WO2011098708A1 - Procede de regulation d'un parametre de fonctionnement d'un moteur et systeme de commande mettant en œuvre un tel procede - Google Patents

Procede de regulation d'un parametre de fonctionnement d'un moteur et systeme de commande mettant en œuvre un tel procede Download PDF

Info

Publication number
WO2011098708A1
WO2011098708A1 PCT/FR2011/050203 FR2011050203W WO2011098708A1 WO 2011098708 A1 WO2011098708 A1 WO 2011098708A1 FR 2011050203 W FR2011050203 W FR 2011050203W WO 2011098708 A1 WO2011098708 A1 WO 2011098708A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
stability
calculation
speed
engine speed
Prior art date
Application number
PCT/FR2011/050203
Other languages
English (en)
Inventor
Frédéric Gourves
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Priority to EP11708058.0A priority Critical patent/EP2534355B1/fr
Priority to CN201180008978.7A priority patent/CN102782296B/zh
Publication of WO2011098708A1 publication Critical patent/WO2011098708A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/28Control for reducing torsional vibrations, e.g. at acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness

Definitions

  • the invention relates to the field of controlling the stability in operation of combustion engines.
  • Spark ignition engines have, especially during their operation in partial load, a lower intake pressure at atmospheric pressure. This pressure below atmospheric pressure creates so-called pumping losses which lead to overconsumption of fuel, due to additional work imposed on the engine pistons during the intake phases.
  • camshaft phase shifters to adapt the crossing of the intake and exhaust valves.
  • the valve crossing is the particular result of an exhaust delay and an advance on admission. It has the effect of facilitating the aspiration of fresh gases with the flue gases which facilitates the filling of the cylinder.
  • the crossing has an effect on the stability of the engine. It is important in the context of the control of the operation of spark ignition combustion engines to be able to characterize their operating stability. In particular, imposing a too large crossover valves can greatly degrade the engine stability, which is detrimental to both the comfort of the motorist, the proper operation of the engine, and its lifetime. For optimum engine performance, the stability of the engine must be taken into account.
  • the crossing levels are calibrated so as to have a compromise between engine robustness and fuel consumption level. These settings are fixed in maps, which do not take into account the actual operation of the engine, and are therefore can precise, and do not achieve an optimal level of consumption, that is to say the weaker possible.
  • the invention there is provided a control method in which the stability of a combustion engine is more precisely characterized, in particular during the transient operating phases (phases of variation of the rotational speed of the engine ).
  • This method makes it possible to adapt the operating parameters of the engine having an influence on its stability such as the ignition advance or the richness, but is particularly advantageous for adapting the crossover valves and thus optimize fuel consumption.
  • transient engine More specifically, the invention relates to a method of regulating an operating parameter of an internal combustion engine, comprising the following steps:
  • the stability index is a function of the difference between the measured time derivative of the engine speed to the moment of calculation, and the estimated time derivative of the engine speed as a function of the engine torque and the inertia opposing the variation of its rotational speed. It is thus possible to regulate the parameters of the engine control having an influence on its stability, including the wealth, the ignition timing, and the crossing of the valves.
  • the setpoint supplied may be used to increase the exhaust temperature, reduce the engine's pollutant emissions or reduce fuel consumption.
  • the determination of an index representative of the combustion stability of the engine as a function of the difference between the time derivative of the engine speed measured and the time derivative of the estimated engine speed, that is to say such that it is expected that it is based in particular on the engine torque evaluated by the engine control system and the inertia opposing the variation of the rotational speed of the engine offers the advantage of allowing the obtaining a reliable index including in the transient engine operating phases.
  • the engine control set tends to optimize the crossing of the valves to reduce the fuel consumption of the engine while respecting the stability guideline.
  • the method according to the invention is particularly advantageous for regulating the crossing of the valves to reduce the engine consumption, especially in the operating phases of the engine at low and medium load.
  • the optimization of the valve crossover consists in applying the opening instructions of the intake and exhaust valve closing valves to minimize the fuel consumption, by maximizing the crossing period during which the intake and exhaust valves are simultaneously open, and positioning these openings and closures in the engine cycle as well as possible.
  • the method is applicable to the regulation of other parameters influencing the engine operating stability (ignition advance and richness), but this is not its preferential application, because there are other reliable and simpler methods for regulate: by construction of a stability index as known in the prior art for the stabilized phases, especially immediately after starting the engine, or by using specific probes during the transient phases.
  • a backup strategy is implemented in case of stability deviation greater than a predetermined threshold.
  • High engine instability can lead to engine failure.
  • a backup strategy helps to ensure the reliability of the engine.
  • Such a strategy consists in rapidly returning the engine to an operating point on which its stability is ensured, for example by applying a zero valve crossover, and conservative instructions for ignition advance and richness.
  • the process steps are repeated with each combustion in the engine.
  • a rapid regulation of the parameter in question is obtained, which makes it possible in particular to optimize this parameter by having at all times of the operation of the engine a stability index very close to the stability setpoint.
  • the method is implemented during phases of transient operation of the engine. It can also be used during stabilized operation phases.
  • the stability index is calculated by the formula
  • Is is the stability index
  • ⁇ ⁇ ⁇ 3 ⁇ 4Mewee is the measured time derivative of the dt
  • ⁇ TMTM ⁇ is the engine speed measured at the instant of the computation
  • T PMH is the time elapsed at the time of calculation since previous combustion.
  • This calculation method makes it possible to obtain a dimensionless index representative of the operating stability of the engine, including in its phases of transient operation.
  • Couple_Estime is the estimate of the torque of the motor at
  • T PMH is the time elapsed since previous combustion
  • J eq uivait is the translation in the form of a moment of inertia equivalent of the inertia opposing the variation of the motor rotation speed. It is therefore the inertia of the engine or the vehicle brought back to the motor shaft according to the engaged gear ratio. Taking into account the inertia of the vehicle brought back to the motor shaft makes it possible to use the stability indicator in transient and moving vehicle
  • the measured time derivative of the engine speed is determined by the formula: had) r ⁇ ⁇ ⁇ ⁇
  • the invention also relates to a control system of an internal combustion engine, implementing the method according to one of the preceding claims.
  • FIG. 1 is a general block diagram of the method according to the invention
  • FIG. 2 represents an exemplary control strategy implemented by the method according to the invention.
  • FIG. 3 represents a calculation module of the regulator of FIG. 1.
  • Figure 1 describes, using block diagrams, the implementation of the method according to the invention.
  • a supervisor 1 determines, for example according to the operating conditions of a motor 2, whether or not the method according to the invention is implemented.
  • the stability of the engine 2 is determined by a calculation function of a stability indicator 3, which gives as a result a stability indicator Is.
  • a calculator 4 supplies a stability setpoint Cs, for example by means of a map specific to the engine 2.
  • a comparator 5 calculates the difference between the two values Cs and Is, to output a signal Es, called deviation or stability error.
  • the stability deviation Es is then supplied to a regulator 6, in the example a P.I.D type regulator. (derivative integral proportional), but this can be of any other type (LQ, Hinfini, etc.).
  • the regulator then takes into account the stability deviation Es to calculate a valve crossing setpoint, that is to say in practice an OA inlet opening setpoint and a valve closing setpoint.
  • exhaust FE This setpoint is transmitted to the engine control member to be applied to the intake and exhaust phase shifters.
  • combustion stability indicator uses in the invention 3 main input data:
  • Stability is characterized in the invention by an index, a function of the difference between the derivative of the engine speed as measured (or more precisely, as calculated using engine speed measurements) with the estimated derivative. that the engine should have because of the engine torque at the time of calculation. This makes it possible to obtain a representative stability index even in the transient motor operating phases.
  • the measured time derivative of the regime is calculated by the following formula dt T PMH in which - ⁇ ⁇ ⁇ (rad / s) is the engine speed at the moment of calculation, instant corresponding to the instant of a combustion;
  • This calculation is preferably performed at each combustion of the engine.
  • the regime is measured also with each combustion.
  • the estimated time derivative of the regime is calculated by the following formula:
  • Torque_Estimate (Nm) is the estimate of the motor torque, given by the motor control system, and Jequivait (kg.m 2 ) is the translation in the form of a moment of inertia equivalent of the inertia opposing the variation the speed of rotation of the engine. This is the inertia of the engine or the vehicle brought back to the motor shaft according to the engaged gear ratio.
  • the estimation of the engine torque can be performed according to various more or less complex and precise models.
  • the motor control can use a model based on the following formula:
  • output indicates function of inlet pressure and speed
  • the stability index Is is calculated as follows:
  • This calculation can be averaged over several points in order to perform a low-pass filtering.
  • Figure 2 shows an example of the course of the engine control strategy implemented by the method according to the invention.
  • the engine control device involving a method according to the invention will calculate a crossover instruction of the distribution, according to a first index of stability calculated.
  • the regulation thus achieved will increase the crossing of the valves as long as the engine remains stable (relative to the stability set), and this, according to a variant of the invention, to a certain predetermined limit.
  • a backup strategy which may for example consist of adoption of a preset crossover of the predefined distribution and ensuring stability in a certain way, for example a zero crossing (request for rapid "uncrossing" of the engine), possibly accompanied by the adoption of advance control instructions at ignition and wealth
  • a backup strategy which may for example consist of adoption of a preset crossover of the predefined distribution and ensuring stability in a certain way, for example a zero crossing (request for rapid "uncrossing" of the engine), possibly accompanied by the adoption of advance control instructions at ignition and wealth
  • FIG. 3 shows the regulating function of the crossing of the valves implemented in the regulator 6.
  • This regulator 6 integrates a summing function F1 able to take into consideration the output signal of three other functions:
  • One or more of these functions are active according to the operating strategy determined by the supervisor 1.
  • a set of crossover valves in the form of instructions for controlling the opening of the intake valves and closing of the exhaust valves, at the output of the summation function F1, can be determined:
  • the summing function F1 takes into account only the output signal of the function for determining the basic setpoint F2
  • the F1 summation function it takes into account the output signal of the basic setpoint determination function F2 the signal of the setpoint correction function F3.
  • the summation function F1 takes into consideration the signals of the three functions for determining the basic setpoint F2, the setpoint correction F3, and the implementation of a backup strategy F4.
  • the invention thus proposes a method for changing the crossing level of the distribution of an engine according to its stability, to adopt a setting allowing the maximum consumption gains obtained by crossing. In other words, it is possible to enslave the crossing at a desired level of stability so as to limit the maximum consumption of the engine.
  • the invention can also be applied to the regulation of other parameters affecting the stability of the engine, such as the wealth or the ignition advance, aiming at obtaining a greater amount of power. available exhaust energy and / or reduction of polluting emissions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention porte sur procédé de régulation d'un paramètre de fonctionnement d'un moteur à combustion interne (2), comprenant les étapes suivantes: élaboration d'une consigne de stabilité (Cs), calcul d'un indice de stabilité moteur (Is), calcul de l'écart de stabilité (Es) égal à la différence entre la consigne de stabilité (Cs) et l'indice de stabilité (Is). Traitement de l'écart de stabilité (Es) par un régulateur (6) qui fournit une consigne de contrôle moteur (OA, FE), à appliquer au paramètre de fonctionnement du moteur (2), caractérisé en ce que l'indice de stabilité (Is) est une fonction de la différence entre la dérivée temporelle mesurée du régime moteur à l'instant du calcul, et la dérivée temporelle estimée du régime moteur en fonction du couple moteur et des l'inerties s'opposant à la variation de sa vitesse de rotation.

Description

PROCEDE DE REGULATION D'UN PARAMETRE DE
FONCTIONNEMENT D'UN MOTEUR ET SYSTEME DE COMMANDE
METTANT EN ŒUVRE UN TEL PROCEDE
[0001 ] La présente invention revendique la priorité de la demande française 1 050874 déposée le 9 février 201 0 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
[0002] L'invention porte sur le domaine du contrôle de la stabilité en fonctionnement des moteurs à combustion.
[0003] Les moteurs à combustion à allumage commandé présentent, notamment lors de leur fonctionnement en charge partielle, une pression à l'admission inférieure à la pression atmosphérique. Cette pression inférieure à la pression atmosphérique crée ce que l'on appelle des pertes par pompage qui entraînent une surconsommation de carburant, du fait d'un travail supplémentaire imposé aux pistons du moteur lors des phases d'admission.
[0004] Il est connu, dans les moteurs à allumage commandé, d'utiliser le « croisement » des soupapes, c'est-à-dire des périodes lors desquelles les soupapes d'admission et d'échappement sont simultanément ouvertes, pour diminuer la surconsommation liée aux pertes par pompage à faible charge et charge partielles.
[0005] Plus précisément, afin de limiter les pertes par pompage, il est possible d'utiliser des déphaseurs d'arbre à cames pour adapter le croisement des soupapes admission et échappement. Le croisement de soupapes est le résultat particulier d'un retard à l'échappement et d'une avance à l'admission. Il a pour effets de faciliter l'aspiration des gaz frais avec les gaz brûlés ce qui permet de faciliter le remplissage du cylindre.
[0006] Cependant le croisement a un effet sur la stabilité du moteur. Il est important dans le cadre du contrôle du fonctionnement des moteurs à combustion à allumage commandé de pouvoir en caractériser la stabilité de fonctionnement. En particulier, imposer un croisement des soupapes trop important peut dégrader fortement la stabilité moteur, ce qui est nuisible à la fois au confort de l'automobiliste, au bon fonctionnement du moteur, et à sa durée de vie. Pour un fonctionnement optimal du moteur, la stabilité de celui-ci doit donc être prise en compte. [0007] Actuellement dans les calculateurs des moteurs généralement utilisés en série, les niveaux de croisement sont calibrés de manière à avoir un compromis entre robustesse du moteur et niveau de consommation en carburant. Il s'agit de réglages figés dans des cartographies, qui ne prennent pas en considération le fonctionnement réel du moteur, et sont donc peut précis, et ne permettent pas d'atteindre un niveau de consommation optimal, c'est-à-dire le plus faible possible. [0008] Il est par ailleurs connu au travers de la demande de brevet français FR2909722 un procédé de régulation des paramètres de fonctionnement d'un moteur à combustion interne à injection, comprenant le calcul d'un indice représentatif de la stabilité d'un moteur et sa comparaison à une consigne, afin d'optimiser les paramètres régulés en se rapprochant de la consigne de stabilité. Les solutions proposées sont satisfaisantes pour le réglage des paramètres en régime stabilisé, mais, l'indice de stabilité tel qu'il est construit dans cette demande n'est que peu fiable lors du fonctionnement du moteur en transitoire.
[0009] Dans l'invention, il est proposé un procédé de régulation dans lequel on caractérise de manière plus précise la stabilité d'un moteur à combustion, notamment lors des phases de fonctionnement transitoires (phases de variation de la vitesse de rotation du moteur). Ce procédé permet d'adapter les paramètres de fonctionnement du moteur ayant une influence sur sa stabilité tel que l'avance à l'allumage ou la richesse, mais est particulièrement avantageux pour adapter le croisement des soupapes et donc d'optimiser la consommation du carburant du moteur en transitoire. [0010] Plus précisément, l'invention porte sur un procédé de régulation d'un paramètre de fonctionnement d'un moteur à combustion interne, comprenant les étapes suivantes :
- élaboration d'une consigne de stabilité,
- calcul d'un indice de stabilité moteur,
- calcul de l'écart de stabilité égal à la différence entre la consigne de stabilité et l'indice de stabilité.
- traitement de l'écart de stabilité par un régulateur qui fournit une consigne de contrôle moteur, à appliquer au paramètre de fonctionnement du moteur, dans lequel l'indice de stabilité est une fonction de la différence entre la dérivée temporelle mesurée du régime moteur à l'instant du calcul, et la dérivée temporelle estimée du régime moteur en fonction du couple moteur et des l'inerties s'opposant à la variation de sa vitesse de rotation. Il est ainsi possible de réguler les paramètres du contrôle moteur ayant une influence sur sa stabilité, notamment la richesse, l'avance à l'allumage, et le croisement des soupapes. La consigne fournie, peut, selon le paramètre régulé, viser à augmenter la température à l'échappement, à réduire les émissions polluantes du moteur, ou encore en réduire à la consommation de carburant. Dans l'invention, la détermination d'un indice représentatif de la stabilité de combustion du moteur fonction de la différence entre la dérivée temporelle du régime moteur mesuré et la dérivée temporelle du régime moteur estimée, c'est-à-dire telle qu'on s'attend à ce qu'elle soit en fonction notamment du couple moteur évalué par le système de contrôle moteur et des l'inerties s'opposant à la variation de la vitesse de rotation du moteur, offre l'avantage de permettre l'obtention d'un indice fiable y compris dans les phases de fonctionnement du moteur en transitoire.
[001 1 ] Dans une variante préférentielle de l'invention, la consigne de contrôle moteur tend à optimiser le croisement des soupapes pour diminuer la consommation en carburant du moteur tout en respectant la consigne de stabilité. En effet, le procédé selon l'invention est particulièrement avantageux pour réguler le croisement des soupapes afin de diminuer la consommation du moteur, notamment dans les phases de fonctionnement du moteur à faible et moyenne charge. En pratique, l'optimisation du croisement des soupapes consiste à appliquer les consignes d'ouverture des soupapes d'admission et de fermeture des soupapes d'échappement permettant de diminuer au maximum la consommation en carburant, en maximisant la période de croisement pendant laquelle les soupapes d'admission et d' échappement sont simultanément ouvertes, et en positionnant au mieux ces ouvertures et fermetures dans le cycle moteur. Le procédé est applicable à la régulation des autres paramètres influant sur la stabilité de fonctionnement du moteur (avance à l'allumage et richesse), mais cela ne constitue pas son application préférentielle, car il existe d'autres méthodes fiables et plus simples pour les réguler : par construction d'un indice de stabilité tel que connu dans l'art antérieur pour les phases stabilisées, notamment immédiatement après le démarrage du moteur, ou par utilisation de sondes spécifiques pendant les phases transitoires.
[0012] De préférence, on met en œuvre une stratégie de secours en cas d'écart de stabilité supérieur à un seuil prédéterminé. Une forte instabilité du moteur peut entraîner une défaillance du moteur. Une stratégie de secours permet d'assurer la fiabilité du moteur. Une telle stratégie consiste à ramener rapidement le moteur sur un point de fonctionnement sur lequel sa stabilité est assurée, par exemple en appliquant un croisement de soupape nul, et des consignes conservatives d'avance à l'allumage et de richesse. [0013] De préférence, les étapes du procédé sont répétées à chaque combustion dans le moteur. On obtient ainsi une régulation rapide du paramètre considéré, ce qui permet notamment d'optimiser ce paramètre en ayant à tout instant du fonctionnement du moteur un indice de stabilité très proche de la consigne de stabilité. [0014] De préférence, le procédé est mis en œuvre lors de phases de fonctionnement en transitoire du moteur. Il peut également être utilisé lors des phases de fonctionnement en stabilisé. C'est en effet dans les phases de fonctionnement en transitoire que le procédé développé dans l'invention revêt tout son intérêt. En effet, la prise en compte d'une fonction de la dérivée du régime moteur, traduisant l'évolution du régime moteur, permet la création d'un indice représentatif de la stabilité de fonctionnement du moteur, y compris pendant que son régime évolue, c'est-à-dire pendant son fonctionnement en phase transitoire.
De préférence, on calcule l'indice de stabilité par la formule
Figure imgf000006_0001
dans laquelle Is est l'indice de stabilité, <^<¾Mewee est la dérivée temporelle mesurée du dt
régime du moteur à l'instant du calcul, qui correspond à un instant où une combustion se produit dans un cylindre du moteur, ^ωτΗεοηζ1ίίε est |a dérivée temporelle estimée du régime dt
du moteur en fonction de son couple estimé à l'instant du calcul et des inerties s'opposant à la variation de sa vitesse de rotation, ω™™^ est le régime moteur mesuré à l'instant du calcul, et TPMH est la durée écoulée à l'instant du calcul depuis combustion précédente.
Ce mode de calcul permet l'obtention d'un indice adimensionnel représentatif de la stabilité de fonctionnement du moteur, y compris dans ses phases de fonctionnement en transitoire.
De préférence, la dérivée temporelle estimée du régime du moteur est calculée par la formule : dcoEstimée _ Couple _ Estime
^ ^équivalent dans laquelle Couple_Estime est l'estimation du couple du moteur à, TPMH est la durée écoulée depuis combustion précédente, et Jequivaient est la traduction sous forme d'un moment d'inertie équivalent des inerties s'opposant à la variation de la vitesse de rotation du moteur. Il s'agit donc de l'inertie du moteur ou du véhicule ramenée sur l'arbre moteur en fonction du rapport de boite engagé. Le fait de prendre en compte l'inertie du véhicule ramené sur l'arbre moteur permet d'utiliser l'indicateur de stabilité en transitoire et véhicule roulant
De préférence, la dérivée temporelle mesurée du régime du moteur est obtenue par la formule : dû) r ωΡΜΗ ωΡΜΗ
dt TPMH dans laquelle ωΡΜΗ η est le régime moteur à l'instant du calcul, ( ΡΜΗ η_γ le régime à l'instant de la combustion précédente. L'approximation de la dérivée temporelle du régime par l'étude de sa variation entre deux combustions offre une bonne précision, du fait d'un pas temporel faible et d'une étude entre deux combustions, qui sont les événements générateurs des variations de régime du moteur.
[0015] L'invention porte également sur un système de commande d'un moteur à combustion interne, mettant en œuvre le procédé selon l'une des revendications précédentes.
[0016] L'invention est décrite plus en détail ci-après et en référence aux figures représentant schématiquement l'invention dans son mode de réalisation préférentiel visant au réglage du croisement des soupapes en tant que paramètre influant sur la stabilité.
[0017] la figure 1 est un schéma-bloc général du procédé selon l'invention,
[0018] la figure 2 représente un exemple de stratégie de régulation mise en œuvre par le procédé selon l'invention, [0019] La figure 3 représente un module de calcul du régulateur de la figure 1
[0020] La figure 1 décrit, à l'aide de schémas blocs, la mise en œuvre du procédé selon l'invention. Un superviseur 1 détermine, par exemple selon les conditions de fonctionnement d'un moteur 2, si le procédé selon l'invention doit être ou non mis en œuvre. Dans le procédé selon l'invention, la stabilité du moteur 2 est déterminée par une fonction de calcul d'un indicateur de stabilité 3, qui fournit comme résultat un indicateur de stabilité Is. Un calculateur 4 fournit une consigne de stabilité Cs, par exemple par le biais d'une cartographie propre au moteur 2. Un comparateur 5, calcule la différence entre les deux valeurs Cs et Is, pour fournir en sortie un signal Es, appelé écart ou erreur de stabilité.
[0021 ] L'écart de stabilité Es est ensuite fourni à un régulateur 6, dans l'exemple un régulateur de type P.I.D. (proportionnel intégral dérivé), mais celui-ci peut être de tout autre type (LQ, Hinfini, etc.).
[0022] Le régulateur prend alors en compte l'écart de stabilité Es pour calculer une consigne de croisement des soupapes, c'est-à-dire en pratique une consigne d'ouverture de l'admission OA et une consigne de fermeture des soupapes d'échappement FE. Cette consigne est transmise à l'organe de commande du moteur pour être appliquée aux déphaseurs d'admission et d'échappement.
[0023] L'indicateur de stabilité doit permettre détecter rapidement et de manière fiable la qualité de combustion même en transitoire de régime.
[0024] Pour cela, l'indicateur de stabilité combustion utilise dans l'invention 3 données principales en entrée:
La mesure du régime moteur
L'estimation du couple moteur
- Le rapport de boîte engagé
[0025] La stabilité est caractérisée dans l'invention par un indice, fonction de la différence entre la dérivée du régime moteur telle que mesurée (ou plus précisément, telle que calculée à l'aide de mesures du régime moteur) à la dérivée estimée que le moteur devrait avoir du fait du couple moteur au moment du calcul. Cela permet l'obtention d'un indice de stabilité représentatif y compris dans les phases de fonctionnement du moteur en transitoire.
[0026] La dérivée temporelle mesurée du régime est calculée par la formule suivante dt TPMH dans laquelle - ωΡΜΗ η (rad/s) est le régime moteur à l'instant du calcul, instant correspondant à l'instant d'une combustion ;
- ωΡΜΗ η_γ (rad/s) le régime à l'instant de la combustion précédente ;
- TPMH (s) la durée écoulée depuis la combustion précédente (c'est-à-dire la durée entre la combustion se produisant à l'instant du calcul et la combustion précédente).
[0027] Ce calcul est préférentiellement réalisé à chaque combustion du moteur. Le régime est mesuré également à chaque combustion.
[0028] La dérivée temporelle estimée du régime est calculée par la formule suivante :
= Couple _ Estime
Figure imgf000009_0001
dans laquelle :
Couple_Estime (N.m) est l'estimation du couple du moteur, donnée par le système de contrôle moteur, et Jequivaient (kg.m2) est la traduction sous forme d'un moment d'inertie équivalent des inerties s'opposant à la variation de la vitesse de rotation du moteur. Il s'agit de l'inertie du moteur ou du véhicule ramenée sur l'arbre moteur en fonction du rapport de boite engagé.
[0029] L'estimation du couple moteur, donnée par le contrôle moteur, peut être réalisée selon divers modèles plus ou moins complexes et précis. Le contrôle moteur peut par exemple employer un modèle basé sur la formule suivante :
- CMF
Figure imgf000009_0002
Avec :
- ηθνθΐ β : rendement d'avance à l'allumage
- r|indiqué : rendement indique fonction de la pression d'admission et du régime
- Pci pouvoir calorifique inférieur Estimation du remplissage : estimation basée sur le régime, la pression admission, les angles d'ouverture des soupapes d'admission et de fermeture des soupapes d'échappement.
Pco : pouvoir comburivore
CMF : cartographie de frottement du moteur
[0030] Le moment d'inertie équivalent Jequivalent du véhicule ramené sur l'arbre primaire de boîte (et donc moteur ) peut quant à lui être calculé par la formule :
Masse _ Véhicule x RRoue χ (1 + ε)
^ équivalent ^moteur
Avec :
I moteur : inertie du moteur
- Rroue : rayon de roue
- Rbv : rapport de boite (fonction du rapport engagé) et de pont
- r|bv : rendement de boite (fonction du rapport engagé)
- ε inertie des pièces tournantes de la transmission (arbre primaire, secondaire, arbre de transmission, pignon). Ceci est fonction du rapport engagé.
[0031 ] L'indice de stabilité Is est calculé de la manière suivante :
Figure imgf000010_0001
[0032] Ce calcul peut être moyenné sur plusieurs points afin de réaliser un filtrage passe-bas.
[0033] La figure 2 montre un exemple de déroulement de la stratégie de contrôle du moteur, mise en œuvre grâce au procédé selon l'invention. On se place dans le cas où le moteur est stable immédiatement après le démarrage. Le dispositif de contrôle moteur mettant en jeu un procédé selon l'invention, va calculer une consigne de croisement de la distribution, en fonction d'un premier indice de stabilité calculé. La régulation ainsi réalisée va augmenter le croisement des soupapes tant que le moteur reste stable (par rapport à la consigne de stabilité), et ce, selon une variante de l'invention, dans une certaine limite prédéterminée.
[0034] En cas de forte instabilité du moteur (critère défini par exemple par un niveau seuil de l'erreur de stabilité Es), on applique dans la variante de l'invention ici représentée une stratégie de secours, pouvant par exemple consister en l'adoption d'une consigne de croisement de la distribution prédéfinie et assurant la stabilité de manière certaine, par exemple un croisement nul (demande de « décroisement » rapide du moteur), éventuellement accompagnée de l'adoption de consignes de pilotage de l'avance à l'allumage et de richesse [0035] Lorsque la mise en œuvre de la stratégie de secours a permis de retrouver un niveau de stabilité acceptable, le système applique de nouveau le procédé selon l'invention.
[0036] La figure 3 présente la fonction de régulation du croisement des soupapes mise en œuvre dans le régulateur 6. Ce régulateur 6 intègre une fonction de sommation F1 apte à prendre en considération le signal de sortie de trois autres fonctions :
Une fonction de détermination de la consigne de base F2 du croisement des soupapes ;
Une fonction de correction de la consigne F3, fonction de l'écart de stabilité Es;
Une fonction de mise en œuvre d'une stratégie de secours F4. [0037] Une ou plusieurs de ces fonctions sont actives selon la stratégie de fonctionnement déterminée par le superviseur 1 .
[0038] En fonction des ordres envoyés par le superviseur 1 , une consigne de croisement des soupapes (sous la forme de consignes de pilotage de l'ouverture des soupapes d'admission et de fermeture des soupapes d'échappement), en sortie de la fonction de sommation F1 , peut être déterminée :
par une simple boucle ouverte (cartographie en fonction de la température d'eau par exemple). Dans ce cas la fonction de sommation F1 ne prend en compte que le signal de sortie de la fonction de détermination de la consigne de base F2
par une boucle ouverte et une régulation de type PID par exemple, qui détermine une correction en fonction de l'erreur de stabilité. Dans ce cas la fonction de sommation F1 prend en compte le signal de sortie de la fonction de détermination de la consigne de base F2 le signal de la fonction de correction de la consigne F3.
par une stratégie de secours, qui peut consister par exemple en un incrément ou un décrément important sur la boucle ouverte. Dans ce cas, la fonction de sommation F1 prend en considération les signaux des trois fonctions de détermination de la consigne de base F2, de correction de la consigne F3, de mise en œuvre d'une stratégie de secours F4.
[0039] L'invention propose ainsi un procédé permettant de faire évoluer le niveau de croisement de la distribution d'un moteur en fonction de sa stabilité, afin d'adopter un réglage permettant les gains de consommations maximaux obtenus par le croisement. En d'autres termes, il est possible d'asservir le croisement à un niveau de stabilité souhaité de sorte limiter au maximum la consommation du moteur.
[0040] L'invention peut également être appliquée à la régulation d'autres paramètres influant sur la stabilité du moteur, tel que la richesse ou l'avance à l'allumage, en visant l'obtention d'une plus grande quantité d'énergie disponible à l'échappement et/ou la réduction des émissions polluantes.

Claims

Revendications
1 . Procédé de régulation d'un paramètre de fonctionnement d'un moteur à combustion interne (2), comprenant les étapes suivantes :
- élaboration d'une consigne de stabilité (Cs), - calcul d'un indice de stabilité moteur (Is),
- calcul de l'écart de stabilité (Es) égal à la différence entre la consigne de stabilité (Cs) et l'indice de stabilité (Is).
- traitement de l'écart de stabilité (Es) par un régulateur (6) qui fournit une consigne de contrôle moteur (OA, FE), à appliquer au paramètre de fonctionnement du moteur (2), caractérisé en ce que l'indice de stabilité (Is) est une fonction de la différence entre la dérivée temporelle mesurée du régime moteur à l'instant du calcul, et la dérivée temporelle estimée du régime moteur en fonction du couple moteur et des l'inerties s'opposant à la variation de sa vitesse de rotation.
2. Procédé selon la revendication 1 , caractérisé en ce que la consigne de contrôle moteur tend optimiser le croisement des soupapes pour diminuer la consommation en carburant du moteur tout en respectant la consigne de stabilité (Cs).
3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on met en œuvre une stratégie de secours en cas d'écart de stabilité (Es) supérieur à un seuil prédéterminé.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les étapes du procédé sont répétées à chaque combustion dans le moteur (2).
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est mis en œuvre lors de phases de fonctionnement en transitoire du moteur (2).
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on calcule l'indice de stabilité (Is) par la formule :
Figure imgf000014_0001
dans laquelle ls est l'indice de stabilité, — Memree est la dérivée temporelle mesurée du dt
régime du moteur à l'instant du calcul, qui correspond à un instant où une combustion se do)F . ,
produit dans un cylindre du moteur,— est |a dérivée temporelle estimée du régime dt
du moteur en fonction de son couple estimé à l'instant du calcul et des l'inerties s'opposant à la variation de sa vitesse de rotation, ω™™^ est le régime moteur mesuré à l'instant du calcul, et TPMH est la durée écoulée à l'instant du calcul depuis combustion précédente.
7. Procédé selon la revendication 6, caractérisé en ce que la dérivée temporelle estimée du régime du moteur est calculée par la formule : d0)Estimée _ Couple _ Estime
Figure imgf000014_0002
dans laquelle Couple_Estime est l'estimation du couple du moteur, et Jequivaient est la traduction sous forme d'un moment d'inertie équivalent des inerties s'opposant à la variation de la vitesse de rotation du moteur.
8. Procédé selon la revendication 6 ou la revendication 7, caractérisé en ce que la dérivée temporelle mesurée du régime du moteur est obtenue par la formule :
Figure imgf000014_0003
dt dans laquelle )PMH n est le régime moteur à l'instant du calcul, ωΡΜΗ _n_ le régime à l'instant de la combustion précédente, et TPMH est la durée écoulée depuis combustion précédente.
9. Système de commande d'un moteur à combustion interne, mettant en œuvre le procédé selon l'une des revendications précédentes.
PCT/FR2011/050203 2010-02-09 2011-02-02 Procede de regulation d'un parametre de fonctionnement d'un moteur et systeme de commande mettant en œuvre un tel procede WO2011098708A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11708058.0A EP2534355B1 (fr) 2010-02-09 2011-02-02 Procede de regulation d'un parametre de fonctionnement d'un moteur et systeme de commande mettant en oeuvre un tel procede
CN201180008978.7A CN102782296B (zh) 2010-02-09 2011-02-02 发动机运行参数的调节方法和实施所述方法的控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1050874 2010-02-09
FR1050874A FR2956161B1 (fr) 2010-02-09 2010-02-09 Procede de regulation d'un parametre de fonctionnement d'un moteur et systeme de commande mettant en oeuvre un tel procede

Publications (1)

Publication Number Publication Date
WO2011098708A1 true WO2011098708A1 (fr) 2011-08-18

Family

ID=42735554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050203 WO2011098708A1 (fr) 2010-02-09 2011-02-02 Procede de regulation d'un parametre de fonctionnement d'un moteur et systeme de commande mettant en œuvre un tel procede

Country Status (4)

Country Link
EP (1) EP2534355B1 (fr)
CN (1) CN102782296B (fr)
FR (1) FR2956161B1 (fr)
WO (1) WO2011098708A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1050874A (fr) 1952-02-15 1954-01-12 Appareil protecteur pour dégauchisseuse à bois et matières similaires
FR2844004A1 (fr) * 2002-09-03 2004-03-05 Toyota Motor Co Ltd Dispositif d'estimation d'etat de combustion pour moteur a combustion interne
DE102005014920A1 (de) * 2005-04-01 2006-04-13 Audi Ag Verfahren zur zylinderindividuellen Einstellung von Einspritzzeiten einer Verbrennungskraftmaschine
EP1744043A1 (fr) * 2005-07-14 2007-01-17 Ford Global Technologies, LLC Procédé de surveillance de stabilité de combustion d'un moteur à combustion interne
DE102006026640A1 (de) * 2006-06-08 2007-12-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
FR2909722A1 (fr) 2006-12-08 2008-06-13 Peugeot Citroen Automobiles Sa Procede et systeme de regulation des parametres de fonctionnement d'un moteur thermique a injection reduisant les emissions polluantes
DE102007047870A1 (de) * 2006-12-01 2008-07-24 Denso Corp., Kariya Varibale Ventilzeitensteuerungseinrichtung einer Brennkraftmaschine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1050874A (fr) 1952-02-15 1954-01-12 Appareil protecteur pour dégauchisseuse à bois et matières similaires
FR2844004A1 (fr) * 2002-09-03 2004-03-05 Toyota Motor Co Ltd Dispositif d'estimation d'etat de combustion pour moteur a combustion interne
DE102005014920A1 (de) * 2005-04-01 2006-04-13 Audi Ag Verfahren zur zylinderindividuellen Einstellung von Einspritzzeiten einer Verbrennungskraftmaschine
EP1744043A1 (fr) * 2005-07-14 2007-01-17 Ford Global Technologies, LLC Procédé de surveillance de stabilité de combustion d'un moteur à combustion interne
DE102006026640A1 (de) * 2006-06-08 2007-12-13 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102007047870A1 (de) * 2006-12-01 2008-07-24 Denso Corp., Kariya Varibale Ventilzeitensteuerungseinrichtung einer Brennkraftmaschine
FR2909722A1 (fr) 2006-12-08 2008-06-13 Peugeot Citroen Automobiles Sa Procede et systeme de regulation des parametres de fonctionnement d'un moteur thermique a injection reduisant les emissions polluantes

Also Published As

Publication number Publication date
FR2956161B1 (fr) 2012-02-03
CN102782296B (zh) 2015-07-29
CN102782296A (zh) 2012-11-14
FR2956161A1 (fr) 2011-08-12
EP2534355A1 (fr) 2012-12-19
EP2534355B1 (fr) 2013-12-11

Similar Documents

Publication Publication Date Title
EP3850202B1 (fr) Procédé de commande d&#39;une turbomachine comportant un moteur électrique
EP3314337B1 (fr) Procédé de commande d&#39;un facteur d&#39;équivalence énergétique pour un véhicule automobile hybride
EP2864616B1 (fr) Procédé d&#39;ajustement d&#39;une valeur de consigne d&#39;un paramètre influençant une poussée d&#39;un moteur à turbine à gaz
CA2950347A1 (fr) Procede et dispositif de controle d&#39;une poussee d&#39;un turboreacteur
FR2934323A1 (fr) Procede de gestion d&#39;un circuit de circulation de gaz d&#39;echappement d&#39;un moteur thermique a essence et systeme de recirculation correspondant
CA2877210C (fr) Procede et dispositif d&#39;ajustement d&#39;une valeur seuil de debit carburant
EP3201443B1 (fr) Moteur à combustion de véhicule automobile à pilotage de richesse amélioré
FR3034468A1 (fr) Procede de demarrage automatique d’un moteur a combustion interne a allumage commande
EP2089623B1 (fr) Procede et systeme de regulation des parametres de fonctionnement d&#39;un moteur thermique a injection reduisant les emissions polluantes
EP2534355B1 (fr) Procede de regulation d&#39;un parametre de fonctionnement d&#39;un moteur et systeme de commande mettant en oeuvre un tel procede
FR3000854A1 (fr) Systeme et procede correspondant de commande de la vitesse de rotation d&#39;un moteur electrique d&#39;un vehicule automobile
EP1950396A1 (fr) Procédé et système de limitation de la température à l&#39;échappement d&#39;un moteur diesel
EP1760295B1 (fr) Système de contrôle du fonctionnement d&#39;un moteur diesel de véhicule automobile équipe de moyens de recirculation de gaz d&#39;échappement
EP2761153B1 (fr) Commande d&#39;injection de carburant au démarrage d&#39;un moteur thermique
EP3729206B1 (fr) Procede de reglage d&#39;un correcteur avec ponderation de consigne
FR3035450A1 (fr) Procede et dispositif de surveillance des quantites de carburant injectees dans un moteur a combustion interne
WO2023242088A1 (fr) Système et procédé de détermination d&#39;une grandeur dans un véhicule automobile
EP3808959A1 (fr) Procédé de contrôle de la suralimentation en air d&#39;un moteur à combustion
FR2971817A1 (fr) Dispositif et procede d&#39;injection privilegiee
FR2934642A1 (fr) Procede et systeme de correction du temps mort d&#39;injecteurs pour un moteur a combustion interne
FR2997995A1 (fr) Procede de commande de pompe a huile a dilution reduite
WO2020083922A1 (fr) Procédé et système de contrôle d&#39;un régime moteur de véhicule
FR3025837A1 (fr) Gestion du demarrage d&#39;un moteur a combustion interne a essence a injection indirecte de vehicule automobile.
WO2014033414A1 (fr) Commande d&#39;un moteur thermique utilisant un indice de qualité de démarrage du moteur thermique
EP2807353A1 (fr) Procédé de protection thermique des composants de la ligne d&#39;échappement d&#39;un moteur thermique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008978.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11708058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011708058

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE