WO2011101198A2 - Ladesystem zum laden eines energiespeichers in einem fahrzeug und verfahren zur vorbereitung eines ladebetriebs eines energiespeichers in einem fahrzeug - Google Patents

Ladesystem zum laden eines energiespeichers in einem fahrzeug und verfahren zur vorbereitung eines ladebetriebs eines energiespeichers in einem fahrzeug Download PDF

Info

Publication number
WO2011101198A2
WO2011101198A2 PCT/EP2011/050750 EP2011050750W WO2011101198A2 WO 2011101198 A2 WO2011101198 A2 WO 2011101198A2 EP 2011050750 W EP2011050750 W EP 2011050750W WO 2011101198 A2 WO2011101198 A2 WO 2011101198A2
Authority
WO
WIPO (PCT)
Prior art keywords
charging
electric machine
electrical
vehicle
machine
Prior art date
Application number
PCT/EP2011/050750
Other languages
English (en)
French (fr)
Other versions
WO2011101198A3 (de
Inventor
Roland Norden
Jochen Fassnacht
Philipp Morrison
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2011101198A2 publication Critical patent/WO2011101198A2/de
Publication of WO2011101198A3 publication Critical patent/WO2011101198A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a charging system for charging an energy storage device in a vehicle and to a method for preparing a charging operation of an energy storage device in a vehicle.
  • vehicles electric vehicles, plug-in hybrid vehicles
  • traction batteries which can be charged via a vehicle-external energy supply system, in particular the public power grid.
  • the electrical system of the vehicle is connected via a charging cable depending on the design of the electric drive machine of the vehicle with a single-phase or three-phase socket of the public power grid.
  • chargers so-called on-board chargers are provided in the vehicles, which usually also include an isolation transformer for galvanic isolation of the electrical system of the vehicle from the external power supply in the charging mode.
  • the present invention provides a charging system for charging an energy storage device, in particular a traction battery, in a vehicle an electric machine, in particular a three-phase machine, with at least two magnetically coupled stator windings for driving the vehicle,
  • the energy storage for the power supply of the electric machine - An electrical system, via which the electric machine and the energy storage are electrically connected and
  • a connecting element via which the vehicle electrical system can be connected to an external energy supply network, in particular a public electricity network, for charging the energy store,
  • the electric machine is connected to the connection element and the stator windings of the electrical machine are connected such that the electric machine acts as a transformer for galvanic isolation of the external power supply network of the electrical system.
  • the present invention also provides a method for charging an energy storage device, in particular a traction battery, in a vehicle which is drivable via an electric machine, in particular a three-phase machine, with at least two magnetically coupled stator windings, wherein the electrical machine connected via an electrical system with the energy storage is and is supplied from the energy storage with electrical energy.
  • the electric machine is connected to prepare a charging operation with a vehicle-side connection unit via which the electrical system for charging the energy storage with an external power supply network, in particular a public power grid connected.
  • the stator windings of the electrical machine are connected in such a way that the electric machine acts as a transformer for galvanic separation of the external power supply network from the vehicle electrical system in the charging mode.
  • the galvanic isolation of the vehicle electrical system from the external energy supply network has the fundamental advantage that false triggering of RCD circuit breakers and a dangerous non-triggering of the same due to a DC fault current can be avoided. Due to the clocking operation of the power semiconductors within the power electronics, which represents the link between the traction battery and the electrical machine, there are capacitive leakage currents, which in a potential-connected Charging operation lead to an increased risk of false tripping. The high insulation resistance required for the operation of an RCD circuit breaker type A or AC for DC currents can also be reliably achieved by the galvanic isolation. Since the charger must work at any socket and thus can not be preceded by any RCD or RCD type A or AC, the galvanic isolation is a safe always working solution.
  • the basic inventive idea is the double use of the electric machine as a drive unit on the one hand and as an isolation transformer in the loading mode on the other. This can be dispensed with an additional separate isolation transformer on board the vehicle, resulting in significant savings in cost, weight and space.
  • the electric machine may be connected via an inverter or via a rectifier and a downstream Hochtiefsetzsteller with the energy storage.
  • An embodiment of the invention provides that stator windings of the electric machine, which are connected in parallel in a motor operation, are connected in the charging operation at least partially in series. In this way, the impedance of the stator windings can be increased and thus the current flow can be limited.
  • a rotor of the electric machine seen during the loading operation is blocked, so that the charging current can not lead to a movement of the vehicle.
  • the rotor is blocked in a predetermined relative position to a stator of the electric machine, in particular "pole to pole", so that the best possible magnetic coupling between primary and secondary side of the transformer is ensured.
  • This blocking can be done for example by means of a locking pin and / or a friction clutch.
  • the locking pin is additionally used to prevent the vehicle from rolling away, for example when parked.
  • 1 is a schematic representation of the interconnection of a three-phase electric machine when used as a drive unit (driving mode),
  • Fig. 2 is a schematic representation of the interconnection of the electrical
  • Figure 3 is a schematic representation of the interconnection of a single-phase electric machine when used as an isolation transformer (charging operation).
  • Fig. 1 shows a schematic representation of a three-phase electric machine 1 with an interconnect, as used according to the invention in engine or vehicle operation.
  • an inverter in the form of a pulse inverter 2 is connected to the electric machine 1 .
  • the pulse-controlled inverter 2 comprises a plurality of power components - often referred to as power semiconductors - in the form of power switching elements 3a-3f, which are connected to individual phases U, V, W of the electric machine 1 and the phases U, V, W either against a high Reference potential T + or a low reference potential T- switch.
  • Pulse inverter 2 comprises ner further power components in the form of freewheeling diodes 4a-4f, which are arranged in the illustrated embodiment in the form of a six-pulse rectifier bridge circuit. In each case, a diode 4a-4f is arranged parallel to one of the power switching elements 3a-3f.
  • the power switching elements can be embodied, for example, as IGBTs (Insulated Gate Bipolar Transistors) or as MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors).
  • the pulse inverter 2 determines the power and mode of operation of the electric machine 1 and is controlled accordingly by a control unit, not shown.
  • the electric machine 1 serves as a drive unit of the vehicle and is executed in the illustrated embodiment as a three-phase three-phase machine in the form of an asynchronous or synchronous machine with a pole pair of 4. Accordingly, a stator 5 on twelve stator windings 6, which are connected in a known manner in star connection with each other. Likewise, the stator windings 6 could also be connected in delta connection. Schematically, a rotor 7 of the electric machine is indicated.
  • an energy store 8 here in the form of a battery, is provided.
  • the energy storage 8 is connected via an in-vehicle power supply network - often referred to as electrical system connected to the electric machine 1 and with other vehicle components, not shown.
  • the energy storage 8 can be designed as a high-voltage battery and the power grid, for example, as a high-voltage traction network in a hybrid vehicle. If the vehicle is designed as a hybrid vehicle, the electric machine 1 can optionally also be operated in generator mode, wherein mechanical energy is converted into electrical energy and stored in the energy store 8.
  • a so-called DC link capacitor C is arranged, which essentially serves to stabilize the battery voltage.
  • FIG. 2 shows the electrical machine 1 according to FIG. 1 with a connection which is made in preparation for a charging operation of the energy store 8 in order to be able to use the electric machine as an isolating transformer. NEN.
  • two stator windings connected in series are connected on the primary side, on the one hand, to one of the phase terminals L1 to L3 and, on the other hand, to a neutral terminal N of a terminal element 9, which can be designed, for example, as a vehicle-side socket.
  • About the connection element 9 can be the electrical system for charging the energy storage 9, for example via a charging cable, not shown, with an unillustrated external power supply network, such as the public grid, connect.
  • Secondary side so the inverter, the stator windings 6, as shown in Figure 2, connected according to the primary side.
  • the impedance is increased in the charging mode and thus limits the mains current.
  • the impedance can be further increased in this way.
  • the electric machine 1 is connected together with the pulse inverter 2 between the external power supply network and the energy store 8 to be charged and, to that extent, together form an on-board charger for the energy store 8.
  • FIG. 1 An alternative embodiment of an electrical machine is shown in FIG. This embodiment differs from the embodiment explained with reference to FIGS. 1 and 2 on the one hand in that, instead of a three-phase electric machine 1, a single-phase electric machine V is used and, on the other hand, in that instead of the inverter 2 Rectifier 1 1 is provided with a downstream in the direction of the energy storage 8 combined Hochtiefsetzsteller 12.
  • the rectifier 1 1 comprises four diodes 13a-13d, which are arranged in the illustrated embodiment in the form of a two-pulse rectifier bridge circuit.
  • the combined vertical step converter 12 comprises a first circuit branch with a series connection of a first switching element 14a and a first diode 15a.
  • a second, connected in parallel circuit branch has a series circuit of a second switching element 14b and a second diode 15b.
  • a center tap is provided in each case, to which an inductor 16 is connected.
  • the DC link capacitor C and the energy storage 8 are in each case connected in parallel to the second switching element 14b.
  • FIG. 3 shows the electrical machine 1 '- analog FIG. 2 for machine 1 - with a connection which is made in preparation for a charging operation of the energy store 8 in order to be able to use the electric machine as an isolating transformer.
  • Half of the stator windings ie six in the illustrated embodiment, are connected in series on the primary side and connected on the one hand to a phase connection L1 'and on the other hand to a neutral connection N' of a connection element 9 '.
  • the connection element 9 'I can connect the electrical system for charging the energy storage 8 with the vehicle external power supply network, again not shown.
  • the other stator windings 6 connected to the rectifier 11 are likewise connected in series.
  • the electric machine V is connected in the charging mode together with the rectifier 1 1 and the Hochtiefsetzsteller 12 between the external power grid and the charging energy storage 8, so that the electric machine 1 ', the rectifier 1 1 and the Hochtiefsetzsteller 12 together the On -Board charger for the energy storage 8 form.
  • the charging operation ie during operation of the electrical machine as a transformer, it is advantageous to block the rotor of the electric machine in order to reliably avoid starting the vehicle.
  • the rotor is blocked in a predetermined relative position to the stator of the electric machine, so that, for example, an optimal magnetic coupling between the primary side and the secondary side is achieved.
  • the blocking of the rotor can be realized in many ways.
  • one or more locking pins are conceivable, with the help of which the rotor is locked in the predetermined or desired position.
  • the bolt may e.g. be controlled by an electric motor.
  • a tip of the bolt and a corresponding guide opening in the rotor are preferably designed so that automatically adjusts the desired position during insertion of the bolt in the guide opening.
  • such a locking pin can also be used to prevent the vehicle from rolling away, e.g. in park mode, to be used.
  • the blocking of the rotor can also be accomplished by means of a friction clutch.
  • the rotor is detected by means of a braking device and thus blocked as soon as it has reached the desired position.

Abstract

Die Erfindung betrifft ein Ladesystem zum Laden eines Energiespeichers (8), insbesondere einer Traktionsbatterie, in einem Fahrzeug mit einer elektrischen Maschine (1; V) mit mindestens zwei magnetisch gekoppelten Statorwicklungen (6) zum Antrieb des Fahrzeuges, dem Energiespeicher (8) zur Energieversorgung der elektrischen Maschine (1; V), einem Bordnetz, über welches die elektrische Maschine (1; V) und der Energiespeicher (8) elektrisch verbunden sind und mit einem Anschlusselement (9; 9'), über welches das Bordnetz zum Laden des Energiespeichers (8) mit einem externen Energieversorgungsnetz verbindbar ist. Zum Laden des Energiespeichers (8) ist die elektrische Maschine (1; V) mit dem Anschlusselement (9; 9')) verbunden und die Statorwicklungen (6) der elektrischen Maschine (1; V) sind derart verschaltet, dass die elektrische Maschine (1; V) als Transformator zur galvanischen Trennung des externen Energieversorgungsnetzes von dem Bordnetz wirkt. Die Erfindung betrifft außerdem ein Verfahren zur Vorbereitung eines Ladebetriebs eines Energiespeichers (8) in einem Fahrzeug.

Description

Beschreibung
Titel
Ladesvstem zum Laden eines Energiespeichers in einem Fahrzeug und Verfahren zur Vorbereitung eines Ladebetriebs eines Energiespeichers in einem Fahrzeug
Die Erfindung betrifft ein Ladesystem zum Laden eines Energiespeichers in einem Fahrzeug und Verfahren zur Vorbereitung eines Ladebetriebs eines Energiespeichers in einem Fahrzeug.
Stand der Technik
Seit längerem sind Fahrzeuge (Elektrofahrzeuge, Plug-in-Hybridfahrzeuge) bekannt, die zumindest teilweise elektrisch angetrieben werden und Energiespeicher in Form von Traktionsbatterien aufweisen, die über ein fahrzeug-externes Energieversorgungssystem, insbesondere das öffentliche Stromnetz, aufladbar sind. Dazu wird im einfachsten Fall das Bordnetz des Fahrzeuges über ein Ladekabel je nach Auslegung der elektrischen Antriebsmaschine des Fahrzeuges mit einer einphasigen oder dreiphasigen Steckdose des öffentlichen Stromnetzes verbunden. Um das Laden an jeder geeigneten Steckdose des öffentlichen Stromnetzes zu ermöglichen, sind in den Fahrzeugen Ladegeräte, sogenannte On-Board-Ladegeräte, vorgesehen, welche in der Regel auch einen Trenntransformator zur galvanischen Trennung des Bordnetzes des Fahrzeuges von dem externen Stromnetz im Ladebetrieb umfassen.
Offenbarung der Erfindung
Die vorliegende Erfindung schafft ein Ladesystem zum Laden eines Energiespeichers, insbesondere einer Traktionsbatterie, in einem Fahrzeug mit - einer elektrischen Maschine, insbesondere einer Drehstrommaschine, mit mindestens zwei magnetisch gekoppelten Statorwicklungen zum Antrieb des Fahrzeuges,
- dem Energiespeicher zur Energieversorgung der elektrischen Maschine, - einem Bordnetz, über welches die elektrische Maschine und der Energiespeicher elektrisch verbunden sind und
- einem Anschlusselement, über welches zum Laden des Energiespeichers das Bordnetz mit einem externen Energieversorgungsnetz, insbesondere einem öffentlichen Stromnetz, verbindbar ist,
wobei zum Laden des Energiespeichers die elektrische Maschine mit dem Anschlusselement verbunden ist und die Statorwicklungen der elektrischen Maschine derart verschaltet sind, dass die elektrische Maschine als Transformator zur galvanischen Trennung des externen Energieversorgungsnetzes von dem Bordnetz wirkt.
Die vorliegende Erfindung schafft außerdem ein Verfahren zum Laden eines Energiespeichers, insbesondere einer Traktionsbatterie, in einem Fahrzeug, welches über eine elektrische Maschine, insbesondere eine Drehstrommaschine, mit mindestens zwei magnetisch gekoppelten Statorwicklungen antreibbar ist, wobei die elektrische Maschine über ein Bordnetz mit dem Energiespeicher verbunden ist und aus dem Energiespeicher mit elektrischer Energie versorgt wird. Erfindungsgemäß wird die elektrische Maschine zur Vorbereitung eines Ladebetriebs mit einer fahrzeugseitigen Anschlusseinheit verbunden, über welche das Bordnetz zum Laden des Energiespeichers mit einem externen Energieversorgungs- netz, insbesondere einem öffentlichen Stromnetz, verbindbar ist. Außerdem werden die Statorwicklungen der elektrischen Maschine derart verschaltet, dass die elektrische Maschine im Ladebetrieb als Transformator zur galvanischen Trennung des externen Energieversorgungsnetzes von dem Bordnetz wirkt. Die galvanische Trennung des Fahrzeug-Bordnetzes vom externen Energieversorgungsnetz hat grundsätzlich den Vorteil, dass Fehlauslösungen von RCD- Schutzschaltern und ein gefährliches Nichtauslösen desselben aufgrund eines Gleichstromfehlerstroms vermieden werden. Bedingt durch die taktende Arbeitsweise der Leistungshalbleiter innerhalb der Leistungselektronik, welche das Bin- deglied zwischen der Traktionsbatterie und der elektrischen Maschine darstellt, kommt es zu kapazitiven Ableitströmen, welche in einem potentialverbundenen Ladebetrieb zu einem erhöhten Risiko an Fehlauslösungen führen. Auch der für den Betrieb eines RCD-Schutzschalters vom Typ A oder AC geforderte hohe Isolationswiderstand für Gleichströme kann durch die galvanische Trennung sicher erreicht werden. Da das Ladegerät an beliebiger Steckdose funktionieren muss und somit durchaus kein RCD oder ein RCD Typ A oder AC vorgeschaltet sein kann, stellt die galvanische Trennung eine sichere immer funktionierende Lösung dar.
Die grundlegende erfinderische Idee besteht in der Doppelnutzung der elektrischen Maschine als Antriebsaggregat einerseits und als Trenntransformator im Ladebetrieb andererseits. Dadurch kann auf einen zusätzlichen separaten Trenntransformator an Bord des Fahrzeuges verzichtet werden, was zu erheblichen Einsparungen bei Kosten, Gewicht und Bauraum führt.
Gemäß Ausführungsformen der Erfindung kann die elektrische Maschine über einen Wechselrichter oder auch über einen Gleichrichter und einen nachgeschalteten Hochtiefsetzsteller mit dem Energiespeicher verbunden sein.
Eine Ausführungsform der Erfindung sieht vor, dass Statorwicklungen der elektrischen Maschine, welche in einem Motorbetrieb parallel geschaltet sind, im Ladebetrieb zumindest teilweise in Reihe geschaltet sind. Auf diese Weise kann die Impedanz der Statorwicklungen erhöht und damit der Stromfluss begrenzt werden.
Gemäß einer weiteren Ausführungsform der Erfindung wird ein Rotor der elektri- sehen Maschine während des Ladebetriebs blockiert, so dass der Ladestrom nicht zu einer Bewegung des Fahrzeuges führen kann. Vorteilhaft wird der Rotor in einer vorgegebenen Relativposition zu einem Stator der elektrischen Maschine blockiert, insbesondere "Pol auf Pol", so dass eine möglichst gute magnetische Kopplung zwischen primärer und sekundärer Seite des Transformators gewähr- leistet ist. Dieses Blockieren kann beispielsweise mit Hilfe eines Sperrbolzens und/oder einer Reibkupplung erfolgen.
Gemäß einer Ausführungsform der Erfindung wird der Sperrbolzen zusätzlich zur Verhinderung eines Wegrollens des Fahrzeuges, z.B. im Parkbetrieb, verwendet. Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung mit Bezug auf die beigefügten Figuren.
Kurze Beschreibung der Figuren Es zeigen:
Fig. 1 eine schematische Darstellung der Verschaltung einer dreiphasigen elektrischen Maschine bei Einsatz als Antriebsaggregat (Fahrbetrieb),
Fig. 2 eine schematische Darstellung der Verschaltung der elektrischen
Maschine gemäß Figur 1 bei Einsatz als Trenntransformator (Ladebetrieb) und
Figur 3 eine schematische Darstellung der Verschaltung einer einphasigen elektrischen Maschine bei Einsatz als Trenntransformator (Ladebetrieb).
Beschreibung der Ausführungsbeispiele
In den Figuren sind identische oder funktionsgleiche Komponenten jeweils mit dem gleichen Bezugszeichen gekennzeichnet.
Fig. 1 zeigt eine schematische Darstellung einer dreiphasigen elektrischen Maschine 1 mit einer Verschaltung, wie sie erfindungsgemäß im Motor- oder Fahrbetrieb eingesetzt wird. An die elektrische Maschine 1 ist ein Wechselrichter in Form eines Pulswechselrichters 2 angeschlossen. Der Pulswechselrichter 2 um- fasst mehrere Leistungsbauelemente - häufig auch als Leistungshalbleiter bezeichnet - in Form von Leistungsschaltelementen 3a-3f, welche mit einzelnen Phasen U,V,W der elektrischen Maschine 1 verbunden sind und die Phasen U,V,W entweder gegen ein hohes Bezugspotential T+ oder ein niedriges Bezugspotential T- schalten. Die mit dem hohen Bezugspotential T+ verbundenen Leistungsschaltelemente 3a-3c werden dabei auch als "High-Side-Schalter" und die mit dem niedrigen Bezugspotential T- verbunden Leistungsschaltelemente 3d-3f als "Low-Side-Schalter" bezeichnet. Der Pulswechselrichter 2 umfasst fer- ner weitere Leistungsbauelemente in Form von Freilaufdioden 4a-4f, die im dargestellten Ausführungsbeispiel in Form einer sechspulsigen Gleichrichter- Brückenschaltung angeordnet sind. Dabei ist jeweils eine Diode 4a-4f parallel zu einem der Leistungsschaltelemente 3a-3f angeordnet. Die Leistungsschaltelemente können beispielsweise als IGBTs (Insulated Gate Bipolar Transistors) oder als MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors) ausgeführt sein. Der Pulswechselrichter 2 bestimmt Leistung und Betriebsart der elektrischen Maschine 1 und wird von einem nicht dargestelltem Steuergerät entsprechend angesteuert.
Die elektrische Maschine 1 dient als Antriebsaggregat des Fahrzeuges und ist im dargestellten Ausführungsbeispiel als dreiphasige Drehstrommaschine in Form einer Asynchron- oder Synchronmaschine mit einer Polpaarzahl von 4 ausgeführt. Dementsprechend weist ein Stator 5 zwölf Statorwicklungen 6 auf, die in bekannter Weise in Sternschaltung miteinander verschaltet sind. Ebenso könnten die Statorwicklungen 6 aber auch in Dreieckschaltung verschaltet sein. Schematisch ist auch ein Rotor 7 der elektrischen Maschine angedeutet.
Zur Energieversorgung der elektrischen Maschine 1 ist ein Energiespeicher 8, hier in Form einer Batterie, vorgesehen. Der Energiespeicher 8 ist über ein fahrzeuginternes Energieversorgungsnetz - häufig als Bordnetz bezeichnet mit der elektrischen Maschine 1 sowie mit weiteren nicht dargestellten Fahrzeugkomponenten verbunden. Der Energiespeicher 8 kann dabei als Hochvoltbatterie und das Energieversorgungsnetz zum Beispiel als Hochvolt-Traktionsnetz in einem Hybridfahrzeug ausgeführt sein. Ist das Fahrzeug als Hybridfahrzeug ausgeführt, kann die elektrische Maschine 1 wahlweise auch im Generatorbetrieb betrieben werden, wobei mechanische Energie in elektrische Energie gewandelt und in dem Energiespeicher 8 gespeichert wird.
Parallel zum Pulswechselrichter 2 ist ein so genannter Zwischenkreis- Kondensator C angeordnet, der im Wesentlichen zur Stabilisierung der Batteriespannung dient.
Figur 2 zeigt die elektrische Maschine 1 gemäß Figur 1 mit einer Verschaltung, welche zur Vorbereitung eines Ladebetriebs des Energiespeichers 8 vorgenommen wird, um die elektrische Maschine als Trenntransformator nutzen zu kön- nen. Dabei werden primärseitig jeweils zwei in Reihe geschaltete Statorwicklungen einerseits mit einem der Phasenanschlüsse L1 bis L3 und andererseits mit einem Neutralleiteranschluss N eines Anschlusselementes 9 verbunden, welches zum Beispiel als fahrzeugseitige Steckdose ausgeführt sein kann. Über das An- Schlusselement 9 lässt sich das Bordnetz zum Laden des Energiespeichers 9 z.B. über ein nicht dargestelltes Ladekabel mit einem nicht dargestellten fahrzeugexternen Energieversorgungsnetz, wie z.B. dem öffentlichen Stromnetz, verbinden. Sekundärseitig, also wechselrichterseitig, werden die Statorwicklungen 6, wie in Figur 2 dargestellt, entsprechend der Primärseite verschaltet. Durch das "In-Reihe-Schalten" von im Motorbetrieb ursprünglich parallel geschalteten
Statorwicklungen, wird die Impedanz im Ladebetrieb erhöht und damit der Netzstrom begrenzt. Im Falle der dargestellten 8-poligen Maschine wird eine Vervierfachung der Impedanz erreicht. Bei höheren Polpaarzahlen kann auf diese Weise die Impedanz entsprechend weiter erhöht werden.
Im Ladebetrieb ist somit die elektrische Maschine 1 zusammen mit dem Pulswechselrichter 2 zwischen das externe Energieversorgungsnetz und den aufzuladenden Energiespeicher 8 geschaltet und bilden insofern gemeinsam ein On- Board-Ladegerät für den Energiespeicher 8.
Neben der in Figur 2 dargestellten Verschaltung sind in Abhängigkeit von der Polpaarzahl auch weitere Verschaltungen denkbar, so ist es zum Beispiel auch denkbar, die netzseitig und wechselrichterseitig angeschlossenen Polpaare abwechselnd zu verschalten. Für die Anwendbarkeit der Erfindung ist letztendlich lediglich entscheidend, dass die Statorwicklungen der elektrischen Maschine für den Ladebetrieb zumindest teilweise derart verschaltet sind, dass die elektrische Maschine als Transformator mit einer Primärseite und einer dazu magnetisch gekoppelten Sekundärseite wirkt. Insofern ist es erforderlich, dass die originär als Antriebsaggregat eingesetzte elektrische Maschine zumindest zwei magnetisch gekoppelte Statorwicklungen aufweist.
Eine alternative Ausführungsform einer elektrischen Maschine ist in Figur 3 dargestellt. Diese Ausführungsform unterscheidet sich von der anhand der Figuren 1 und 2 erläuterten Ausführungsform einerseits dadurch, dass anstelle einer drei- phasigen elektrischen Maschine 1 eine einphasige elektrische Maschine V eingesetzt wird und andererseits dadurch, dass anstelle des Wechselrichters 2 ein Gleichrichter 1 1 mit einem in Richtung des Energiespeichers 8 nachgeschalteten kombinierten Hochtiefsetzsteller 12 vorgesehen ist. Der Gleichrichter 1 1 umfasst dabei vier Dioden 13a-13d, welche im dargestellten Ausführungsbeispiel in Form einer zweipulsigen Gleichrichter-Brückenschaltung angeordnet sind.
Der kombinierte Hochtiefsetzsteller 12 umfasst einen ersten Schaltungszweig mit einer Reihenschaltung aus einem ersten Schaltelement 14a und einer ersten Diode 15a. Ein zweiter, parallel dazu geschalteter Schaltungszweig weist eine Reihenschaltung aus einem zweiten Schaltelement 14b und einer zweiten Diode 15b auf. Zwischen dem Schaltelement 14a, 14b und der Diode 15a, 15b ist jeweils ein Mittelabgriff vorgesehen, an welche eine Induktivität 16 angeschlossen ist. Der Zwischenkreiskondensator C und der Energiespeicher 8 sind dabei jeweils parallel zum zweiten Schaltelement 14b geschaltet.
Figur 3 zeigt die elektrische Maschine 1 ' -analog Figur 2 für Maschine 1 - mit einer Verschaltung, welche zur Vorbereitung eines Ladebetriebs des Energiespeichers 8 vorgenommen wird, um die elektrische Maschine als Trenntransformator nutzen zu können. Die Hälfte der Statorwicklungen, im dargestellten Ausführungsbeispiel also sechs, werden primärseitig in Reihe geschaltet und einerseits mit einem Phasenanschluss L1 ' und andererseits mit einem Neutralleiteran- schluss N' eines Anschlusselementes 9' verbunden. Über das Anschlusselement 9' lässt ich das Bordnetz zum Laden des Energiespeichers 8 mit dem wiederum nicht dargestellten fahrzeugexternen Energieversorgungsnetz verbinden. Sekun- därseitig werden die mit dem Gleichrichter 1 1 verbundenen übrigen Statorwicklungen 6 ebenfalls in Reihe geschaltet. Durch geeignete Ansteuerung des Hochtiefsetzstellers 12 kann eine Blindleistungskompensation realisiert werden, welche zu dem hohen erforderlichen Innenwiderstand beitragen kann.
In diesem Ausführungsbeispiel ist die elektrische Maschine V im Ladebetrieb zusammen mit dem Gleichrichter 1 1 und dem Hochtiefsetzsteller 12 zwischen das externe Energieversorgungsnetz und den aufzuladenden Energiespeicher 8 geschaltet, so dass die elektrische Maschine 1 ', der Gleichrichter 1 1 und der Hochtiefsetzsteller 12 gemeinsam das On-Board-Ladegerät für den Energiespeicher 8 bilden. Währens des Ladebetriebs, also während des Betriebes der elektrischen Maschine als Transformator, ist es vorteilhaft, den Rotor der elektrischen Maschine zu blockieren, um ein Anfahren des Fahrzeuges sicher zu vermeiden. Vorteilhaft wird der Rotor dabei in einer vorgegebenen Relativposition zum Stator der elektrischen Maschine blockiert, so dass beispielsweise eine optimale magnetische Kopplung zwischen der Primärseite und der Sekundärseite erreicht wird.
Das Blockieren des Rotors kann dabei auf vielfältige Weise realisiert werden. So sind beispielsweise ein oder mehrere Sperrbolzen denkbar, mit dessen/deren Hilfe der Rotor in der vorgegebenen oder gewünschten Lage arretiert wird. Der Bolzen kann dabei z.B. elektromotorisch angesteuert werden. Eine Spitze des Bolzens sowie eine korrespondierende Führungsöffnung im Rotor sind dabei vorzugsweise so ausgeführt, dass sich die gewünschte Lage beim Einführen des Bolzens in die Führungsöffnung automatisch einstellt. Vorteilhaft kann ein derartiger Sperrbolzen auch zur Verhinderung eines Wegrollens des Fahrzeuges, z.B. im Parkbetrieb, genutzt werden.
Alternativ dazu kann das Blockieren des Rotors auch mit Hilfe einer Reibkupplung bewerkstelligt werden. Dabei wird der Rotor mittels einer Bremsvorrichtung festgestellt und damit blockiert, sobald er die gewünschte Position erreicht hat.

Claims

Ansprüche
1 . Ladesystem zum Laden eines Energiespeichers (8), insbesondere einer Traktionsbatterie, in einem Fahrzeug mit
- einer elektrischen Maschine (1 ; 1 '), insbesondere einer Drehstrommaschine, mit mindestens zwei magnetisch gekoppelten Statorwicklungen (6) zum Antrieb des Fahrzeuges,
- dem Energiespeicher (8) zur Energieversorgung der elektrischen Maschine (1 ; 1 '),
- einem Bordnetz, über welches die elektrische Maschine (1 ; 1 ') und der Energiespeicher (8) elektrisch verbunden sind und
- einem Anschlusselement (9; 9'), über welches zum Laden des Energiespeichers (8) das Bordnetz mit einem externen Energieversorgungsnetz, insbesondere einem öffentlichen Stromnetz, verbindbar ist, wobei zum Laden des Energiespeichers (8) die elektrische Maschine (1 ; 1 ') mit dem Anschlusselement (9; 9')) verbunden ist und die Statorwicklungen (6) der elektrischen Maschine (1 ; 1 ') derart verschaltet sind, dass die elektrische Maschine (1 ; 1 ') als Transformator zur galvanischen Trennung des externen Energieversorgungsnetzes von dem Bordnetz wirkt.
Ladesystem nach Anspruch 1 , wobei die elektrische Maschine (1 ) über einen Wechselrichter (2) mit dem Energiespeicher (8) verbunden ist.
Ladesystem nach Anspruch 1 , wobei die elektrische Maschine (V) über einen Gleichrichter (1 1 ) und einen nachgeschalteten Hochtiefsetzsteller (12) mit dem Energiespeicher (8) verbunden ist.
Ladesystem nach einem der Ansprüche 1 bis 3, wobei Statorwicklungen (6) der elektrischen Maschine, welche in einem Motorbetrieb parallel geschaltet sind, im Ladebetrieb zumindest teilweise in Reihe geschaltet sind.
5. Ladesystem nach einem der vorhergehenden Ansprüche, wobei ein Rotor (7) der elektrischen Maschine (1 ; 1 ') während des Ladebetriebs blockiert ist, insbesondere in einer vorgegebenen Relativposition zu einem Stator (5) der elektrischen Maschine (1 ; 1 ').
6. Ladesystem nach Anspruch 5, wobei der Rotor (7) mit Hilfe eines Sperrbolzens und/oder einer Reibkupplung blockierbar ist.
7. Ladesystem nach Anspruch 6, wobei der Sperrbolzen zusätzlich zur Verhinderung eines Wegrollens des Fahrzeuges, insbesondere im Parkbetrieb, verwendbar ist.
8. Verfahren zur Vorbereitung eines Ladebetriebs eines Energiespeichers (8), insbesondere einer Traktionsbatterie, in einem Fahrzeug, welches über eine elektrische Maschine (1 ; 1 '), insbesondere eine Drehstrommaschine, mit mindestens zwei magnetisch gekoppelten Statorwicklungen (6) antreibbar ist, wobei die elektrische Maschine (1 ; 1 ') über ein Bordnetz mit dem Energiespeicher (8) verbunden ist und aus dem Energiespeicher (8) mit elektrischer Energie versorgt wird, bei dem
- die elektrische Maschine (1 ; 1 ') mit einer Anschlusseinheit (9; 9') verbunden wird, über welche das Bordnetz zum Laden des Energiespeichers (8) mit einem externen Energieversorgungsnetz, insbesondere einem öffentlichen Stromnetz, verbindbar ist, und
- die Statorwicklungen (6) der elektrischen Maschine (1 ; 1 ') derart verschaltet werden, dass die elektrische Maschine (1 ; 1 ') im Ladebetrieb als Transformator zur galvanischen Trennung des externen Energieversorgungsnetzes von dem Bordnetz wirkt.
9. Verfahren nach Anspruch 8, wobei Statorwicklungen (6) der elektrischen Maschine (1 ; 1 '), welche in einem Motorbetrieb parallel geschaltet sind, zumindest teilweise in Reihe geschaltet werden.
10. Verfahren nach einem der Ansprüche 8 oder 9, wobei ein Rotor (7) der elektrischen Maschine (1 ; 1 ') blockiert wird.
PCT/EP2011/050750 2010-02-19 2011-01-20 Ladesystem zum laden eines energiespeichers in einem fahrzeug und verfahren zur vorbereitung eines ladebetriebs eines energiespeichers in einem fahrzeug WO2011101198A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010002154.7 2010-02-19
DE102010002154A DE102010002154A1 (de) 2010-02-19 2010-02-19 Ladesystem zum Laden eines Energiespeichers in einem Fahrzeug und Verfahren zur Vorbereitung eines Ladebetriebs eines Energiespeichers in einem Fahrzeug

Publications (2)

Publication Number Publication Date
WO2011101198A2 true WO2011101198A2 (de) 2011-08-25
WO2011101198A3 WO2011101198A3 (de) 2012-06-07

Family

ID=44356486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/050750 WO2011101198A2 (de) 2010-02-19 2011-01-20 Ladesystem zum laden eines energiespeichers in einem fahrzeug und verfahren zur vorbereitung eines ladebetriebs eines energiespeichers in einem fahrzeug

Country Status (2)

Country Link
DE (1) DE102010002154A1 (de)
WO (1) WO2011101198A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013041317A3 (de) * 2011-09-22 2013-07-18 Siemens Aktiengesellschaft Antriebssystem und steuerverfahren eines batteriebetriebenen fahrzeugs

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013206611A1 (de) 2013-04-12 2014-10-16 Robert Bosch Gmbh Überwachungsvorrichtung für ein Fahrzeug und Verfahren zur Überwachung eines Fahrzeugs
DE102015116461B4 (de) 2015-09-29 2024-01-25 Hans-Hermann Maasland Verfahren zum Betrieb einer Reluktanzmaschine sowie eine Reluktanzmaschine
DE102017202324B4 (de) * 2017-02-14 2018-10-25 Continental Automotive Gmbh Verfahren zum Minimieren eines Drehmoments einer elektrischen Maschine während einem Energieübertragungsvorgang
WO2020001779A1 (en) * 2018-06-29 2020-01-02 Volvo Technology Corporation An electric propulsion system for a vehicle
DE102022211173A1 (de) 2022-10-21 2024-05-02 Bomag Gmbh Verfahren zum laden eines energiespeichers einer, insbesondere selbstfahrenden, baumaschine mit elektrischer energie und selbstfahrende baumaschine, insbesondere bodenverdichtungsmaschine, und externe ladequelle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904947A (en) * 1973-08-22 1975-09-09 Roy E Crews Vehicle mounted battery charging system for an electric motor vehicle
ES2084186T3 (es) * 1990-10-09 1996-05-01 Stridsberg Licensing Ab Un tren de potencia electrico para vehiculos.
JP3454009B2 (ja) * 1996-04-22 2003-10-06 トヨタ自動車株式会社 電気自動車のメカニカルパーキングロック装置
DE19652950A1 (de) * 1996-12-19 1998-07-02 Ask Antriebs Steuerungs Und In Verfahren und Vorrichtung für die Ausführung eines batteriegestützten elektrischen Drehstromantriebssystems mit Batterieladeeinrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013041317A3 (de) * 2011-09-22 2013-07-18 Siemens Aktiengesellschaft Antriebssystem und steuerverfahren eines batteriebetriebenen fahrzeugs

Also Published As

Publication number Publication date
WO2011101198A3 (de) 2012-06-07
DE102010002154A1 (de) 2011-08-25

Similar Documents

Publication Publication Date Title
DE102016213070B4 (de) Fahrzeugbordnetz und Verfahren
DE102008063465A1 (de) Betriebsanordnung für ein elektrisch betriebenes Fahrzeug
WO2019215128A1 (de) Wechselrichter, elektrischer antriebsstrang, fahrzeug und verfahren zum betrieb eines wechselrichters
EP3238978A1 (de) Kombinierte multilevel-umrichter- und acdc leistungslade-einheit
WO2012048939A2 (de) Verfahren zum überwachen des ladebetriebs eines energiespeichers in einem fahrzeug und ladesystem zum laden eines energiespeichers in einem fahrzeug
DE102009052680A1 (de) Ladevorrichtung zum Laden einer Batterie eines Kraftfahrzeugs mit Tiefsetzsteller
WO2011101198A2 (de) Ladesystem zum laden eines energiespeichers in einem fahrzeug und verfahren zur vorbereitung eines ladebetriebs eines energiespeichers in einem fahrzeug
DE102016213061B4 (de) Fahrzeugbordnetz und Verfahren
WO2012038176A2 (de) System zum laden eines energiespeichers und verfahren zum betrieb des ladesystems
DE102010039886A1 (de) Antriebssystem für ein batteriebetriebenes Fahrzeug
EP2658738A2 (de) System zur ankopplung mindestens einer gleichstromquelle an einen steuerbaren energiespeicher und zugehöriges betriebsverfahren
DE102010062376A1 (de) Verfahren zum Laden einer Traktionsbatterie
DE102017008840A1 (de) Elektrisches Bordnetz
DE102019005621A1 (de) Bordnetz für ein elektrisch antreibbares Kraftfahrzeug
EP2527187A2 (de) Elektrisches Ladesystem
DE102017206497B4 (de) Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs, sowie Kraftfahrzeug
DE102013011104A1 (de) Elektrische Energieverteilungseinrichtung für ein elektrisch angetriebenes Fahrzeug sowie Verfahren zum Betrieb der Energieverteilungseinrichtung
DE102016213054B3 (de) Fahrzeugbordnetz und Verfahren
EP3710304B1 (de) Kraftfahrzeug mit einem energiespeicher sowie verfahren zum betreiben eines kraftfahrzeugs
WO2017186392A1 (de) Elektrische maschine mit zwei angeschlossenen wechselrichtern
DE102016012876A1 (de) Elektrisches Antriebssystem für ein Fahrzeug
WO2012019665A2 (de) Kraftfahrzeugantriebssystem mit einer ladevorrichtung
WO2013041317A2 (de) Antriebssystem und steuerverfahren eines batteriebetriebenen fahrzeugs
DE102017212844A1 (de) Bidirektionaler Inverterlader
DE102016010740A1 (de) Betreiben eines Antriebsstranges durch kurzzeitigen aktiven Kurzschluss

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 11702946

Country of ref document: EP

Kind code of ref document: A2