことによって、有機媒体からハロゲン化芳香族化合物を除去することもまた可能である。 As a selective fixing agent of the present invention, a porous polymer itself, which is an active component, which interacts with a halogenated aromatic compound in a suction manner, is packed in a column or the like, and an organic medium containing the halogenated aromatic compound is subjected to normal pressure. It is also possible to remove the halogenated aromatic compound from the organic medium by flowing under pressure.
 このように本発明の選択固着剤は、有機媒体中に含有されたハロゲン化芳香族化合物を選択的に固着し、これを有機媒体中から除去することができる。本発明の選択固着剤を使用することにより、微量のハロゲン化芳香族化合物が溶解しているが故に保管せざるを得なかった有機媒体から、厳密な分解処理が必要なハロゲン化芳香族化合物のみを除去、濃縮することができるので、ハロゲン化芳香族化合物の分解処理効率が飛躍的に高まる一方、効率よく回収された安全な有機媒体は通常の方法で処理するか、再利用することが可能となる。本発明の選択固着剤を使用して、有機媒体に含有されたハロゲン化芳香族化合物を除去する方法は、有機媒体中に選択固着剤を投入・分散させ、攪拌などによりハロゲン化芳香族化合物を固着させ、これを分離するという比較的容易な方法であり、常温で行うことが可能であるため、ハロゲン化芳香族化合物が大気中に拡散するおそれのない、安全な方法である。本発明の選択固着剤として、ハロゲン化芳香族化合物と吸引的に相互作用する化合物を各種固体担体に固定化させた物質を用いると、有機媒体に含有されたハロゲン化芳香族化合物を連続的に除去することが可能となる。 Thus, the selective fixing agent of the present invention can selectively fix the halogenated aromatic compound contained in the organic medium and remove it from the organic medium. By using the selective fixing agent of the present invention, only a halogenated aromatic compound that requires strict decomposition treatment is required from an organic medium that must be stored because a trace amount of the halogenated aromatic compound is dissolved. Can be removed and concentrated, so that the decomposition efficiency of halogenated aromatic compounds is dramatically increased, while the safe organic medium recovered efficiently can be processed or reused in the usual way It becomes. The method for removing the halogenated aromatic compound contained in the organic medium using the selective fixing agent of the present invention is the method of introducing and dispersing the selective fixing agent in the organic medium, and stirring the halogenated aromatic compound by stirring or the like. Since this is a relatively easy method of fixing and separating, and it can be carried out at room temperature, it is a safe method that does not cause the halogenated aromatic compound to diffuse into the atmosphere. As the selective fixing agent of the present invention, when a substance in which a compound that interacts with a halogenated aromatic compound is fixed to various solid carriers is used, the halogenated aromatic compound contained in the organic medium is continuously added. It can be removed.
[合成例1]γ-シクロデキストリン(以下、「γ-CD」と称する。)と二塩化テレフタロイルとを縮合させたポリマーの末端をメチル基で処理したポリマー(以下、「テレフタル酸-γ-CD-メチル高分子」あるいは「TPGCDM高分子」と称する。)の合成
 滴下ロート、風船付き三方コック、活栓及び攪拌棒(攪拌機によって攪拌)の付いた1lの4つ口セパラブルフラスコに、乾燥γ-CD(50 g, 0.039mol、含水量1%以下、純正化学工業)と特級ピリジン(660ml、和光純薬工業)を入れて室温で1時間攪拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(220mL、和光純薬工業)に溶解した二塩化テレフタロイル(78.3g, 0.39mol、東京化成工業)を1時間かけて滴下した。滴下後、氷浴を外し、湯浴(70℃)により内温70℃で3時間攪拌した。反応終了後、内温を65℃まで下げて、 1級メタノール(100ml 、純正化学工業)を加え、2時間攪拌した。結晶を吸引濾過した後、得られた結晶を水(400mL×3)、1級アセトン(400ml×1、純正化学工業)の順で洗浄し、得られた固体を120℃で終夜真空乾燥した。105gのテレフタル酸-γ-CD-メチル高分子(以下、TPGCDMと略す)が得られた。
IR (KBr) 3448,1719,1277,1105,1018,732 cm-1
[Synthesis Example 1] A polymer obtained by condensing a terminal of a polymer obtained by condensing γ-cyclodextrin (hereinafter referred to as “γ-CD”) and terephthaloyl dichloride with a methyl group (hereinafter referred to as “terephthalic acid-γ-CD”). -Synthesis of "methyl polymer" or "TPGCDM polymer")) Into a 1 liter four-necked separable flask equipped with a dropping funnel, a three-way cock with a balloon, a stopcock and a stirring rod (stirred by a stirrer), dry γ- CD (50 g, 0.039 mol, water content 1% or less, Junsei Chemical Industry) and special grade pyridine (660 ml, Wako Pure Chemical Industries, Ltd.) were added and stirred at room temperature for 1 hour. After placing the flask in an ice bath, terephthaloyl dichloride (78.3 g, 0.39 mol, Tokyo Chemical Industry) dissolved in special grade tetrahydrofuran (220 mL, Wako Pure Chemical Industries) was added dropwise over 1 hour. After dropping, the ice bath was removed, and the mixture was stirred for 3 hours at an internal temperature of 70 ° C. with a hot water bath (70 ° C.). After completion of the reaction, the internal temperature was lowered to 65 ° C., primary methanol (100 ml, Pure Chemical Industries) was added, and the mixture was stirred for 2 hours. After the crystals were suction filtered, the obtained crystals were washed with water (400 mL × 3) and primary acetone (400 ml × 1, Junsei Kagaku Kogyo) in this order, and the obtained solid was vacuum-dried at 120 ° C. overnight. 105 g of terephthalic acid-γ-CD-methyl polymer (hereinafter abbreviated as TPGCDM) was obtained.
IR (KBr) 3448,1719,1277,1105,1018,732 cm -1
[実施例1]TPGCDM高分子による2,2‘,3,3’,5,5‘-ヘキサクロロビフェニル(以下、「2,2’3,3’5,5’-HECBP」と称する。)の選択固着
 TPGCDM高分子(240mg)を充填したステンレスカラム(内径4mm×長さ10mm)を温度制御付オーブン内に取り付け、そのカラム内に2,2’,3,3’,5,5’-HECBP含有絶縁油(濃度:100ppm、総重量:400mg、絶縁油は谷口石油精製株式会社の高圧絶縁油)を窒素ガスで流し込み、130℃で注出したところ349 mgの絶縁油が得られた。その絶縁油の2,2’,3,3’,5,5’-HECBP濃度を、QCMS-QP5050(SHIMADZU)を使用し、M/Z 360を用いてSIM(selective ion monitoring)法による内部標準法(内部標準物質:2,2’,4,4’,5,5’-ヘキサクロロビフェニル)で測定を行ったところ、2,2’,3,3’,5,5’-HECBPは含まれていなかった。結果を表1に記載する。
[Example 1] 2,2 ', 3,3', 5,5'-hexachlorobiphenyl (hereinafter referred to as "2,2'3,3'5,5'-HECBP") using TPGCDM polymer. Selective fixing A stainless steel column (4mm ID x 10mm length) packed with TPGCDM polymer (240mg) is installed in an oven with temperature control, and 2,2 ', 3,3', 5,5'-HECBP in the column The contained insulating oil (concentration: 100 ppm, total weight: 400 mg, high-pressure insulating oil from Taniguchi Oil Refinery Co., Ltd.) was poured in with nitrogen gas and poured at 130 ° C. to obtain 349 mg of insulating oil. The internal standard by SIM (selective ion monitoring) method using M / Z 360 for the 2,2 ', 3,3', 5,5'-HECBP concentration of the insulating oil using QCMS-QP5050 (SHIMADZU) Measured by the method (internal standard substance: 2,2 ', 4,4', 5,5'-hexachlorobiphenyl), 2,2 ', 3,3', 5,5'-HECBP is included It wasn't. The results are listed in Table 1.
[実施例2]TPGCDM高分子によるポリクロロビフェニル(以下、「PCB」と称する。)の選択固着
 TPGCDM高分子(1.5g)を充填したステンレスカラム(内径8mm×長さ300mm)を温度制御付オーブン内に取り付け、そのカラム内に、実際にPCBが溶解し、放置されている絶縁油(以下、「実液」と称する。PCB濃度:26.5ppm、総重量:2.6g)を窒素ガスで流し込み、130℃で注出したところ1.6gの絶縁油が得られた。その絶縁油のPCB濃度を平成4年厚生省告示第192号別表第3の第1に規定される方法によりガスクロマトグラフィ法にて測定したところ、PCBは含まれていなかった。結果を表2に記載する。
[Example 2] Selective fixation of polychlorinated biphenyl (hereinafter referred to as “PCB”) with TPGCDM polymer A stainless steel column (inner diameter 8 mm × length 300 mm) packed with TPGCDM polymer (1.5 g) was oven controlled with temperature. The insulating oil (hereinafter referred to as “actual liquid”; PCB concentration: 26.5 ppm, total weight: 2.6 g) where PCB is actually dissolved and left in the column is poured into the column with nitrogen gas, When poured out at 130 ° C., 1.6 g of insulating oil was obtained. When the PCB concentration of the insulating oil was measured by the gas chromatographic method according to the method prescribed in 1992, Ministry of Health and Welfare Notification No. 192 Attached Table 3, no PCB was contained. The results are listed in Table 2.
 [合成例2]β-CDと二塩化テレフタロイルとを縮合させたポリマーの末端をメチル基で処理したポリマー(以下、「テレフタル酸-β-CD-メチル高分子」あるいは「TPBCDM高分子」と称する。)の合成
 滴下ロート、風船付き三方コック、活栓及び攪拌棒(攪拌機によって攪拌)の付いた1 Lの四つ口セパラブルフラスコに、乾燥β-シクロデキストリン(以下、β-CDと略す、50 g、0.044 mol、含水量1%以下、純正化学)と特級ピリジン(660 mL、和光純薬工業)を入れて室温で1時間攪拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(230 mL、和光純薬工業)に溶解した二塩化テレフタロイル(89.4 g、0.44 mol、東京化成工業)を1時間かけて滴下した。滴下後、氷浴を外し、湯浴(70℃)により内温70℃で4時間攪拌した。反応終了後、内温を65℃まで下げて、1級メタノール(35.6 mL、0.88 mmol、純正化学)を加え、4時間攪拌した。結晶を吸引濾過した後、得られた結晶を1級メタノール(400 mL×2、純正化学)、水(400 mL×3)、1級アセトン(400ml×2、純正化学)の順で洗浄し、得られた固体を120℃で終夜真空乾燥した。98.7 gのTPBCDM高分子が得られた。
IR (KBr): 3448, 1718, 1277, 1105, 1018, 731 cm-1
[Synthesis Example 2] Polymer obtained by condensing β-CD and terephthaloyl dichloride with a methyl group at the end (hereinafter referred to as “terephthalic acid-β-CD-methyl polymer” or “TPBCDM polymer”) )) Into a 1 L four-necked separable flask equipped with a dropping funnel, a three-way cock with a balloon, a stopcock and a stirring rod (stirred by a stirrer), dry β-cyclodextrin (hereinafter abbreviated as β-CD, 50 g, 0.044 mol, water content 1% or less, Pure Chemical) and special grade pyridine (660 mL, Wako Pure Chemical Industries) were added and stirred at room temperature for 1 hour. After placing the flask in an ice bath, terephthaloyl dichloride (89.4 g, 0.44 mol, Tokyo Kasei Kogyo) dissolved in special grade tetrahydrofuran (230 mL, Wako Pure Chemical Industries) was added dropwise over 1 hour. After the dropwise addition, the ice bath was removed, and the mixture was stirred for 4 hours at 70 ° C. with a hot water bath (70 ° C.). After completion of the reaction, the internal temperature was lowered to 65 ° C., primary methanol (35.6 mL, 0.88 mmol, Junsei Kagaku) was added, and the mixture was stirred for 4 hours. After the crystals were filtered off with suction, the crystals obtained were washed in the order of primary methanol (400 mL × 2, Junsei Chemical), water (400 mL × 3), primary acetone (400 ml × 2, Junsei Chemical), in that order. The resulting solid was vacuum dried at 120 ° C. overnight. 98.7 g of TPBCDM polymer was obtained.
IR (KBr): 3448, 1718, 1277, 1105, 1018, 731 cm -1
[合成例3~6]
 合成例2において、1級メタノールの代わりに1級エタノール(純正化学)を使用したこと以外は、合成例2と同様の方法にてテレフタル酸-β-CD-エチル高分子(以下、「TPBCDE」と称する。)を合成した(合成例3)。
IR (KBr) 3448, 1717, 1277, 1105, 1018, 731 cm-1
 同様に、特級2-プロパノール(東京化成工業)を使用し、テレフタル酸-β-CD-プロピル高分子(以下、「TPBCDP」と称する。)を合成した(合成例4)。
IR (KBr) 3448, 1718, 1276, 1103, 1018, 732 cm-1
 同様に、特級2-ベンジルアルコール(純正化学)を使用し、テレフタル酸-β-CD-ベンジル高分子(以下、「TPBCDB」と称する。)を合成した(合成例5)。
IR (KBr) 3448, 1718, 1274, 1104, 1018, 731 cm-1
 同様に、特級1-オクタノール(純正化学)を使用し、テレフタル酸-β-CD-オクチル高分子(以下、「TPBCDO」と称する。)を合成した(合成例6)。
IR (KBr) 3448, 1718, 1272, 1104, 1018, 731 cm-1
[Synthesis Examples 3 to 6]
In Synthesis Example 2, terephthalic acid-β-CD-ethyl polymer (hereinafter “TPBCDE”) was prepared in the same manner as in Synthesis Example 2, except that primary ethanol (Pure Chemical) was used instead of primary methanol. Was synthesized (Synthesis Example 3).
IR (KBr) 3448, 1717, 1277, 1105, 1018, 731 cm -1
Similarly, terephthalic acid-β-CD-propyl polymer (hereinafter referred to as “TPBCDP”) was synthesized using special grade 2-propanol (Tokyo Chemical Industry) (Synthesis Example 4).
IR (KBr) 3448, 1718, 1276, 1103, 1018, 732 cm -1
Similarly, terephthalic acid-β-CD-benzyl polymer (hereinafter referred to as “TPBCDB”) was synthesized using special grade 2-benzyl alcohol (Pure Chemical) (Synthesis Example 5).
IR (KBr) 3448, 1718, 1274, 1104, 1018, 731 cm -1
Similarly, terephthalic acid-β-CD-octyl polymer (hereinafter referred to as “TPBCDO”) was synthesized using special grade 1-octanol (Pure Chemical) (Synthesis Example 6).
IR (KBr) 3448, 1718, 1272, 1104, 1018, 731 cm -1
[実施例3]TPBCDM高分子による2,2’3,3’5,5’-HECBPの選択固着
 上記の合成例2で得られたTPBCDM高分子(350mg)を充填したステンレスカラム(内径4 mm×長さ10 mm)を温度制御付オーブン内に取り付け、そのカラム内に 2,2’,3,3’,5,5’-HECBP含有絶縁油(濃度:100 ppm、総重量:350 mg、絶縁油は谷口石油精製株式会社の高圧絶縁油)を窒素ガスで流し込み、130℃で注出したところ269 mgの絶縁油が得られた。その絶縁油の2,2’,3,3’,5,5’-HECBP濃度をガスクロマトグラフィーで測定したところ、2,2’,3,3’,5,5’-HECBPは含まれていなかった。結果を表1に記載する。
[Example 3] Selective fixation of 2,2'3,3'5,5'-HECBP with TPBCDM polymer Stainless steel column (inner diameter 4 mm) packed with TPBCDM polymer (350 mg) obtained in Synthesis Example 2 above × 10 mm in length) installed in an oven with temperature control, and 2,2 ', 3,3', 5,5'-HECBP-containing insulating oil (concentration: 100 ppm, total weight: 350 mg) in the column The insulating oil was Taniguchi Petroleum Refining Co., Ltd., high-pressure insulating oil) which was poured with nitrogen gas and poured out at 130 ° C. to obtain 269 mg of insulating oil. When 2,2 ', 3,3', 5,5'-HECBP concentration of the insulating oil was measured by gas chromatography, 2,2 ', 3,3', 5,5'-HECBP was not included. There wasn't. The results are listed in Table 1.
[実施例4~7]合成例3~6で合成した高分子による2,2’3,3’5,5’-HECBPの選択固着
 上記の合成例3~6で合成したTPBCDE、TPBCDP、TPBCDBおよびTPBCDOを用い、実施例3と同様に2,2’3,3’5,5’-HECBPの選択固着試験を行った。結果を表1に列記する。
[Examples 4 to 7] Selective fixation of 2,2'3,3'5,5'-HECBP by the polymers synthesized in Synthesis Examples 3 to 6 TPBCDE, TPBCDP and TPBCDB synthesized in Synthesis Examples 3 to 6 above In addition, a selective fixation test of 2,2′3,3′5,5′-HECBP was conducted in the same manner as in Example 3 using TPBCDO. The results are listed in Table 1.
[実施例8]TPBCDM高分子によるPCBの選択固着
 合成例2で得られたTPBCDM高分子(2.0 g)を充填したステンレスカラム(内径8 mm×長さ300 mm)を温度制御付オーブン内に取り付け、そのカラム内に実施例2でも用いた実液(PCB濃度:26.5 ppm、総重量:2.0 g)を窒素ガスで流し込み、130℃で注出したところ962 mgの絶縁油が得られた。その絶縁油のPCB濃度をガスクロマトグラフィーで測定したところ、PCBは含まれていなかった。結果を表2に記載する。
[Example 8] Selective fixing of PCB with TPBCDM polymer A stainless steel column (inner diameter 8 mm x length 300 mm) packed with the TPBCDM polymer (2.0 g) obtained in Synthesis Example 2 was mounted in an oven with temperature control. The actual liquid (PCB concentration: 26.5 ppm, total weight: 2.0 g) used in Example 2 was poured into the column with nitrogen gas and poured out at 130 ° C. to obtain 962 mg of insulating oil. When the PCB concentration of the insulating oil was measured by gas chromatography, it did not contain PCB. The results are listed in Table 2.
[実施例9~12]合成例3~6で合成した高分子によるPCBの選択固着
 上記の合成例3~6で合成したTPBCDE、TPBCDP、TPBCDBおよびTPBCDOを用い、実施例8と同様にPCBの選択固着試験を行った。結果を表2に列記する。
[Examples 9 to 12] Selective fixing of PCB by the polymers synthesized in Synthesis Examples 3 to 6 Using the TPBCDE, TPBCDP, TPBCDB, and TPBCDO synthesized in the above Synthesis Examples 3 to 6, the PCB was prepared in the same manner as in Example 8. A selective sticking test was performed. The results are listed in Table 2.
[比較合成例1]γ-CDとテレフタル酸との縮合ポリマー(以下、「テレフタル酸-γ-CD高分子」と称する。)の合成
 比較実施例として、末端をアルコール類などで処理していないテレフタル酸γ-CDを特開2009-95792号の合成例1に記載された方法に則り合成した。 
[Comparative Synthesis Example 1] Synthesis of condensation polymer of γ-CD and terephthalic acid (hereinafter referred to as “terephthalic acid-γ-CD polymer”) As a comparative example, the terminal is not treated with alcohols or the like. Terephthalic acid γ-CD was synthesized according to the method described in Synthesis Example 1 of JP-A-2009-95792.
 滴下ロート、風船付き三方コック、活栓及び攪拌棒(攪拌機によって攪拌)の付いた1Lの4つ口セパラブルフラスコに、乾燥γ-シクロデキストリン(50 g, 0.039mol、含水量1%以下、純正化学工業)と特級ピリジン(660ml、和光純薬工業)を入れて室温で1時間攪拌した。フラスコを氷浴につけた後、特級テトラヒドロフラン(220mL、和光純薬工業)に溶解した二塩化テレフタロイル(78.3g, 0.39mol、東京化成工業)を1時間かけて滴下した。滴下後、氷浴を外し、湯浴(70℃)により内温70℃で3時間攪拌した。反応終了後、水(100ml 、純正化学工業)を加え、湯浴(70℃)で2時間攪拌した。結晶を吸引濾過した後、得られた結晶を水(400mL×3)、1級アセトン(400ml×1、純正化学工業)の順で洗浄し、得られた固体を120℃で終夜真空乾燥した。105gのテレフタル酸-γ-CD高分子(以下、「TPGCD」と称する。)が得られた。
IR (neat) 3418, 1716, 1409, 1266, 1097, 1041, 1017, 874, 730 cm-1
In a 1L four-necked separable flask equipped with a dropping funnel, a three-way cock with a balloon, a stopcock and a stirring rod (stirred by a stirrer), dry γ-cyclodextrin (50 g, 0.039 mol, water content 1% or less, pure chemical Industrial) and special grade pyridine (660 ml, Wako Pure Chemical Industries) were added and stirred at room temperature for 1 hour. After placing the flask in an ice bath, terephthaloyl dichloride (78.3 g, 0.39 mol, Tokyo Chemical Industry) dissolved in special grade tetrahydrofuran (220 mL, Wako Pure Chemical Industries) was added dropwise over 1 hour. After the dropwise addition, the ice bath was removed, and the mixture was stirred for 3 hours at an internal temperature of 70 ° C. with a hot water bath (70 ° C.). After completion of the reaction, water (100 ml, Junsei Kagaku Kogyo) was added and stirred in a hot water bath (70 ° C.) for 2 hours. After the crystals were suction filtered, the obtained crystals were washed with water (400 mL × 3) and primary acetone (400 ml × 1, Junsei Kagaku Kogyo) in this order, and the obtained solid was vacuum-dried at 120 ° C. overnight. 105 g of terephthalic acid-γ-CD polymer (hereinafter referred to as “TPGCD”) was obtained.
IR (neat) 3418, 1716, 1409, 1266, 1097, 1041, 1017, 874, 730 cm -1
[比較実施例1]TPGCDによる2,2’,3,3’,5,5’-ヘキサクロロビフェニル(以下、「2,2‘、3,3’、5,5‘-HECBP」と称する。)の選択固着
 上記の比較合成例1にて合成したTPGCD(450mg)を充填したステンレスカラム(内径4mm×長さ10mm)を温度制御付オーブン内に取り付け、そのカラム内に2,2’,3,3’,5,5’-HECBP含有絶縁油(100ppm、450mg)を窒素ガスで流し込み、130℃で注出したところ374 mgの絶縁油が得られた。その絶縁油の2,2’,3,3’,5,5’-HECBP濃度をガスクロマトグラフィーで測定したところ、2,2’,3,3’,5,5’-HECBPは含まれていなかった。表1から明らかなとおり、本発明の実施例1では、絶縁油:吸着材料の重量比が400:240という絶縁油が過剰の条件下であっても、2,2’,3,3’,5,5’-HECBPをほぼ完全に吸着することができたが、比較実施例1では、実施例1と同等の結果を得るために、絶縁油(450mg)と同量の吸着材料(450mg)が必要であった。すなわち、TPGCD高分子(末端にメタノールを反応させていないポリマー)よりもTPGCDM高分子(本発明による、末端にメタノールを反応させた多孔質のシクロデキストリンポリマー)の方が、より優れた吸着性能を有していることがわかった。
[Comparative Example 1] 2,2 ', 3,3', 5,5'-hexachlorobiphenyl (hereinafter referred to as "2,2 ', 3,3', 5,5'-HECBP") by TPGCD A stainless steel column (inner diameter 4 mm x length 10 mm) packed with TPGCD (450 mg) synthesized in Comparative Synthesis Example 1 above was mounted in an oven with temperature control, and 2,2 ', 3, When 3 ′, 5,5′-HECBP-containing insulating oil (100 ppm, 450 mg) was poured with nitrogen gas and poured out at 130 ° C., 374 mg of insulating oil was obtained. When 2,2 ', 3,3', 5,5'-HECBP concentration of the insulating oil was measured by gas chromatography, 2,2 ', 3,3', 5,5'-HECBP was not included. There wasn't. As is apparent from Table 1, in Example 1 of the present invention, even when the insulating oil: adsorbing material weight ratio is 400: 240 and the insulating oil is excessive, 2,2 ′, 3,3 ′, Although 5,5′-HECBP could be almost completely adsorbed, in Comparative Example 1, in order to obtain the same result as in Example 1, the same amount of adsorbing material (450 mg) as the insulating oil (450 mg) Was necessary. That is, the TPGCD polymer (the porous cyclodextrin polymer reacted with methanol at the end according to the present invention) has better adsorption performance than the TPGCD polymer (the polymer not reacted with methanol at the end). I found it.
[比較実施例2]TPGCDによるPCBの選択固着
 上記の比較合成例1にて合成したTPGCD高分子(11g)を充填したステンレスカラム(内径2cm×長さ25cm)を温度制御付オーブン内に取り付け、そのカラム内に実液(26.5ppm、9.0 g)を窒素ガスで流し込み、130℃で注出したところ3.0 gの絶縁油が得られた。その絶縁油のPCB濃度をガスクロマトグラフィーで測定したところ、PCBは含まれていなかった。本発明の実施例2では、絶縁油:吸着材料の重量比が2.6:1.6という絶縁油が過剰の条件下であっても、PCBをほぼ完全に吸着することができたが、比較実施例2では、実施例2と同等の結果を得るために、絶縁油(9.0g)よりも多い吸着材料(11.0g)が必要であった。すなわち、TPGCD高分子(末端にメタノールを反応させていないポリマー)よりもTPGCDM高分子(本願発明による、末端にメタノールを反応させた多孔質のシクロデキストリンポリマー)の方が、より優れた吸着性能を有していることがわかった。
[Comparative Example 2] Selective fixation of PCB by TPGCD A stainless steel column (inner diameter 2 cm x length 25 cm) filled with the TPGCD polymer (11 g) synthesized in the above Comparative Synthesis Example 1 was mounted in an oven with temperature control. The actual liquid (26.5 ppm, 9.0 g) was poured into the column with nitrogen gas and poured out at 130 ° C. to obtain 3.0 g of insulating oil. When the PCB concentration of the insulating oil was measured by gas chromatography, it did not contain PCB. In Example 2 of the present invention, PCB could be almost completely adsorbed even when the insulating oil: adsorbing material weight ratio of 2.6: 1.6 was excessive. In Comparative Example 2, in order to obtain the same result as in Example 2, more adsorbent material (11.0 g) than insulating oil (9.0 g) was required. That is, the TPGCD polymer (the porous cyclodextrin polymer reacted with methanol at the end according to the present invention) has better adsorption performance than the TPGCD polymer (the polymer not reacted with methanol at the end). I found it.
[比較合成例2]特許第3010602号に従うポリマーの合成
 特許第3010602号の段落番号0025に開示された方法に概ね従い、ポリマーを合成した。
[Comparative Synthesis Example 2] Polymer synthesis according to Japanese Patent No. 3010602 A polymer was synthesized generally according to the method disclosed in paragraph No. 0025 of Japanese Patent No. 3010602.
 重合反応管中に、乾燥β-CD(1.0 g、0.88 mmol、含水量1%以下、純正化学)とテレフタル酸ジメチル(1.7 g、8.8 mmol、キシダ化学)(β-CDの10倍当量、合成例1等に同じ)と、酢酸カルシウム二水和物(3.5 mg、関東化学)と三酸化アンチモン(7.0 mg、和光純薬工業)のDMF(18 mL、純正化学)溶液を入れ均一溶液とした。混合物を加熱し、毛管を反応管の底に届くように入れ窒素を流した。110℃で6時間混合物中のメタノールを留去した後、150℃で6時間加熱した。そして減圧にし、さらに12時間加熱し、反応終了後は窒素気流下で放冷した。DMF溶液はそのまま大量の水中に入れ再沈殿させ、得られた沈殿物を濾過し、よく水洗した後、乾燥することで196 mgのポリマー(以下、「比較合成例2ポリマー」と称する。)が得られた。 In the polymerization reaction tube, dry β-CD (1.0 g, 0.88 mmol, water content 1% or less, Pure Chemical) and dimethyl terephthalate (1.7 g, 8.8 mmol, Kishida Chemical) (10 times equivalent of β-CD, synthesis) Same as Example 1, etc.) and calcium acetate dihydrate (3.5 mg, Kanto Chemical) and antimony trioxide (7.0 mg, Wako Pure Chemical Industries) in DMF (18 ml, Junsei) were added to form a homogeneous solution. . The mixture was heated and the capillary was passed through to the bottom of the reaction tube and flushed with nitrogen. After methanol in the mixture was distilled off at 110 ° C. for 6 hours, the mixture was heated at 150 ° C. for 6 hours. Then, the pressure was reduced, and the mixture was further heated for 12 hours. After completion of the reaction, the mixture was allowed to cool in a nitrogen stream. The DMF solution is placed in a large amount of water as it is for reprecipitation, and the resulting precipitate is filtered, washed thoroughly with water, and dried to obtain 196 mg of polymer (hereinafter referred to as “Comparative Synthesis Example 2 polymer”). Obtained.
[比較実施例3]
 比較合成例2ポリマー(350 mg)を充填したステンレスカラム(内径4 mm×長さ10 mm)を温度制御付オーブン内に取り付け、そのカラム内に2,2’,3,3’,5,5’-ヘキサクロロビフェニル(2,2’,3,3’,5,5’-HECBP)含有絶縁油(100 ppm、350 mg)を窒素ガスで流し込み、130℃で注出したところ298 mgの絶縁油が得られた。その絶縁油の2,2’,3,3’,5,5’-HECBP濃度をガスクロマトグラフィーで測定したところ、2,2’,3,3’,5,5’-HECBP濃度は96.1ppmであった。すなわち、比較合成例2で合成したポリマーは、ハロゲン化芳香族化合物を効果的に吸着できないことがわかった。
[Comparative Example 3]
Comparative Synthesis Example 2 A stainless steel column (inner diameter 4 mm x length 10 mm) packed with polymer (350 mg) was installed in a temperature-controlled oven, and 2,2 ', 3,3', 5,5 Insulating oil (100 ppm, 350 mg) containing '-hexachlorobiphenyl (2,2', 3,3 ', 5,5'-HECBP) was poured with nitrogen gas and poured out at 130 ° C to give 298 mg of insulating oil was gotten. The 2,2 ', 3,3', 5,5'-HECBP concentration of the insulating oil was measured by gas chromatography, and the 2,2 ', 3,3', 5,5'-HECBP concentration was 96.1 ppm. Met. That is, it was found that the polymer synthesized in Comparative Synthesis Example 2 cannot effectively adsorb the halogenated aromatic compound.
[比較実施例4]
 比較合成例2ポリマー(2.0 g)を充填したステンレスカラム(内径8 mm×長さ300 mm)を温度制御付オーブン内に取り付け、そのカラム内に実液(26.5 ppm、2.0 g)を窒素ガスで流し込み、130℃で注出したところ0.96gの絶縁油が得られた。その絶縁油のPCB濃度をガスクロマトグラフィーで測定したところ、PCB濃度は26.2ppmであった。すなわち比較合成例2で合成したポリマーは、実液中のPCBを効果的に吸着できないことがわかった。
[Comparative Example 4]
Comparative Synthesis Example 2 A stainless steel column (inner diameter 8 mm x length 300 mm) packed with polymer (2.0 g) was mounted in an oven with temperature control, and the actual liquid (26.5 ppm, 2.0 g) was placed in the column with nitrogen gas. After pouring and pouring at 130 ° C., 0.96 g of insulating oil was obtained. When the PCB concentration of the insulating oil was measured by gas chromatography, the PCB concentration was 26.2 ppm. That is, it was found that the polymer synthesized in Comparative Synthesis Example 2 cannot effectively adsorb PCB in the actual liquid.
 上記実施例および比較実施例の結果を表1ならびに表2にまとめる。 The results of the above examples and comparative examples are summarized in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明により、環境に安易に放出できないダイオキシン類、ポリクロロビフェニル類などの有毒物質たるハロゲン化芳香族化合物を含みうる絶縁油、熱媒体、潤滑油、可塑剤、塗料及びインキ等に代表される有機媒体を保管せざるを得ない産業、及びこれら化合物を含みうる紙、木材、焼却灰、岩石、土壌等に代表される固体物質を保管せざるを得ない産業において、これら化合物の安全で効率的な分解処理と、かかる媒体の保管スペースの節約を同時に実現することができる。 According to the present invention, it is represented by insulating oil, heat medium, lubricating oil, plasticizer, paint, ink, etc. that may contain halogenated aromatic compounds as toxic substances such as dioxins and polychlorobiphenyls that cannot be easily released to the environment. Safe and efficient use of these compounds in industries that must store organic media and in industries that must store solid materials such as paper, wood, incinerated ash, rocks, and soil that may contain these compounds. The simultaneous disassembling process and saving of the storage space for such a medium can be realized at the same time.

Claims (17)

  1.  シクロデキストリンと有機二塩基酸または有機二塩基酸ハロゲン化物とを縮合させたポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させた、ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーを含有する、有機媒体に含有されるハロゲン化芳香族化合物の選択固着剤。 Porous that interacts with halogenated aromatic compounds in an attractive manner by reacting alcohols, aryl alcohols or phenols at the end of the polymer condensed with cyclodextrin and organic dibasic acid or organic dibasic acid halide Selective fixing agent for halogenated aromatic compounds contained in an organic medium, comprising a high-quality cyclodextrin polymer.
  2.  有機二塩基酸または有機二塩基酸ハロゲン化物が、テレフタル酸、イソフタル酸、マレイン酸、リンゴ酸、マロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、フタル酸またはこれらのハロゲン化物から選択される、請求項1に記載の選択固着剤。 The organic dibasic acid or organic dibasic acid halide is selected from terephthalic acid, isophthalic acid, maleic acid, malic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, phthalic acid or their halides The selective fixing agent according to claim 1.
  3.  アルコール類が炭素数1~10のアルキル基から選択され、アリールアルコール類がベンジルアルコール、またはアルキル、アリール、またはアシル基で置換されたベンジルアルコール類から選択され、フェノール類がフェノール、またはアルキル、アリール、またはアシル基で置換されたフェノールから選択される、請求項1または2に記載の選択固着剤。 The alcohol is selected from an alkyl group having 1 to 10 carbon atoms, the aryl alcohol is selected from benzyl alcohol, or benzyl alcohol substituted with an alkyl, aryl, or acyl group, and the phenol is phenol, alkyl, aryl, or aryl Or a selective sticking agent according to claim 1 or 2, selected from phenols substituted with acyl groups.
  4.  ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーが、固体担体に固定化されている、請求項1~3のいずれかに記載の選択固着剤。 The selective fixing agent according to any one of claims 1 to 3, wherein a porous cyclodextrin polymer that interacts with the halogenated aromatic compound in a suction manner is immobilized on a solid support.
  5.  ハロゲン化芳香族化合物が、ダイオキシン類、ポリクロロビフェニル類、またはポリクロロベンゼン類である、請求項1~4のいずれかに記載の選択固着剤。 The selective fixing agent according to any one of claims 1 to 4, wherein the halogenated aromatic compound is dioxins, polychlorobiphenyls, or polychlorobenzenes.
  6.  有機媒体が、有機液体、絶縁油、熱媒体、潤滑油、可塑剤、塗料及びインキ及びこれらの混合物からなる群から選択される、請求項1~5のいずれかに記載の選択固着剤。 The selective fixing agent according to any one of claims 1 to 5, wherein the organic medium is selected from the group consisting of an organic liquid, an insulating oil, a heat medium, a lubricating oil, a plasticizer, a paint and an ink, and a mixture thereof.
  7.  シクロデキストリンと有機二塩基酸または有機二塩基酸ハロゲン化物とを縮合したポリマーの末端にアルコール類、アリールアルコール類またはフェノール類を反応させた、ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーを含有する、ハロゲン化芳香族化合物の選択固着剤と、ハロゲン化芳香族化合物を含有する有機媒体とを接触させ、該有機媒体に含有されたハロゲン化芳香族化合物を該ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーに固着させて、ハロゲン化芳香族化合物を含有しない有機媒体を得ることを特徴とする、方法。 Porous that interacts with halogenated aromatic compounds in an attractive manner by reacting alcohols, aryl alcohols or phenols at the end of a polymer obtained by condensing cyclodextrin with organic dibasic acid or organic dibasic acid halide A selective fixing agent for a halogenated aromatic compound containing a cyclodextrin polymer of the above and an organic medium containing a halogenated aromatic compound are brought into contact with each other, and the halogenated aromatic compound contained in the organic medium is subjected to the halogenation. A method characterized in that an organic medium containing no halogenated aromatic compound is obtained by fixing to a porous cyclodextrin polymer that interacts with an aromatic compound in an aspiration manner.
  8.  有機二塩基酸または有機二塩基酸ハロゲン化物が、テレフタル酸、イソフタル酸、マレイン酸、リンゴ酸、マロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、フタル酸またはこれらのハロゲン化物から選択される、請求項7に記載の方法。 The organic dibasic acid or organic dibasic acid halide is selected from terephthalic acid, isophthalic acid, maleic acid, malic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, phthalic acid or their halides The method according to claim 7.
  9.  アルコール類が炭素数1~10のアルキル基から選択され、アリールアルコール類がベンジルアルコール、またはアルキル、アリール、またはアシル基で置換されたベンジルアルコール類から選択され、フェノール類がフェノール、またはアルキル、アリール、またはアシル基で置換されたフェノールから選択される、請求項7または8に記載の方法。 The alcohol is selected from an alkyl group having 1 to 10 carbon atoms, the aryl alcohol is selected from benzyl alcohol, or benzyl alcohol substituted with an alkyl, aryl, or acyl group, and the phenol is phenol, alkyl, aryl, or aryl Or a method according to claim 7 or 8, selected from phenols substituted with acyl groups.
  10.  ハロゲン化芳香族化合物と吸引的に相互作用する多孔質のシクロデキストリンポリマーが、固体担体に固定化されていることを特徴とする選択固着剤を使用する、請求項7~9のいずれかに記載の方法。 10. The selective fixing agent characterized in that the porous cyclodextrin polymer that interacts with the halogenated aromatic compound in a suction manner is immobilized on a solid support. the method of.
  11.  ハロゲン化芳香族化合物が、ダイオキシン類、ポリクロロビフェニル類、またはポリクロロベンゼン類である、請求項7~10のいずれかに記載の方法。 The method according to any one of claims 7 to 10, wherein the halogenated aromatic compound is dioxins, polychlorobiphenyls, or polychlorobenzenes.
  12.  有機媒体が、有機液体、絶縁油、機械油、熱媒体、潤滑油、可塑剤、塗料及びインキ及びこれらの混合物からなる群から選択される、請求項7~11のいずれかに記載の方法。 The method according to any one of claims 7 to 11, wherein the organic medium is selected from the group consisting of an organic liquid, an insulating oil, a machine oil, a heat medium, a lubricating oil, a plasticizer, a paint and an ink, and a mixture thereof.
  13.  有機溶媒中に溶解したシクロデキストリンに、有機二塩基酸または有機二塩基酸ハロゲン化物含有有機溶媒を滴下して撹拌し、次いでアルコール類、アリールアルコール類、またはフェノール類を添加してエステル化反応させることを含む、多孔質のシクロデキストリンポリマーの製造方法。 Add organic dibasic acid or organic dibasic acid halide-containing organic solvent dropwise to cyclodextrin dissolved in organic solvent, and then add alcohols, aryl alcohols, or phenols for esterification reaction A process for producing a porous cyclodextrin polymer.
  14.  有機二塩基酸または有機二塩基酸ハロゲン化物が、テレフタル酸、イソフタル酸、マレイン酸、リンゴ酸、マロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、フタル酸またはこれらのハロゲン化物から選択される、請求項13に記載の方法。 The organic dibasic acid or organic dibasic acid halide is selected from terephthalic acid, isophthalic acid, maleic acid, malic acid, malonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, phthalic acid or their halides The method of claim 13.
  15.  アルコール類が、炭素数1~10を有する脂肪族アルコール類から選択され、アリールアルコール類がベンジルアルコールまたは置換ベンジルアルコールから選択され、フェノール類がフェノールまたは置換フェノール類から選択される、請求項13または14に記載の方法。 The alcohol is selected from aliphatic alcohols having 1 to 10 carbon atoms, the aryl alcohol is selected from benzyl alcohol or substituted benzyl alcohol, and the phenol is selected from phenol or substituted phenols, 14. The method according to 14.
  16.  シクロデキストリンを溶解させる有機溶媒が、ピリジン、ジメチルスルホキシド、ジメチルホルムアミド、および1-メチルイミダゾールから選択され、有機二塩基酸または有機二塩基酸ハロゲン化物を溶解させる有機溶媒が、テトラヒドロフラン、ジクロロメタン、1,4-ジオキサン、キシレン、ジメチルホルムアミドおよびトルエンから選択される、請求項13~15のいずれかに記載の方法。 The organic solvent for dissolving cyclodextrin is selected from pyridine, dimethyl sulfoxide, dimethylformamide, and 1-methylimidazole, and the organic solvent for dissolving the organic dibasic acid or organic dibasic acid halide is tetrahydrofuran, dichloromethane, 1, The process according to any of claims 13 to 15, selected from 4-dioxane, xylene, dimethylformamide and toluene.
  17.  請求項13~16のいずれかに記載の方法で製造された、多孔質のシクロデキストリンポリマー。 A porous cyclodextrin polymer produced by the method according to any one of claims 13 to 16.
PCT/JP2011/053163 2010-02-16 2011-02-15 Agent and method for selectively anchoring halogenated aromatic compound contained in medium WO2011102346A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180009823.5A CN102762294B (en) 2010-02-16 2011-02-15 Agent and method for selectively anchoring halogenated aromatic compound contained in medium
JP2012500601A JP5532359B2 (en) 2010-02-16 2011-02-15 Selective fixing agent and selective fixing method of halogenated aromatic compound contained in medium
KR1020127022270A KR101437252B1 (en) 2010-02-16 2011-02-15 Agent and method for selectively anchoring halogenated aromatic compound contained in medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010031565 2010-02-16
JP2010-031565 2010-02-16
JP2010031547 2010-02-16
JP2010-031547 2010-02-16

Publications (1)

Publication Number Publication Date
WO2011102346A1 true WO2011102346A1 (en) 2011-08-25

Family

ID=44482931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053163 WO2011102346A1 (en) 2010-02-16 2011-02-15 Agent and method for selectively anchoring halogenated aromatic compound contained in medium

Country Status (4)

Country Link
JP (1) JP5532359B2 (en)
KR (1) KR101437252B1 (en)
CN (1) CN102762294B (en)
WO (1) WO2011102346A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140028A (en) * 2011-12-28 2013-07-18 Neos Co Ltd Radioactive substance removal adsorption material
JP2013178152A (en) * 2012-02-28 2013-09-09 Neos Co Ltd Radioactive substance adsorption/removal material
JP2013208549A (en) * 2012-03-30 2013-10-10 Neos Co Ltd Method for selectively sticking halogenated aromatic compound using centrifugal separation
WO2014007163A1 (en) * 2012-07-06 2014-01-09 株式会社ネオス Method for selectively fixing persistent organic pollutant using cyclodextrin polymer
WO2015146769A1 (en) * 2014-03-26 2015-10-01 株式会社ネオス Method for low-temperature selective fixing of halogenated aromatic compound contained in medium
JP2016068014A (en) * 2014-09-30 2016-05-09 株式会社ネオス Adsorption treatment method of halogenated aromatic compound by means of continuous or successive compression method
JP2016137433A (en) * 2015-01-27 2016-08-04 株式会社ネオス Calculation method for charging amount of cyclodextrin polymer
JP2016168580A (en) * 2015-03-16 2016-09-23 株式会社ネオス Adsorption processing method of halogenated aromatic compound
JP2017006865A (en) * 2015-06-24 2017-01-12 株式会社ネオス Method for producing cyclodextrin polymer
JP2021063223A (en) * 2019-10-11 2021-04-22 南京大学 Porous cyclodextrin polymer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5747379B2 (en) * 2011-04-27 2015-07-15 株式会社ネオス Method for producing cyclodextrin polymer and method for selectively adsorbing and removing halogenated aromatic compound contained in medium using the same
JP2013233473A (en) * 2012-05-02 2013-11-21 Neos Co Ltd Method for selectively adsorbing/removing halogenated aromatic compound contained in medium by using cyclodextrin polymer
PL3789451T3 (en) * 2015-04-20 2023-09-18 Cornell University Porous cyclodextrin polymeric materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551402A (en) * 1991-08-26 1993-03-02 Toppan Printing Co Ltd Production of cyclodextrin polymer
JP2008094886A (en) * 2006-10-06 2008-04-24 Mitsubishi Chemicals Corp Foamed article made from biomass resource-derived polyester, and method for producing the same
JP2009095792A (en) * 2007-10-18 2009-05-07 Neos Co Ltd Selective sticking agent for halogenated aromatic compound contained in medium and selectively sticking method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010008222A1 (en) 1998-12-23 2001-07-19 Min Ma Cyclodextrin polymer separation materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551402A (en) * 1991-08-26 1993-03-02 Toppan Printing Co Ltd Production of cyclodextrin polymer
JP2008094886A (en) * 2006-10-06 2008-04-24 Mitsubishi Chemicals Corp Foamed article made from biomass resource-derived polyester, and method for producing the same
JP2009095792A (en) * 2007-10-18 2009-05-07 Neos Co Ltd Selective sticking agent for halogenated aromatic compound contained in medium and selectively sticking method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140028A (en) * 2011-12-28 2013-07-18 Neos Co Ltd Radioactive substance removal adsorption material
JP2013178152A (en) * 2012-02-28 2013-09-09 Neos Co Ltd Radioactive substance adsorption/removal material
JP2013208549A (en) * 2012-03-30 2013-10-10 Neos Co Ltd Method for selectively sticking halogenated aromatic compound using centrifugal separation
KR101661073B1 (en) 2012-07-06 2016-09-28 네오스 컴파니 리미티드 Method for selectively fixing persistent organic pollutant using cyclodextrin polymer
WO2014007163A1 (en) * 2012-07-06 2014-01-09 株式会社ネオス Method for selectively fixing persistent organic pollutant using cyclodextrin polymer
JP2014014746A (en) * 2012-07-06 2014-01-30 Neos Co Ltd Method for selectively fixing persistent organic pollutant using cyclodextrin polymer
KR20150028834A (en) 2012-07-06 2015-03-16 네오스 컴파니 리미티드 Method for selectively fixing persistent organic pollutant using cyclodextrin polymer
WO2015146769A1 (en) * 2014-03-26 2015-10-01 株式会社ネオス Method for low-temperature selective fixing of halogenated aromatic compound contained in medium
JPWO2015146769A1 (en) * 2014-03-26 2017-04-13 株式会社ネオス Low temperature selective fixing method of halogenated aromatic compound contained in medium
JP2016068014A (en) * 2014-09-30 2016-05-09 株式会社ネオス Adsorption treatment method of halogenated aromatic compound by means of continuous or successive compression method
JP2016137433A (en) * 2015-01-27 2016-08-04 株式会社ネオス Calculation method for charging amount of cyclodextrin polymer
JP2016168580A (en) * 2015-03-16 2016-09-23 株式会社ネオス Adsorption processing method of halogenated aromatic compound
JP2017006865A (en) * 2015-06-24 2017-01-12 株式会社ネオス Method for producing cyclodextrin polymer
JP2021063223A (en) * 2019-10-11 2021-04-22 南京大学 Porous cyclodextrin polymer

Also Published As

Publication number Publication date
CN102762294A (en) 2012-10-31
KR20120112832A (en) 2012-10-11
CN102762294B (en) 2015-05-20
JP5532359B2 (en) 2014-06-25
KR101437252B1 (en) 2014-09-02
JPWO2011102346A1 (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5532359B2 (en) Selective fixing agent and selective fixing method of halogenated aromatic compound contained in medium
JP5747379B2 (en) Method for producing cyclodextrin polymer and method for selectively adsorbing and removing halogenated aromatic compound contained in medium using the same
Wang et al. A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water
JP7300125B2 (en) A novel cyclodextrin polymer that rapidly adsorbs dissolved organic pollutants in water
JP6342328B2 (en) Stationary phase
JP4836087B2 (en) Selective fixing agent and selective fixing method of halogenated aromatic compound contained in medium
CN107376875A (en) A kind of preparation and application of the beta cyclodextrin porous material with quick adsorption ability
CN110102267A (en) A kind of aluminium base MOFs/ chitosan compound microsphere and its preparation method and application
JP5725502B2 (en) Method for selectively removing halogenated aromatic compounds contained in a medium using silica-containing cyclodextrin polymer
JP2008093545A (en) Adsorption and recovery method of iodine
JP2013233473A (en) Method for selectively adsorbing/removing halogenated aromatic compound contained in medium by using cyclodextrin polymer
JP2003226737A (en) Cross-linked cyclodextrin and endocrine disrupter remover using the same
Crini et al. Sorption of 4-n-nonylphenol, 4-n-octylphenol, and 4-tert-octyphenol on cyclodextrin polymers
CN113122938B (en) Preparation method and application of MOFs-containing chitosan/polyvinyl alcohol nanofiber membrane
JP2010247083A (en) Selective sticking agent for halogenated aromatic compound contained in medium and method for selectively sticking halogenated aromatic compound contained in medium
JP5569914B2 (en) Selective fixation of persistent organic pollutants using cyclodextrin polymer
CN111138668A (en) Cyclodextrin modified macroporous adsorption resin and preparation method thereof
JP2007297631A (en) Method for removing solvent from bead polymers
US9221040B2 (en) Perfluoroalkylated lignin as a catalyst support with varying phase behavior
CN100478065C (en) Sephadex medium and its prepn. method
JP2017006865A (en) Method for producing cyclodextrin polymer
TWI752157B (en) Method of cleaning resins
JP2005281372A (en) Method for producing insoluble cyclodextrin-supporting polymer shaped product
WO2015146769A1 (en) Method for low-temperature selective fixing of halogenated aromatic compound contained in medium
JP5806460B2 (en) Method for cleaning cyclodextrin condensation polymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009823.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500601

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127022270

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11744632

Country of ref document: EP

Kind code of ref document: A1