WO2011096835A1 - Устройство для анализа люминесцирующих биологических микрочипов - Google Patents

Устройство для анализа люминесцирующих биологических микрочипов Download PDF

Info

Publication number
WO2011096835A1
WO2011096835A1 PCT/RU2010/000040 RU2010000040W WO2011096835A1 WO 2011096835 A1 WO2011096835 A1 WO 2011096835A1 RU 2010000040 W RU2010000040 W RU 2010000040W WO 2011096835 A1 WO2011096835 A1 WO 2011096835A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
holder
filter
laser
lasers
Prior art date
Application number
PCT/RU2010/000040
Other languages
English (en)
French (fr)
Inventor
Виктор Евгеньевич БАРСКИЙ
Егор Евгеньевич ЕГОРОВ
Александр Сергеевич ЗАСЕДАТЕЛЕВ
Original Assignee
УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ МОЛЕКУЛЯРНОЙ БИОЛОГИИ им. В. А. ЭНГЕЛЬГАРДТА РАН (ИМБ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ МОЛЕКУЛЯРНОЙ БИОЛОГИИ им. В. А. ЭНГЕЛЬГАРДТА РАН (ИМБ РАН) filed Critical УЧРЕЖДЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ИНСТИТУТ МОЛЕКУЛЯРНОЙ БИОЛОГИИ им. В. А. ЭНГЕЛЬГАРДТА РАН (ИМБ РАН)
Priority to PCT/RU2010/000040 priority Critical patent/WO2011096835A1/ru
Priority to RU2011127411/04A priority patent/RU2510959C2/ru
Priority to EP10845340.8A priority patent/EP2533033A4/en
Publication of WO2011096835A1 publication Critical patent/WO2011096835A1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6419Excitation at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/0826Fibre array at source, distributing

Abstract

Устройство для анализа люминесцирующих биологических микрочипов содержит держатель (1) образца (2), средство (3) его освещения, оптическую систему с фильтром (6) для выделения света люминесценции образца и средство (7) фиксации изображения образца. Средство (3) освещения образца включает в себя лазерные источники (16, 17 и 18) возбуждения флуоресцентного излучения и волоконно-оптическую систему распределения излучения лазеров. Согласно изобретению оптическая система содержит два объектива (4 и 5), направленных навстречу друг другу, а держатель (1) объекта выполнен с возможностью позиционирования анализируемого образца по его поверхности, обращенной в сторону оптической системы, при этом лазерные источники (16, 17 и 18) возбуждения флуоресцентного излучения включают в себя по меньшей мере два лазера (16, 18) с разными длинами волн, а фильтр (6) выполнен многополосным.

Description

УСТРОЙСТВО ДЛЯ АНАЛИЗА ЛЮМИНЕСЦИРУЮЩИХ
БИОЛОГИЧЕСКИХ МИКРОЧИПОВ
Область техники
Изобретение относится к устройствам для анализа люминесцирующих биологических микрочипов, в частности, для серийного анализа однотипных биологических микрочипов в свете их люминесценции с выводом изображения на цифровую камеру с последующей обработкой изображения с помощью компьютерной программы.
Предшествующий уровень техники
Для получения изображения люминесцирующих объектов, в частности люминесцирующих биологических микрочипов (далее - биочипов), используют два типа приборов. В одном из них изображение получают путем сканирования объекта тонким лучом либо светящейся щелью, возбуждая люминесценцию малого участка освещаемого объекта. Затем полное изображение объекта воссоздается с помощью компьютерной обработки индивидуальных сигналов. Такой тип приборов назьшается конфокальным люминесцентным микроскопом или при анализе больших поверхностей - сканатором. Один из примеров выполнения устройств такого типа представлен в US 6329661 В1.
В других типах приборов возбуждение люминесценции объекта производят, освещая сразу весь объект, а люминесцентное изображение объекта получают, строя это изображение на матрице цифровой камеры. Такой тип приборов называется широкопольным люминесцентным анализатором (ШЛА).
При любом сканировании объекта производится воссоздание изображения из множества индивидуальных измерений. Достоинством сканаторов является их более высокая чувствительность по сравнению с ШЛА. В основном это связано с тем, что при сканировании лучом в каждый данный момент освещается и, соответственно, измеряется люминесценция лишь малой части объекта, поэтому уровень фона, возникающий из-за рассеяния возбуждающего луча существенно меньше, вследствие чего уменьшается влияние свечения соседних участков. Однако недостатком сканаторов, связанным с их чувствительностью, является существенно более длительное время анализа, объект сканируется либо по точкам, либо узкой щелью. Кроме того, в сканаторах обязательно использование движущихся механических элементов, то есть необходимо наличие моторов, приводов, прецизионных скользящих поверхностей и т.д., сопряженных с системой съема сигналов, что, безусловно, увеличивает стоимость прибора и уменьшает его ресурс.
При сравнении абсолютной чувствительности обнаружения ячеек с определенным количеством флуорохрома с помощью коммерческих сканаторов (например, фирмы Packard Instruments) и с помощью анализаторов биочипов, работающих по принципу ШЛА, установлено, что анализаторы биочипов по чувствительности примерно в 3-5 раз уступают сканаторам. Разница в чувствительности приборов, работающих на принципах сканатора или ШЛА, может быть существенна при работе с очень слабыми сигналами, например, с очень слабо люминесцирующими объектами. Такими объектами могут быть, например, экспрессионные биочипы. Однако эта разница в чувствительности не существенна при работе с более сильно люминесцирующими объектами, например, с гибридизационными трехмерными биочипами, поскольку в этом случае сигналы достаточно велики, и эффективность работы прибора не определяется его абсолютной чувствительностью.
При практическом использовании биочипов преимуществом ШЛА является быстрота получения результата, что позволяет проводить сотни измерений за одну рабочую смену. Это является актуальной задачей, например, при анализе с помощью биочипов больших групп населения (групп риска) или идентификации ДНК возбудителя туберкулеза у больных в туберкулезном диспансере.
Известно устройство для анализа люминесцирующих биологических микрочипов, описанное в US6620623, работающее по принципу ШЛА. Это устройство содержит держатель объекта, средство его освещения, включающее в себя лазерные источники возбуждения флуоресцентного излучения и волоконно- оптическую систему распределения излучения лазеров, оптическую систему с фильтром для вьщеления света люминесценции образца и средство фиксации изображения образца на приемнике информации в виде ПЗС камеры. Свет от источника возбуждающего излучения с помощью оптических волокон, расположенных в виде веера, подводится к торцам стеклянной подложки и распространяется в толще этой подложки, отражаясь от границы стекла с воздухом вследствие разницы в коэффициентах преломления воздуха и стекла согласно закону полного внутреннего отражения. В местах, где на поверхности стекла имеются какие-либо объекты, имеющие показатель преломления более высокий, чем показатель преломления воздуха, свет выходит из стекла и возбуждает люминесценцию, красителя, содержащегося в указанных объектах. Оптическая схема прибора собирает изображение поверхности стекла в свете люминесценции и направляет это изображение на матрицу ПЗС камеры.
Однако данное устройство работает только с чипами, расположенными на прозрачной (стеклянной) подложке, и не может работать с чипами, расположенными на непрозрачной подложке. Это очень сильно ограничивает область применения прибора, поскольку многие фирмы выпускают чипы, расположенные на непрозрачной подложке. Вторым недостатком прибора является тот факт, что поскольку свет от источника излучения распространяется по всем стеклу, освещается очень большая площадь (для предметного стекла 18,75 см ). В то же время диагностический чип часто занимает площадь менее 1 см2 (например, стандартные диагностические чипы, выпускаемые фирмой Aconni, занимают площадь 20 - 50 мм2, то есть в примерно в 50-100 раз меньше). Это приводит к излишнему расходу энергии.
При использовании данной системы возбуждения люминесценции освещаются все объекты, находящиеся на поверхности стекла. Это неизбежно приводит к увеличению уровня фона и, как следствие, к уменьшению чувствительности данного устройства. Кроме того, использование стекла в качестве подложки имеет ряд недостатков. Стекло является хрупким материалом и может раскалываться, при этом могут пораниться руки оператора. Обычное стекло имеет неоднородности структуры, что приводит к большому количеству брака. При массовых анализах применение химически обработанного стекла в качестве подложки существенно удорожает стоимость изготавливаемых биочипов.
Задачей изобретения является создание устройства для анализа люминесцирующих биологических микрочипов, позволяющего проводит серийный анализ большого количества однотипных биологических микрочипов с достаточной чувствительностью без перенастройки оптической системы и обладающего высокой надежностью при уменьшенных по сравнению с известными устройствами энергозатратах и габаритах. Кроме того, данное устройство должно обеспечивать возможность работы с использованием подложек, . материал которых отличен от стекла, например с подложками из металла или нефлуоресцирующего пластика. Раскрытие изобретения
Указанная задача решена за счет того, что в устройстве для анализа люминесцирующих биологических микрочипов, содержащем держатель объекта, средство его освещения, включающее в себя лазерные источники возбуждения флуоресцентного излучения и волоконно-оптическую систему распределения излучения лазеров, оптическую систему с фильтром для выделения света люминесценции образца и устройство фиксации изображения образца, согласно изобретению, оптическая система содержит два объектива, направленных навстречу друг другу, а держатель объекта содержит опорную плоскость, расположенную в фокальной плоскости объектива, ближайшего к держателю объекта, при этом лазерные источники возбуждения флуоресцентного излучения включают в себя по меньшей мере два лазера с разными длинами волн, а фильтр выполнен многополосным.
Схема с двумя объективами, расположенными навстречу друг другу, обладает следующими достоинствами:
1. Позволяет полностью использовать апертуру объектива (при использовании одного объектива угол, под которым собирается излучение объекта, уменьшается не менее чем в два раза, а мощность собираемого излучения - не менее чем в четыре раза).
2. Объективы, в частности фотографические, дают минимальную дисторсию и виньетирование при малых полях зрения, определяемых размерами биочипа.
3. При необходимости перейти к другому увеличению один объектив просто заменяется другим с другим фокусным расстоянием без изменения конструкции всего устройства.
4. Стандартные фотообъективы чаще всего планапохроматичны. При работе в видимой области спектра фокусировка практически не меняется при смене длины волны. Многополосный фильтр может быть расположен как между средством фиксации изображения и ближайшим к нему объективом, так и между объективами. Преимущественно фильтр выполнен интерференционным.
Предпочтительно устройство фиксации изображения содержит ПЗС или КМОП матрицу.
Преимущественно средство освещения объекта содержит кольцевую опору, в которой равномерно по ее окружности расположены концы волокон волоконно-оптической системы распределения излучения лазеров, ориентированные под острым углом к оси этой кольцевой опоры. Кольцевая опора может быть установлена на оправе объектива, ближайшего к держателю объекта.
Волоконно-оптическая система может содержать несколько пучков волокон, так что каждому лазеру соответствует один пучок волокон, при этом каждый пучок разделен со стороны объекта на отдельные волокна, так что концы волокон от разных лазеров расположены по окружности кольцевой опоры с чередованием и направлены в сторону анализируемого объекта, когда он установлен в держатель.
Предпочтительно лазерные источники возбуждения флуоресцентного излучения включают в себя три лазера, причем либо два из них имеют одинаковую длину волны, либо все лазеры имеют разные длины волн.
Преимущественно объективы выполнены одинаковыми. При использовании двух одинаковых объективов, ' направленных навстречу друг другу, хроматические и сферические аберрации не усиливаются, а компенсируют друг друга.
Кроме того, держатель объекта может содержать три взаимно перпендикулярные опорные плоскости и три упругих элемента для прижатия образца к этим плоскостям.
Краткое описание чертежей
На фиг. 1 схематично показано устройство для анализа люминесцирующих биологических микрочипов в соответствии с настоящим изобретением, вид сбоку частичным разрезом;
на фиг. 2 схематично показан держатель образца, вид сверху;
на фиг. 3 схематично показано сечение по А-А на фиг. 1. Вариант осуществления изобретения
Как показано на фиг. 1, устройство для анализа люминесцирующих биологических микрочипов согласно изобретению содержит держатель 1 образца 2, средство его освещения 3, оптическую систему, включающую в себя два объектива 4, 5 и двухполосный фильтр 6, и устройство 7 фиксации изображения образца. В дальнейшем под образцом 2 понимается люминесцирующий биологический микрочип 8 (биочип), расположенный на подложке 9.
Держатель 1 образца 2 предназначен для точного позиционирования образца в устройстве. Поскольку в образце 2 биочип расположен на верхней поверхности подложки, которая может иметь различную толщину, необходимо для каждой подложки обеспечить попадание биочипа в фокус оптической системы.
Для этого держатель 1 образца 2 (фиг. 2) содержит три взаимно перпендикулярные опорные плоскости: плоскость 10 (фиг. 1), лежащую в фокальной плоскости объектива 4, ближайшего к держателю 1, и две другие плоскости 11 и 12. Кроме того, держатель 1 содержит три упругих элемента 13, 14 (фиг. 1) и 15 (фиг. 2) для прижатия образца к этим плоскостям, причем одна из опорных плоскостей расположена в фокальной плоскости объектива, ближайшего к держателю объекта. Такое вьшолнение держателя 1 позволяет обеспечить позиционирование образца по трем измерениям таким образом, что образец устанавливается в одно и то же положение и вынимается простым движением руки, не требуя дополнительных регулировок по высоте. При этом значительно сокращается время на установку и снятие образца. При реализации такой схемы позиционирования образца объектив всегда фокусировался на плоскости верхней поверхности биочипа, и местоположение ячеек биочипа в поле зрения объектива воспроизводилось с точностью не хуже ± 20 мкм.
Средство 3 освещения образца включает в себя лазерные источники возбуждения флуоресцентного излучения 16, 17 и 18 (далее - лазеры 16, 17 и 18) и волоконно-оптическую систему распределения излучения лазеров.
При использовании для освещения лазеров диаметр исходящего от них пучка света необходимо значительно увеличить. Следует учесть, что в поперечном сечении пучок света лазера сильно неоднороден. В нем имеется характерное для каждого лазера поперечное распределение яркости, т.е. в реальных лазерных пучках яркость в поперечном направлении имеет сильно неоднородный характер, что обусловлено целым рядом естественных причин. В связи с этим одной из основных задач, решаемых устройством согласно изобретению, является достижение максимально равномерной освещенности разных участков биочипа.
Установлено, что наилучшим является освещение объекта с помощью кольцевого оптоволоконного осветителя.
В соответствии с этим средство 4 освещения объекта в соответствии с настоящим изобретением включает в себя лазеры 16, 17 и 18, волоконно- оптическую систему распределения излучения лазеров и кольцевую опору 19.
Волоконно-оптическая система содержит несколько пучков 20 - 22 волокон, так что каждому лазеру 16 - 18 соответствует один пучок 20 - 22 волокон, соответственно.
Как схематично показано на фиг. 3, торцы пучков 20 - 22 волокон освещаются лазерами 16 - 18. Каждый пучок 20 - 22 волокон раздвоен, причем раздвоенные концы волокон от разных лазеров расположены по окружности кольцевой опоры 19 с чередованием и ориентированы в сторону анализируемого образца 2, когда он установлен в держатель 1.
Хотя на фиг. 3 показано, что концы пучков волокон со стороны, идущей к объекту, раздвоены, однако преимущественно каждый пучок волокон разбивают на несколько, например, на 8 ветвей и вставляют в кольцевую опору 19 с 24-мя отверстиями, соответственно, через каждые 15°, через которые идет освещение объекта со всех сторон под углом к объекту и к оптической оси устройства. Таким образом, на объект направлены 24 ветви оптических волокон, по 8 от каждого лазера. Кольцевая опора 19 устанавливается горизонтально на оправе (условно не показана) нижнего объектива 4 таким образом, что все ветви световодов освещают биочип 8, расположенный в фокальной плоскости объектива 4.
Кольцевая опора 19 преимущественно выполняется из металла и состоит из нескольких стыкуемых при сборке частей (условно не показано) с предварительно выполненными в них соответствующими отверстиями и каналами, в которых располагаются волокна. В устройстве преимущественно используются две длины волны: через два пучка волокон идет освещение двумя лазерами 16 и 17 с длиной волны 655 нм, а через одно волокно - лазером 18 с длиной волны 532 нм.
В качестве красителей в биочипе используются флуорохромы СуЗ (возбуждение в районе 530 нм, излучение 540 нм) и Су5 (возбуждение в районе 640 нм, излучение в районе 660 нм).
Для СуЗ оптимальными являются твердотельные лазеры с длиной волны 532 нм, например, лазеры PGL-FS-532nm-20mW CW компании Changchun New Industries Optoelectronics Tech.Co.,Ltd. (http ://www.cnilaser. com) .
Для Cy5 оптимальными являются лазеры с длиной волны 655 нм, например, VM65014 компании Midwest Laser Products, США.
При необходимости анализа при еще одной длине волны (например, с использованием более длинноволнового красителя типа Су7) можно задействовать для третьей длины волны одну из двух ветвей, используемую для красного цвета.
Как указано выше, оптическая система содержит два объектива, направленных навстречу друг другу, и двухполосный интерференционный фильтр 6 (при использовании лазеров 16 - 18 с двумя длинами волн использовали фильтр XF3066 фирмы Omega Opticals USA). Нижний объектив 4 собирает излучение биочипа и направляет его на верхний объектив 5, который, в свою очередь, строит изображение биочипа на поверхности ПЗС или КМОП матрицы 23 устройства 7 фиксации изображения образца, выполненного в виде цифровой камеры.
Теоретически, изображение объекта на матрицу камеры может проектироваться любой оптической системой, поскольку для определения яркости свечения отдельных ячеек компьютерная программа анализа изображения не нуждается в высококачественном регулярном расположении ячеек. Более того, даже качество изображения может быть не очень хорошим, допустимы дисторсии и виньетирование. Все эти искажения можно убрать с помощью компьютерной обработки, однако при этом существенно уменьшается динамический диапазон обработанных сигналов изображения, что сужает область применения устройства, к" тому же пользователь зачастую хочет увидеть хорошее изображение биочипа, а это может ему дать только достаточно хорошая оптика. 0
9
Оптимальной для получения качественного неискаженного изображения биочипа является схема с двумя одинаковыми объективами 4 и 5, направленными навстречу друг другу. В качестве примера могут использоваться два фотографических объектива с фокусными расстояниями 50 мм, например, Nikkor 50/1,4. Объект (биочип) расположен в задней фокальной плоскости первого объектива 4 (как бы на месте матрицы в цифровом фотоаппарате). Этот объектив 4 собирает изображение биочипа в свете его люминесценции и посылает его параллельным пучком. Второй объектив 5 установлен навстречу первому, расстояние между ними не существенно, поскольку лучи, выходящие из первого объектива, идут параллельно. Второй объектив 5 собирает все лучи после первого объектива 4 и строит изображение в своей задней фокальной плоскости. В этой плоскости стоит матрица 23 цифровой камеры средства 7 фиксации изображения образца. Если объективы одинаковы, то изображение проецируется на матрицу камеры в масштабе 1:1. Величина поля при этом соответствует- размеру матрицы. При изменении размеров матрицы автоматически меняется размер поля. Если объективы 4 и 5 не одинаковы (имеют разное фокусное расстояние), то на матрице камеры фокусируется изображение с увеличением или уменьшением, соответствующим соотношению фокусных расстояний объективов.
Как указано выше, схема с двумя фотообъективами, расположенными навстречу друг другу, обладает следующими преимуществами.
1. Позволяет полностью использовать апертуру объектива.
2. Объективы, в частности фотографические, дают минимальную дисторсию и виньетирование при малых полях зрения, определяемых размерами матрицы цифровой камеры.
3. При необходимости перейти к другому увеличению один объектив просто заменяется другим с другим фокусным расстоянием без изменения конструкции всего устройства.
4. Стандартные фотообъективы чаще всего планапохроматичны. При работе в видимой и далекой красной областях спектра фокусировка практически не меняется при смене длины волны.
5. Хроматические и сферические аберрации при использовании двух одинаковых объективов не усиливаются, а компенсируют друг друга. Объективы с меньшим фокусным расстоянием требуют меньшего расстояния до объекта, что конструктивно неудобно для создания равномерного освещения. Объективы с увеличенным фокусным расстоянием увеличивают размер устройства.
Поскольку освещение биочипов и возбуждение их люминесценции производится с помощью лазеров, имеющих очень узкий спектральный диапазон эмиссии, применение возбуждающих фильтров не требуется. Нужны лишь запирающие фильтры, отсекающие возбуждающий свет и расположенные между объектом и матрицей цифровой камеры. Теоретически, интерференционные фильтры полагается ставить в параллельном свете, т.е. между объективами, однако при этом их диаметр должен быть достаточно большим, чтобы перекрыть всю апертуру объектива. Установлено, что интерференционные фильтры 6 можно устанавливать непосредственно перед ПЗС или КМОП матрицей камеры без существенного ухудшения измеряемого соотношения сигнал/фон.
Тем не менее, как вариант, фильтр 6' (показан пунктирными линиями на фиг. 1) может быть установлен и между объективами 4 и 5.
В описываемом примере осуществления изобретения интерференционный фильтр 6 (6') выполнен двухполосным (для длин волн 532 нм и 655 нм), однако при необходимости анализа при еще одной длине волны (например, с использованием более длинноволнового красителя типа Су 7) фильтр 6 (6') может быть выполнен трехполосным.
В устройстве согласно настоящему изобретению могут быть использованы, например, двухполосные фильтры XF 3066, фирмы Omega Opticals, США, которые поглощают в областях излучения лазеров (532 нм и 655 нм) и пропускают, соответственно, в областях флуоресценции красителей СуЗ и Су5.
Использование двухполосного (многополосного) фильтра позволяет переходить от анализа с одним красителем к другому только путем включения или выключения соответствующих лазеров без механического перемещения оптических компонентов прибора.
В устройстве в соответствии с настоящим изобретением анализируемый объект (биочип) располагается на поверхности подложки, соответствующей размеру стандартного предметного стекла для микроскопов 25x75 мм. Этот размер весьма удобен для самых разнообразных объектов, в частности, T/RU2010/000040
11 биологических микрочипов, поскольку позволяет размещать много ячеек (до тысяч) и в то же время соответствует размерам человеческой руки (пальцев), что удобно пользователю.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Устройство для анализа люминесцирующих биологических микрочипов, содержащее держатель образца, средство его освещения, включающее в себя лазерные источники возбуждения флуоресцентного излучения и волоконно-оптическую систему распределения излучения лазеров, оптическую систему с фильтром для выделения света люминесценции образца и устройство фиксации изображения образца, отличающееся тем, что оптическая система содержит два объектива, направленных навстречу друг другу, а держатель объекта выполнен с возможностью позиционирования анализируемого образца по его поверхности, обращенной в сторону оптической системы, при этом лазерные источники возбуждения флуоресцентного излучения включают в себя по меньшей мере два лазера с разными длинами волн, а фильтр выполнен многополосным.
2. Устройство по п. 1, отличающееся тем, что фильтр расположен между устройством фиксации изображения и ближайшим к нему объективом.
3. Устройство по п. 1, отличающееся тем, что фильтр расположен между объективами.
4. Устройство по любому из п.п. 1 - 3, отличающееся тем, что фильтр выполнен интерференционным.
5. Устройство по п. 1, отличающееся тем, что устройство фиксации изображения выполнено в виде ПЗС или КМОП матрицы.
6. Устройство по п. 1 , отличающееся тем, что средство освещения объекта содержит кольцевую опору, в которой равномерно по ее окружности расположены концы волокон волоконно-оптической системы распределения излучения лазеров, ориентированные под острым углом к оси этой кольцевой опоры.
7. Устройство по п. 6, отличающееся тем, что кольцевой держатель установлен на оправе объектива, ближайшего к держателю объекта.
8. Устройство по любому из п.п. 6 или 7, отличающееся тем, что волоконно-оптическая система содержит несколько пучков волокон, так что каждому лазеру соответствует один пучок волокон, при этом каждьш пучок разделен со стороны, обращенной в сторону держателя образца, на отдельные волокна, причем концы волокон от разных лазеров расположены по окружности кольцевой опоры с чередованием и ориентированы в сторону анализируемого образца, когда он установлен в держатель.
9. Устройство по п. 8, отличающееся тем, что лазерные источники возбуждения флуоресцентного излучения включают в себя три лазера, два из которых имеют одинаковую длину волны.
10. Устройство по п. 8, отличающееся тем, что лазерные источники возбуждения флуоресцентного излучения включают в себя три лазера, имеющие разные длины волн.
11. Устройство по п. 1, отличающееся тем, что объективы выполнены одинаковыми.
12. Устройство по п. 1, отличающееся тем, что держатель образца содержит три взаимно перпендикулярные опорные плоскости и три упругих элемента для прижатия образца к этим плоскостям, причем одна из опорных плоскостей расположена в фокальной плоскости объектива, ближайшего к держателю объекта.
PCT/RU2010/000040 2010-02-03 2010-02-03 Устройство для анализа люминесцирующих биологических микрочипов WO2011096835A1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/RU2010/000040 WO2011096835A1 (ru) 2010-02-03 2010-02-03 Устройство для анализа люминесцирующих биологических микрочипов
RU2011127411/04A RU2510959C2 (ru) 2010-02-03 2010-02-03 Устройство для анализа люминесцирующих биологических микрочипов
EP10845340.8A EP2533033A4 (en) 2010-02-03 2010-02-03 DEVICE FOR THE ANALYSIS OF LUMINESCENT BIOLOGICAL MICROPUTIES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2010/000040 WO2011096835A1 (ru) 2010-02-03 2010-02-03 Устройство для анализа люминесцирующих биологических микрочипов

Publications (1)

Publication Number Publication Date
WO2011096835A1 true WO2011096835A1 (ru) 2011-08-11

Family

ID=44355631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2010/000040 WO2011096835A1 (ru) 2010-02-03 2010-02-03 Устройство для анализа люминесцирующих биологических микрочипов

Country Status (3)

Country Link
EP (1) EP2533033A4 (ru)
RU (1) RU2510959C2 (ru)
WO (1) WO2011096835A1 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344620B (zh) * 2013-06-28 2015-10-14 厦门大学 双模式表面等离子体耦合发射荧光成像检测装置及方法
CN104713863B (zh) * 2015-03-17 2018-01-09 江苏量点科技有限公司 定位基座、暗腔及使用该暗腔的体外检测分析装置
CN104697971B (zh) * 2015-03-17 2018-02-16 江苏量点科技有限公司 光源模块及使用该光源模块的体外检测分析装置
CN105606579A (zh) * 2016-02-18 2016-05-25 苏州晋翌生物医学仪器有限公司 一种荧光检测系统和多通道检测装置
RU2679605C2 (ru) * 2016-12-12 2019-02-12 Федеральное Государственное Бюджетное Учреждение Науки Институт Молекулярной Биологии Им. В.А. Энгельгардта Российской Академии Наук (Имб Ран) Флуориметрический анализатор биологических микрочипов
JP6781121B2 (ja) * 2017-08-25 2020-11-04 富士フイルム株式会社 蛍光読取装置
RU200805U1 (ru) * 2020-06-30 2020-11-12 Федеральное государственное бюджетное учреждение «Научно-исследовательский институт гриппа имени А.А. Смородинцева» Министерства здравоохранения Российской Федерации Флуоресцентный анализатор биочипов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2166201C1 (ru) * 1999-12-28 2001-04-27 Институт молекулярной биологии им. В.А. Энгельгардта РАН Флуоресцентный микроскоп
US6329661B1 (en) 2000-02-29 2001-12-11 The University Of Chicago Biochip scanner device
RU2182328C2 (ru) * 2000-02-17 2002-05-10 Институт молекулярной биологии им. В.А. Энгельгардта РАН Флуоресцентный микроскоп
US6620623B1 (en) 2002-05-06 2003-09-16 The University Of Chicago Biochip reader with enhanced illumination and bioarray positioning apparatus
US20090290124A1 (en) * 2007-04-25 2009-11-26 Richard Spaide Reflectance measurement of macular pigment using multispectral imaging

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2263226C (en) * 1996-08-16 2006-10-10 Imaging Research, Inc. A digital imaging system for assays in well plates, gels and blots
CN1311436A (zh) * 2000-03-01 2001-09-05 上海和泰光电科技有限公司 旋转平台上的生物芯片荧光图象的读取
JP3824135B2 (ja) * 2001-01-10 2006-09-20 横河電機株式会社 バイオチップ読取り装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2166201C1 (ru) * 1999-12-28 2001-04-27 Институт молекулярной биологии им. В.А. Энгельгардта РАН Флуоресцентный микроскоп
RU2182328C2 (ru) * 2000-02-17 2002-05-10 Институт молекулярной биологии им. В.А. Энгельгардта РАН Флуоресцентный микроскоп
US6329661B1 (en) 2000-02-29 2001-12-11 The University Of Chicago Biochip scanner device
US6620623B1 (en) 2002-05-06 2003-09-16 The University Of Chicago Biochip reader with enhanced illumination and bioarray positioning apparatus
US20090290124A1 (en) * 2007-04-25 2009-11-26 Richard Spaide Reflectance measurement of macular pigment using multispectral imaging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2533033A4 *

Also Published As

Publication number Publication date
RU2011127411A (ru) 2013-01-10
EP2533033A1 (en) 2012-12-12
RU2510959C2 (ru) 2014-04-10
EP2533033A4 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
RU2510959C2 (ru) Устройство для анализа люминесцирующих биологических микрочипов
DK2594981T3 (en) Methods and apparatus for confocal imaging
EP0880690B1 (en) Fluorescence imaging system compatible with macro and micro scanning objectives
US5754291A (en) Micro-imaging system
EP2960644B1 (en) System and method for telecentric wide-field fluorescence imaging
RU2182328C2 (ru) Флуоресцентный микроскоп
CN111443073B (zh) 一种micro LED芯片的显微拉曼结合光致发光检测装置及其方法
JP2002514739A (ja) 光学的アレイシステムおよびマイクロタイタープレート用読み取り器
US20110226972A1 (en) Reflective Focusing and Transmissive Projection Device
US20130250088A1 (en) Multi-color confocal microscope and imaging methods
US10634890B1 (en) Miniaturized microscope for phase contrast and multicolor fluorescence imaging
JP2009019961A (ja) 蛍光検出システム
CN114585958A (zh) 虚拟基准
CN110888228A (zh) 一种采用深紫外光源的荧光显微照明方法
WO2021200960A1 (ja) 観察装置
RU2371721C2 (ru) Устройство для диагностики с использованием биочипов
RU2679605C2 (ru) Флуориметрический анализатор биологических микрочипов
RU2413263C1 (ru) Микроскоп отраженного света
WO2023158993A2 (en) Multiscale lens systems and methods for imaging well plates and including event-based detection
CN117348225A (zh) 显微装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011127411

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010845340

Country of ref document: EP