WO2011096530A1 - Method of manufacturing color filter and liquid crystal panel - Google Patents

Method of manufacturing color filter and liquid crystal panel Download PDF

Info

Publication number
WO2011096530A1
WO2011096530A1 PCT/JP2011/052408 JP2011052408W WO2011096530A1 WO 2011096530 A1 WO2011096530 A1 WO 2011096530A1 JP 2011052408 W JP2011052408 W JP 2011052408W WO 2011096530 A1 WO2011096530 A1 WO 2011096530A1
Authority
WO
WIPO (PCT)
Prior art keywords
colored layer
liquid crystal
layer
colored
color filter
Prior art date
Application number
PCT/JP2011/052408
Other languages
French (fr)
Japanese (ja)
Inventor
誠 大植
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011096530A1 publication Critical patent/WO2011096530A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a color filter manufacturing method and a liquid crystal panel.
  • the present invention relates to a method for manufacturing a color filter used for a liquid crystal panel having a high contrast ratio. Note that this application claims priority based on Japanese Patent Application No. 2010-25616 filed on Feb. 8, 2010, the entire contents of which are incorporated herein by reference. .
  • VA mode liquid crystal panels used for large display devices such as televisions employ an alignment division structure in which a plurality of liquid crystal domains are formed in one pixel region in order to improve viewing angle characteristics.
  • the MVA mode is the mainstream.
  • the MVA mode by providing an alignment regulating structure on the liquid crystal layer side of a pair of substrates facing each other with a vertical alignment type liquid crystal layer interposed therebetween, a plurality of domains (typically the alignment direction is different) 4 types).
  • the alignment regulating structure slits (openings) or ribs (projection structure) provided on the electrodes are used, and the alignment regulating force is exhibited from both sides of the liquid crystal layer (for example, Patent Documents 1 to 4).
  • the characteristics required for liquid crystal panels are not only the viewing angle characteristics but also the improvement of the contrast ratio.
  • the light transmittance of the region in which the slots or ribs are provided is lowered, so that the display luminance is lowered, and therefore it is difficult to realize a high contrast ratio.
  • the photo-alignment method has been put to practical use as a method for setting the pretilt direction of liquid crystal molecules, and it has become possible to achieve excellent visual field characteristics without providing slots or ribs (for example, patent documents). 5). Then, the restriction in the case where the slot or the rib is provided is removed, and according to the study of the present inventor, it has been found that a new problem arises in further improvement of the contrast ratio.
  • FIG. 6 is a cross-sectional view schematically showing the structure of the liquid crystal panel 1000 examined by the present inventors.
  • the liquid crystal panel 1000 shown in FIG. 6 includes a color filter substrate 110 and an array substrate 120 facing each other.
  • a liquid crystal layer 130 is provided between the color filter substrate 110 and the array substrate 120.
  • Vertical alignment films 111 and 121 for aligning liquid crystal molecules vertically with respect to both substrates 110 and 120 when the voltage applied to the liquid crystal layer 130 is OFF are provided on the surfaces of both substrates 110 and 120 on the liquid crystal layer 130 side. It has been.
  • a pair of polarizing plates 141 and 142 are attached to the outer surfaces of both the substrates 110 and 120 so that their polarization axes are orthogonal to each other.
  • a backlight 150 for irradiating light is provided on the back side of the array substrate 120.
  • the backlight 150 is, for example, a linear light source (CCFL or the like) or an LED light source.
  • a color filter layer (R, G, B) 114 is formed on the surface of the glass substrate 112 of the color filter substrate 110.
  • the color filter layer 114 is composed of a first colored layer (R) 114a, a second colored layer (G) 114b, and a third colored layer (B) 114c, and between the colored layers (R, G, B).
  • a black matrix 116 is formed. The black matrix 116 can suppress color mixing of the colored layers (R, G, B).
  • sharp corners 115 are formed on the liquid crystal layer 130 side in the color overlap portions of the colored layers (R, G, B).
  • the corner 115 is formed for the following reason. That is, when the color filter substrate 110 is manufactured, the first colored layer (R) 114a, the second colored layer (G) 114b, the third colored layer (B) 114c and the respective layers are sequentially formed. In consideration of errors (tolerances, etc.) in the manufacturing process of the color filter, if the respective colored layers (R, G, B) are formed so as not to cause color loss, corner portions 115 are inevitably formed.
  • the liquid crystal panel 1000 When only a low contrast ratio (for example, 3000 or less) is required for the liquid crystal panel 1000, even if the corner portion 115 is present on the color filter substrate 110, the influence thereof is little or hardly.
  • the liquid crystal panel 1000 is required to have a very high contrast ratio (for example, 5000 or more), the presence of the corner 115 affects. Specifically, due to the influence of the corner 115, the alignment of the liquid crystal molecules in the region 131 in contact with the alignment film 111 around the corner 115 in the liquid crystal layer 130 is disturbed, and as a result, the contrast ratio is lowered.
  • the voltage applied to the liquid crystal layer 130 is turned off, and the liquid crystal molecules are aligned substantially perpendicular to the surfaces of both the substrates 110 and 120.
  • the light transmitted through the polarizing plate 142 is blocked by the polarizing plate 141, so that a black display is obtained.
  • the orientation of the liquid crystal molecules in the region 131 around the corner 115 is disturbed due to the influence of the corner 115 of the color filter layer 114, the light passing through the region 131 has a large light leakage in the black display state. This causes a decrease in contrast ratio.
  • the present invention has been made in view of such a point, and a main object thereof is to provide a color filter manufacturing method capable of easily manufacturing a color filter substrate capable of realizing display with a high contrast ratio. There is.
  • the method for producing a color filter according to the present invention includes a step (a) of forming a first colored layer composed of a first colored material on a substrate, and a second coloring so as to cover the first colored layer.
  • a slit is formed in the portion.
  • the method further includes the step (d) of depositing a third coloring material constituting the third coloring layer on the substrate so as to cover the second coloring layer, through a further mask. Irradiating the third colored material with light to form a third colored layer adjacent to the second colored layer on the substrate (e), and in the step (e), Among the further masks, a slit is formed in a portion of a pixel edge region that irradiates an adjacent region of the second colored layer and the third colored layer.
  • the step of forming an alignment film on the first colored layer, the second colored layer, and the third colored layer is performed, and the step of forming the alignment film includes light irradiation.
  • the liquid crystal panel according to the present invention is a liquid crystal panel including a color filter substrate and an array substrate facing each other, and a liquid crystal layer provided between the color filter substrate and the array substrate, and the liquid crystal layer and the color filter An alignment film for aligning liquid crystal molecules constituting the liquid crystal layer is formed between the substrate and the color filter substrate.
  • the color filter substrate includes a translucent base material, and the liquid crystal layer side of the translucent base material.
  • a third colored layer composed of a third colored material, wherein the second colored layer is slit in a portion of a pixel edge region that irradiates an adjacent region of the first colored layer and the second colored layer.
  • the second colored material is formed by irradiating light
  • the third colored layer is formed with a slit in a portion of a pixel edge region that irradiates an adjacent region of the second colored layer and the third colored layer. It is formed by irradiating the third coloring material with light through a further mask.
  • the alignment film is a photo-alignment film whose alignment direction is defined by light irradiation.
  • the second colored material is deposited on the substrate so as to cover the first colored layer, and then the second colored material is irradiated with light through the mask so as to be adjacent to the first colored layer.
  • the process of forming a 2nd colored layer is performed.
  • a slit is formed in a portion of the pixel edge region that irradiates the adjacent region of the first colored layer and the second colored layer in the mask, and the slit The film thickness of the second colored layer in the adjacent region can be adjusted.
  • FIG. 1 It is sectional drawing which shows typically the structure of the liquid crystal panel 100 which concerns on embodiment of this invention. It is a figure which shows the structure of the mask 90 in which the slit was formed. It is the graph which showed the relationship between the average transmittance
  • (A) to (c) are process cross-sectional views for explaining a method for manufacturing the color filter substrate 10 according to the embodiment of the present invention.
  • (A) to (c) are process cross-sectional views for explaining a method for manufacturing the color filter substrate 10 according to the embodiment of the present invention.
  • 2 is a cross-sectional view schematically showing a configuration of a liquid crystal panel 1000.
  • FIG. 1 schematically shows a cross-sectional configuration of a liquid crystal panel 100 according to an embodiment of the present invention.
  • the liquid crystal panel 100 of this embodiment includes a color filter substrate 10 and an array substrate 20 that face each other.
  • a liquid crystal layer 30 is provided between the color filter substrate 10 and the array substrate 20.
  • the alignment film 11 of the present embodiment is a vertical alignment film that vertically aligns liquid crystal molecules constituting the liquid crystal layer 30.
  • the array substrate 20 of the present embodiment is a substrate on which a thin film transistor (TFT) is formed.
  • TFT thin film transistor
  • a vertical alignment film 21 that vertically aligns liquid crystal molecules constituting the liquid crystal layer 30 is formed. Note that when the liquid crystal molecules are vertically aligned by the vertical alignment films 11 and 21, the liquid crystal layer 30 is referred to as being in a vertical alignment state, but the vertically aligned liquid crystal molecules are not aligned with the vertical alignment films 11 and 21. It is not strictly perpendicular to the surface.
  • the color filter substrate 10 of the present embodiment is composed of a translucent substrate (for example, a glass substrate) 12 and a color filter layer 14 formed on the translucent substrate 12 on the liquid crystal layer 30 side.
  • the color filter layer 14 includes a first colored layer (red: R) 14a, a second colored layer (green: G) 14b, and a third colored layer (blue: B) 14c.
  • a black matrix 16 is formed between the colored layers (R, G, B). The black matrix 16 can suppress the color mixture of each colored layer (R, G, B).
  • the liquid crystal molecules constituting the liquid crystal layer 30 of this embodiment are negative-type nematic liquid crystals having negative dielectric anisotropy.
  • the liquid crystal molecules are aligned substantially perpendicular to the surfaces of both the substrates 10 and 20.
  • a pair of polarizing plates 41 and 42 are attached to the outer surfaces of the color filter substrate 10 and the array substrate 20. Since the liquid crystal panel 100 of the present embodiment is a so-called normally white type, the polarizing plates 41 and 42 are arranged so that their polarization axes are orthogonal to each other.
  • a backlight 50 for irradiating light is provided on the back side of the array substrate 20.
  • the surface 15 in the color overlap portion 18 where the colored layers (R, G, B) overlap is substantially flat. That is, in the configuration of the present embodiment, there is no sharp corner (reference numeral 115 in FIG. 6) on the liquid crystal layer 30 side. This is because the exposure process was performed using the mask used in the manufacturing method of the present embodiment when forming the second colored layer (G). Similarly, when the third colored layer (B) is formed, the exposure process is performed using the mask used in the manufacturing method of the present embodiment. A method for manufacturing the color filter substrate 10 of the present embodiment and a mask used therefor will be described later.
  • FIG. 2 shows a mask (gray tone mask) 90 in which slits are formed.
  • FIG. 3 is a graph showing the relationship between the transmittance of exposure light and the thickness of the color resist.
  • the mask 90 shown in FIG. 2 has a structure composed of a striped light shielding pattern 92 in which slits are formed, and a transmission pattern 94 positioned between the light shielding patterns 92. If the ratio between the light shielding pattern 92 and the transmission pattern 94 is changed, the transmittance of the exposure light transmitted through the mask 90 can be changed.
  • FIG. 3 shows that the film thickness of the exposed photoresist can be adjusted by the average transmittance of the exposure light that has passed through the mask 90.
  • the photoresist here is a positive resist whose solubility is increased by exposure light exposure.
  • the film thickness of the photoresist is 3.27 ⁇ m, and the average transmittance is changed by changing the average transmittance. It can be adjusted from 1 ⁇ m to 0.8 ⁇ m.
  • 4A to 5C are process cross-sectional views for explaining a method for manufacturing the color filter substrate 10.
  • a black matrix 16 is formed on the translucent base material 12 as shown in FIG. Form.
  • the black matrix 16 is made of, for example, a metal material (for example, chromium oxide) or a black resin material.
  • a red resist 61 (R) which is a material constituting the red colored layer 14 a (R) is formed on the translucent substrate 12 so as to cover the black matrix 16.
  • the red resist 61 (R) is applied on the glass substrate 12 to a thickness of 1.0 to 2.5 ⁇ m, for example, and then dried.
  • the red colored layer 14a (R) is formed by patterning the red resist 61 (R) through the mask 70.
  • a photomask 70 having an opening 70 a that defines the shape of the red colored layer 14 a (R) is disposed above the glass substrate 12, and exposure light (ultraviolet rays) 81 is transmitted through the photomask 70 to the red resist 61. Irradiate (R). Since the light shielding layer 70 b is formed on the photomask 70, the red resist 61 (R) is cured by the ultraviolet light that has passed through the opening 70 a.
  • the red colored layer 14a (R) is obtained by developing with an alkaline developer, for example.
  • a green resist 62 (G) which is a material constituting the green colored layer 14 b (G), is formed on the glass substrate 12 so as to cover the red colored layer 14 a (R).
  • the green resist 62 (G) is applied on the glass substrate 12 to a thickness of 1.0 to 2.5 ⁇ m, for example, and then dried.
  • the green colored layer 14b (G) is formed by patterning the green resist 62 (G) through the mask 72. Specifically, a photomask 72 having an opening 72 a that defines the shape of the green colored layer 14 b (G) is disposed above the glass substrate 12, and exposure light (ultraviolet light) 82 is transmitted through the photomask 72 to the green resist 62. Irradiate (G). Next, for example, the green colored layer 14b (G) is obtained by developing with an alkali developer.
  • the light mask layer 72b is formed on the photomask 72, and the pixel that irradiates the adjacent region 15a of the red colored layer 14a (R) and the green colored layer 14b (G) in the photomask 72.
  • a slit 73 b is formed in the edge region 73.
  • the pixel edge region 73 is a region that irradiates the surface 15 in the color overlap portion 18 illustrated in FIG. 1, and corresponds to an upper peripheral region of the black matrix 16 in this example.
  • the slit 73b has the same structure as that shown in FIG. 2, and the average transmittance of the exposure light of the photomask 72 is adjusted by the slit 73b.
  • the green resist 62 (G) is cured by the ultraviolet rays that have passed through the opening 72a.
  • the adjacent region 15a of the red colored layer 14a (R) and the green colored layer 14b (G) is substantially flattened by the ultraviolet rays that have passed through the slit 73b formed in the pixel edge region 73.
  • the average transmittance of the pixel edge region 73 is adjusted by the slit 73b.
  • the blue colored layer 14c (B) is comprised on the glass substrate 12 so that the red colored layer 14a (R) and the green colored layer 14b (G) may be covered.
  • a blue resist 63 (B) as a material is formed.
  • the blue resist 63 (B) is applied on the glass substrate 12 to a thickness of 1.0 to 2.5 ⁇ m, for example, and then dried.
  • the blue colored layer 14c (B) is formed by patterning the blue resist 63 (B) through the mask 74. Specifically, a photomask 74 having an opening 74 a that defines the shape of the blue colored layer 14 c (B) is disposed above the glass substrate 12, and exposure light (ultraviolet light) 83 is transmitted through the photomask 74 to the blue resist 63. Irradiate (B). Next, for example, the blue colored layer 14c (B) is obtained by developing with an alkali developer.
  • a slit 75b is formed in the portion of the pixel edge region 75 that irradiates the adjacent region. More specifically, a light shielding layer 74b is formed on the photomask 74, and pixels in the photomask 74 that irradiate adjacent regions of the green coloring layer 14b (G) and the blue coloring layer 14c (B). A slit 75 b is formed in the edge region 75.
  • the slit 75b has the same structure as that shown in FIG. 2, and the average transmittance of the exposure light of the photomask 74 is adjusted by the slit 75b.
  • the blue resist 63 (B) is cured by the ultraviolet rays that have passed through the opening 74 a.
  • the adjacent region 15b of the green coloring layer 14b (G) and the blue coloring layer 14c (B) is substantially flattened by the ultraviolet rays that pass through the slit 75b formed in the pixel edge region 75.
  • the average transmittance of the pixel edge region 75 is adjusted by the slit 75b.
  • the color filter substrate 10 of the present embodiment can be obtained.
  • the adjacent regions 15a and 15b are slightly convex rather than depressed. However, it is still substantially flat and is not in the state of the corner 115 as shown in FIG.
  • the second colored material 62 (G) is deposited on the substrate 12 so as to cover the first colored layer 14a (R).
  • the step of forming the second colored layer 14b (G) adjacent to the first colored layer 14a (R) is performed by irradiating the second colored material 62 (G) with light through the mask 72.
  • the step of forming the second colored layer 14b (G) the pixel edge that irradiates the adjacent region 15a of the first colored layer 14a (R) and the second colored layer 14b (G) in the mask 72.
  • a slit 73b is formed in the region 73, and the thickness of the second colored layer 14b (G) in the adjacent region 15a can be adjusted by the slit 73b.
  • the color filter substrate 10 capable of realizing display with a high contrast ratio can be easily manufactured. More specifically, since the second colored layer 14b (G) can be formed and the adjacent region 15a can be planarized with a single mask 72 (in a single exposure step), a complicated process is not used. In addition, the color filter substrate 10 capable of realizing a display with a high contrast ratio at a low cost while suppressing the mask cost can be manufactured.
  • the same technique can be executed in the step of forming the third colored layer 14c (B). That is, in the mask 74, a slit 75b is formed in a portion of the pixel edge region 75 that irradiates the adjacent region 15b of the second colored layer 14b (G) and the third colored layer 14c (B).
  • the thickness of the third colored layer 14c (B) in the adjacent region 15b can be adjusted by the slit 75b. Therefore, it is possible to suppress the occurrence of a corner portion (the convex portion 115 in the color overlapping portion shown in FIG. 6) in the adjacent region 15b.
  • the first colored layer 14a, the second colored layer 14b, and the third colored layer 14c may not correspond to the red colored layer (R), the green colored layer (G), and the blue colored layer (B), respectively.
  • the first colored layer 14a may be a blue colored layer (B)
  • the second colored layer 14b may be a red colored layer (R)
  • the third colored layer 14c may be a green colored layer (G).
  • the manufacturing method of the present embodiment can be applied even when the color filter layer 14 is composed of four or more colored layers instead of three colored layers.
  • the vertical alignment film 11 can be formed on the color filter layer 14 (R, G, B).
  • a step of forming a transparent electrode for example, an ITO electrode
  • a step of forming a spacer for example, a columnar spacer
  • the vertical alignment film 11 is formed by, for example, an inkjet method, a printing method, a spin coating method, or the like.
  • the vertical alignment film 11 of this embodiment is an organic alignment film (for example, a polyimide film), but an inorganic alignment film (for example, an inorganic alignment film having SiOx as a basic skeleton) can also be used.
  • a photo-alignment film whose alignment direction is defined by light irradiation can be used as the alignment film 11. That is, a method of defining the pretilt direction of the liquid crystal molecules using a photo-alignment method can also be used.
  • the photo-alignment method sets the pretilt angle by irradiating the photo-alignment film with polarized light.
  • the photo-alignment method is a non-contact process because a light irradiation step that defines the alignment direction by light irradiation is performed. Therefore, there is an advantage that static electricity is not generated.
  • the color filter substrate 10 of the present embodiment can be suitably used for a liquid crystal panel having such an excellent contrast ratio (for example, 5000 or more).
  • the array substrate 20 produced in a separate process and the color filter substrate 10 are opposed to each other, and the liquid crystal layer 30 is formed between the color filter substrate 10 and the array substrate 20.
  • the liquid crystal layer 30 can be formed using, for example, a dropping injection method.
  • polarizing plates 41 and 42 are attached to the outside of the color filter substrate 10 and the array substrate 20.
  • the polarizing plates 41 and 42 are arranged so that their polarization axes are orthogonal to each other. In this way, the liquid crystal panel 100 of the present embodiment is obtained.
  • Color filter substrate 11 Alignment film (Vertical alignment film) 12 Translucent substrate (glass substrate) 14 Color filter layer 14a to c Colored layer 15 Surface of color overlapping portion 15a, 15b Adjacent region 16 Black matrix 18 Color overlapping portion 20 Array substrate 21 Alignment film (vertical alignment film) 30 Liquid crystal layer 41, 42 Polarizing plate 50 Backlight 61 Red resist 62 Green resist 63 Blue resist 70 Mask 70a Opening 70b Light shielding layer 72 Mask 72a Opening 72b Light shielding layer 73 Pixel edge region 73b Slit 74 Mask 74a Opening 74b Light shielding layer 75 pixel edge region 75b slit 90 mask 92 light shielding pattern 94 transmission pattern 100 liquid crystal panel 1000 liquid crystal panel

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a color filter substrate capable of implementing a high contrast ratio. A first coloring layer (14a) comprising a first coloring material (61) is formed on a substrate (12) after which a second coloring material (62) is deposited onto the substrate (12). Subsequently, a second coloring layer (14b) is formed on the substrate (12) by irradiating light onto the second coloring material (62) via a mask (72). In the process for forming the second coloring layer (14b), in the mask (72) a slit (73b) is formed in the image pixel edge portion (73) through which light is irradiated onto the area (15a) where the first coloring layer (14a) adjoins the second coloring layer (14b).

Description

カラーフィルタの製造方法および液晶パネルColor filter manufacturing method and liquid crystal panel
 本発明は、カラーフィルタの製造方法および液晶パネルに関する。特に、高いコントラスト比を有する液晶パネルに用いるカラーフィルタの製造方法に関する。
 なお、本出願は2010年2月8日に出願された日本国特許出願2010-25616号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a color filter manufacturing method and a liquid crystal panel. In particular, the present invention relates to a method for manufacturing a color filter used for a liquid crystal panel having a high contrast ratio.
Note that this application claims priority based on Japanese Patent Application No. 2010-25616 filed on Feb. 8, 2010, the entire contents of which are incorporated herein by reference. .
 近年、パーソナルコンピュータのディスプレイや携帯情報端末機器の表示部に用いられる表示パネルとして、薄型軽量の液晶パネルが利用されている。そして、液晶パネルの表示特性が改善され、テレビジョン受像機などへの利用が進んでいる。液晶パネルの視野角特性は向上したものの更なる改善が望まれている。特に、垂直配向型の液晶層を用いた液晶パネル(VA(Vertical Alignment)モードの液晶パネルと呼ばれることもある)の視野角特性を改善する要求は強い。 In recent years, thin and light liquid crystal panels have been used as display panels used in personal computer displays and display units of portable information terminal devices. And the display characteristics of the liquid crystal panel have been improved, and the use for television receivers and the like is progressing. Although the viewing angle characteristics of the liquid crystal panel have been improved, further improvement is desired. In particular, there is a strong demand for improving the viewing angle characteristics of a liquid crystal panel using a vertically aligned liquid crystal layer (sometimes referred to as a VA (Vertical Alignment) mode liquid crystal panel).
 現在、テレビ等の大型表示装置に用いられているVAモード液晶パネルには、視野角特性を改善するために、1つの画素領域に複数の液晶ドメインを形成する配向分割構造が採用されている。配向分割構造を形成する方法としては、MVAモードが主流である。MVAモードは、垂直配向型液晶層を挟んで対向する一対の基板の液晶層側に、配向規制構造を設けることによって、配向方向(チルト方向)が異なる複数のドメイン(典型的には配向方向は4種類)を形成している。配向規制構造としては、電極に設けたスリット(開口部)またはリブ(突起構造)が用いられ、液晶層の両側から配向規制力を発揮する(例えば、特許文献1から4)。 Currently, VA mode liquid crystal panels used for large display devices such as televisions employ an alignment division structure in which a plurality of liquid crystal domains are formed in one pixel region in order to improve viewing angle characteristics. As a method of forming the alignment division structure, the MVA mode is the mainstream. In the MVA mode, by providing an alignment regulating structure on the liquid crystal layer side of a pair of substrates facing each other with a vertical alignment type liquid crystal layer interposed therebetween, a plurality of domains (typically the alignment direction is different) 4 types). As the alignment regulating structure, slits (openings) or ribs (projection structure) provided on the electrodes are used, and the alignment regulating force is exhibited from both sides of the liquid crystal layer (for example, Patent Documents 1 to 4).
特開平11-133429号公報Japanese Patent Laid-Open No. 11-133429 特開平11-352486号公報Japanese Patent Laid-Open No. 11-352486 特開2007-163978号公報JP 2007-163978 A 特開2007-256811号公報JP 2007-256811 A 特開2009-282366号公報JP 2009-282366 A
 液晶パネルに求められる特性は、視野角特性だけではなく、コントラスト比の向上も求められている。配向規制構造としてスロットまたはリブを設けた場合、それらを設けた領域の光の透過率が低下するので、表示輝度が低下し、それゆえに、高いコントラスト比の実現が困難であった事情がある。 The characteristics required for liquid crystal panels are not only the viewing angle characteristics but also the improvement of the contrast ratio. When slots or ribs are provided as the orientation restricting structure, the light transmittance of the region in which the slots or ribs are provided is lowered, so that the display luminance is lowered, and therefore it is difficult to realize a high contrast ratio.
 しかしながら、最近では、液晶分子のプレチルト方向を設定する方法として光配向法が実用化されるに至り、スロットまたはリブを設けずに、優れた視野特性を達成できるようになった(例えば、特許文献5)。すると、スロットまたはリブを設けていた場合の制約がとれ、本願発明者の検討によると、コントラスト比の更なる向上において新たな課題が生じることがわかった。 However, recently, the photo-alignment method has been put to practical use as a method for setting the pretilt direction of liquid crystal molecules, and it has become possible to achieve excellent visual field characteristics without providing slots or ribs (for example, patent documents). 5). Then, the restriction in the case where the slot or the rib is provided is removed, and according to the study of the present inventor, it has been found that a new problem arises in further improvement of the contrast ratio.
 図6は、本願発明者が検討した液晶パネル1000の構造を模式的に示す断面図である。図6に示した液晶パネル1000は、互いに対向するカラーフィルタ基板110及びアレイ基板120から構成されている。カラーフィルタ基板110及びアレイ基板120の間には、液晶層130が設けられている。 FIG. 6 is a cross-sectional view schematically showing the structure of the liquid crystal panel 1000 examined by the present inventors. The liquid crystal panel 1000 shown in FIG. 6 includes a color filter substrate 110 and an array substrate 120 facing each other. A liquid crystal layer 130 is provided between the color filter substrate 110 and the array substrate 120.
 両基板110、120の液晶層130側の表面には、液晶層130への印加電圧がOFFのときに液晶分子を両基板110、120に対して垂直に配向させる垂直配向膜111、121が設けられている。また、両基板110、120の外側の面には、互いの偏光軸が直交するように一対の偏光板141、142が貼り付けられている。なお、アレイ基板120の背面側には、光を照射するバックライト150が設けられている。バックライト150は、例えば、線状光源(CCFLなど)、または、LED光源である。 Vertical alignment films 111 and 121 for aligning liquid crystal molecules vertically with respect to both substrates 110 and 120 when the voltage applied to the liquid crystal layer 130 is OFF are provided on the surfaces of both substrates 110 and 120 on the liquid crystal layer 130 side. It has been. A pair of polarizing plates 141 and 142 are attached to the outer surfaces of both the substrates 110 and 120 so that their polarization axes are orthogonal to each other. Note that a backlight 150 for irradiating light is provided on the back side of the array substrate 120. The backlight 150 is, for example, a linear light source (CCFL or the like) or an LED light source.
 また、カラーフィルタ基板110のガラス基板112の表面には、カラーフィルタ層(R、G、B)114が形成されている。カラーフィルタ層114は、第1着色層(R)114a、第2着色層(G)114b、第3着色層(B)114cから構成されており、各着色層(R、G、B)の間には、ブラックマトリクス116が形成されている。ブラックマトリクス116によって、各着色層(R、G、B)の混色を抑制することができる。 Further, a color filter layer (R, G, B) 114 is formed on the surface of the glass substrate 112 of the color filter substrate 110. The color filter layer 114 is composed of a first colored layer (R) 114a, a second colored layer (G) 114b, and a third colored layer (B) 114c, and between the colored layers (R, G, B). A black matrix 116 is formed. The black matrix 116 can suppress color mixing of the colored layers (R, G, B).
 カラーフィルタ基板110の表面のうち、各着色層(R、G、B)の色重ね部においては、液晶層130側に尖った角部115が形成されている。角部115が形成されるのは次の理由による。すなわち、カラーフィルタ基板110を製造する際に、第1着色層(R)114a、第2着色層(G)114b、第3着色層(B)114cと各層を順に形成していくのであるが、カラーフィルタの製造プロセスにおける誤差(公差など)を考慮して、色抜けが生じないように、各着色層(R、G、B)を重ねて形成すると、どうしても角部115が形成されてしまう。 Of the surface of the color filter substrate 110, sharp corners 115 are formed on the liquid crystal layer 130 side in the color overlap portions of the colored layers (R, G, B). The corner 115 is formed for the following reason. That is, when the color filter substrate 110 is manufactured, the first colored layer (R) 114a, the second colored layer (G) 114b, the third colored layer (B) 114c and the respective layers are sequentially formed. In consideration of errors (tolerances, etc.) in the manufacturing process of the color filter, if the respective colored layers (R, G, B) are formed so as not to cause color loss, corner portions 115 are inevitably formed.
 液晶パネル1000に低いコントラスト比(例えば、3000以下)しか要求されていない場合には、カラーフィルタ基板110に角部115が存在しても、その影響は少ないかほとんどない。一方で、液晶パネル1000に極めて高いコントラスト比(例えば、5000以上)が要求されている場合には、この角部115の存在が影響を及ぼす。具体的には、角部115の影響によって、液晶層130のうちの角部115周辺の配向膜111に接する領域131の液晶分子の配向が乱れ、その結果、コントラスト比の低下をもたらす。 When only a low contrast ratio (for example, 3000 or less) is required for the liquid crystal panel 1000, even if the corner portion 115 is present on the color filter substrate 110, the influence thereof is little or hardly. On the other hand, when the liquid crystal panel 1000 is required to have a very high contrast ratio (for example, 5000 or more), the presence of the corner 115 affects. Specifically, due to the influence of the corner 115, the alignment of the liquid crystal molecules in the region 131 in contact with the alignment film 111 around the corner 115 in the liquid crystal layer 130 is disturbed, and as a result, the contrast ratio is lowered.
 さらに説明すると、次の通りである。この液晶パネル1000の黒色部分では、液晶層130への印加電圧をOFFにして、液晶分子を両基板110、120の表面に対して略垂直に配向させる。この状態で、バックライト150から光を照射すると、偏光板142を透過した光は偏光板141で遮断されるので黒表示となる。しかしながら、カラーフィルタ層114の角部115の影響によって、角部115周辺の領域131における液晶分子の配向が乱れると、その領域131を通過する光は黒表示状態における光漏れが大きく、それにより、コントラスト比の低下の原因となる。 Further explanation is as follows. In the black portion of the liquid crystal panel 1000, the voltage applied to the liquid crystal layer 130 is turned off, and the liquid crystal molecules are aligned substantially perpendicular to the surfaces of both the substrates 110 and 120. In this state, when light is irradiated from the backlight 150, the light transmitted through the polarizing plate 142 is blocked by the polarizing plate 141, so that a black display is obtained. However, if the orientation of the liquid crystal molecules in the region 131 around the corner 115 is disturbed due to the influence of the corner 115 of the color filter layer 114, the light passing through the region 131 has a large light leakage in the black display state. This causes a decrease in contrast ratio.
 一方で、コントラスト比の低下を抑制するために、カラーフィルタ層114の角部115を除去して、カラーフィルタ層114の表面を平坦化する処理を実行することも可能である。しかしながら、このような処理を行うと、製造工程が増えるためカラーフィルタ基板110の製造コストが増加してしまう。今日、液晶パネル1000は、高品質のものを如何に低コストで製造するかが至上命題となっており、余分な製造プロセスを導入することは難しい。 On the other hand, in order to suppress a decrease in contrast ratio, it is also possible to execute processing for removing the corner portions 115 of the color filter layer 114 and flattening the surface of the color filter layer 114. However, when such a process is performed, the manufacturing process increases, and thus the manufacturing cost of the color filter substrate 110 increases. Today, it is very important to manufacture a high quality liquid crystal panel 1000 at a low cost, and it is difficult to introduce an extra manufacturing process.
 本発明はかかる点に鑑みてなされたものであり、その主な目的は、高コントラスト比の表示を実現することができるカラーフィルタ基板を簡便に製造することができるカラーフィルタの製造方法を提供することにある。 The present invention has been made in view of such a point, and a main object thereof is to provide a color filter manufacturing method capable of easily manufacturing a color filter substrate capable of realizing display with a high contrast ratio. There is.
 本発明に係るカラーフィルタの製造方法は、基板の上に、第1着色材料から構成された第1着色層を形成する工程(a)と、前記第1着色層を覆うように、第2着色層を構成する第2着色材料を基板の上に堆積する工程(b)と、マスクを介して前記第2着色材料に光を照射することによって、前記第1着色層と隣接する第2着色層を前記基板の上に形成する工程(c)とを含み、前記工程(c)において、前記マスクのうち、前記第1着色層と前記第2着色層との隣接領域を照射する画素エッジ領域の部分にスリットが形成されていることを特徴とする。
 ある好適な実施形態では、さらに、前記第2着色層を覆うように、第3着色層を構成する第3着色材料を基板の上に堆積する工程(d)を実行し、更なるマスクを介して前記第3着色材料に光を照射することによって、前記第2着色層と隣接する第3着色層を前記基板の上に形成する工程(e)とを含み、前記工程(e)において、前記更なるマスクのうち、前記第2着色層と前記第3着色層との隣接領域を照射する画素エッジ領域の部分にスリットが形成されていることを特徴とする。
 ある好適な実施形態では、前記第1着色層、前記第2着色層および前記第3着色層の上に、配向膜を形成する工程を実行し、前記配向膜を形成する工程には、光照射によって配向方向を規定する光照射ステップが含まれる。
 本発明に係る液晶パネルは、互いに対向するカラーフィルタ基板及びアレイ基板と、前記カラーフィルタ基板及びアレイ基板の間に設けられた液晶層とを備えた液晶パネルであり、前記液晶層と前記カラーフィルタ基板との間には、前記液晶層を構成する液晶分子を配向させる配向膜が形成されており、前記カラーフィルタ基板は、透光性基材と、前記透光性基材の前記液晶層側に形成され、第1着色材料から構成された第1着色層と、前記第1着色層と隣接し、第2着色材料から構成された第2着色層と、前記第2着色層と隣接し、第3着色材料から構成された第3着色層とを含んでおり、前記第2着色層は、前記第1着色層と前記第2着色層との隣接領域を照射する画素エッジ領域の部分にスリットが形成されているマスクを介して、前記第2着色材料に光を照射することによって形成されており、前記第3着色層は、前記第2着色層と前記第3着色層との隣接領域を照射する画素エッジ領域の部分にスリットが形成されている更なるマスクを介して、前記第3着色材料に光を照射することによって形成されている。
 ある好適な実施形態において、前記配向膜は、光照射によって配向方向を規定されている光配向膜である。
The method for producing a color filter according to the present invention includes a step (a) of forming a first colored layer composed of a first colored material on a substrate, and a second coloring so as to cover the first colored layer. A step (b) of depositing a second coloring material constituting the layer on the substrate; and irradiating the second coloring material with light through a mask, thereby adjoining the first coloring layer. (C) on the substrate, and in the step (c), a pixel edge region that irradiates an adjacent region of the first colored layer and the second colored layer in the mask. A slit is formed in the portion.
In a preferred embodiment, the method further includes the step (d) of depositing a third coloring material constituting the third coloring layer on the substrate so as to cover the second coloring layer, through a further mask. Irradiating the third colored material with light to form a third colored layer adjacent to the second colored layer on the substrate (e), and in the step (e), Among the further masks, a slit is formed in a portion of a pixel edge region that irradiates an adjacent region of the second colored layer and the third colored layer.
In a preferred embodiment, the step of forming an alignment film on the first colored layer, the second colored layer, and the third colored layer is performed, and the step of forming the alignment film includes light irradiation. A light irradiation step for defining the orientation direction is included.
The liquid crystal panel according to the present invention is a liquid crystal panel including a color filter substrate and an array substrate facing each other, and a liquid crystal layer provided between the color filter substrate and the array substrate, and the liquid crystal layer and the color filter An alignment film for aligning liquid crystal molecules constituting the liquid crystal layer is formed between the substrate and the color filter substrate. The color filter substrate includes a translucent base material, and the liquid crystal layer side of the translucent base material. Formed of the first colored material, adjacent to the first colored layer, adjacent to the second colored layer formed of the second colored material, and adjacent to the second colored layer, A third colored layer composed of a third colored material, wherein the second colored layer is slit in a portion of a pixel edge region that irradiates an adjacent region of the first colored layer and the second colored layer. Before the mask is formed The second colored material is formed by irradiating light, and the third colored layer is formed with a slit in a portion of a pixel edge region that irradiates an adjacent region of the second colored layer and the third colored layer. It is formed by irradiating the third coloring material with light through a further mask.
In a preferred embodiment, the alignment film is a photo-alignment film whose alignment direction is defined by light irradiation.
 本発明によれば、第1着色層を覆うように第2着色材料を基板の上に堆積した後、マスクを介して第2着色材料に光を照射することによって、第1着色層と隣接する第2着色層を形成する工程を実行する。第2着色層を形成する工程において、マスクのうちの、第1着色層と第2着色層との隣接領域を照射する画素エッジ領域の部分にはスリットが形成されており、そのスリットによって、当該隣接領域における第2着色層の膜厚を調整することができる。したがって、第1着色層と第2着色層との隣接領域に角部(色重ね部における凸部)が生じることを抑制することができるので、隣接領域周辺の液晶分子の配向乱れを緩和でき、それゆえに、光漏れの発生を抑制することができる。その結果、高コントラスト比の表示を実現することができるカラーフィルタ基板を簡便に製造することが可能となる。 According to the present invention, the second colored material is deposited on the substrate so as to cover the first colored layer, and then the second colored material is irradiated with light through the mask so as to be adjacent to the first colored layer. The process of forming a 2nd colored layer is performed. In the step of forming the second colored layer, a slit is formed in a portion of the pixel edge region that irradiates the adjacent region of the first colored layer and the second colored layer in the mask, and the slit The film thickness of the second colored layer in the adjacent region can be adjusted. Therefore, since it is possible to suppress the occurrence of corners (convex portions in the color overlap portion) in the adjacent region between the first colored layer and the second colored layer, it is possible to alleviate disorder in the alignment of liquid crystal molecules around the adjacent region, Therefore, the occurrence of light leakage can be suppressed. As a result, it is possible to easily manufacture a color filter substrate that can realize display with a high contrast ratio.
本発明の実施形態に係る液晶パネル100の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the liquid crystal panel 100 which concerns on embodiment of this invention. スリットが形成されたマスク90の構成を示す図である。It is a figure which shows the structure of the mask 90 in which the slit was formed. マスクの平均透過率と膜厚との関係を示したグラフである。It is the graph which showed the relationship between the average transmittance | permeability of a mask, and a film thickness. (a)から(c)は、本発明の実施形態に係るカラーフィルタ基板10の製造方法を説明するための工程断面図である。(A) to (c) are process cross-sectional views for explaining a method for manufacturing the color filter substrate 10 according to the embodiment of the present invention. (a)から(c)は、本発明の実施形態に係るカラーフィルタ基板10の製造方法を説明するための工程断面図である。(A) to (c) are process cross-sectional views for explaining a method for manufacturing the color filter substrate 10 according to the embodiment of the present invention. 液晶パネル1000の構成を模式的に示す断面図である。2 is a cross-sectional view schematically showing a configuration of a liquid crystal panel 1000. FIG.
 以下、図面を参照しながら、本発明の実施形態を説明する。以下の図面においては、説明の簡潔化のために、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of brevity. In addition, this invention is not limited to the following embodiment.
 図1は、本発明の実施形態に係る液晶パネル100の断面構成を模式的に表している。本実施形態の液晶パネル100は、互いに対向するカラーフィルタ基板10及びアレイ基板20を備えている。カラーフィルタ基板10及びアレイ基板20の間には液晶層30が設けられている。 FIG. 1 schematically shows a cross-sectional configuration of a liquid crystal panel 100 according to an embodiment of the present invention. The liquid crystal panel 100 of this embodiment includes a color filter substrate 10 and an array substrate 20 that face each other. A liquid crystal layer 30 is provided between the color filter substrate 10 and the array substrate 20.
 液晶層30とカラーフィルタ基板10との間には、液晶層30を構成する液晶分子を配向させる配向膜11が形成されている。本実施形態の配向膜11は、液晶層30を構成する液晶分子を垂直配向させる垂直配向膜である。また、本実施形態のアレイ基板20は、薄膜トランジスタ(TFT)が形成された基板である。アレイ基板20の表面には、液晶層30を構成する液晶分子を垂直配向させる垂直配向膜21が形成されている。なお、垂直配向膜11、21によって液晶分子が垂直配向されているとき、液晶層30は、垂直配向状態にあると称されるが、垂直配向された液晶分子は、垂直配向膜11、21の表面に対して厳密に垂直ではない。 Between the liquid crystal layer 30 and the color filter substrate 10, an alignment film 11 for aligning liquid crystal molecules constituting the liquid crystal layer 30 is formed. The alignment film 11 of the present embodiment is a vertical alignment film that vertically aligns liquid crystal molecules constituting the liquid crystal layer 30. The array substrate 20 of the present embodiment is a substrate on which a thin film transistor (TFT) is formed. On the surface of the array substrate 20, a vertical alignment film 21 that vertically aligns liquid crystal molecules constituting the liquid crystal layer 30 is formed. Note that when the liquid crystal molecules are vertically aligned by the vertical alignment films 11 and 21, the liquid crystal layer 30 is referred to as being in a vertical alignment state, but the vertically aligned liquid crystal molecules are not aligned with the vertical alignment films 11 and 21. It is not strictly perpendicular to the surface.
 本実施形態のカラーフィルタ基板10は、透光性基材(例えば、ガラス基板)12と、透光性基材12の液晶層30側に形成されたカラーフィルタ層14とから構成されている。カラーフィルタ層14は、第1着色層(赤色:R)14a、第2着色層(緑色:G)14b、第3着色層(青色:B)14cから構成されている。また、各着色層(R、G、B)の間には、ブラックマトリクス16が形成されている。ブラックマトリクス16によって、各着色層(R、G、B)の混色を抑制することができる。 The color filter substrate 10 of the present embodiment is composed of a translucent substrate (for example, a glass substrate) 12 and a color filter layer 14 formed on the translucent substrate 12 on the liquid crystal layer 30 side. The color filter layer 14 includes a first colored layer (red: R) 14a, a second colored layer (green: G) 14b, and a third colored layer (blue: B) 14c. A black matrix 16 is formed between the colored layers (R, G, B). The black matrix 16 can suppress the color mixture of each colored layer (R, G, B).
 さらに、本実施形態の液晶層30を構成する液晶分子は、負の誘電異方性を有したネガ型ネマティック液晶である。液晶層30への印加電圧がOFFの場合において、液晶分子は、両基板10、20の表面に対して略垂直に配向する。また、カラーフィルタ基板10及びアレイ基板20の外側の面には、一対の偏光板41、42が貼り付けられている。本実施形態の液晶パネル100は、いわゆるノーマリーホワイト型であるので、偏光板41、42は、互いの偏光軸が直交するように配置されている。なお、アレイ基板20の背面側には、光を照射するバックライト50が設けられている。 Furthermore, the liquid crystal molecules constituting the liquid crystal layer 30 of this embodiment are negative-type nematic liquid crystals having negative dielectric anisotropy. When the voltage applied to the liquid crystal layer 30 is OFF, the liquid crystal molecules are aligned substantially perpendicular to the surfaces of both the substrates 10 and 20. A pair of polarizing plates 41 and 42 are attached to the outer surfaces of the color filter substrate 10 and the array substrate 20. Since the liquid crystal panel 100 of the present embodiment is a so-called normally white type, the polarizing plates 41 and 42 are arranged so that their polarization axes are orthogonal to each other. A backlight 50 for irradiating light is provided on the back side of the array substrate 20.
 本実施形態の構成では、カラーフィルタ基板10の表面のうち、各着色層(R、G、B)が重なっている色重ね部18における表面15は、実質的に平担である。すなわち、本実施形態の構成では、液晶層30側に尖った角部(図6中の符号115)は存在していない。これは、第2着色層(G)を形成する際に、本実施形態の製造方法で使用するマスクを用いて露光工程を行ったことによるものである。また、同様に、第3着色層(B)を形成する際に、本実施形態の製造方法で使用するマスクを用いて露光工程を行ったことによるものである。本実施形態のカラーフィルタ基板10の製造方法およびそれに使用するマスクについては後述する。 In the configuration of the present embodiment, among the surfaces of the color filter substrate 10, the surface 15 in the color overlap portion 18 where the colored layers (R, G, B) overlap is substantially flat. That is, in the configuration of the present embodiment, there is no sharp corner (reference numeral 115 in FIG. 6) on the liquid crystal layer 30 side. This is because the exposure process was performed using the mask used in the manufacturing method of the present embodiment when forming the second colored layer (G). Similarly, when the third colored layer (B) is formed, the exposure process is performed using the mask used in the manufacturing method of the present embodiment. A method for manufacturing the color filter substrate 10 of the present embodiment and a mask used therefor will be described later.
 次に、図2および図3を参照しながら、本願発明者が検討して見出した色重ね部18の表面15を実質的に平担にする原理について説明する。図2は、スリットが形成されたマスク(グレートーンマスク)90を示している。また、図3は、露光光の透過率と、カラーレジストの膜厚との関係を示したグラフである。 Next, with reference to FIG. 2 and FIG. 3, the principle of making the surface 15 of the color overlapping portion 18 found by studying the present inventor substantially flat will be described. FIG. 2 shows a mask (gray tone mask) 90 in which slits are formed. FIG. 3 is a graph showing the relationship between the transmittance of exposure light and the thickness of the color resist.
 図2に示したマスク90は、スリットが形成されたストライプ状の遮光パターン92と、遮光パターン92の間に位置する透過パターン94とから構成された構造を有している。遮光パターン92と透過パターン94との割合を変更すれば、マスク90を透過する露光光の透過率を変更することができる。 The mask 90 shown in FIG. 2 has a structure composed of a striped light shielding pattern 92 in which slits are formed, and a transmission pattern 94 positioned between the light shielding patterns 92. If the ratio between the light shielding pattern 92 and the transmission pattern 94 is changed, the transmittance of the exposure light transmitted through the mask 90 can be changed.
 図3は、マスク90を透過した露光光の平均透過率によって、露光されるフォトレジストの膜厚を調整できることを示している。ここでのフォトレジストは、露光光の照射によって溶解性が増大するポジレジストである。図3に示した例では、平均透過率が0%(透過パターン94が0%)の場合、フォトレジストの膜厚は3.27μmであり、そして、平均透過率を変更させることによって、3.1μmから0.8μmまで調整することができる。ここでは、フォトレジストがポジレジストの場合について説明したが、ポジレジストと関係は逆になるものの、ネガレジストの場合でも、平均透過率を変更することによって膜厚を調整できる点は同様である。 FIG. 3 shows that the film thickness of the exposed photoresist can be adjusted by the average transmittance of the exposure light that has passed through the mask 90. The photoresist here is a positive resist whose solubility is increased by exposure light exposure. In the example shown in FIG. 3, when the average transmittance is 0% (the transmission pattern 94 is 0%), the film thickness of the photoresist is 3.27 μm, and the average transmittance is changed by changing the average transmittance. It can be adjusted from 1 μm to 0.8 μm. Although the case where the photoresist is a positive resist has been described here, the relationship with the positive resist is reversed, but even in the case of a negative resist, the film thickness can be adjusted by changing the average transmittance.
 次に、図4(a)から図5(c)を参考にしながら、本実施形態のカラーフィルタ基板10の製造方法について説明する。図4(a)から図5(c)は、カラーフィルタ基板10の作製方法を説明するための工程断面図である。 Next, a method for manufacturing the color filter substrate 10 of this embodiment will be described with reference to FIGS. 4 (a) to 5 (c). 4A to 5C are process cross-sectional views for explaining a method for manufacturing the color filter substrate 10.
 まず、平板状の光透過性材料からなる透光性基材(例えば、ガラス基板)12を用意した後、図4(a)に示すように、透光性基材12の上にブラックマトリクス16を形成する。ブラックマトリクス16は、例えば、金属製の材料(例えば、酸化クロムなど)または黒色樹脂材料からなる。次いで、ブラックマトリクス16を覆うように、透光性基材12の上に、赤色着色層14a(R)を構成する材料である赤色レジスト61(R)を形成する。ここでは、ガラス基板12の上に赤色レジスト61(R)を例えば1.0~2.5μmの厚さで塗布し、次いで、乾燥させる。 First, after preparing a translucent base material (for example, a glass substrate) 12 made of a flat light transmissive material, a black matrix 16 is formed on the translucent base material 12 as shown in FIG. Form. The black matrix 16 is made of, for example, a metal material (for example, chromium oxide) or a black resin material. Next, a red resist 61 (R), which is a material constituting the red colored layer 14 a (R), is formed on the translucent substrate 12 so as to cover the black matrix 16. Here, the red resist 61 (R) is applied on the glass substrate 12 to a thickness of 1.0 to 2.5 μm, for example, and then dried.
 次に、図4(b)に示すように、マスク70を介して、赤色レジスト61(R)をパターニングすることによって、赤色着色層14a(R)を形成する。具体的には、赤色着色層14a(R)の形状を規定する開口部70aを有するフォトマスク70をガラス基板12の上方に配置し、そのフォトマスク70を通して露光光(紫外線)81を赤色レジスト61(R)に照射する。フォトマスク70には遮光層70bが形成されているので、開口部70aを通った紫外線によって赤色レジスト61(R)が硬化する。次いで、例えば、アルカリ現像液で現像することによって、赤色着色層14a(R)を得る。 Next, as shown in FIG. 4B, the red colored layer 14a (R) is formed by patterning the red resist 61 (R) through the mask 70. Specifically, a photomask 70 having an opening 70 a that defines the shape of the red colored layer 14 a (R) is disposed above the glass substrate 12, and exposure light (ultraviolet rays) 81 is transmitted through the photomask 70 to the red resist 61. Irradiate (R). Since the light shielding layer 70 b is formed on the photomask 70, the red resist 61 (R) is cured by the ultraviolet light that has passed through the opening 70 a. Next, the red colored layer 14a (R) is obtained by developing with an alkaline developer, for example.
 次に、赤色着色層14a(R)を覆うように、ガラス基板12の上に、緑色着色層14b(G)を構成する材料である緑色レジスト62(G)を形成する。ここでは、ガラス基板12の上に、緑色レジスト62(G)を例えば1.0~2.5μmの厚さで塗布し、次いで、乾燥させる。 Next, a green resist 62 (G), which is a material constituting the green colored layer 14 b (G), is formed on the glass substrate 12 so as to cover the red colored layer 14 a (R). Here, the green resist 62 (G) is applied on the glass substrate 12 to a thickness of 1.0 to 2.5 μm, for example, and then dried.
 次に、図5(a)に示すように、マスク72を介して、緑色レジスト62(G)をパターニングすることによって、緑色着色層14b(G)を形成する。具体的には、緑色着色層14b(G)の形状を規定する開口部72aを有するフォトマスク72をガラス基板12の上方に配置し、そのフォトマスク72を通して露光光(紫外線)82を緑色レジスト62(G)に照射する。次いで、例えば、アルカリ現像液で現像することによって、緑色着色層14b(G)を得る。 Next, as shown in FIG. 5A, the green colored layer 14b (G) is formed by patterning the green resist 62 (G) through the mask 72. Specifically, a photomask 72 having an opening 72 a that defines the shape of the green colored layer 14 b (G) is disposed above the glass substrate 12, and exposure light (ultraviolet light) 82 is transmitted through the photomask 72 to the green resist 62. Irradiate (G). Next, for example, the green colored layer 14b (G) is obtained by developing with an alkali developer.
 ここで、フォトマスク72には、遮光層72bが形成されており、そして、フォトマスク72のうち、赤色着色層14a(R)と緑色着色層14b(G)との隣接領域15aを照射する画素エッジ領域73の部分にスリット73bが形成されている。画素エッジ領域73は、図1に示した色重ね部18における表面15を照射する領域であり、この例では、ブラックマトリクス16の上方周辺の領域に相当する。 Here, the light mask layer 72b is formed on the photomask 72, and the pixel that irradiates the adjacent region 15a of the red colored layer 14a (R) and the green colored layer 14b (G) in the photomask 72. A slit 73 b is formed in the edge region 73. The pixel edge region 73 is a region that irradiates the surface 15 in the color overlap portion 18 illustrated in FIG. 1, and corresponds to an upper peripheral region of the black matrix 16 in this example.
 また、スリット73bは、図2に示した構造と同様であり、このスリット73bによって、フォトマスク72の露光光の平均透過率が調整されている。具体的には、開口部72aを通った紫外線によって緑色レジスト62(G)が硬化する。さらには、画素エッジ領域73の部分に形成されたスリット73bを通った紫外線によって、赤色着色層14a(R)と緑色着色層14b(G)との隣接領域15aが実質的に平担になるように、画素エッジ領域73の部分の平均透過率は、スリット73bによって調整されている。 The slit 73b has the same structure as that shown in FIG. 2, and the average transmittance of the exposure light of the photomask 72 is adjusted by the slit 73b. Specifically, the green resist 62 (G) is cured by the ultraviolet rays that have passed through the opening 72a. Furthermore, the adjacent region 15a of the red colored layer 14a (R) and the green colored layer 14b (G) is substantially flattened by the ultraviolet rays that have passed through the slit 73b formed in the pixel edge region 73. In addition, the average transmittance of the pixel edge region 73 is adjusted by the slit 73b.
 次に、図5(b)に示すように、赤色着色層14a(R)及び緑色着色層14b(G)を覆うように、ガラス基板12の上に、青色着色層14c(B)を構成する材料である青色レジスト63(B)を形成する。ここでは、ガラス基板12の上に、青色レジスト63(B)を例えば1.0~2.5μmの厚さで塗布し、次いで、乾燥させる。 Next, as shown in FIG.5 (b), the blue colored layer 14c (B) is comprised on the glass substrate 12 so that the red colored layer 14a (R) and the green colored layer 14b (G) may be covered. A blue resist 63 (B) as a material is formed. Here, the blue resist 63 (B) is applied on the glass substrate 12 to a thickness of 1.0 to 2.5 μm, for example, and then dried.
 次に、図5(c)に示すように、マスク74を介して、青色レジスト63(B)をパターニングすることによって、青色着色層14c(B)を形成する。具体的には、青色着色層14c(B)の形状を規定する開口部74aを有するフォトマスク74をガラス基板12の上方に配置し、そのフォトマスク74を通して露光光(紫外線)83を青色レジスト63(B)に照射する。次いで、例えば、アルカリ現像液で現像することによって、青色着色層14c(B)を得る。 Next, as shown in FIG. 5C, the blue colored layer 14c (B) is formed by patterning the blue resist 63 (B) through the mask 74. Specifically, a photomask 74 having an opening 74 a that defines the shape of the blue colored layer 14 c (B) is disposed above the glass substrate 12, and exposure light (ultraviolet light) 83 is transmitted through the photomask 74 to the blue resist 63. Irradiate (B). Next, for example, the blue colored layer 14c (B) is obtained by developing with an alkali developer.
 このマスク74でも、隣接領域を照射する画素エッジ領域75の部分にスリット75bが形成されている。さらに説明すると、フォトマスク74には、遮光層74bが形成されており、そして、フォトマスク74のうち、緑色着色層14b(G)と青色着色層14c(B)との隣接領域を照射する画素エッジ領域75の部分にスリット75bが形成されている。スリット75bは、図2に示した構造と同様であり、このスリット75bによって、フォトマスク74の露光光の平均透過率が調整されている。具体的には、開口部74aを通った紫外線によって青色レジスト63(B)が硬化する。さらには、画素エッジ領域75の部分に形成されたスリット75bを通った紫外線によって、緑色着色層14b(G)と青色着色層14c(B)との隣接領域15bが実質的に平担になるように、画素エッジ領域75の部分の平均透過率は、スリット75bによって調整されている。 Also in this mask 74, a slit 75b is formed in the portion of the pixel edge region 75 that irradiates the adjacent region. More specifically, a light shielding layer 74b is formed on the photomask 74, and pixels in the photomask 74 that irradiate adjacent regions of the green coloring layer 14b (G) and the blue coloring layer 14c (B). A slit 75 b is formed in the edge region 75. The slit 75b has the same structure as that shown in FIG. 2, and the average transmittance of the exposure light of the photomask 74 is adjusted by the slit 75b. Specifically, the blue resist 63 (B) is cured by the ultraviolet rays that have passed through the opening 74 a. Furthermore, the adjacent region 15b of the green coloring layer 14b (G) and the blue coloring layer 14c (B) is substantially flattened by the ultraviolet rays that pass through the slit 75b formed in the pixel edge region 75. In addition, the average transmittance of the pixel edge region 75 is adjusted by the slit 75b.
 このようにして、本実施形態のカラーフィルタ基板10を得ることができる。なお、本実施形態のカラーフィルタ基板10においても、色抜け防止のために、隣接領域15aおよび15bが凹んだ状態になるよりかは、僅かに凸状になるようにしている。しかし、それでも、実質的に平担となっており、図6に示したような角部115のような状態にはなっていない。 In this way, the color filter substrate 10 of the present embodiment can be obtained. In the color filter substrate 10 of the present embodiment as well, in order to prevent color loss, the adjacent regions 15a and 15b are slightly convex rather than depressed. However, it is still substantially flat and is not in the state of the corner 115 as shown in FIG.
 以上説明したように、本実施形態のカラーフィルタ基板10の製造方法によれば、第1着色層14a(R)を覆うように第2着色材料62(G)を基板12の上に堆積した後、マスク72を介して第2着色材料62(G)に光を照射することによって、第1着色層14a(R)と隣接する第2着色層14b(G)を形成する工程を実行する。ここで、第2着色層14b(G)を形成する工程において、マスク72のうちの、第1着色層14a(R)と第2着色層14b(G)との隣接領域15aを照射する画素エッジ領域73の部分にはスリット73bが形成されており、そのスリット73bによって、隣接領域15aにおける第2着色層14b(G)の膜厚を調整することができる。 As described above, according to the method for manufacturing the color filter substrate 10 of the present embodiment, after the second colored material 62 (G) is deposited on the substrate 12 so as to cover the first colored layer 14a (R). The step of forming the second colored layer 14b (G) adjacent to the first colored layer 14a (R) is performed by irradiating the second colored material 62 (G) with light through the mask 72. Here, in the step of forming the second colored layer 14b (G), the pixel edge that irradiates the adjacent region 15a of the first colored layer 14a (R) and the second colored layer 14b (G) in the mask 72. A slit 73b is formed in the region 73, and the thickness of the second colored layer 14b (G) in the adjacent region 15a can be adjusted by the slit 73b.
 したがって、第1着色層14a(R)と第2着色層14b(G)との隣接領域15aに角部(図6に示した色重ね部における凸部115)が生じることを抑制することができる。隣接領域15aの周辺の液晶分子の配向乱れを緩和でき、それゆえに、光漏れの発生を抑制することができる。その結果、高コントラスト比の表示を実現することができるカラーフィルタ基板10を簡便に製造することが可能となる。さらに説明すると、一枚のマスク72で(一回の露光工程で)、第2着色層14b(G)を形成するとともに、隣接領域15aを平坦化することができるので、複雑なプロセスを用いずに、マスクコストも抑えて安価に、高コントラスト比の表示を実現することができるカラーフィルタ基板10を製造することができる。 Therefore, it is possible to suppress the occurrence of a corner portion (the convex portion 115 in the color overlapping portion shown in FIG. 6) in the adjacent region 15a between the first colored layer 14a (R) and the second colored layer 14b (G). . Disturbances in alignment of liquid crystal molecules around the adjacent region 15a can be alleviated, and therefore light leakage can be suppressed. As a result, the color filter substrate 10 capable of realizing display with a high contrast ratio can be easily manufactured. More specifically, since the second colored layer 14b (G) can be formed and the adjacent region 15a can be planarized with a single mask 72 (in a single exposure step), a complicated process is not used. In addition, the color filter substrate 10 capable of realizing a display with a high contrast ratio at a low cost while suppressing the mask cost can be manufactured.
 さらに、上述したように、第3着色層14c(B)を形成する工程においても、同様の手法を実行することができる。すなわち、マスク74のうちの、第2着色層14b(G)と第3着色層14c(B)との隣接領域15bを照射する画素エッジ領域75の部分にはスリット75bが形成されており、そのスリット75bによって、隣接領域15bにおける第3着色層14c(B)の膜厚を調整することができる。したがって、隣接領域15bに角部(図6に示した色重ね部における凸部115)が生じることを抑制することができる。 Furthermore, as described above, the same technique can be executed in the step of forming the third colored layer 14c (B). That is, in the mask 74, a slit 75b is formed in a portion of the pixel edge region 75 that irradiates the adjacent region 15b of the second colored layer 14b (G) and the third colored layer 14c (B). The thickness of the third colored layer 14c (B) in the adjacent region 15b can be adjusted by the slit 75b. Therefore, it is possible to suppress the occurrence of a corner portion (the convex portion 115 in the color overlapping portion shown in FIG. 6) in the adjacent region 15b.
 なお、第1着色層14a、第2着色層14b、第3着色層14cは、それぞれ、赤色着色層(R)、緑色着色層(G)、青色着色層(B)に対応していなくてもよく、他の色の組み合わせであっても構わない。例えば、第1着色層14aが青色着色層(B)、第2着色層14bが赤色着色層(R)、第3着色層14cが緑色着色層(G)であってもよい。さらに、カラーフィルタ層14が、3色の着色層でなく、4色またはそれ以上の着色層から構成されている場合でも、本実施形態の製造方法は適用することができる。 The first colored layer 14a, the second colored layer 14b, and the third colored layer 14c may not correspond to the red colored layer (R), the green colored layer (G), and the blue colored layer (B), respectively. Of course, other color combinations may be used. For example, the first colored layer 14a may be a blue colored layer (B), the second colored layer 14b may be a red colored layer (R), and the third colored layer 14c may be a green colored layer (G). Furthermore, the manufacturing method of the present embodiment can be applied even when the color filter layer 14 is composed of four or more colored layers instead of three colored layers.
 また、図5(c)に示した工程の後は、カラーフィルタ層14(R,G,B)の上に、垂直配向膜11を形成することができる。勿論、垂直配向膜11を形成する工程の前に、カラーフィルタ層14の上に、透明電極(例えば、ITO電極)を形成する工程、および、スペーサ(例えば、柱状スペーサ)を形成する工程を行ってもよい。 Further, after the step shown in FIG. 5C, the vertical alignment film 11 can be formed on the color filter layer 14 (R, G, B). Of course, before the step of forming the vertical alignment film 11, a step of forming a transparent electrode (for example, an ITO electrode) and a step of forming a spacer (for example, a columnar spacer) are performed on the color filter layer 14. May be.
 垂直配向膜11は、例えば、インクジェット法、印刷法、スピンコート法などによって形成される。本実施形態の垂直配向膜11は、有機配向膜(例えば、ポリイミド膜)であるが、無機配向膜(例えば、SiOxを基本骨格とする無機配向膜など)を用いることも可能である。 The vertical alignment film 11 is formed by, for example, an inkjet method, a printing method, a spin coating method, or the like. The vertical alignment film 11 of this embodiment is an organic alignment film (for example, a polyimide film), but an inorganic alignment film (for example, an inorganic alignment film having SiOx as a basic skeleton) can also be used.
 加えて、配向膜11として、光照射によって配向方向が規定されている光配向膜を使用することも可能である。すなわち、光配向法を用いて液晶分子のプレチルト方向を規定する手法を用いることもできる。光配向法は、光配向膜に偏光を照射することによってプレチルト角を設定するものである。光配向法では、光照射によって配向方向を規定する光照射ステップを行うので、ラビング法と異なり、非接触プロセスである。それゆえ、静電気の発生等が生じない利点を有している。 In addition, as the alignment film 11, a photo-alignment film whose alignment direction is defined by light irradiation can be used. That is, a method of defining the pretilt direction of the liquid crystal molecules using a photo-alignment method can also be used. The photo-alignment method sets the pretilt angle by irradiating the photo-alignment film with polarized light. Unlike the rubbing method, the photo-alignment method is a non-contact process because a light irradiation step that defines the alignment direction by light irradiation is performed. Therefore, there is an advantage that static electricity is not generated.
 光配向法を用いた液晶パネルの場合、スロットまたはリブを設けずに、優れた視野特性を達成することができる。したがって、スロットまたはリブによる光の透過率の低下などの影響を排除した優れたコントラスト比を持った液晶パネルを実現することができる。本実施形態のカラーフィルタ基板10は、そのような優れたコントラスト比(例えば、5000以上)を持った液晶パネルに好適に使用することができる。 In the case of a liquid crystal panel using a photo-alignment method, excellent viewing characteristics can be achieved without providing slots or ribs. Therefore, it is possible to realize a liquid crystal panel having an excellent contrast ratio that eliminates the influence of a decrease in light transmittance due to the slots or ribs. The color filter substrate 10 of the present embodiment can be suitably used for a liquid crystal panel having such an excellent contrast ratio (for example, 5000 or more).
 さらにその後は、別工程で作製したアレイ基板20と、カラーフィルタ基板10とを対向させるとともに、カラーフィルタ基板10とアレイ基板20との間に液晶層30を形成する。液晶層30は、例えば、滴下注入法を用いて形成することができる。液晶層30を挟むカラーフィルタ基板10とアレイ基板20を含む構造体を形成した後は、カラーフィルタ基板10とアレイ基板20の外側に偏光板41、42を貼り付ける。ノーマリーホワイト型の場合には、偏光板41、42は、互いの偏光軸が直交するように配置される。このようにして、本実施形態の液晶パネル100が得られる。 After that, the array substrate 20 produced in a separate process and the color filter substrate 10 are opposed to each other, and the liquid crystal layer 30 is formed between the color filter substrate 10 and the array substrate 20. The liquid crystal layer 30 can be formed using, for example, a dropping injection method. After the structure including the color filter substrate 10 and the array substrate 20 sandwiching the liquid crystal layer 30 is formed, polarizing plates 41 and 42 are attached to the outside of the color filter substrate 10 and the array substrate 20. In the case of a normally white type, the polarizing plates 41 and 42 are arranged so that their polarization axes are orthogonal to each other. In this way, the liquid crystal panel 100 of the present embodiment is obtained.
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。 As mentioned above, although this invention has been demonstrated by suitable embodiment, such description is not a limitation matter and, of course, various modifications are possible.
 本発明によれば、高コントラスト比の表示を実現することができるカラーフィルタ基板および液晶パネルを提供することができる。 According to the present invention, it is possible to provide a color filter substrate and a liquid crystal panel that can realize display with a high contrast ratio.
 10 カラーフィルタ基板
 11 配向膜(垂直配向膜)
 12 透光性基材(ガラス基板)
 14 カラーフィルタ層
 14a~c 着色層
 15 色重ね部の表面
 15a、15b 隣接領域
 16 ブラックマトリクス
 18 色重ね部
 20 アレイ基板
 21 配向膜(垂直配向膜)
 30 液晶層
 41、42 偏光板
 50 バックライト
 61 赤色レジスト
 62 緑色レジスト
 63 青色レジスト
 70 マスク
 70a 開口部
 70b 遮光層
 72 マスク
 72a 開口部
 72b 遮光層
 73 画素エッジ領域
 73b スリット
 74 マスク
 74a 開口部
 74b 遮光層
 75 画素エッジ領域
 75b スリット
 90 マスク
 92 遮光パターン
 94 透過パターン
100 液晶パネル
1000 液晶パネル
10 Color filter substrate 11 Alignment film (Vertical alignment film)
12 Translucent substrate (glass substrate)
14 Color filter layer 14a to c Colored layer 15 Surface of color overlapping portion 15a, 15b Adjacent region 16 Black matrix 18 Color overlapping portion 20 Array substrate 21 Alignment film (vertical alignment film)
30 Liquid crystal layer 41, 42 Polarizing plate 50 Backlight 61 Red resist 62 Green resist 63 Blue resist 70 Mask 70a Opening 70b Light shielding layer 72 Mask 72a Opening 72b Light shielding layer 73 Pixel edge region 73b Slit 74 Mask 74a Opening 74b Light shielding layer 75 pixel edge region 75b slit 90 mask 92 light shielding pattern 94 transmission pattern 100 liquid crystal panel 1000 liquid crystal panel

Claims (5)

  1.  カラーフィルタの製造方法であって、
     基板の上に、第1着色材料から構成された第1着色層を形成する工程(a)と、
     前記第1着色層を覆うように、第2着色層を構成する第2着色材料を基板の上に堆積する工程(b)と、
     マスクを介して前記第2着色材料に光を照射することによって、前記第1着色層と隣接する第2着色層を前記基板の上に形成する工程(c)と
     を含み、
     前記工程(c)において、前記マスクのうち、前記第1着色層と前記第2着色層との隣接領域を照射する画素エッジ領域の部分にスリットが形成されていることを特徴とする、カラーフィルタの製造方法。
    A color filter manufacturing method comprising:
    Forming a first colored layer composed of a first colored material on a substrate (a);
    Depositing a second colored material constituting the second colored layer on the substrate so as to cover the first colored layer;
    (C) forming a second colored layer adjacent to the first colored layer on the substrate by irradiating the second colored material with light through a mask.
    In the step (c), a slit is formed in a portion of a pixel edge region that irradiates an adjacent region of the first colored layer and the second colored layer in the mask. Manufacturing method.
  2.  さらに、前記第2着色層を覆うように、第3着色層を構成する第3着色材料を基板の上に堆積する工程(d)を実行し、
     更なるマスクを介して前記第3着色材料に光を照射することによって、前記第2着色層と隣接する第3着色層を前記基板の上に形成する工程(e)と
     を含み、
     前記工程(e)において、前記更なるマスクのうち、前記第2着色層と前記第3着色層との隣接領域を照射する画素エッジ領域の部分にスリットが形成されていることを特徴とする、請求項1に記載のカラーフィルタの製造方法。
    Further, the step (d) of depositing a third colored material constituting the third colored layer on the substrate so as to cover the second colored layer is performed,
    Forming a third colored layer adjacent to the second colored layer on the substrate by irradiating the third colored material with light through a further mask; and
    In the step (e), a slit is formed in a part of a pixel edge region that irradiates an adjacent region of the second colored layer and the third colored layer in the further mask. The manufacturing method of the color filter of Claim 1.
  3.  前記第1着色層、前記第2着色層および前記第3着色層の上に、配向膜を形成する工程を実行し、
     前記配向膜を形成する工程には、光照射によって配向方向を規定する光照射ステップが含まれる、請求項2に記載のカラーフィルタの製造方法。
    Performing a step of forming an alignment film on the first colored layer, the second colored layer, and the third colored layer;
    The method for producing a color filter according to claim 2, wherein the step of forming the alignment film includes a light irradiation step of defining an alignment direction by light irradiation.
  4.  互いに対向するカラーフィルタ基板及びアレイ基板と、
     前記カラーフィルタ基板及びアレイ基板の間に設けられた液晶層と
     を備えた液晶パネルであって、
     前記液晶層と前記カラーフィルタ基板との間には、前記液晶層を構成する液晶分子を配向させる配向膜が形成されており、
     前記カラーフィルタ基板は、
          透光性基材と、
          前記透光性基材の前記液晶層側に形成され、第1着色材料から構成された第1着色層と、
          前記第1着色層と隣接し、第2着色材料から構成された第2着色層と、
          前記第2着色層と隣接し、第3着色材料から構成された第3着色層と
     を含んでおり、
     前記第2着色層は、
          前記第1着色層と前記第2着色層との隣接領域を照射する画素エッジ領域の部分にスリットが形成されているマスクを介して、前記第2着色材料に光を照射することによって形成されており、
     前記第3着色層は、
          前記第2着色層と前記第3着色層との隣接領域を照射する画素エッジ領域の部分にスリットが形成されている更なるマスクを介して、前記第3着色材料に光を照射することによって形成されている、液晶パネル。
    A color filter substrate and an array substrate facing each other;
    A liquid crystal panel comprising a liquid crystal layer provided between the color filter substrate and the array substrate,
    Between the liquid crystal layer and the color filter substrate, an alignment film for aligning liquid crystal molecules constituting the liquid crystal layer is formed,
    The color filter substrate is
    A translucent substrate;
    A first colored layer formed on the liquid crystal layer side of the translucent substrate and made of a first colored material;
    A second colored layer adjacent to the first colored layer and composed of a second colored material;
    A third colored layer composed of a third colored material adjacent to the second colored layer,
    The second colored layer is
    The second colored material is formed by irradiating light through a mask in which a slit is formed in a portion of a pixel edge region that irradiates an adjacent region of the first colored layer and the second colored layer. And
    The third colored layer is
    Formed by irradiating the third colored material with light through a further mask in which a slit is formed in a portion of a pixel edge region that irradiates an adjacent region of the second colored layer and the third colored layer LCD panel.
  5.  前記配向膜は、光照射によって配向方向を規定されている光配向膜である、請求項4に記載の液晶パネル。 The liquid crystal panel according to claim 4, wherein the alignment film is a photo-alignment film whose alignment direction is defined by light irradiation.
PCT/JP2011/052408 2010-02-08 2011-02-04 Method of manufacturing color filter and liquid crystal panel WO2011096530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010025616 2010-02-08
JP2010-025616 2010-02-08

Publications (1)

Publication Number Publication Date
WO2011096530A1 true WO2011096530A1 (en) 2011-08-11

Family

ID=44355524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052408 WO2011096530A1 (en) 2010-02-08 2011-02-04 Method of manufacturing color filter and liquid crystal panel

Country Status (1)

Country Link
WO (1) WO2011096530A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206622A (en) * 1997-01-20 1998-08-07 Dainippon Printing Co Ltd Manufacture of color filter
JP2004240401A (en) * 2003-01-17 2004-08-26 Seiko Epson Corp Substrate for electrooptical device, manufacturing method of substrate for electrooptical device, electrooptical device, and electronic device
JP2009265448A (en) * 2008-04-25 2009-11-12 Dainippon Printing Co Ltd Color filter, and liquid crystal display device provided with color filter
JP2009282366A (en) * 2008-05-23 2009-12-03 Sharp Corp Liquid crystal display panel and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206622A (en) * 1997-01-20 1998-08-07 Dainippon Printing Co Ltd Manufacture of color filter
JP2004240401A (en) * 2003-01-17 2004-08-26 Seiko Epson Corp Substrate for electrooptical device, manufacturing method of substrate for electrooptical device, electrooptical device, and electronic device
JP2009265448A (en) * 2008-04-25 2009-11-12 Dainippon Printing Co Ltd Color filter, and liquid crystal display device provided with color filter
JP2009282366A (en) * 2008-05-23 2009-12-03 Sharp Corp Liquid crystal display panel and method of manufacturing the same

Similar Documents

Publication Publication Date Title
WO2011089772A1 (en) Exposure apparatus, liquid crystal display device, and method for manufacturing liquid crystal display device
US8908128B2 (en) Color filter substrate and LCD device using it
WO2007086474A1 (en) Liquid crystal display device manufacturing method, and liquid crystal display device
US10324239B2 (en) Display device and color filter substrate
US10241367B2 (en) Display panel
US20180275465A1 (en) Liquid crystal display panel and manufacturing method thereof
US9891466B2 (en) Liquid crystal display panel and fabrication method thereof
WO2012046589A1 (en) Method for producing substrate for liquid crystal display panel, and photomask
JP2007212659A (en) Liquid crystal display device
JP2007101992A (en) Color filter for liquid crystal display and manufacturing method thereof
JP2006267689A (en) Manufacturing method of liquid crystal display device, and liquid crystal display device
WO2017128779A1 (en) Display substrate and manufacturing method therefor, and display device
JP4109670B2 (en) Manufacturing method of liquid crystal display device
JP5332548B2 (en) Color filter and liquid crystal display device including the same
JP2009186822A (en) Liquid crystal display panel and manufacturing method of liquid crystal display panel
JP2007327985A (en) Method for manufacturing color filter, and color filter
WO2016185873A1 (en) Liquid crystal display device
JP5655426B2 (en) Color filter manufacturing method and color filter
WO2017057208A1 (en) Liquid crystal display panel and manufacturing method thereof
WO2011096530A1 (en) Method of manufacturing color filter and liquid crystal panel
WO2016084232A1 (en) Liquid crystal display panel, liquid crystal display device, and method for manufacturing liquid crystal display panel
JP2004102238A (en) Liquid crystal display device of vva mode
JP2005173016A (en) Method for manufacturing substrate for liquid crystal display device, and method for manufacturing liquid crystal display device using the same
JP2008241959A (en) Liquid crystal display
JP2007121800A (en) Method for manufacturing color filter substrate, and the color filter substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP