WO2011102092A1 - Digital amplifier - Google Patents

Digital amplifier Download PDF

Info

Publication number
WO2011102092A1
WO2011102092A1 PCT/JP2011/000648 JP2011000648W WO2011102092A1 WO 2011102092 A1 WO2011102092 A1 WO 2011102092A1 JP 2011000648 W JP2011000648 W JP 2011000648W WO 2011102092 A1 WO2011102092 A1 WO 2011102092A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
circuit
signal
current
digital amplifier
Prior art date
Application number
PCT/JP2011/000648
Other languages
French (fr)
Japanese (ja)
Inventor
宙 菅原
寿幸 佐々木
茂樹 庭山
佳樹 前田
智臣 ▲高▼野
Original Assignee
パナソニック株式会社
ローランド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, ローランド株式会社 filed Critical パナソニック株式会社
Priority to CN201180010215.6A priority Critical patent/CN102859868B/en
Publication of WO2011102092A1 publication Critical patent/WO2011102092A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/351Pulse width modulation being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/426Indexing scheme relating to amplifiers the amplifier comprising circuitry for protection against overload

Definitions

  • the present invention relates to a digital amplifier that performs switching operation of a switching element in an output stage to amplify an input signal in class D.
  • a digital amplifier converts an analog input signal into a digital pulse signal by PWM (Pulse Width Modulation) conversion, and switches the active element (switching element) such as an FET by this digital pulse signal, thereby amplifying power (class D). Amplification). Then, the digital pulse signal after power amplification is passed through a low pass filter of the LC circuit to obtain an analog output signal obtained by power amplification of the source signal.
  • PWM Pulse Width Modulation
  • This type of digital amplifier has a function of protecting an amplifier circuit such as a switching element in the output stage when an overcurrent, resonance, or the like on the load side occurs.
  • an overcurrent state occurs due to a load short circuit or the like
  • the output is interrupted by a relay or the like provided in the amplifier output unit to protect the switching element.
  • resonance occurs in the low-pass filter of the amplifier output section at light load (high impedance), and the amplifier circuit may be destroyed due to this resonance phenomenon There is.
  • a technique for protecting an amplifier circuit by detecting a resonance current at a light load and muting an input signal when an excessive resonance current flows is known. (For example, refer to Patent Document 1).
  • a configuration in which a current limiter using an analog circuit that limits the output current of the amplifier circuit is mounted is also conceivable.
  • a phase delay occurs in the control of the current limiter, and the current limiting operation may not be in time.
  • the current limiter control is performed in consideration of this control delay, the time when the current limiter control functions is too early or the frequency increases, and there is a problem that the output is easily cut off.
  • the present invention has been made in view of the above circumstances, and its purpose is to reduce the time for detecting an abnormality in the output current and to protect the amplifier circuit in the event of an abnormality without stopping the output as much as possible. To provide an amplifier.
  • the present invention is a digital amplifier that amplifies an input signal class D, a switching element that performs a switching operation by a drive signal based on a digital pulse signal of the input signal, a drive circuit that supplies the drive signal to the switching element, An output filter including a low-pass filter connected to the output part of the switching element, and an abnormality that is provided in the output part of the switching element and detects an abnormal state of the output current from the switching element and outputs an abnormal state detection signal
  • a state detection unit the abnormal state detection unit has a phase advance function for advancing the phase of the abnormal state detection signal
  • the drive circuit detects an abnormal state of the output current based on the abnormal state detection signal Digital signal for turning off the drive signal and stopping the switching operation of the switching element when To provide a pump.
  • the drive signal from the drive circuit is turned off to stop the switching operation of the switching element, so that the input signal is turned off, the output signal is cut off, etc. Operation is possible. Further, the phase delay of the abnormal state detection signal can be eliminated or reduced by the phase advance function of the abnormal state detection unit. Therefore, it is possible to reduce the time for detecting an abnormality in the output current and protect the amplifier circuit in the event of an abnormality without stopping the output as much as possible.
  • the present invention is the digital amplifier described above, wherein the abnormal state detection unit detects an overcurrent of a predetermined value or more in the output current from the switching element, and uses the overcurrent detection signal as the abnormal state detection signal.
  • the circuit includes an overcurrent detection circuit for outputting and a phase advance circuit for advancing the phase of the overcurrent detection signal.
  • the present invention is the digital amplifier described above, wherein the abnormal state detection unit detects a resonance current that is equal to or greater than a predetermined value related to an output current when resonance occurs in the output filter, and serves as the abnormal state detection signal. Including those having a resonance current detection circuit that outputs a resonance current detection signal.
  • the present invention is the digital amplifier described above, wherein a temperature detection unit that detects a temperature of the switching element or its surroundings, an output blocking unit that blocks the output of the switching element, and the input signal below a predetermined level An input signal mute unit for making a silent state or a minute state of the input signal, and an interlocking control unit for interlocking the output blocking unit and the input signal mute unit, the interlocking control unit having a predetermined value or more by the temperature detection unit In the case where a high temperature state is detected, the output cutoff unit and the input signal mute unit are operated in conjunction with each other.
  • both the input and output of the switching element are operated by operating the output cutoff unit and the input signal mute unit in conjunction with each other. Can be stopped to protect the switching element.
  • the output filter is in a state where no resonance occurs and resonance is likely to occur in the output filter.
  • it is possible to prevent resonance in the output filter by muting the input signal. is there.
  • the present invention is the above digital amplifier, wherein the drive circuit turns off the drive signal when the output current is a predetermined value or more based on the abnormal state detection signal, and performs a switching operation of the switching element. And the current limiting operation of the switching element is performed by repeatedly performing the control to turn on the driving signal and restart the switching operation of the switching element when the output current becomes less than a predetermined value. including.
  • the current limiting operation is performed by repeatedly stopping / resuming the switching operation, so that it is possible to protect the amplifier circuit including the switching device without stopping the output as much as possible. It becomes.
  • the present invention is the above-described digital amplifier, wherein the drive circuit performs a current limiting operation of the switching element when the reference oscillation frequency of the digital pulse signal is one cycle unit or any one cycle unit.
  • the drive signal is turned on / off at the following timing.
  • the present invention is the above digital amplifier, wherein when it is determined that the resonance current detection signal of the resonance current detection circuit is continuously output for a predetermined time and has been continued for the predetermined time, the fact is indicated. It is the structure which has the control part which outputs this signal.
  • the present invention it is possible to provide a digital amplifier capable of reducing the time for detecting an abnormality in the output current and protecting the amplifier circuit in the event of an abnormality without stopping the output as much as possible.
  • FIG. 1 is a circuit diagram showing a configuration of a digital amplifier according to an embodiment of the present invention.
  • Circuit diagram showing a specific configuration example of a digital amplifier according to the present embodiment Output characteristics diagram showing comparison of thermal design standards for digital and analog amplifiers
  • Operation waveform diagram showing waveforms at the time of amplifier operation by the current limiting circuit of this embodiment (A), (B) is a comparison diagram of output current waveforms depending on the presence or absence of a phase advance circuit in the current limiting circuit of this embodiment.
  • Circuit diagram showing basic configuration of digital amplifier Gain-frequency characteristics diagram of amplifier circuit when resonance occurs in low-pass filter of amplifier output section The flowchart which shows the 1st operation example regarding the circuit protection function of the digital amplifier which concerns on this embodiment.
  • State transition diagram showing a second operation example regarding the circuit protection function of the digital amplifier according to the present embodiment The figure which shows the loudspeaker system using the digital amplifier which concerns on this embodiment
  • FIG. 1 is a circuit diagram showing a configuration of a digital amplifier according to an embodiment of the present invention.
  • the digital amplifier of this embodiment includes a PWM circuit 11, a drive circuit 12, and switching elements Q1 and Q2.
  • the switching elements Q1 and Q2 are composed of N-channel MOSFETs or the like, and the drain and source are connected in series to constitute a pair of switching elements.
  • the switching elements Q1 and Q2 perform switching operation alternately according to the input of the drive signal to the gate, and amplify the power of the input signal.
  • the voltage + VB is applied to the drain of the switching element Q1
  • the voltage ⁇ VB is applied to the source of the switching element Q2
  • the switching elements Q1 and Q2 are turned on / off according to the gate voltage.
  • the switching element is not limited to the FET, and may be another element capable of switching operation such as a bipolar transistor.
  • the PWM circuit 11 performs PWM conversion of the input signal and outputs a digital pulse signal having a pulse width corresponding to the input signal level.
  • the drive circuit 12 drives the switching elements Q1 and Q2 based on the digital pulse signal output from the PWM circuit 11, and outputs drive signals to the gates of the switching elements Q1 and Q2, respectively.
  • An output filter 15 including a low-pass filter including a coil 13 and a capacitor 14 is connected to the output portions of the switching elements Q1 and Q2.
  • a relay 16 that opens and closes an output signal path is connected to the output end of the output filter 15 as an example of an output blocking unit, and a speaker 17 that is a load is connected via the relay 16.
  • the output cut-off unit often uses a relay, but may be other switch means.
  • the input signal of the analog audio signal is converted into a digital pulse signal by the PWM circuit 11 and input to the drive circuit 12. Based on this digital pulse signal, a drive signal is input from the drive circuit 12 to the gates of the switching elements Q1 and Q2, and the switching elements Q1 and Q2 perform a switching operation by the drive signal.
  • the power-amplified digital pulse signals output from the output units of the switching elements Q1 and Q2 are converted into analog signals by the output filter 15, output as power-amplified analog audio signals, and supplied to the speaker 17.
  • the speaker 17 is driven by this output signal, and sound is emitted.
  • a detection resistor 18 is connected in series to the coil 13 of the output filter 15 of the amplifier output unit, and the current flowing through the coil 13 is detected by the voltage across the detection resistor 18 to detect the overcurrent flowing through the load.
  • a detection circuit 19 is provided.
  • a detection resistor 20 is connected in series to the capacitor 14, and a resonance current detection circuit 21 that detects a current flowing through the capacitor 14 by a voltage across the detection resistor 20 and detects a resonance current generated in the output filter 15 is provided. ing.
  • a phase advance circuit 22 that advances the phase of the overcurrent detection signal is connected to the output terminal of the overcurrent detection circuit 19, and is connected to the drive circuit 12 via the phase advance circuit 22.
  • the output terminal of the resonance current detection circuit 21 is also connected to the drive circuit 12.
  • the overcurrent detection circuit 19 outputs a high-level overcurrent detection signal as an abnormal state detection signal when the overcurrent detection value exceeds a predetermined value.
  • the resonance current detection circuit 21 outputs a high level resonance current detection signal as an abnormal state detection signal when the resonance current detection value is equal to or greater than a predetermined value.
  • the voltage across the detection resistor 18 is detected by an operational amplifier (not shown), the phase of the detected waveform is advanced, and then compared with a predetermined value by a comparator (not shown) to detect an overcurrent.
  • the circuit configuration of the resonance current detection circuit 21 other than the phase advance circuit can be realized by the same circuit configuration as that of the overcurrent detection circuit 19 described above.
  • the drive circuit 12 stops operation and is supplied to the switching elements Q1 and Q2. Turn off. As a result, the gate voltages of the switching elements Q1 and Q2 become less than a predetermined value, and both are turned off.
  • the switching elements Q1 and Q2 are alternately turned on / off at a period of a reference oscillation frequency such as 400 kHz during a normal switching operation.
  • a reference oscillation frequency such as 400 kHz during a normal switching operation.
  • the drive signal is off, both are off, and no output current flows during the off period.
  • the overcurrent detection circuit 19, the phase advance circuit 22, the resonance current detection circuit 21, and the drive circuit 12 constitute a current limit circuit (current limiter) that limits the current of the switching elements Q 1 and Q 2 at the time of abnormality in the present embodiment. Is done.
  • An input signal mute unit 23 is provided on the input side of the PWM circuit 11.
  • the input signal mute unit 23 includes a mute circuit 24, a bypass circuit 25, and switches 26 and 27 for switching between them, and the mute circuit 24 or the bypass circuit 25 is connected to the input signal path in accordance with an external control signal. Connect to.
  • the mute circuit 24 attenuates the input signal to a predetermined level or less, and has a function of making the input signal silent or minute.
  • a temperature detection unit 28 for detecting the temperature of the switching elements Q1 and Q2 or its surroundings is provided.
  • the output end of the temperature detection unit 28 is connected to an interlock control unit 29 that controls the relay 16 and the input signal mute unit 23 in an interlocked manner.
  • the interlock control unit 29 outputs a control signal to the relay 16 and the input signal mute unit 23 to operate them in conjunction with each other when the temperature detection value by the temperature detection unit 28 is equal to or greater than a predetermined value. Execute. Thereby, the input / output with respect to the switching elements Q1, Q2 is turned off.
  • FIG. 2 is a circuit diagram showing a specific configuration example of the digital amplifier according to the present embodiment.
  • FIG. 2 shows an example of a specific configuration of the drive circuit and the phase advance circuit.
  • the drive circuit 31 includes an inverting circuit 32, photocouplers 33 and 34, drivers 35 and 36, a switch element 37, and a NOR circuit 38.
  • the LED of one photocoupler 33 is directly connected to the output terminal of the PWM circuit 11, and the LED of the other photocoupler 34 is connected via an inverting circuit 32.
  • Drivers 35 and 36 are connected to the phototransistors of the photocouplers 33 and 34, respectively.
  • one of the photocouplers 33 and 34 is turned on and the other is turned off based on the digital pulse signal output from the PWM circuit 11, so that the drivers 35 and 36 are alternately turned on.
  • a level signal is provided.
  • the drivers 35 and 36 are switched so as to alternately turn on / off the switching elements Q1 and Q2 by alternately supplying drive signals to the switching elements Q1 and Q2 in accordance with input signals from the photocouplers 33 and 34. Make it work.
  • a configuration example using a photocoupler, a switch element, and the like is shown here, a configuration in which the drive signal is turned on / off by other switch means may be used.
  • the other ends of the LEDs of the photocouplers 33 and 34 are grounded via a switch element 37.
  • An overcurrent detection signal from the overcurrent detection circuit 19 via the phase advance circuit 41 or a resonance current detection signal from the resonance current detection circuit 21 is supplied to the control input terminal of the switch element 37 via the NOR circuit 38.
  • the switch element 37 is turned on to conduct when a high level is inputted to the control input terminal, and is turned off and opened when a low level is inputted. In this case, when at least one of the overcurrent detection signal and the resonance current detection signal becomes high level, the switch element 37 is turned off, and both the LEDs of the photocouplers 33 and 34 are turned off. Therefore, when an overcurrent or resonance current exceeding a predetermined value is detected by the overcurrent detection circuit 19 and the resonance current detection circuit 21, the operation of the drive circuit 31 can be stopped and the switching operation of the switching elements Q1 and Q2 can be stopped. .
  • the phase advance circuit 41 includes a capacitor 42 and a resistor 43 connected in series, and is configured by a CR phase shift circuit that is grounded via a resistor 44.
  • the phase advance circuit 41 advances the overcurrent detection signal by the capacitor 42 and supplies it to the drive circuit 31.
  • the phase advance circuit is not limited to the CR phase shift circuit, and other configurations such as an LC phase shift circuit may be used.
  • This phase advance circuit 41 can eliminate or reduce the phase delay of the overcurrent detection signal that occurs in the system that detects and feeds back the overcurrent of the output current.
  • the phase delay of the overcurrent detection signal is mainly caused by constants, frequency characteristics and the like in the output filter 15 and the overcurrent detection circuit 19, and is about 10 ⁇ sec ⁇ , for example.
  • the phase advance degree in the phase advance circuit is equal to the time that takes into account the delay of the signal in the entire system until the abnormal state of the output current is detected and the drive signal is turned off. Since the resonance current detection circuit 21 has a phase advance function by the capacitor 14 of the output filter 15, it is not necessary to provide a phase advance circuit. By providing the circuit having the phase advance function in this way, the detection time of the overcurrent state can be shortened, and the response characteristic of the circuit protection operation against the overcurrent can be improved.
  • FIG. 3 is an output characteristic diagram showing a comparison of thermal design criteria between a digital amplifier and an analog amplifier.
  • the horizontal axis indicates output, and the vertical axis indicates loss.
  • the digital amplifier has less loss over the entire output range than the analog amplifier, but the loss with respect to the output is almost linear, and the loss increases as the output increases (output current increases). That is, the loss of the digital amplifier is (normal use) ⁇ (abnormal).
  • the loss of the analog amplifier is (in normal use) ⁇ (in abnormal state), and even if the loss in the abnormal state becomes large, there is no great difference from the normal use.
  • the thermal design standard of the amplifier is generally set based on a loss during normal use, and the heat sink size and the like are determined based on this thermal design standard.
  • analog amplifiers if thermal design is performed during normal use, there will be no problem even if the abnormal time is not taken into consideration. However, in the digital amplifier, if the thermal design is not performed with sufficient consideration of the abnormal time, a malfunction such as a failure of the amplifier circuit may occur.
  • a current limiter control is provided to control the current limiter when an overcurrent occurs.
  • the current limiter control is performed by stopping the drive circuit by overcurrent detection and resonance current detection, and a phase advance circuit is added to the overcurrent detection circuit to compensate for the phase delay of the overcurrent detection signal. It has.
  • the current limiter control reduces the output current abnormality detection time and limits the output current at the time of abnormality without stopping the output as much as possible. It can be performed.
  • FIG. 4 is an operation waveform diagram showing waveforms during amplifier operation by the current limiting circuit of the present embodiment.
  • the current limit value is a current value of a current limiting threshold value based on a predetermined value for detecting an abnormal state in the overcurrent detection circuit 19.
  • the operation of the drive circuit 12 is stopped so that no further output current flows.
  • the drive circuit 12 turns off the drive signal and stops the switching operation of the switching elements Q1 and Q2.
  • the operation stop of the drive circuit 12 continues. Thereafter, when the output current value becomes less than the predetermined value, the drive circuit 12 turns on the drive signal and restarts the switching operation of the switching elements Q1 and Q2.
  • the reference oscillation frequency of the digital amplifier (the reference oscillation frequency of the digital pulse signal, the switching frequency of the switching element, for example, 400 kHz)
  • the drive circuit 12 performs on / off control of the drive signal in real time in units of one cycle.
  • the switching elements Q1 and Q2 are repeatedly started / stopped (one is on) / stop (both are off).
  • the output current fluctuates in a sawtooth shape in units of one cycle of the reference oscillation frequency (for example, every cycle T), and the current value is limited to less than a predetermined value.
  • the on / off control of the drive signal is not limited to one cycle unit, but can be performed on / off at an arbitrary timing within one cycle.
  • FIG. 5A and 5B are comparison diagrams of output current waveforms according to the presence or absence of a phase advance circuit in the current limiting circuit of the present embodiment.
  • FIG. 5A shows a case where no phase advance circuit is provided, and FIG. Each operation waveform when a phase circuit is provided is shown.
  • the phase advance circuit of FIG. 5A is not provided, the start of the current limiting operation is delayed due to the phase delay of the overcurrent detection signal. Since the switching elements Q1 and Q2 perform the switching operation based on the reference oscillation frequency (for example, every 2.5 ⁇ sec in the case of 400 kHz), if there is a phase delay of the overcurrent detection signal, the switching operation cannot be immediately turned off. Current limit is not possible.
  • the output current exceeds the current limit value for a short period after the occurrence of the overcurrent, and therefore, if the abnormal state continues, the amplifier circuit may be broken. If the current limit value is lowered in consideration of this phase delay, problems such as the output being stopped earlier or the current limiting operation being frequently activated may occur.
  • the phase advance circuit of FIG. 5B is provided (this embodiment), the overcurrent detection time can be shortened, and the start of the current limiting operation can be prevented from being delayed with respect to the switching operation. Current limit is possible. In this case, as indicated by the symbol ⁇ , the current can be reliably limited without the output current becoming equal to or greater than the current limit value from the beginning of the overcurrent.
  • FIG. 6 is a circuit diagram showing the basic configuration of the digital amplifier
  • FIG. 7 is a gain-frequency characteristic diagram of the amplifier circuit when resonance occurs in the low-pass filter of the amplifier output section.
  • the digital amplifier includes an input signal source 51, an amplifier circuit 52, a low-pass filter 53, and a load 54 such as a speaker.
  • the load 54 is light load or no load (when the load resistance RL is small)
  • the LC resonance circuit by the coil L of the low-pass filter 53 and the capacitor C may resonate and the amplifier circuit 52 may oscillate.
  • the resonance frequency fR at which such resonance occurs is a frequency higher than 20 kHz exceeding the audible range based on the constant of the low-pass filter 53.
  • the operation of the drive circuit is stopped and the resonance current is suppressed.
  • the current limiter by the overcurrent detection is activated and the current is limited, and for the resonance current of the frequency exceeding the audible range, the current limiter by the resonance current detection is activated. Resonant current suppression is performed.
  • the current limiting operation when the resonance current is generated is limited in real time in the same manner as the current limiting operation when the overcurrent is generated. For this reason, the resonance current can be suppressed without affecting the output in the audible range. Therefore, even when resonance occurs due to a load abnormality, the resonance current can be suppressed without stopping the output as much as possible.
  • FIG. 8 is a flowchart showing a first operation example regarding the circuit protection function of the digital amplifier according to the present embodiment.
  • the overcurrent detection of the output stage by the overcurrent detection circuit 19 and the resonance current detection of the output stage by the resonance current detection circuit 21 are performed (S11).
  • the presence / absence of the circuit protection operation of the digital amplifier when the overcurrent / resonance current is generated is switched depending on whether the overcurrent detection value or the resonance current detection value is equal to or greater than a predetermined value (S12). If there is no abnormality in the output current and no overcurrent or resonance current greater than a predetermined value is detected, the operations of S11 to S12 are repeated.
  • the overcurrent detection signal or the resonance current detection signal becomes high level and the operation of the drive circuit 12 is stopped.
  • the switching elements Q1 and Q2 are both turned off (S13). Thereafter, whether or not the drive circuit 12 resumes operation is switched depending on whether the overcurrent detection value or the resonance current detection value is equal to or greater than a predetermined value (S14).
  • the overcurrent detection value or the resonance current detection value is equal to or greater than a predetermined value, the operation of the drive circuit 12 is continuously stopped.
  • the overcurrent detection signal and the resonance current detection signal become low level, and the operation of the drive circuit 12 restarts, and the switching operation of the switching elements Q1 and Q2 Is resumed (S15).
  • the presence or absence of the circuit protection operation of the digital amplifier at an abnormally high temperature is switched depending on whether or not the temperature detection values of the switching elements Q1 and Q2 by the temperature detection unit 28 are equal to or higher than a predetermined value (S16).
  • a predetermined value S16
  • the switching elements Q1 and Q2 When the abnormal state of the output current continues, the switching elements Q1 and Q2 generate excessive heat and become an abnormally high temperature state, and when the temperature detection value exceeds a predetermined value, the relay controller 16 and the relay 16 and The input signal mute unit 23 operates in conjunction with the relay off and the input signal mute (S17).
  • the relay 16 When the relay 16 is turned off and the output signal path is interrupted, the load is disconnected and no load is applied, so that resonance is more likely to occur.
  • the drive circuit 12 and the switching elements Q1 and Q2 operate intermittently even when resonance occurs and the current is limited, if the resonance state continues, the switching elements Q1 and Q2 become abnormally high temperature. There is a risk of being destroyed. For this reason, the relay 16 and the input signal mute unit 23 are interlocked to perform relay off and input signal mute at the same time, so that both input and output can be turned off to prevent resonance.
  • the temperature detection (S16) of the switching element is provided at the end of the flow, but it may be provided immediately after the start. This is effective because when the switching elements Q1 and Q2 are generating heat due to an initial device failure or the like, the circuit operation can be stopped quickly without detecting abnormal current.
  • FIG. 9 is a state transition diagram showing a second operation example regarding the circuit protection function of the digital amplifier according to the present embodiment.
  • the overcurrent detection of the output stage by the overcurrent detection circuit 19 the resonance current detection of the output stage by the resonance current detection circuit 21 (S 21), and the temperature detection unit 28 Temperature detection (S22) of switching elements Q1 and Q2 is performed. If the overcurrent detection value and the resonance current detection value are less than the predetermined value and normal, the overcurrent detection and resonance current detection in S21 are repeated. When the temperature detection value is less than the predetermined value and normal, the temperature detection of S22 is repeated.
  • the overcurrent detection signal or the resonance current detection signal becomes a high level, the operation of the drive circuit 12 is stopped, and the switching elements Q1 and Q2 are turned off. (S23). Subsequently, overcurrent detection and resonance current detection are performed (S24).
  • the overcurrent detection value or the resonance current detection value is equal to or greater than the predetermined value, the overcurrent detection and the resonance current detection in S24 are repeated, and the operation stop state of the drive circuit 12 continues.
  • the overcurrent detection value and the resonance current detection value become normal when they are less than the predetermined values, the overcurrent detection signal and the resonance current detection signal become low level, and the operation of the drive circuit 12 is resumed (S25). Thereafter, returning to the overcurrent detection and resonance current detection of S21, the same operation is repeated.
  • the relay 16 and the input signal mute unit 23 operate in conjunction with each other under the control of the interlock control unit 29, and the relay is turned off and the input signal mute is executed (S26). Subsequently, temperature detection is performed (S27). Here, when the temperature detection value becomes equal to or greater than the predetermined value, the temperature detection in S27 is repeated, and the relay-off and input signal mute states continue. When the detected temperature value is less than the predetermined value and becomes normal, the relay 16 and the input signal mute unit 23 are deactivated in conjunction with the control of the interlock control unit 29, and the relay is turned on and the mute is released (S28).
  • FIG. 10 shows a loudspeaker system using the digital amplifier according to this embodiment.
  • the audio signal collected from the microphone 70 is connected to the mixer 71 via a cable, and the mixer 71 is connected to the digital amplifier 72, and the digital amplifier 72 is connected to the speaker 73. Amplify the signal.
  • FIG. 11 shows the configuration of a digital amplifier used in this loudspeaker system.
  • the difference from FIG. 2 is that the output of the resonance current detection circuit 21 is also input to the control unit 80, and the LED 81 is output when the output result of the resonance current detection circuit 21 continues for a predetermined time in the control unit 80. It is having the control part 80 and LED81 so that it can display by.
  • the digital amplifier 72 of the present invention can detect a resonance current generated in such a loudspeaker system when the number of speakers 73 is small, such as a so-called light load, but the detected frequency is shown in FIG. However, as shown, it is a non-audible frequency band of 20 kHz or more.
  • the loudspeaker sound from the speaker 73 is again collected by the microphone 70, and the oscillation frequency generated in the audible frequency band is well known as howling.
  • the cables of the microphone 70 and the speaker 73 are wired along each other as shown in FIG. 10, the input and output are electrically and magnetically coupled, and positive feedback is applied and oscillation may occur. This is called system oscillation and cannot be heard by the human ear as in howling, so detection is delayed and often causes failure of the mixer 71, the digital amplifier 72, the speaker 73, and the like.
  • the band in which system oscillation occurs can also be detected. Therefore, when this resonance current is constantly generated, it is determined that system oscillation has occurred. be able to. Therefore, it is detected by the control unit 80 or a microcomputer (not shown) that the output of the resonance current detection circuit 21 has continued for a predetermined time, and when it continues for a predetermined time, the LED 81 is turned on to confirm that system oscillation has occurred. Users of the loudspeaker system can be notified.
  • the control unit 80 may be configured to include an integration circuit inside and turn on the LED 81 if the integration value is a predetermined value or more.
  • control unit 80 may use a timer or the like because it is only necessary to determine that the output of the resonance current detection circuit 21 has been continuously detected for a predetermined time.
  • the LED 81 may be provided in the digital amplifier, but may be provided in a position where the user can easily see in the loudspeaker system, for example, in the mixer 71, or a light emitter or liquid crystal such as an LED or a warning lamp on the ceiling or wall.
  • a display body such as an organic EL may be provided alone. Furthermore, it is possible to detect system oscillation even when voice signals from various audio sources are amplified instead of the voice signal from the microphone 70.
  • the detection signal phase-advancing circuit is provided so that the response at the time of detecting the abnormal state is detected early.
  • the time can be shortened, and a fast and reliable current limiting operation can be performed.
  • an abnormal state such as an overcurrent occurs
  • the output can be continued while the current is limited without immediately interrupting the output current.
  • the digital amplifier of the present embodiment is applied to a business broadcast system, an emergency broadcast system, a loudspeaker system, etc., the operation can be continued and the sound can be continuously output until the amplifier circuit completely fails.
  • a resonance current detection circuit is provided, and the resonance phenomenon of the output filter of the amplifier output section that occurs at the time of light load is detected by the current flowing through the capacitor of the output filter, and the current can be limited by this resonance current detection. For this reason, it is possible to perform an appropriate current limiting operation against an overcurrent caused by a resonance phenomenon of the output unit, and protect the amplifier circuit. That is, in this embodiment, it is possible to deal with both abnormal loads such as when an overcurrent occurs when the load is short-circuited and when a resonance occurs such as when the load is open or when the load is light as the abnormal state.
  • the operation of the drive circuit is only stopped when an abnormal state is detected, and the previous PWM circuit or the like is operating normally. It doesn't cost. For this reason, when the abnormal state is resolved, the digital amplifier can be quickly started up and output can be started.
  • an interlock control unit is provided to detect the temperature of the switching element in the output stage.
  • the relay of the output unit is turned off and the input signal is muted. I do.
  • the output can be stopped by temperature detection to protect the amplifier circuit.
  • the detection time of the overcurrent and the resonance current that cause the destruction of the switching element in the output stage can be shortened, and the stop of the output can be minimized. Can be implemented.
  • the present invention has the effect of shortening the time for detecting an abnormality in the output current and protecting the amplifier circuit in the event of an abnormality without stopping the output as much as possible. It is useful as a digital amplifier for performing amplification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

The disclosed amplifier can reduce both overcurrent in output-current and resonance current detection time, minimises output suspension, and is capable of more appropriate current control operations. A digital amplifier has: in the output portion of switch elements (Q1, Q2), an overcurrent detection circuit (19) for detecting overcurrent, which is equal to or exceeds a specified value, in the output current; a phase advance circuit (22) which advances the phase of an overcurrent detection signal; and a resonance current detection circuit (21) which detects resonance current equal to or exceeding a specified value relating to the output current when resonance is generated at an output filter (15). When an abnormal state is detected in the output current on the basis of the overcurrent detection signal or a resonance current detection signal, a drive circuit (12) carries out current limiting operations by turning a drive signal to OFF and stopping the switching operation of the switching elements (Q1, Q2).

Description

デジタルアンプDigital amplifier
 本発明は、出力段のスイッチング素子をスイッチング動作させて入力信号をD級増幅するデジタルアンプに関する。 The present invention relates to a digital amplifier that performs switching operation of a switching element in an output stage to amplify an input signal in class D.
 デジタルアンプは、アナログの入力信号をPWM(Pulse Width Modulation)変換によりデジタルパルス信号に変換し、このデジタルパルス信号によってFET等の能動素子(スイッチング素子)をスイッチング動作させることにより、電力増幅(D級増幅)を行う。そして、電力増幅後のデジタルパルス信号をLC回路のローパスフィルタに通過させることで、源信号を電力増幅したアナログの出力信号を得る。 A digital amplifier converts an analog input signal into a digital pulse signal by PWM (Pulse Width Modulation) conversion, and switches the active element (switching element) such as an FET by this digital pulse signal, thereby amplifying power (class D). Amplification). Then, the digital pulse signal after power amplification is passed through a low pass filter of the LC circuit to obtain an analog output signal obtained by power amplification of the source signal.
 この種のデジタルアンプは、負荷側での過電流、共振等が発生した場合に、出力段のスイッチング素子等の増幅回路を保護する機能を備えている。例えば、負荷ショートなどによって過電流状態となったときは、アンプ出力部に設けたリレー等で出力を遮断してスイッチング素子を保護する。また、デジタルアンプに接続されるスピーカが少ない場合など、軽負荷時(高インピーダンス時)には、アンプ出力部のローパスフィルタにおいて共振が発生し、この共振現象のために増幅回路が破壊されるおそれがある。このような共振現象によるデジタルアンプの破壊を防ぐために、軽負荷時の共振電流を検出し、過大な共振電流が流れた場合に入力信号をミュートすることによって増幅回路を保護する技術が知られている(例えば、特許文献1参照)。 This type of digital amplifier has a function of protecting an amplifier circuit such as a switching element in the output stage when an overcurrent, resonance, or the like on the load side occurs. For example, when an overcurrent state occurs due to a load short circuit or the like, the output is interrupted by a relay or the like provided in the amplifier output unit to protect the switching element. Also, when there are few speakers connected to the digital amplifier, resonance occurs in the low-pass filter of the amplifier output section at light load (high impedance), and the amplifier circuit may be destroyed due to this resonance phenomenon There is. In order to prevent the destruction of the digital amplifier due to such a resonance phenomenon, a technique for protecting an amplifier circuit by detecting a resonance current at a light load and muting an input signal when an excessive resonance current flows is known. (For example, refer to Patent Document 1).
日本国特開2007-258903号公報Japanese Unexamined Patent Publication No. 2007-258903
 上記特許文献1のような構成では、軽負荷時の共振電流が検出されて直ぐに入力信号をミュートするようにすると、次に正常動作に復帰する場合に、PWM回路における動作の初期化のため、デジタルアンプの立ち上げに時間を要するという課題があった。この場合、入力信号のミュートにより出力(音声など)が停止してしまう。 In the configuration such as the above-mentioned Patent Document 1, if the input signal is muted immediately after the resonance current at the time of light load is detected, when the normal operation is resumed, the operation in the PWM circuit is initialized. There was a problem that it took time to start up a digital amplifier. In this case, output (sound etc.) stops due to muting of the input signal.
 また、デジタルアンプの回路保護のために、増幅回路の出力電流を制限するアナログ回路による電流リミッタを搭載する構成も考えられる。このような構成では、電流リミッタの制御に位相遅れが生じて、電流制限動作が間に合わない場合がある。また、この制御遅れを想定して電流リミッタ制御を行うようにすると、電流リミッタ制御が機能する時間が早過ぎたり頻度が増加し、容易に出力を遮断してしまう不具合が生じる。 Also, in order to protect the circuit of the digital amplifier, a configuration in which a current limiter using an analog circuit that limits the output current of the amplifier circuit is mounted is also conceivable. In such a configuration, a phase delay occurs in the control of the current limiter, and the current limiting operation may not be in time. Further, if the current limiter control is performed in consideration of this control delay, the time when the current limiter control functions is too early or the frequency increases, and there is a problem that the output is easily cut off.
 本発明は、上記事情に鑑みてなされたもので、その目的は、出力電流の異常を検出する時間を短縮し、出力をできるだけ停止させることなく、異常時に増幅回路を保護することが可能なデジタルアンプを提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to reduce the time for detecting an abnormality in the output current and to protect the amplifier circuit in the event of an abnormality without stopping the output as much as possible. To provide an amplifier.
 本発明は、入力信号をD級増幅するデジタルアンプであって、前記入力信号のデジタルパルス信号に基づく駆動信号によってスイッチング動作するスイッチング素子と、前記駆動信号を前記スイッチング素子に供給する駆動回路と、前記スイッチング素子の出力部に接続されるローパスフィルタを含む出力フィルタと、前記スイッチング素子の出力部に設けられ、前記スイッチング素子からの出力電流の異常状態を検出して異常状態検出信号を出力する異常状態検出部とを備え、前記異常状態検出部は、前記異常状態検出信号の位相を進める進相機能を有し、前記駆動回路は、前記異常状態検出信号に基づき、出力電流の異常状態が検出された場合に、前記駆動信号をオフして前記スイッチング素子のスイッチング動作を停止させるデジタルアンプを提供する。
 上記構成により、異常状態検出時に駆動回路からの駆動信号をオフしてスイッチング素子のスイッチング動作を停止させることで、入力信号をオフする、出力信号を遮断する等の動作を行うことなく、電流制限動作が可能である。また、異常状態検出部の進相機能によって異常状態検出信号の位相遅れを解消または低減することが可能である。したがって、出力電流の異常を検出する時間を短縮し、出力をできるだけ停止させることなく、異常時に増幅回路を保護することが可能となる。
The present invention is a digital amplifier that amplifies an input signal class D, a switching element that performs a switching operation by a drive signal based on a digital pulse signal of the input signal, a drive circuit that supplies the drive signal to the switching element, An output filter including a low-pass filter connected to the output part of the switching element, and an abnormality that is provided in the output part of the switching element and detects an abnormal state of the output current from the switching element and outputs an abnormal state detection signal A state detection unit, the abnormal state detection unit has a phase advance function for advancing the phase of the abnormal state detection signal, and the drive circuit detects an abnormal state of the output current based on the abnormal state detection signal Digital signal for turning off the drive signal and stopping the switching operation of the switching element when To provide a pump.
With the above configuration, when an abnormal condition is detected, the drive signal from the drive circuit is turned off to stop the switching operation of the switching element, so that the input signal is turned off, the output signal is cut off, etc. Operation is possible. Further, the phase delay of the abnormal state detection signal can be eliminated or reduced by the phase advance function of the abnormal state detection unit. Therefore, it is possible to reduce the time for detecting an abnormality in the output current and protect the amplifier circuit in the event of an abnormality without stopping the output as much as possible.
 また、本発明は、上記のデジタルアンプであって、前記異常状態検出部は、前記スイッチング素子からの出力電流における所定値以上の過電流を検出し、前記異常状態検出信号として過電流検出信号を出力する過電流検出回路と、前記過電流検出信号の位相を進める進相回路とを有するものを含む。
 上記構成により、出力電流の異常状態として、スイッチング素子からの出力電流における所定値以上の過電流を検出した場合に、駆動信号をオフしてスイッチング素子のスイッチング動作を停止させ、電流制限を行うことが可能である。この場合、過電流発生時に高速に電流制限動作が可能であり、出力をできるだけ停止することなく、スイッチング素子を含む増幅回路を保護することが可能となる。
Further, the present invention is the digital amplifier described above, wherein the abnormal state detection unit detects an overcurrent of a predetermined value or more in the output current from the switching element, and uses the overcurrent detection signal as the abnormal state detection signal. The circuit includes an overcurrent detection circuit for outputting and a phase advance circuit for advancing the phase of the overcurrent detection signal.
With the above configuration, when an overcurrent of a predetermined value or more in the output current from the switching element is detected as an abnormal state of the output current, the drive signal is turned off to stop the switching operation of the switching element and perform current limitation Is possible. In this case, a current limiting operation can be performed at a high speed when an overcurrent occurs, and the amplifier circuit including the switching element can be protected without stopping the output as much as possible.
 また、本発明は、上記のデジタルアンプであって、前記異常状態検出部は、前記出力フィルタにおいて共振が発生した際の出力電流に関する所定値以上の共振電流を検出し、前記異常状態検出信号として共振電流検出信号を出力する共振電流検出回路を有するものを含む。
 上記構成により、出力電流の異常状態として、出力フィルタにおいて共振が発生した際の出力電流に関する所定値以上の共振電流を検出した場合に、駆動信号をオフしてスイッチング素子のスイッチング動作を停止させ、電流制限を行うことが可能である。この場合、出力部での共振発生時に高速に電流制限動作が可能であり、可聴域の出力に影響を及ぼすことなく、スイッチング素子を含む増幅回路を保護することが可能となる。
Further, the present invention is the digital amplifier described above, wherein the abnormal state detection unit detects a resonance current that is equal to or greater than a predetermined value related to an output current when resonance occurs in the output filter, and serves as the abnormal state detection signal. Including those having a resonance current detection circuit that outputs a resonance current detection signal.
With the above configuration, when a resonance current of a predetermined value or more related to the output current when resonance occurs in the output filter as an abnormal state of the output current, the drive signal is turned off and the switching operation of the switching element is stopped. It is possible to limit the current. In this case, a current limiting operation can be performed at high speed when resonance occurs in the output section, and the amplifier circuit including the switching element can be protected without affecting the output in the audible range.
 また、本発明は、上記のデジタルアンプであって、前記スイッチング素子またはその周囲の温度を検出する温度検出部と、前記スイッチング素子の出力を遮断する出力遮断部と、前記入力信号を所定レベル以下の無音状態または微小状態にする入力信号ミュート部と、前記出力遮断部と前記入力信号ミュート部とを連動させる連動制御部とを備え、前記連動制御部は、前記温度検出部により所定値以上の高温状態が検出された場合に、前記出力遮断部及び前記入力信号ミュート部を連動させて作動させるものを含む。
 上記構成により、スイッチング素子またはその周囲の温度が所定値以上の高温状態となった場合に、出力遮断部と入力信号ミュート部とを連動させて作動させることで、スイッチング素子の入力と出力の双方を停止してスイッチング素子を保護することが可能である。この場合、スイッチング素子の出力を遮断すると無負荷状態となって出力フィルタにおいて共振が発生しやすい状態となるが、入力信号のミュートを行うことで、出力フィルタでの共振を防止することが可能である。
Further, the present invention is the digital amplifier described above, wherein a temperature detection unit that detects a temperature of the switching element or its surroundings, an output blocking unit that blocks the output of the switching element, and the input signal below a predetermined level An input signal mute unit for making a silent state or a minute state of the input signal, and an interlocking control unit for interlocking the output blocking unit and the input signal mute unit, the interlocking control unit having a predetermined value or more by the temperature detection unit In the case where a high temperature state is detected, the output cutoff unit and the input signal mute unit are operated in conjunction with each other.
With the above configuration, when the temperature of the switching element or its surroundings becomes a high temperature state higher than a predetermined value, both the input and output of the switching element are operated by operating the output cutoff unit and the input signal mute unit in conjunction with each other. Can be stopped to protect the switching element. In this case, if the output of the switching element is cut off, the output filter is in a state where no resonance occurs and resonance is likely to occur in the output filter. However, it is possible to prevent resonance in the output filter by muting the input signal. is there.
 また、本発明は、上記のデジタルアンプであって、前記駆動回路は、前記異常状態検出信号に基づき、前記出力電流が所定値以上の場合に前記駆動信号をオフして前記スイッチング素子のスイッチング動作を停止するとともに、前記出力電流が所定値未満となった場合に前記駆動信号をオンして前記スイッチング素子のスイッチング動作を再開する制御を繰り返し行うことで、前記スイッチング素子の電流制限動作を行うものを含む。
 上記構成により、スイッチング動作の停止/再開を繰り返して電流制限動作を行うことで、スイッチング素子の動作をできる限り継続して出力を停止することなく、スイッチング素子を含む増幅回路を保護することが可能となる。
Further, the present invention is the above digital amplifier, wherein the drive circuit turns off the drive signal when the output current is a predetermined value or more based on the abnormal state detection signal, and performs a switching operation of the switching element. And the current limiting operation of the switching element is performed by repeatedly performing the control to turn on the driving signal and restart the switching operation of the switching element when the output current becomes less than a predetermined value. including.
With the above configuration, the current limiting operation is performed by repeatedly stopping / resuming the switching operation, so that it is possible to protect the amplifier circuit including the switching device without stopping the output as much as possible. It becomes.
 また、本発明は、上記のデジタルアンプであって、前記駆動回路は、前記スイッチング素子の電流制限動作を行う際に、前記デジタルパルス信号の基準発振周波数の1周期単位または1周期単位内の任意のタイミングで前記駆動信号をオン/オフさせるものを含む。
 上記構成により、過電流の発生または共振電流の発生などの異常状態が検出されたときに、入力信号のデジタルパルス信号の基準発振周波数に応じて高速にリアルタイムな電流制限動作が可能であり、出力をできるだけ停止することなく、スイッチング素子を含む増幅回路を保護することが可能となる。
The present invention is the above-described digital amplifier, wherein the drive circuit performs a current limiting operation of the switching element when the reference oscillation frequency of the digital pulse signal is one cycle unit or any one cycle unit. In this case, the drive signal is turned on / off at the following timing.
With the above configuration, when an abnormal state such as occurrence of overcurrent or resonance current is detected, real-time current limiting operation is possible at high speed according to the reference oscillation frequency of the digital pulse signal of the input signal. It is possible to protect the amplifier circuit including the switching element without stopping as much as possible.
 また、本発明は、上記のデジタルアンプであって、前記共振電流検出回路の共振電流検出信号が所定時間継続して出力されていることを判断するとともに前記所定時間継続していた場合にその旨の信号を出力する制御部を有した構成である。
 上記構成により、拡声システムのシステム発振を検出することができるとともに、拡声システムの使用者にシステム発振が発生していることを知らせることができるため、ミキサ、デジタルアンプまたはスピーカ等の故障を防止することが可能となる。
Further, the present invention is the above digital amplifier, wherein when it is determined that the resonance current detection signal of the resonance current detection circuit is continuously output for a predetermined time and has been continued for the predetermined time, the fact is indicated. It is the structure which has the control part which outputs this signal.
With the above configuration, the system oscillation of the loudspeaker system can be detected and the user of the loudspeaker system can be notified that the system oscillation has occurred, so that the mixer, the digital amplifier, the speaker, or the like is prevented from being broken. It becomes possible.
 本発明によれば、出力電流の異常を検出する時間を短縮し、出力をできるだけ停止させることなく、異常時に増幅回路を保護することが可能なデジタルアンプを提供できる。 According to the present invention, it is possible to provide a digital amplifier capable of reducing the time for detecting an abnormality in the output current and protecting the amplifier circuit in the event of an abnormality without stopping the output as much as possible.
本発明の一実施形態に係るデジタルアンプの構成を示す回路図1 is a circuit diagram showing a configuration of a digital amplifier according to an embodiment of the present invention. 本実施形態に係るデジタルアンプの具体的な構成例を示す回路図Circuit diagram showing a specific configuration example of a digital amplifier according to the present embodiment デジタルアンプとアナログアンプの熱設計基準の比較を示す出力特性図Output characteristics diagram showing comparison of thermal design standards for digital and analog amplifiers 本実施形態の電流制限回路によるアンプ動作時の波形を示す動作波形図Operation waveform diagram showing waveforms at the time of amplifier operation by the current limiting circuit of this embodiment (A)、(B)は本実施形態の電流制限回路における進相回路の有無による出力電流波形の比較図(A), (B) is a comparison diagram of output current waveforms depending on the presence or absence of a phase advance circuit in the current limiting circuit of this embodiment. デジタルアンプの基本構成を示す回路図Circuit diagram showing basic configuration of digital amplifier アンプ出力部のローパスフィルタにおいて共振が発生した場合の増幅回路のゲイン-周波数特性図Gain-frequency characteristics diagram of amplifier circuit when resonance occurs in low-pass filter of amplifier output section 本実施形態に係るデジタルアンプの回路保護機能に関する第1の動作例を示すフローチャートThe flowchart which shows the 1st operation example regarding the circuit protection function of the digital amplifier which concerns on this embodiment. 本実施形態に係るデジタルアンプの回路保護機能に関する第2の動作例を示す状態遷移図State transition diagram showing a second operation example regarding the circuit protection function of the digital amplifier according to the present embodiment 本実施形態に係るデジタルアンプを用いた拡声システムを示す図The figure which shows the loudspeaker system using the digital amplifier which concerns on this embodiment 本発明の他の実施形態に係るデジタルアンプの構成を示す回路図The circuit diagram which shows the structure of the digital amplifier which concerns on other embodiment of this invention.
 以下の実施形態では、本発明に係るデジタルアンプの一例として、出力段のスイッチング素子にFETを使用し、負荷にスピーカを接続して、音声信号の増幅を行うデジタルアンプの構成例を示す。 In the following embodiments, as an example of a digital amplifier according to the present invention, a configuration example of a digital amplifier that amplifies an audio signal by using an FET as an output stage switching element and connecting a speaker to a load is shown.
 図1は本発明の一実施形態に係るデジタルアンプの構成を示す回路図である。本実施形態のデジタルアンプは、PWM回路11、駆動回路12、スイッチング素子Q1、Q2を備えて構成される。スイッチング素子Q1、Q2は、NチャネルのMOSFET等からなり、ドレイン-ソース間が互いに直列接続されて一対のスイッチング素子を構成する。このスイッチング素子Q1、Q2は、ゲートへの駆動信号の入力に応じて交互にスイッチング動作し、入力信号の電力増幅を行う。この際、スイッチング素子Q1のドレインに電圧+VBが、スイッチング素子Q2のソースに電圧-VBがそれぞれ印加され、ゲート電圧に応じてスイッチング素子Q1、Q2がオン/オフする。なお、スイッチング素子は、FETに限らず、バイポーラトランジスタなどの他のスイッチング動作可能な素子であってもよい。 FIG. 1 is a circuit diagram showing a configuration of a digital amplifier according to an embodiment of the present invention. The digital amplifier of this embodiment includes a PWM circuit 11, a drive circuit 12, and switching elements Q1 and Q2. The switching elements Q1 and Q2 are composed of N-channel MOSFETs or the like, and the drain and source are connected in series to constitute a pair of switching elements. The switching elements Q1 and Q2 perform switching operation alternately according to the input of the drive signal to the gate, and amplify the power of the input signal. At this time, the voltage + VB is applied to the drain of the switching element Q1, the voltage −VB is applied to the source of the switching element Q2, and the switching elements Q1 and Q2 are turned on / off according to the gate voltage. The switching element is not limited to the FET, and may be another element capable of switching operation such as a bipolar transistor.
 PWM回路11は、入力信号のPWM変換を行って入力信号レベルに応じたパルス幅を持つデジタルパルス信号を出力する。駆動回路12は、PWM回路11から出力されるデジタルパルス信号に基づいてスイッチング素子Q1、Q2を駆動するもので、スイッチング素子Q1、Q2のゲートに対してそれぞれ駆動信号を出力する。 The PWM circuit 11 performs PWM conversion of the input signal and outputs a digital pulse signal having a pulse width corresponding to the input signal level. The drive circuit 12 drives the switching elements Q1 and Q2 based on the digital pulse signal output from the PWM circuit 11, and outputs drive signals to the gates of the switching elements Q1 and Q2, respectively.
 スイッチング素子Q1、Q2の出力部には、コイル13及びコンデンサ14により構成されるローパスフィルタを含む出力フィルタ15が接続されている。この出力フィルタ15の出力端には、出力遮断部の一例として出力信号経路を開閉するリレー16が接続され、リレー16を介して負荷であるスピーカ17が接続されている。なお、出力遮断部は、リレーを用いることが多いが、他のスイッチ手段であってもよい。 An output filter 15 including a low-pass filter including a coil 13 and a capacitor 14 is connected to the output portions of the switching elements Q1 and Q2. A relay 16 that opens and closes an output signal path is connected to the output end of the output filter 15 as an example of an output blocking unit, and a speaker 17 that is a load is connected via the relay 16. The output cut-off unit often uses a relay, but may be other switch means.
 アナログの音声信号の入力信号は、PWM回路11でデジタルパルス信号に変換され、駆動回路12に入力される。このデジタルパルス信号に基づき、駆動回路12よりスイッチング素子Q1、Q2のゲートに駆動信号が入力され、駆動信号によってスイッチング素子Q1、Q2がスイッチング動作する。スイッチング素子Q1、Q2の出力部より出力される電力増幅されたデジタルパルス信号は、出力フィルタ15によりアナログ信号に変換され、電力増幅されたアナログの音声信号として出力されてスピーカ17に供給される。この出力信号によってスピーカ17が駆動され、音が放出される。 The input signal of the analog audio signal is converted into a digital pulse signal by the PWM circuit 11 and input to the drive circuit 12. Based on this digital pulse signal, a drive signal is input from the drive circuit 12 to the gates of the switching elements Q1 and Q2, and the switching elements Q1 and Q2 perform a switching operation by the drive signal. The power-amplified digital pulse signals output from the output units of the switching elements Q1 and Q2 are converted into analog signals by the output filter 15, output as power-amplified analog audio signals, and supplied to the speaker 17. The speaker 17 is driven by this output signal, and sound is emitted.
 また、アンプ出力部の出力フィルタ15のコイル13には、直列に検出抵抗18が接続され、検出抵抗18の両端電圧によりコイル13に流れる電流を検出し、負荷に流れる過電流を検出する過電流検出回路19が設けられている。さらに、コンデンサ14には直列に検出抵抗20が接続され、検出抵抗20の両端電圧によりコンデンサ14に流れる電流を検出し、出力フィルタ15において発生する共振電流を検出する共振電流検出回路21が設けられている。 In addition, a detection resistor 18 is connected in series to the coil 13 of the output filter 15 of the amplifier output unit, and the current flowing through the coil 13 is detected by the voltage across the detection resistor 18 to detect the overcurrent flowing through the load. A detection circuit 19 is provided. Further, a detection resistor 20 is connected in series to the capacitor 14, and a resonance current detection circuit 21 that detects a current flowing through the capacitor 14 by a voltage across the detection resistor 20 and detects a resonance current generated in the output filter 15 is provided. ing.
 過電流検出回路19の出力端には、過電流検出信号の位相を進める進相回路22が接続され、この進相回路22を介して駆動回路12と接続されている。共振電流検出回路21の出力端も駆動回路12と接続されている。過電流検出回路19は、過電流検出値が所定値以上となった場合に、異常状態検出信号としてハイレベルの過電流検出信号を出力する。共振電流検出回路21は、共振電流検出値が所定値以上となった場合に、異常状態検出信号としてハイレベルの共振電流検出信号を出力する。なお、過電流検出回路19と進相回路22を別回路とせずに、同一の回路ブロックで構成することももちろん可能である。この場合は、検出抵抗18の両端の電圧を図示しないオペアンプにより検出し、この検出波形の位相を進めてから図示しないコンパレータで所定値と比較することで過電流を検出するものである。また、共振電流検出回路21も進相回路以外の回路構成は上述の過電流検出回路19と同様の回路構成で実現できる。 A phase advance circuit 22 that advances the phase of the overcurrent detection signal is connected to the output terminal of the overcurrent detection circuit 19, and is connected to the drive circuit 12 via the phase advance circuit 22. The output terminal of the resonance current detection circuit 21 is also connected to the drive circuit 12. The overcurrent detection circuit 19 outputs a high-level overcurrent detection signal as an abnormal state detection signal when the overcurrent detection value exceeds a predetermined value. The resonance current detection circuit 21 outputs a high level resonance current detection signal as an abnormal state detection signal when the resonance current detection value is equal to or greater than a predetermined value. Of course, it is possible to configure the overcurrent detection circuit 19 and the phase advance circuit 22 as the same circuit block without using separate circuits. In this case, the voltage across the detection resistor 18 is detected by an operational amplifier (not shown), the phase of the detected waveform is advanced, and then compared with a predetermined value by a comparator (not shown) to detect an overcurrent. The circuit configuration of the resonance current detection circuit 21 other than the phase advance circuit can be realized by the same circuit configuration as that of the overcurrent detection circuit 19 described above.
 駆動回路12は、過電流検出回路19からの過電流検出信号、または共振電流検出回路21からの共振電流検出信号が入力された場合、動作を停止してスイッチング素子Q1、Q2に供給する駆動信号をオフする。これにより、スイッチング素子Q1、Q2のゲート電圧が所定値未満となり、双方ともにオフとなる。スイッチング素子Q1、Q2は、通常のスイッチング動作時には、例えば400kHzなどの基準発振周波数の周期で交互にオン/オフする。これに対し、駆動信号がオフのときは双方がオフとなり、そのオフ期間は出力電流が流れない。上記の過電流検出回路19、進相回路22、共振電流検出回路21、駆動回路12によって、本実施形態における異常時のスイッチング素子Q1、Q2の電流制限を行う電流制限回路(電流リミッタ)が構成される。 When the overcurrent detection signal from the overcurrent detection circuit 19 or the resonance current detection signal from the resonance current detection circuit 21 is input, the drive circuit 12 stops operation and is supplied to the switching elements Q1 and Q2. Turn off. As a result, the gate voltages of the switching elements Q1 and Q2 become less than a predetermined value, and both are turned off. The switching elements Q1 and Q2 are alternately turned on / off at a period of a reference oscillation frequency such as 400 kHz during a normal switching operation. On the other hand, when the drive signal is off, both are off, and no output current flows during the off period. The overcurrent detection circuit 19, the phase advance circuit 22, the resonance current detection circuit 21, and the drive circuit 12 constitute a current limit circuit (current limiter) that limits the current of the switching elements Q 1 and Q 2 at the time of abnormality in the present embodiment. Is done.
 PWM回路11の入力側には、入力信号ミュート部23が設けられている。入力信号ミュート部23は、ミュート回路24と、バイパス回路25と、これらを切り替えるスイッチ26、27とを有しており、外部からの制御信号に応じてミュート回路24またはバイパス回路25を入力信号経路に接続する。ミュート回路24は、入力信号を所定レベル以下に減衰させるもので、入力信号を無音状態または微小状態にする機能を有する。 An input signal mute unit 23 is provided on the input side of the PWM circuit 11. The input signal mute unit 23 includes a mute circuit 24, a bypass circuit 25, and switches 26 and 27 for switching between them, and the mute circuit 24 or the bypass circuit 25 is connected to the input signal path in accordance with an external control signal. Connect to. The mute circuit 24 attenuates the input signal to a predetermined level or less, and has a function of making the input signal silent or minute.
 また、スイッチング素子Q1、Q2の近傍には、スイッチング素子Q1、Q2またはその周囲の温度を検出する温度検出部28が設けられている。温度検出部28の出力端は、リレー16及び入力信号ミュート部23を連動制御する連動制御部29に接続されている。連動制御部29は、温度検出部28による温度検出値が所定値以上の場合に、リレー16及び入力信号ミュート部23に制御信号を出力してこれらを連動させて作動させ、リレーオフ及び入力信号ミュートを実行する。これにより、スイッチング素子Q1、Q2に対する入出力がオフされる。 Further, in the vicinity of the switching elements Q1 and Q2, a temperature detection unit 28 for detecting the temperature of the switching elements Q1 and Q2 or its surroundings is provided. The output end of the temperature detection unit 28 is connected to an interlock control unit 29 that controls the relay 16 and the input signal mute unit 23 in an interlocked manner. The interlock control unit 29 outputs a control signal to the relay 16 and the input signal mute unit 23 to operate them in conjunction with each other when the temperature detection value by the temperature detection unit 28 is equal to or greater than a predetermined value. Execute. Thereby, the input / output with respect to the switching elements Q1, Q2 is turned off.
 図2は本実施形態に係るデジタルアンプの具体的な構成例を示す回路図である。図2は、駆動回路及び進相回路の具体的な構成の一例を示したものである。駆動回路31は、反転回路32、フォトカプラ33、34、ドライバ35、36、スイッチ素子37、NOR回路38を有して構成される。PWM回路11の出力端には、一方のフォトカプラ33のLEDが直接接続され、他方のフォトカプラ34のLEDが反転回路32を介して接続されている。フォトカプラ33、34のフォトトランジスタには、それぞれドライバ35、36が接続されている。このような構成により、PWM回路11から出力されるデジタルパルス信号に基づいて、フォトカプラ33、34のうちの一方がオンし、他方がオフすることで、ドライバ35、36に対して交互にハイレベルの信号が供給される。ドライバ35、36は、フォトカプラ33、34からの入力信号に応じて交互にスイッチング素子Q1、Q2に対して駆動信号を供給することで、スイッチング素子Q1、Q2を交互にオン/オフするようスイッチング動作させる。なお、ここではフォトカプラ及びスイッチ素子等を用いた構成例を示しているが、他のスイッチ手段によって駆動信号をオン/オフする構成を用いることも可能である。 FIG. 2 is a circuit diagram showing a specific configuration example of the digital amplifier according to the present embodiment. FIG. 2 shows an example of a specific configuration of the drive circuit and the phase advance circuit. The drive circuit 31 includes an inverting circuit 32, photocouplers 33 and 34, drivers 35 and 36, a switch element 37, and a NOR circuit 38. The LED of one photocoupler 33 is directly connected to the output terminal of the PWM circuit 11, and the LED of the other photocoupler 34 is connected via an inverting circuit 32. Drivers 35 and 36 are connected to the phototransistors of the photocouplers 33 and 34, respectively. With such a configuration, one of the photocouplers 33 and 34 is turned on and the other is turned off based on the digital pulse signal output from the PWM circuit 11, so that the drivers 35 and 36 are alternately turned on. A level signal is provided. The drivers 35 and 36 are switched so as to alternately turn on / off the switching elements Q1 and Q2 by alternately supplying drive signals to the switching elements Q1 and Q2 in accordance with input signals from the photocouplers 33 and 34. Make it work. Although a configuration example using a photocoupler, a switch element, and the like is shown here, a configuration in which the drive signal is turned on / off by other switch means may be used.
 また、フォトカプラ33、34のLEDの他端は、スイッチ素子37を介して接地されている。スイッチ素子37の制御入力端には、進相回路41を介した過電流検出回路19からの過電流検出信号、または共振電流検出回路21からの共振電流検出信号がNOR回路38を介して供給される。スイッチ素子37は、制御入力端にハイレベルが入力された場合にオンして導通し、ローレベルが入力された場合にオフしてオープンとなる。この場合、過電流検出信号と共振電流検出信号の少なくとも一方がハイレベルとなったときに、スイッチ素子37がオフし、フォトカプラ33、34の双方のLEDがオフになる。したがって、過電流検出回路19及び共振電流検出回路21によって所定値以上の過電流または共振電流が検出されたときに、駆動回路31の動作を停止し、スイッチング素子Q1、Q2のスイッチング動作を停止できる。 Further, the other ends of the LEDs of the photocouplers 33 and 34 are grounded via a switch element 37. An overcurrent detection signal from the overcurrent detection circuit 19 via the phase advance circuit 41 or a resonance current detection signal from the resonance current detection circuit 21 is supplied to the control input terminal of the switch element 37 via the NOR circuit 38. The The switch element 37 is turned on to conduct when a high level is inputted to the control input terminal, and is turned off and opened when a low level is inputted. In this case, when at least one of the overcurrent detection signal and the resonance current detection signal becomes high level, the switch element 37 is turned off, and both the LEDs of the photocouplers 33 and 34 are turned off. Therefore, when an overcurrent or resonance current exceeding a predetermined value is detected by the overcurrent detection circuit 19 and the resonance current detection circuit 21, the operation of the drive circuit 31 can be stopped and the switching operation of the switching elements Q1 and Q2 can be stopped. .
 進相回路41は、直列接続されたコンデンサ42及び抵抗43を有し、抵抗44を介して接地されたCR移相回路により構成される。この進相回路41は、コンデンサ42によって過電流検出信号を進相し、駆動回路31に供給する。なお、進相回路はCR移相回路に限らず、LC移相回路などの他の構成を用いてもよい。この進相回路41により、出力電流の過電流を検出してフィードバックする系統において生じる、過電流検出信号の位相遅れを解消または低減することができる。過電流検出信号の位相遅れは、主に出力フィルタ15及び過電流検出回路19における定数、周波数特性などに起因して生じるものであり、例えば、約10μsec 程度である。ここで、進相回路における位相の進相度合は、出力電流の異常状態を検出して駆動信号をオフするまでの系統全体における信号の遅れを加味した時間分とするのがより好ましい。なお、共振電流検出回路21は、出力フィルタ15のコンデンサ14によって進相機能を有しているため、特に進相回路を設ける必要はない。このように進相機能を持つ回路を設けることによって、過電流状態の検出時間を短くし、過電流に対する回路保護動作の応答特性を向上することができる。 The phase advance circuit 41 includes a capacitor 42 and a resistor 43 connected in series, and is configured by a CR phase shift circuit that is grounded via a resistor 44. The phase advance circuit 41 advances the overcurrent detection signal by the capacitor 42 and supplies it to the drive circuit 31. The phase advance circuit is not limited to the CR phase shift circuit, and other configurations such as an LC phase shift circuit may be used. This phase advance circuit 41 can eliminate or reduce the phase delay of the overcurrent detection signal that occurs in the system that detects and feeds back the overcurrent of the output current. The phase delay of the overcurrent detection signal is mainly caused by constants, frequency characteristics and the like in the output filter 15 and the overcurrent detection circuit 19, and is about 10 μsec 約, for example. Here, it is more preferable that the phase advance degree in the phase advance circuit is equal to the time that takes into account the delay of the signal in the entire system until the abnormal state of the output current is detected and the drive signal is turned off. Since the resonance current detection circuit 21 has a phase advance function by the capacitor 14 of the output filter 15, it is not necessary to provide a phase advance circuit. By providing the circuit having the phase advance function in this way, the detection time of the overcurrent state can be shortened, and the response characteristic of the circuit protection operation against the overcurrent can be improved.
 ここで、デジタルアンプの熱設計基準について説明する。図3はデジタルアンプとアナログアンプの熱設計基準の比較を示す出力特性図である。図3のグラフにおいて、横軸は出力、縦軸は損失を示している。デジタルアンプは、アナログアンプと比較して出力全域にわたって損失が少ないが、出力に対する損失がほぼリニアであり、出力が増加する(出力電流が増大する)に従って損失が増大する。つまり、デジタルアンプの損失は(通常使用時)≪(異常時)となる。これに対し、アナログアンプは、損失が(通常使用時)≒(異常時)であり、異常時の損失が大きくなったとしても通常使用時とあまり大きな差は生じない。アンプの熱設計基準は、通常使用時の損失に基づいて設定するのが一般的であり、この熱設計基準に基づいてヒートシンクサイズ等を決定する。アナログアンプでは、通常使用時において熱設計をしておけば、異常時を考慮しなくともあまり問題は生じない。しかし、デジタルアンプでは、異常時を十分考慮して熱設計を行わないと、増幅回路の故障を招くなどの不具合が生じることがある。 Here, we explain the thermal design criteria for digital amplifiers. FIG. 3 is an output characteristic diagram showing a comparison of thermal design criteria between a digital amplifier and an analog amplifier. In the graph of FIG. 3, the horizontal axis indicates output, and the vertical axis indicates loss. The digital amplifier has less loss over the entire output range than the analog amplifier, but the loss with respect to the output is almost linear, and the loss increases as the output increases (output current increases). That is, the loss of the digital amplifier is (normal use) << (abnormal). On the other hand, the loss of the analog amplifier is (in normal use) ≈ (in abnormal state), and even if the loss in the abnormal state becomes large, there is no great difference from the normal use. The thermal design standard of the amplifier is generally set based on a loss during normal use, and the heat sink size and the like are determined based on this thermal design standard. In analog amplifiers, if thermal design is performed during normal use, there will be no problem even if the abnormal time is not taken into consideration. However, in the digital amplifier, if the thermal design is not performed with sufficient consideration of the abnormal time, a malfunction such as a failure of the amplifier circuit may occur.
 ただし、異常時を考慮してヒートシンクを大型化することはデジタルアンプの設計上好ましくないため、ここでは電流制限回路を設けて過電流発生時の電流リミッタ制御を行う構成を採用する場合を想定する。本実施形態では、過電流検出及び共振電流検出によって駆動回路を停止することで電流リミッタ制御を行い、さらに過電流検出回路に進相回路を追加して過電流検出信号の位相遅れを補償する構成を備えている。これにより、デジタルアンプの負荷において過電流または共振電流が発生したときに、出力電流の異常を検出する時間を短縮し、出力をできるだけ停止させることなく、異常時の出力電流を制限する電流リミッタ制御を行うことができる。 However, since it is not preferable from the viewpoint of designing a digital amplifier to increase the size of the heat sink in consideration of abnormal conditions, a case is assumed here in which a current limiter control is provided to control the current limiter when an overcurrent occurs. . In the present embodiment, the current limiter control is performed by stopping the drive circuit by overcurrent detection and resonance current detection, and a phase advance circuit is added to the overcurrent detection circuit to compensate for the phase delay of the overcurrent detection signal. It has. As a result, when an overcurrent or resonance current occurs in the load of the digital amplifier, the current limiter control reduces the output current abnormality detection time and limits the output current at the time of abnormality without stopping the output as much as possible. It can be performed.
 次に、過電流発生時の電流制限動作について詳細に説明する。図4は本実施形態の電流制限回路によるアンプ動作時の波形を示す動作波形図である。図4において、電流リミット値は、過電流検出回路19において異常状態を検出する所定値に基づく電流制限用閾値の電流値である。負荷の異常等によって出力電流値がこの電流リミット値以上となった場合に、駆動回路12の動作が停止し、それ以上の出力電流が流れないようにしている。ここで、出力電流値が所定値以上となった場合、駆動回路12が駆動信号をオフし、スイッチング素子Q1、Q2のスイッチング動作を停止する。ここで、出力電流値が所定値以上となっている状態では、駆動回路12の動作停止が継続する。その後、出力電流値が所定値未満となった場合、駆動回路12が駆動信号をオンし、スイッチング素子Q1、Q2のスイッチング動作を再開する。 Next, the current limiting operation when an overcurrent occurs will be described in detail. FIG. 4 is an operation waveform diagram showing waveforms during amplifier operation by the current limiting circuit of the present embodiment. In FIG. 4, the current limit value is a current value of a current limiting threshold value based on a predetermined value for detecting an abnormal state in the overcurrent detection circuit 19. When the output current value exceeds the current limit value due to a load abnormality or the like, the operation of the drive circuit 12 is stopped so that no further output current flows. Here, when the output current value exceeds a predetermined value, the drive circuit 12 turns off the drive signal and stops the switching operation of the switching elements Q1 and Q2. Here, in the state where the output current value is equal to or greater than the predetermined value, the operation stop of the drive circuit 12 continues. Thereafter, when the output current value becomes less than the predetermined value, the drive circuit 12 turns on the drive signal and restarts the switching operation of the switching elements Q1 and Q2.
 したがって、異常状態が検出されて電流制限動作が行われるときは、電流制限回路による電流リミッタ制御として、デジタルアンプの基準発振周波数(デジタルパルス信号の基準発振周波数、スイッチング素子のスイッチング周波数…例えば400kHz)の1周期単位で、駆動回路12がリアルタイムに駆動信号のオン/オフ制御を行うことになる。これにより、スイッチング素子Q1、Q2は、スイッチング動作の開始(一方がオン)/停止(双方がオフ)が繰り返される。このとき、図4中の拡大図に示すように、基準発振周波数の1周期単位で(例えば周期T毎に)鋸歯状に出力電流が変動して、電流値が所定値未満に制限される。したがって、スイッチング素子Q1、Q2からの出力を停止することなく、スイッチング動作をできる限り継続しながら、スイッチング素子を含む増幅回路を保護することが可能となる。なお、駆動信号のオン/オフ制御は1周期単位ではなく、1周期内の任意のタイミングでオン/オフ制御することももちろん可能である。 Therefore, when an abnormal state is detected and a current limiting operation is performed, as a current limiter control by the current limiting circuit, the reference oscillation frequency of the digital amplifier (the reference oscillation frequency of the digital pulse signal, the switching frequency of the switching element, for example, 400 kHz) The drive circuit 12 performs on / off control of the drive signal in real time in units of one cycle. Thereby, the switching elements Q1 and Q2 are repeatedly started / stopped (one is on) / stop (both are off). At this time, as shown in the enlarged view in FIG. 4, the output current fluctuates in a sawtooth shape in units of one cycle of the reference oscillation frequency (for example, every cycle T), and the current value is limited to less than a predetermined value. Therefore, it is possible to protect the amplifier circuit including the switching element while continuing the switching operation as much as possible without stopping the output from the switching elements Q1 and Q2. The on / off control of the drive signal is not limited to one cycle unit, but can be performed on / off at an arbitrary timing within one cycle.
 図5(A)、(B)は本実施形態の電流制限回路における進相回路の有無による出力電流波形の比較図であり、(A)は進相回路を設けない場合、(B)は進相回路を設けた場合のそれぞれの動作波形を示している。図5(A)の進相回路を設けない場合では、過電流検出信号の位相遅れによって電流制限動作の開始が遅れてしまう。スイッチング素子Q1、Q2は、基準発振周波数に基づいて(例えば400kHzの場合は2.5μsec 毎に)スイッチング動作するため、過電流検出信号の位相遅れがあると直ちにスイッチング動作をオフできず、リアルタイムの電流制限ができない。この場合、符号αで示すように、過電流発生から少しの期間は出力電流が電流リミット値をオーバーするため、異常状態が継続すると増幅回路の故障等を招くおそれがある。この位相遅れを考慮して電流リミット値を下げてしまうと、早めに出力が停止してしまったり、頻繁に電流制限動作が作動してしまうなどの不具合が生じる。これに対し、図5(B)の進相回路を設けた場合(本実施形態)では、過電流検出時間を短くでき、スイッチング動作に対して電流制限動作の開始が遅れることを防止でき、リアルタイムの電流制限が可能である。この場合、符号βで示すように、過電流発生当初から出力電流が電流リミット値以上となることなく、確実に電流制限をかけることができる。 5A and 5B are comparison diagrams of output current waveforms according to the presence or absence of a phase advance circuit in the current limiting circuit of the present embodiment. FIG. 5A shows a case where no phase advance circuit is provided, and FIG. Each operation waveform when a phase circuit is provided is shown. When the phase advance circuit of FIG. 5A is not provided, the start of the current limiting operation is delayed due to the phase delay of the overcurrent detection signal. Since the switching elements Q1 and Q2 perform the switching operation based on the reference oscillation frequency (for example, every 2.5 μsec in the case of 400 kHz), if there is a phase delay of the overcurrent detection signal, the switching operation cannot be immediately turned off. Current limit is not possible. In this case, as indicated by the symbol α, the output current exceeds the current limit value for a short period after the occurrence of the overcurrent, and therefore, if the abnormal state continues, the amplifier circuit may be broken. If the current limit value is lowered in consideration of this phase delay, problems such as the output being stopped earlier or the current limiting operation being frequently activated may occur. On the other hand, when the phase advance circuit of FIG. 5B is provided (this embodiment), the overcurrent detection time can be shortened, and the start of the current limiting operation can be prevented from being delayed with respect to the switching operation. Current limit is possible. In this case, as indicated by the symbol β, the current can be reliably limited without the output current becoming equal to or greater than the current limit value from the beginning of the overcurrent.
 次に、共振電流発生時の電流制限動作について詳細に説明する。図6はデジタルアンプの基本構成を示す回路図、図7はアンプ出力部のローパスフィルタにおいて共振が発生した場合の増幅回路のゲイン-周波数特性図である。デジタルアンプは、基本構成として、入力信号源51、増幅回路52、ローパスフィルタ53、スピーカ等の負荷54を有する構成となる。負荷54が軽負荷または無負荷の場合(負荷抵抗RLが小さい場合)には、ローパスフィルタ53のコイルLとコンデンサCによるLC共振回路が共振して増幅回路52が発振することがある。通常、このような共振が発生する共振周波数fRは、ローパスフィルタ53の定数に基づき、可聴域を超えた20kHzより高い周波数となる。本実施形態では、共振電流発生時の出力電流値が所定値以上となると駆動回路の動作を停止し、共振電流を抑制するようにしている。この場合、可聴域の周波数の過電流については、過電流検出による電流リミッタが動作して電流制限が行われ、可聴域を超える周波数の共振電流については、共振電流検出による電流リミッタが動作して共振電流抑制が行われることになる。 Next, the current limiting operation when a resonance current is generated will be described in detail. FIG. 6 is a circuit diagram showing the basic configuration of the digital amplifier, and FIG. 7 is a gain-frequency characteristic diagram of the amplifier circuit when resonance occurs in the low-pass filter of the amplifier output section. As a basic configuration, the digital amplifier includes an input signal source 51, an amplifier circuit 52, a low-pass filter 53, and a load 54 such as a speaker. When the load 54 is light load or no load (when the load resistance RL is small), the LC resonance circuit by the coil L of the low-pass filter 53 and the capacitor C may resonate and the amplifier circuit 52 may oscillate. Usually, the resonance frequency fR at which such resonance occurs is a frequency higher than 20 kHz exceeding the audible range based on the constant of the low-pass filter 53. In the present embodiment, when the output current value when the resonance current is generated becomes equal to or greater than a predetermined value, the operation of the drive circuit is stopped and the resonance current is suppressed. In this case, for the overcurrent of the frequency in the audible range, the current limiter by the overcurrent detection is activated and the current is limited, and for the resonance current of the frequency exceeding the audible range, the current limiter by the resonance current detection is activated. Resonant current suppression is performed.
 ここで、共振電流発生時の電流制限動作は、上記の過電流発生時の電流制限動作と同様、リアルタイムで電流制限が行われる。このため、可聴域の出力に影響を及ぼすことなく、共振電流を抑制することができる。よって、負荷の異常によって共振が発生した場合でも、出力をできるだけ停止させることなく、共振電流を抑制することができる。 Here, the current limiting operation when the resonance current is generated is limited in real time in the same manner as the current limiting operation when the overcurrent is generated. For this reason, the resonance current can be suppressed without affecting the output in the audible range. Therefore, even when resonance occurs due to a load abnormality, the resonance current can be suppressed without stopping the output as much as possible.
 図8は本実施形態に係るデジタルアンプの回路保護機能に関する第1の動作例を示すフローチャートである。第1の動作例では、デジタルアンプの動作時において、過電流検出回路19による出力段の過電流検出、及び共振電流検出回路21による出力段の共振電流検出を行う(S11)。ここで、過電流検出値または共振電流検出値が所定値以上となったかどうかによって、過電流/共振電流発生時のデジタルアンプの回路保護動作の有無が切り替わる(S12)。出力電流に異常がなく、所定値以上の過電流または共振電流が検出されない場合は、S11~S12の動作が繰り返される。 FIG. 8 is a flowchart showing a first operation example regarding the circuit protection function of the digital amplifier according to the present embodiment. In the first operation example, during operation of the digital amplifier, the overcurrent detection of the output stage by the overcurrent detection circuit 19 and the resonance current detection of the output stage by the resonance current detection circuit 21 are performed (S11). Here, the presence / absence of the circuit protection operation of the digital amplifier when the overcurrent / resonance current is generated is switched depending on whether the overcurrent detection value or the resonance current detection value is equal to or greater than a predetermined value (S12). If there is no abnormality in the output current and no overcurrent or resonance current greater than a predetermined value is detected, the operations of S11 to S12 are repeated.
 過電流検出値または共振電流検出値が所定値以上となり、出力電流の異常状態が検出された場合、過電流検出信号または共振電流検出信号がハイレベルとなって駆動回路12の動作が停止し、スイッチング素子Q1、Q2を共にオフする(S13)。その後、過電流検出値または共振電流検出値が所定値以上となったかどうかによって駆動回路12の動作再開の有無が切り替わる(S14)。ここで、過電流検出値または共振電流検出値が所定値以上となった場合は、駆動回路12の動作停止が継続する。過電流検出値及び共振電流検出値が所定値未満となった場合、過電流検出信号及び共振電流検出信号がローレベルとなって駆動回路12の動作が再開し、スイッチング素子Q1、Q2のスイッチング動作を再開する(S15)。 When the overcurrent detection value or the resonance current detection value is equal to or greater than a predetermined value and an abnormal state of the output current is detected, the overcurrent detection signal or the resonance current detection signal becomes high level and the operation of the drive circuit 12 is stopped. The switching elements Q1 and Q2 are both turned off (S13). Thereafter, whether or not the drive circuit 12 resumes operation is switched depending on whether the overcurrent detection value or the resonance current detection value is equal to or greater than a predetermined value (S14). Here, when the overcurrent detection value or the resonance current detection value is equal to or greater than a predetermined value, the operation of the drive circuit 12 is continuously stopped. When the overcurrent detection value and the resonance current detection value are less than the predetermined values, the overcurrent detection signal and the resonance current detection signal become low level, and the operation of the drive circuit 12 restarts, and the switching operation of the switching elements Q1 and Q2 Is resumed (S15).
 また、デジタルアンプの動作時には、温度検出部28によるスイッチング素子Q1、Q2の温度検出値が所定値以上となったかどうかによって、異常高温時のデジタルアンプの回路保護動作の有無が切り替わる(S16)。スイッチング素子Q1、Q2の温度検出値が所定値未満で、異常高温状態でない場合は、S11~S16の動作が繰り返される。 Further, during the operation of the digital amplifier, the presence or absence of the circuit protection operation of the digital amplifier at an abnormally high temperature is switched depending on whether or not the temperature detection values of the switching elements Q1 and Q2 by the temperature detection unit 28 are equal to or higher than a predetermined value (S16). When the temperature detection values of the switching elements Q1 and Q2 are less than the predetermined value and the temperature is not abnormally high, the operations of S11 to S16 are repeated.
 出力電流の異常状態が継続するなどして、スイッチング素子Q1、Q2が過大に発熱して異常高温状態となり、温度検出値が所定値以上となった場合、連動制御部29の制御によってリレー16及び入力信号ミュート部23が連動して作動し、リレーオフ及び入力信号ミュートが実行される(S17)。 When the abnormal state of the output current continues, the switching elements Q1 and Q2 generate excessive heat and become an abnormally high temperature state, and when the temperature detection value exceeds a predetermined value, the relay controller 16 and the relay 16 and The input signal mute unit 23 operates in conjunction with the relay off and the input signal mute (S17).
 リレー16をオフして出力信号経路を遮断したときは、負荷が切り離されて無負荷状態となるため、より共振が発生しやすくなる。本実施形態では、共振発生時にも駆動回路12及びスイッチング素子Q1、Q2が間欠的に動作して電流制限を行う構成のため、共振状態が継続するとスイッチング素子Q1、Q2が異常に高温になって破壊されるおそれがある。このため、リレー16及び入力信号ミュート部23を連動制御してリレーオフ及び入力信号ミュートを同時に行うことで、入出力の双方をオフして共振を防止できる。 When the relay 16 is turned off and the output signal path is interrupted, the load is disconnected and no load is applied, so that resonance is more likely to occur. In this embodiment, since the drive circuit 12 and the switching elements Q1 and Q2 operate intermittently even when resonance occurs and the current is limited, if the resonance state continues, the switching elements Q1 and Q2 become abnormally high temperature. There is a risk of being destroyed. For this reason, the relay 16 and the input signal mute unit 23 are interlocked to perform relay off and input signal mute at the same time, so that both input and output can be turned off to prevent resonance.
 なお、図8のフローチャートでは、スイッチング素子の温度検出(S16)をフローの最後に設けたが、スタート直後に設けても良い。これはスイッチング素子Q1、Q2が初期デバイス不良などで発熱していた場合に、異常電流検出を行うことなく速やかに回路動作を停止できるため有効である。 In the flowchart of FIG. 8, the temperature detection (S16) of the switching element is provided at the end of the flow, but it may be provided immediately after the start. This is effective because when the switching elements Q1 and Q2 are generating heat due to an initial device failure or the like, the circuit operation can be stopped quickly without detecting abnormal current.
 図9は本実施形態に係るデジタルアンプの回路保護機能に関する第2の動作例を示す状態遷移図である。第2の動作例では、デジタルアンプの動作時において、過電流検出回路19による出力段の過電流検出と共振電流検出回路21による出力段の共振電流検出(S21)、並びに、温度検出部28によるスイッチング素子Q1、Q2の温度検出(S22)が行われる。過電流検出値及び共振電流検出値が所定値未満で正常の場合は、S21の過電流検出及び共振電流検出が繰り返される。温度検出値が所定値未満で正常の場合は、S22の温度検出が繰り返される。 FIG. 9 is a state transition diagram showing a second operation example regarding the circuit protection function of the digital amplifier according to the present embodiment. In the second operation example, during operation of the digital amplifier, the overcurrent detection of the output stage by the overcurrent detection circuit 19, the resonance current detection of the output stage by the resonance current detection circuit 21 (S 21), and the temperature detection unit 28 Temperature detection (S22) of switching elements Q1 and Q2 is performed. If the overcurrent detection value and the resonance current detection value are less than the predetermined value and normal, the overcurrent detection and resonance current detection in S21 are repeated. When the temperature detection value is less than the predetermined value and normal, the temperature detection of S22 is repeated.
 過電流検出値または共振電流検出値が所定値以上となった場合、過電流検出信号または共振電流検出信号がハイレベルとなって駆動回路12の動作が停止し、スイッチング素子Q1、Q2をオフする(S23)。そして、引き続き過電流検出及び共振電流検出が行われる(S24)。ここで、過電流検出値または共振電流検出値が所定値以上となった場合は、S24の過電流検出及び共振電流検出が繰り返され、駆動回路12の動作停止状態が継続する。過電流検出値及び共振電流検出値が所定値未満で正常となった場合、過電流検出信号及び共振電流検出信号がローレベルとなって駆動回路12の動作が再開する(S25)。その後、S21の過電流検出及び共振電流検出に戻って同様の動作が繰り返される。 When the overcurrent detection value or the resonance current detection value exceeds a predetermined value, the overcurrent detection signal or the resonance current detection signal becomes a high level, the operation of the drive circuit 12 is stopped, and the switching elements Q1 and Q2 are turned off. (S23). Subsequently, overcurrent detection and resonance current detection are performed (S24). Here, when the overcurrent detection value or the resonance current detection value is equal to or greater than the predetermined value, the overcurrent detection and the resonance current detection in S24 are repeated, and the operation stop state of the drive circuit 12 continues. When the overcurrent detection value and the resonance current detection value become normal when they are less than the predetermined values, the overcurrent detection signal and the resonance current detection signal become low level, and the operation of the drive circuit 12 is resumed (S25). Thereafter, returning to the overcurrent detection and resonance current detection of S21, the same operation is repeated.
 温度検出値が所定値以上となった場合、連動制御部29の制御によってリレー16及び入力信号ミュート部23が連動して作動し、リレーオフ及び入力信号ミュートが実行される(S26)。そして、引き続き温度検出が行われる(S27)。ここで、温度検出値が所定値以上となった場合は、S27の温度検出が繰り返され、リレーオフ及び入力信号ミュートの状態が継続する。温度検出値が所定値未満で正常となった場合、連動制御部29の制御によってリレー16及び入力信号ミュート部23が連動して作動解除し、リレーオン及びミュート解除が実行される(S28)。その後、S22の温度検出に戻って同様の動作が繰り返される。なお、S25での駆動回路12の動作再開後にS22の温度検出に移行し、温度検出値が所定値以上となった場合はS26のリレーオフ及び入力信号ミュート状態となり、温度検出値が所定値未満の場合はS21の過電流検出及び共振電流検出に移行するような動作も可能である。 When the temperature detection value is equal to or greater than the predetermined value, the relay 16 and the input signal mute unit 23 operate in conjunction with each other under the control of the interlock control unit 29, and the relay is turned off and the input signal mute is executed (S26). Subsequently, temperature detection is performed (S27). Here, when the temperature detection value becomes equal to or greater than the predetermined value, the temperature detection in S27 is repeated, and the relay-off and input signal mute states continue. When the detected temperature value is less than the predetermined value and becomes normal, the relay 16 and the input signal mute unit 23 are deactivated in conjunction with the control of the interlock control unit 29, and the relay is turned on and the mute is released (S28). Thereafter, returning to the temperature detection in S22, the same operation is repeated. After the operation of the drive circuit 12 is resumed in S25, the process proceeds to temperature detection in S22. When the temperature detection value becomes equal to or higher than a predetermined value, the relay is turned off and the input signal is muted in S26, and the temperature detection value is less than the predetermined value. In such a case, an operation for shifting to the overcurrent detection and resonance current detection in S21 is also possible.
 次に本実施形態に係るデジタルアンプを拡声システムに用いた場合を図10および11を用いて説明する。図10は本実施形態に係るデジタルアンプを用いた拡声システムを示している。拡声システムは、マイクロホン70より集音された音声信号をケーブルによりミキサ71まで接続し、ミキサ71からデジタルアンプ72、デジタルアンプ72からスピーカ73まで接続することで、拡声したい拡声空間にスピーカ73より音声信号を拡声する。 Next, the case where the digital amplifier according to this embodiment is used in a loudspeaker system will be described with reference to FIGS. FIG. 10 shows a loudspeaker system using the digital amplifier according to this embodiment. In the loudspeaker system, the audio signal collected from the microphone 70 is connected to the mixer 71 via a cable, and the mixer 71 is connected to the digital amplifier 72, and the digital amplifier 72 is connected to the speaker 73. Amplify the signal.
 また図11は、本拡声システムに使用されるデジタルアンプの構成を示している。図11の構成において、図2との相違点は、共振電流検出回路21の出力が制御部80にも入力され、制御部80で共振電流検出回路21の出力結果が所定時間継続した場合にLED81で表示させることが可能となるように、制御部80およびLED81を有していることである。 FIG. 11 shows the configuration of a digital amplifier used in this loudspeaker system. In the configuration of FIG. 11, the difference from FIG. 2 is that the output of the resonance current detection circuit 21 is also input to the control unit 80, and the LED 81 is output when the output result of the resonance current detection circuit 21 continues for a predetermined time in the control unit 80. It is having the control part 80 and LED81 so that it can display by.
 本発明のデジタルアンプ72は、このような拡声システムにおいて、スピーカ73の接続数が少ない、いわゆる軽負荷等のときに発生する共振電流を検出できるものであるが、検出している周波数は図7でも示しているように20kHz以上の非可聴周波数帯域である。 The digital amplifier 72 of the present invention can detect a resonance current generated in such a loudspeaker system when the number of speakers 73 is small, such as a so-called light load, but the detected frequency is shown in FIG. However, as shown, it is a non-audible frequency band of 20 kHz or more.
 さて、マイクロホン70およびスピーカ73を含む拡声システムでは、スピーカ73からの拡声音が再びマイクロホン70により集音されることにより、可聴周波数帯域において発生する発振周波数はハウリングとしてよく知られている。これに対し、図10のようにマイクロホン70とスピーカ73のケーブルが互いに沿って配線されたときなどに、入出力が電気・磁気的に結合して正帰還がかかり、発振がおきることがある。これはシステム発振と呼ばれ、ハウリングのように人間の耳には聴こえないため、検知するのが遅れ、しばしばミキサ71、デジタルアンプ72およびスピーカ73等の故障を招く原因となっていた。 Now, in the loudspeaker system including the microphone 70 and the speaker 73, the loudspeaker sound from the speaker 73 is again collected by the microphone 70, and the oscillation frequency generated in the audible frequency band is well known as howling. On the other hand, when the cables of the microphone 70 and the speaker 73 are wired along each other as shown in FIG. 10, the input and output are electrically and magnetically coupled, and positive feedback is applied and oscillation may occur. This is called system oscillation and cannot be heard by the human ear as in howling, so detection is delayed and often causes failure of the mixer 71, the digital amplifier 72, the speaker 73, and the like.
 しかし本発明のデジタルアンプの共振電流検出回路21によれば、システム発振が発生する帯域も併せて検出できるため、この共振電流が定常的に発生しているときにはシステム発振が生じていると判断することができる。そこで共振電流検出回路21の出力を制御部80または図示しないマイコン等で所定時間継続していることを検出し、所定時間継続した場合にはLED81点灯させることで、システム発振が生じていることを拡声システムの使用者に知らせることができる。なお、制御部80としては内部に積分回路を備えその積分値が所定値以上であればLED81点灯させる構成としてもよい。 However, according to the resonance current detection circuit 21 of the digital amplifier of the present invention, the band in which system oscillation occurs can also be detected. Therefore, when this resonance current is constantly generated, it is determined that system oscillation has occurred. be able to. Therefore, it is detected by the control unit 80 or a microcomputer (not shown) that the output of the resonance current detection circuit 21 has continued for a predetermined time, and when it continues for a predetermined time, the LED 81 is turned on to confirm that system oscillation has occurred. Users of the loudspeaker system can be notified. Note that the control unit 80 may be configured to include an integration circuit inside and turn on the LED 81 if the integration value is a predetermined value or more.
 これにより、使用者はシステム発振の発生を認知し、ミキサ71、デジタルアンプ72およびスピーカ73等が故障する前に適切な対応を取ることが可能となる。 This allows the user to recognize the occurrence of system oscillation and take appropriate measures before the mixer 71, digital amplifier 72, speaker 73, etc. fail.
 なお、制御部80としては共振電流検出回路21の出力が所定時間継続して検出されたことを判断できればよいため、タイマ等を使用してもよい。また、LED81はデジタルアンプ内に設けても良いが、拡声システムにおいて使用者が見やすい位置に、例えばミキサ71に設けても良いし、または天井、壁等にLEDまたは警告ランプ等の発光体または液晶、有機EL等の表示体を単体で設けてもよい。さらにマイクロホン70からの音声信号の代わりに、各種オーディオ音源からの音声信号を拡声する場合にもシステム発振を検出することが可能である。 Note that the control unit 80 may use a timer or the like because it is only necessary to determine that the output of the resonance current detection circuit 21 has been continuously detected for a predetermined time. The LED 81 may be provided in the digital amplifier, but may be provided in a position where the user can easily see in the loudspeaker system, for example, in the mixer 71, or a light emitter or liquid crystal such as an LED or a warning lamp on the ceiling or wall. A display body such as an organic EL may be provided alone. Furthermore, it is possible to detect system oscillation even when voice signals from various audio sources are amplified instead of the voice signal from the microphone 70.
 以上説明したように、本実施形態では、電流リミッタ制御を行うための出力電流の異常状態を検出する回路において、検出信号の進相回路を設けることで、異常状態検出時の応答を早めて検出時間を短くでき、高速かつ確実な電流制限動作を行うことができる。この場合、位相遅れを想定した電流リミッタ制御を行う必要がないため、過電流等の異常状態発生の際、直ちに出力電流を遮断せずに、電流制限を行いつつ出力を継続することができる。これにより、例えば本実施形態のデジタルアンプを業務放送システム、緊急放送システム、拡声システム等に適用した場合、増幅回路が完全に故障するまで、動作を継続して音を出し続けることができる。 As described above, in this embodiment, in the circuit that detects the abnormal state of the output current for performing the current limiter control, the detection signal phase-advancing circuit is provided so that the response at the time of detecting the abnormal state is detected early. The time can be shortened, and a fast and reliable current limiting operation can be performed. In this case, since it is not necessary to perform current limiter control assuming a phase delay, when an abnormal state such as an overcurrent occurs, the output can be continued while the current is limited without immediately interrupting the output current. Thereby, for example, when the digital amplifier of the present embodiment is applied to a business broadcast system, an emergency broadcast system, a loudspeaker system, etc., the operation can be continued and the sound can be continuously output until the amplifier circuit completely fails.
 また、共振電流検出回路を設け、軽負荷時に発生するアンプ出力部の出力フィルタの共振現象を出力フィルタのコンデンサに流れる電流により検出して、この共振電流検出によって電流制限が可能である。このため、出力部の共振現象による過電流に対しても適切な電流制限動作を行い、増幅回路を保護することができる。すなわち、本実施形態では、異常状態として、負荷ショート時などの過電流発生時と、負荷オープン時または軽負荷時などの共振発生時との双方の負荷異常に対応できる。 Also, a resonance current detection circuit is provided, and the resonance phenomenon of the output filter of the amplifier output section that occurs at the time of light load is detected by the current flowing through the capacitor of the output filter, and the current can be limited by this resonance current detection. For this reason, it is possible to perform an appropriate current limiting operation against an overcurrent caused by a resonance phenomenon of the output unit, and protect the amplifier circuit. That is, in this embodiment, it is possible to deal with both abnormal loads such as when an overcurrent occurs when the load is short-circuited and when a resonance occurs such as when the load is open or when the load is light as the abnormal state.
 本実施形態における電流リミッタ制御では、異常状態検出時に駆動回路の動作を停止するのみで、その前段のPWM回路等は正常に動作しているため、正常状態に復帰したときに動作再開に時間を要することがない。このため、異常状態が解消されたときにデジタルアンプを素早く立ち上げて出力を開始することができる。 In the current limiter control in the present embodiment, the operation of the drive circuit is only stopped when an abnormal state is detected, and the previous PWM circuit or the like is operating normally. It doesn't cost. For this reason, when the abnormal state is resolved, the digital amplifier can be quickly started up and output can be started.
 また、連動制御部を設け、出力段のスイッチング素子の温度検出を行い、温度検出値が所定値以上となった場合は、出力部のリレーをオフするとともに入力信号をミュートする出力停止の連動制御を行う。これにより、異常高温状態になったときに入出力双方を停止してスイッチング素子の破壊を防止することができる。例えば、異常状態検出により電流制限動作を行っている状態において、負荷が変動して過電流が生じた場合などに、温度検出によって出力を停止し、増幅回路を保護することができる。 In addition, an interlock control unit is provided to detect the temperature of the switching element in the output stage. When the detected temperature exceeds the specified value, the relay of the output unit is turned off and the input signal is muted. I do. As a result, when the temperature becomes abnormally high, both the input and output can be stopped to prevent the switching element from being destroyed. For example, in a state where a current limiting operation is performed by detecting an abnormal state, when the load fluctuates and an overcurrent occurs, the output can be stopped by temperature detection to protect the amplifier circuit.
 このように本実施形態によれば、出力段のスイッチング素子の破壊を招く過電流及び共振電流の検出時間を短くするとともに、出力の停止を最小限にすることができ、より適切な電流制御動作の実施が可能になる。 As described above, according to the present embodiment, the detection time of the overcurrent and the resonance current that cause the destruction of the switching element in the output stage can be shortened, and the stop of the output can be minimized. Can be implemented.
 なお、本発明は、本発明の趣旨ならびに範囲を逸脱することなく、明細書の記載、並びに周知の技術に基づいて、当業者が様々な変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。また、発明の趣旨を逸脱しない範囲で、上記実施形態における各構成要素を任意に組み合わせてもよい。 The present invention is intended to be variously modified and applied by those skilled in the art based on the description in the specification and well-known techniques without departing from the spirit and scope of the present invention. Included in the scope for protection. Moreover, you may combine each component in the said embodiment arbitrarily in the range which does not deviate from the meaning of invention.
 本出願は、2010年2月18日出願の日本特許出願(特願2010-033362)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on Feb. 18, 2010 (Japanese Patent Application No. 2010-033362), the contents of which are incorporated herein by reference.
 本発明は、出力電流の異常を検出する時間を短縮し、出力をできるだけ停止させることなく、異常時に増幅回路を保護することが可能となる効果を有し、例えば業務放送等における音声信号等の増幅を行うデジタルアンプ等として有用である。 The present invention has the effect of shortening the time for detecting an abnormality in the output current and protecting the amplifier circuit in the event of an abnormality without stopping the output as much as possible. It is useful as a digital amplifier for performing amplification.
 11 PWM回路
 12、31 駆動回路
 13 コイル
 14 コンデンサ
 15 出力フィルタ
 16 リレー
 17 スピーカ
 18、20 検出抵抗
 19 過電流検出回路
 21 共振電流検出回路
 22、41 進相回路
 23 入力信号ミュート部
 24 ミュート回路
 25 バイパス回路
 26、27 スイッチ
 28 温度検出部
 29 連動制御部
 32 反転回路
 33、34 フォトカプラ
 35、36 ドライバ
 37 スイッチ素子
 38 NOR回路
 42 コンデンサ
 43、44 抵抗
 51 入力信号源
 52 増幅回路
 53 ローパスフィルタ
 54 負荷
 Q1、Q2 スイッチング素子
DESCRIPTION OF SYMBOLS 11 PWM circuit 12, 31 Drive circuit 13 Coil 14 Capacitor 15 Output filter 16 Relay 17 Speaker 18, 20 Detection resistance 19 Overcurrent detection circuit 21 Resonance current detection circuit 22, 41 Phase advance circuit 23 Input signal mute part 24 Mute circuit 25 Bypass Circuit 26, 27 Switch 28 Temperature detection unit 29 Interlocking control unit 32 Inversion circuit 33, 34 Photocoupler 35, 36 Driver 37 Switch element 38 NOR circuit 42 Capacitor 43, 44 Resistance 51 Input signal source 52 Amplifier circuit 53 Low-pass filter 54 Load Q1 , Q2 switching element

Claims (7)

  1.  入力信号をD級増幅するデジタルアンプであって、
     前記入力信号のデジタルパルス信号に基づく駆動信号によってスイッチング動作するスイッチング素子と、
     前記駆動信号を前記スイッチング素子に供給する駆動回路と、
     前記スイッチング素子の出力部に接続されるローパスフィルタを含む出力フィルタと、
     前記スイッチング素子の出力部に設けられ、前記スイッチング素子からの出力電流の異常状態を検出して異常状態検出信号を出力する異常状態検出部とを備え、
     前記異常状態検出部は、前記異常状態検出信号の位相を進める進相機能を有し、
     前記駆動回路は、前記異常状態検出信号に基づき、出力電流の異常状態が検出された場合に、前記駆動信号をオフして前記スイッチング素子のスイッチング動作を停止させるデジタルアンプ。
    A digital amplifier that amplifies the input signal class D,
    A switching element that performs a switching operation by a drive signal based on a digital pulse signal of the input signal;
    A drive circuit for supplying the drive signal to the switching element;
    An output filter including a low-pass filter connected to the output of the switching element;
    An abnormal state detection unit that is provided in an output unit of the switching element and detects an abnormal state of an output current from the switching element and outputs an abnormal state detection signal;
    The abnormal state detection unit has a phase advance function to advance the phase of the abnormal state detection signal,
    The drive circuit is a digital amplifier that turns off the drive signal and stops the switching operation of the switching element when an abnormal state of the output current is detected based on the abnormal state detection signal.
  2.  請求項1に記載のデジタルアンプであって、
     前記異常状態検出部は、前記スイッチング素子からの出力電流における所定値以上の過電流を検出し、前記異常状態検出信号として過電流検出信号を出力する過電流検出回路と、前記過電流検出信号の位相を進める進相回路とを有するデジタルアンプ。
    The digital amplifier according to claim 1,
    The abnormal state detection unit detects an overcurrent of a predetermined value or more in the output current from the switching element, and outputs an overcurrent detection signal as the abnormal state detection signal; and the overcurrent detection signal A digital amplifier having a phase advance circuit for advancing the phase.
  3.  請求項1に記載のデジタルアンプであって、
     前記異常状態検出部は、前記出力フィルタにおいて共振が発生した際の出力電流に関する所定値以上の共振電流を検出し、前記異常状態検出信号として共振電流検出信号を出力する共振電流検出回路を有するデジタルアンプ。
    The digital amplifier according to claim 1,
    The abnormal state detection unit detects a resonance current greater than a predetermined value related to an output current when resonance occurs in the output filter, and has a resonance current detection circuit that outputs a resonance current detection signal as the abnormal state detection signal Amplifier.
  4.  請求項1に記載のデジタルアンプであって、
     前記スイッチング素子またはその周囲の温度を検出する温度検出部と、
     前記スイッチング素子の出力を遮断する出力遮断部と、
     前記入力信号を所定レベル以下の無音状態または微小状態にする入力信号ミュート部と、
     前記出力遮断部と前記入力信号ミュート部とを連動させる連動制御部とを備え、
     前記連動制御部は、前記温度検出部により所定値以上の高温状態が検出された場合に、前記出力遮断部及び前記入力信号ミュート部を連動させて作動させるデジタルアンプ。
    The digital amplifier according to claim 1,
    A temperature detector for detecting the temperature of the switching element or its surroundings;
    An output blocking unit for blocking the output of the switching element;
    An input signal mute unit for making the input signal a silent state or a minute state below a predetermined level;
    An interlock control unit that interlocks the output blocking unit and the input signal mute unit;
    The interlock control unit is a digital amplifier that operates the output shut-off unit and the input signal mute unit in conjunction when a high temperature state equal to or higher than a predetermined value is detected by the temperature detection unit.
  5.  請求項1に記載のデジタルアンプであって、
     前記駆動回路は、前記異常状態検出信号に基づき、前記出力電流が所定値以上の場合に前記駆動信号をオフして前記スイッチング素子のスイッチング動作を停止するとともに、前記出力電流が所定値未満となった場合に前記駆動信号をオンして前記スイッチング素子のスイッチング動作を再開する制御を繰り返し行うことで、前記スイッチング素子の電流制限動作を行うデジタルアンプ。
    The digital amplifier according to claim 1,
    The drive circuit turns off the drive signal to stop the switching operation of the switching element when the output current is greater than or equal to a predetermined value based on the abnormal state detection signal, and the output current becomes less than the predetermined value. A digital amplifier that performs a current limiting operation of the switching element by repeatedly performing a control of turning on the driving signal and restarting the switching operation of the switching element when the switching signal is turned on.
  6.  請求項5に記載のデジタルアンプであって、
     前記駆動回路は、前記スイッチング素子の電流制限動作を行う際に、前記デジタルパルス信号の基準発振周波数の1周期単位または1周期単位内の任意のタイミングで前記駆動信号をオン/オフさせるデジタルアンプ。
    The digital amplifier according to claim 5,
    The drive circuit is a digital amplifier that turns on / off the drive signal at a unit of one cycle of a reference oscillation frequency of the digital pulse signal or at an arbitrary timing within one unit when performing a current limiting operation of the switching element.
  7.  請求項3に記載のデジタルアンプであって、
     前記共振電流検出回路の共振電流検出信号が所定時間継続して出力されていることを判断するとともに前記所定時間継続していた場合にその旨の信号を出力する制御部を有したデジタルアンプ。
    The digital amplifier according to claim 3,
    A digital amplifier having a control unit that determines that the resonance current detection signal of the resonance current detection circuit is continuously output for a predetermined time and outputs a signal to that effect when the resonance current detection signal has continued for the predetermined time.
PCT/JP2011/000648 2010-02-18 2011-02-04 Digital amplifier WO2011102092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180010215.6A CN102859868B (en) 2010-02-18 2011-02-04 Digital amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010033362A JP5430438B2 (en) 2010-02-18 2010-02-18 Digital amplifier
JP2010-033362 2010-02-18

Publications (1)

Publication Number Publication Date
WO2011102092A1 true WO2011102092A1 (en) 2011-08-25

Family

ID=44482700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000648 WO2011102092A1 (en) 2010-02-18 2011-02-04 Digital amplifier

Country Status (3)

Country Link
JP (1) JP5430438B2 (en)
CN (1) CN102859868B (en)
WO (1) WO2011102092A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013127216A1 (en) * 2012-02-27 2013-09-06 无锡华润矽科微电子有限公司 Circuit structure for achieving adaptive function in class—d audio power amplifier circuit
GB2510396A (en) * 2013-02-01 2014-08-06 Nujira Ltd Controlling resonance in an envelope tracking power supply
TWI724980B (en) * 2020-10-14 2021-04-11 立積電子股份有限公司 Amplification circuit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638597B2 (en) * 2012-12-27 2014-12-10 株式会社東芝 Digital amplitude modulation apparatus and digital amplitude modulation control method
US9647612B2 (en) 2014-09-30 2017-05-09 JVC Kenwood Corporation Power amplifying apparatus and power amplifying method
JP7173800B2 (en) * 2018-09-12 2022-11-16 ラピスセミコンダクタ株式会社 Semiconductor device and sound output device
KR102081971B1 (en) * 2018-11-13 2020-02-26 한국항공우주연구원 Device and method of protecting source for acoustic testing
KR101992293B1 (en) * 2019-01-02 2019-06-26 (주)하이텍영상 Digital Amplifier Device with real-time detection and Automatic Switching Broadcasting System using it
KR102214729B1 (en) * 2019-01-11 2021-02-10 박창길 Emergency broadcasting control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254021A (en) * 2003-02-19 2004-09-09 Rohm Co Ltd Method for protecting amplifier, and semiconductor device provided with amplifier
JP2007258903A (en) * 2006-03-22 2007-10-04 Toa Corp Resonance current detection device and protection device for digital amplifier
JP2009209958A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Magnetic bearing device
JP2009260834A (en) * 2008-04-18 2009-11-05 Sony Corp Overcurrent protection circuit and class-d amplifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146722A (en) * 1993-10-01 1995-06-06 Fuji Electric Co Ltd Overcurrent protective device for transistor
JP3774385B2 (en) * 2001-07-26 2006-05-10 株式会社デノン Amplifier protection circuit
JP2005203968A (en) * 2004-01-14 2005-07-28 Denon Ltd Protective device for digital amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254021A (en) * 2003-02-19 2004-09-09 Rohm Co Ltd Method for protecting amplifier, and semiconductor device provided with amplifier
JP2007258903A (en) * 2006-03-22 2007-10-04 Toa Corp Resonance current detection device and protection device for digital amplifier
JP2009209958A (en) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd Magnetic bearing device
JP2009260834A (en) * 2008-04-18 2009-11-05 Sony Corp Overcurrent protection circuit and class-d amplifier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013127216A1 (en) * 2012-02-27 2013-09-06 无锡华润矽科微电子有限公司 Circuit structure for achieving adaptive function in class—d audio power amplifier circuit
US9331641B2 (en) 2012-02-27 2016-05-03 Wuxi China Resources Semico Co. Circuit structure for achieving adaptive function in class-D audio power amplifier circuit
GB2510396A (en) * 2013-02-01 2014-08-06 Nujira Ltd Controlling resonance in an envelope tracking power supply
TWI724980B (en) * 2020-10-14 2021-04-11 立積電子股份有限公司 Amplification circuit
US11539332B2 (en) 2020-10-14 2022-12-27 Richwave Technology Corp. Amplification circuit with over power protection

Also Published As

Publication number Publication date
CN102859868B (en) 2015-05-20
CN102859868A (en) 2013-01-02
JP2011171967A (en) 2011-09-01
JP5430438B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5430438B2 (en) Digital amplifier
KR101606441B1 (en) Protection circuit of output amplifier and speaker in power amplifier
US20120014025A1 (en) Overcurrent protection circuit and semiconductor device
US20080043391A1 (en) Timer reset circuit for overcurrent protection of switching power amplifier
CN108367709B (en) Vehicle approach notification device
KR100604815B1 (en) Signal generating apparatus and signal generating method
JPWO2004010575A1 (en) Power amplifier device
US6603353B2 (en) Switching power amplifier
WO2016051655A1 (en) Level shift circuit
US9007738B2 (en) Transistor protection circuit
JP4408912B2 (en) Class D amplifier circuit
JP6330364B2 (en) Amplifier circuit protection circuit
JP4040013B2 (en) Switching circuit, audio signal reproducing apparatus using the same, and switching element protection method
KR101446252B1 (en) Amp containing a PWM signal controlling ciruit using detection of input signal
WO2007140392A2 (en) Methods and apparatus to provide slew enhancement for low power amplifiers
JP4307875B2 (en) Audio output circuit
JP2005142795A (en) Audio circuit
JP2012209770A (en) Fixed sound generator and switching amplifier
JP2014165052A (en) Load driving device
JP4772719B2 (en) Power amplifier
JP2008219547A (en) Excess current protection device of amplifier
JP6719346B2 (en) Vehicle electronics
JP2009260835A (en) Overcurrent protection circuit and class d amplifier
JPH11239029A (en) Pulse width modulation amplifier circuit
JP2009089289A (en) Class-d amplifier

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010215.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744386

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744386

Country of ref document: EP

Kind code of ref document: A1