WO2011102072A1 - 対象物追跡装置、対象物追跡方法、および対象物追跡プログラム - Google Patents

対象物追跡装置、対象物追跡方法、および対象物追跡プログラム Download PDF

Info

Publication number
WO2011102072A1
WO2011102072A1 PCT/JP2011/000135 JP2011000135W WO2011102072A1 WO 2011102072 A1 WO2011102072 A1 WO 2011102072A1 JP 2011000135 W JP2011000135 W JP 2011000135W WO 2011102072 A1 WO2011102072 A1 WO 2011102072A1
Authority
WO
WIPO (PCT)
Prior art keywords
likelihood
image
particle
tracking
particles
Prior art date
Application number
PCT/JP2011/000135
Other languages
English (en)
French (fr)
Inventor
里雄二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/263,169 priority Critical patent/US8891821B2/en
Priority to CN201180001777.4A priority patent/CN102405483B/zh
Publication of WO2011102072A1 publication Critical patent/WO2011102072A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/277Analysis of motion involving stochastic approaches, e.g. using Kalman filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing

Definitions

  • the present invention relates to an object tracking device, an object tracking method, and an object tracking program for tracking the position of an object projected on an image using a particle filter.
  • Patent Document 1 the position of an object such as a human being displayed in an image is tracked using a particle filter (see, for example, Patent Document 1 and Non-Patent Document 1).
  • Patent Document 1 and the technique described in Non-Patent Document 1 (hereinafter collectively referred to as “prior art”) first determine the feature amount of an image of an object in a video.
  • the prior art generates a plurality of particles indicating candidates for the position of the object at the next time t from the position of the object at the time t-1, and each particle at the time t and the position of the object at the time t-1 The feature amount is matched between the two.
  • the prior art calculates the likelihood that the particle is the position of the object at time t for each particle from the similarity.
  • the prior art estimates the position of the particle having the highest likelihood for each object as the position of the object at time t. Thereby, the prior art can keep track of the position of the same object.
  • the technique described in Patent Document 1 corrects the above-described likelihood using a color feature amount when the feature amount is a shape feature amount indicating a contour curve of an object. Specifically, the technique described in Patent Document 1 first calculates, for each particle, a color feature amount that is a color histogram of a region in a contour curve, for example. The technique described in Patent Document 1 calculates the similarity between the color histogram of the color feature of the target object and the color histogram of each particle using a histogram intersection. Thereafter, the technique described in Patent Literature 1 corrects the above-described likelihood based on the calculation result. As a result, the technique described in Patent Document 1 reduces the possibility that another object with a similar contour curve is tracked by mistake even when the object is located near the target object. can do.
  • the feature amount of the object is similar between the objects. Difficult to distinguish. Therefore, in the prior art, the possibility that another target is erroneously tracked (hereinafter referred to as “mistracking”) cannot be sufficiently reduced.
  • An object of the present invention is to provide an object tracking device, an object tracking method, and an object tracking program that can further reduce the possibility of erroneous tracking.
  • the object tracking device of the present invention is an object tracking device that tracks the position of an object projected on an image using a particle filter, and generates a plurality of particles indicating candidate positions of the object, A feature amount calculation unit that calculates a feature amount of an image of the object and a feature amount of each image of the particle; and for each particle, a feature amount of the image of the particle and a feature amount of the image of the object A likelihood calculating unit that calculates the likelihood that the particle is the position of the object from the similarity, and a position estimating unit that estimates the position of the object based on the calculated likelihood of the particle And a likelihood correction unit that corrects the likelihood when there are a plurality of the objects and a plurality of positions estimated corresponding to these objects overlap.
  • the object tracking method of the present invention is an object tracking method for tracking the position of an object projected on an image using a particle filter, and generates a plurality of particles indicating candidate positions of the object, Calculating the feature amount of the image of the object and the feature amount of each image of the particle, and for each particle, from the similarity between the feature amount of the image of the particle and the feature amount of the image of the object Calculating the likelihood that the particle is the position of the object; estimating the position of the object based on the calculated likelihood of the particle; and a plurality of the objects. And a step of correcting the likelihood when a plurality of positions estimated corresponding to these overlap.
  • An object tracking program is an object tracking program for tracking the position of an object projected on an image using a particle filter, the particle indicating a candidate for the position of the object to a computer
  • a plurality of image data a process for calculating a feature amount of the object image and a feature amount of each image of the particle, and for each particle, a feature amount of the particle image and a feature of the object image
  • a process for calculating the likelihood that the particle is the position of the object from the similarity to the quantity a process for estimating the position of the object based on the calculated likelihood of the particle, When there are a plurality of the objects and a plurality of positions estimated corresponding to these objects overlap, a process of correcting the likelihood is executed.
  • the likelihood of particles can be corrected when the estimated positions overlap between objects, and the possibility of erroneous tracking can be further reduced.
  • FIG. 1 is a system configuration diagram showing a configuration of an object tracking system including an object tracking device according to an embodiment of the present invention.
  • the figure which shows the definition of the position of the target object in this Embodiment The figure for demonstrating the tracking using the particle filter in this Embodiment
  • the block diagram which shows the structure of the target tracking apparatus which concerns on this Embodiment.
  • the flowchart which shows the whole operation
  • FIG. 1 is a system configuration diagram showing a configuration of an object tracking system including an object tracking device according to an embodiment of the present invention.
  • the present invention will be described using an example in which the present invention is applied to a system that tracks the movement of a plurality of workers wearing the same work clothes in a factory in a captured image.
  • the object tracking system 100 includes an imaging device 200, an object tracking device 300, and a display device 400.
  • the imaging device 200 and the display device 400 are connected to the object tracking device 300 in a communicable manner.
  • the imaging device 200 is a device having an image acquisition function, for example, a digital video camera.
  • the imaging apparatus 200 captures a state in a factory, and outputs time-series data (captured video) of the captured image to the object tracking apparatus 300.
  • the object tracking device 300 is a device having an object tracking function, for example, a personal computer.
  • the object tracking device 300 tracks the position of the object on the image (hereinafter simply referred to as “position”) from the captured video input from the imaging device 200 using a particle filter (for example, Patent Document 1 and non-patent documents). Patent Document 1).
  • position the position of the object on the image
  • Patent Document 1 a particle filter
  • Patent Document 1 Non-patent documents
  • Patent Document 1 for example, Patent Document 1 and non-patent documents.
  • the object tracking device 300 reduces the likelihood of particles that overlap with the positions of other objects among the particles used to estimate the position of the object.
  • the object tracking device 300 generates an image (hereinafter referred to as “result display image”) in which the tracking result is visually superimposed on the captured video, and outputs the generated image to the display device 400.
  • the display device 400 is a device having a function of displaying an image, for example, a liquid crystal display.
  • the display device 400 displays the image (result display image) input from the object tracking device 300 on the screen.
  • the object tracking device 300 configured in this way can reduce mistracking even when there are objects with similar image characteristics.
  • Particle filter is an approximate calculation method for Bayes filters.
  • the probability distribution of the position of the object at time t can be obtained by applying position prediction, likelihood observation, and resampling to the position detected at time t-1.
  • the position prediction is a position prediction at time t based on the state transition model.
  • Likelihood observation is to obtain the likelihood of each position based on the similarity of the feature quantity of the image of the object to the feature quantity of the reference image.
  • Resampling is to pick up a value obtained by discretizing the probability density distribution at each position.
  • the reference image is an image registered as a tracking target, for example, an image of an object being tracked acquired in the past.
  • the object tracking device 300 periodically detects the object from the captured video by image processing.
  • FIG. 2 is a diagram showing the definition of the position of the object in the present embodiment.
  • the object tracking device 300 acquires information defining the position of the detected object 510 using the XY axes set on the image plane.
  • Information defining the position of the object 510 is, for example, a parameter set including the upper left coordinates (x, y), the width w, and the height h of the rectangular frame 520 that circumscribes the object 510.
  • the object 510 may be the whole body of the worker or may be another part such as the upper body part of the worker.
  • FIG. 3 is a diagram for explaining an outline of tracking using a particle filter.
  • the horizontal axis conceptually shows each position.
  • the object tracking device 300 is configured to detect the probability density of each position at the position of the object as a detection result at time t-1 of the immediately preceding period in each period in which the position of the object is detected. Particles that materialize the distribution are generated (S2). The average position of the probability density distribution approximated by the generated particles is a position that is highly likely to be the actual position of the object at time t.
  • the object tracking device 300 moves each particle using the state transition model (S3).
  • the density of the moved particles discretely represents the true probability density distribution (represented by line 510) at time t in the next cycle. That is, the average position of the density of the particles after movement is a position that is highly likely to be the actual position of the object at time t.
  • the object tracking device 300 calculates, for each particle after movement, a similarity to an image registered as a tracking target as a likelihood (S4). Then, the object tracking device 300 estimates the weighted average position of the probability distribution calculated based on the likelihood for each particle as the position of the object at time t.
  • the object tracking device 300 corrects the likelihood of particles when there are a plurality of objects and a plurality of positions estimated corresponding to these objects overlap. Specifically, the object tracking device 300, when the size of the overlapping area of the particles of the second object with respect to the position of the first object is greater than or equal to the first predetermined value, the likelihood of the corresponding particle. Decrease the degree. As a result, the object tracking device 300 can reduce the possibility of mistracking due to being dragged by an image of another object.
  • the object tracking device 300 considers a case where the positions of the objects are actually displayed in an overlapping manner, and in such a case, using the fact that the likelihood is not so high, the likelihood is the second.
  • the likelihood correction is limited only when the value is equal to or greater than a predetermined value.
  • the object tracking device 300 can prevent the likelihood from being lowered and the position from being disabled even though the positions of the objects are actually displayed in an overlapping manner.
  • FIG. 4 is a block diagram showing the configuration of the object tracking device 300. As shown in FIG. 4
  • the object tracking device 300 includes an image acquisition unit 310, an image storage unit 320, a tracking instruction unit 330, a feature amount calculation unit 340, a likelihood calculation unit 350, a position estimation unit 360, a position storage unit 370, an overlap ratio.
  • a calculation unit 380 and a likelihood correction unit 390 are included.
  • the image acquisition unit 310 acquires an image from the imaging device 200 and outputs it to the image storage unit 320.
  • the image storage unit 320 stores the image input from the image acquisition unit 310.
  • the tracking instruction unit 330 acquires an image from the image storage unit 320, and detects a moving object from the image, for example, by applying a background subtraction method.
  • a background subtraction method it is assumed that the moving object displayed on the image is only the worker. Accordingly, the tracking instruction unit 330 detects an object from the image.
  • the tracking instruction unit 330 determines, for each target object, whether the target object is a newly detected target object or a target object being tracked.
  • the newly detected object refers to an object that has started moving or an object that has entered the screen.
  • the object being tracked refers to the object whose position at the immediately preceding time is detected. Details of this determination will be described later.
  • the newly detected object is referred to as “new object”, and the object being tracked is referred to as “tracking object”.
  • the tracking instruction unit 330 outputs the image and the position information of each detected object to the feature amount calculation unit 340.
  • the position information includes the position of the target object and a status flag indicating whether the target object is a new target object or a tracking target object (hereinafter referred to as “tracking state”).
  • the position of the object includes the upper left coordinates (x, y), the width w, and the height h of the rectangular frame 520 circumscribing the object.
  • the tracking instruction unit 330 outputs a reference histogram registered by a feature amount calculation unit 340 described later for the tracking target object to the feature amount calculation unit 340 in association with the tracking target object. The reference histogram will be described later.
  • the feature amount calculation unit 340 acquires the position and tracking state of each target object from the input position information.
  • the feature value calculation unit 340 registers the image of the new object as a tracking target. Specifically, the feature amount calculation unit 340 calculates a color histogram (hereinafter referred to as “reference histogram”) of the image area at the position of the new target object, and changes the state flag to the tracking target object. Then, the feature amount calculation unit 340 outputs the image and the position information and the reference histogram of the object newly registered as the tracking target to the likelihood calculation unit 350.
  • the position information and reference histogram of the object newly registered as the tracking target are the initial registration information of the tracking target object.
  • the feature amount calculation unit 340 performs resampling of the particles, prediction of the position, and likelihood observation around the position of the tracking target object based on the particle filter method. Specifically, first, the feature amount calculation unit 340 resamples a predetermined number of particles (for example, 200) by prioritizing particles with high likelihood around the position of the tracking target object (see FIG. 3 S1, S2).
  • the feature amount calculation unit 340 causes the resampled particles to transition based on the state transition model (S3 in FIG. 3).
  • the feature amount calculation unit 340 employs a state transition model that moves the object to a position that takes into account the amount of movement per unit time and Gaussian noise under the assumption that the object moves at a constant linear velocity.
  • the feature amount calculation unit 340 outputs the image, the position information of each tracking target object, the reference histogram, and the particle information to the likelihood calculation unit 350.
  • the particle information is information that defines each generated particle, and is a parameter set of the position of each particle, that is, the upper left coordinates, width, and height of a rectangular frame that defines the particle (see FIG. 2).
  • the likelihood calculation unit 350 outputs the input image and the reference histogram of each object to the position estimation unit 360.
  • the likelihood calculating unit 350 calculates the likelihood in the particle filter for each particle from the particle information. Specifically, the likelihood calculating unit 350 calculates a color histogram for each particle. Then, the likelihood calculating unit 350 calculates the similarity between the calculation result and the reference histogram by using the histogram intersection, and sets the calculation result as the likelihood that the particle is the position of the tracking target object. Then, the likelihood calculating unit 350 outputs the position information of each object, the particle information and the likelihood of each particle to the overlap ratio calculating unit 380.
  • the overlap rate calculation unit 380 calculates the overlap rate with other objects for each particle of the tracked object.
  • the overlapping ratio is, for example, the ratio of the area of the overlapping region to the particle area. Then, the overlap ratio calculation unit 380 outputs the position information of each object, the particle information of each particle, the likelihood, and the overlap ratio to the likelihood correction unit 390.
  • the likelihood correcting unit 390 corrects the likelihood of the particles when there are a plurality of objects to be tracked and a plurality of positions estimated by the position estimating unit 360 described later overlap correspondingly. Specifically, the likelihood correction unit 390 reduces the likelihood of particles having an overlap ratio that is equal to or higher than a first predetermined value and whose likelihood is equal to or higher than a second predetermined value. Then, likelihood correcting section 390 outputs position information of each target object, particle information and likelihood of each particle to position estimating section 360.
  • the position estimation unit 360 calculates the average position of the probability distribution weighted by the likelihood of each particle after movement for each tracking target. Next, the position estimation unit 360 calculates the total likelihood value (hereinafter referred to as “likelihood total value”) of each particle. Then, the position estimation unit 360 estimates the calculated position as the position of the tracking target object at the time t, and the position storage unit 370 stores the estimated position, the total likelihood value thereof, and N particle information described later. Output to.
  • the position storage unit 370 stores the input position of each tracking target object at time t, its total likelihood value, and N pieces of particle information.
  • the position of each tracking target object stored in the position storage unit 370 is referred to by the tracking instruction unit 330 and the overlap ratio calculation unit 380 described above.
  • the position storage unit 370 stores time-series data of a series of stored positions and captured images in association with time, and displays the result of visually superimposing the position of the tracking target object on the captured image as a tracking result. An image is generated and output to the display device 400.
  • the object tracking device 300 having such a configuration can perform position estimation by reducing the likelihood of particles that greatly overlap with the positions of other objects among the particles used for estimating the position of the object. .
  • FIG. 5 is a flowchart showing the overall operation of the object tracking device 300.
  • the image storage unit 320 of the object tracking device 300 stores a captured video sent from the imaging device 200.
  • step S1000 the tracking instruction unit 330 determines whether or not the end of the tracking process has been instructed by a user operation (such as a user pressing a program end button). When instructed to end the tracking process (S1000: YES), the tracking instruction unit 330 ends the process as it is. If the tracking instruction unit 330 is not instructed to end the tracking process (S1000: NO), the tracking instruction unit 330 proceeds to step S2000.
  • a user operation such as a user pressing a program end button
  • the tracking instruction unit 330 detects the target object from the image at time t-1 stored in the image storage unit 320, and generates position information for each target object. Specifically, the tracking instruction unit 330 generates a difference image by the background difference method using, for example, an image acquired when the object tracking system 100 is activated as a background image. Then, the tracking instruction unit 330 detects an area having an image characteristic such as a size or a shape estimated to be an object in the difference image as an image area of the object, and defines the position thereof. Then, the tracking instruction unit 330 determines a tracking state for each detected object and associates a state flag with it.
  • the tracking instruction unit 330 determines a tracking state for each detected object and associates a state flag with it.
  • step S3000 the tracking instruction unit 330 selects one of the objects detected from the image at time t-1.
  • step S4000 the tracking instruction unit 330 determines whether the selected object is an object for which tracking has started (hereinafter referred to as “tracking start object”) or an object being tracked.
  • the tracking instruction unit 330 may calculate the moving direction of the tracking target object from a plurality of pieces of past position information. In this case, the tracking instruction unit 330 sets the overlapping ratio with respect to the position where the position at the time t ⁇ 1 is moved in the moving amount and the moving direction when it is assumed that the tracking target object performs a constant-velocity linear motion. May be calculated.
  • the tracking instruction unit 330 proceeds to step S5000 when the selected object is not a tracking start object or a tracking object, that is, a new object (S4000: NO). If the selected target is a tracking start target or a tracking target (S4000: YES), the tracking instruction unit 330 proceeds to step S8000.
  • step S5000 the feature amount calculation unit 340 registers the selected object as a tracking target. That is, the feature amount calculation unit 340 generates a reference histogram of the new object and includes it in the position information, and corrects the corresponding state flag to indicate that the object is a tracking start object.
  • step S7000 the feature amount calculation unit 340 determines whether or not the processing in step S4000 has been performed on all the objects detected from the image at time t-1.
  • the feature amount calculation unit 340 returns to step S1000 when all the objects have been processed (S7000: YES).
  • S7000: NO the feature amount calculation unit 340 returns to step S3000 and selects an unprocessed object.
  • step S6000 the tracking instruction unit 330 determines whether the likelihood total value of the position information of the selected object is high.
  • the tracking instruction unit 330 is sufficient for the total likelihood value to continue tracking when the selected target is a tracking target and the above-described total likelihood value is equal to or greater than a third predetermined value. It is determined to be high.
  • the tracking instruction unit 330 determines that the likelihood total value is low to continue tracking when the object is being tracked and a likelihood average value described later is less than a third predetermined value. If the likelihood total value is high (S6000: YES), tracking instruction section 330 proceeds to step S8000. In addition, when the likelihood total value is low (S6000: NO), the tracking instruction unit 330 proceeds to step S9000.
  • step S8000 the object tracking device 300 performs position estimation processing and proceeds to step S7000.
  • the position estimation process will be described later.
  • step S9000 the tracking instruction unit 330 discards the registration of the selected object as the tracking target because it is difficult to continue tracking, and proceeds to step S7000. That is, the tracking instruction unit 330 discards the position information of the selected object.
  • the feature amount calculation unit 340 generates and places particles that are candidates for the actual position of the tracking target object at time t around the position of the tracking target object.
  • the feature amount calculation unit 340 randomly arranges N particles when the selected target is a tracking start target.
  • the feature amount calculation unit 340 selects (resamples) N particles from the particles at time t ⁇ 1 while allowing the overlapping of the particles. Then, the feature amount calculation unit 340 discards particles that are not selected.
  • step S8020 the feature amount calculation unit 340 moves each of the N particles based on the state transition model, and generates a particle at the next time t.
  • the state transition model for example, under the assumption of constant-velocity linear motion, the movement amount d and Gaussian noise n for a certain time are added, and the i-th particle located at the coordinates (x 1 , y 1 ) 1 + d x + n i, x , y 1 + d y + n i, y ).
  • likelihood calculation section 350 calculates a histogram intersection for the corresponding reference histogram as likelihood L of each particle after movement.
  • the histogram intersection is a value when the smaller value of the frequency a c of the color value c in the reference histogram and the frequency b c of the color value c in the particle histogram is summed for all color values. .
  • step S8040 the overlap ratio calculation unit 380 selects one of the selected particles of the tracking target object.
  • step S8050 the overlap ratio calculation unit 380 calculates the overlap ratio Cr with other objects of the selected particle using, for example, the following equation (1) for each other object.
  • Pa is the area of the selected particle
  • B is the area of the overlapping portion between the selected particle and the area of the other object (a rectangular frame circumscribing the object, see FIG. 2).
  • . Cr B / Pa (1)
  • the overlap ratio calculation unit 380 adopts the largest overlap ratio as the final calculation result when there are a plurality of other objects. Note that the overlap ratio calculation unit 380 may acquire the position of another object from the position storage unit 370 or from position information input from the likelihood calculation unit 350.
  • the likelihood correction unit 390 determines whether the selected particle is a likelihood correction target. Likelihood correction unit 390 determines that the overlapping ratio is equal to or higher than the first predetermined value and the likelihood is equal to or higher than the second predetermined value as the likelihood correction target, and determines other particles as the target. It is determined that it is not a likelihood correction target.
  • the second predetermined value is, for example, the mode value of the likelihood histogram or the average value of the likelihoods of the N particles of the selected tracking target object.
  • the second predetermined value is the mode value, it is easy to reduce only the likelihood that has increased due to the influence of other objects, and therefore, it is difficult to be influenced by the outlier. Therefore, for example, there is an advantage that it is effective when the particles are not evenly arranged around the object being tracked. Further, when the second predetermined value is an average value, there is an advantage that it is not necessary to prepare the second predetermined value in advance, and calculation is easy.
  • the likelihood correction unit 390 proceeds to step S8070 when the selected particle is a likelihood correction target (S8060: YES). If the selected particle is not a likelihood correction target (S8060: NO), the likelihood correcting unit 390 proceeds to the next step S8080.
  • the likelihood correction unit 390 decreases the likelihood of the selected particle. Specifically, the likelihood correction unit 390 calculates a corrected likelihood value by a predetermined method. Various methods can be employed for correcting the likelihood of particles.
  • the likelihood correction unit 390 obtains a difference in likelihood with respect to the second predetermined value described above, and employs a correction value obtained in advance in association with the combination of the overlap ratio and the difference.
  • amendment part 390 calculates
  • amendment part 390 calculates
  • amendment part 390 calculates likelihood La 'after correction
  • La ′ La ⁇ (1 ⁇ Cr) (2)
  • step S8080 the likelihood correction unit 390 determines whether or not the processing in step S8060 has been performed for all the particles of the selected tracking start target object or tracking target object.
  • the process proceeds to step S8090. If the unprocessed particles remain (S8080: NO), the likelihood correcting unit 390 returns to step S8040 and selects unprocessed particles. By repeating the processes in steps S8040 to S8080, the likelihood correcting unit 390 can reduce the likelihood of particles that are dragged by other objects and have a high likelihood.
  • step S8090 the position estimation unit 360 obtains a weighted average for the positions of the particles using the likelihood for each particle as a weight for the N particles, and uses the obtained value as the position at the next time t. Estimated. That is, the position estimation unit 360 updates the position information at the time t ⁇ 1 stored in the position storage unit 370 with the obtained value. As a result, the position storage unit 370 uses the display device 400 to display a result display image in which the tracking result of the tracking target object is superimposed on the captured image.
  • the position estimation unit 360 corrects the state flag to the content representing the tracking target object. Then, the position estimation unit 360 stores the reference histogram of the selected tracking target object in the position storage unit 370. In addition, the position estimation unit 360 stores the likelihood total value of the N particles of the selected tracking target object in the position storage unit 370. If this total likelihood value is low, the tracking result is likely to be incorrect and should not be presented. Therefore, as described above, when the likelihood total value is less than the third predetermined value, the object tracking device 300 ends the tracking for the corresponding tracking target object (see steps S6000 and S9000 in FIG. 5). ).
  • the object tracking device 300 tracks the position of the object using the particle filter, and can correct the likelihood of the particles when the tracking positions of a plurality of objects overlap.
  • the processing that flows from step S1000 to step S5000 can be said to be an operation at the time of tracking initialization for a certain object.
  • the process that flows from step S1000 to step S8000 can be said to be an operation at the start of the tracking process for a certain object and when the tracking process is continued.
  • the process flowing from step S1000 to step S9000 can be said to be an operation at the end of the tracking process for a certain object.
  • the target object tracking apparatus 300 may perform the above-mentioned each process about a some target object and a some particle all at once. good.
  • the object tracking device 300 tracks the position of the object using the particle filter, and corrects the likelihood of the particles when the tracking positions of a plurality of objects overlap. .
  • the object tracking apparatus 300 may be dragged by an image of another object to cause mistracking. Such a possibility can be reduced.
  • the object tracking device 300 is provided with a proximity state determination unit that determines a proximity state for each particle based on the overlapping ratio before the likelihood correction unit 390. Also good.
  • the proximity state determination unit determines that the particle is in the proximity state when the overlap ratio is equal to or greater than the fourth predetermined value, and the particle when the overlap ratio is less than the fourth predetermined value. Is not in the proximity state.
  • the fourth predetermined value is, for example, an average value of the overlapping ratios of all particles of the target object with other target objects.
  • the fourth predetermined value is, for example, the mode value of the histogram of the overlapping ratio of all particles of the target object with other target objects. Then, the object tracking device 300 determines whether or not only the particles determined to be in the proximity state are likelihood correction targets.
  • the proximity state determination unit can determine that particles that are overlapped are not subject to likelihood correction. Therefore, the object tracking device 300 can reduce mistracking caused by excessively reducing the likelihood.
  • the object tracking device 300 may scale the width and height of the particles according to the movement of the object in consideration of the change in size on the image due to the movement of the object.
  • the feature amount calculation unit 340 stores in advance a table in which the amount and direction of movement of the target object in the Y-axis direction are associated with the size change ratio of the target object. Then, the feature amount calculation unit 340 uses this table so that the size increases when the object moves forward, and the size decreases when the object moves backward. Correct the width and height of the particles.
  • the object tracking device 300 does not rely on the likelihood of particles based on whether or not the positions of a plurality of objects estimated from particles overlap, not based on the overlapping ratio of individual particles with other objects.
  • the degree may be corrected.
  • the object tracking device 300 estimates the position of the object without correcting the likelihood, and the similarity is high even though the estimated position overlaps the position of another object. Sometimes the probability density near that position is lowered.
  • the object tracking device 300 does not decrease the likelihood of particles whose overlap area size is equal to or greater than the first predetermined value, but instead reduces the likelihood of particles whose overlap area size is less than the first predetermined value. May be raised.
  • the configuration in which the imaging device 200 and the object tracking device 300 are separated has been described.
  • the imaging device 200 and the object tracking device 300 may be integrated.
  • the present invention is applied to a system that tracks the movements of a plurality of workers wearing the same work clothes in a factory in a captured image. It is not limited to. The present invention can be applied to other various apparatuses and systems that track an object from an image.
  • the object tracking device, the object tracking method, and the object tracking program according to the present invention are useful as an object tracking device, an object tracking method, and an object tracking program that can further reduce the possibility of erroneous tracking. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

 誤追跡の可能性を更に低減することができる対象物追跡装置。対象物追跡装置(300)は、パーティクルフィルタを用いて映像に映し出された対象物の位置を追跡する装置であって、対象物の位置の候補を示すパーティクルを複数生成し、対象物の画像の特徴量とパーティクルのそれぞれの画像の特徴量とを算出する特徴量算出部(340)と、パーティクル毎に、そのパーティクルの画像の特徴量と対象物の画像の特徴量との類似度から、そのパーティクルが対象物の位置であることの尤度を算出する尤度算出部(350)と、算出されたパーティクルの尤度に基づいて、対象物の位置を推定する位置推定部(360)と、対象物が複数存在し、これらに対応して推定される複数の位置が重なるとき、尤度を補正する尤度補正部(390)とを有する。

Description

対象物追跡装置、対象物追跡方法、および対象物追跡プログラム
 本発明は、パーティクルフィルタを用いて映像に映し出された対象物の位置を追跡する対象物追跡装置、対象物追跡方法、および対象物追跡プログラムに関する。
 従来、映像に映し出された人間等の対象物の位置を、パーティクルフィルタ(particle filter)を用いて、追跡することが行われている(例えば特許文献1および非特許文献1参照)。
 特許文献1に記載の技術および非特許文献1に記載の技術(以下、まとめて「従来技術」と称する)は、まず、映像中の対象物の画像の特徴量を求める。従来技術は、時刻t-1の対象物の位置から、次の時刻tにおける対象物の位置の候補を示すパーティクルを複数生成し、時刻tの各パーティクルと時刻t-1の対象物の位置との間で、特徴量のマッチングを行う。そして、従来技術は、その類似度から、各パーティクルについて、そのパーティクルが時刻tの対象物の位置であることの尤度を算出する。そして、従来技術は、対象物毎に、最も尤度が高いパーティクルの位置を、時刻tにおける対象物の位置と推定する。これにより、従来技術は、同一の対象物の位置を追跡し続けることができる。
 また、特に、特許文献1に記載の技術は、特徴量が対象物の輪郭曲線を示す形状特徴量である場合に、色特徴量を用いて上述の尤度を補正する。具体的には、特許文献1に記載の技術は、まず、例えば輪郭曲線内の領域の色ヒストグラムである色特徴量を、パーティクルごとに算出する。そして、特許文献1に記載の技術は、対象物の色特徴量の色ヒストグラムと各パーティクルの色ヒストグラム間の類似度を、ヒストグラムインターセクション(histogram intersection)により算出する。その後、特許文献1に記載の技術は、算出結果に基づいて上述の尤度を補正する。これにより、特許文献1に記載の技術は、輪郭曲線が類似する別の対象物が目的とする対象物の近傍に位置する場合でも、その別の対象物が誤って追跡される可能性を低減することができる。
特開2009-87090号公報
M. Isard and A. Blake, "Condensation - Conditional Density Propagation for Visual Tracking", International Journal of Computer Vision, vol.29, no.1, pp.5-28, 1998
 しかしながら、従来技術では、例えば、工場などで同じ色の作業服を着ている複数の作業員が対象物である場合等、対象物間で画像の特徴量が類似する場合には、対象物の区別が困難である。したがって、従来技術では、別の対象物が誤って追跡されてしまうこと(以下「誤追跡」という)の可能性を十分に低減することができない。
 本発明の目的は、誤追跡の可能性を更に低減することができる対象物追跡装置、対象物追跡方法、および対象物追跡プログラムを提供することである。
 本発明の対象物追跡装置は、パーティクルフィルタを用いて映像に映し出された対象物の位置を追跡する対象物追跡装置であって、前記対象物の位置の候補を示すパーティクルを複数生成し、前記対象物の画像の特徴量と前記パーティクルのそれぞれの画像の特徴量とを算出する特徴量算出部と、前記パーティクル毎に、そのパーティクルの画像の特徴量と前記対象物の画像の特徴量との類似度から、そのパーティクルが前記対象物の位置であることの尤度を算出する尤度算出部と、算出された前記パーティクルの尤度に基づいて、前記対象物の位置を推定する位置推定部と、前記対象物が複数存在し、これらに対応して推定される複数の位置が重なるとき、前記尤度を補正する尤度補正部とを有する。
 本発明の対象物追跡方法は、パーティクルフィルタを用いて映像に映し出された対象物の位置を追跡する対象物追跡方法であって、前記対象物の位置の候補を示すパーティクルを複数生成し、前記対象物の画像の特徴量と前記パーティクルのそれぞれの画像の特徴量とを算出するステップと、前記パーティクル毎に、そのパーティクルの画像の特徴量と前記対象物の画像の特徴量との類似度から、そのパーティクルが前記対象物の位置であることの尤度を算出するステップと、算出された前記パーティクルの尤度に基づいて、前記対象物の位置を推定するステップと、前記対象物が複数存在し、これらに対応して推定される複数の位置が重なるとき、前記尤度を補正するステップとを有する。
 本発明の対象物追跡プログラムは、パーティクルフィルタを用いて映像に映し出された対象物の位置を追跡するための対象物追跡プログラムであって、コンピュータに対し、前記対象物の位置の候補を示すパーティクルを複数生成し、前記対象物の画像の特徴量と前記パーティクルのそれぞれの画像の特徴量とを算出する処理と、前記パーティクル毎に、そのパーティクルの画像の特徴量と前記対象物の画像の特徴量との類似度から、そのパーティクルが前記対象物の位置であることの尤度を算出する処理と、算出された前記パーティクルの尤度に基づいて、前記対象物の位置を推定する処理と、前記対象物が複数存在し、これらに対応して推定される複数の位置が重なるとき、前記尤度を補正する処理とを実行させる。
 本発明によれば、対象物の間で推定位置が重なるときにパーティクルの尤度を補正することができ、誤追跡の可能性を更に低減することができる。
本発明の一実施の形態に係る対象物追跡装置を含む対象物追跡システムの構成を示すシステム構成図 本実施の形態における対象物の位置の定義を示す図 本実施の形態におけるパーティクルフィルタを用いた追跡を説明するための図 本実施の形態に係る対象物追跡装置の構成を示すブロック図 本実施の形態に係る対象物追跡装置の全体動作を示すフローチャート 本実施の形態における位置推定処理を示すフローチャート
 以下、本発明の一実施の形態について、図面を参照して詳細に説明する。
 図1は、本発明の一実施の形態に係る対象物追跡装置を含む対象物追跡システムの構成を示すシステム構成図である。本実施の形態は、本発明を、工場内における同じ作業服を着た複数の作業員の動きを撮影映像中で追跡するシステムに適用した例で説明する。
 図1において、対象物追跡システム100は、撮像装置200、対象物追跡装置300、および表示装置400を有する。撮像装置200および表示装置400は、対象物追跡装置300にそれぞれ通信可能に接続されている。
 撮像装置200は、画像取得機能を備えた機器であり、例えばデジタルビデオカメラである。撮像装置200は、例えば、工場内の様子を撮影し、撮影画像の時系列データ(撮影映像)を、対象物追跡装置300へ出力する。
 対象物追跡装置300は、対象物追跡機能を備えた機器であり、例えばパーソナルコンピュータである。対象物追跡装置300は、撮像装置200から入力される撮影映像から、パーティクルフィルタを用いて、対象物の画像上の位置(以下、単に「位置」という)を追跡する(例えば特許文献1および非特許文献1参照)。但し、対象物追跡装置300は、対象物の位置の推定に用いられるパーティクルのうち、他の対象物の位置と重なるパーティクルの尤度を下げる。そして、対象物追跡装置300は、追跡結果を撮像映像に視覚的に重畳した画像(以下「結果表示画像」という)を生成し、表示装置400へ出力する。
 表示装置400は、画像を表示する機能を備えた機器であり、例えば液晶ディスプレイである。表示装置400は、対象物追跡装置300から入力された画像(結果表示画像)を、画面上に表示する。
 このように構成した対象物追跡装置300は、画像特徴が類似している対象物が存在する場合でも、誤追跡を低減することができる。
 ここで、対象物追跡装置300が誤追跡を低減することができる理由について、パーティクルフィルタの概要と併せて簡単に説明する。
 パーティクルフィルタは、ベイズフィルタの近似計算法である。時刻tにおける対象物の位置の確率分布は、時刻t-1において検出された位置に、位置の予測、尤度観測、およびリサンプリングを適用して得ることができる。ここで、位置の予測とは、状態遷移モデルに基づく時刻tにおける位置の予測である。尤度観測とは、基準画像の特徴量に対するその対象物の画像の特徴量の類似度に基づいて、各位置の尤度を求めることである。リサンプリングとは、各位置の確率密度分布を離散化した値をピックアップすることである。基準画像とは、追跡対象として登録された画像であり、例えば、過去に取得された、追跡中の対象物の画像である。対象物追跡装置300は、画像処理により、撮影映像からの対象物の検出を周期的に行う。
 図2は、本実施の形態における対象物の位置の定義を示す図である。図2に示すように、対象物追跡装置300は、画像面に設定したXY軸を用いて、検出した対象物510の位置を定義する情報を取得する。対象物510の位置を定義する情報は、例えば、対象物510に外接する矩形枠520の左上座標(x,y)、幅w、および高さhを含む、パラメータセットである。なお、対象物510は、作業員の全身であっても良いし、作業員の上半身部分等、他の部分であっても良い。
 図3は、パーティクルフィルタを用いた追跡の概要を説明するための図である。図3において、横軸は、各位置を概念的に示す。
 図3に示すように、対象物追跡装置300は、対象物の位置が検出される各周期において、直前の周期の時刻t-1における検出結果である対象物の位置で、各位置の確率密度分布を実体化したパーティクルを生成する(S2)。ここで生成されたパーティクルで近似した確率密度分布の平均位置は、時刻tにおける対象物の実際の位置である可能性が高い位置である。
 そして、対象物追跡装置300は、状態遷移モデルを用いて、各パーティクルを移動させる(S3)。ここで移動されたパーティクルの密度は、次の周期の時刻tにおける真の確率密度分布(線510で表す)を離散的に表す。すなわち、移動後のパーティクルの密度の平均位置は、時刻tにおける対象物の実際の位置である可能性が高い位置である。対象物追跡装置300は、移動後のパーティクル毎に、追跡対象として登録された画像に対する類似度を尤度として算出する(S4)。そして、対象物追跡装置300は、パーティクル毎の尤度を基に算出した確率分布の重み付き平均位置を、時刻tにおける対象物の位置と推定する。
 但し、既に述べたように、従来技術では、対象物が映像上で接近したとき、誤追跡が発生する可能性が高い。そこで、本実施の形態に係る対象物追跡装置300は、対象物が複数存在し、これらに対応して推定される複数の位置が重なるとき、パーティクルの尤度を補正する。具体的には、対象物追跡装置300は、第1の対象物の位置に対する第2の対象物のパーティクルの重なり領域の大きさが、第1の所定値以上であるとき、該当するパーティクルの尤度を下げる。これにより、対象物追跡装置300は、他の対象物の画像に引きずられて誤追跡が発生する可能性を、低減することができる。
 また、対象物追跡装置300は、実際に対象物の位置が重なって映し出されている場合を考慮し、そのような場合には尤度があまり高くならないことを利用して、尤度が第2の所定値以上であるときにのみ尤度の補正を制限する。これにより、対象物追跡装置300は、実際に対象物の位置が重なって映し出されているにもかかわらず尤度が下がり、位置検出不能となるのを防止することができる。
 次に、対象物追跡装置300の構成について説明する。
 図4は、対象物追跡装置300の構成を示すブロック図である。
 図4において、対象物追跡装置300は、画像取得部310、画像記憶部320、追跡指示部330、特徴量算出部340、尤度算出部350、位置推定部360、位置記憶部370、重なり割合算出部380、および尤度補正部390を有する。
 画像取得部310は、撮像装置200から画像を取得し、画像記憶部320へ出力する。
 画像記憶部320は、画像取得部310から入力された画像を記憶する。
 追跡指示部330は、画像記憶部320から画像を取得し、例えば背景差分法を適用することによって、画像から移動物体を検出する。ここでは、画像に映し出される移動物体は作業員のみであるものとする。したがって、追跡指示部330は、画像から、対象物を検出する。
 また、追跡指示部330は、対象物毎に、新規に検出された対象物、または追跡中の対象物のいずれに該当するかを判定する。新規に検出された対象物とは、移動を開始した対象物、または画面に進入した対象物を指す。また、追跡中の対象物とは、直前の時刻における位置が検出されている対象物を指す。この判定の詳細については後述する。以下、新規に検出された対象物は「新規対象物」といい、追跡中の対象物は「追跡中対象物」という。
 追跡指示部330は、画像と、検出された各対象物の位置情報とを、特徴量算出部340へ出力する。位置情報は、対象物の位置と、対象物が新規対象物と追跡中対象物のいずれであるか(以下「追跡状態」という)を示す状態フラグとを含む。ここで、対象物の位置とは、対象物に外接する矩形枠520の左上座標(x,y)、幅w、および高さhを含むものとする。また、追跡指示部330は、追跡中対象物について後述の特徴量算出部340が登録した参照ヒストグラムを、その追跡中対象物に対応付けて特徴量算出部340へ出力する。参照ヒストグラムについては後述する。
 特徴量算出部340は、入力される位置情報から、各対象物の位置および追跡状態を取得する。
 そして、特徴量算出部340は、新規対象物については、その画像を、追跡対象として登録する。具体的には、特徴量算出部340は、新規対象物の位置の画像領域のカラーヒストグラム(以下「参照ヒストグラム」という)を算出すると共に、状態フラグを追跡中対象物に変更する。そして、特徴量算出部340は、画像と、追跡対象として新規に登録された対象物の、位置情報および参照ヒストグラムとを、尤度算出部350へ出力する。追跡対象として新規に登録された対象物の位置情報および参照ヒストグラムは、つまり、追跡中対象物の初期登録情報である。
 また、特徴量算出部340は、追跡中対象物については、パーティクルフィルタ方式に基づき、その位置周辺において、パーティクルのリサンプリングと、位置の予測と、尤度観測とを実行する。具体的には、まず、特徴量算出部340は、追跡中対象物の位置の周辺に、尤度の高いパーティクルを優先させて、所定の個数(例えば200個)のパーティクルをリサンプリングする(図3のS1、S2)。
 そして、特徴量算出部340は、リサンプリングしたパーティクルを状態遷移モデルに基づいて遷移させる(図3のS3)。例えば、特徴量算出部340は、対象物は等速直線運動をするとの仮定の下で、単位時刻あたりの移動量とガウスノイズとを考慮した位置に移動させるような状態遷移モデルを採用する。そして、特徴量算出部340は、画像と、各追跡中対象物の位置情報、参照ヒストグラム、およびパーティクル情報とを、尤度算出部350へ出力する。パーティクル情報は、生成された各パーティクルを定義する情報であり、各パーティクルの位置、つまり、パーティクルを定義する矩形枠の左上座標、幅、および高さのパラメータセット(図2参照)である。
 尤度算出部350は、入力される画像および各対象物の参照ヒストグラムを、位置推定部360へ出力する。また、尤度算出部350は、パーティクル情報が入力されたとき、パーティクル情報から、パーティクル毎に、パーティクルフィルタにおける尤度を算出する。具体的には、尤度算出部350は、パーティクル毎に、カラーヒストグラムを算出する。そして、尤度算出部350は、算出結果と参照ヒストグラムとの類似度をヒストグラムインターセクションにより算出し、算出結果を、そのパーティクルが追跡中対象物の位置であることの尤度とする。そして、尤度算出部350は、各対象物の位置情報と、各パーティクルのパーティクル情報および尤度とを、重なり割合算出部380へ出力する。
 重なり割合算出部380は、追跡中対象物のパーティクル毎に、他の対象物との重なり割合を算出する。重なり割合は、例えば、パーティクルの面積に対する重なり領域の面積の割合である。そして、重なり割合算出部380は、各対象物の位置情報と、各パーティクルのパーティクル情報、尤度、および重なり割合とを、尤度補正部390へ出力する。
 尤度補正部390は、追跡中対象物が複数存在し、これらに対応して後述の位置推定部360により推定される複数の位置が重なるとき、パーティクルの尤度を補正する。具体的には、尤度補正部390は、重なり割合が第1の所定値以上であり、かつ、尤度が第2の所定値以上となっているパーティクルの尤度を下げる。そして、尤度補正部390は、各対象物の位置情報と、各パーティクルのパーティクル情報および尤度を、位置推定部360へ出力する。
 位置推定部360は、追跡中対象物毎に、移動後の各パーティクルの尤度により重み付けした確率分布の平均位置を算出する。次に、位置推定部360は、各パーティクルの尤度の合計値(以下「尤度合計値」という)を算出する。そして、位置推定部360は、算出した位置を、その追跡中対象物の時刻tにおける位置と推定し、推定した位置とその尤度合計値と後述のN個のパーティクル情報を、位置記憶部370へ出力する。
 位置記憶部370は、入力された各追跡中対象物の時刻tにおける位置およびその尤度合計値とN個のパーティクル情報を記憶する。位置記憶部370が記憶する各追跡中対象物の位置は、上述の追跡指示部330および重なり割合算出部380によって参照される。また、位置記憶部370は、記憶する一連の位置の時系列データと撮影画像とを時刻で対応付けて記憶し、追跡中対象物の位置を追跡結果として撮像映像に視覚的に重畳した結果表示画像を生成し、表示装置400へ出力する。
 このような構成を有する対象物追跡装置300は、対象物の位置の推定に用いられるパーティクルのうち、他の対象物の位置と大きく重なるパーティクルの尤度を下げて、位置推定を行うことができる。
 以下、対象物追跡装置300の動作について説明する。
 図5は、対象物追跡装置300の全体動作を示すフローチャートである。
 対象物追跡装置300の画像記憶部320には、撮像装置200から送られてきた撮影映像が格納されているものとする。
 まず、ステップS1000において、追跡指示部330は、ユーザ操作(システムの利用者によりプログラムの終了ボタンが押される等)等により追跡処理の終了を指示されたか否かを判定する。追跡指示部330は、追跡処理の終了を指示された場合には(S1000:YES)、そのまま処理を終了する。また、追跡指示部330は、追跡処理の終了を指示されていない場合には(S1000:NO)、ステップS2000へ進む。
 ステップS2000において、追跡指示部330は、画像記憶部320に記憶している時刻t-1の画像から、対象物を検出し、対象物毎に、位置情報を生成する。具体的には、追跡指示部330は、例えば、対象物追跡システム100の起動時に取得した画像を背景画像として、背景差分法により差分画像を生成する。そして、追跡指示部330は、差分画像において対象物と推定される大きさあるいは形等の画像特徴を有する領域を、対象物の画像領域として検出し、その位置を定義する。そして、追跡指示部330は、検出した各対象物に対して、追跡状態の判定を行い、状態フラグを対応付ける。
 そして、ステップS3000において、追跡指示部330は、時刻t-1の画像から検出された対象物の中から1つを選択する。
 そして、ステップS4000において、追跡指示部330は、選択した対象物が追跡を開始した対象物(以下「追跡開始対象物」という)または追跡中対象物であるか否かを判定する。
 この判定は、例えば、後述の位置記憶部370に記憶されている時刻t-1における追跡開始対象物または追跡中対象物の位置の中に、一致の度合いが一定値以上となる位置が存在するか否かに基づいて行われる。このとき、追跡指示部330は、過去の複数の位置情報から追跡中対象物の移動方向を算出しても良い。そして、この場合、追跡指示部330は、追跡中対象物が等速直線運動を行うと仮定した時の移動量および移動方向で時刻t-1の位置を移動させた位置に対して、重なり割合を算出するようにしても良い。
 追跡指示部330は、選択した対象物が追跡開始対象物または追跡中対象物ではない場合、つまり新規対象物である場合には(S4000:NO)、ステップS5000へ進む。また、追跡指示部330は、選択した対象物が追跡開始対象物または追跡中対象物である場合には(S4000:YES)、ステップS8000へ進む。
 ステップS5000において、特徴量算出部340は、選択されている対象物を追跡対象として登録する。すなわち、特徴量算出部340は、新規対象物の参照ヒストグラムを生成して位置情報に含むと共に、対応する状態フラグを、追跡開始対象物であることを示す内容に修正する。
 そして、ステップS7000において、特徴量算出部340は、時刻t-1の画像から検出された対象物の全てに対してステップS4000の処理を行ったか否かを判断する。特徴量算出部340は、全ての対象物を処理した場合には(S7000:YES)、ステップS1000へ戻る。また、特徴量算出部340は、処理していない対象物が残っている場合には(S7000:NO)、ステップS3000へ戻り、未処理の対象物を選択する。
 また、ステップS6000において、追跡指示部330は、選択されている対象物の位置情報の尤度合計値が高いか否かを判定する。追跡指示部330は、選択されている対象物が追跡中対象物であって上述の尤度合計値が第3の所定値以上である場合に、尤度合計値が追跡を継続するのに十分に高いと判定する。また、追跡指示部330は、追跡中対象物であって後述の尤度平均値が第3の所定値未満である場合に、尤度合計値が追跡を継続するには低いと判定する。追跡指示部330は、尤度合計値が高い場合には(S6000:YES)、ステップS8000へ進む。また、追跡指示部330は、尤度合計値が低い場合には(S6000:NO)、ステップS9000へ進む。
 ステップS8000において、対象物追跡装置300は、位置推定処理を行い、ステップS7000へ進む。位置推定処理については後述する。
 また、ステップS9000において、追跡指示部330は、追跡継続が困難であるとして、選択されている対象物の追跡対象としての登録を破棄し、ステップS7000へ進む。すなわち、追跡指示部330は、選択されている対象物の位置情報を破棄する。
 次に、図6に示すフローチャートを用いて、位置推定処理について説明する。
 まず、ステップS8010において、特徴量算出部340は、追跡中対象物の位置の周辺に、時刻tの実際の追跡中対象物の位置の候補となるパーティクルを生成して配置する。このとき、特徴量算出部340は、選択した対象物が追跡開始対象物である場合には、N個のパーティクルをランダムに配置する。また、特徴量算出部340は、選択した対象物が追跡中対象物である場合には、パーティクルの重複を許して時刻t-1のパーティクルからN個のパーティクルを選択(リサンプリング)する。そして、特徴量算出部340は、選択しないパーティクルを破棄する。また、特徴量算出部340は、尤度の高いパーティクルをより多く選択することが望ましい。例えば、特徴量算出部340は、尤度が大きい順に、i番目のパーティクルの尤度にNをかけた値の数の分だけ選択することを、N個になるまで繰り返すようにしても良い。
 そして、ステップS8020において、特徴量算出部340は、N個のパーティクルのそれぞれを、状態遷移モデルに基づいて移動させて、次の時刻tのパーティクルを生成する。状態遷移モデルは、例えば、等速直線運動の仮定の下、一定時間の移動量dとガウスノイズnとを加えて、座標(x、y)に位置するi番目のパーティクルを、(x+d+ni,x、y+d+ni,y)に移動させる内容である。
 そして、ステップS8030において、尤度算出部350は、対応する参照ヒストグラムに対するヒストグラムインターセクションを、移動後の各パーティクルの尤度Lとして算出する。ヒストグラムインターセクションは、参照ヒストグラムにおけるカラー値cの度数aと、パーティクルのヒストグラムにおけるカラー値cの度数bとのうち、小さい方の値を、全てのカラー値について合計したときの値である。
 そして、ステップS8040において、重なり割合算出部380は、選択されている追跡中対象物のパーティクルの中から1つを選択する。
 そして、ステップS8050において、重なり割合算出部380は、他の対象物毎に、例えば以下の式(1)を用いて、選択したパーティクルの他の対象物との重なり割合Crを算出する。ここで、Paは選択されているパーティクルの面積、Bは選択されているパーティクルと他の対象物の領域(対象物に外接する矩形枠の領域、図2参照)との重なり部分の面積である。
 Cr = B / Pa      ・・・・・・(1)
 重なり割合算出部380は、他の対象物が複数存在する場合には、最も大きな重なり割合を最終的な演算結果として採用する。なお、重なり割合算出部380は、他の対象物の位置を、位置記憶部370から取得しても良いし、尤度算出部350から入力される位置情報から取得しても良い。
 そして、ステップS8060において、尤度補正部390は、選択されているパーティクルが尤度の補正対象か否かを判定する。尤度補正部390は、重なり割合が第1の所定値以上であり、かつ、尤度が第2の所定値以上であるパーティクルを、尤度の補正対象であると判定し、他のパーティクルを、尤度の補正対象ではないと判定する。
 第2の所定値は、例えば、選択されている追跡中対象物のN個のパーティクルの、尤度のヒストグラムの最頻値、または尤度の平均値である。第2の所定値を最頻値とした場合には、他の対象物の影響で高くなった尤度のみを低くし易いので、外れ値の影響を受け難くなる。したがって、例えば、追跡中対象物の周囲にパーティクルが均等に配置されていない場合に有効であるという利点がある。また、第2の所定値を平均値とした場合には、事前に第2の所定値を用意しておく必要が無く、計算が容易という利点がある。
 尤度補正部390は、選択されているパーティクルが尤度の補正対象である場合には(S8060:YES)、ステップS8070へ進む。また、尤度補正部390は、選択されているパーティクルが尤度の補正対象ではない場合には(S8060:NO)、次のステップS8080へ進む。
 ステップS8070において、尤度補正部390は、選択されているパーティクルの尤度を下げる。具体的には、尤度補正部390は、補正後の尤度の値を予め定めた手法で求める。パーティクルの尤度の補正の仕方は、様々な手法を採用することができる。
 例えば、尤度補正部390は、上述の第2の所定値に対する尤度の差分を求め、重なり割合と差分との組み合わせに対応付けて予め求めておいた補正値を採用する。
 または、尤度補正部390は、選択されている追跡中対象物のパーティクルの尤度の平均値に対する尤度の差分を求め、重なり割合と差分との組み合わせに対応付けて予め求めておいた補正値を採用する。
 または、尤度補正部390は、選択されているパーティクルの尤度のヒストグラムの最頻値に対する尤度の差分を求め、重なり割合と差分との組み合わせに対応付けて予め求めておいた補正値を採用する。
 または、尤度補正部390は、例えば、元の尤度Laと重なり割合Crから、以下の式(2)を用いて補正後の尤度La'を算出する。
 La' = La × (1 - Cr)      ・・・・・・(2)
 そして、ステップS8080において、尤度補正部390は、選択されている追跡開始対象物または追跡中対象物の全てのパーティクルについて、ステップS8060の処理を行ったか否かを判断する。尤度補正部390は、全てのパーティクルを処理した場合には(S8080:YES)、ステップS8090へ進む。また、尤度補正部390は、処理していないパーティクルが残っている場合には(S8080:NO)、ステップS8040へ戻り、未処理のパーティクルを選択する。ステップS8040~S8080の処理を繰り返すことにより、尤度補正部390は、他の対象物に引きずられて尤度が高くなっているパーティクルの尤度を下げることができる。
 そして、ステップS8090において、位置推定部360は、N個のパーティクルに対して、パーティクル毎の尤度を重みとして、パーティクルの位置について重み付き平均を求め、求めた値を、次の時刻tの位置と推定する。すなわち、位置推定部360は、求めた値で、位置記憶部370に格納された時刻t-1の位置情報を更新する。この結果、位置記憶部370は、追跡中対象物の追跡結果を撮像映像に重畳した結果表示画像を、表示装置400を用いて表示する。
 また、位置推定部360は、追跡開始対象物であれば、状態フラグを、追跡中対象物を表す内容に修正する。そして、位置推定部360は、選択されている追跡中対象物の参照ヒストグラムを、位置記憶部370に格納する。また、位置推定部360は、選択されている追跡中対象物のN個のパーティクルの尤度合計値を、位置記憶部370に格納する。この尤度合計値が低い場合、追跡結果は、誤っている可能性が高いため、提示されるべきではない。したがって、上述のように、対象物追跡装置300は、尤度合計値が第3の所定値未満の場合には、該当する追跡中対象物に対する追跡を終了する(図5のステップS6000、S9000参照)。
 このような処理により、対象物追跡装置300は、パーティクルフィルタを用いて対象物の位置を追跡し、複数の対象物の追跡位置が重なるとき、パーティクルの尤度を補正することができる。なお、ステップS1000からステップS5000へと流れる処理は、ある対象物に対する追跡初期化時の動作といえる。また、ステップS1000からステップS8000へと流れる処理は、ある対象物に対する追跡処理開始時および追跡処理継続時の動作といえる。また、ステップS1000からステップS9000へと流れる処理は、ある対象物に対する追跡処理終了時の動作といえる。
 なお、対象物毎およびパーティクル毎に順に各部で処理を行う例について説明したが、対象物追跡装置300は、複数の対象物について、また、複数のパーティクルについて一斉に上述の各処理を行っても良い。
 以上説明したように、本実施の形態に係る対象物追跡装置300は、パーティクルフィルタを用いて対象物の位置を追跡し、複数の対象物の追跡位置が重なるとき、パーティクルの尤度を補正する。これにより、複数の対象物の画像特徴が類似している場合に、従来技術では他の対象物の画像に引きずられて誤追跡が発生する可能性があるところ、対象物追跡装置300は、このような可能性を低減することができる。
 なお、以上説明した実施の形態では、対象物追跡装置300は、尤度補正部390の前に、パーティクル毎に、その重なり割合を基に近接状態を判定する近接状態判定部を設けるようにしても良い。
 この場合、例えば、近接状態判定部は、重なり割合が第4の所定値以上である場合にそのパーティクルが近接状態であると判定し、重なり割合が第4の所定値未満である場合にそのパーティクルが近接状態ではないと判定する。第4の所定値は、例えば、対象物の全てのパーティクルの他の対象物との重なり割合の平均値である。または、第4の所定値は、例えば、対象物の全てのパーティクルの他の対象物との重なり割合のヒストグラムの最頻値である。そして、対象物追跡装置300は、近接状態であると判定されたパーティクルについてのみ、尤度の補正対象であるか否かの判定を行う。
 このような近接状態判定を行うことにより、近接状態判定部は、重なりが発生するパーティクルであっても、尤度の補正対象外のパーティクルと判定することができる。したがって、対象物追跡装置300は、過度に尤度を低下させることによる誤追跡を低減することが出来る。
 また、対象物追跡装置300は、対象物の移動による画像上での大きさの変化を考慮して、対象物の移動に応じてパーティクルの幅と高さをスケーリングしても良い。
 例えば、撮像装置200が床を見下ろすように撮影を行っている環境を考える。状態遷移モデルによる移動の結果、パーティクルのY座標の値が大きくなっている場合(図2参照)、つまり、パーティクルが画像上で鉛直下方向に移動した場合、対象物は撮像装置200に対して近づいていると考えられる。
 したがって、例えば、特徴量算出部340は、対象物の画像上でのY軸方向における移動量および移動方向と対象物のサイズ変更の比率とを対応付けたテーブルを、予め格納しておく。そして、特徴量算出部340は、このテーブルを用いて、対象物が手前に移動しているときにはサイズが大きくなるように、また、対象物が奥に移動しているときにはサイズが小さくなるように、パーティクルの幅と高さとを補正する。
 また、対象物追跡装置300は、個々のパーティクルの他の対象物との重なり割合に基づいてではなく、パーティクルから推定される複数の対象物の位置が重なるか否かに基づいて、パーティクルの尤度を補正しても良い。この場合、対象物追跡装置300は、例えば、尤度の補正を行わないまま対象物の位置を推定し、推定した位置が他の対象物の位置と重なるにもかかわらず類似度が高いようなときに、その位置付近の確率密度を下げる。
 また、対象物追跡装置300は、重なり領域の大きさが第1の所定値以上のパーティクルの尤度を下げるのではなく、重なり領域の大きさが第1の所定値未満のパーティクルの尤度を上げても良い。
 また、本実施の形態では、撮像装置200と対象物追跡装置300とが分離された構成について説明したが、撮像装置200と対象物追跡装置300とは一体化された構成であっても良い。
 また、本実施の形態では、本発明を、工場内における同じ作業服を着た複数の作業員の動きを撮影映像中で追跡するシステムに適用した例について説明したが、本発明の適用はこれに限定されない。本発明は、映像から対象物を追跡する他の各種装置やシステムに適用することができる。
 2010年2月19日出願の特願2010-34849の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係る対象物追跡装置、対象物追跡方法、および対象物追跡プログラムは、誤追跡の可能性を更に低減することができる対象物追跡装置、対象物追跡方法、および対象物追跡プログラムとして有用である。
 100 対象物追跡システム
 200 撮像装置
 300 対象物追跡装置
 310 画像取得部
 320 画像記憶部
 330 追跡指示部
 340 特徴量算出部
 350 尤度算出部
 360 位置推定部
 370 位置記憶部
 380 重なり割合算出部
 390 尤度補正部
 400 表示装置
 

Claims (10)

  1.  パーティクルフィルタを用いて映像に映し出された対象物の位置を追跡する対象物追跡装置であって、
     前記対象物の位置の候補を示すパーティクルを複数生成し、前記対象物の画像の特徴量と前記パーティクルのそれぞれの画像の特徴量とを算出する特徴量算出部と、
     前記パーティクル毎に、そのパーティクルの画像の特徴量と前記対象物の画像の特徴量との類似度から、そのパーティクルが前記対象物の位置であることの尤度を算出する尤度算出部と、
     算出された前記パーティクルの尤度に基づいて、前記対象物の位置を推定する位置推定部と、
     前記対象物が複数存在し、これらに対応して推定される複数の位置が重なるとき、前記尤度を補正する尤度補正部と、
     を有する対象物追跡装置。
  2.  前記対象物の位置は、前記映像における前記対象物の画像領域に対応する領域によって定義され、
     第1の対象物の位置に対する、第2の対象物のパーティクルの重なり領域の大きさを算出する重なり割合算出部、を更に有し、
     前記尤度補正部は、
     前記重なり領域の大きさが第1の所定値以上であるとき、前記第2の対象物の該当するパーティクルの尤度を下げる、
     請求項1記載の対象物追跡装置。
  3.  前記第1の対象物の位置は、前記映像における前記第1の対象物の画像領域に外接する矩形領域によって定義され、前記重なり領域の大きさは、前記第2の対象物のパーティクルの面積に対する重なり領域の面積の割合である、
     請求項2記載の対象物追跡装置。
  4.  前記類似度は、前記対象物の画像の色ヒストグラムと、前記パーティクルの画像の色ヒストグラムとの類似度である、
     請求項1記載の対象物追跡装置。
  5.  前記尤度補正部は、
     前記重なり領域の大きさが前記第1の所定値以上であり、かつ、前記尤度が第2の所定値以上であるパーティクルが存在するとき、該当するパーティクルの尤度を補正する、
     請求項2記載の対象物追跡装置。
  6.  前記第2の所定値は、前記第2の対象物のパーティクルの尤度の平均値である、
     請求項5記載の対象物追跡装置。
  7.  前記第2の所定値は、前記第2の対象物のパーティクルの尤度のヒストグラムの最頻値である、
     請求項5記載の対象物追跡装置。
  8.  前記尤度補正部は、
     前記重なり領域の大きさと前記尤度の所定値との差分とに応じた大きさで、前記尤度を補正する、
     請求項5記載の対象物追跡装置。
  9.  パーティクルフィルタを用いて映像に映し出された対象物の位置を追跡する対象物追跡方法であって、
     前記対象物の位置の候補を示すパーティクルを複数生成し、前記対象物の画像の特徴量と前記パーティクルのそれぞれの画像の特徴量とを算出するステップと、
     前記パーティクル毎に、そのパーティクルの画像の特徴量と前記対象物の画像の特徴量との類似度から、そのパーティクルが前記対象物の位置であることの尤度を算出するステップと、
     算出された前記パーティクルの尤度に基づいて、前記対象物の位置を推定するステップと、
     前記対象物が複数存在し、これらに対応して推定される複数の位置が重なるとき、前記尤度を補正するステップと、
     を有する対象物追跡方法。
  10.  パーティクルフィルタを用いて映像に映し出された対象物の位置を追跡するための対象物追跡プログラムであって、
     コンピュータに対し、
     前記対象物の位置の候補を示すパーティクルを複数生成し、前記対象物の画像の特徴量と前記パーティクルのそれぞれの画像の特徴量とを算出する処理と、
     前記パーティクル毎に、そのパーティクルの画像の特徴量と前記対象物の画像の特徴量との類似度から、そのパーティクルが前記対象物の位置であることの尤度を算出する処理と、
     算出された前記パーティクルの尤度に基づいて、前記対象物の位置を推定する処理と、
     前記対象物が複数存在し、これらに対応して推定される複数の位置が重なるとき、前記尤度を補正する処理と、
     を実行させる対象物追跡プログラム。
     
PCT/JP2011/000135 2010-02-19 2011-01-13 対象物追跡装置、対象物追跡方法、および対象物追跡プログラム WO2011102072A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/263,169 US8891821B2 (en) 2010-02-19 2011-01-13 Object tracking device, object tracking method, and object tracking program
CN201180001777.4A CN102405483B (zh) 2010-02-19 2011-01-13 对象物追踪装置以及对象物追踪方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-034849 2010-02-19
JP2010034849A JP5528151B2 (ja) 2010-02-19 2010-02-19 対象物追跡装置、対象物追跡方法、および対象物追跡プログラム

Publications (1)

Publication Number Publication Date
WO2011102072A1 true WO2011102072A1 (ja) 2011-08-25

Family

ID=44482681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000135 WO2011102072A1 (ja) 2010-02-19 2011-01-13 対象物追跡装置、対象物追跡方法、および対象物追跡プログラム

Country Status (4)

Country Link
US (1) US8891821B2 (ja)
JP (1) JP5528151B2 (ja)
CN (1) CN102405483B (ja)
WO (1) WO2011102072A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102521612A (zh) * 2011-12-16 2012-06-27 东华大学 一种基于协同关联粒子滤波的多视频目标主动跟踪方法
US20220051044A1 (en) * 2020-08-14 2022-02-17 Fujitsu Limited Image processing apparatus and computer-readable storage medium for storing screen processing program

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841390B2 (ja) * 2011-09-30 2016-01-13 セコム株式会社 移動物体追跡装置
TWI479431B (zh) * 2012-04-03 2015-04-01 Univ Chung Hua 物件追蹤方法
US9256781B2 (en) * 2012-05-10 2016-02-09 Pointguard Ltd. System and method for computer vision based tracking of an object
CN103679743B (zh) * 2012-09-06 2016-09-14 索尼公司 目标跟踪装置和方法,以及照相机
US9152019B2 (en) 2012-11-05 2015-10-06 360 Heros, Inc. 360 degree camera mount and related photographic and video system
KR101447671B1 (ko) * 2012-11-19 2014-10-07 홍익대학교 산학협력단 대상의 위치를 확률적으로 예측하는 방법
CN103162629B (zh) * 2013-01-31 2015-04-15 浙江大学 一种一维光阱微粒位移检测方法
JP5786879B2 (ja) * 2013-02-21 2015-09-30 カシオ計算機株式会社 被写体追跡装置、被写体追跡方法及びプログラム
US20150018666A1 (en) * 2013-07-12 2015-01-15 Anant Madabhushi Method and Apparatus for Registering Image Data Between Different Types of Image Data to Guide a Medical Procedure
CN104424648B (zh) * 2013-08-20 2018-07-24 株式会社理光 对象跟踪方法和设备
JP6110256B2 (ja) * 2013-08-21 2017-04-05 株式会社日本自動車部品総合研究所 対象物推定装置および対象物推定方法
CN103489001B (zh) * 2013-09-25 2017-01-11 杭州智诺科技股份有限公司 图像目标追踪方法和装置
JP6206804B2 (ja) 2013-09-27 2017-10-04 パナソニックIpマネジメント株式会社 移動体追跡装置、移動体追跡システムおよび移動体追跡方法
US11615460B1 (en) 2013-11-26 2023-03-28 Amazon Technologies, Inc. User path development
JP6277736B2 (ja) * 2014-01-23 2018-02-14 富士通株式会社 状態認識方法及び状態認識装置
JP6295122B2 (ja) * 2014-03-27 2018-03-14 株式会社メガチップス 状態推定装置、プログラムおよび集積回路
US10169661B2 (en) * 2014-03-28 2019-01-01 International Business Machines Corporation Filtering methods for visual object detection
JP6415196B2 (ja) * 2014-09-08 2018-10-31 キヤノン株式会社 撮像装置および撮像装置の制御方法
JP6403509B2 (ja) * 2014-09-08 2018-10-10 キヤノン株式会社 画像処理装置および画像処理装置の制御方法
JP6399869B2 (ja) * 2014-09-09 2018-10-03 キヤノン株式会社 被写体追尾装置、撮像装置、被写体追尾方法及びプログラム
JP5999394B2 (ja) 2015-02-20 2016-09-28 パナソニックIpマネジメント株式会社 追跡支援装置、追跡支援システムおよび追跡支援方法
US11205270B1 (en) 2015-03-25 2021-12-21 Amazon Technologies, Inc. Collecting user pattern descriptors for use in tracking a movement of a user within a materials handling facility
US10586203B1 (en) 2015-03-25 2020-03-10 Amazon Technologies, Inc. Segmenting a user pattern into descriptor regions for tracking and re-establishing tracking of a user within a materials handling facility
US10810539B1 (en) 2015-03-25 2020-10-20 Amazon Technologies, Inc. Re-establishing tracking of a user within a materials handling facility
US10679177B1 (en) 2015-03-25 2020-06-09 Amazon Technologies, Inc. Using depth sensing cameras positioned overhead to detect and track a movement of a user within a materials handling facility
KR101635973B1 (ko) * 2015-04-23 2016-07-04 국방과학연구소 Ir 영상 추적에서 파티클 필터를 이용한 기억 추적 성능 향상 방법 및 장치
JP6284086B2 (ja) 2016-02-05 2018-02-28 パナソニックIpマネジメント株式会社 追跡支援装置、追跡支援システムおよび追跡支援方法
JP6656987B2 (ja) * 2016-03-30 2020-03-04 株式会社エクォス・リサーチ 画像認識装置、移動体装置、及び画像認識プログラム
JP6744123B2 (ja) * 2016-04-26 2020-08-19 株式会社日立製作所 動体追跡装置および放射線照射システム
JP6760767B2 (ja) * 2016-05-31 2020-09-23 東芝テック株式会社 販売データ処理装置およびプログラム
JP6715120B2 (ja) * 2016-07-25 2020-07-01 株式会社Screenホールディングス 基材処理装置および蛇行予測方法
JP2018197945A (ja) * 2017-05-23 2018-12-13 株式会社デンソーテン 障害物検出装置および障害物検出方法
WO2019088223A1 (ja) * 2017-11-02 2019-05-09 株式会社Nttドコモ 検出装置及び検出プログラム
US11328513B1 (en) 2017-11-07 2022-05-10 Amazon Technologies, Inc. Agent re-verification and resolution using imaging
KR101982942B1 (ko) * 2017-12-21 2019-05-27 건국대학교 산학협력단 객체 추적 방법 및 이를 수행하는 장치들
CN108460787B (zh) * 2018-03-06 2020-11-27 北京市商汤科技开发有限公司 目标跟踪方法和装置、电子设备、程序、存储介质
JP7163372B2 (ja) 2018-03-06 2022-10-31 北京市商▲湯▼科技▲開▼▲発▼有限公司 目標トラッキング方法及び装置、電子機器並びに記憶媒体
US11386306B1 (en) 2018-12-13 2022-07-12 Amazon Technologies, Inc. Re-identification of agents using image analysis and machine learning
JP7238962B2 (ja) * 2019-03-13 2023-03-14 日本電気株式会社 物体追跡装置、物体追跡方法、及び、プログラム
JP7188557B2 (ja) * 2019-03-14 2022-12-13 日本電気株式会社 物体追跡システム、追跡パラメータ設定方法および設定プログラム
JP7197000B2 (ja) 2019-04-25 2022-12-27 日本電気株式会社 情報処理装置、情報処理方法及び情報処理プログラム
CN113473378A (zh) * 2020-03-31 2021-10-01 宇龙计算机通信科技(深圳)有限公司 一种移动轨迹上报方法、装置、存储介质及电子设备
TWI786409B (zh) * 2020-06-01 2022-12-11 聚晶半導體股份有限公司 影像偵測裝置以及影像偵測方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007471A1 (fr) * 2006-07-10 2008-01-17 Kyoto University Procédé de suivi d'un marcheur et dispositif de suivi d'un marcheur
JP2009087090A (ja) * 2007-09-28 2009-04-23 Sony Computer Entertainment Inc 対象物追跡装置および対象物追跡方法
JP2010219934A (ja) * 2009-03-17 2010-09-30 Victor Co Of Japan Ltd 目標追尾装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7219032B2 (en) * 2002-04-20 2007-05-15 John Louis Spiesberger Estimation algorithms and location techniques
US7352359B2 (en) * 2002-07-27 2008-04-01 Sony Computer Entertainment America Inc. Method and system for applying gearing effects to inertial tracking
JP2005165688A (ja) * 2003-12-02 2005-06-23 Fuji Xerox Co Ltd 複数対象物追跡方法及びシステム
US8311276B2 (en) * 2008-01-07 2012-11-13 JVC Kenwood Corporation Object tracking apparatus calculating tendency of color change in image data regions
JP4991595B2 (ja) * 2008-02-21 2012-08-01 株式会社東芝 パーティクルフィルタを使用する追跡システム
JP5213486B2 (ja) * 2008-03-14 2013-06-19 株式会社ソニー・コンピュータエンタテインメント 対象物追跡装置および対象物追跡方法
JP4730431B2 (ja) * 2008-12-16 2011-07-20 日本ビクター株式会社 目標追尾装置
JP2010165052A (ja) * 2009-01-13 2010-07-29 Canon Inc 画像処理装置及び画像処理方法
US20120020518A1 (en) * 2009-02-24 2012-01-26 Shinya Taguchi Person tracking device and person tracking program
JP5488076B2 (ja) * 2010-03-15 2014-05-14 オムロン株式会社 対象物追跡装置、対象物追跡方法、および制御プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007471A1 (fr) * 2006-07-10 2008-01-17 Kyoto University Procédé de suivi d'un marcheur et dispositif de suivi d'un marcheur
JP2009087090A (ja) * 2007-09-28 2009-04-23 Sony Computer Entertainment Inc 対象物追跡装置および対象物追跡方法
JP2010219934A (ja) * 2009-03-17 2010-09-30 Victor Co Of Japan Ltd 目標追尾装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102521612A (zh) * 2011-12-16 2012-06-27 东华大学 一种基于协同关联粒子滤波的多视频目标主动跟踪方法
CN102521612B (zh) * 2011-12-16 2013-03-27 东华大学 一种基于协同关联粒子滤波的多视频目标主动跟踪方法
US20220051044A1 (en) * 2020-08-14 2022-02-17 Fujitsu Limited Image processing apparatus and computer-readable storage medium for storing screen processing program
US11682188B2 (en) * 2020-08-14 2023-06-20 Fujitsu Limited Image processing apparatus and computer-readable storage medium for storing screen processing program

Also Published As

Publication number Publication date
JP2011170684A (ja) 2011-09-01
CN102405483B (zh) 2014-11-12
CN102405483A (zh) 2012-04-04
US8891821B2 (en) 2014-11-18
JP5528151B2 (ja) 2014-06-25
US20120093364A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5528151B2 (ja) 対象物追跡装置、対象物追跡方法、および対象物追跡プログラム
US9542745B2 (en) Apparatus and method for estimating orientation of camera
US10957068B2 (en) Information processing apparatus and method of controlling the same
KR101064573B1 (ko) 입자 여과를 이용하여 이동 물체를 추적하는 시스템
US10853950B2 (en) Moving object detection apparatus, moving object detection method and program
KR101071352B1 (ko) 좌표맵을 이용한 팬틸트줌 카메라 기반의 객체 추적 장치 및 방법
US9514541B2 (en) Image processing apparatus and image processing method
US20150178900A1 (en) Depth image processing apparatus and method based on camera pose conversion
US20130121592A1 (en) Position and orientation measurement apparatus,position and orientation measurement method, and storage medium
US20120243733A1 (en) Moving object detecting device, moving object detecting method, moving object detection program, moving object tracking device, moving object tracking method, and moving object tracking program
KR20180112090A (ko) 카메라의 포즈를 판단하기 위한 장치 및 방법
CN108140291A (zh) 烟雾检测装置、方法以及图像处理设备
JPWO2009091029A1 (ja) 顔姿勢推定装置、顔姿勢推定方法、及び、顔姿勢推定プログラム
JP2013105285A5 (ja)
JP2009510541A (ja) オブジェクト追跡方法及びオブジェクト追跡装置
JP6499047B2 (ja) 計測装置、方法及びプログラム
JP2016085487A (ja) 情報処理装置、情報処理方法及びコンピュータプログラム
US20150169947A1 (en) Posture estimation device, posture estimation method, and posture estimation program
JP6850751B2 (ja) 物体追跡装置、物体追跡方法、及びコンピュータプログラム
JP2008009849A (ja) 人物追跡装置
JP6947066B2 (ja) 姿勢推定装置
CN110378183B (zh) 图像解析装置、图像解析方法及记录介质
JP2011097217A (ja) 動き補正装置およびその方法
CA2543978A1 (en) Object tracking within video images
CN111260709B (zh) 一种面向动态环境的地面辅助的视觉里程计方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001777.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13263169

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744367

Country of ref document: EP

Kind code of ref document: A1