WO2011096557A1 - X線管装置及びx線ct装置 - Google Patents

X線管装置及びx線ct装置 Download PDF

Info

Publication number
WO2011096557A1
WO2011096557A1 PCT/JP2011/052474 JP2011052474W WO2011096557A1 WO 2011096557 A1 WO2011096557 A1 WO 2011096557A1 JP 2011052474 W JP2011052474 W JP 2011052474W WO 2011096557 A1 WO2011096557 A1 WO 2011096557A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray tube
ray
container
cathode
anode
Prior art date
Application number
PCT/JP2011/052474
Other languages
English (en)
French (fr)
Inventor
秀文 岡村
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to CN2011800085038A priority Critical patent/CN102754532A/zh
Priority to JP2011552852A priority patent/JP5766128B2/ja
Publication of WO2011096557A1 publication Critical patent/WO2011096557A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing

Definitions

  • the present invention relates to an X-ray tube apparatus and an X-ray CT (Computed Tomography) apparatus.
  • An X-ray CT device is an X-ray tube device that irradiates a subject with X-rays, and an X-ray detector that detects X-ray dose transmitted through the subject as projection data by rotating the subject around the subject.
  • the tomographic image of the subject is reconstructed using the obtained projection data from a plurality of angles, and the reconstructed tomographic image is displayed.
  • the image displayed by the X-ray CT apparatus describes the shape of an organ in the subject and is used for diagnostic imaging.
  • the imaging time is shortened by rotating a scanner equipped with an X-ray tube device and an X-ray detector at higher speed.
  • the tube current must be increased and the amount of heat generated in the X-ray tube increases.
  • the X-ray tube is enlarged in order to allow the increased amount of heat.
  • An X-ray tube device is an X-ray tube housed in a container. Increasing the size of the X-ray tube makes it difficult to store it in a container.
  • Patent Document 1 discloses an X-ray tube device in which a container is divided in parallel with the tube axis of the X-ray tube in order to facilitate the operation of storing the X-ray tube in the container.
  • Patent Document 1 does not give consideration to easily manufacturing the container.
  • the area that becomes a flat portion such as a joint surface between the divided portions becomes wide. It is necessary to use milling for the production of the flat part. Since milling has a machining removal efficiency of about 1/5 to 1/10 of lathe, it takes about 5 to 10 times longer to machine the same volume.
  • an object of the present invention is to provide an X-ray tube apparatus having a structure that can be easily manufactured, and to provide an X-ray CT apparatus equipped with the X-ray tube apparatus.
  • the present invention is characterized in that an X-ray tube that generates X-rays is stored in a container that can be manufactured by lathe processing.
  • an X-ray tube apparatus comprising an X-ray tube that generates X-rays and a container that stores the X-ray tube, wherein the container is in a tube axis direction of the X-ray tube.
  • the X-ray tube apparatus includes a plurality of divided containers divided vertically, and the divided container has a cylindrical shape having a circumferential inner surface.
  • An X-ray CT apparatus comprising: an image display device that displays a reconstructed tomographic image.
  • an X-ray tube apparatus having a structure that can be easily manufactured, and to provide an X-ray CT apparatus equipped with the X-ray tube apparatus.
  • the block diagram which shows the whole structure of the X-ray CT apparatus of this invention Schematic sectional view showing the overall configuration of the X-ray tube apparatus of the present invention
  • Sectional drawing which shows the structure of the container of 1st embodiment The schematic perspective view which shows the structure of the container of 1st embodiment.
  • Sectional drawing which shows the modification of the container of 1st embodiment Explanatory drawing of the process of storing the X-ray tube in the container of the first embodiment
  • Sectional drawing which shows the modification of X-ray tube apparatus of 1st embodiment Schematic cross-sectional view showing the overall configuration of the X-ray tube apparatus of the second embodiment
  • Schematic cross-sectional view showing the overall configuration of the X-ray tube apparatus of the third embodiment Sectional drawing which shows the structure of the container of 3rd embodiment.
  • FIG. 1 is an overall configuration diagram of an X-ray CT apparatus 1 to which the present invention is applied.
  • the X-ray CT apparatus 1 includes a scan gantry unit 100 and a console 120.
  • the scan gantry unit 100 includes an X-ray tube device 101, a rotating disk 102, a collimator 103, an X-ray detector 106, a data collection device 107, a bed 105, a gantry control device 108, and a bed control device 109.
  • the X-ray tube device 101 is a device that irradiates a subject placed on a bed 105 with X-rays.
  • the collimator 103 is a device that limits the radiation range of X-rays emitted from the X-ray tube device 101.
  • the rotating disk 102 includes an opening 104 into which the subject placed on the bed 105 enters, and is equipped with an X-ray tube device 101 and an X-ray detector 106, and rotates around the subject.
  • the X-ray detector 106 is a device that measures the spatial distribution of transmitted X-rays by detecting X-rays that are disposed opposite to the X-ray tube device 101 and transmitted through the subject.
  • the rotating disk 102 is arranged in the rotating direction, or the rotating disk 102 is arranged two-dimensionally in the rotating direction and the rotating shaft direction.
  • the data collection device 107 is a device that collects the X-ray dose detected by the X-ray detector 106 as digital data.
  • the gantry control device 108 is a device that controls the rotation of the rotary disk 102.
  • the bed control device 109 is a device that controls the vertical movement of the bed 105.
  • the X-ray control device 110 is a device that controls electric power input to the X-ray tube device 101.
  • the console 120 includes an input device 121, an image calculation device 122, a display device 125, a storage device 123, and a system control device 124.
  • the input device 121 is a device for inputting a subject's name, examination date and time, imaging conditions, and the like, and is specifically a keyboard or a pointing device.
  • the image computation device 122 is a device that performs CT processing on the measurement data sent from the data collection device 107 and performs CT image reconstruction.
  • the display device 125 is a device that displays the CT image created by the image calculation device 122, and is specifically a CRT (Cathode-Ray Tube), a liquid crystal display, or the like.
  • the storage device 123 is a device that stores data collected by the data collection device 107 and image data of a CT image created by the image calculation device 122, and is specifically an HDD (Hard Disk Disk Drive) or the like.
  • the system control device 124 is a device that controls these devices, the gantry control device 108, the bed control device 109, and the X-ray control device 110.
  • the X-ray tube device 101 is controlled by the X-ray controller 110 controlling the power input to the X-ray tube device 101 based on the imaging conditions input from the input device 121, in particular, the X-ray tube voltage and the X-ray tube current. Irradiates the subject with X-rays according to imaging conditions.
  • the X-ray detector 106 detects X-rays irradiated from the X-ray tube apparatus 101 and transmitted through the subject with a large number of X-ray detection elements, and measures the distribution of transmitted X-rays.
  • the rotating disk 102 is controlled by the gantry control device 108, and rotates based on the photographing conditions input from the input device 121, particularly the rotation speed.
  • the couch 105 is controlled by the couch controller 109 and operates based on the photographing conditions input from the input device 121, particularly the helical pitch.
  • X-ray irradiation from the X-ray tube apparatus 101 and transmission X-ray distribution measurement by the X-ray detector 106 are repeated along with the rotation of the rotating disk 102, whereby projection data from various angles is acquired.
  • the acquired projection data from various angles is transmitted to the image calculation device 122.
  • the image calculation device 122 reconstructs the CT image by performing a back projection process on the transmitted projection data from various angles.
  • the CT image obtained by reconstruction is displayed on the display device 125.
  • the rotating disk 102 In order to acquire a CT image of an organ having a motion like a heart, it is necessary to rotate the rotating disk 102 at a speed of about 0.3 seconds / rotation. Since the weight of the X-ray tube apparatus 101 occupies about 20 to 30% in the mounted material of the rotating disk 102, the load on the rotational drive system of the X-ray CT apparatus 1 is reduced by reducing the weight of the X-ray tube apparatus 101. Can be reduced. If the load on the rotary drive system can be reduced, it will be advantageous in terms of reliability and price of the rotary drive system. Therefore, the X-ray tube device 101 is preferably lighter.
  • the configuration of the X-ray tube apparatus 101 will be described with reference to FIG.
  • the X-ray tube apparatus 101 includes an X-ray tube 210 that generates X-rays and a container 220 that stores the X-ray tube 210.
  • the X-ray tube 210 includes a cathode 211 that generates an electron beam, an anode 212 to which a positive high potential is applied to the cathode 211, and a vacuum envelope 213 that holds the cathode 211 and the anode 212 in a vacuum atmosphere. Prepare.
  • the cathode 211 includes a filament or cold cathode and a focusing electrode.
  • the filament is formed by winding a high melting point material such as tungsten in a coil shape, and is heated when a current is passed to emit thermoelectrons.
  • a cold cathode is formed by sharpening a metal material such as nickel or molybdenum, and emits electrons by field emission when an electric field is concentrated on the cathode surface.
  • the focusing electrode forms a focusing electric field for focusing the emitted electrons toward the X-ray focal point 216 on the anode 212.
  • the filament or cold cathode and the focusing electrode are at the same potential.
  • the anode 212 includes a target and an anode base material.
  • the target is made of a material having a high melting point and a large atomic number, such as tungsten.
  • X-rays 217 are emitted from the X-ray focal point 216 when electrons emitted from the cathode 211 collide with the X-ray focal point 216 on the target.
  • the anode base material holds the target and is made of a material having high thermal conductivity such as copper. The target and the anode base material are at the same potential.
  • the vacuum envelope 213 is held in a vacuum atmosphere in order to insulate the cathode 211 and the anode 212 from each other.
  • the vacuum envelope 213 is provided with a radiation window 218 for emitting X-rays 217 to the outside of the X-ray tube 210.
  • the radiation window 218 is made of a material having a small atomic number such as beryllium having a high X-ray transmittance.
  • Electrons emitted from the cathode 211 are accelerated by a high voltage applied between the cathode and the anode to become an electron beam 215.
  • X-rays 217 are generated from the X-ray focal point 216.
  • the energy of the generated X-ray is determined by a high voltage applied between the cathode and the anode, so-called tube voltage.
  • the dose of X-rays generated depends on the amount of electrons emitted from the cathode, the so-called tube current and the tube voltage.
  • the ratio of the electron beam 215 converted to X-rays is only about 1%, and most of the remaining energy is heat.
  • the anode 212 is heated with a heat quantity of several tens kW.
  • the anode 212 is connected to the rotating device 214 and is rotated about the one-dot chain line 219 in FIG. .
  • the rotating device 214 includes an exciting coil 214B that generates a magnetic field serving as a rotational driving force, and a rotor 214A that rotates by receiving the magnetic field generated by the exciting coil 214B.
  • the rotation axis of the anode 212 is hereinafter referred to as a tube axis 219 of the X-ray tube 210.
  • the X-ray focal point 216 where the electron beam 215 collides always moves, so that the temperature of the X-ray focal point 216 can be kept lower than the melting point of the target, and the anode 212 is overheated and melted. Can be prevented.
  • the generated heat amount needs to be quickly discharged outside the pipe.
  • the heat input amount is large, the temporarily generated heat amount needs to be accumulated in the pipe. Therefore, in many X-ray tubes, the volume of the anode 212 is increased in order to increase the amount of stored heat, and accordingly the X-ray tube 210 is also increased in size.
  • the radiation window 218 is exposed to radiant heat from the X-ray focal point 216 and recoil electrons that bounce off the surface of the anode 212. Therefore, in order to prevent the radiation window 218 from being overheated, the radiation window 218 is projected in a direction away from the anode 212. In order to avoid an increase in the size of the X-ray tube 210, only the radiation window 218 is projected, so that the X-ray tube 210 has a non-axisymmetric shape with respect to the tube axis 219.
  • the container 220 in which the X-ray tube 210 is stored is filled with cooling water as a cooling medium or insulating oil as a cooling medium while electrically insulating the X-ray tube 210.
  • the cooling water or insulating oil filled in the container 220 is guided to the cooler 302 through the pipe 301 connected to the container 220 of the X-ray tube apparatus 101, and after the heat is dissipated in the cooler 302, the pipe 301 Returned into container 220.
  • FIG. 3 shows a cross-sectional view of the container 220 of the first embodiment cut in parallel with the tube axis 219 of the X-ray tube.
  • FIG. 4 is a schematic perspective view of the container 220 of the first embodiment.
  • the container 220 of the present embodiment is divided in the direction of the tube axis 219 of the X-ray tube 210, and includes a plurality of divided portions each having a cylindrical shape having a circumferential inner surface.
  • the container 220 of the present embodiment includes a cathode side container 220A, a cathode side disk 220B, a central container 220C, an anode side disk 220D, and an anode side container 220E.
  • Sealing members 230A to 230D are disposed between the divided containers 220A to 220E.
  • the cathode side container 220A is a hat-shaped container having a hat shape in which a circular bottom surface part 220A1 and an annular flange part 220A2 are provided on a cylinder. Since the hat-shaped container has a shaft target structure that can be manufactured by a lathe process, it can be easily manufactured without requiring a long time.
  • the flange portion 220A2 serves as a connection portion with the cathode side disk 220B, and includes a plurality of through holes 220A3 arranged at a predetermined interval. The flange portion may be provided with a groove in which the sealing member 230A is disposed.
  • the cathode side disc 220B is a disc having a circular opening 220B1.
  • the cathode-side disc 220B is sized to cover the maximum width of the X-ray tube 210 in the direction orthogonal to the tube axis 219, that is, the width of the X-ray tube 210 including the protruding radiation window 218.
  • the center of the opening 220B1 is preferably aligned with the tube axis 219 of the X-ray tube 210 in order not to create an extra space in the container 220, so the opening 220B1 is located with respect to the center of the cathode side disk 220B. Provided in an eccentric position.
  • the opening 220B1 has the same size as the inner diameter of the cathode side container 220A. Since the outer shape of the cathode-side disc 220B is a disc shape, it can be easily manufactured without requiring a long time by lathe processing.
  • the opening 220B1 provided at an eccentric position is manufactured by laser processing or the like.
  • the cathode side disk 220B is provided with a screw hole 220B2 used for connection with the cathode side container 220A at a position corresponding to the through hole 220A3 provided in the flange portion 220A2 of the cathode side container 220A.
  • the cathode-side disc 220B is connected to the cathode-side container 220A using screws 221.
  • the screw hole 220B2 may or may not penetrate the cathode side disk 220B. However, when the screw hole 220B2 penetrates the cathode side disk 220B, a means is used so that the cooling water or the insulating oil filled in the container 220 does not leak from the screw hole 220B2.
  • the cathode side disk 220B is provided with a plurality of through holes 220B3 used for connection with the central container 220C at a predetermined interval.
  • the cathode side disk 220B may be provided with a groove in which the sealing member 230A and the sealing member 230B are disposed.
  • the central container 220C is a cylinder having an inner diameter that can cover the width of the X-ray tube 210 including the protruding radiation window 218. Therefore, the center of the central container 220C is positioned eccentric to the radiation window 218 side with respect to the tube axis 219 of the X-ray tube 210. That is, the centers of the cathode side container 220A and the anode side container 220E are arranged so as to be shifted from the center of the central container 220C. Since the central container 220C has a cylindrical shape, it can be easily manufactured without requiring a long time by lathe processing. A support portion used for supporting the X-ray tube 210 is provided on the inner surface of the central container 220C.
  • a material having a small atomic number such as beryllium having a high X-ray transmittance, is disposed at a position where the radiation window 218 on the side surface of the central container 220C is opposed to the X-ray radiation.
  • the central container 220C is provided with a screw hole 220C1 used for connection with the cathode side disc 220B and the anode side disc 220D.
  • the central container 220C is connected to the cathode side disk 220B using screws 221.
  • the screw hole 220 C1 may or may not penetrate through the central container 220C.
  • the central container 220C may be provided with a groove in which the sealing member 230B and the sealing member 230C are disposed.
  • the anode side disc 220D has the same shape as the cathode side disc 220B. Since the production time can be shortened by sharing parts that are easy to produce, it is preferable that the anode-side disc 220D and the cathode-side disc 220B have the same dimensions. However, the size of the opening 220D1 may be appropriately changed according to the size of the X-ray tube 210. The anode side disc 220D can be easily manufactured in the same manner as the cathode side disc 220B.
  • the anode side container 220E has the same shape as the cathode side container 220A. Since the production time can be shortened by sharing parts that are easy to produce, it is preferable that the anode side container 220E and the cathode side container 220A have the same dimensions. However, the height and inner diameter of the cylinder, which are the distance between the bottom surface portion 220E1 and the flange portion 220E2, may be appropriately changed according to the size of the X-ray tube 210. The anode side container 220E can be easily manufactured similarly to the cathode side container 220A.
  • the divided containers 220A to 220E have a cylindrical shape having a circumferential inner surface, so that most parts can be manufactured by lathe processing and can be processed without requiring a long time. Further, since all of the divided containers 220A to 220E are comparatively large, a cast member may be used as an initial material and finished by machining. Even in such a case, in the present embodiment, most of the divided containers 220A to 220E have a shaft target structure. Therefore, the cast member as the initial material and the machined container have physical properties such as mechanical strength and thermal characteristics. This is advantageous because the position dependency of the value is small.
  • Sealing members 230A to 230D are for sealing so that cooling water and insulating oil filled in the container 220 do not leak out of the container 220.
  • an elastic material for example, a rubber ring or a metal ring is used.
  • the sealing members 230A to 230D are sandwiched between the divided containers 220A to 220E and are properly crushed so as to be in close contact with the divided containers 220A to 220E without any gaps.
  • the sealing members 230A to 230D are in close contact with the divided containers 220A to 220E without gaps, so that cooling water or insulating oil is sealed in the container 220.
  • any of the sealing members 230A to 230D can be ring-shaped. If the sealing members 230A to 230D have a ring shape, the pressure generated by expansion of the cooling water or insulating oil is uniform regardless of the position in the circumferential direction of the sealing members 230A to 230D. Avoid leaking parts.
  • FIG. 5 shows a modification of the cathode side container 220A of the first embodiment.
  • the shielding member 240 is arranged on the inner surface of the cathode side container 220A.
  • the shielding member 240 is for shielding X-rays radiated from the X-ray tube 210, and is made of a material having a high X-ray absorption rate such as lead. Since a gap is formed at a location where the divided containers 220 are connected, X-rays are likely to leak. Therefore, in the present modification, the height of the shielding member 240 is made higher than that of the cathode side container 220A so that the portion where the container 220 into which the shielding member 240 is divided can be covered. That is, the shielding member 240 protrudes from the flange portion 220A2 of the cathode side container 220A.
  • FIG. 5 shows an example in which the shielding member 240 is disposed on the inner surface of the cathode side container 220A, but not limited to the cathode side container 220A, the cathode side disk 220B, the central container 220C, the anode side disk 220D,
  • a shielding member 240 may be provided on the inner surface of the anode side container 220E.
  • the shielding member 240 is not provided at a position facing the radiation window 218. Since the divided containers 220A to 220E have a cylindrical shape having a circumferential inner surface, it is easy to arrange the shielding member 240 uniformly, and it is possible to avoid the occurrence of a portion where X-rays are likely to leak. Furthermore, the arrangement of the shielding member 240 does not require a long time.
  • FIG. 6 is a diagram for explaining a process of storing the X-ray tube 210 in the container 220 of the first embodiment. The storing process will be described below based on FIG.
  • the central container 220C is placed on the X-ray tube 210 to which the exciting coil 214B is attached, and the X-ray tube 210 is fixed via a support portion provided on the inner surface of the central container 220C.
  • a sealing member 230B is disposed between the central container 220C and the cathode side disk 220B.
  • the cathode side container 220A is connected to the cathode side disk 220B.
  • a sealing member 230A is disposed between the cathode side disc 220B and the cathode side container 220A.
  • the X-ray tube 210 to which the cathode side vessel 220A, the cathode side disc 220B, and the central vessel 220C are attached is turned upside down.
  • the X-ray tube 210 alone is lighter on the cathode side than the anode side, but the cathode side vessel 220A, cathode side disc 220B, and central vessel 220C are attached, so that the weight in the direction of the tube axis 219 can be balanced. Therefore, it can be easily reversed upside down.
  • a sealing member 230C is disposed between the central container 220C and the anode side disk 220D.
  • a sealing member 230D is disposed between the anode side disc 220D and the anode side container 220E.
  • the steps (1) to (6) are merely examples, and are not limited to the above order. Depending on the size of each part, the order of the processes may be changed to facilitate the storing process.
  • the support portion for fixing the X-ray tube 210 is provided in the central container 220C, but the present invention is not limited to this. If the X-ray tube 210 can be appropriately fixed, a support portion may be provided on the inner surface of any of the divided containers 220A to 220E.
  • FIG. 7 shows a modification of the X-ray tube apparatus 101 of the first embodiment.
  • FIG. 7 is a cross-sectional view of the X-ray tube apparatus 101 cut along a plane that is orthogonal to the tube axis 219 and includes the radiation window 218.
  • the filling member 241 is disposed in the vicinity of the radiation window 218 between the central container 220C and the X-ray tube 210. Since the center of the central container 220C is eccentric to the radiation window 218 side with respect to the tube axis 219 of the X-ray tube 210, if the projection amount of the radiation window 218 is large, there is an extra space in the vicinity of the radiation window 218. Occurs.
  • the weight of the X-ray tube apparatus 101 increases. Therefore, the weight of the X-ray tube apparatus 101 can be reduced by arranging the filling member 241 made of a material having a specific gravity smaller than that of the cooling water or the insulating oil, for example, an epoxy resin, as shown in FIG.
  • FIG. 8 shows a schematic cross-sectional view of the X-ray tube apparatus 101 of the second embodiment.
  • the difference from the first embodiment is that the cathode side disk 220B, the central container 220C, and the anode side disk 220D are not provided, and the cathode side container 220F is larger than the cathode side container 220A and includes the connection member 250. Is a point.
  • Each configuration will be described below.
  • the cathode side container 220F is a cylinder having a circular bottom surface part and an annular flange part, that is, a hat shape.
  • the inner diameter of the cathode side container 220F is a size that can cover the width of the X-ray tube 210 including the protruding radiation window 218, like the central container 220C. For this reason, the center of the cathode side container 220F is positioned eccentric to the radiation window 218 side with respect to the tube axis 219 of the X-ray tube 210.
  • a material having a small atomic number such as beryllium having a high X-ray transmittance, is disposed at a location where the radiation window 218 of the cathode side container 220F is opposed to the X-ray radiation.
  • a screw hole used for connection to the connection member 250 is provided in the flange portion of the cathode side container 220F.
  • the cathode side container 220F may be provided with a groove in which the sealing member 230C is disposed.
  • the connecting member 250 is fixed to the X-ray tube 210, and the cathode side container 220F and the anode side container 220E are connected to each other.
  • the connecting member 250 is circular and has the same outer diameter as the outer diameter of the flange portion of the cathode side container 220F.
  • the connection member 250 is provided with an opening.
  • the opening of the connecting member 250 has a size that allows the envelope 213A on the anode side of the X-ray tube 210 to pass therethrough or a size that allows the exciting coil 214B to pass.
  • the connection member 250 is fixed to the X-ray tube 210 and forms a part of the outer surface of the X-ray tube apparatus 101.
  • connection member 250 250 is preferably made of an insulator.
  • the connection member 250 is provided with a screw hole used for connection with the cathode side container 220F and the anode side container 220E.
  • the connecting member 250 may be provided with a groove in which the sealing members 230B and 230C are disposed.
  • the anode side container 220E is the same as that of the first embodiment.
  • the number of parts of the container 220 is reduced as compared with the first embodiment, and the number of steps for the storage process is reduced accordingly, so that the X-ray tube apparatus can be manufactured more easily.
  • FIG. 9 shows a schematic cross-sectional view of the X-ray tube apparatus 101 of the third embodiment.
  • the difference from the first embodiment is the size of the cathode side container 220AA and the shape of the cathode side disc 220BB.
  • the space on the tube axis 219 side of the cathode side envelope 213C is narrowed, and the cooling water or insulating oil filled in the container 220 is reduced. Reduce the amount to reduce the weight of the X-ray tube device 101.
  • FIG. 10 shows a cross-sectional view of the container 220 of the third embodiment cut in parallel with the tube axis 219 of the X-ray tube.
  • Each configuration will be described below.
  • symbol and description is abbreviate
  • the cathode side container 220AA is a cylinder having a circular bottom surface part and an annular flange part, that is, a hat shape, like the cathode side container 220A.
  • the inner diameter of the cathode side container 220AA is smaller than the inner diameter of the cathode side container 220A, and can cover the cathode side envelope 213C, and provides electrical insulation between the X-ray tube 210 and the cathode side container 220AA. It is a size that can be kept.
  • the flange portion is a connection portion with the cathode side disk 220BB, and includes a plurality of through holes arranged at a predetermined interval.
  • the flange portion may be provided with a groove in which the sealing member 230AA is disposed.
  • the size of the sealing member 230AA is a size that fits the flange portion of the cathode side container 220AA and is smaller than the sealing member 230A.
  • the cathode-side disc 220BB is a disc having a circular opening, like the cathode-side disc 220B. Since the cathode-side envelope 213C that is allowed to pass through the opening of the cathode-side disc 220BB is in an eccentric position with respect to the tube axis 219 of the X-ray tube 210, the opening of the cathode-side disc 220BB is also the tube axis 219 is provided at an eccentric position. The opening of the cathode side disc 220BB has the same size as the inner diameter of the cathode side container 220AA.
  • the cathode side disc 220BB is provided with a screw hole used for connection with the cathode side vessel 220AA at a position corresponding to the through hole provided in the flange portion of the cathode side vessel 220AA.
  • the cathode side disk 220BB is provided with a plurality of through holes used for connection with the central container 220C at a predetermined interval.
  • the cathode side disk 220BB may be provided with a groove in which the sealing member 230A and the sealing member 230B are disposed.
  • the central container 220C, the anode side disk 220D, the anode side container 220E, and the sealing members 230B to 230D are the same as in the first embodiment.
  • the amount of cooling water or insulating oil filled in the container 220 can be reduced, which is advantageous for reducing the weight of the X-ray tube apparatus.
  • the present invention is not limited to the embodiment described above, and various modifications can be made without departing from the spirit of the present invention.
  • the connection means is not limited to this, and other means such as a clamp may be used as long as it can be connected with appropriate strength. It doesn't matter.
  • one of the divided containers may be formed in a shape in which the cathode side disk 220B or the anode side disk 220D and the central container 220C are combined.
  • the filling member 241 has been described in the vicinity of the radiation window 218 in the central container 220C. However, the filling member 241 is disposed inside the cathode side container 220A. Also good.
  • X-ray CT device 100 scan gantry unit, 101 X-ray tube device, 102 rotating disk, 103 collimator, 104 opening, 105 bed, 106 X-ray detector, 107 data collection device, 108 gantry control device, 109 bed control Equipment, 110 X-ray control device, 120 console, 121 input device, 122 image operation device, 123 storage device, 124 system control device, 125 display device, 210 X-ray tube, 211 cathode, 212 anode, 213 vacuum envelope 213A anode side envelope, 213C cathode side envelope, 214 rotating device, 214A rotor, 214B excitation coil, 215 electron beam, 216 focus, 217 X-ray, 218 radiation window, 219 tube axis, 220 container, 220A, 220AA cathode side container, 220A1 bottom face, 220A2 flange part, 220A3 through hole, 220B, 220BB cathode side disk, 220

Landscapes

  • X-Ray Techniques (AREA)

Abstract

 容易に製作することができる構造のX線管装置を提供すること、及びそのX線管装置を搭載するX線CT装置を提供するために、X線を発生するX線管と、前記X線管を収納する容器と、を備えたX線管装置であって、前記容器は、前記X線管の管軸方向に分割された複数の分割容器からなり、前記分割容器が円周内面を有する円筒形状を備えることを特徴とする。 また、前記X線管装置と、前記X線管装置に対向配置され被検体を透過したX線を検出するX線検出器と、前記X線管装置と前記X線検出器を搭載し前記被検体の周囲を回転する回転円盤と、前記X線検出器により検出された複数角度からの透過X線量に基づき前記被検体の断層画像を再構成する画像再構成装置と、前記画像再構成装置により再構成された断層画像を表示する画像表示装置と、を備えたX線CT装置である。

Description

X線管装置及びX線CT装置
 本発明はX線管装置及びX線CT(Computed Tomography)装置に関する。
 X線CT装置とは、被検体にX線を照射するX線管装置と、被検体を透過したX線量を投影データとして検出するX線検出器と、を被検体の周囲で回転させることにより得られる複数角度からの投影データを用いて被検体の断層画像を再構成し、再構成された断層画像を表示するものである。X線CT装置で表示される画像は、被検体の中の臓器の形状を描写するものであり、画像診断に使用される。
 近年のX線CT装置の開発では、X線管装置とX線検出器を搭載したスキャナをより高速に回転させることで撮影時間の短縮化が図られている。スキャナの回転が高速になっても断層画像の画質を維持するにはX線管装置から発生させる単位時間あたりのX線量を高くする必要がある。X線量を高くするには、管電流を大きくしなければならず、X線管内で発生する熱量は大きくなる。大きくなった熱量を許容するため、X線管は大型化される。X線管装置はX線管が容器に収納されてなるものである。X線管の大型化は容器への収納作業を困難にする。
 特許文献1には、X線管を容器へ収納する作業を容易にするために、X線管の管軸と平行に収容容器が分割されたX線管装置が開示されている。
特開2003-31396号公報
 しかしながら、特許文献1は容器を容易に製作することに対する配慮はなされていない。X線管の管軸と平行に分割された収容容器では、分割部同士の接合面のような平坦部となる面積が広くなる。平坦部の製作にはフライス加工を用いる必要がある。フライス加工は旋盤加工に対して加工除去効率が1/5~1/10程度であるので、同じ体積を加工するには約5~10倍の時間を要する。
 そこで本発明の目的は、容易に製作することができる構造のX線管装置を提供すること、及びそのX線管装置を搭載するX線CT装置を提供することである。
 上記目的を達成するために本発明は、旋盤加工で製作可能な容器によりX線を発生するX線管を収納することを特徴とするものである。
 具体的には、X線を発生するX線管と、前記X線管を収納する容器と、を備えたX線管装置であって、前記容器は、前記X線管の管軸方向に対して垂直に分割された複数の分割容器からなり、前記分割容器は円周内面を有する円筒形状を備えることを特徴とするX線管装置である。
 また、前記X線管装置と、前記X線管装置に対向配置され被検体を透過したX線を検出するX線検出器と、前記X線管装置と前記X線検出器を搭載し前記被検体の周囲を回転する回転円盤と、前記X線検出器により検出された複数角度からの透過X線量に基づき前記被検体の断層画像を再構成する画像再構成装置と、前記画像再構成装置により再構成された断層画像を表示する画像表示装置と、を備えたX線CT装置である。
 本発明によれば、容易に製作することができる構造のX線管装置を提供すること、及びそのX線管装置を搭載するX線CT装置を提供することができる。
本発明のX線CT装置の全体構成を示すブロック図 本発明のX線管装置の全体構成を示す概略の断面図 第一の実施形態の容器の構成を示す断面図 第一の実施形態の容器の構成を示す概略斜視図 第一の実施形態の容器の変形例を示す断面図 第一の実施形態の容器へのX線管の収納工程説明図 第一の実施形態のX線管装置の変形例を示す断面図 第二の実施形態のX線管装置の全体構成を示す概略の断面図 第三の実施形態のX線管装置の全体構成を示す概略の断面図 第三の実施形態の容器の構成を示す断面図
 以下、添付図面に従って本発明に係るX線CT装置の好ましい実施形態について説明する。なお、以下の説明及び添付図面において、同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略することにする。
 図1は本発明を適用したX線CT装置1の全体構成図である。X線CT装置1はスキャンガントリ部100と操作卓120とを備える。
 スキャンガントリ部100は、X線管装置101と、回転円盤102と、コリメータ103と、X線検出器106と、データ収集装置107と、寝台105と、ガントリ制御装置108と、寝台制御装置109と、X線制御装置110と、を備えている。X線管装置101は寝台105上に載置された被検体にX線を照射する装置である。コリメータ103はX線管装置101から照射されるX線の放射範囲を制限する装置である。回転円盤102は、寝台105上に載置された被検体が入る開口部104を備えるとともに、X線管装置101とX線検出器106を搭載し、被検体の周囲を回転するものである。X線検出器106は、X線管装置101と対向配置され被検体を透過したX線を検出することにより透過X線の空間的な分布を計測する装置であり、多数のX線検出素子を回転円盤102の回転方向に配列したもの、若しくは回転円盤102の回転方向と回転軸方向との2次元に配列したものである。データ収集装置107は、X線検出器106で検出されたX線量をデジタルデータとして収集する装置である。ガントリ制御装置108は回転円盤102の回転を制御する装置である。寝台制御装置109は、寝台105の上下前後動を制御する装置である。X線制御装置110はX線管装置101に入力される電力を制御する装置である。
 操作卓120は、入力装置121と、画像演算装置122と、表示装置125と、記憶装置123と、システム制御装置124とを備えている。入力装置121は、被検体氏名、検査日時、撮影条件などを入力するための装置であり、具体的にはキーボードやポインティングデバイスである。画像演算装置122は、データ収集装置107から送出される計測データを演算処理してCT画像再構成を行う装置である。表示装置125は、画像演算装置122で作成されたCT画像を表示する装置であり、具体的にはCRT(Cathode-Ray Tube)や液晶ディスプレイ等である。記憶装置123は、データ収集装置107で収集したデータ及び画像演算装置122で作成されたCT画像の画像データを記憶する装置であり、具体的にはHDD(Hard Disk Drive)等である。システム制御装置124は、これらの装置及びガントリ制御装置108と寝台制御装置109とX線制御装置110を制御する装置である。
 入力装置121から入力された撮影条件、特にX線管電圧やX線管電流などに基づきX線制御装置110がX線管装置101に入力される電力を制御することにより、X線管装置101は撮影条件に応じたX線を被検体に照射する。X線検出器106は、X線管装置101から照射され被検体を透過したX線を多数のX線検出素子で検出し、透過X線の分布を計測する。回転円盤102はガントリ制御装置108により制御され、入力装置121から入力された撮影条件、特に回転速度などに基づいて回転する。寝台105は寝台制御装置109によって制御され、入力装置121から入力された撮影条件、特にらせんピッチなどに基づいて動作する。
 X線管装置101からのX線照射とX線検出器106による透過X線分布の計測が回転円盤102の回転とともに繰り返されることにより、様々な角度からの投影データが取得される。取得された様々な角度からの投影データは画像演算装置122に送信される。画像演算装置122は送信された様々な角度からの投影データを逆投影処理することによりCT画像を再構成する。再構成して得られたCT画像は表示装置125に表示される。
 心臓のような動きのある臓器のCT画像を取得するには、回転円盤102を0.3秒/回転程度の速度で回転させる必要がある。回転円盤102の搭載物の中でX線管装置101の重量は約20~30%を占めているので、X線管装置101を軽量化することによりX線CT装置1の回転駆動系の負荷を低減することができる。回転駆動系の負荷が低減できれば、回転駆動系の信頼性や価格の面で有利になるので、X線管装置101はより軽量であることが好ましい。
 図2を用いて、X線管装置101の構成について説明する。X線管装置101は、X線を発生するX線管210と、X線管210を収納する容器220とを備える。
 X線管210は、電子線を発生する陰極211と、陰極211に対し正の高電位が印加される陽極212と、陰極211と陽極212を真空雰囲気中に保持する真空外囲器213とを備える。
 陰極211はフィラメントもしくは冷陰極と、集束電極とを備える。フィラメントはタングステンなどの高融点材料をコイル状に巻いたものであり、電流が流されることにより加熱され、熱電子を放出する。冷陰極はニッケルやモリブデンなどの金属材料を鋭利に尖らせてなるもので、陰極表面に電界が集中することで電界放出により電子を放出する。集束電極は、放出された電子を陽極212上のX線焦点216へ向けて集束させるための集束電界を形成する。フィラメントもしくは冷陰極と、集束電極とは同電位である。
 陽極212はターゲットと陽極母材とを備える。ターゲットはタングステンなどの高融点で原子番号の大きい材質で構成される。ターゲット上のX線焦点216に陰極211から放出された電子が衝突することにより、X線焦点216からX線217が放射される。陽極母材はターゲットを保持し、銅などの熱伝導率の高い材質からなる。ターゲットと陽極母材とは同電位である。
 真空外囲器213は陰極211と陽極212を絶縁するために真空雰囲気中に保持する。真空外囲器213にはX線217をX線管210外へ放射するための放射窓218が備えられる。放射窓218は、X線透過率が高いベリリウムなどの原子番号の小さい材質で構成される。
 陰極211から放出された電子は、陰極と陽極との間に印加される高電圧により加速され電子線215となる。電子線215が集束電界により集束されてターゲット上のX線焦点216に衝突すると、X線焦点216からX線217が発生する。発生するX線のエネルギーは、陰極と陽極との間に印加される高電圧、いわゆる管電圧によって決まる。発生するX線の線量は、陰極から放出される電子の量、いわゆる管電流と、管電圧によって決まる。
 電子線215のエネルギーの内、X線に変換される割合は1%程度に過ぎず、残りのほとんどのエネルギーは熱となる。X線CT装置1に用いられるX線管装置101では、管電圧は百数十kV、管電流は数百mAであるので、陽極212は数十kWの熱量で加熱される。このような加熱により陽極212が過熱溶融することを防止するため、陽極212は回転装置214に接続されており、回転装置214の駆動により、図2中の1点鎖線219を回転軸として回転する。回転装置214は、回転駆動力となる磁界を発生する励磁コイル214Bと、励磁コイル214Bが発生した磁界を受けて回転するロータ214Aとからなる。なお、陽極212の回転軸を以降X線管210の管軸219と呼ぶ。
 陽極212を回転させることで、電子線215が衝突する部分であるX線焦点216が常に移動するので、X線焦点216の温度をターゲットの融点より低く保つことができ、陽極212が過熱溶融することを防止できる。また発生した熱量は速やかに管外へ排出される必要があるが、入熱量が多大な場合は、一時的に発生した熱量を管内に蓄積しておく必要がある。そこで多くのX線管では、蓄積熱量の大容量化を図るために陽極212の体積を大きくしており、それにともないX線管210も大型になる。
 また放射窓218は、X線焦点216からの輻射熱と、陽極212の表面で跳ね返る反跳電子にさらされる。そのため、放射窓218の過熱を防止するため、陽極212から離れる方向に放射窓218を突出させる。X線管210の大型化を避けるためには、放射窓218のみを突出させた構造とすることになるので、X線管210は管軸219に対して非軸対称な形状となる。
 X線管210が収納される容器220の中には、冷却媒体である冷却水もしくはX線管210を電気的に絶縁するとともに冷却媒体となる絶縁油が充填される。容器220内に充填された冷却水もしくは絶縁油は、X線管装置101の容器220に接続された配管301を通じて冷却器302に導かれ、冷却器302にて熱を放散した後、配管301を通じて容器220内に戻される。
 以下、容器220の構造について、図面を用いて説明する。 
 (第一の実施形態)
 図3に、第一の実施形態の容器220をX線管の管軸219と平行に切断した断面図を示す。また図4に、第一の実施形態の容器220の概略斜視図を示す。本実施形態の容器220は、X線管210の管軸219の方向に分割されており、各々が円周内面を有する円筒形状を備える複数の分割部からなる。すなわち、本実施形態の容器220は、陰極側容器220A、陰極側円板220B、中央部容器220C、陽極側円板220D、陽極側容器220Eを備える。分割された容器220A~220Eの間には、シーリング部材230A~230Dが配置される。
 陰極側容器220Aは、円筒に円形状の底面部220A1と円環形状のフランジ部220A2とを設けたハット形状を有するハット形状容器である。ハット形状容器は旋盤加工により製作することができる軸対象構造であるので、長時間を要することなく容易に製作することができる。フランジ部220A2は陰極側円板220Bとの接続部となり、所定の間隔で配置される複数の貫通孔220A3を備える。フランジ部にはシーリング部材230Aが配置される溝が設けられていても良い。
 陰極側円板220Bは、円形状の開口部220B1を有する円板である。陰極側円板220Bは、X線管210の管軸219と直交する方向の最大幅、すなわち突出した放射窓218までを含めたX線管210の幅を覆う大きさである。他方、容器220内に余分な空間を生じさせないために、開口部220B1の中心をX線管210の管軸219と一致させることが好ましいので、開口部220B1は陰極側円板220Bの中心に対して偏心した位置に設けられる。開口部220B1は陰極側容器220Aの内径と同じ大きさである。陰極側円板220Bは、外形が円板形状であるので旋盤加工により長時間を要することなく容易に製作することができる。なお、偏心した位置に設けられる開口部220B1は、レーザ加工等により製作する。陰極側円板220Bには、陰極側容器220Aのフランジ部220A2に設けられた貫通孔220A3に対応する位置に、陰極側容器220Aとの接続に用いられるねじ穴220B2が設けられる。陰極側円板220Bは陰極側容器220Aにねじ221を用いて接続される。ねじ穴220B2は陰極側円板220Bを貫通していてもしていなくても良い。ただし、ねじ穴220B2が陰極側円板220Bを貫通している場合には、容器220内に充填された冷却水や絶縁油がねじ穴220B2から漏れないような手段を用いる。陰極側円板220Bには、中央部容器220Cとの接続に用いられる複数の貫通孔220B3が所定の間隔で設けられる。陰極側円板220Bには、シーリング部材230A及びシーリング部材230Bが配置される溝が設けられていても良い。
 中央部容器220Cは、突出した放射窓218までを含めたX線管210の幅を覆うことのできる内径を有する円筒である。そのため、中央部容器220Cの中心はX線管210の管軸219に対して放射窓218側に偏心した位置となる。つまり、陰極側容器220Aと陽極側容器220Eの中心は中央部容器220Cの中心に対してずれて配置される。中央部容器220Cは円筒形状であるので、旋盤加工により長時間を要することなく容易に製作することができる。中央部容器220Cの内面にはX線管210の支持に用いられる支持部が設けられる。中央部容器220C側面の放射窓218が対向する箇所には、X線の放射を妨げないように、X線透過率が高いベリリウムなどの原子番号が小さい材質が配置される。中央部容器220Cには、陰極側円板220B及び陽極側円板220Dとの接続に用いられるねじ穴220C1が設けられる。中央部容器220Cは陰極側円板220Bにねじ221を用いて接続される。ねじ穴220 C1は中央部容器220Cを貫通していてもしていなくても良い。中央部容器220Cには、シーリング部材230B及びシーリング部材230Cが配置される溝が設けられていても良い。
 陽極側円板220Dは、陰極側円板220Bと同様の形状を有する。製作容易な部品の共用化により製作時間の短縮が図れるので、陽極側円板220Dと陰極側円板220Bとは同一寸法であることが好ましい。ただし、開口部220D1の大きさはX線管210の大きさに応じて適切に変更されても良い。陽極側円板220Dは、陰極側円板220Bと同様に容易に製作できる。
 陽極側容器220Eは、陰極側容器220Aと同様の形状を有する。製作容易な部品の共用化により製作時間の短縮が図れるので、陽極側容器220Eと陰極側容器220Aとは同一寸法であることが好ましい。ただし、底面部220E1とフランジ部220E2との距離である円筒の高さと内径はX線管210の大きさに応じて適切に変更されても良い。陽極側容器220Eは、陰極側容器220Aと同様に容易に製作できる。
 以上述べたように分割された容器220A~220Eは円周内面を有する円筒形状を備えるので、ほとんどの部分を旋盤加工により製作することができ、長時間を要することなく加工可能である。また、分割された容器220A~220Eはいずれも比較的大型であることから、初期材料として鋳造部材を用い、機械加工により仕上げても良い。このような場合でも、本実施形態では分割された容器220A~220Eのほとんどが軸対象構造であるので、初期材料である鋳造部材及び機械加工後の容器は、機械的強度や熱特性等の物性値の位置依存性が小さいので、このような点で有利である。
 シーリング部材230A~230Dは、容器220内に充填された冷却水や絶縁油が容器220外へ漏れないように封止するためのものである。シーリング部材230A~230Dには、弾力性のある材質、例えばゴム製のリングや金属製のリングが用いられる。シーリング部材230A~230Dは、分割された容器220A~220Eに挟まれ、適切に押しつぶされることにより、分割された容器220A~220Eと隙間なく密着する。シーリング部材230A~230Dが分割された容器220A~220Eと隙間なく密着することで、冷却水や絶縁油が容器220内に封入される。本実施形態では分割された容器220間の接続部がいずれも円形状であるので、シーリング部材230A~230Dにはいずれもリング形状のものを用いることができる。シーリング部材230A~230Dがリング形状であると、冷却水や絶縁油が膨張することで生じる圧力は、シーリング部材230A~230Dの周方向において位置よらず一様であるので、冷却水や絶縁油が漏れやすい箇所を生じさせずにすむ。
 図5に、第一の実施形態の陰極側容器220Aの変形例を示す。図5に示した変形例では、陰極側容器220A の内面に遮蔽部材240が配置されている。遮蔽部材240はX線管210から放射されるX線を遮蔽するためのものであり、例えば鉛のようなX線吸収率の高い材質である。分割された容器220を接続した箇所には隙間が生じるためX線が漏洩しやすい。そこで、本変形例では遮蔽部材240が分割された容器220を接続した箇所を覆うことができるように、遮蔽部材240の高さを陰極側容器220Aより高くしている。つまり、陰極側容器220Aのフランジ部220A2よりも遮蔽部材240は突出している。
 なお、図5には陰極側容器220Aの内面に遮蔽部材240を配置した例を示したが、陰極側容器220Aに限らず、陰極側円板220B、中央部容器220C、陽極側円板220D、陽極側容器220Eの内面に遮蔽部材240を設けても良い。ただし、放射窓218に対向する位置には遮蔽部材240を設けない。分割された容器220A~220Eは円周内面を有する円筒形状を備えるので、遮蔽部材240を均一に配置することが容易であり、X線が漏洩しやすい箇所を生じさせずにすむ。さらに遮蔽部材240の配置に長時間を要することがない。
 図6に、第一の実施形態の容器220へX線管210を収納する工程を説明するための図を示す。図6に基づき収納工程を以下説明する。
 (1)励磁コイル214Bが取り付けられたX線管210に中央部容器220Cをかぶせ、中央部容器220Cの内面に設けられた支持部を介してX線管210を固定する。
 (2)中央部容器220Cに陰極側円板220Bを接続する。中央部容器220Cと陰極側円板220Bの間には、シーリング部材230Bを配置する。
 (3)陰極側円板220Bに陰極側容器220Aを接続する。陰極側円板220Bと陰極側容器220Aの間には、シーリング部材230Aを配置する。
 (4)陰極側容器220A、陰極側円板220B、中央部容器220Cが取り付けられたX線管210の上下を反転させる。X線管210単体では陽極側に比べ陰極側は軽量であるが、陰極側容器220A、陰極側円板220B、中央部容器220Cが取り付けられたことにより、管軸219方向の重量のつりあいが取れるようになるので、上下反転も容易に行うことができる。
 (5)中央部容器220Cに陽極側円板220Dを接続する。中央部容器220Cと陽極側円板220Dの間には、シーリング部材230Cを配置する。
 (6)陽極側円板220Dに陽極側容器220Eを接続する。陽極側円板220Dと陽極側容器220Eの間には、シーリング部材230Dを配置する。
 以上説明した収納工程によれば数十kgにも及ぶ大型のX線管であっても、容器内に容易に収納することができる。なお、(1)~(6)の工程は一例に過ぎず、上記の順番に限定されるものではない。各部品の大きさに応じて、工程の順番を入れ替えることで収納工程の容易化を図っても良い。また、本実施形態では、X線管210を固定する支持部を中央部容器220Cに設けているが、これに限定されるものではない。X線管210を適切に固定できるのであれば、分割された容器220A~220Eのいずれかの内面に支持部を設けても良い。
 図7に、第一の実施形態のX線管装置101の変形例を示す。図7は、管軸219と直交し放射窓218を含む面でX線管装置101を切断した断面図である。図7に示した変形例では、充填部材241が中央部容器220CとX線管210の間で放射窓218の近傍に配置される。中央部容器220Cの中心はX線管210の管軸219に対して放射窓218側に偏心した位置となるので、放射窓218の突出量が大きいと、放射窓218の近傍には余分な空間が生じる。この空間に冷却水もしくは絶縁油が充填されるとX線管装置101の重量増加まねく。そこで、冷却水もしくは絶縁油よりも比重の小さな材質、例えばエポキシ樹脂で構成される充填部材241を図7のように配置することにより、X線管装置101の軽量化を図ることができる。
 (第二の実施形態)
 図8に、第二の実施形態のX線管装置101の概略の断面図を示す。第一の実施形態と異なる点は、陰極側円板220B、中央部容器220C、陽極側円板220Dを備えておらず、陰極側容器220Fが陰極側容器220Aよりも大きく、接続部材250を備える点である。以下、各構成について説明する。なお、第一の実施形態と同じ構成については、同じ符号とし、説明を省略する。
 陰極側容器220Fは、陰極側容器220Aと同様に、円形状の底面部と円環形状のフランジ部とを有する円筒、すなわちハット形状である。陰極側容器220Fの内径は、中央部容器220Cと同様に、突出した放射窓218までを含めたX線管210の幅を覆うことのできる大きさである。そのため、陰極側容器220Fの中心はX線管210の管軸219に対して放射窓218側に偏心した位置となる。陰極側容器220Fの放射窓218が対向する箇所には、X線の放射を妨げないように、X線透過率が高いベリリウムなどの原子番号の小さい材質が配置される。陰極側容器220Fのフランジ部には、接続部材250との接続に用いられるねじ穴が設けられる。陰極側容器220Fには、シーリング部材230Cが配置される溝が設けられていても良い。
 接続部材250は、X線管210に固定され、陰極側容器220Fと陽極側容器220Eとが接続されるものである。接続部材250は円形状であり、陰極側容器220Fのフランジ部の外径と同じ外径を有する。接続部材250には開口部が設けられる。接続部材250の開口部は、X線管210の陽極側の外囲器213Aが通過できる大きさもしくは励磁コイル214Bが通過できる大きさを有する。接続部材250はX線管210に固定されるとともに、X線管装置101の外表面の一部を形成するので、安全の観点から接続部材250に管電流が流れないようにするため、接続部材250を絶縁物で構成することが好ましい。接続部材250には陰極側容器220F及び陽極側容器220Eとの接続に用いられるねじ穴が設けられる。接続部材250には、シーリング部材230B及び230Cが配置される溝が設けられていても良い。
 陽極側容器220Eは第一の実施形態と同じである。 
 本実施形態では、第一の実施形態に比べ容器220の部品点数が少なくなり、それにともない収納工程も少ないステップ数ですむので、X線管装置をより容易に製造できる。
 (第三の実施形態)
 図9に、第三の実施形態のX線管装置101の概略の断面図を示す。第一の実施形態と異なる点は、陰極側容器220AAの大きさと陰極側円板220BBの形状である。第一の実施形態では、X線管210と陰極側容器220Aとの間で、陰極側の外囲器213Cの管軸219側に広い空間がある。X線管210を冷却及び電気的に絶縁するに際して、この空間が不要であるならば、この空間に冷却水もしくは絶縁油が充填されるとX線管装置101の重量増加まねく。そこで、本実施形態では、陰極側容器の大きさを小さくすることで、陰極側の外囲器213Cの管軸219側の空間を狭くし、容器220内に充填される冷却水もしくは絶縁油の量を減らし、X線管装置101の軽量化を図る。
 図10に、第三の実施形態の容器220をX線管の管軸219と平行に切断した断面図を示す。以下、各構成について説明する。なお、第一の実施形態と同じ構成については、同じ符号とし、説明を省略する。
 陰極側容器220AAは、陰極側容器220Aと同様に、円形状の底面部と円環形状のフランジ部とを有する円筒、すなわちハット形状である。陰極側容器220AAの内径は、陰極側容器220Aの内径よりも小さく、陰極側の外囲器213Cを覆うことが可能で、X線管210と陰極側容器220AAとの間で電気的な絶縁を保てるような大きさである。フランジ部は陰極側円板220BBとの接続部となり、所定の間隔で配置された複数の貫通孔を備える。フランジ部にはシーリング部材230AAが配置される溝が設けられていても良い。なお、シーリング部材230AAの大きさは陰極側容器220AAのフランジ部に適合する大きさであり、シーリング部材230Aよりも小さい。
 陰極側円板220BBは、陰極側円板220Bと同様に、円形状の開口部を有する円板である。陰極側円板220BBの開口部を通過させられる陰極側の外囲器213C は、X線管210の管軸219に対して偏心した位置にあるので、陰極側円板220BBの開口部も管軸219に対して偏心した位置に設けられる。陰極側円板220BBの開口部は陰極側容器220AAの内径と同じ大きさである。陰極側円板220BBには、陰極側容器220AAのフランジ部に設けられた貫通孔に対応する位置に、陰極側容器220AAとの接続に用いられるねじ穴が設けられる。陰極側円板220BBには、中央部容器220Cとの接続に用いられる複数の貫通孔が所定の間隔で設けられる。陰極側円板220BBには、シーリング部材230A及びシーリング部材230Bが配置される溝が設けられていても良い。
 中央部容器220C、陽極側円板220D、陽極側容器220E、シーリング部材230B~Dは、第一の実施形態と同じである。
 本実施形態では、第一の実施形態に比べ、容器220内に充填される冷却水もしくは絶縁油の量を低減することができるのでX線管装置の軽量化に有利である。
 なお、本発明は以上述べた実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において様々な変形をして実施することができる。例えば、分割された容器220A~220Eを接続する手段として、ねじ221を用いることについて説明したが、接続手段はこれに限定されず、適切な強度で接続できるのであれば他の手段、例えばクランプ等でも構わない。また、陰極側円板220Bまたは陽極側円板220Dと中央部容器220Cとを組み合わせた形状で、分割された容器の一つを形成しても良い。
 また、実施形態で開示した複数の構成要素を適宜に組み合わせて実施しても良い。例えば、X線管装置を軽量化するために充填部材241を中央部容器220C内の放射窓218の近傍に配置することについて説明したが、陰極側容器220Aの内側に充填部材241を配置しても良い。
 1 X線CT装置、100 スキャンガントリ部、101 X線管装置、102 回転円盤、103 コリメータ、104 開口部、105 寝台、106 X線検出器、107 データ収集装置、108 ガントリ制御装置、109 寝台制御装置、110 X線制御装置、120 操作卓、121 入力装置、122 画像演算装置、123 記憶装置、124 システム制御装置、125 表示装置、210 X線管、211 陰極、212 陽極、213 真空外囲器、213A 陽極側の外囲器、213C 陰極側の外囲器、214 回転装置、214A ロータ、214B 励磁コイル、215 電子線、216 焦点、217 X線、218 放射窓、219 管軸、220 容器、220A、220AA 陰極側容器、220A1 底面部、220A2 フランジ部、220A3 貫通孔、220B、220BB 陰極側円板、220B1 開口部、220B2 ねじ穴、220B3 貫通孔、220C 中央部容器、220C1 ねじ穴、220D 陽極側円板、220D1 開口部、220E 陽極側容器、220E1 底面部、220E2 フランジ部、220F 陰極側容器、221 ねじ、230A~D、230AA シーリング部材、240 遮蔽部材、241 充填部材、250 接続部材、301 配管、302 冷却器

Claims (10)

  1.  X線を発生するX線管と、前記X線管を収納する容器と、を備えたX線管装置であって、
     前記容器は、前記X線管の管軸方向に対して垂直に分割された複数の分割容器からなり、前記分割容器は円周内面を有する円筒形状を備えることを特徴とするX線管装置。
  2.  請求項1に記載のX線管装置において、
     前記分割容器の一部は円筒に円板形状の底面部と円環形状のフランジ部とを設けたハット形状容器であることを特徴とするX線管装置。
  3.  請求項2に記載のX線管装置において、
     前記X線管は、陰極と、陽極と、前記陰極と前記陽極とを真空雰囲気中に保持する外囲器とを有しており、
     前記ハット形状容器は、前記外囲器の陰極側を覆う陰極側容器と、前記外囲器の陽極側を覆う陽極側容器と、であることを特徴とするX線管装置。
  4.  請求項3に記載のX線管装置において、
     前記陰極側容器と、前記陽極側容器とが同じ大きさであることを特徴とするX線管装置。
  5.  請求項3に記載のX線管装置において、
     前記X線管の最大外径よりも大きな外径を有する接続部材が前記X線管に固定されており、
     前記陰極側容器と、前記陽極側容器とが前記接続部材に接続されることを特徴とするX線管装置。
  6.  請求項1に記載のX線管装置において、
     前記分割容器の一部は前記X線管の管軸に対して偏心した位置に配置されることを特徴とするX線管装置。
  7.  請求項1に記載のX線管装置において、
     前記分割容器間の接続部にはリング状のシーリング部材が配置されることを特徴とするX線管装置。
  8.  請求項1に記載のX線管装置において、
     前記容器の中に充填される冷却媒体よりも比重の小さい充填部材を配置したことを特徴とするX線管装置。
  9.  請求項1に記載のX線管装置において、
     前記容器の一部の内側にX線を遮蔽する遮蔽部材を配置したことを特徴とするX線管装置。
  10.  被検体にX線を照射するX線源と、前記X線源に対向配置され前記被検体を透過したX線を検出するX線検出器と、前記X線源と前記X線検出器を搭載し前記被検体の周囲を回転する回転円盤と、前記X線検出器により検出された透過X線量に基づき被検体の断層画像を再構成する画像再構成装置と、前記画像再構成装置により再構成された断層画像を表示する画像表示装置と、を備えたX線CT装置であって、
     前記X線源は、請求項1に記載のX線管装置であることを特徴とするX線CT装置。
PCT/JP2011/052474 2010-02-08 2011-02-07 X線管装置及びx線ct装置 WO2011096557A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800085038A CN102754532A (zh) 2010-02-08 2011-02-07 X射线管装置以及x射线ct装置
JP2011552852A JP5766128B2 (ja) 2010-02-08 2011-02-07 X線管装置及びx線ct装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010025651 2010-02-08
JP2010-025651 2010-02-08

Publications (1)

Publication Number Publication Date
WO2011096557A1 true WO2011096557A1 (ja) 2011-08-11

Family

ID=44355550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052474 WO2011096557A1 (ja) 2010-02-08 2011-02-07 X線管装置及びx線ct装置

Country Status (3)

Country Link
JP (1) JP5766128B2 (ja)
CN (1) CN102754532A (ja)
WO (1) WO2011096557A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109350095A (zh) * 2018-12-08 2019-02-19 余姚德诚科技咨询有限公司 自适应式胸片成像仪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539104A (en) * 1978-09-12 1980-03-18 Toshiba Corp X-ray generator
JPS59128198U (ja) * 1983-02-15 1984-08-29 株式会社東芝 X線管装置
JPS62201500U (ja) * 1986-06-13 1987-12-22
JPH065381A (ja) * 1992-03-06 1994-01-14 Siemens Ag 固定装置を備えたx線照射器
JPH0684597A (ja) * 1992-09-02 1994-03-25 Toshiba Corp X線管装置の組立装置
JPH11504750A (ja) * 1995-02-10 1999-04-27 カーディアク・マリナーズ・インコーポレイテッド X線源
JP2001093697A (ja) * 1999-09-24 2001-04-06 Toshiba Corp X線管装置用支持装置
JP2002252099A (ja) * 2001-02-20 2002-09-06 Ge Medical Systems Global Technology Co Llc 絶縁油注入口キャップ及びその容器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7102137B2 (en) * 2003-09-23 2006-09-05 General Electric Company Method and apparatus for improving slice to slice resolution by staggering cells in the Z-axis
JP4664025B2 (ja) * 2004-09-02 2011-04-06 浜松ホトニクス株式会社 X線源
CN1711008B (zh) * 2005-07-15 2011-02-09 北京中盾安民分析技术有限公司 分段式圆筒形x射线源
CN101154550A (zh) * 2006-09-29 2008-04-02 株式会社东芝 旋转阳极x-射线管组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539104A (en) * 1978-09-12 1980-03-18 Toshiba Corp X-ray generator
JPS59128198U (ja) * 1983-02-15 1984-08-29 株式会社東芝 X線管装置
JPS62201500U (ja) * 1986-06-13 1987-12-22
JPH065381A (ja) * 1992-03-06 1994-01-14 Siemens Ag 固定装置を備えたx線照射器
JPH0684597A (ja) * 1992-09-02 1994-03-25 Toshiba Corp X線管装置の組立装置
JPH11504750A (ja) * 1995-02-10 1999-04-27 カーディアク・マリナーズ・インコーポレイテッド X線源
JP2001093697A (ja) * 1999-09-24 2001-04-06 Toshiba Corp X線管装置用支持装置
JP2002252099A (ja) * 2001-02-20 2002-09-06 Ge Medical Systems Global Technology Co Llc 絶縁油注入口キャップ及びその容器

Also Published As

Publication number Publication date
JP5766128B2 (ja) 2015-08-19
JPWO2011096557A1 (ja) 2013-06-13
CN102754532A (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
US10357222B2 (en) X-ray diagnostic imaging apparatus, monitoring server and anomaly detection method
JP7005534B2 (ja) X線の生成に使用するためのカソードアセンブリ
JP5893335B2 (ja) X線管アセンブリ
JP5890309B2 (ja) X線管装置及びx線ct装置
WO2016080129A1 (ja) X線管装置及びx線ct装置
JP5766128B2 (ja) X線管装置及びx線ct装置
JP2017091881A (ja) X線管装置及びx線ct装置
JP5893927B2 (ja) X線管装置及びx線ct装置
WO2018020895A1 (ja) X線管装置及びx線ct装置
JP5865249B2 (ja) X線管装置及びその製造方法とx線画像診断装置
JP5959866B2 (ja) X線管装置及びx線ct装置
JP6008634B2 (ja) X線管装置及びx線ct装置
JP6318147B2 (ja) X線管装置及びx線撮影装置
JP6798941B2 (ja) X線管装置及びx線ct装置
US20240105415A1 (en) X-ray tube assembly and x-ray ct equipment
US20220415601A1 (en) X-ray tube device and x-ray ct apparatus
JP6253299B2 (ja) X線管装置及びx線撮影装置
JP6777526B2 (ja) X線管装置及びx線ct装置
JP5574672B2 (ja) X線管装置及びx線装置
JP6244192B2 (ja) X線管装置及びx線撮影装置
JP2012104392A (ja) X線管装置及びx線ct装置
JP2013093102A (ja) X線管装置及びx線ct装置
JP2016095958A (ja) 回転陽極x線管装置およびx線撮像装置
JP2016001550A (ja) X線管装置及びx線ct装置
JPH04314433A (ja) X線断層撮影装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180008503.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552852

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739904

Country of ref document: EP

Kind code of ref document: A1