WO2011101565A1 - Formulation liquide avec gaz dissous utilisable pour conserver de la matière biologique - Google Patents

Formulation liquide avec gaz dissous utilisable pour conserver de la matière biologique Download PDF

Info

Publication number
WO2011101565A1
WO2011101565A1 PCT/FR2011/050112 FR2011050112W WO2011101565A1 WO 2011101565 A1 WO2011101565 A1 WO 2011101565A1 FR 2011050112 W FR2011050112 W FR 2011050112W WO 2011101565 A1 WO2011101565 A1 WO 2011101565A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid formulation
biological material
gas
liquid
argon
Prior art date
Application number
PCT/FR2011/050112
Other languages
English (en)
Inventor
Andrew Martin
Marc Lemaire
Jan Pype
Chui Fung Chong
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to US13/578,029 priority Critical patent/US20120301866A1/en
Priority to EP11705023A priority patent/EP2536272A1/fr
Publication of WO2011101565A1 publication Critical patent/WO2011101565A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents

Definitions

  • the present invention relates to a liquid formulation which contains one or more dissolved gases, more particularly argon, for the preservation of biological materials, such as organs, tissues or cells, in particular biological materials for transplantation, and a method of preserving said biological materials using a cold solution, saturated with a gas or gas, and stored in an enclosure under a gaseous atmosphere that includes the same gas (s).
  • one or more dissolved gases more particularly argon
  • adenosine triphosphate ATP
  • Posterior events may include intracellular acidosis, cellular edema, enzymatic cascades of inflammation, and apoptosis.
  • reactive oxygen species nitric oxide (NO)
  • pro-inflammatory cytokines are released concomitantly with the expression of the adhesion molecules.
  • preservation solutions such as the University of Wisconsin solution prevents cells from swelling during cold ischemic storage. These solutions increase the antioxidant capacity of organs (glutathione) and stimulate the generation of high energy phosphate (adenosine) during reperfusion. Although this method of organ preservation is effective, some organs, eg, 5 to 15% of the livers and 20 to 30% of the kidneys, do not function well during transplantation as described by JH Southard et al., "Organ preservation. Ann. Rev. Med., 1995; 46: 235-47. Thus, static cold storage in existing solutions is inadequate to ensure the function of an organ after transplantation, particularly from donors whose hearts do not beat.
  • the organ is attached to a pump by the artery, which continuously pumps a cold preservation solution through the organ.
  • the solution provides nutrients and sometimes oxygen, removes toxic metabolites and reduces lactic acid build-up.
  • These systems may also have the ability to monitor the flow rate, pressure and internal resistance of the organ and evaluate its viability as explained by L. Henry, "Pulsatile preservation in renal transplantation”; Transplant. Proc. 1997 ; 29 (8): 3575-6.
  • hypothermic machine perfusion in liver preservation is essential balance between perfusion pressure and the occurrence of an endothelial lesion as taught by NA van der PA 't Hart. et al. ; "Hypothermia machine perfusion of the liver and the balance between perfusion and endothelial injury. Transplant Proc 2005; 37 (1): 332-4.
  • the solution of the present invention is a liquid formulation comprising a liquid solution and at least one gas chosen from xenon, argon, hydrogen, 3 ⁇ 4S, helium, krypton, neon, radon or CO said gas being dissolved in said liquid solution, for use as a preservation solution for preserving biological material, the concentration of dissolved gas in the liquid formulation, expressed as a mole fraction, being 0.1 x 10-4 to 4 x 10 "4 .
  • mole fraction the number of moles of gas considered divided by the total number of moles of all substances, including water, present in the liquid solution.
  • liquid formulation of the invention may comprise one or more of the following characteristics:
  • the gas is argon.
  • said biological material is chosen from cells, tissues and biological organs.
  • said biological material is a human material.
  • said biological material is an organ chosen from the heart, the kidney, the liver, the pancreas and the intestine.
  • said biological material is a biological tissue or cells selected from bone, bone marrow, tendons, cornea, heart valves, veins, arms, stem cells and skin.
  • said liquid solution comprises water and at least one other substance chosen from buffers, colloidal substances, impermeability agents, buffers, electrolytes, ROS (reactive oxygen species) and adenosine.
  • said biological material is a human organ to be transplanted.
  • the invention also relates to a method for preserving a biological material, wherein the biological material to be stored is brought into contact with a saturated liquid formulation of one or more gases according to the invention.
  • the method of the invention may include one or more of the following features:
  • the liquid formulation is at a temperature between 2 ° C and 37 ° C, preferably below 15 ° C, more preferably below 10 ° C, typically of the order of 3 to 6 ° C.
  • said biological material is chosen from the heart, the kidney, the liver, the pancreas and the intestine.
  • the biological material is placed in a container, such as a container, and is at least partially immersed in the liquid formulation, preferably completely immersed in the solution.
  • the container comprises the liquid formulation, the biological material to be preserved and a gaseous atmosphere, said gaseous atmosphere comprising the gas or gases dissolved in the liquid formulation.
  • the gas is advantageously argon.
  • the invention also relates to a method for preserving a biological material, in which the biological material to be stored is brought into contact with a liquid formulation comprising a liquid solution and at least one gas dissolved in said liquid solution, in which :
  • the biological material is an organ chosen from the heart, the kidney, the liver, the pancreas and the intestine,
  • the gas is chosen from xenon, argon, hydrogen, 3 ⁇ 4S, helium, krypton, neon, radon and CO, and
  • the liquid solution is saturated with gas and comprises a dissolved gas concentration of 0.1 ⁇ 10 -4 to 4 ⁇ 10 -4 expressed as a mole fraction of the number of moles of gas divided by the number of total moles of all the substances in the liquid solution.
  • the present invention therefore proposes dissolving gases or mixtures of protective gases in a cold preservation solution of the organs to obtain a gas-saturated liquid formulation which can be used to improve the survival of biological materials, such as organs, tissues and cells, during storage and after transplantation of said biological materials.
  • the gases that can be used are selected from xenon, argon, hydrogen, 3 ⁇ 4S, helium, krypton, neon, radon and CO since these gases have cytoprotective effects .
  • the gas to be dissolved in the liquid formulation is argon.
  • ROS reactive oxygen species
  • the gases also improve hypoxia tolerance of biological materials during the ischemic period.
  • the liquid saturated gas formulation such as argon, may be placed in a container and the biological material to be preserved is immersed in said liquid formulation so that it is protected by the action of the fluid and gas molecules. contained in this one.
  • the temperature of the formulation is maintained at 2 to 10 ° C, preferably at about 3 to 6 ° C.
  • the container may be stored in a refrigeration unit.
  • the gas must be dissolved in a liquid solution which comprises water and other substances, such as colloidal substances, for example HES or PEG-35; impregnators, for example citrate, glucose, histidine, lactobionate, mannitol, raffinose, sucrose; buffers, for example KH 2 PO 4 ; electrolytes, for example Na, K, Cl; ROS eliminators, for example glutathione; additives, for example adenosine.
  • colloidal substances for example HES or PEG-35
  • impregnators for example citrate, glucose, histidine, lactobionate, mannitol, raffinose, sucrose
  • buffers for example KH 2 PO 4
  • electrolytes for example Na, K, Cl
  • ROS eliminators for example glutathione
  • additives for example adenosine.
  • EC EuroCollins
  • HOC hypertonic solution of citrate / Marshalls
  • PBS phosphate buffered sucrose
  • UW cold storage solution from the University of Wisconsin
  • CEL Celsior
  • HTK histidine-tryptophan-ketoglutarate
  • IGL-1 George Lopez Institute
  • HES hydroxyethyl starch
  • PEG-35 polyethylene glycol with an average molecular weight of 35 kDa
  • ROS reactive species of oxygen.
  • Figures 1A and 1B show creatinine clearance curves compared to preoperative value at day 14 post-transplant (Fig 1A) and postoperative outcome at days 7 and 14 (Fig 1B),
  • Figures 2A and 2B show urinary albumin curves compared to preoperative value at day 14 post-transplant (Fig 2A) and post-operative evolution at days 7 and 14 (Fig 2B),
  • FIGS. 3A to 3D show histological observations of the cross-section of kidneys of rats at day 14 after transplantation
  • FIGS. 4A to 4E show immunohistochemical results of rat kidneys at day 14 after transplantation.
  • argon gas has been dissolved in a commercially available liquid organ preservation solution, ie, the CELSIOR solution, the composition of which is given in Table 1, to obtain a liquid formulation according to the present invention.
  • a commercially available liquid organ preservation solution ie, the CELSIOR solution, the composition of which is given in Table 1, to obtain a liquid formulation according to the present invention.
  • the liquid formulation comprising the solution with the dissolved gas has always been stored and maintained at a temperature of about 10 ° C or lower.
  • rat kidneys were removed and stored in a gas-saturated liquid solution according to the present invention.
  • biochemical analyzes i.e., creatinine clearance and urinary albumin, were performed as described by M. Yin et al., In "Carolina rinse solution minimizes kidney injury and improves graft function and survival after prolonged cold ischemia. Transplantation 2002; 73: 1410-1420).
  • kidneys are removed, weighed and cut into blocks. The kidneys are then fixed by an infusion of 4% buffered formaldehyde for 24 h and incorporated into paraffin. Five micron sections are obtained from the blocks and stained with hematoxylin-eosin-saffron for examination by light microscopy.
  • Immunodetections were performed on 5 ⁇ thick serial cryostat sections using specific antibodies, ie, active anti-caspase-3 and anti CD10.
  • the kidneys of a normal rat are used as a control.
  • the sections are incubated for 30 minutes with biotinylated secondary antibodies and then visualized using avidin-biotin peroxidase.
  • the clearance of creatinine is a parameter used to evaluate renal function. High clearance corresponds to good renal function, whereas the presence of albumin in the urine (urinary albumin) indicates renal injury since, normally, there is no albumin in the urine when the kidney is normal.
  • Figure 1A which represents the creatinine clearance (expressed as a clearance percentage at day 14 compared to the pre-implantation value) for the four experimental groups and Figure 1B shows the evolution as a function of time of creatinine clearance, ie, day O (preoperative value), day 7, and day 14 post-transplant. Argon has the best results in maintaining creatinine clearance compared to effects with other gases.
  • Figure 2A shows the albumin level in the urine at day 14 post-transplant for the four experimental groups
  • Figure 2B shows the evolution of albumin level in the urine at day 0 (preoperative value), day 7 and day 14 after transplantation.
  • argon dissolved in a liquid solution in accordance with the present invention for the preservation of the kidneys prior to transplantation gives the best results compared to the use of the other gases that have been tested. Indeed, with argon, the rate albumin in the urine of rats, after kidney transplantation, is much lower than the albumin (urinary albumin) levels obtained with other transplanted kidneys that have been in contact with saturated liquid solutions of xenon, air or nitrogen.
  • xenon shows a positive effect, ie, greater than what was obtained with the controls, but which is lower than that obtained with argon , which is undeniably the most efficient gas that has been tested.
  • FIG. 3B represents a section of a normal kidney (control group)
  • the kidneys have intact normal morphology as in the control group, without any alteration or necrosis.
  • Figures 4A to 4E are reproductions of an immunohistochemistry, i.e., histological sections of rat kidneys, 14 days post-transplant, obtained for different groups of rats, demonstrating than :
  • the kidneys exhibit a significant expression of the active caspase-3.
  • Active caspase-3 is a marker of apoptosis (programmed cell death). High expression of active caspase-3 corresponds to induced apoptosis, leading to cell death and thus to an injured kidney.
  • CD10 is a protein in the brush border of the proximal tabula of the kidney. Low expression of CD 10 corresponds to a damaged kidney.
  • the data obtained show the very positive and beneficial effects of argon on the preservation of a kidney transplant compared to other experimental groups, ie, data obtained with nitrogen, air and xenon . Some good effects also exist with xenon, but they are much lower than those obtained with argon.
  • a liquid formulation comprising a liquid solution, such as University of Wisconsin (UW) cold storage solution or Celsior solution (CEL), and argon dissolved therein, may be used.
  • a liquid solution such as University of Wisconsin (UW) cold storage solution or Celsior solution (CEL)
  • CEL Celsior solution

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Formulation liquide comprenant une solution liquide et au moins un gaz choisi parmi le xénon, l'argon, l'hydrogène, le H2S, l'hélium, le krypton, le néon, le radon ou le CO, ledit gaz étant dissous dans ladite solution liquide, pour son utilisation comme solution de conservation pour conserver une matière biologique, en particulier des cellules, des tissus et des organes biologiques, en particulier un organe choisi parmi le cœur, le rein, le foie, le pancréas et l'intestin. De préférence, le gaz est de l'argon.

Description

Formulation liquide avec gaz dissous utilisable
pour conserver de la matière biologique
La présente invention concerne une formulation liquide qui contient un ou plusieurs gaz dissous, plus particulièrement de l'argon, pour la conservation de matières biologiques, comme des organes, des tissus ou des cellules, en particulier des matières biologiques pour une transplantation, et un procédé de conservation desdites matières biologiques en utilisant une solution froide, saturée d'un ou de gaz, et entreposée dans une enceinte sous une atmosphère gazeuse qui comprend le ou les même(s) gaz.
La conservation notamment à des fins de transplantation d'un organe est souvent limitée par des lésions causées par une reperfusion ischémique dans lesdits organes. Dans des conditions ischémiques, l'adénosine triphosphate (ATP) est épuisée et le manque d'oxygène résultant convertit le métabolisme aérobie en un métabolisme anaérobie. Les événements postérieurs peuvent être une acidose intracellulaire, un œdème cellulaire, les cascades enzymatiques d'une inflammation et l'apoptose. Lors de la reperfusion d'un organe, d'un tissu ou d'une cellule ischémique, c.-à-d. après une greffe, des espèces réactives de l'oxygène, de l'oxyde nitrique (NO) et des cytokines pro-inflammatoires sont libérés de façon concomitante avec l'expression des molécules d'adhérence. Ceci amène d'abord à la mobilisation et à l'emprisonnement des leucocytes dans la l'organe greffé et, ultérieurement, à certaines dysfonctions des organes greffés comme l'enseigne S. Reddy et al., « Liver transplantation from non-heart-beating donors: current status and future prospects » Liver Transpl 2004 ; 10 (10):1223-32.
Une conservation à froid à environ 4 °C des organes ou des tissus ralentit le métabolisme et limite les effets d'une ischémie, même si une activité métabolique considérable existe tout de même à seulement environ 1 °C tel que l'enseigne P. A. Clavien et al., « Préservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. » Transplantation 1992 ; 53 (5):957-78.
L'ajout de solutions de conservation telles que la solution de l'Université du Wisconsin empêche les cellules de gonfler pendant un stockage ischémique à froid. Ces solutions augmentent la capacité antioxydante des organes (glutathion) et stimulent la génération de phosphate à haute énergie (adénosine) lors de la reperfusion. Bien que ce procédé de conservation d'organes soit efficace, certains organes, par ex., 5 à 15 % des foies et 20 à 30 % des reins, ne fonctionnent pas bien lors de la transplantation comme le décrit J. H. Southard et al., « Organ préservation. » Ann. Rev. Med., 1995 ; 46:235-47. Ainsi, un stockage statique à froid dans des solutions existantes est inadéquat pour assurer la fonction d'un organe après une transplantation, en particulier à partir de donneurs dont le cœur ne bat pas.
En outre, dans des systèmes de perfusion par machine, l'organe est rattaché à une pompe par l'artère, ce qui pompe continuellement une solution de conservation à froid à travers l'organe. La solution procure des nutriments et parfois de l'oxygène, retire les métabolites toxiques et réduit l'accumulation d'acide lactique. Ces systèmes peuvent également avoir la capacité de surveiller le débit, la pression et la résistance interne de l'organe et d'évaluer sa viabilité comme l'explique M. L. Henry, « Pulsatile préservation in rénal transplantation » ; Transplant. Proc. 1997 ; 29 (8):3575-6.
Une question cruciale relativement à l'application d'une perfusion hypothermique par machine dans la conservation du foie est l'équilibre essentiel entre la pression de perfusion et l'occurrence d'une lésion endothéliale comme l'enseigne N. A. van der PA 't Hart et al. ; « Hypothermie machine perfusion of the liver and the critical balance between perfusion pressures and endothelial injury. » Transplant Proc 2005 ; 37 (l):332-4.
En outre, une perfusion hypothermique par machine nécessite une surveillance et une correction continues des compositions chimiques ainsi que de la pression et du débit afin d'être optimale. Ainsi, le procédé requiert beaucoup de temps et de main-d'œuvre et, par conséquent, est coûteux.
En règle générale, une perfusion d'organe nécessite une expertise considérable et les résultats peuvent être très différents d'un perfusionniste à l'autre.
Un autre problème avec la conservation d'organes que l'on observe avec les solutions actuelles de perfusion du rein est l'oxydation rapide du glutathion qui est un composant clé des solutions actuelles de perfusion du rein qui sert d'antioxydant, ce qui se traduit par une réduction de l'élimination par oxydation des radicaux libres. Ceci nuira à la qualité de la conservation de l'organe et mènera à de faibles résultats après la transplantation.
Il a déjà été proposé d'utiliser des atmosphères hyperbares pour la conservation des organes. Plus précisément, des gaz à pression élevée ont été appliqués pour augmenter la concentration de saturation de l'oxygène en solution.
Toutefois, en raison de la complexité de l'appareillage requis et du potentiel de dommage à l'organe pendant la compression ou l'expansion des gaz comme la chambre hyperbare est remplie et rouverte plus tard, cette solution n'est pas considérée comme satisfaisante.
Par conséquent, le problème à résoudre est de proposer un procédé efficace de conservation des organes, en particulier les organes qui seront transplantés plus tard. La solution de la présente invention est une formulation liquide comprenant une solution liquide et au moins un gaz choisi parmi le xénon, l'argon, l'hydrogène, le ¾S, l'hélium, le krypton, le néon, le radon ou le CO, ledit gaz étant dissous dans ladite solution liquide, pour utilisation comme solution de conservation pour conserver une matière biologique, la concentration de gaz dissous dans la formulation liquide, exprimée en fraction molaire, étant de 0,1 x 10~4 à 4 x 10"4.
Dans le cadre de l'invention, on appelle fraction molaire, le nombre de moles de gaz considéré divisé par le nombre total de moles de toutes les substances, y compris l'eau, présentes dans la solution liquide.
Selon le cas, la formulation liquide de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- le gaz est l'argon.
- ladite matière biologique est choisie parmi des cellules, des tissus et des organes biologiques.
- ladite matière biologique est un matériau humain.
- ladite matière biologique est un organe choisi parmi le cœur, le rein, le foie, le pancréas et l'intestin.
- ladite matière biologique est un tissu ou des cellules biologiques choisi(es) parmi des os, la moelle osseuse, des tendons, la cornée, les valvules cardiaques, les veines, les bras, les cellules souches et la peau.
- ladite solution liquide comprend de l'eau et au moins une autre substance choisie parmi des tampons, des substances colloïdales, des agents d'imperméabilité, des tampons, des électrolytes, des éliminateurs de ROS (espèces réactives de l'oxygène) et de l'adénosine.
- elle comprend une concentration de gaz dissous de 0,1 x 10"4 à 0,5 x 10"4, de préférence de 0,3 x 10"4 à 0,5 x 10"4, exprimée en fraction molaire.
- ladite matière biologique est un organe humain à transplanter.
L'invention concerne aussi un procédé pour conserver une matière biologique, dans lequel la matière biologique à conserver est mise en contact avec une formulation liquide saturée d'un ou de plusieurs gaz selon l'invention.
Selon le cas, le procédé de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes :
- la formulation liquide se situe à une température entre 2 °C et 37 °C, de préférence inférieure à 15 °C, plus préférablement inférieure à 10 °C, typiquement de l'ordre de 3 à 6°C. - ladite matière biologique est choisie parmi le cœur, le rein, le foie, le pancréas et l'intestin.
- la matière biologique est placée dans un contenant, tel un récipient, et qu'elle est au moins partiellement immergée dans la formulation liquide, de préférence totalement immergée dans la solution.
- le contenant comprend la formulation liquide, la matière biologique à conserver et une atmosphère gazeuse, ladite atmosphère gazeuse comprenant le ou les gaz dissous dans la formulation liquide.
- le gaz est avantageusement de l'argon.
En d'autres termes, l'invention porte aussi sur un procédé pour conserver une matière biologique, dans lequel la matière biologique à conserver est mise en contact avec une formulation liquide comprenant une solution liquide et au moins un gaz dissous dans ladite solution liquide, dans lequel :
- la matière biologique est un organe choisi parmi le cœur, le rein, le foie, le pancréas et l'intestin,
- le gaz est choisi parmi le xénon, l'argon, l'hydrogène, le ¾S, l'hélium, le krypton, le néon, le radon et le CO, et
- la solution liquide est saturée en gaz et comprend une concentration de gaz dissous de 0,1 x 10"4 à 4 x 10"4 exprimée en fraction molaire du nombre de moles de gaz divisé par le nombre de moles totales de toutes les substances dans la solution liquide.
De manière générale, la présente invention propose donc de dissoudre des gaz ou des mélanges de gaz protecteurs dans une solution de conservation à froid des organes pour obtenir une formulation liquide saturée en gaz qui peut être utilisée pour améliorer la survie des matières biologiques, comme des organes, des tissus et des cellules, pendant la conservation et après la transplantation desdites matières biologiques.
Selon l'invention, les gaz qui peuvent être utilisés sont choisis parmi le xénon, l'argon, l'hydrogène, le ¾S, l'hélium, le krypton, le néon, le radon et le CO puisque ces gaz ont des effets cytoprotecteurs.
De préférence, le gaz à dissoudre dans la formulation liquide est l'argon.
Des plages de concentration pour l'argon et le xénon dans des solutions de conservation d'organes selon la présente invention sont données dans le tableau 1 (mesures faites à 5°C). TABLEAU 1
Figure imgf000007_0001
(*) : exprimée en fraction molaire (= les moles de gaz divisées par les moles totales de toutes les substances, y compris l'eau, dans la solution liquide).
Lors de l'utilisation d'une formulation liquide selon la présente invention pour conserver des matières biologiques, leur survie et leur viabilité après transplantation sont accrues grâce à une réduction des espèces réactives de l'oxygène (ROS) qui endommagent l'organe (cœur, rein, foie, pancréas et intestin), les tissus (os, moelle osseuse, tendons, cornée, valvules cardiaques, veines, bras, cellules souches et peau) ou les cellules individuelles prélevés.
De plus, les gaz améliorent également la tolérance à l'hypoxie des matières biologiques pendant la période ischémique.
La formulation liquide saturée en gaz, comme l'argon, peut être placée dans un contenant et la matière biologique à conserver est immergée dans ladite formulation liquide de façon à ce qu'elle soit protégée par l'action du fluide et des molécules de gaz contenues dans celui-ci.
De préférence, la température de la formulation est maintenue entre 2 et 10 °C, de préférence d'environ 3 à 6 °C. Le contenant peut être entreposé dans une unité de réfrigération.
Selon la présente invention, le gaz doit être dissous dans une solution liquide qui comprend de l'eau et d'autres substances, comme des substances colloïdales, par exemple du HES ou du PEG-35 ; des agents d'imperméabilité, par exemple du citrate, du glucose, de l'histidine, du lactobionate, du mannitol, du raffïnose, du saccharose ; des tampons, par exemple du KH2PO4 ; des électrolytes, par exemple du Na, du K, du Cl ; des éliminateurs de ROS, par exemple du glutathion ; des additifs, par exemple de l'adénosine.
En fait, beaucoup de solutions liquides appropriées pour conserver les organes sont disponibles sur le marché. Par exemple, certains exemples de solutions de conservation des organes dans lesquelles un gaz peut être dissous pour préparer une formulation liquide conformément à la présente invention, ainsi que leurs compositions, sont donnés dans le tableau 2 (Maathuis et al. « Perspectives in organ préservation. » Transplantation 2007 ; 83: 1289-1298). TABLEAU 2
Figure imgf000008_0001
Additifs (mM)
Adénosine — 5 5
Acide glutamique — 20
Cétoglutarate — _ _ _ 1 _ _
Légende : EC : EuroCollins ; HOC : solution hypertonique de citrate /Marshalls ; PBS : saccharose tamponné au phosphate ; UW : solution d'entreposage à froid de l'Université du Wisconsin ; CEL : Celsior ; HTK : histidine-tryptophane-cétoglutarate ; IGL-1 : Institut George Lopez ; HES : amidon d'hydroxyéthyle ; PEG-35 : polyéthylèneglycol avec un poids moléculaire moyen de 35 kDa ; ROS : espèces réactives de l'oxygène.
Pour démontrer l'efficacité d'une formulation liquide conformément à la présente invention, des études comparatives ont été réalisées et les résultats obtenus sont donnés dans les exemples suivants et sont illustrés dans les figures, parmi lesquelles :
- Les figures 1 A et 1B représentent des courbes de clairance de la créatinine comparées à la valeur préopératoire au jour 14 après la transplantation (Fig. 1A) et l'évolution postopératoire aux jours 7 et 14 (Fig. 1B),
- Les figures 2A et 2B représentent des courbes de l'albumine urinaire comparées à la valeur préopératoire au jour 14 après la transplantation (Fig. 2A) et l'évolution post-opératoire aux jours 7 et 14 (Fig. 2B),
- Les figures 3A à 3D montrent des observations histologiques de la coupe transversale de reins de rats au jour 14 après la transplantation, et
- Les figures 4A à 4E montrent des résultats immuno-histochimiques de reins de rats au jour 14 après la transplantation.
Conformément à la présente invention, de l'argon gazeux a été dissous dans une solution liquide de conservation des organes offerte sur le marché, c.-à-d., la solution CELSIOR dont la composition est donnée dans le tableau 1 , pour obtenir une formulation liquide conformément à la présente invention.
A des fins de comparaison, d'autres gaz, c.-à-d., le xénon, l'air et l'azote, ont été dissous dans le même type de solution liquide.
La formulation liquide comprenant la solution avec le gaz dissous a toujours été entreposée et maintenue à une température égale ou inférieure à environ 10 °C.
Pour évaluer les propriétés de conservation d'une greffe rénale de l'argon ou d'autres gaz, des reins de rats ont été prélevés et entreposés dans une solution liquide saturée en gaz selon la présente invention.
Après six heures de conservation des organes à une température de 4 °C et à la pression atmosphérique, les reins de rats sont transplantés et la durée de survie, la fonction rénale et l'étude de lésions d'une reperfusion-ischémie est réalisée à l'aide d'analyses biochimiques et histologiques.
Aux jours 0 (pré -transplantation), 7 et 14 (après la transplantation), des analyses biochimiques, c.-à-d., la clairance de la créatinine et l'albumine urinaire, sont réalisées de la manière décrite par M. Yin et al., dans « Carolina rinse solution minimizes kidney injury and improves graft function and survival after prolonged cold ischemia. » Transplantation 2002 ; 73: 1410-1420).
Au jour 14 après la transplantation, les reins sont prélevés, pesés et coupés en blocs. Les reins sont ensuite fixés par une infusion de 4 % de formaldéhyde tamponnée pendant 24 h et ils sont incorporés dans de la paraffine. Des coupes de cinq micromètres sont obtenues à partir des blocs et colorées à l'hématoxyline-éosine-safran afin de les examiner par microscopie optique.
Des immunodétections ont été réalisées sur des sections de cryostat en série de 5 μηι d'épaisseur en utilisant certains anticorps spécifiques, c.-à-d., l'anti-caspase-3 active et l'anti CD10. On utilise les reins d'un rat normal comme témoin.
Après avoir été rincées, les sections sont incubées pendant 30 minutes avec des anticorps secondaires biotinylés et elles sont ensuite visualisées en utilisant de l'avidine-biotine peroxydase.
La clairance de la créatinine est un paramètre utilisé pour évaluer la fonction rénale. Une clairance élevée correspond à une bonne fonction rénale, alors que la présence d'albumine dans l'urine (albumine urinaire) indique une lésion rénale puisque, normalement, il n'y a aucune albumine dans l'urine lorsque le rein est normal. D'ailleurs, comme le montre la figure 1A qui représente la clairance de la créatinine (exprimée sous forme de pourcentage de clairance au jour 14 comparativement à la valeur pré -implantation) pour les quatre groupes expérimentaux et la figure 1B qui représente l'évolution en fonction du temps de la clairance de la créatinine, c.-à-d., au jour O (valeur préopératoire), au jour 7 et au jour 14 après la transplantation. L'argon présente les meilleurs résultats sur le maintien de la clairance de la créatinine comparativement aux effets obtenus avec les autres gaz.
De façon similaire, la figure 2A montre le taux d'albumine dans l'urine au jour 14 après la transplantation pour les quatre groupes expérimentaux, alors que la figure 2B montre l'évolution du taux d'albumine dans l'urine au jour 0 (valeur préopératoire), au jour 7 et au jour 14 après la transplantation.
Ici encore, l'utilisation d'argon dissous dans une solution liquide conformément à la présente invention pour la conservation des reins avant une transplantation donne les meilleurs résultats comparés à l'utilisation des autres gaz qui ont été testés. En effet, avec l'argon, le taux d'albumine dans l'urine des rats, après la transplantation d'un rein, est très inférieur aux taux d'albumine (albumine urinaire) obtenus avec les autres reins transplantés qui ont été en contact avec des solutions liquides saturées en xénon, en air ou en azote.
Dans les deux cas (figures 2 et 3), le xénon montre un effet positif, c.-à-d., supérieur à ce que ce qui a été obtenu avec les témoins, mais qui est inférieur à celui obtenu avec l'argon, qui est indéniablement le gaz le plus efficace qui ait été testé.
En outre, après les observations histologiques et immuno-histochimiques, il a été démontré que, lorsque l'on conserve les reins dans une formulation liquide saturée d'argon conformément à la présente invention, l'intégrité architecturale du rein est préservée sans modification glomérulaire évidente comme le montrent les figures 3 A à 3D et 4A à 4E.
D'ailleurs, comme elles sont représentées dans les figures 3 A à 3D, des observations histologiques des coupes histologiques transversales du rein du rat (Tub désigne le tubule rénal ; Glom désigne le glomérule rénal) 14 jours après la transplantation montrent que :
- dans le groupe air, les reins présentent une nécrose sous-confluente (figure 3B) et une nécrose tabulaire aiguë (figure 3C) lorsque comparés à la figure 3 A qui représente une coupe d'un rein normal (groupe témoin),
- dans le groupe argon (figure 3D), les reins ont une morphologie normale intacte comme dans le groupe témoin, sans aucune altération ni nécrose.
En outre, les figures 4A à 4E sont des reproductions d'une immuno-histo chimie, c.-à-d., des coupes histologiques de reins de rats, 14 jours après la transplantation, obtenues pour les différents groupes de rats, démontrant que :
- dans le groupe air (figure 4A), les reins présentent une nécrose tabulaire aiguë avec une perte complète des expressions tabulaires et glomérulaires du CD 10.
- dans le groupe azote (figure 4B), les reins présentent une expression significative de la caspase-3 active. La caspase-3 active est un marqueur de Γ apoptose (mort cellulaire programmée). Une expression élevée de la caspase-3 active correspond à une apoptose induite, menant à la mort cellulaire et ainsi à un rein lésé.
- dans le groupe xénon (figure 4C), l'expression de la caspase-3 active a été perdue en raison d'une grave nécrose tabulaire aiguë.
- dans le groupe argon, des pertes discrètes et focales de l'expression du CD 10 (figure
4D) et de la caspase-3 active (figure 4E). Le CD10 est une protéine dans la bordure en brosse du tabule proximal du rein. Une faible expression du CD 10 correspond à un rein endommagé.
Les données obtenues montrent les effets très positifs et avantageux de l'argon sur la conservation d'une greffe rénale comparativement aux autres groupes expérimentaux, c.-à-d., les données obtenues avec l'azote, l'air et le xénon. Certains bons effets existent également avec le xénon, mais ils sont très inférieurs à ceux obtenus avec l'argon.
Par conséquent, une formulation liquide comprenant une solution liquide, comme la solution d'entreposage à froid de l'Université du Wisconsin (UW) ou la solution Celsior (CEL), et de l'argon dissous dans celle-ci, peut être utilisée avec succès pour préserver et conserver des matières biologiques, comme des organes ou d'autres tissus qui doivent être transplantés ou greffés chez un animal, de préférence un mammifère, en particulier un être humain.

Claims

Revendications
1. Formulation liquide comprenant une solution liquide et au moins un gaz choisi parmi le xénon, l'argon, l'hydrogène, le H2S, l'hélium, le krypton, le néon, le radon ou le CO, ledit gaz étant dissous dans ladite solution liquide, pour utilisation comme solution de conservation pour conserver une matière biologique, la concentration de gaz dissous dans la formulation liquide, exprimée en fraction molaire, étant de 0,1 x 10~4 à 4 x 10~4.
2. Formulation liquide selon la revendication 1 , caractérisée en ce que le gaz est l'argon.
3. Formulation liquide selon la revendication 1 , caractérisée en ce que ladite matière biologique est choisie parmi des cellules, des tissus et des organes biologiques.
4. Formulation liquide selon la revendication 1 , caractérisée en ce que ladite matière biologique est un matériau humain.
5. Formulation liquide selon la revendication 1 , caractérisée en ce que ladite matière biologique est un organe choisi parmi le cœur, le rein, le foie, le pancréas et l'intestin.
6. Formulation liquide selon la revendication 1 , caractérisée en ce que ladite matière biologique est un tissu ou des cellules biologiques choisi(es) parmi des os, la moelle osseuse, des tendons, la cornée, les valvules cardiaques, les veines, les bras, les cellules souches et la peau.
7. Formulation liquide selon la revendication 1 , caractérisée en ce que ladite solution liquide comprend de l'eau et au moins une autre substance choisie parmi des tampons, des substances colloïdales, des agents d'imperméabilité, des tampons, des électrolytes, des éliminateurs de ROS et de l'adénosine.
8. Formulation liquide selon la revendication 1 , caractérisée en ce qu'elle comprend une concentration de gaz dissous, exprimée en fraction molaire, de 0,1 x 10"4 à 0,5 x 10"4, de préférence de 0,3 x 10"4 à 0,5 x 10"4.
9. Formulation liquide selon la revendication 1 , caractérisée en ce que ladite matière biologique est un organe humain à transplanter.
10. Procédé pour conserver une matière biologique, dans lequel la matière biologique à conserver est mise en contact avec une formulation liquide saturée d'un ou de plusieurs gaz selon l'une quelconque des revendications 1 à 9.
11. Procédé selon la revendication 10, caractérisé en ce que la formulation liquide se situe à une température entre 2 °C et 37 °C, de préférence inférieure à 15 °C, plus préférablement inférieure à 10 °C.
12. Procédé selon la revendication 10, caractérisé en ce que ladite matière biologique est choisie parmi le cœur, le rein, le foie, le pancréas et l'intestin.
13. Procédé selon la revendication 10, caractérisé en ce que la matière biologique est placée dans un contenant et qu'elle est au moins partiellement immergée dans la formulation liquide.
14. Procédé selon la revendication 13, caractérisé en ce que le contenant comprend la formulation liquide, la matière biologique à conserver et une atmosphère gazeuse, ladite atmosphère gazeuse comprenant le ou les gaz dissous dans la formulation liquide.
15. Procédé selon la revendication 10, caractérisé en ce que le gaz est l'argon.
PCT/FR2011/050112 2010-02-18 2011-01-21 Formulation liquide avec gaz dissous utilisable pour conserver de la matière biologique WO2011101565A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/578,029 US20120301866A1 (en) 2010-02-18 2011-01-21 Liquid formulation having dissolved gases useful for preserving biological material
EP11705023A EP2536272A1 (fr) 2010-02-18 2011-01-21 Formulation liquide avec gaz dissous utilisable pour conserver de la matière biologique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051147 2010-02-18
FR1051147A FR2956289B1 (fr) 2010-02-18 2010-02-18 Formulation liquide avec gaz dissous utilisable pour conserver de la matiere biologique

Publications (1)

Publication Number Publication Date
WO2011101565A1 true WO2011101565A1 (fr) 2011-08-25

Family

ID=42321694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050112 WO2011101565A1 (fr) 2010-02-18 2011-01-21 Formulation liquide avec gaz dissous utilisable pour conserver de la matière biologique

Country Status (4)

Country Link
US (1) US20120301866A1 (fr)
EP (1) EP2536272A1 (fr)
FR (1) FR2956289B1 (fr)
WO (1) WO2011101565A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201580A (ja) * 2013-04-10 2014-10-27 株式会社昭和冷凍プラント 窒素水を用いた移植臓器の保存用又は洗浄用の処理液及びその調製方法
FR3004350A1 (fr) 2013-04-12 2014-10-17 Air Liquide Delivrance de gaz medical a un receveur de materiel biologique
FR3004312A1 (fr) 2013-04-12 2014-10-17 Air Liquide Delivrance de gaz medical a un donneur avant un prelevement de materiel biologique
CN109275658A (zh) * 2018-11-28 2019-01-29 韩城维康水科技有限公司 一种含氢气的器官移植保护液及其制备方法
WO2023287665A1 (fr) * 2021-07-12 2023-01-19 Renibus Therapeutics, Inc. Protoporphyrine métallique pour le traitement du virus bk

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1149900A1 (fr) * 2000-04-26 2001-10-31 Wolfgang Dr. Thasler Solution pour preserver des cellules de foie humaines, cellules preserves, et leur utilisation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8822535B2 (en) * 2005-04-20 2014-09-02 Fred Hutchinson Cancer Research Center Methods, compositions and articles of manufacture for enhancing survivability of cells, tissues, organs, and organisms

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1149900A1 (fr) * 2000-04-26 2001-10-31 Wolfgang Dr. Thasler Solution pour preserver des cellules de foie humaines, cellules preserves, et leur utilisation

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
E. WILHELM: "Low-pressure solubility of gases in liquid water", CHEMICAL REVIEWS, vol. 77, no. 2, 1977, pages 219 - 262, XP002592790 *
J. H. SOUTHARD ET AL.: "Organ preservation", ANN. REV. MED., vol. 46, 71119, pages 235 - 47
M. L. HENRY: "Pulsati/e preservation in renal transplantation", TRANSPLANT. PROC., vol. 29, no. 8, 80119, pages 3575 - 6
M. YIN ET AL.: "Carolina rinse solution minimizes kidney injury and improves graftfunction and survival afterprolonged cold ischemia", TRANSPLANTATION, vol. 73, 10220, pages 1410 - 1420
MAATHUIS ET AL.: "Perspectives in organ preservation", TRANSPLANTATION, vol. 83, 10720, pages 1289 - 1298
N. A. VAN DER PA 'T HART ET AL.: "Hypothermic machine perfusion of the liver and the critical balance between perfusion pressures and endothelial injury", TRANSPLANT PROC, vol. 37, no. 1, 10520, pages 332 - 4
P. A. CLAVIEN ET AL.: "Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies", TRANSPLANTATION, vol. 53, no. 5, 70819, pages 957 - 78
PAGEL ET AL: "Cardioprotection by Noble Gases", JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, SAUNDERS, PHILADELPHIA, PA, US, vol. 24, no. 1, 1 February 2010 (2010-02-01), pages 143 - 163, XP026869285, ISSN: 1053-0770, [retrieved on 20090520] *
S. REDDY ET AL.: "Liver transplantation from non-heart-beating donors: current status and future prospects", LIVER TRANSPL, vol. 10, no. 10, 10420, pages 1223 - 32
WAN CHIDAN ET AL: "Experimental study on the cryopreservation of LLC-PK1 epithelial cells with hypoxic UW solution", HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. JOURNAL (MEDICALSCIENCES) = HUAZHONG KEJI DAXUE XUEBAO (YIXUE YINGDEWEN BAN), HUAZHONG KEJI DAXUE, TONGJI YIXUEYUAN, CN LNKD- DOI:10.1007/S11596-007-0419-0, vol. 27, no. 4, 1 August 2007 (2007-08-01), pages 426 - 428, XP002584625, ISSN: 1672-0733 *

Also Published As

Publication number Publication date
US20120301866A1 (en) 2012-11-29
EP2536272A1 (fr) 2012-12-26
FR2956289A1 (fr) 2011-08-19
FR2956289B1 (fr) 2014-09-19

Similar Documents

Publication Publication Date Title
US7029839B2 (en) Methods and solutions for storing donor organs
US7005253B2 (en) Cold storage solution for organ and biological tissue preservation
US5145771A (en) Rinse solution for organs and tissues
Faenza et al. Kidney preservation with university of Wisconsin and Celsior solution: a prospective multicenter randomized study
US20070009880A1 (en) Methods And Solutions For Storing Donor Organs
WO2011101565A1 (fr) Formulation liquide avec gaz dissous utilisable pour conserver de la matière biologique
RU2479999C2 (ru) Водный раствор для консервации тканей и органов
CA2371057C (fr) Solution aqueuse de conservation de tissus et d'organes
CA2986267A1 (fr) Milieu de conservation injectable pour la conservation de cellules du sang placentaire, de la moelle osseuse et du sang peripherique
Mohara et al. A comparative study of Celsior and University of Wisconsin solutions based on 12-hr preservation followed by transplantation in canine models
EP2704559B1 (fr) Solution de rincage de greffon ou de tissu et procede de rincage dudit greffon ou tissu avant revascularisation
Chen et al. EFFICACY OF MEDIA ENRICHED WITH NONLACTATE-GENERATING SUBSTRATE FOR ORGAN PRESERVATION: In Vitro and Clinical Studies Using the Cornea Model: 1, 2
EP2207556B1 (fr) Compositions à base de cyclodextrines chargées positivement pour conserver des cellules, des tissus ou des organes, et leurs utilisations
Sasaki et al. Glutamine protects function and improves preservation of small bowel segments
FR3101227A1 (fr) Solution de préservation et/ou de rincage d’organe a transplanter
EP1997374B1 (fr) Procédé de rinçage et de conservation d'un organe en vue de sa transplantation et solution mise en oeuvre dans ce procédé
Basso et al. Renal preservation with hyperbaric oxygenation and hypothermia
FR2723818A1 (fr) Composition de perfusion pour ameliorer la conservation d'organes vivants
FR2956330A1 (fr) Procede de dissolution de gaz dans une solution liquide
WO2012035250A1 (fr) Procede de traitement de cellules en vue de leur cryogenisation et procede de cryopreservation de cellules mettant en oeuvre un tel procede.
Klempnauer et al. Hypothermic preservation of the rat pancreas
FR2746591A1 (fr) Milieu et procede pour la conservation de sperme, notamment de sperme d'equide et semence en resultant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11705023

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011705023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011705023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13578029

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE