WO2011089772A1 - Exposure apparatus, liquid crystal display device, and method for manufacturing liquid crystal display device - Google Patents

Exposure apparatus, liquid crystal display device, and method for manufacturing liquid crystal display device Download PDF

Info

Publication number
WO2011089772A1
WO2011089772A1 PCT/JP2010/069338 JP2010069338W WO2011089772A1 WO 2011089772 A1 WO2011089772 A1 WO 2011089772A1 JP 2010069338 W JP2010069338 W JP 2010069338W WO 2011089772 A1 WO2011089772 A1 WO 2011089772A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
region
substrate
display device
Prior art date
Application number
PCT/JP2010/069338
Other languages
French (fr)
Japanese (ja)
Inventor
井上威一郎
宮地弘一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to RU2012136465/28A priority Critical patent/RU2509327C1/en
Priority to EP10843936A priority patent/EP2530527A1/en
Priority to US13/574,893 priority patent/US9069212B2/en
Priority to JP2011550795A priority patent/JP5400176B2/en
Priority to CN201080059879.7A priority patent/CN102687078B/en
Publication of WO2011089772A1 publication Critical patent/WO2011089772A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs

Definitions

  • the present invention relates to an exposure apparatus, a liquid crystal display device, and a manufacturing method thereof. More specifically, the present invention relates to an exposure apparatus suitably used for alignment processing of a photo-alignment film, a liquid crystal display device including the photo-alignment film, and a method for manufacturing the liquid crystal display device.
  • the liquid crystal display device is a display device that can be reduced in weight, thickness, and power consumption, it is widely used for televisions, monitors for personal computers, monitors for portable terminals, and the like.
  • Such a liquid crystal display device usually controls the transmittance of light transmitted through the liquid crystal layer according to the inclination angle of the liquid crystal molecules that changes in accordance with the voltage applied between the pair of substrates (liquid crystal layer). Therefore, the liquid crystal display device has an angle dependency on the transmittance.
  • display defects such as a decrease in contrast and gradation inversion during halftone display may occur depending on the viewing angle (observation) direction. Therefore, in general, the liquid crystal display device has room for improvement in terms of improving viewing angle characteristics.
  • each pixel is divided into two or more regions having different tilt directions of liquid crystal molecules.
  • this technique when a voltage is applied to the liquid crystal layer, the liquid crystal molecules are inclined in different directions within the pixel, so that the viewing angle characteristics can be improved.
  • Each region having a different orientation direction is also called a domain, and orientation division is also called a multi-domain.
  • liquid crystal modes in which alignment division is performed in the horizontal alignment mode, a multi-domain twisted nematic (TN) mode, a multi-domain birefringence control (ECB) mode, a multi-domain optically compensated birefringence (OCB) mode, and the like. (Optically Compensated Birefringence) mode and the like.
  • TN twisted nematic
  • ECB multi-domain birefringence control
  • OCB optically compensated birefringence
  • Optically Compensated Birefringence Optically Compensated Birefringence
  • MVA multi-domain vertical alignment
  • PVA Powerned Vertical Alignment
  • VAECB Very Alignment ECB
  • Examples of the method for performing alignment division include a rubbing method and a photo-alignment method.
  • a rubbing method a method of rubbing an alignment film in a state where a rubbing region and a non-rubbing region are separated by a patterned resist has been proposed.
  • the alignment treatment is performed by rubbing the surface of the alignment film with a cloth wound around a roller. Therefore, in the rubbing method, dust such as cloth hairs or scraped pieces may be generated, or switching elements may be damaged due to static electricity, characteristic shift, deterioration, etc., and there is room for further improvement. It was.
  • the photo-alignment method uses a photo-alignment film as the alignment film, and irradiates (exposures) light such as ultraviolet rays to the photo-alignment film, thereby generating an alignment regulating force in the alignment film and / or This is an alignment method for changing the alignment regulation direction. Therefore, the photo-alignment method can perform the alignment treatment of the alignment film in a non-contact manner, and can suppress the occurrence of dirt, dust, etc. during the alignment treatment. Further, by using a photomask at the time of exposure, light irradiation can be performed under different conditions on a desired region in the alignment film surface. Therefore, a domain having a desired design can be easily formed.
  • Patent Document 1 discloses a technique for forming a VAECB (Vertical Alignment ECB) mode by performing an alignment process by a photo-alignment method.
  • VAECB Vertical Alignment ECB
  • This method includes an exposure step of dividing the substrate surface into two or more exposure regions and exposing the alignment film through a photomask for each exposure region, and the exposure step includes a part of the adjacent exposure region. The exposure is performed so as to overlap, and the photomask has a halftone portion corresponding to the overlapping exposure region.
  • the used photomask 121 has a central portion 119 and a halftone portion 120.
  • a light transmitting portion stripe pattern
  • the length of the translucent part 128 of the halftone part 120 gradually decreases as the distance from the central part 119 increases.
  • the length of the translucent part 128 decreases in a trigonometric function. In this way, the aperture ratio of the halftone portion 120 is smaller than the aperture ratio of the central portion 119. Note that the length of the translucent part 128 may decrease linearly as the distance from the central part 119 increases.
  • FIG. 33 and FIG. 34 are schematic views for explaining the step of scanning exposure of the photo-alignment film formed on the substrate.
  • the photo-alignment film is exposed using a plurality of photomasks 121.
  • the substrate 118 is fixed on the stage 171.
  • the substrate 118 and the stage 171 pass under them, whereby the entire photo-alignment film provided on the substrate 118 is exposed.
  • the substrate 118 is irradiated with UV light from a direction inclined by, for example, 40 ° with respect to the normal direction of the substrate surface.
  • the width of the UV light transmitted through the light transmitting portion 127 of the central portion 119 is, for example, 40 mm.
  • a part of the alignment film (joint portion 124) is exposed through the halftone portions 120 of the two photomasks. Thereby, when the board
  • display unevenness is visually recognized at the joint portion 124 corresponding to the tip portion of the light transmitting portion 128.
  • the present inventors made a panel using the substrate in which the above trouble occurred, and turned on the panel to evaluate the details, it was found that the appearance of the mask trace depends on the location. Specifically, as shown in FIG. 36, the mask mark 180 appears darker from the joint end 124a toward the center line 124c of the joint, and appears darkest at the center line 124c. On the other hand, this phenomenon (mask mark) was not visually recognized except for the joint portion 124, that is, in the region exposed through the central portion 119.
  • This discontinuity in the irradiation amount directly affects the tilt angle of the liquid crystal molecules.
  • the degree of instantaneous increase in irradiation amount when the substrate is stopped is different between the joint portion 124 and the portion other than the joint portion 124, and the degree of increase is greater at the joint portion 124. it is conceivable that.
  • the present invention has been made in view of the above situation, and an exposure apparatus, a liquid crystal display apparatus, and a liquid crystal display apparatus capable of suppressing display unevenness from being visually recognized at a joint even if scanning is temporarily stopped during scan exposure.
  • the object is to provide a manufacturing method thereof.
  • the inventors of the present invention have made various studies on an exposure apparatus that can suppress the display unevenness from being visually recognized at the joint even when the scan is temporarily stopped during the scan exposure, and has focused on the pattern of the photomask. Then, the photomask is provided with a first region and a second region adjacent to the first region in a direction (vertical direction) perpendicular to the scan direction, and a plurality of the first regions are provided in the first light shielding portion of the first region.
  • first light-transmitting portion Forming the first light-transmitting portion, arranging the plurality of first light-transmitting portions in the vertical direction, forming the plurality of second light-transmitting portions in the second light-shielding portion of the second region, It is assumed that the joint portion is exposed through the second region by making it smaller than the first light-transmitting portion and arranging the plurality of second light-transmitting portions in the vertical direction and discretely distributing them in the scanning direction. In addition, even when scanning is temporarily stopped during exposure, display unevenness corresponding to the end of the second light-transmitting portion is blurred, and traces of the pattern of the second light-transmitting portion are recorded. Finding things that can be made inconspicuous and solving the above problems Conceive bets is the present invention has been completed.
  • the present invention is an exposure apparatus for exposing a photo-alignment film provided on a substrate, the exposure apparatus comprising a light source and a photomask, while scanning at least one of the light source and the substrate.
  • the exposure apparatus comprising a light source and a photomask, while scanning at least one of the light source and the substrate.
  • a direction in which at least one of the light source and the substrate is scanned is a scanning direction
  • a direction perpendicular to the scanning direction is a vertical direction.
  • the plurality of second light-transmitting parts are smaller than the light part and are arranged in the vertical direction.
  • Rutotomoni is an exposure apparatus that is discretely distributed in the scanning direction.
  • the configuration of the exposure apparatus of the present invention is not particularly limited by other components as long as such components are formed as essential.
  • the present invention is also a method of manufacturing a liquid crystal display device including a photo-alignment film provided on a substrate, the manufacturing method including the photo-alignment through a photomask while scanning at least one of a light source and the substrate.
  • the second region adjacent to the first region in the vertical direction, the first region having a plurality of first light-transmitting portions in the first light-shielding portion, and the plurality of first light-transmitting portions being Arranged in a vertical direction, the second region has a plurality of second light transmitting portions in a second light shielding portion, and the plurality of second light transmitting portions are smaller than the plurality of first light transmitting portions.
  • the plurality of second light transmitting portions are arranged in a vertical direction and are Is also a method of manufacturing the liquid crystal display device are discretely distributed.
  • the configuration of the manufacturing method of the liquid crystal display device of the present invention is not particularly limited by other components and processes as long as such components and processes are essential.
  • the photo-alignment film is made of a material (photo-alignment material) in which the alignment direction of the liquid crystal changes depending on the irradiation direction of the light beam or the moving direction of the irradiation region of the light beam. Preferably it is formed.
  • the aperture ratio of the second region decreases as the distance from the first region increases. Thereby, it can suppress more effectively that a joint is visually recognized.
  • the plurality of second light transmitting parts and the second light shielding part are center lines of the second area parallel to the scanning direction (the center of the second area).
  • the lines may be provided (substantially) symmetrically with respect to a line parallel to the scanning direction.
  • the plurality of second light transmitting parts and the second light shielding part are center lines of the second area parallel to the scanning direction (the center of the second area).
  • the lines may be in a (substantially) mirror image relationship with respect to the lines parallel to the scanning direction.
  • the pattern of the second light transmitting part and the pattern of the second light shielding part may be in a (substantially) mirror image relationship with respect to the center line.
  • the photomask is a first photomask
  • the exposure apparatus further includes a second photomask, and scans at least one of the light source and the substrate.
  • the photo-alignment film is exposed through a second photomask
  • the second photomask has a third region and a fourth region that is adjacent to the third region in a direction perpendicular to the third region.
  • the region has a plurality of third light-transmitting portions in the third light-shielding portion, the plurality of third light-transmitting portions are arranged in a vertical direction
  • the fourth region has a plurality of fourth light-transmitting portions in the fourth light-shielding portion.
  • the plurality of fourth light transmission portions are smaller than the plurality of third light transmission portions, and the plurality of fourth light transmission portions are arranged in the vertical direction and in the scanning direction. Dispersed discretely, a part of the photo-alignment film is exposed through the plurality of second light transmitting parts. Together, it is preferably exposed through the plurality of fourth light transmitting portion. As a result, the joint can be exposed through the second and fourth light-transmitting parts, and generation of a seam at the joint can be suppressed. In addition, even when scanning is temporarily stopped during exposure, display unevenness corresponding to the end portion of the fourth light transmitting portion can be blurred, and the trace of the pattern of the fourth light transmitting portion can be made inconspicuous. Note that separate light sources may be used for the first and second photomasks.
  • the photomask is a first photomask
  • the exposure step includes scanning the at least one of the light source and the substrate with the first photomass and the second photomask.
  • the photo-alignment film is exposed through the photomask
  • the second photomask has a third region and a fourth region that is adjacent to the third region in a direction perpendicular to the third region.
  • the third light-shielding part has a plurality of third light-transmitting parts, the plurality of third light-transmitting parts are arranged in a vertical direction, and the fourth region has a plurality of fourth light-transmitting parts in the fourth light-shielding part.
  • the plurality of fourth light transmissive portions are smaller than the plurality of third light transmissive portions, and the plurality of fourth light transmissive portions are arranged in the vertical direction and discrete in the scanning direction. And a part of the photo-alignment film is exposed through the plurality of second light-transmitting portions. Moni, are preferably exposed through the plurality of fourth light transmitting portion.
  • the joint can be exposed through the second and fourth light-transmitting parts, and generation of a seam at the joint can be suppressed.
  • display unevenness corresponding to the end portion of the fourth light transmitting portion can be blurred, and the trace of the pattern of the fourth light transmitting portion can be made inconspicuous. Note that separate light sources may be used for the first and second photomasks.
  • the aperture ratio of the fourth region decreases as the distance from the third region increases. Thereby, it can suppress more effectively that a joint is visually recognized.
  • the plurality of second light transmissive portions are provided corresponding to the fourth light shielding portions, and the plurality of fourth light transmissive portions are the second light shielding portions. It may be provided corresponding to the part.
  • the pattern of the second light-transmitting portion may correspond to the pattern of the fourth light-shielding portion, and the pattern of the fourth light-transmitting portion may correspond to the pattern of the second light-shielding portion.
  • the first and second photomasks are center lines of the second region parallel to the scanning direction (center lines of the second region, A line parallel to the scanning direction) and a center line of the fourth region parallel to the scanning direction (substantially a center line of the fourth region and parallel to the scanning direction).
  • the plurality of second light-transmitting portions and the plurality of fourth light-transmitting portions may be in a (substantially) mirror image relationship with respect to the center lines.
  • the pattern of the second light-transmitting portion and the pattern of the fourth light-transmitting portion may be in a (substantially) mirror image relationship with respect to the center lines.
  • a straight line parallel to the scanning direction is a scanning line
  • the translucent portions may be arranged at substantially equal intervals. Thereby, it is possible to suppress the occurrence of display unevenness due to the uneven location of the second light-transmitting portion.
  • the plurality of first light transmitting portions may be dispersed in the scanning direction, and at this time, (the plurality of first light transmitting portions) Among them, it is preferable that a region between the first light transmitting parts adjacent in the scanning direction is shielded from light. Thereby, it is possible to suppress the occurrence of display unevenness due to the discontinuity in the number of edges of the first and second light transmitting parts.
  • the plurality of third light-transmitting portions may be dispersed in the scanning direction.
  • the third light transmitting parts it is preferable that a region between the third light transmitting parts adjacent in the scanning direction is shielded from light.
  • the exposure step includes forming the photo-alignment film so as to form, in each pixel, two regions that are exposed in antiparallel directions when the substrate is viewed in plan. Is preferably exposed.
  • wide-angle display such as multi-domain TN mode, multi-domain ECB mode, multi-domain VAECB mode, multi-domain VAHAN (Vertical Alignment Hybrid-aligned Nematic) mode, multi-domain VATN (Vertical Alignment Twisted Nematic) liquid crystal display, etc. Can be easily realized.
  • the present invention is also a liquid crystal display device manufactured by the method for manufacturing a liquid crystal display device of the present invention.
  • liquid crystal display device of the present invention A preferred embodiment of the liquid crystal display device of the present invention will be described in detail below. Various forms shown below may be combined as appropriate.
  • the liquid crystal display device of the present invention is preferably driven by active matrix, but may be driven simply.
  • the liquid crystal display device may include a vertical alignment type liquid crystal layer, and the liquid crystal layer may contain a liquid crystal material having a negative dielectric anisotropy. Thereby, a liquid crystal display device in a vertical alignment mode can be realized.
  • the liquid crystal display device may include a horizontally aligned liquid crystal layer, and the liquid crystal layer may contain a liquid crystal material having positive dielectric anisotropy. Thereby, a liquid crystal display device in a horizontal alignment mode can be realized.
  • the liquid crystal layer may contain a twisted nematic liquid crystal.
  • a liquid crystal display device of TN mode, VATN mode, multi-domain TN mode or multi-domain VATN mode can be realized.
  • a VATN mode liquid crystal display device includes a pair of substrates, a liquid crystal layer containing a nematic liquid crystal, and a pair of vertical alignment films provided on the respective substrates. The directions of the alignment treatment applied to these alignment films are substantially orthogonal to each other, and the nematic liquid crystal is vertically and twist-aligned when no voltage is applied.
  • the liquid crystal display device preferably has 2 or more domains, preferably 4 or less domains, and more preferably 4 domains.
  • a liquid crystal display device excellent in viewing angle characteristics can be realized while suppressing the complexity of the manufacturing process.
  • a wide viewing angle can be obtained in any of four directions orthogonal to each other, for example, four directions of up, down, left, and right.
  • the viewing angle characteristics in any of the four directions orthogonal to each other can be made substantially the same. That is, it is possible to realize viewing angle characteristics with excellent symmetry. Therefore, a liquid crystal display device with small viewing angle dependency can be realized.
  • the arrangement form of the domains when the orientation is divided into four domains is not particularly limited, and examples thereof include a matrix form and a stripe form such as an eye shape.
  • the exposure apparatus the liquid crystal display apparatus, and the manufacturing method thereof of the present invention, it is possible to suppress the display unevenness from being visually recognized at the joint even if the scan is temporarily stopped during the scan exposure.
  • FIG. 1 is a schematic cross-sectional view illustrating a configuration of a liquid crystal display device according to Embodiment 1.
  • FIG. FIG. 3 is a schematic plan view showing one sub-pixel of Embodiment 1 and shows a light irradiation direction with respect to a first substrate (vertical alignment film).
  • FIG. 3 is a schematic plan view showing one sub-pixel of Embodiment 1 and shows a light irradiation direction with respect to a second substrate (vertical alignment film).
  • FIG. 2 is a schematic plan view showing one sub-pixel of Embodiment 1, showing the light irradiation direction on the first and second substrates and the alignment direction of liquid crystal molecules when a voltage is applied.
  • FIG. 3 is a schematic plan view of a first substrate (TFT array substrate) of Embodiment 1.
  • FIG. 3 is a schematic plan view of a second substrate (CF substrate) of Embodiment 1.
  • FIG. 6 is a schematic plan view showing a first substrate and a photomask in the exposure process of Embodiment 1.
  • FIG. 6 is a schematic plan view showing a first substrate and a photomask in the exposure process of Embodiment 1.
  • FIG. 3 is a schematic plan view showing a first substrate in the exposure process of Embodiment 1.
  • FIG. 6 is a schematic plan view showing a first substrate and a photomask in the exposure process of Embodiment 1.
  • FIG. 6 is a schematic plan view showing a first substrate and a photomask in the exposure process of Embodiment 1.
  • FIG. FIG. 2 is a schematic perspective view showing an exposure apparatus according to Embodiment 1, and a schematic plan view showing a configuration of a TFT array substrate according to Embodiment 1.
  • FIG. It is a cross-sectional schematic diagram which shows the board
  • FIG. 6 is a schematic plan view showing a second substrate in the exposure step of Embodiment 1.
  • FIG. It is a plane schematic diagram which shows the 2nd board
  • It is a plane schematic diagram which shows the 2nd board
  • 3 is a schematic plan view showing the photomask of Embodiment 1.
  • FIG. 3 is a schematic plan view showing the photomask of Embodiment 1.
  • FIG. 3 is a schematic plan view showing the photomask of Embodiment 1.
  • FIG. 3 is a schematic plan view showing the photomask of Embodiment 1.
  • FIG. 3 is a schematic plan view showing the photomask of Embodiment 1.
  • FIG. 3 is a schematic plan view illustrating a first substrate of Embodiment 1.
  • FIG. 6 is a schematic plan view showing a photomask according to Embodiment 2.
  • FIG. 6 is a schematic plan view showing a photomask according to Embodiment 2.
  • FIG. 6 is a plane schematic diagram which shows the photomask of Embodiment 2, and shows a modification. It is a plane schematic diagram which shows the photomask of Embodiment 3.
  • the liquid crystal display device 100 includes a first substrate 1 (for example, a TFT array substrate) and a second substrate 2 (for example, a CF substrate), which are a pair of opposing substrates, and a first substrate 1. And a liquid crystal layer 3 provided between the second substrates 2.
  • a first substrate 1 for example, a TFT array substrate
  • a second substrate 2 for example, a CF substrate
  • the first substrate 1 includes, on the liquid crystal layer 3 side of the insulating substrate 26a, in order from the insulating substrate 26a side, a transparent electrode 4a (pixel electrode) for applying a driving voltage to the liquid crystal layer 3, a vertical alignment film 5a,
  • the second substrate 2 has, on the liquid crystal layer 3 side of the insulating substrate 26b, a transparent electrode 4b (common electrode) for applying a driving voltage to the liquid crystal layer 3 and a vertical alignment film 5b in order from the insulating substrate 26b side.
  • retardation plates 7a and 7b and polarizing plates 6a and 6b are arranged in this order from the substrate side.
  • the retardation plates 7a and 7b need not be installed, but are preferably installed from the viewpoint of realizing a wide viewing angle. Further, only one of the phase difference plates 7a and 7b may be arranged. Thus, the liquid crystal display device 100 includes a so-called liquid crystal display panel.
  • the liquid crystal layer 3 contains, for example, a nematic liquid crystal material (negative type nematic liquid crystal material) having a negative dielectric anisotropy.
  • the liquid crystal molecules in the liquid crystal layer 3 are aligned in a substantially vertical direction with respect to the surfaces of the vertical alignment films 5a and 5b when a driving voltage is not applied to the liquid crystal layer 3 (when no voltage is applied).
  • the liquid crystal molecules are aligned with a slight inclination of about 0.1 ° to several degrees with respect to the normal direction of the surfaces of the vertical alignment films 5a and 5b. That is, the liquid crystal molecules are aligned by the vertical alignment films 5a and 5b so as to have a slight pretilt angle.
  • the pretilt angle is an angle formed by the alignment film surface and the major axis direction of the liquid crystal molecules near the alignment film surface when no voltage is applied. Further, when no voltage is applied, the direction in which the liquid crystal molecules in the vicinity of the surface of the alignment film are inclined when the substrate is viewed in plan is defined as a pretilt direction. On the other hand, when a sufficient driving voltage equal to or higher than a threshold value is applied to the liquid crystal layer 3 (when a voltage is applied), the liquid crystal molecules are further tilted in a certain direction by a preset pretilt angle. More specifically, the liquid crystal molecules 3 a located at substantially the center in the thickness direction of the liquid crystal layer 3 are inclined in a direction substantially parallel to the surfaces of the first substrate 1 and the second substrate 2.
  • the vertical alignment films 5a and 5b are made of a photo-alignment film material.
  • the pretilt direction defined by the vertical alignment films 5a and 5b is such that the surface of the vertical alignment films 5a and 5b is, for example, the substrate surface via a photomask. It is determined by exposing from an oblique direction.
  • a domain formed in a sub-pixel will be described with reference to FIGS. 2 and 4, a dotted arrow indicates a light beam irradiation direction applied to the first substrate, and in FIGS. 3 and 4, a solid line arrow indicates a light beam irradiation direction applied to the second substrate.
  • a liquid crystal molecule (liquid crystal director) 3a is located at the approximate center of each domain when the substrate is viewed in plan, and is positioned at the approximate center in the thickness direction of the liquid crystal layer. ).
  • each of the vertical alignment films 5 a and 5 b emits light from an antiparallel direction (a parallel and reverse direction A and direction B) in the sub-pixel 8 when the substrate is viewed in plan. Is irradiated.
  • the direction of light irradiation to the vertical alignment films 5a and 5b is set so as to be approximately 90 ° different from each other when the first substrate 1 and the second substrate 2 are bonded together.
  • the pretilt direction defined by the vertical alignment film 5a and the pretilt direction defined by the vertical alignment film 5b differ from each other by approximately 90 °.
  • the liquid crystal molecules contained in the liquid crystal layer 3 are twisted and aligned by approximately 90 ° in each domain when the substrate is viewed in plan. Further, the liquid crystal molecules 3a are aligned in a direction shifted by approximately 45 ° with respect to the light irradiation direction when the substrate is viewed in plan. Further, the liquid crystal molecules 3a in each domain are inclined in four different directions.
  • the liquid crystal display device 100 according to the present embodiment uses the vertical alignment films whose pretilt directions (alignment processing directions) are orthogonal to each other, so that the liquid crystal molecules are approximately 90 ° twist aligned. Therefore, the liquid crystal display device 100 has a 4-domain VATN mode. Each sub-pixel 8 is divided into eight regions, but the liquid crystal molecules 3a have four tilt directions, so the liquid crystal display device 100 has four domains.
  • the first substrate 1 and the second substrate 2 are each irradiated twice, and the alignment directions of the liquid crystal molecules 3a are different from each other by a total of four irradiations.
  • One domain can be formed. Therefore, it is possible to reduce the number of apparatuses and shorten the alignment processing time (shorten the tact time). Further, dividing one pixel (one sub-pixel) into four domains is a preferable form from the viewpoint of realizing a wide viewing angle of the liquid crystal display device.
  • the photomask for forming the alignment control structure such as ribs (protrusions) required in the liquid crystal mode having the alignment control structure such as the conventional MVA mode can be reduced.
  • the manufacturing process can be simplified.
  • the viewing angle characteristics in the other direction can be increased, although the viewing angle in the other direction can be widened. Can not.
  • the number of domains may be increased to five or more, it is not preferable because the process becomes complicated and the processing time becomes long. Furthermore, it has been found that there is practically no difference in viewing angle characteristics between four domains and more domains.
  • the polarizing plates 6a and 6b are arranged so that the polarization axis direction P of the polarizing plate 6a and the polarization axis direction Q of the polarizing plate 6b are substantially orthogonal to each other when the panel (substrate) is viewed in plan. Has been placed. Further, one of the polarization axis direction P of the polarizing plate 6a and the polarization axis direction Q of the polarizing plate 6b is arranged along the light irradiation direction with respect to the vertical alignment film 5a, and the other is with respect to the vertical alignment film 5b. It arrange
  • the liquid crystal display device 100 is in a normally black mode.
  • the polarization axis means an absorption axis.
  • the polarization axis direction P of the polarizing plate 6a and the polarization axis direction Q of the polarizing plate 6b are not particularly limited to the directions shown in FIG. 4 and may be set as appropriate, but the polarization of the pair of polarizing plates 6a and 6b
  • the axial directions are preferably approximately 90 ° different from each other when the panel (substrate) is viewed in plan. That is, it is preferable that the polarizing plates 6a and 6b are arranged in a crossed Nicols arrangement.
  • the vertical alignment type liquid crystal display device is described.
  • the liquid crystal display device of this embodiment may be a horizontal alignment type liquid crystal display device.
  • the liquid crystal layer 3 contains a nematic liquid crystal material (positive nematic liquid crystal material) having a positive dielectric anisotropy, and is perpendicular to the liquid crystal layer 3 side of the first substrate 1 and the second substrate 2.
  • a horizontal alignment film may be provided instead of the alignment films 5a and 5b.
  • a pair of first and second substrates before alignment film formation is prepared by a general method.
  • the first substrate for example, as shown in FIG. 5, a plurality of scanning signal lines (gate bus lines) 9, a plurality of TFTs 11, and a plurality of data are formed on an insulating substrate (not shown) formed of glass or the like.
  • the signal line (source bus line) 10 and the plurality of pixel electrodes 12 By sequentially forming the signal line (source bus line) 10 and the plurality of pixel electrodes 12, the scanning signal line 9 and the data signal line 10 cross on the insulating substrate in a lattice shape via an insulating film (not shown).
  • a TFT array substrate in which the TFT 11 and the pixel electrode 12 are further arranged at each intersection is used.
  • the second substrate for example, as shown in FIG. 6, a black matrix (BM) 13 and red (R) and blue (G) are formed on an insulating substrate (not shown) made of glass or the like.
  • a color filter 14 including three colored layers of green (B), a protective film (overcoat layer, not shown), and a transparent electrode film (not shown) are sequentially formed on the insulating substrate.
  • a CF substrate is used in which the BM 13 is arranged in a lattice pattern and the color filter 14 is arranged in a region partitioned by the BM 13.
  • one pixel is composed of three RGB sub-pixels arranged in the x-axis direction (the horizontal direction when the display surface (display screen) is viewed from the front).
  • the insulating substrate is not particularly limited to glass as long as it has an insulating surface. Moreover, what is necessary is just to use the material normally used for the material of the above-mentioned each structural member.
  • the photo-alignment film material is not particularly limited, and examples thereof include a resin containing a photosensitive group. More specifically, a 4-chalcone group (the following chemical formula (1)), a 4′-chalcone group (the following chemical formula (2)), a coumarin group (the following chemical formula (3)), and a cinnamoyl group (the following chemical formula (4)).
  • a polyimide containing a photosensitive group such as is suitable.
  • the photosensitive groups of the following chemical formulas (1) to (4) are those that cause a crosslinking reaction (including a dimerization reaction), an isomerization reaction, a photoreorientation, etc. by irradiation with light (preferably ultraviolet rays). Accordingly, the variation in the pretilt angle in the alignment film plane can be effectively reduced as compared with the photodecomposition type photo-alignment film material.
  • the photosensitive groups represented by the following chemical formulas (1) to (4) include structures in which a substituent is bonded to the benzene ring.
  • the photo-alignment film material is more preferably a polyimide containing a cinnamate group.
  • the firing temperature, firing time, and film thickness of the photo-alignment film are not particularly limited and may be set as appropriate.
  • a photo-alignment film material that reacts with light and generates a pretilt angle of liquid crystal molecules in the light irradiation direction is used as the alignment film material.
  • the photo-alignment method disclosed in Non-Patent Document 1 As described above, a photo-alignment film material that can define the pretilt direction depending on the moving direction of the light irradiation region may be used. In this case, light does not need to be incident on the substrate from an oblique direction, and can be incident substantially perpendicular to the substrate.
  • the alignment film is exposed by a scanning method.
  • the exposure process for the first substrate will be described.
  • a photomask 21a having a central portion 19a and a gray tone portion 20a and a photomask 21b having a central portion 19b and a gray tone portion 20b are prepared.
  • the photomask used in this embodiment has a pattern formed of a metal film such as chromium on a transparent substrate such as glass, and the region where the metal film is formed is a light shielding portion, The opening is a translucent part.
  • the photomasks 21a and 21b are arranged so that the gray tone portions 20a and 20b overlap in the y-axis direction.
  • the photomasks 21a and 21b are provided with a plurality of slits formed in the y-axis direction in the x-axis direction (axis that forms an angle of 90 ° with the y-axis). More specifically, a plurality of rectangular light transmissions having a width substantially half the sub-pixel pitch Px in the x-axis direction (lateral direction when the display surface is viewed from the front) are provided in the light shielding portions of the central portions 19a and 19b. The light transmitting portions are arranged at substantially the same pitch as the pitch Px.
  • the gray tone portions 20a and 20b a plurality of light transmitting portions are arranged at a pitch substantially the same as the pitch Px, but the light transmitting portions of the gray tone portions 20a and 20b are the light transmitting portions of the central portions 19a and 19b. It is smaller than the light part and is distributed in the scanning direction.
  • the pattern of the gray tone portions 20a and 20b will be described in detail later.
  • a photomask 21c having a central portion 19c and a gray tone portion 20c and a photomask 21d having a central portion 19d and a gray tone portion 20d are prepared. Then, as shown in FIG. 7, the photomasks 21c and 21d are arranged so that the gray tone portions 20c and 20d overlap in the y-axis direction. The same patterns as the photomasks 21a and 21b are formed on the photomasks 21c and 21d. Note that there is actually a space between the photomasks 21a and 21b and the photomasks 21c and 21d so that the first substrate 1 can be accommodated sufficiently.
  • a light source is disposed above each of the photomasks 21a to 21d.
  • the configuration including the photomask 21a is illustrated, but the configuration including the photomasks 21b to 21d is the same as the configuration including the photomask 21a.
  • the light source 25 and the photomask 21a are linearly moved together, or the substrate 18 (first substrate or second substrate) while the light source 25 and the photomask 21a are fixed. Moves linearly.
  • FIG. 12 shows a case where the substrate 18 moves. As the substrate 18, a first substrate (TFT array substrate) is shown.
  • An image detection camera 30 is provided on the side of the photomask 21a, and the substrate 18 can be moved so as to read and follow the bus wiring such as the data signal line 10 and the scanning signal line 9. According to this process, the exposure apparatus can be reduced in size. In addition, the cost of the exposure apparatus can be reduced. Furthermore, since the photomask can be small, the accuracy of the mask itself can be increased. In addition, since the scan exposure is excellent in the stability of the irradiation amount within the substrate surface, it is possible to effectively suppress variations in the properties of the alignment film such as the alignment azimuth and the pretilt angle.
  • the photomask 21a is moved using the polarized ultraviolet light while moving the first substrate 1 in the + y-axis direction.
  • 21b the alignment film provided on the surface of the first substrate 1 is exposed from end to end (1st scan).
  • the first substrate 1 is moved so that the slits of the photomasks 21a and 21b are along the bus wiring such as the data signal line 10 and the scanning signal line 9.
  • the polarized ultraviolet light 15 is applied to the first substrate 1 from an oblique direction.
  • a predetermined gap (proximity gap 16) is provided between the photomasks 21a and 21b and the first substrate 1. Accordingly, the first substrate 1 can be moved smoothly and contact with the first substrate 1 can be suppressed even if the photomasks 21a and 21b are bent by their own weight. By this 1st scan, an approximately half region of each pixel (each subpixel) is subjected to orientation processing. In addition, the liquid crystal molecules 3b in the vicinity of the surface of the vertical alignment film 5a exhibit a substantially constant pretilt angle 17, as shown in FIG. Further, as shown in FIG.
  • the first substrate 1 has an exposure region 22 that is scan-exposed through the central portion 19a of the photomask 21a and an exposure region that is scan-exposed through the central portion 19b of the photomask 21b. 23 and the joint portion 24 subjected to the scanning exposure through the gray tone portions 20a and 20b of the photomasks 21a and 21b. That is, in the exposure process of the present embodiment, the alignment film surface provided on the first substrate 1 is divided into exposure regions 22 and 23 and a joint portion 24 interposed between adjacent exposure regions 22 and 23, The joint portion 24 is exposed through the gray tone portions 20a and 20b, and the exposure regions 22 and 23 are exposed through the central portions 19a and 19b. The joint portion 24 is exposed at least twice through the gray tone portions 20a and 20b.
  • the slits provided in the photomasks 21 c and 21 d correspond to the unexposed areas of the sub-pixels.
  • the first substrate 1 is horizontally moved in the axial direction by approximately half of the pitch Px.
  • exposure is performed from end to end of the alignment film (2nd scan) while moving the first substrate 1 as in the case of the 1st scan shown in FIG.
  • the remaining half of the remaining area of each pixel is subjected to orientation treatment, and the first substrate 1 is exposed over the entire surface.
  • substrate 1 of the light ray at the 1st scan (polarized ultraviolet ray 15) are substantially the same.
  • the first substrate 1 is rotated by 180 ° in the plane. Therefore, the direction of the light beam with respect to the first substrate 1 at the 1st scan and the first substrate 1 at the 2nd scan As shown in FIG. 2, the direction of the light beam is just opposite when the first substrate 1 is viewed in plan. That is, each sub-pixel of the first substrate 1 is divided into two regions whose alignment directions are antiparallel to each other.
  • the exposure mode for the second substrate is substantially the same as the exposure mode for the first substrate, except that the type of photomask is different.
  • a photomask 21e having a central portion 19e and a gray tone portion 20e and a photomask 21f having a central portion 19f and a gray tone portion 20f are prepared. And as shown in FIG. 14, the photomasks 21e and 21f are arrange
  • the photomasks 21e and 21f are provided with a plurality of slits formed in the x-axis direction in the y-axis direction.
  • a plurality of rectangular transparent portions having a width of about 1 ⁇ 4 of the pixel pitch Py in the y-axis direction (vertical direction when the display surface is viewed from the front).
  • Light portions are provided, and these light-transmitting portions are provided so as to have a pitch that is approximately half the pitch Py.
  • a plurality of light transmitting portions are arranged at substantially the same pitch as the pitch Py, but the light transmitting portions of the gray tone portions 20e and 20f are the light transmitting portions of the central portions 19e and 19r. It is smaller than the light part and is distributed in the scanning direction.
  • the vertical pixel pitch and the sub-pixel pitch when the display surface is viewed from the front are the same.
  • a photomask 21g having a central portion 19g and a gray tone portion 20g and a photomask 21h having a central portion 19h and a gray tone portion 20h are prepared. And as shown in FIG. 14, the photomasks 21g and 21h are arrange
  • light sources are arranged above the photomasks 21e to 21h.
  • the polarized light is used while moving the second substrate 2 in the + x-axis direction. Then, exposure is performed from end to end of the alignment film provided on the surface of the second substrate 2 through the photomasks 21e and 21f (1st scan). At this time, the second substrate 2 is moved so that the slits of the photomasks 21e and 21f are along the BM13. Similarly to the irradiation direction with respect to the first substrate shown in FIG. 13, the polarized ultraviolet light is irradiated to the second substrate 2 from an oblique direction.
  • a proximity gap is provided between the photomasks 21e and 21f and the second substrate 2 as in the case of the exposure process for the first substrate.
  • an approximately half region of each pixel (each subpixel) is subjected to orientation processing.
  • the liquid crystal molecules in the vicinity of the surface of the vertical alignment film provided on the second substrate exhibit a substantially constant pretilt angle as in the case of the first substrate shown in FIG.
  • the second substrate 2 has an exposure region 32 that is scan-exposed through the central portion 19e of the photomask 21e and an exposure region that is scan-exposed through the central portion 19f of the photomask 21f.
  • the alignment film surface provided on the second substrate 2 is divided into exposure regions 32 and 33 and a joint portion 34 interposed between the adjacent exposure regions 32 and 33, and The joint portion 34 is exposed through the gray tone portions 20e and 20f, and the exposure regions 32 and 33 are exposed through the central portions 19e and 19f.
  • the joint portion 34 is exposed at least twice through the gray tone portions 20e and 20f.
  • the y-axis is set so that the slits provided in the photomasks 21g and 21h correspond to the unexposed areas of the pixels.
  • the second substrate 2 is horizontally moved in the direction by about 1/4 of the pitch Py.
  • exposure is performed from end to end of the alignment film while moving the second substrate 2 (2nd scan), as in the case of the first scan shown in FIG. Thereby, the remaining half of the remaining area of each pixel (each sub-pixel) is subjected to orientation treatment, and the second substrate 2 is exposed over the entire surface.
  • the direction of the light beam with respect to the second substrate 2 at the time of the first scan and the direction of the light beam with respect to the second substrate 2 at the time of the 2nd scan are as follows when the second substrate 2 is viewed in plan as shown in FIG. Reverse. That is, each sub-pixel of the second substrate 2 is divided into two regions whose alignment directions are antiparallel to each other.
  • a stripe pattern is formed with a width approximately half of the horizontal pixel pitch Px (x-axis direction in FIGS. 5 and 6).
  • the TFT array substrate is exposed using a photomask, while the vertical sub-pixel pitch Py (in FIGS. 5 and 6, the y-axis direction, and in this embodiment, the vertical sub-pixel pitch and the pixel pitch are the same).
  • the CF substrate is exposed using a photomask in which a stripe pattern is formed with a width of approximately 1 ⁇ 4 of the above.
  • the pattern of the light transmitting portion is not particularly limited, and may be set as appropriate according to the layout of the pixel (subpixel), the pixel (subpixel) size, the resolution of the panel, and the like. Further, in the present embodiment, four domains are formed in a matrix, but the arrangement form of the domains is not particularly limited to a matrix, and may be a stripe shape like an eye shape. Furthermore, when each subpixel has a subpixel, a slit pattern may be formed according to each subpixel in order to divide and align each subpixel.
  • Examples of materials that can be used in the present embodiment and conditions in an applicable manufacturing process include the following. However, materials and conditions that can be used in the present embodiment are not limited to the following.
  • Pretilt angle 85 ⁇ 89.9 °
  • Cell thickness 2-5 ⁇ m
  • Irradiation energy density 0.01 to 5 J / cm 2
  • Proximity gap 10-250 ⁇ m
  • Light source Low pressure mercury lamp, high pressure mercury lamp, deuterium lamp, metal halide lamp, argon resonance lamp, xenon lamp, excimer laser.
  • the photomask 21a has a central portion 19a and a gray tone portion 20a in which a gray tone is formed.
  • the photomask 21b has a central portion 19b and a gray tone portion 20b in which a gray tone is formed.
  • gray tone portions 20a and 20b are provided.
  • a plurality of light transmitting portions 27a are formed.
  • the planar shape of the light transmitting portion 27a is a rectangle, and the light transmitting portion 27a is formed in a stripe shape.
  • the size of each translucent part 27a is the same.
  • the light transmitting portions 27a are arranged at the same pitch as the pixel pitch Px in a direction (vertical direction) perpendicular to the scanning direction. Further, as shown in FIG. 20, the width (length in the vertical direction) ⁇ x of the light transmitting portion 27a is, for example, approximately half of the pitch Px. Note that ⁇ x may be set to a value obtained by adding about a few ⁇ m to half of the pitch Px. That is, you may form the part exposed in multiple times at the boundary between each domain.
  • the length y1 in the scanning direction of the translucent part 27a is, for example, 40 mm.
  • the gray tone does not adjust the aperture ratio by the length of the continuous light transmitting parts as in the technique described in Patent Document 2, but the size, number and / or density of a plurality of minute light transmitting parts. This is a pattern for adjusting the aperture ratio.
  • the aperture ratio is a ratio (percentage) of the area of each light transmitting portion of the gray tone portion to the average area of the light transmitting portion at the center.
  • a plurality of light-transmitting portions are also formed in the gray tone portion 20a, but here, as it goes to the end of the mask 21a, the size of the light-transmitting portion decreases or the number of light-transmitting portions decreases. And / or the aperture ratio is changed by decreasing the density of the translucent part.
  • the length obtained by dividing the length y1 by (N ⁇ 1), for example, is set as the unit length ⁇ y
  • the length y2 in the scanning direction of the light transmitting portion of the tone portion 20a is set to an integer multiple of ⁇ y.
  • the width (the length in the vertical direction) of the light transmitting portion of the gray tone portion 20a is set in the same manner as ⁇ x.
  • FIG. 22 shows details of the gray tone pattern.
  • the unit length ⁇ y is a value obtained by dividing 40 mm into 15 parts.
  • a rectangular light transmission portion having a length in the scanning direction of ⁇ y and a width of ⁇ x is defined as a unit area (a region partitioned by a lattice in FIG. 22).
  • the gray tone part 20a is formed with a plurality of light transmitting parts 28a smaller than the light transmitting part 27a.
  • the planar shape of the light transmitting portions 28a is a rectangle, and the light transmitting portions 28a are arranged at the same pitch as the pixel pitch Px in the vertical direction. That is, all of the light transmitting portions 27a and 28a are formed corresponding to the pixels (sub-pixels), and are arranged at a pitch Px in the vertical direction.
  • the pixel located at the right end of the gray tone portion 20a is the pixel in the first column
  • the pixel located at the left end of the gray tone portion 20a is the pixel in the 16th column (in FIG. 22, above the gray tone portion 20a).
  • the light transmitting portion 28a is also ordered in the same manner as the pixels. That is, the light transmitting portion 28a that overlaps the pixels in the second column is the light transmitting portion in the second column, and the light transmitting portion 28a that overlaps the pixels in the 16th column is the light transmitting portion in the 16th column. Note that no light-transmitting portion is formed in the portion of the gray tone portion 20a that overlaps the pixels in the first column. Then, in the light transmitting portions 28a in the 3rd to 15th rows, the number of the light transmitting portions 28a in the same row is two or more, and the light transmitting portions 28a in the same row are dispersedly arranged in the scanning direction. ing.
  • Each translucent portion 28a includes one or a plurality of unit areas, and the number of unit areas included in the translucent portions 28a in the same row increases as the row is closer to the central portion 19a.
  • the light-transmitting portion is not formed in the portion corresponding to the pixel in the first column, and one piece is provided in the light-transmitting portion 28a in the second row,.
  • the unit 28a includes 14 unit areas, and the light-transmitting unit 28a in the 16th column includes 15 unit areas.
  • the translucent portions 28a up to the ninth row all include one unit area, but some of the translucent portions 28a in the tenth and subsequent rows include a plurality of unit areas.
  • the 16th row of translucent portions 28a has the same size as the translucent portion 27a of the central portion 19a. As described above, the light transmitting part 27a includes 15 unit areas.
  • a light transmitting portion 27b similar to the light transmitting portion 27a is formed in the central portion 19b of the photomask 21b, and a light transmitting portion 28b similar to the light transmitting portion 28a is formed in the gray tone portion 20b. .
  • the majority of the light transmitting portions 28a and 28b are discretely dispersed in the scanning direction. Therefore, even if the first substrate 1 stops during scan exposure, the pattern of the light transmitting portions 28a and 28b transferred to the first substrate 1 (alignment film) can be blurred. As a result, as shown in FIG. 23, it is possible to prevent display unevenness due to the light transmitting portions 28a and 28b from being visually recognized not only in the exposure regions 22 and 23 but also in the joint portion 24.
  • the light transmitting portions 28a and 28b as follows (see FIG. 22). First, it is preferable to arrange the light transmissions 28a and 28b to be dispersed as much as possible in the scanning direction. Further, the pattern of the translucent portion 28a and the pattern of the light shielding portion in the gray tone portion 20a are inverted with respect to the center line of the gray tone portion 20a that is parallel to the scanning direction (joint portion center line). Thus, it is preferable to install the translucent portion 28a without bias. That is, it is preferable that the pattern of the translucent part 28a and the pattern of the light shielding part in the gray tone part 20a have a negative / positive or mirror image relationship with respect to the joint center line.
  • the photomask 21b (gray tone portion 20b) is a photomask 21a (gray tone portion 20a) that is just negative / positive inverted. That is, it is preferable that the pattern of the light transmitting portion 28b of the photomask 21b and the pattern of the light shielding portion in the gray tone portion 20a of the photomask 21a match.
  • the photomask 21a and the photomask 21b are arranged so that the joint centerlines of the two coincide with each other, and the pattern of the light transmitting portion 28b of the photomask 21a and the pattern of the light transmitting portion 28b of the photomask 21b are In addition, it is preferable to have a mirror image relationship with respect to the center line of both joints.
  • the translucent portions 28a and 28b are smaller than the translucent portions 27a and 27b, respectively, and the aperture ratios of the gray tone portions 20a and 20b are smaller than the aperture ratios of the central portions 19a and 19b, respectively.
  • Each pixel overlapping the gray tone portions 20a and 20b is exposed through the light transmitting portions 28a and 28b of the two photomasks 21a and 21b. Therefore, similarly to Patent Document 2, it is possible to suppress the seam from being visually recognized.
  • the aperture ratios of the gray tone portions 20a and 20b are gradually decreased as the distance from the central portions 19a and 19b is increased. Therefore, it can suppress more effectively that a joint is visually recognized.
  • the central portions 19e and 19f of the photomasks 21e and 21f are formed with a light-transmitting portion similar to the light-transmitting portion 27a, and the gray-tone portions 20e and 20f of the photomasks 21e and 21f are provided with a light-transmitting portion 28a. Similar light-transmitting portions are formed.
  • the width of the light transmitting portions of the photomasks 21e and 21f is approximately 1/4 of the pitch Py, and the pitch is approximately half of the pitch Py.
  • the same patterns as the photomasks 21e and 21f are formed on the photomasks 21g and 21h.
  • the pattern of the light transmitting portions of the gray tone portions 20e and 20f transferred to the second substrate 2 (alignment film) can be blurred.
  • the joint portion 34 can prevent the display unevenness caused by the light transmitting portions of the gray tone portions 20e and 20f from being visually recognized.
  • the bonding process of the first substrate and the second substrate will be described.
  • a sealing material is applied around the first substrate or the second substrate manufactured as described above.
  • 4 ⁇ m plastic beads are spread on a substrate coated with a sealing material, and then the first substrate and the second substrate are bonded together.
  • the relationship between the light irradiation directions of the two substrates in one sub-pixel is as shown in FIG. 4, and the scanning directions are substantially orthogonal between the opposing substrates in each domain.
  • the joint portion 24 of the first substrate 1 and the joint portion 34 of the second substrate 2 are substantially orthogonal as shown in FIG.
  • the liquid crystal molecules in each domain develop pretilt angles in different directions.
  • the orientation direction of the liquid crystal molecules 3a near the center in the in-plane direction and the thickness direction of the liquid crystal layer of each domain is 45 from the direction irradiated with light when the substrate is viewed in plan, as shown in FIG. ° Inclined direction.
  • two polarizing plates 6a and 6b are attached to the outside of the first substrate 1 and the second substrate 2 so that the polarization axes are oriented in the direction shown in FIG.
  • the liquid crystal molecules are substantially vertically aligned, so that the liquid crystal display panel of the present embodiment can realize a good black display (normally black mode).
  • the liquid crystal display panel of this embodiment has four domains, and the liquid crystal molecules in the four domains respond to four different directions, so that display characteristics almost independent of the viewing angle direction can be exhibited.
  • Embodiment 1 can be completed through a general module manufacturing process.
  • the number of photomasks used simultaneously is not limited to two, and may be three or more.
  • the scan exposure of the substrate 18 may be performed using six photomasks 21 arranged in a staggered pattern. Accordingly, since a smaller photomask can be used, the manufacturing cost of the photomask can be reduced. Further, since the mask size is small, it is possible to suppress the mask from being bent due to its own weight, so that the alignment process can be performed with higher accuracy. Furthermore, since the mask size is small, the pattern accuracy of the mask itself can be improved.
  • the number of edges of the light transmitting portions in the central portion 19a and the gray tone portion 20a, which are orthogonal to the scanning direction, is as shown in FIG. 26, and is between the 9th to 11th light transmitting portions 28a.
  • the number of edges is discontinuous.
  • Non-Patent Document 1 it is disclosed that even if the alignment film from the oblique direction is not exposed as in the present embodiment, the tilt angle appears even if the alignment film is exposed from the normal direction while scanning. . That is, the alignment ability may be imparted to the alignment film only by passing through the edge of the light transmitting part.
  • this document is based on a horizontal alignment film, it is estimated that the same phenomenon occurs in a vertical alignment film. Therefore, when the gray tone portion 20a is provided as in the present embodiment and discontinuity occurs in the number of edges in the gray tone portion 20a, discontinuity occurs in the effective irradiation energy received by the alignment film. There is a concern that it is visually recognized as unevenness.
  • Embodiment 2 created by the present inventors in order to eliminate this concern will be described.
  • the photomask 21a will be described as an example, but the photomasks 21b to 21g may have the same form.
  • the second embodiment is different from the first embodiment in the following points. That is, as shown in FIG. 27, in both the central portion 19a and the gray tone portion 20a, a light shielding portion (hereinafter referred to as a bridge 29) is provided at the boundary between unit areas. Thereby, the translucent part 27a is discretely dispersed (divided) in the scanning direction.
  • the edge of the light transmitting part newly generated by the installation of the bridge 29 (edge orthogonal to the scanning direction) is surrounded by an ellipse. There are actually two edges per ellipse. Further, the total of the edges included in the light-transmitting portions in the same row is shown below the photomask 21a.
  • the number of edges continuously changes and gradually decreases from the central portion 19a toward the gray tone portion 20a.
  • the tilt angle can be expressed more effectively. Therefore, it is possible to shorten the tact time by increasing the scanning speed. Alternatively, the illuminance of the light source can be reduced to extend the life of the light source.
  • the width (length in the short direction (scan direction)) ⁇ of the bridge 29 is preferably as thin as possible so that the bridge is not transferred to the alignment film even when the scan exposure is stopped.
  • the lower limit value of ⁇ is preferably 1 ⁇ m, which is the minimum value of the drawing line width of the mask
  • the upper limit value is preferably about 20 ⁇ m. Since a gap (about 100 to 200 ⁇ m) exists between the substrate and the mask at the time of scan exposure, diffraction occurs in the light beam transmitted through the light transmitting portion. Therefore, the upper limit value is determined so that the intensity distribution on the alignment film of the light beam that has passed through the light transmitting portion is uniform.
  • the upper limit value is determined so that the image of the bridge 29 is sufficiently blurred on the alignment film.
  • FIG. 29 shows a modification of the second embodiment.
  • the bridge 29 is formed only in the portion where the number of edges is discontinuous in the first embodiment.
  • two bridges 29 are added only to the translucent portion 28a in the tenth row. Also by this, since the number of edges can be continuously changed from the central portion 19a to the gray tone portion 20a, it is possible to suppress the occurrence of unevenness due to the discontinuity of the number of edges.
  • the photomask 21a will be described as an example, but the photomasks 21b to 21g may have the same form.
  • the third embodiment is different from the first and second embodiments in the following points. That is, as shown in FIG. 30, the photomask pattern of the third embodiment is not a mosaic pattern as in the first and second embodiments. It is assumed that the gray tone part 20a is provided so as to overlap with the pixels for N columns. The pixel located at the right end of the gray tone part 20a is the first pixel, and the pixel located at the left end of the gray tone part 20a is N columns. It is assumed that the pixel is an eye (refer to the number described above the gray tone portion 20a in FIG. 30).
  • the light transmitting portion 28a is also ordered in the same manner as the pixels. That is, the light transmitting portion 28a that overlaps the pixels in the first column is the light transmitting portion in the first column, and the light transmitting portion 28a that overlaps the pixels in the Nth column is the light transmitting portion in the Nth column. Further, a straight line parallel to the scan direction is defined as a scan line. Then, the number of the light transmitting portions 28a in the same row is larger as the row is closer to the central portion 19a, and increases by one.
  • Each translucent portion 28a includes one unit area, and among the translucent portions 28a in the third column or more, the translucent portions 28a in the same row, that is, the translucent portions 28a existing on the same scanning line. Are arranged at equal intervals in the scanning direction. In the gray tone portion 20a, the density of the light transmitting portion 28a changes sparsely as the distance from the central portion 19a increases.
  • the translucent portions 28a in the same row are arranged at equal intervals in the scanning direction. Therefore, unlike the mosaic pattern shown in the first and second embodiments, the position of the light transmitting portion 28a is not biased. Therefore, it is possible to suppress the occurrence of display unevenness due to the uneven position of the light transmitting portion 28a.
  • the number of edges orthogonal to the scanning direction continuously changes from the central portion 19a toward the gray tone portion 20a, and gradually decreases. Yes. Therefore, according to this embodiment, it is possible to suppress the occurrence of unevenness due to the discontinuity of the number of edges.
  • the length ⁇ y3 in the scanning direction of the unit area and the width ⁇ of the bridge 29 can be obtained in the same way as in the second embodiment as shown in FIG. Of course, in this embodiment, the bridge 29 may not be provided in the light transmitting portion 27a.
  • first substrate 2 second substrate 3: liquid crystal layers 3a, 3b: liquid crystal molecules 4a, 4b: transparent electrodes 5a, 5b: vertical alignment films 6a, 6b: polarizing plates 7a, 7b: retardation plate 8: sub-pixel 9: Scanning signal line 10: Data signal line 11: TFT 12: Pixel electrode 13: Black matrix (BM) 14: Color filter 15: Light beam (polarized ultraviolet light) 16: Proximity gap 17: Pretilt angle 18: Substrate 19a to 19h: Center portion 20a to 20h: Gray tone portion 21, 21a to 21h: Photomask 22, 23, 32, 33: Exposure region 24, 34: Joint portion 25 : Light sources 26a, 26b: Insulating substrates 27a, 27b, 28a, 28b: Translucent part 29: Bridge 30: Image detection camera 100: Liquid crystal display device P, Q: Polarization axis direction A of polarizing plate, B: Direction R: Red colored layer G: Green colored layer B: Blue colored layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Disclosed is an exposure apparatus, which can suppress, even if scanning is temporarily stopped during scanning exposure, the fact that display nonuniformity is viewed in a joint portion. Also disclosed are a liquid crystal display device, and a method for manufacturing the liquid crystal display device. The exposure apparatus is provided for the purpose of exposing a photo-alignment film provided on a substrate. The exposure apparatus is provided with a light source and a photomask, and exposes the photo-alignment film, while scanning the light source or the substrate, with the photomask therebetween. When the direction in which the light source or the substrate is scanned is expressed as the scanning direction, and the direction perpendicular to the scanning direction is expressed as the perpendicular direction, the photomask has a first region and a second region adjacent to the first region in the perpendicular direction. The first region has a plurality of first light-transmitting sections in a first light blocking section, and the first light-transmitting sections are arranged in the perpendicular direction. The second region has a plurality of second light-transmitting sections in a second light blocking section, each of the second light-transmitting sections is smaller than each of the first light transmitting sections, and the second light-transmitting sections are arranged in the perpendicular direction and are discretely distributed in the scanning direction.

Description

露光装置、液晶表示装置及びその製造方法Exposure apparatus, liquid crystal display device and manufacturing method thereof
本発明は、露光装置、液晶表示装置及びその製造方法に関する。より詳しくは、光配向膜の配向処理に好適に使用される露光装置と、光配向膜を備える液晶表示装置と、その液晶表示装置の製造方法とに関するものである。 The present invention relates to an exposure apparatus, a liquid crystal display device, and a manufacturing method thereof. More specifically, the present invention relates to an exposure apparatus suitably used for alignment processing of a photo-alignment film, a liquid crystal display device including the photo-alignment film, and a method for manufacturing the liquid crystal display device.
液晶表示装置は、軽量化、薄型化及び低消費電力化が可能な表示装置であることから、テレビ、パーソナルコンピュータ用モニタ、携帯端末用モニタ等に広く利用されている。このような液晶表示装置は、通常、一対の基板間(液晶層)に印加される電圧に応じて変化する液晶分子の傾斜角度によって液晶層を透過する光の透過率を制御する。そのため、液晶表示装置は、透過率に角度依存性を有することになる。その結果、従来の液晶表示装置においては、視角(観察)方向によってはコントラストの低下、中間調表示時の階調反転等の表示不具合が発生することがあった。したがって、一般的に、液晶表示装置においては、視野角特性を向上するという点で改善の余地があった。 Since the liquid crystal display device is a display device that can be reduced in weight, thickness, and power consumption, it is widely used for televisions, monitors for personal computers, monitors for portable terminals, and the like. Such a liquid crystal display device usually controls the transmittance of light transmitted through the liquid crystal layer according to the inclination angle of the liquid crystal molecules that changes in accordance with the voltage applied between the pair of substrates (liquid crystal layer). Therefore, the liquid crystal display device has an angle dependency on the transmittance. As a result, in the conventional liquid crystal display device, display defects such as a decrease in contrast and gradation inversion during halftone display may occur depending on the viewing angle (observation) direction. Therefore, in general, the liquid crystal display device has room for improvement in terms of improving viewing angle characteristics.
そこで、液晶分子の傾斜方向が異なる2以上の領域に各画素を分割する配向分割の技術が開発されている。この技術によれば、液晶層に電圧が印加された場合、液晶分子は、画素内で異なる方向に傾斜することから、視野角特性を改善することができる。なお、配向方向が異なる各領域は、ドメインとも呼ばれ、配向分割は、マルチドメインとも呼ばれる。 Therefore, an alignment division technique has been developed in which each pixel is divided into two or more regions having different tilt directions of liquid crystal molecules. According to this technique, when a voltage is applied to the liquid crystal layer, the liquid crystal molecules are inclined in different directions within the pixel, so that the viewing angle characteristics can be improved. Each region having a different orientation direction is also called a domain, and orientation division is also called a multi-domain.
配向分割が行われる液晶モードとしては、水平配向モードでは、マルチドメイン捩れネマチック(TN;Twisted Nematic)モード、マルチドメイン複屈折制御(ECB;Electrically Controled Birefringence)モード、マルチドメイン光学補償複屈折(OCB;Optically Compensated Birefringence)モード等が挙げられる。一方、垂直配向モードでは、マルチドメイン垂直配向(MVA;Multi-Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、マルチドメインVAECB(Vertical Alignment ECB)モード等が挙げられ、各モードの液晶表示装置において、更なる広視野角化を実現するための様々な改良がなされている。 As liquid crystal modes in which alignment division is performed, in the horizontal alignment mode, a multi-domain twisted nematic (TN) mode, a multi-domain birefringence control (ECB) mode, a multi-domain optically compensated birefringence (OCB) mode, and the like. (Optically Compensated Birefringence) mode and the like. On the other hand, in the vertical alignment mode, a multi-domain vertical alignment (MVA) mode, a PVA (Patterned Vertical Alignment) mode, a multi-domain VAECB (Vertical Alignment ECB) mode, and the like are listed. However, various improvements have been made to realize a wider viewing angle.
配向分割を行う方法としては、ラビング法、光配向法等が挙げられる。ラビング法としては、ラビング領域と非ラビング領域とをパターン形成されたレジストにより分離した状態で配向膜のラビング処理を行う方法が提案されている。しかしながら、ラビング法は、ローラに巻き付けられた布で配向膜表面を擦ることによって配向処理を行う。したがって、ラビング法においては、布の毛、削れ片等のごみが発生したり、静電気によるスイッチング素子の破壊、特性シフト、劣化等の不良が発生したりすることがあり、更に改善の余地があった。 Examples of the method for performing alignment division include a rubbing method and a photo-alignment method. As a rubbing method, a method of rubbing an alignment film in a state where a rubbing region and a non-rubbing region are separated by a patterned resist has been proposed. However, in the rubbing method, the alignment treatment is performed by rubbing the surface of the alignment film with a cloth wound around a roller. Therefore, in the rubbing method, dust such as cloth hairs or scraped pieces may be generated, or switching elements may be damaged due to static electricity, characteristic shift, deterioration, etc., and there is room for further improvement. It was.
一方、光配向法は、配向膜として光配向膜を用い、光配向膜に紫外線等の光を照射(露光)することによって、配向膜に配向規制力を生じさせる、及び/又は、配向膜の配向規制方向を変化させる配向方法である。したがって、光配向法は、配向膜の配向処理を非接触で行うことができるので、配向処理中における汚れ、ごみ等の発生を抑制することができる。また、露光時にフォトマスクを用いることによって、配向膜面内の所望の領域に異なった条件で光照射を行うことができる。そのため、所望のデザインを有するドメインを容易に形成することができる。 On the other hand, the photo-alignment method uses a photo-alignment film as the alignment film, and irradiates (exposures) light such as ultraviolet rays to the photo-alignment film, thereby generating an alignment regulating force in the alignment film and / or This is an alignment method for changing the alignment regulation direction. Therefore, the photo-alignment method can perform the alignment treatment of the alignment film in a non-contact manner, and can suppress the occurrence of dirt, dust, etc. during the alignment treatment. Further, by using a photomask at the time of exposure, light irradiation can be performed under different conditions on a desired region in the alignment film surface. Therefore, a domain having a desired design can be easily formed.
従来の光配向法による配向分割の方法としては、例えば画素を2つのドメインに分割する場合、以下の方法が挙げられる。すなわち、遮光領域に画素ピッチの半分程度の幅を有するスリット状の透光部が形成されたフォトマスクを用意し、まず画素の半分の領域に対して第1の露光を行った後、フォトマスクを半ピッチ程度ずらし、画素の残りの領域に対して第1の露光と異なる条件で第2の露光を行う方法が挙げられる。このような方法により、各画素を容易に2以上のドメインに分割することができる。また、例えば、特許文献1には、光配向法により配向処理を行ってVAECB(Vertical Alignment ECB)モードを形成する技術が開示されている。 As a conventional alignment dividing method by the photo-alignment method, for example, in the case of dividing a pixel into two domains, the following methods can be mentioned. That is, a photomask in which a slit-like light-transmitting portion having a width of about half the pixel pitch is formed in the light-shielding region is prepared. Is shifted by about a half pitch, and the second exposure is performed on the remaining area of the pixel under conditions different from the first exposure. By such a method, each pixel can be easily divided into two or more domains. For example, Patent Document 1 discloses a technique for forming a VAECB (Vertical Alignment ECB) mode by performing an alignment process by a photo-alignment method.
また近年、液晶表示装置の大型化が進み、40型から60型といった従来はプラズマテレビの主戦場であったサイズ領域に液晶テレビが急速に進出してきている。しかしながら、このような60型クラスの大型液晶表示装置を上述のような従来の光配向法により配向分割することは非常に困難であった。なぜなら、60型クラスの基板を1度に露光可能であり、かつ工場内に設置可能なサイズである露光装置は、今のところ実際は存在せず、60型クラスの基板全面を1度に露光することは不可能であるためである。そこで、大型液晶表示装置を光配向法により配向分割する場合には、基板を何回かに分割して露光する必要があった。また、20型クラスの比較的小型の液晶表示装置を光配向法により配向分割する場合にも、露光装置のサイズをできる限り小さくしたいとの要請から、基板を何回かに分割して露光することが必須になることも考えられる。しかしながら、このように基板を何回かに分割して露光することによって配向分割された液晶表示装置においては、表示画面に各露光領域間の継ぎ目がはっきりと見えることがあり、不良品となってしまうことがあった。したがって、基板を分割して露光することによって液晶表示装置の配向分割を行った場合において、表示品位を向上し、歩留まりを向上させるという点で未だ工夫の余地があった。 In recent years, the size of liquid crystal display devices has been increasing, and liquid crystal televisions have rapidly expanded into the size range, which has been the main battlefield of plasma televisions, such as 40-inch to 60-inch. However, it has been very difficult to divide and align such a large liquid crystal display device of the 60 type class by the conventional photo-alignment method as described above. This is because an exposure apparatus that can expose a 60-type class substrate at a time and is of a size that can be installed in a factory does not actually exist, and exposes the entire surface of a 60-type class substrate at a time. This is because it is impossible. Therefore, when the large-sized liquid crystal display device is divided by the photo-alignment method, it is necessary to divide the substrate into several times and perform exposure. Further, even when a 20-inch class relatively small liquid crystal display device is divided by the photo-alignment method, exposure is performed by dividing the substrate several times in order to reduce the size of the exposure device as much as possible. It may be necessary to do this. However, in the liquid crystal display device in which the substrate is divided and exposed by dividing the substrate several times in this way, the joints between the exposure regions may be clearly visible on the display screen, resulting in a defective product. There was a case. Therefore, when alignment of the liquid crystal display device is performed by dividing and exposing the substrate, there is still room for improvement in terms of improving display quality and yield.
それを改善するための技術として、本発明者らは以下の方法を開発し、既に特許出願している(特許文献2参照。)。この方法は、基板面内を2以上の露光領域に分割し、露光領域毎にフォトマスクを介して配向膜の露光を行う露光工程を含み、上記露光工程は、隣り合う露光領域の一部が重複するように露光するものであり、上記フォトマスクは、重複する露光領域に対応したハーフトーン部を有する。 As a technique for improving this, the present inventors have developed the following method and have already filed a patent application (see Patent Document 2). This method includes an exposure step of dividing the substrate surface into two or more exposure regions and exposing the alignment film through a photomask for each exposure region, and the exposure step includes a part of the adjacent exposure region. The exposure is performed so as to overlap, and the photomask has a halftone portion corresponding to the overlapping exposure region.
特開2001-281669号公報JP 2001-281669 A 国際公開第2007/086474号International Publication No. 2007/088644
特許文献2に記載の技術においてスキャン露光方式を採用した場合、基板が正常に等速で移動している限り、特に問題は発生しない。しかしながら、瞬停等により、万一、基板が停止してしまった場合、重複する露光領域(継ぎ部)において、フォトマスクに形成されたパターンのエッジが表示ムラとして見えてしまう不具合が発生することが新たに判明した。 When the scan exposure method is adopted in the technique described in Patent Document 2, no particular problem occurs as long as the substrate is normally moved at a constant speed. However, in the unlikely event that the substrate stops due to a momentary power interruption or the like, there is a problem that the edge of the pattern formed on the photomask appears as display unevenness in the overlapping exposure region (joint portion). Was newly found.
本発明者らが行った試験について図を用いて詳しく説明する。
図32に示すように、使用したフォトマスク121は、中央部119及びハーフトーン部120を有する。中央部119及びハーフトーン部120には、ストライプ状に透光部(ストライプパターン)が形成されている。ただし、ハーフトーン部120の透光部128の長さは、中央部119から離れるにしたがって徐々に短くなっている。透光部128の長さは、三角関数的に減少している。このようにして、ハーフトーン部120の開口率は、中央部119の開口率よりも小さくなっている。なお、透光部128の長さは、中央部119から離れるにしたがって線形的に減少してもよい。
The test conducted by the present inventors will be described in detail with reference to the drawings.
As shown in FIG. 32, the used photomask 121 has a central portion 119 and a halftone portion 120. In the central portion 119 and the halftone portion 120, a light transmitting portion (stripe pattern) is formed in a stripe shape. However, the length of the translucent part 128 of the halftone part 120 gradually decreases as the distance from the central part 119 increases. The length of the translucent part 128 decreases in a trigonometric function. In this way, the aperture ratio of the halftone portion 120 is smaller than the aperture ratio of the central portion 119. Note that the length of the translucent part 128 may decrease linearly as the distance from the central part 119 increases.
図33、34に基板上に形成された光配向膜をスキャン露光する工程を説明するための模式図を示す。図33、34に示すように、基板118は大きいために、複数のフォトマスク121を用いて光配向膜を露光する。また、基板118は、ステージ171上に固定される。そして、光源(図示せず)及びフォトマスク121を固定した状態で基板118及びステージ171がそれらの下を通過することによって、基板118上に設けられた光配向膜全体が露光される。また、基板118には、基板面法線方向に対して、例えば40°傾いた方向からUV光が照射される。中央部119の透光部127を透過したUV光の幅は、例えば40mmである。そして、配向膜の一部(継ぎ部124)は、2つのフォトマスクのハーフトーン部120を介して露光されることとなる。これにより、正常に基板118が移動している場合は、継ぎ部124、すなわち継ぎ目が視認されない。一方、スキャン露光中にトラブルにより基板118が静止すると、図35に示すように、継ぎ部124において、透光部128の先端部に対応して表示ムラ(マスク跡180)が視認された。 FIG. 33 and FIG. 34 are schematic views for explaining the step of scanning exposure of the photo-alignment film formed on the substrate. As shown in FIGS. 33 and 34, since the substrate 118 is large, the photo-alignment film is exposed using a plurality of photomasks 121. The substrate 118 is fixed on the stage 171. Then, with the light source (not shown) and the photomask 121 fixed, the substrate 118 and the stage 171 pass under them, whereby the entire photo-alignment film provided on the substrate 118 is exposed. Further, the substrate 118 is irradiated with UV light from a direction inclined by, for example, 40 ° with respect to the normal direction of the substrate surface. The width of the UV light transmitted through the light transmitting portion 127 of the central portion 119 is, for example, 40 mm. A part of the alignment film (joint portion 124) is exposed through the halftone portions 120 of the two photomasks. Thereby, when the board | substrate 118 has moved normally, the joint part 124, ie, the joint, is not visually recognized. On the other hand, when the substrate 118 is stopped due to a trouble during the scanning exposure, as shown in FIG. 35, display unevenness (mask trace 180) is visually recognized at the joint portion 124 corresponding to the tip portion of the light transmitting portion 128.
また、本発明者らが上記トラブルが発生した基板を用いてパネルを作製し、該パネルを点灯させて詳細を評価したところ、マスク跡の見え方は場所に依存することがわかった。具体的には、図36に示すように、継ぎ部の端124aから、継ぎ部の中心線124cに向かうにつれてマスク跡180がより濃く見え、中心線124cで最も濃く見えた。一方、この現象(マスク跡)は継ぎ部124以外、すなわち中央部119を介して露光された領域では視認されなかった。 Moreover, when the present inventors made a panel using the substrate in which the above trouble occurred, and turned on the panel to evaluate the details, it was found that the appearance of the mask trace depends on the location. Specifically, as shown in FIG. 36, the mask mark 180 appears darker from the joint end 124a toward the center line 124c of the joint, and appears darkest at the center line 124c. On the other hand, this phenomenon (mask mark) was not visually recognized except for the joint portion 124, that is, in the region exposed through the central portion 119.
スキャン露光方式では、フォトマスク121の透光部(開口部)の長さと基板118の移動速度で照射量が設定されている。より具体的には、スキャン露光方式において、光配向膜への照射量は次式で計算される。
(照射量)=(照度)×(透光部幅)/(スキャン速度)
この式で計算された値で照射量が設定されているため、基板118が静止するとスキャン速度がゼロとなり、実効的な照射量が瞬間的に上昇する。すなわち、基板118の移動時と静止時と間で照射量が不連続になってしまう。この照射量の不連続性は、液晶分子のチルト角に直接的に影響する。そして、基板停止時の瞬間的な照射量の上昇度合いが継ぎ部124と継ぎ部124以外とで異なり、継ぎ部124で上昇度合いがより大きくなるため、継ぎ部124でマスク跡が視認されたものと考えられる。
In the scan exposure method, the irradiation amount is set by the length of the light transmitting portion (opening) of the photomask 121 and the moving speed of the substrate 118. More specifically, in the scan exposure method, the irradiation amount to the photo-alignment film is calculated by the following equation.
(Irradiation amount) = (Illuminance) × (Translucent width) / (Scanning speed)
Since the irradiation amount is set with the value calculated by this equation, when the substrate 118 is stationary, the scanning speed becomes zero, and the effective irradiation amount instantaneously increases. That is, the dose is discontinuous between the movement of the substrate 118 and the stationary state. This discontinuity in the irradiation amount directly affects the tilt angle of the liquid crystal molecules. In addition, the degree of instantaneous increase in irradiation amount when the substrate is stopped is different between the joint portion 124 and the portion other than the joint portion 124, and the degree of increase is greater at the joint portion 124. it is conceivable that.
本発明は、上記現状に鑑みてなされたものであり、スキャン露光時にスキャンが一時的に停止したとしても継ぎ部において表示ムラが視認されるのを抑制することができる露光装置、液晶表示装置及びその製造方法を提供することを目的とするものである。 The present invention has been made in view of the above situation, and an exposure apparatus, a liquid crystal display apparatus, and a liquid crystal display apparatus capable of suppressing display unevenness from being visually recognized at a joint even if scanning is temporarily stopped during scan exposure. The object is to provide a manufacturing method thereof.
本発明者らは、スキャン露光時にスキャンが一時的に停止したとしても継ぎ部において表示ムラが視認されるのを抑制することができる露光装置について種々検討したところ、フォトマスクのパターンに着目した。そして、フォトマスクに、第1領域と、スキャン(走査)方向に対して垂直な方向(垂直方向)において第1領域に隣接する第2領域とを設け、第1領域の第1遮光部内に複数の第1透光部を形成し、複数の第1透光部を垂直方向に配列し、第2領域の第2遮光部内に複数の第2透光部を形成し、第2透光部を第1透光部よりも小さくし、複数の第2透光部を垂直方向に配列するとともに走査方向に離散的に分散して配置することにより、第2領域を介して継ぎ部を露光したとしても継ぎ目が発生するのを抑制でき、更に、露光時にスキャンが一時的に停止したとしても第2透光部の端部に対応する表示ムラをぼやけさせ、第2透光部のパターンの跡を目立たなくすることができることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 The inventors of the present invention have made various studies on an exposure apparatus that can suppress the display unevenness from being visually recognized at the joint even when the scan is temporarily stopped during the scan exposure, and has focused on the pattern of the photomask. Then, the photomask is provided with a first region and a second region adjacent to the first region in a direction (vertical direction) perpendicular to the scan direction, and a plurality of the first regions are provided in the first light shielding portion of the first region. Forming the first light-transmitting portion, arranging the plurality of first light-transmitting portions in the vertical direction, forming the plurality of second light-transmitting portions in the second light-shielding portion of the second region, It is assumed that the joint portion is exposed through the second region by making it smaller than the first light-transmitting portion and arranging the plurality of second light-transmitting portions in the vertical direction and discretely distributing them in the scanning direction. In addition, even when scanning is temporarily stopped during exposure, display unevenness corresponding to the end of the second light-transmitting portion is blurred, and traces of the pattern of the second light-transmitting portion are recorded. Finding things that can be made inconspicuous and solving the above problems Conceive bets is the present invention has been completed.
すなわち、本発明は、基板上に設けられた光配向膜を露光するための露光装置であって、前記露光装置は、光源及びフォトマスクを備え、前記光源及び前記基板の少なくとも一方を走査しながら前記フォトマスクを介して前記光配向膜を露光し、前記光源及び前記基板の少なくとも一方が走査される方向を走査方向、前記走査方向に対して垂直な方向を垂直方向とすると、前記フォトマスクは、第1領域と、前記第1領域に垂直方向に隣接する第2領域とを有し、前記第1領域は、第1遮光部内に複数の第1透光部を有し、前記複数の第1透光部は、垂直方向に配列され、前記第2領域は、第2遮光部内に複数の第2透光部を有し、前記複数の第2透光部は、前記複数の第1透光部よりも小さく、前記複数の第2透光部は、垂直方向に配列されるとともに、走査方向に離散的に分散されている露光装置である。 That is, the present invention is an exposure apparatus for exposing a photo-alignment film provided on a substrate, the exposure apparatus comprising a light source and a photomask, while scanning at least one of the light source and the substrate. When the photo-alignment film is exposed through the photomask, a direction in which at least one of the light source and the substrate is scanned is a scanning direction, and a direction perpendicular to the scanning direction is a vertical direction. A first region and a second region adjacent to the first region in a direction perpendicular to the first region, the first region having a plurality of first light-transmitting portions in a first light shielding portion, The first light transmitting portions are arranged in a vertical direction, the second region has a plurality of second light transmitting portions in the second light shielding portion, and the plurality of second light transmitting portions are the plurality of first light transmitting portions. The plurality of second light-transmitting parts are smaller than the light part and are arranged in the vertical direction. Rutotomoni is an exposure apparatus that is discretely distributed in the scanning direction.
本発明の露光装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではない。 The configuration of the exposure apparatus of the present invention is not particularly limited by other components as long as such components are formed as essential.
本発明はまた、基板上に設けられた光配向膜を備える液晶表示装置の製造方法であって、前記製造方法は、光源及び前記基板の少なくとも一方を走査しながらフォトマスクを介して前記光配向膜を露光する露光工程を含み、前記光源及び前記基板の少なくとも一方が走査される方向を走査方向、前記走査方向に対して垂直な方向を垂直方向とすると、前記フォトマスクは、第1領域と、前記第1領域に垂直方向に隣接する第2領域とを有し、前記第1領域は、第1遮光部内に複数の第1透光部を有し、前記複数の第1透光部は、垂直方向に配列され、前記第2領域は、第2遮光部内に複数の第2透光部を有し、前記複数の第2透光部は、前記複数の第1透光部よりも小さく、前記複数の第2透光部は、垂直方向に配列されるとともに、走査方向に離散的に分散されている液晶表示装置の製造方法でもある。 The present invention is also a method of manufacturing a liquid crystal display device including a photo-alignment film provided on a substrate, the manufacturing method including the photo-alignment through a photomask while scanning at least one of a light source and the substrate. An exposure step of exposing a film, wherein a direction in which at least one of the light source and the substrate is scanned is a scanning direction, and a direction perpendicular to the scanning direction is a vertical direction. And a second region adjacent to the first region in the vertical direction, the first region having a plurality of first light-transmitting portions in the first light-shielding portion, and the plurality of first light-transmitting portions being Arranged in a vertical direction, the second region has a plurality of second light transmitting portions in a second light shielding portion, and the plurality of second light transmitting portions are smaller than the plurality of first light transmitting portions. The plurality of second light transmitting portions are arranged in a vertical direction and are Is also a method of manufacturing the liquid crystal display device are discretely distributed.
本発明の液晶表示装置の製造方法の構成としては、このような構成要素及び工程を必須として形成されるものである限り、その他の構成要素及び工程により特に限定されるものではない。 The configuration of the manufacturing method of the liquid crystal display device of the present invention is not particularly limited by other components and processes as long as such components and processes are essential.
本発明の露光装置及び液晶表示装置の製造方法における好ましい形態について以下に詳しく説明する。以下に示す各種形態は、適宜組み合わされてもよい。 Preferred embodiments of the exposure apparatus and the liquid crystal display manufacturing method of the present invention will be described in detail below. Various forms shown below may be combined as appropriate.
本発明の露光装置及び液晶表示装置の製造方法において、前記光配向膜は、光線の照射方向又は光線の照射領域の移動方向、に応じて液晶の配向方向が変化する材料(光配向材料)により形成されることが好ましい。 In the exposure apparatus and the manufacturing method of the liquid crystal display device of the present invention, the photo-alignment film is made of a material (photo-alignment material) in which the alignment direction of the liquid crystal changes depending on the irradiation direction of the light beam or the moving direction of the irradiation region of the light beam. Preferably it is formed.
本発明の露光装置及び液晶表示装置の製造方法において、前記第2領域の開口率は、前記第1領域から離れるにしたがって減少することが好ましい。これにより、継ぎ目が視認されるのをより効果的に抑制することができる。 In the exposure apparatus and the liquid crystal display manufacturing method of the present invention, it is preferable that the aperture ratio of the second region decreases as the distance from the first region increases. Thereby, it can suppress more effectively that a joint is visually recognized.
本発明の露光装置及び液晶表示装置の製造方法において、前記複数の第2透光部及び前記第2遮光部は、前記走査方向に平行な前記第2領域の中心線(前記第2領域の中心線であって、前記走査方向に平行な線)に対して、互いに(実質的に)対称に設けられてもよい。これにより、第2領域全体に渡って、透光部、遮光部の偏りをなくすことができ、瞬停時においても、継ぎ部のマスク端が視認されるのを回避することが可能となる。このように、第2透光部のパターンと、第2遮光部のパターンとは、上記中心線に対して、互いに(実質的に)対称であってもよい。 In the exposure apparatus and the liquid crystal display device manufacturing method of the present invention, the plurality of second light transmitting parts and the second light shielding part are center lines of the second area parallel to the scanning direction (the center of the second area). The lines may be provided (substantially) symmetrically with respect to a line parallel to the scanning direction. Thereby, it is possible to eliminate the unevenness of the light transmitting portion and the light shielding portion over the entire second region, and it is possible to avoid the mask edge of the joint portion being visually recognized even during a momentary power failure. As described above, the pattern of the second light transmitting part and the pattern of the second light shielding part may be (substantially) symmetric with respect to the center line.
本発明の露光装置及び液晶表示装置の製造方法において、前記複数の第2透光部及び前記第2遮光部は、前記走査方向に平行な前記第2領域の中心線(前記第2領域の中心線であって、前記走査方向に平行な線)に対して、互いに(実質的に)鏡像の関係にあってもよい。これにより、第2領域全体に渡って、透光部、遮光部の偏りをなくすことができ、瞬停時においても、継ぎ部のマスク端が視認されるのを回避することが可能となる。このように、第2透光部のパターンと、第2遮光部のパターンとは、上記中心線に対して、互いに(実質的に)鏡像の関係にあってもよい。 In the exposure apparatus and the liquid crystal display device manufacturing method of the present invention, the plurality of second light transmitting parts and the second light shielding part are center lines of the second area parallel to the scanning direction (the center of the second area). The lines may be in a (substantially) mirror image relationship with respect to the lines parallel to the scanning direction. Thereby, it is possible to eliminate the unevenness of the light transmitting portion and the light shielding portion over the entire second region, and it is possible to avoid the mask edge of the joint portion being visually recognized even during a momentary power failure. As described above, the pattern of the second light transmitting part and the pattern of the second light shielding part may be in a (substantially) mirror image relationship with respect to the center line.
本発明の露光装置において、前記フォトマスクは、第1のフォトマスクであり、前記露光装置は、第2のフォトマスクを更に備え、前記光源及び前記基板の少なくとも一方を走査しながら前記第1及び第2のフォトマスクを介して前記光配向膜を露光し、前記第2のフォトマスクは、第3領域と、前記第3領域に垂直方向に隣接する第4領域とを有し、前記第3領域は、第3遮光部内に複数の第3透光部を有し、前記複数の第3透光部は、垂直方向に配列され、前記第4領域は、第4遮光部内に複数の第4透光部を有し、前記複数の第4透光部は、前記複数の第3透光部よりも小さく、前記複数の第4透光部は、垂直方向に配列されるとともに、走査方向に離散的に分散され、前記光配向膜の一部は、前記複数の第2透光部を通して露光されるとともに、前記複数の第4透光部を通して露光されることが好ましい。これにより、第2及び第4透光部を通して継ぎ部を露光できるとともに、該継ぎ部に継ぎ目が発生するのを抑制することができる。また、露光時にスキャンが一時的に停止したとしても第4透光部の端部に対応する表示ムラをぼやけさせ、第4透光部のパターンの跡を目立たなくすることができる。なお、第1及び第2のフォトマスク用に別々の光源を用いてもよい。 In the exposure apparatus of the present invention, the photomask is a first photomask, and the exposure apparatus further includes a second photomask, and scans at least one of the light source and the substrate. The photo-alignment film is exposed through a second photomask, and the second photomask has a third region and a fourth region that is adjacent to the third region in a direction perpendicular to the third region. The region has a plurality of third light-transmitting portions in the third light-shielding portion, the plurality of third light-transmitting portions are arranged in a vertical direction, and the fourth region has a plurality of fourth light-transmitting portions in the fourth light-shielding portion. The plurality of fourth light transmission portions are smaller than the plurality of third light transmission portions, and the plurality of fourth light transmission portions are arranged in the vertical direction and in the scanning direction. Dispersed discretely, a part of the photo-alignment film is exposed through the plurality of second light transmitting parts. Together, it is preferably exposed through the plurality of fourth light transmitting portion. As a result, the joint can be exposed through the second and fourth light-transmitting parts, and generation of a seam at the joint can be suppressed. In addition, even when scanning is temporarily stopped during exposure, display unevenness corresponding to the end portion of the fourth light transmitting portion can be blurred, and the trace of the pattern of the fourth light transmitting portion can be made inconspicuous. Note that separate light sources may be used for the first and second photomasks.
本発明の液晶表示装置の製造方法において、前記フォトマスクは、第1のフォトマスクであり、前記露光工程は、前記光源及び前記基板の少なくとも一方を走査しながら前記第1のフォトマス及び第2のフォトマスクを介して前記光配向膜を露光し、前記第2のフォトマスクは、第3領域と、前記第3領域に垂直方向に隣接する第4領域とを有し、前記第3領域は、第3遮光部内に複数の第3透光部を有し、前記複数の第3透光部は、垂直方向に配列され、前記第4領域は、第4遮光部内に複数の第4透光部を有し、前記複数の第4透光部は、前記複数の第3透光部よりも小さく、前記複数の第4透光部は、垂直方向に配列されるとともに、走査方向に離散的に分散され、前記光配向膜の一部は、前記複数の第2透光部を通して露光されるとともに、前記複数の第4透光部を通して露光されることが好ましい。これにより、第2及び第4透光部を通して継ぎ部を露光できるとともに、該継ぎ部に継ぎ目が発生するのを抑制することができる。また、露光時にスキャンが一時的に停止したとしても第4透光部の端部に対応する表示ムラをぼやけさせ、第4透光部のパターンの跡を目立たなくすることができる。なお、第1及び第2のフォトマスク用に別々の光源を用いてもよい。 In the method for manufacturing a liquid crystal display device of the present invention, the photomask is a first photomask, and the exposure step includes scanning the at least one of the light source and the substrate with the first photomass and the second photomask. The photo-alignment film is exposed through the photomask, and the second photomask has a third region and a fourth region that is adjacent to the third region in a direction perpendicular to the third region. The third light-shielding part has a plurality of third light-transmitting parts, the plurality of third light-transmitting parts are arranged in a vertical direction, and the fourth region has a plurality of fourth light-transmitting parts in the fourth light-shielding part. The plurality of fourth light transmissive portions are smaller than the plurality of third light transmissive portions, and the plurality of fourth light transmissive portions are arranged in the vertical direction and discrete in the scanning direction. And a part of the photo-alignment film is exposed through the plurality of second light-transmitting portions. Moni, are preferably exposed through the plurality of fourth light transmitting portion. As a result, the joint can be exposed through the second and fourth light-transmitting parts, and generation of a seam at the joint can be suppressed. In addition, even when scanning is temporarily stopped during exposure, display unevenness corresponding to the end portion of the fourth light transmitting portion can be blurred, and the trace of the pattern of the fourth light transmitting portion can be made inconspicuous. Note that separate light sources may be used for the first and second photomasks.
本発明の露光装置及び液晶表示装置の製造方法において、前記第4領域の開口率は、前記第3領域から離れるにしたがって減少することが好ましい。これにより、継ぎ目が視認されるのをより効果的に抑制することができる。 In the exposure apparatus and the liquid crystal display manufacturing method of the present invention, it is preferable that the aperture ratio of the fourth region decreases as the distance from the third region increases. Thereby, it can suppress more effectively that a joint is visually recognized.
本発明の露光装置及び液晶表示装置の製造方法において、前記複数の第2透光部は、前記第4遮光部に対応して設けられ、前記複数の第4透光部は、前記第2遮光部に対応して設けられてもよい。これにより、瞬停時においても、多重に露光される領域をなくすことができ、継ぎ部のマスク端だけでなく、継ぎ露光部自体が視認されるのを回避することが可能となる。このように、第2透光部のパターンは、第4遮光部のパターンに対応し、第4透光部のパターンは、第2遮光部のパターンに対応してもよい。 In the exposure apparatus and the manufacturing method of the liquid crystal display device of the present invention, the plurality of second light transmissive portions are provided corresponding to the fourth light shielding portions, and the plurality of fourth light transmissive portions are the second light shielding portions. It may be provided corresponding to the part. As a result, even during a momentary power failure, it is possible to eliminate the multiple exposure areas, and it is possible to avoid not only the mask end of the joint portion but also the joint exposure portion itself being visually recognized. As described above, the pattern of the second light-transmitting portion may correspond to the pattern of the fourth light-shielding portion, and the pattern of the fourth light-transmitting portion may correspond to the pattern of the second light-shielding portion.
本発明の露光装置及び液晶表示装置の製造方法において、前記第1及び第2のフォトマスクは、前記走査方向に平行な前記第2領域の中心線(前記第2領域の中心線であって、前記走査方向に平行な線)と、前記走査方向に平行な前記第4領域の中心線(前記第4領域の中心線であって、前記走査方向に平行な線)とが(実質的に)一致するように配置され、前記複数の第2透光部及び前記複数の第4透光部は、前記両中心線に対して、互いに(実質的に)鏡像の関係にあってもよい。これにより、瞬停時においても、多重に露光される領域をなくすことができ、継ぎ部のマスク端だけでなく、継ぎ露光部自体が視認されるのを回避することが可能となる。このように、第2透光部のパターンと、第4透光部のパターンとは、上記両中心線に対して、互いに(実質的に)鏡像の関係にあってもよい。 In the manufacturing method of the exposure apparatus and the liquid crystal display device of the present invention, the first and second photomasks are center lines of the second region parallel to the scanning direction (center lines of the second region, A line parallel to the scanning direction) and a center line of the fourth region parallel to the scanning direction (substantially a center line of the fourth region and parallel to the scanning direction). The plurality of second light-transmitting portions and the plurality of fourth light-transmitting portions may be in a (substantially) mirror image relationship with respect to the center lines. As a result, even during a momentary power failure, it is possible to eliminate the multiple exposure areas, and it is possible to avoid not only the mask end of the joint portion but also the joint exposure portion itself being visually recognized. As described above, the pattern of the second light-transmitting portion and the pattern of the fourth light-transmitting portion may be in a (substantially) mirror image relationship with respect to the center lines.
本発明の露光装置及び液晶表示装置の製造方法において、前記走査方向に平行な直線を走査線とすると、(前記複数の第2透光部のうち、)同じ走査線上に存在する複数の第2透光部は、実質的に等間隔に配置されてもよい。これにより、第2透光部の配置場所の偏りに起因して表示ムラが発生するのを抑制することができる。 In the manufacturing method of the exposure apparatus and the liquid crystal display device according to the present invention, if a straight line parallel to the scanning direction is a scanning line, a plurality of second (excluding the plurality of second light transmitting portions) existing on the same scanning line. The translucent portions may be arranged at substantially equal intervals. Thereby, it is possible to suppress the occurrence of display unevenness due to the uneven location of the second light-transmitting portion.
本発明の露光装置及び液晶表示装置の製造方法において、前記複数の第1透光部は、前記走査方向に離散的に分散されていてもよく、このとき、(前記複数の第1透光部のうち、)前記走査方向に隣接する第1透光部の間の領域は、遮光されていることが好ましい。これにより、第1及び第2透光部のエッジの数の不連続性に起因して表示ムラが発生するのを抑制することができる。 In the exposure apparatus and the manufacturing method of the liquid crystal display device of the present invention, the plurality of first light transmitting portions may be dispersed in the scanning direction, and at this time, (the plurality of first light transmitting portions) Among them, it is preferable that a region between the first light transmitting parts adjacent in the scanning direction is shielded from light. Thereby, it is possible to suppress the occurrence of display unevenness due to the discontinuity in the number of edges of the first and second light transmitting parts.
同様の観点から、本発明の露光装置及び液晶表示装置の製造方法において、前記複数の第3透光部は、前記走査方向に離散的に分散されていてもよく、このとき、(前記複数の第3透光部のうち、)前記走査方向に隣接する第3透光部の間の領域は、遮光されていることが好ましい。 From the same point of view, in the exposure apparatus and the liquid crystal display manufacturing method of the present invention, the plurality of third light-transmitting portions may be dispersed in the scanning direction. Of the third light transmitting parts, it is preferable that a region between the third light transmitting parts adjacent in the scanning direction is shielded from light.
本発明の液晶表示装置の製造方法において、前記露光工程は、前記基板を平面視したときに、互いに反平行方向に露光される2つの領域を各画素内に形成するように、前記光配向膜を露光することが好ましい。これにより、マルチドメインTNモード、マルチドメインECBモード、マルチドメインVAECBモード、マルチドメインVAHAN(Vertical Alignment Hybrid-aligned Nematic)モード、マルチドメインVATN(Vertical Alignment Twisted Nematic)モード等の広視野角の液晶表示装置を容易に実現することができる。 In the method for manufacturing a liquid crystal display device according to the present invention, the exposure step includes forming the photo-alignment film so as to form, in each pixel, two regions that are exposed in antiparallel directions when the substrate is viewed in plan. Is preferably exposed. As a result, wide-angle display such as multi-domain TN mode, multi-domain ECB mode, multi-domain VAECB mode, multi-domain VAHAN (Vertical Alignment Hybrid-aligned Nematic) mode, multi-domain VATN (Vertical Alignment Twisted Nematic) liquid crystal display, etc. Can be easily realized.
本発明は更に、本発明の液晶表示装置の製造方法によって作製された液晶表示装置でもある。 The present invention is also a liquid crystal display device manufactured by the method for manufacturing a liquid crystal display device of the present invention.
本発明の液晶表示装置における好ましい形態について以下に詳しく説明する。以下に示す各種形態は、適宜組み合わされてもよい。 A preferred embodiment of the liquid crystal display device of the present invention will be described in detail below. Various forms shown below may be combined as appropriate.
本発明の液晶表示装置は、アクティブマトリクス駆動されることが好ましいが、単純駆動されてもよい。 The liquid crystal display device of the present invention is preferably driven by active matrix, but may be driven simply.
前記液晶表示装置は、垂直配向型の液晶層を備え、前記液晶層は、誘電率異方性が負の液晶材料を含有してもよい。これにより、垂直配向モードの液晶表示装置を実現することが可能となる。 The liquid crystal display device may include a vertical alignment type liquid crystal layer, and the liquid crystal layer may contain a liquid crystal material having a negative dielectric anisotropy. Thereby, a liquid crystal display device in a vertical alignment mode can be realized.
前記液晶表示装置は、水平配向型の液晶層を備え、前記液晶層は、誘電率異方性が正の液晶材料を含有してもよい。これにより、水平配向モードの液晶表示装置を実現することが可能となる。 The liquid crystal display device may include a horizontally aligned liquid crystal layer, and the liquid crystal layer may contain a liquid crystal material having positive dielectric anisotropy. Thereby, a liquid crystal display device in a horizontal alignment mode can be realized.
前記液晶層は、ツイストネマチック液晶を含有してもよい。これにより、TNモード、VATNモード、マルチドメインTNモード又はマルチドメインVATNモードの液晶表示装置を実現することができる。なお、VATNモードの液晶表示装置は、一対の基板と、ネマチック液晶を含有する液晶層と、それぞれの基板上に設けられた一対の垂直配向膜とを備え、両基板面を平面視したときに、これらの配向膜に施された配向処理の方向が互いに略直交し、電圧無印加時に、ネマチック液晶が垂直、かつツイスト配向する。 The liquid crystal layer may contain a twisted nematic liquid crystal. Thereby, a liquid crystal display device of TN mode, VATN mode, multi-domain TN mode or multi-domain VATN mode can be realized. Note that a VATN mode liquid crystal display device includes a pair of substrates, a liquid crystal layer containing a nematic liquid crystal, and a pair of vertical alignment films provided on the respective substrates. The directions of the alignment treatment applied to these alignment films are substantially orthogonal to each other, and the nematic liquid crystal is vertically and twist-aligned when no voltage is applied.
前記液晶表示装置は、2以上のドメインを有することが好ましく、4以下のドメインを有することが好ましく、4つのドメインを有することがより好ましい。これにより、製造工程の複雑化を抑制しつつ、視野角特性に優れた液晶表示装置を実現できる。また、ドメインを4つにすることによって、例えば上下左右の4つの方向といったように、互いに直交する4つの方向のいずれにおいても広視野角化できる。また、互いに直交する4つの方向のいずれの視野角特性もほぼ同一にすることが可能となる。すなわち、対称性に優れた視野角特性を実現することが可能となる。そのため、視野角依存性の小さい液晶表示装置を実現できる。なお、4つのドメインに配向分割した場合のドメインの配置形態としては特に限定されず、マトリクス状、目の字のようなストライプ状等が挙げられる。 The liquid crystal display device preferably has 2 or more domains, preferably 4 or less domains, and more preferably 4 domains. Thereby, a liquid crystal display device excellent in viewing angle characteristics can be realized while suppressing the complexity of the manufacturing process. Further, by using four domains, a wide viewing angle can be obtained in any of four directions orthogonal to each other, for example, four directions of up, down, left, and right. Further, the viewing angle characteristics in any of the four directions orthogonal to each other can be made substantially the same. That is, it is possible to realize viewing angle characteristics with excellent symmetry. Therefore, a liquid crystal display device with small viewing angle dependency can be realized. In addition, the arrangement form of the domains when the orientation is divided into four domains is not particularly limited, and examples thereof include a matrix form and a stripe form such as an eye shape.
本発明の露光装置、液晶表示装置及びその製造方法によれば、スキャン露光時にスキャンが一時的に停止したとしても継ぎ部において表示ムラが視認されるのを抑制することができる。 According to the exposure apparatus, the liquid crystal display apparatus, and the manufacturing method thereof of the present invention, it is possible to suppress the display unevenness from being visually recognized at the joint even if the scan is temporarily stopped during the scan exposure.
実施形態1の液晶表示装置の構成を示す断面模式図である。1 is a schematic cross-sectional view illustrating a configuration of a liquid crystal display device according to Embodiment 1. FIG. 実施形態1の1サブ画素を示す平面模式図であり、第1基板(垂直配向膜)に対する光の照射方向を示す。FIG. 3 is a schematic plan view showing one sub-pixel of Embodiment 1 and shows a light irradiation direction with respect to a first substrate (vertical alignment film). 実施形態1の1サブ画素を示す平面模式図であり、第2基板(垂直配向膜)に対する光の照射方向を示す。FIG. 3 is a schematic plan view showing one sub-pixel of Embodiment 1 and shows a light irradiation direction with respect to a second substrate (vertical alignment film). 実施形態1の1サブ画素を示す平面模式図であり、第1及び第2基板に対する光の照射方向と、電圧印加時の液晶分子の配向方向とを示す。また、実施形態1の偏光板の偏光軸方向を示す。FIG. 2 is a schematic plan view showing one sub-pixel of Embodiment 1, showing the light irradiation direction on the first and second substrates and the alignment direction of liquid crystal molecules when a voltage is applied. Moreover, the polarization axis direction of the polarizing plate of Embodiment 1 is shown. 実施形態1の第1基板(TFTアレイ基板)の平面模式図である。3 is a schematic plan view of a first substrate (TFT array substrate) of Embodiment 1. FIG. 実施形態1の第2基板(CF基板)の平面模式図である。3 is a schematic plan view of a second substrate (CF substrate) of Embodiment 1. FIG. 実施形態1の露光工程における第1基板及びフォトマスクを示す平面模式図である。6 is a schematic plan view showing a first substrate and a photomask in the exposure process of Embodiment 1. FIG. 実施形態1の露光工程における第1基板及びフォトマスクを示す平面模式図である。6 is a schematic plan view showing a first substrate and a photomask in the exposure process of Embodiment 1. FIG. 実施形態1の露光工程における第1基板を示す平面模式図である。3 is a schematic plan view showing a first substrate in the exposure process of Embodiment 1. FIG. 実施形態1の露光工程における第1基板及びフォトマスクを示す平面模式図である。6 is a schematic plan view showing a first substrate and a photomask in the exposure process of Embodiment 1. FIG. 実施形態1の露光工程における第1基板及びフォトマスクを示す平面模式図である。6 is a schematic plan view showing a first substrate and a photomask in the exposure process of Embodiment 1. FIG. 実施形態1の露光装置を示す斜視模式図と、実施形態1のTFTアレイ基板の構成を示す平面模式図とである。FIG. 2 is a schematic perspective view showing an exposure apparatus according to Embodiment 1, and a schematic plan view showing a configuration of a TFT array substrate according to Embodiment 1. FIG. 実施形態1の露光工程における基板及びフォトマスクを示す断面模式図であり、基板に対する光の照射態様を示す。It is a cross-sectional schematic diagram which shows the board | substrate and photomask in the exposure process of Embodiment 1, and shows the irradiation aspect of the light with respect to a board | substrate. 実施形態1の露光工程における第2基板及びフォトマスクを示す平面模式図である。It is a plane schematic diagram which shows the 2nd board | substrate and photomask in the exposure process of Embodiment 1. 実施形態1の露光工程における第2基板及びフォトマスクを示す平面模式図である。It is a plane schematic diagram which shows the 2nd board | substrate and photomask in the exposure process of Embodiment 1. 実施形態1の露光工程における第2基板を示す平面模式図である。6 is a schematic plan view showing a second substrate in the exposure step of Embodiment 1. FIG. 実施形態1の露光工程における第2基板及びフォトマスクを示す平面模式図である。It is a plane schematic diagram which shows the 2nd board | substrate and photomask in the exposure process of Embodiment 1. 実施形態1の露光工程における第2基板及びフォトマスクを示す平面模式図である。It is a plane schematic diagram which shows the 2nd board | substrate and photomask in the exposure process of Embodiment 1. 実施形態1のフォトマスクを示す平面模式図である。3 is a schematic plan view showing the photomask of Embodiment 1. FIG. 実施形態1のフォトマスクを示す平面模式図である。3 is a schematic plan view showing the photomask of Embodiment 1. FIG. 実施形態1のフォトマスクを示す平面模式図である。3 is a schematic plan view showing the photomask of Embodiment 1. FIG. 実施形態1のフォトマスクを示す平面模式図である。3 is a schematic plan view showing the photomask of Embodiment 1. FIG. 実施形態1の第1基板を示す平面模式図である。3 is a schematic plan view illustrating a first substrate of Embodiment 1. FIG. 実施形態1の貼り合わされた第1基板及び第2基板を示す平面模式図である。It is a plane schematic diagram which shows the 1st board | substrate and 2nd board | substrate which were bonded together of Embodiment 1. FIG. 実施形態1の露光工程における基板及びフォトマスクを示す平面模式図であり、変形例を示す。It is a plane schematic diagram which shows the board | substrate and photomask in the exposure process of Embodiment 1, and shows a modification. 実施形態1のフォトマスクを示す平面模式図である。3 is a schematic plan view showing the photomask of Embodiment 1. FIG. 実施形態2のフォトマスクを示す平面模式図である。6 is a schematic plan view showing a photomask according to Embodiment 2. FIG. 実施形態2のフォトマスクを示す平面模式図である。6 is a schematic plan view showing a photomask according to Embodiment 2. FIG. 実施形態2のフォトマスクを示す平面模式図であり、変形例を示す。It is a plane schematic diagram which shows the photomask of Embodiment 2, and shows a modification. 実施形態3のフォトマスクを示す平面模式図である。It is a plane schematic diagram which shows the photomask of Embodiment 3. 実施形態3のフォトマスクを示す平面模式図である。It is a plane schematic diagram which shows the photomask of Embodiment 3. 比較形態のフォトマスクを示す平面模式図である。It is a plane schematic diagram which shows the photomask of a comparison form. 比較形態の露光工程における基板及びフォトマスクを示す平面模式図である。It is a plane schematic diagram which shows the board | substrate and photomask in the exposure process of a comparison form. 比較形態の露光工程における基板及びフォトマスクを示す断面模式図である。It is a cross-sectional schematic diagram which shows the board | substrate and photomask in the exposure process of a comparison form. 比較形態の基板を示す平面模式図である。It is a plane schematic diagram which shows the board | substrate of a comparison form. 比較形態における表示ムラを示す平面模式図である。It is a plane schematic diagram which shows the display nonuniformity in a comparison form.
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 Embodiments will be described below, and the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited only to these embodiments.
(実施形態1)
まず、実施形態1の液晶表示装置の構成について説明する。本実施形態の液晶表示装置100は、図1に示すように、対向する一対の基板である第1基板1(例えばTFTアレイ基板)及び第2基板2(例えばCF基板)と、第1基板1及び第2基板2の間に設けられた液晶層3とを有する。また、第1基板1は、絶縁基板26aの液晶層3側に、絶縁基板26a側から順に、液晶層3に駆動電圧を印加するための透明電極4a(画素電極)と、垂直配向膜5aとを有する。第2基板2は、絶縁基板26bの液晶層3側に、絶縁基板26b側から順に、液晶層3に駆動電圧を印加するための透明電極4b(共通電極)と、垂直配向膜5bとを有する。第1基板1及び第2基板2の液晶層3とは反対側には、位相差板7a、7b及び偏光板6a、6bが基板側からこの順に配置されている。なお、位相差板7a、7bは、設置しなくともよいが、広視野角を実現する観点からは、設置することが好ましい。また、位相差板7a、7bは、どちらか一方のみが配置されてもよい。このように、液晶表示装置100は、いわゆる液晶表示パネルを含む。
(Embodiment 1)
First, the configuration of the liquid crystal display device of Embodiment 1 will be described. As shown in FIG. 1, the liquid crystal display device 100 according to the present embodiment includes a first substrate 1 (for example, a TFT array substrate) and a second substrate 2 (for example, a CF substrate), which are a pair of opposing substrates, and a first substrate 1. And a liquid crystal layer 3 provided between the second substrates 2. In addition, the first substrate 1 includes, on the liquid crystal layer 3 side of the insulating substrate 26a, in order from the insulating substrate 26a side, a transparent electrode 4a (pixel electrode) for applying a driving voltage to the liquid crystal layer 3, a vertical alignment film 5a, Have The second substrate 2 has, on the liquid crystal layer 3 side of the insulating substrate 26b, a transparent electrode 4b (common electrode) for applying a driving voltage to the liquid crystal layer 3 and a vertical alignment film 5b in order from the insulating substrate 26b side. . On the opposite side of the first substrate 1 and the second substrate 2 from the liquid crystal layer 3, retardation plates 7a and 7b and polarizing plates 6a and 6b are arranged in this order from the substrate side. The retardation plates 7a and 7b need not be installed, but are preferably installed from the viewpoint of realizing a wide viewing angle. Further, only one of the phase difference plates 7a and 7b may be arranged. Thus, the liquid crystal display device 100 includes a so-called liquid crystal display panel.
液晶層3は、例えば誘電率異方性が負のネマチック液晶材料(ネガ型ネマチック液晶材料)を含有する。液晶層3内の液晶分子は、駆動電圧が液晶層3に印加されていないとき(電圧無印加時)には、垂直配向膜5a、5bの表面に対して略垂直方向に配向される。実際には、液晶分子は、このとき、垂直配向膜5a、5bの表面の法線方向に対して0.1°程度から数度程度、若干傾いて配向される。すなわち、液晶分子は、若干のプレチルト角を有するように、垂直配向膜5a、5bにより配向されている。なお、プレチルト角とは、電圧無印加時において、配向膜表面と、配向膜表面近傍の液晶分子の長軸方向とがなす角度である。また、電圧無印加時において、基板を平面視したときの配向膜表面近傍の液晶分子が傾斜している方向をプレチルト方向とする。一方、液晶層3にある閾値以上の充分な駆動電圧が印加されたとき(電圧印加時)は、液晶分子は、予め設定されていたプレチルト角によって、一定の方向に更に傾斜する。より詳細には、液晶層3の厚み方向における略中央に位置する液晶分子3aは、第1基板1及び第2基板2面に対して略平行な方向にまで傾斜する。なお、垂直配向膜5a、5bは、光配向膜材料から形成されており、垂直配向膜5a、5bが規定するプレチルト方向は、フォトマスクを介して垂直配向膜5a、5b表面が、例えば基板面に対して斜め方向から露光されることによって決定される。 The liquid crystal layer 3 contains, for example, a nematic liquid crystal material (negative type nematic liquid crystal material) having a negative dielectric anisotropy. The liquid crystal molecules in the liquid crystal layer 3 are aligned in a substantially vertical direction with respect to the surfaces of the vertical alignment films 5a and 5b when a driving voltage is not applied to the liquid crystal layer 3 (when no voltage is applied). Actually, the liquid crystal molecules are aligned with a slight inclination of about 0.1 ° to several degrees with respect to the normal direction of the surfaces of the vertical alignment films 5a and 5b. That is, the liquid crystal molecules are aligned by the vertical alignment films 5a and 5b so as to have a slight pretilt angle. The pretilt angle is an angle formed by the alignment film surface and the major axis direction of the liquid crystal molecules near the alignment film surface when no voltage is applied. Further, when no voltage is applied, the direction in which the liquid crystal molecules in the vicinity of the surface of the alignment film are inclined when the substrate is viewed in plan is defined as a pretilt direction. On the other hand, when a sufficient driving voltage equal to or higher than a threshold value is applied to the liquid crystal layer 3 (when a voltage is applied), the liquid crystal molecules are further tilted in a certain direction by a preset pretilt angle. More specifically, the liquid crystal molecules 3 a located at substantially the center in the thickness direction of the liquid crystal layer 3 are inclined in a direction substantially parallel to the surfaces of the first substrate 1 and the second substrate 2. The vertical alignment films 5a and 5b are made of a photo-alignment film material. The pretilt direction defined by the vertical alignment films 5a and 5b is such that the surface of the vertical alignment films 5a and 5b is, for example, the substrate surface via a photomask. It is determined by exposing from an oblique direction.
図2~4を用いてサブ画素内に形成されるドメインについて説明する。なお、図2及び4において、点線矢印は、第1基板に施した光線照射方向を、図3及び4において、実線矢印は、第2基板に施した光線照射方向を示す。また、図4において、液晶分子(液晶ダイレクター)3aは、基板を平面視したときの各ドメインの略中央に位置し、かつ液晶層の厚み方向における略中央に位置する液晶分子(液晶ダイレクター)を示している。 A domain formed in a sub-pixel will be described with reference to FIGS. 2 and 4, a dotted arrow indicates a light beam irradiation direction applied to the first substrate, and in FIGS. 3 and 4, a solid line arrow indicates a light beam irradiation direction applied to the second substrate. In FIG. 4, a liquid crystal molecule (liquid crystal director) 3a is located at the approximate center of each domain when the substrate is viewed in plan, and is positioned at the approximate center in the thickness direction of the liquid crystal layer. ).
垂直配向膜5a、5bはそれぞれ、図2、3に示すように、基板を平面視したときに、サブ画素8内において、反平行方向(平行かつ逆向きである方向A及び方向B)から光が照射されている。また、垂直配向膜5a、5bに対する光の照射方向は、図4に示すように、第1基板1及び第2基板2を貼り合わせたときに、互いに略90°異なるように設定されている。これにより、各ドメインにおいて、垂直配向膜5aが規定するプレチルト方向と、垂直配向膜5bが規定するプレチルト方向とは、互いに略90°異なることとなる。したがって、液晶層3に含まれる液晶分子は、基板を平面視したとき、各ドメインにおいて、略90°捩れて配向する。また、液晶分子3aは、基板を平面視したとき、光の照射方向に対して略45°ずれた方向に配向する。更に、各ドメインにおける液晶分子3aは、互いに異なる4つの方向に傾斜する。このように、本実施形態の液晶表示装置100は、プレチルト方向(配向処理方向)が互いに直交する垂直配向膜を用いることにより、液晶分子を略90°ツイスト配向させている。したがって液晶表示装置100は、4ドメインのVATNモードを有する。なお、各サブ画素8は、8つの領域に分割されているが、液晶分子3aの傾斜方向は4つであることから、液晶表示装置100は、4ドメインということになる。 As shown in FIGS. 2 and 3, each of the vertical alignment films 5 a and 5 b emits light from an antiparallel direction (a parallel and reverse direction A and direction B) in the sub-pixel 8 when the substrate is viewed in plan. Is irradiated. Further, as shown in FIG. 4, the direction of light irradiation to the vertical alignment films 5a and 5b is set so as to be approximately 90 ° different from each other when the first substrate 1 and the second substrate 2 are bonded together. As a result, in each domain, the pretilt direction defined by the vertical alignment film 5a and the pretilt direction defined by the vertical alignment film 5b differ from each other by approximately 90 °. Accordingly, the liquid crystal molecules contained in the liquid crystal layer 3 are twisted and aligned by approximately 90 ° in each domain when the substrate is viewed in plan. Further, the liquid crystal molecules 3a are aligned in a direction shifted by approximately 45 ° with respect to the light irradiation direction when the substrate is viewed in plan. Further, the liquid crystal molecules 3a in each domain are inclined in four different directions. As described above, the liquid crystal display device 100 according to the present embodiment uses the vertical alignment films whose pretilt directions (alignment processing directions) are orthogonal to each other, so that the liquid crystal molecules are approximately 90 ° twist aligned. Therefore, the liquid crystal display device 100 has a 4-domain VATN mode. Each sub-pixel 8 is divided into eight regions, but the liquid crystal molecules 3a have four tilt directions, so the liquid crystal display device 100 has four domains.
4ドメインのVATNモードによれば、図2~4に示すように、第1基板1及び第2基板2をそれぞれ2回照射し、合計4回の照射で液晶分子3aの配向方向が互いに異なる4つのドメインを形成することができる。そのため、装置台数の削減と配向処理時間の短縮(タクトタイムの短縮)とが実現できる。また、1画素(1サブ画素)を4ドメインに分割させることは液晶表示装置の広視野角化を実現する観点から好ましい形態である。更に、従来のMVAモード等のように配向制御構造物を有する液晶モードにおいて必要であったリブ(突起)等の配向制御構造物を形成するためのフォトマスク、すなわちフォトリソ工程を削減することができ、その結果、製造プロセスの簡略化が可能となる。なお、1画素(1サブ画素)を2ドメインに分割させた場合には、例えば上下又は左右のどちらかの方向については広視野角化できるが、他方の方向の視野角特性を向上することはできない。また、5つ以上にドメインを増やしても構わないが、プロセスが煩雑となる上、処理時間も長くなるためあまり好ましくない。更に、4ドメインとそれ以上のドメインとでは、視野角特性には実用上それ程違いがないことも分かっている。 According to the 4-domain VATN mode, as shown in FIGS. 2 to 4, the first substrate 1 and the second substrate 2 are each irradiated twice, and the alignment directions of the liquid crystal molecules 3a are different from each other by a total of four irradiations. One domain can be formed. Therefore, it is possible to reduce the number of apparatuses and shorten the alignment processing time (shorten the tact time). Further, dividing one pixel (one sub-pixel) into four domains is a preferable form from the viewpoint of realizing a wide viewing angle of the liquid crystal display device. Further, the photomask for forming the alignment control structure such as ribs (protrusions) required in the liquid crystal mode having the alignment control structure such as the conventional MVA mode, that is, the photolithography process can be reduced. As a result, the manufacturing process can be simplified. In addition, when one pixel (one sub-pixel) is divided into two domains, for example, the viewing angle characteristics in the other direction can be increased, although the viewing angle in the other direction can be widened. Can not. Although the number of domains may be increased to five or more, it is not preferable because the process becomes complicated and the processing time becomes long. Furthermore, it has been found that there is practically no difference in viewing angle characteristics between four domains and more domains.
図4に示すように、偏光板6a、6bは、パネル(基板)を平面視したときに、偏光板6aの偏光軸方向Pと偏光板6bの偏光軸方向Qとが互いに略直交するように配置されている。また、偏光板6aの偏光軸方向Pと偏光板6bの偏光軸方向Qとのうち、一方は、垂直配向膜5aに対する光の照射方向に沿うように配置され、他方は、垂直配向膜5bに対する光の照射方向に沿うように配置されている。したがって、電圧印加時においては、偏光板6a側から入射した光は、偏光軸方向Pの偏光となり、液晶層3において液晶分子のねじれに沿って90°旋光し、偏光軸方向Qの偏光となって偏光板6bから射出されることとなる。一方、電圧無印加時においては、液晶層3において液晶分子は垂直配向のままであり、偏光軸方向Pの偏光は、旋光せずそのまま液晶層3を透過し、偏光板6bにより遮断されることとなる。このように、液晶表示装置100は、ノーマリーブラックモードである。なお、本明細書において、偏光軸とは、吸収軸を意味する。また、偏光板6aの偏光軸方向Pと偏光板6bの偏光軸方向Qとは、図4に示した方向に特に限定されず、適宜設定すればよいが、一対の偏光板6a、6bの偏光軸方向は、パネル(基板)を平面視したときに、互いに略90°異なることが好ましい。すなわち、偏光板6a、6bは、クロスニコル配置されることが好ましい。 As shown in FIG. 4, the polarizing plates 6a and 6b are arranged so that the polarization axis direction P of the polarizing plate 6a and the polarization axis direction Q of the polarizing plate 6b are substantially orthogonal to each other when the panel (substrate) is viewed in plan. Has been placed. Further, one of the polarization axis direction P of the polarizing plate 6a and the polarization axis direction Q of the polarizing plate 6b is arranged along the light irradiation direction with respect to the vertical alignment film 5a, and the other is with respect to the vertical alignment film 5b. It arrange | positions along the irradiation direction of light. Therefore, when a voltage is applied, the light incident from the polarizing plate 6a side becomes polarized light in the polarization axis direction P, rotates 90 ° along the twist of the liquid crystal molecules in the liquid crystal layer 3, and becomes polarized light in the polarization axis direction Q. Thus, the light is emitted from the polarizing plate 6b. On the other hand, when no voltage is applied, the liquid crystal molecules remain vertically aligned in the liquid crystal layer 3, and the polarized light in the polarization axis direction P passes through the liquid crystal layer 3 as it is without optical rotation and is blocked by the polarizing plate 6b. It becomes. Thus, the liquid crystal display device 100 is in a normally black mode. In the present specification, the polarization axis means an absorption axis. Further, the polarization axis direction P of the polarizing plate 6a and the polarization axis direction Q of the polarizing plate 6b are not particularly limited to the directions shown in FIG. 4 and may be set as appropriate, but the polarization of the pair of polarizing plates 6a and 6b The axial directions are preferably approximately 90 ° different from each other when the panel (substrate) is viewed in plan. That is, it is preferable that the polarizing plates 6a and 6b are arranged in a crossed Nicols arrangement.
なお、本実施形態では、垂直配向型の液晶表示装置について説明しているが、本実施形態の液晶表示装置は、水平配向型の液晶表示装置であってもよい。この場合は、液晶層3は、誘電率異方性が正のネマチック液晶材料(ポジ型ネマチック液晶材料)を含有し、また、第1基板1及び第2基板2の液晶層3側に、垂直配向膜5a、5bの代わりに水平配向膜を設ければよい。 In this embodiment, the vertical alignment type liquid crystal display device is described. However, the liquid crystal display device of this embodiment may be a horizontal alignment type liquid crystal display device. In this case, the liquid crystal layer 3 contains a nematic liquid crystal material (positive nematic liquid crystal material) having a positive dielectric anisotropy, and is perpendicular to the liquid crystal layer 3 side of the first substrate 1 and the second substrate 2. A horizontal alignment film may be provided instead of the alignment films 5a and 5b.
以下に、実施形態1の液晶表示装置の製造方法について説明する。
まず、一般的な方法により、配向膜形成前の一対の第1基板及び第2基板を準備する。第1基板としては、例えば、図5に示すように、ガラス等から形成される絶縁基板(図示せず)上に、複数の走査信号線(ゲートバスライン)9、複数のTFT11、複数のデータ信号線(ソースバスライン)10及び複数の画素電極12を順次形成することによって、絶縁基板上に走査信号線9及びデータ信号線10が絶縁膜(図示せず)を介して格子状に交差するように配置され、更にその交点毎にTFT11及び画素電極12が配置されたTFTアレイ基板を用いる。一方、第2基板としては、例えば、図6に示すように、ガラス等から形成される絶縁基板(図示せず)上に、ブラックマトリクス(BM)13と、赤(R)、青(G)及び緑(B)の3色の着色層を含むカラーフィルタ14と、保護膜(オーバーコート層、図示せず)と、透明電極膜(図示せず)とを順次形成することによって、絶縁基板上にBM13が格子状に配置され、更にそのBM13で区切られた領域にカラーフィルタ14が配置されたCF基板を用いる。このように、本実施形態において、1画素は、x軸方向(表示面(表示画面)を正面視したときの横方向)に並んだRGBの3サブ画素から構成される。なお、絶縁基板は絶縁性の表面を有するものであればよく、ガラスに特に限定されない。また、上述の各構成部材の材質は、通常用いられる材料を用いればよい。
Below, the manufacturing method of the liquid crystal display device of Embodiment 1 is demonstrated.
First, a pair of first and second substrates before alignment film formation is prepared by a general method. As the first substrate, for example, as shown in FIG. 5, a plurality of scanning signal lines (gate bus lines) 9, a plurality of TFTs 11, and a plurality of data are formed on an insulating substrate (not shown) formed of glass or the like. By sequentially forming the signal line (source bus line) 10 and the plurality of pixel electrodes 12, the scanning signal line 9 and the data signal line 10 cross on the insulating substrate in a lattice shape via an insulating film (not shown). A TFT array substrate in which the TFT 11 and the pixel electrode 12 are further arranged at each intersection is used. On the other hand, as the second substrate, for example, as shown in FIG. 6, a black matrix (BM) 13 and red (R) and blue (G) are formed on an insulating substrate (not shown) made of glass or the like. And a color filter 14 including three colored layers of green (B), a protective film (overcoat layer, not shown), and a transparent electrode film (not shown) are sequentially formed on the insulating substrate. A CF substrate is used in which the BM 13 is arranged in a lattice pattern and the color filter 14 is arranged in a region partitioned by the BM 13. Thus, in the present embodiment, one pixel is composed of three RGB sub-pixels arranged in the x-axis direction (the horizontal direction when the display surface (display screen) is viewed from the front). Note that the insulating substrate is not particularly limited to glass as long as it has an insulating surface. Moreover, what is necessary is just to use the material normally used for the material of the above-mentioned each structural member.
次に、TFTアレイ基板及びCF基板に対して、光配向膜材料を含む溶液をスピンキャスト法等により塗布した後、例えば180℃で60分間、光配向膜材料の焼成を行うことによって、垂直配向膜を形成する。光配向膜材料としては特に限定されず、感光性基を含む樹脂等が挙げられる。より具体的には、4-カルコン基(下記化学式(1))、4’-カルコン基(下記化学式(2))、クマリン基(下記化学式(3))、シンナモイル基(下記化学式(4))等の感光性基を含むポリイミド等が好適である。下記化学式(1)~(4)の感光性基は、光(好適には紫外線)の照射により架橋反応(二量化反応を含む)、異性化反応、光再配向等を生じるものであり、これらによれば、光分解型の光配向膜材料に比べて配向膜面内におけるプレチルト角のばらつきを効果的に小さくすることができる。なお、下記化学式(1)~(4)の感光性基は、ベンゼン環に置換基が結合した構造も含まれる。また、下記化学式(4)のシンナモイル基におけるカルボニル基に更に酸素原子が結合したシンナメート基(C-CH=CH-COO-、下記化学式(5))は、合成しやすいという利点を有している。したがって、光配向膜材料としては、シンナメート基を含むポリイミドがより好ましい。なお、焼成温度、焼成時間及び光配向膜の膜厚は特に限定されず、適宜設定すればよい。 Next, after applying a solution containing the photo-alignment film material to the TFT array substrate and the CF substrate by a spin casting method or the like, the photo-alignment film material is baked, for example, at 180 ° C. for 60 minutes, thereby performing vertical alignment. A film is formed. The photo-alignment film material is not particularly limited, and examples thereof include a resin containing a photosensitive group. More specifically, a 4-chalcone group (the following chemical formula (1)), a 4′-chalcone group (the following chemical formula (2)), a coumarin group (the following chemical formula (3)), and a cinnamoyl group (the following chemical formula (4)). A polyimide containing a photosensitive group such as is suitable. The photosensitive groups of the following chemical formulas (1) to (4) are those that cause a crosslinking reaction (including a dimerization reaction), an isomerization reaction, a photoreorientation, etc. by irradiation with light (preferably ultraviolet rays). Accordingly, the variation in the pretilt angle in the alignment film plane can be effectively reduced as compared with the photodecomposition type photo-alignment film material. The photosensitive groups represented by the following chemical formulas (1) to (4) include structures in which a substituent is bonded to the benzene ring. Further, the cinnamate group (C 6 H 5 —CH═CH—COO—, in which the oxygen atom is further bonded to the carbonyl group in the cinnamoyl group of the following chemical formula (4) has the advantage that it is easy to synthesize. is doing. Therefore, the photo-alignment film material is more preferably a polyimide containing a cinnamate group. The firing temperature, firing time, and film thickness of the photo-alignment film are not particularly limited and may be set as appropriate.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
なお、本実施形態においては、配向膜材料として、光に反応し、光線の照射方向に液晶分子のプレチルト角を生じる光配向膜材料を使用したが、非特許文献1に開示の光配向法のように、光の照射領域の移動方向によってプレチルト方向の規定が可能である光配向膜材料を用いてもよい。この場合は、光を基板に対して斜めから入射させる必要はなく、基板に対して略垂直に入射させることができる。 In this embodiment, a photo-alignment film material that reacts with light and generates a pretilt angle of liquid crystal molecules in the light irradiation direction is used as the alignment film material. However, the photo-alignment method disclosed in Non-Patent Document 1 As described above, a photo-alignment film material that can define the pretilt direction depending on the moving direction of the light irradiation region may be used. In this case, light does not need to be incident on the substrate from an oblique direction, and can be incident substantially perpendicular to the substrate.
次に、配向膜の露光方法について説明する。
本実施形態において、配向膜は、スキャン方式により露光される。以下、第1基板に対する露光工程について説明する。
Next, an alignment film exposure method will be described.
In this embodiment, the alignment film is exposed by a scanning method. Hereinafter, the exposure process for the first substrate will be described.
まず、中央部19a及びグレイトーン部20aを有するフォトマスク21aと、中央部19b及びグレイトーン部20bを有するフォトマスク21bとを準備する。 First, a photomask 21a having a central portion 19a and a gray tone portion 20a and a photomask 21b having a central portion 19b and a gray tone portion 20b are prepared.
なお、本実施形態に使用するフォトマスクは、ガラス等の透明基板上にクロム等の金属膜によりパターンが形成されたものであり、金属膜が形成された領域が遮光部であり、金属膜の開口が透光部である。 Note that the photomask used in this embodiment has a pattern formed of a metal film such as chromium on a transparent substrate such as glass, and the region where the metal film is formed is a light shielding portion, The opening is a translucent part.
そして、図7に示すように、グレイトーン部20a及び20bがy軸方向において重なるようにフォトマスク21a及び21bを配置する。フォトマスク21a、21bには、y軸方向に形成されたスリットがx軸(y軸と90°の角度をなす軸)方向に複数本設けられている。より詳細には、中央部19a、19bの遮光部内には、x軸方向(表示面を正面視したときの横方向)のサブ画素ピッチPxの略半分の幅を有する複数の矩形状の透光部が設けられ、これらの透光部はピッチPxと略同一のピッチで配列されている。一方、グレイトーン部20a、20bにおいても、ピッチPxと略同一のピッチで複数の透光部が配列されているが、グレイトーン部20a、20bの透光部は、中央部19a、19bの透光部よりも小さく、また、スキャン方向に分散して配置されている。グレイトーン部20a、20bのパターンについては、後で詳述する。 Then, as shown in FIG. 7, the photomasks 21a and 21b are arranged so that the gray tone portions 20a and 20b overlap in the y-axis direction. The photomasks 21a and 21b are provided with a plurality of slits formed in the y-axis direction in the x-axis direction (axis that forms an angle of 90 ° with the y-axis). More specifically, a plurality of rectangular light transmissions having a width substantially half the sub-pixel pitch Px in the x-axis direction (lateral direction when the display surface is viewed from the front) are provided in the light shielding portions of the central portions 19a and 19b. The light transmitting portions are arranged at substantially the same pitch as the pitch Px. On the other hand, in the gray tone portions 20a and 20b, a plurality of light transmitting portions are arranged at a pitch substantially the same as the pitch Px, but the light transmitting portions of the gray tone portions 20a and 20b are the light transmitting portions of the central portions 19a and 19b. It is smaller than the light part and is distributed in the scanning direction. The pattern of the gray tone portions 20a and 20b will be described in detail later.
また、中央部19c及びグレイトーン部20cを有するフォトマスク21cと、中央部19d及びグレイトーン部20dを有するフォトマスク21dとを準備する。そして、図7に示すように、グレイトーン部20c及び20dがy軸方向において重なるようにフォトマスク21c及び21dを配置する。フォトマスク21c、21dには、フォトマスク21a、21bと同じパターンが形成されている。なお、フォトマスク21a、21bと、フォトマスク21c、21dとの間には、実際には第1基板1が充分に収まる程度のスペースが存在する。 Further, a photomask 21c having a central portion 19c and a gray tone portion 20c and a photomask 21d having a central portion 19d and a gray tone portion 20d are prepared. Then, as shown in FIG. 7, the photomasks 21c and 21d are arranged so that the gray tone portions 20c and 20d overlap in the y-axis direction. The same patterns as the photomasks 21a and 21b are formed on the photomasks 21c and 21d. Note that there is actually a space between the photomasks 21a and 21b and the photomasks 21c and 21d so that the first substrate 1 can be accommodated sufficiently.
また、図12に示すように、各フォトマスク21a~21dの上方には光源が配置されている。ここでは、フォトマスク21aを含む構成についてのみ図示しているが、フォトマスク21b~21dを含む構成もフォトマスク21aを含む構成と同じである。本実施形態では、光源25とフォトマスク21aとが一体となって直線的に移動されるか、又は、光源25とフォトマスク21aとが固定されたまま基板18(第1基板又は第2基板)が直線的に移動する。図12は、基板18が移動する場合を示しており、基板18としては第1基板(TFTアレイ基板)を示した。フォトマスク21aの脇には画像検出用カメラ30が備え付けられており、データ信号線10、走査信号線9等のバス配線を読み取り、かつ追従するように基板18を移動させることができる。このプロセスによれば、露光装置を小型化することができる。また、露光装置のコストを下げることができる。更に、フォトマスクが小さくて済むためマスク自体の精度を高くすることができる。また、スキャン露光は、基板面内における照射量の安定性に優れているため、配向方位、プレチルト角等の配向膜の特性がばらつくことを効果的に抑制することができる。 In addition, as shown in FIG. 12, a light source is disposed above each of the photomasks 21a to 21d. Here, only the configuration including the photomask 21a is illustrated, but the configuration including the photomasks 21b to 21d is the same as the configuration including the photomask 21a. In the present embodiment, the light source 25 and the photomask 21a are linearly moved together, or the substrate 18 (first substrate or second substrate) while the light source 25 and the photomask 21a are fixed. Moves linearly. FIG. 12 shows a case where the substrate 18 moves. As the substrate 18, a first substrate (TFT array substrate) is shown. An image detection camera 30 is provided on the side of the photomask 21a, and the substrate 18 can be moved so as to read and follow the bus wiring such as the data signal line 10 and the scanning signal line 9. According to this process, the exposure apparatus can be reduced in size. In addition, the cost of the exposure apparatus can be reduced. Furthermore, since the photomask can be small, the accuracy of the mask itself can be increased. In addition, since the scan exposure is excellent in the stability of the irradiation amount within the substrate surface, it is possible to effectively suppress variations in the properties of the alignment film such as the alignment azimuth and the pretilt angle.
次に、フォトマスク21a、21bのスリットと、サブ画素とを位置合わせした後、図8に示すように、第1基板1を+y軸方向に移動させながら、偏光紫外線を用いて、フォトマスク21a、21bを介して、第1基板1の表面に設けられた配向膜の端から端まで露光する(1stスキャン)。このとき、第1基板1は、データ信号線10、走査信号線9等のバス配線にフォトマスク21a、21bのスリットが沿うように移動させられる。また、図13に示すように、偏光紫外線15は、第1基板1に対して斜め方向から照射される。また、フォトマスク21a、21bと第1基板1との間には、所定の間隔(プロキシミティギャップ16)が設けられている。これにより、第1基板1の移動がスムーズに行えるとともに、フォトマスク21a、21bが自重により撓んだとしても、第1基板1に接触することを抑制することができる。この1stスキャンにより、各画素(各サブ画素)の略半分の領域が配向処理されることとなる。また、垂直配向膜5a表面近傍の液晶分子3bは、図13に示すように、略一定のプレチルト角17を発現することになる。更に、第1基板1は、図9に示すように、フォトマスク21aの中央部19aを介してスキャン露光された露光領域22と、フォトマスク21bの中央部19bを介してスキャン露光された露光領域23と、フォトマスク21a、21bのグレイトーン部20a、20bを介してスキャン露光された継ぎ部24とを有することになる。すなわち、本実施形態の露光工程は、第1基板1に設けられた配向膜面内を露光領域22、23と、隣り合う露光領域22、23の間に介在する継ぎ部24とに分割し、グレイトーン部20a、20bを介して継ぎ部24を露光するとともに、中央部19a、19bを介して露光領域22、23を露光する。継ぎ部24は、グレイトーン部20a、20bを介して少なくとも2回露光される。 Next, after aligning the slits of the photomasks 21a and 21b and the sub-pixels, as shown in FIG. 8, the photomask 21a is moved using the polarized ultraviolet light while moving the first substrate 1 in the + y-axis direction. , 21b, the alignment film provided on the surface of the first substrate 1 is exposed from end to end (1st scan). At this time, the first substrate 1 is moved so that the slits of the photomasks 21a and 21b are along the bus wiring such as the data signal line 10 and the scanning signal line 9. Further, as shown in FIG. 13, the polarized ultraviolet light 15 is applied to the first substrate 1 from an oblique direction. In addition, a predetermined gap (proximity gap 16) is provided between the photomasks 21a and 21b and the first substrate 1. Accordingly, the first substrate 1 can be moved smoothly and contact with the first substrate 1 can be suppressed even if the photomasks 21a and 21b are bent by their own weight. By this 1st scan, an approximately half region of each pixel (each subpixel) is subjected to orientation processing. In addition, the liquid crystal molecules 3b in the vicinity of the surface of the vertical alignment film 5a exhibit a substantially constant pretilt angle 17, as shown in FIG. Further, as shown in FIG. 9, the first substrate 1 has an exposure region 22 that is scan-exposed through the central portion 19a of the photomask 21a and an exposure region that is scan-exposed through the central portion 19b of the photomask 21b. 23 and the joint portion 24 subjected to the scanning exposure through the gray tone portions 20a and 20b of the photomasks 21a and 21b. That is, in the exposure process of the present embodiment, the alignment film surface provided on the first substrate 1 is divided into exposure regions 22 and 23 and a joint portion 24 interposed between adjacent exposure regions 22 and 23, The joint portion 24 is exposed through the gray tone portions 20a and 20b, and the exposure regions 22 and 23 are exposed through the central portions 19a and 19b. The joint portion 24 is exposed at least twice through the gray tone portions 20a and 20b.
次に、図10に示すように、第1基板1を面内で180°回転した後、フォトマスク21c、21dに設けられた各スリットが各サブ画素の未露光領域に対応するように、x軸方向にピッチPxの略半分だけ第1基板1を水平移動する。その後、図11に示すように、図8で示した1stスキャンの時と同様に、第1基板1を移動させながら、配向膜の端から端まで露光する(2ndスキャン)。これにより、各画素(各サブ画素)の残りの略半分の領域が配向処理され、第1基板1は、全面にわたって露光されることとなる。なお、2ndスキャン時の光線(偏光紫外線15)の第1基板1に対する入射角と、1stスキャン時の光線(偏光紫外線15)の第1基板1に対する入射角とは、略同一である。他方、1stスキャン及び2ndスキャンの間、第1基板1は面内で180°回転していることから、1stスキャン時の第1基板1に対する光線の向きと、2ndスキャン時の第1基板1に対する光線の向きとは、図2に示すように、第1基板1を平面視したときに、ちょうど逆向きになる。すなわち、第1基板1の各サブ画素は、配向方向が互いに反平行方向である2つの領域に配向分割されることとなる。 Next, as shown in FIG. 10, after the first substrate 1 is rotated by 180 ° in the plane, the slits provided in the photomasks 21 c and 21 d correspond to the unexposed areas of the sub-pixels. The first substrate 1 is horizontally moved in the axial direction by approximately half of the pitch Px. Thereafter, as shown in FIG. 11, exposure is performed from end to end of the alignment film (2nd scan) while moving the first substrate 1 as in the case of the 1st scan shown in FIG. As a result, the remaining half of the remaining area of each pixel (each sub-pixel) is subjected to orientation treatment, and the first substrate 1 is exposed over the entire surface. In addition, the incident angle with respect to the 1st board | substrate 1 of the light ray at the 2nd scan (polarized ultraviolet ray 15) and the incident angle with respect to the 1st board | substrate 1 of the light ray at the 1st scan (polarized ultraviolet ray 15) are substantially the same. On the other hand, during the 1st scan and the 2nd scan, the first substrate 1 is rotated by 180 ° in the plane. Therefore, the direction of the light beam with respect to the first substrate 1 at the 1st scan and the first substrate 1 at the 2nd scan As shown in FIG. 2, the direction of the light beam is just opposite when the first substrate 1 is viewed in plan. That is, each sub-pixel of the first substrate 1 is divided into two regions whose alignment directions are antiparallel to each other.
次に、第2基板に対する露光工程について説明する。第2基板に対する露光態様は、フォトマスクの種類が異なるだけで、第1基板に対する露光態様とほぼ同様である。 Next, an exposure process for the second substrate will be described. The exposure mode for the second substrate is substantially the same as the exposure mode for the first substrate, except that the type of photomask is different.
まず、中央部19e及びグレイトーン部20eを有するフォトマスク21eと、中央部19f及びグレイトーン部20fを有するフォトマスク21fとを準備する。そして、図14に示すように、グレイトーン部20e及び20fがx軸方向において重なるようにフォトマスク21e及び21fを配置する。フォトマスク21e、21fには、x軸方向に形成されたスリットがy軸方向に複数本設けられている。より詳細には、中央部19e、19fの遮光部内には、y軸方向(表示面を正面視したときの縦方向)の画素ピッチPyの略1/4の幅を有する複数の矩形状の透光部が設けられ、これらの透光部はピッチPyの略半分のピッチとなるように設けられている。一方、グレイトーン部20e、20fにおいても、ピッチPyと略同一のピッチで複数の透光部が配列されているが、グレイトーン部20e、20fの透光部は、中央部19e、19rの透光部よりも小さく、また、スキャン方向に分散して配置されている。なお、本実施形態において、表示面を正面視したときの縦方向の画素ピッチ及びサブ画素ピッチは、同じである。 First, a photomask 21e having a central portion 19e and a gray tone portion 20e and a photomask 21f having a central portion 19f and a gray tone portion 20f are prepared. And as shown in FIG. 14, the photomasks 21e and 21f are arrange | positioned so that the gray tone parts 20e and 20f may overlap in an x-axis direction. The photomasks 21e and 21f are provided with a plurality of slits formed in the x-axis direction in the y-axis direction. More specifically, in the light shielding portions of the central portions 19e and 19f, a plurality of rectangular transparent portions having a width of about ¼ of the pixel pitch Py in the y-axis direction (vertical direction when the display surface is viewed from the front). Light portions are provided, and these light-transmitting portions are provided so as to have a pitch that is approximately half the pitch Py. On the other hand, in the gray tone portions 20e and 20f, a plurality of light transmitting portions are arranged at substantially the same pitch as the pitch Py, but the light transmitting portions of the gray tone portions 20e and 20f are the light transmitting portions of the central portions 19e and 19r. It is smaller than the light part and is distributed in the scanning direction. In the present embodiment, the vertical pixel pitch and the sub-pixel pitch when the display surface is viewed from the front are the same.
また、中央部19g及びグレイトーン部20gを有するフォトマスク21gと、中央部19h及びグレイトーン部20hを有するフォトマスク21hとを準備する。そして、図14に示すように、グレイトーン部20g及び20hがx軸方向において重なるようにフォトマスク21g及び21hを配置する。フォトマスク21g、21hには、フォトマスク21e、21fと同じパターンが形成されている。なお、フォトマスク21e、21fと、フォトマスク21g、21hとの間には、実際には第2基板2が充分に収まる程度のスペースが存在する。 A photomask 21g having a central portion 19g and a gray tone portion 20g and a photomask 21h having a central portion 19h and a gray tone portion 20h are prepared. And as shown in FIG. 14, the photomasks 21g and 21h are arrange | positioned so that the gray tone parts 20g and 20h may overlap in an x-axis direction. The same patterns as the photomasks 21e and 21f are formed on the photomasks 21g and 21h. There is actually a space between the photomasks 21e and 21f and the photomasks 21g and 21h so that the second substrate 2 can be accommodated sufficiently.
また、図12で示した第1基板に対する露光工程の時と同様に、各フォトマスク21e~21hの上方には光源が配置されている。 Similarly to the exposure process for the first substrate shown in FIG. 12, light sources are arranged above the photomasks 21e to 21h.
次に、フォトマスク21e、21fのスリットと、第2基板2の画素とを位置合わせした後、図15に示すように、第2基板2を+x軸方向に移動させながら、偏光紫外線を用いて、フォトマスク21e、21fを介して、第2基板2の表面に設けられた配向膜の端から端まで露光する(1stスキャン)。このとき、第2基板2は、BM13にフォトマスク21e、21fのスリットが沿うように移動させられる。また、図13で示した第1基板に対する照射方向と同様に、偏光紫外線は、第2基板2に対して斜め方向から照射される。また、第1基板に対する露光工程の場合と同様に、フォトマスク21e、21fと第2基板2との間には、プロキシミティギャップが設けられている。この1stスキャンにより、各画素(各サブ画素)の略半分の領域が配向処理されることとなる。また、第2基板に設けられた垂直配向膜表面近傍の液晶分子は、図13で示した第1基板の場合と同様に、略一定のプレチルト角を発現することになる。更に、第2基板2は、図16に示すように、フォトマスク21eの中央部19eを介してスキャン露光された露光領域32と、フォトマスク21fの中央部19fを介してスキャン露光された露光領域33と、フォトマスク21e、21fのグレイトーン部20e、20fを介してスキャン露光された継ぎ部34とを有することになる。すなわち、本実施形態の露光工程は、第2基板2に設けられた配向膜面内を露光領域32、33と、隣り合う露光領域32、33の間に介在する継ぎ部34とに分割し、グレイトーン部20e、20fを介して継ぎ部34を露光するとともに、中央部19e、19fを介して露光領域32、33を露光する。継ぎ部34は、グレイトーン部20e、20fを介して少なくとも2回露光される。 Next, after aligning the slits of the photomasks 21e and 21f and the pixels of the second substrate 2, as shown in FIG. 15, the polarized light is used while moving the second substrate 2 in the + x-axis direction. Then, exposure is performed from end to end of the alignment film provided on the surface of the second substrate 2 through the photomasks 21e and 21f (1st scan). At this time, the second substrate 2 is moved so that the slits of the photomasks 21e and 21f are along the BM13. Similarly to the irradiation direction with respect to the first substrate shown in FIG. 13, the polarized ultraviolet light is irradiated to the second substrate 2 from an oblique direction. In addition, a proximity gap is provided between the photomasks 21e and 21f and the second substrate 2 as in the case of the exposure process for the first substrate. By this 1st scan, an approximately half region of each pixel (each subpixel) is subjected to orientation processing. In addition, the liquid crystal molecules in the vicinity of the surface of the vertical alignment film provided on the second substrate exhibit a substantially constant pretilt angle as in the case of the first substrate shown in FIG. Further, as shown in FIG. 16, the second substrate 2 has an exposure region 32 that is scan-exposed through the central portion 19e of the photomask 21e and an exposure region that is scan-exposed through the central portion 19f of the photomask 21f. 33 and the joint portion 34 subjected to the scanning exposure through the gray tone portions 20e and 20f of the photomasks 21e and 21f. That is, in the exposure process of the present embodiment, the alignment film surface provided on the second substrate 2 is divided into exposure regions 32 and 33 and a joint portion 34 interposed between the adjacent exposure regions 32 and 33, and The joint portion 34 is exposed through the gray tone portions 20e and 20f, and the exposure regions 32 and 33 are exposed through the central portions 19e and 19f. The joint portion 34 is exposed at least twice through the gray tone portions 20e and 20f.
次に、図17に示すように、第2基板2を面内で180°回転した後、フォトマスク21g、21hに設けられた各スリットが各画素の未露光領域に対応するように、y軸方向にピッチPyの略1/4だけ第2基板2を水平移動する。その後、図18に示すように、図15で示した1stスキャンの時と同様に、第2基板2を移動させながら、配向膜の端から端まで露光する(2ndスキャン)。これにより、各画素(各サブ画素)の残りの略半分の領域が配向処理され、第2基板2は、全面にわたって露光されることとなる。また、1stスキャン時の第2基板2に対する光線の向きと、2ndスキャン時の第2基板2に対する光線の向きとは、図3に示すように、第2基板2を平面視したときに、ちょうど逆向きになる。すなわち、第2基板2の各サブ画素は、配向方向が互いに反平行方向である2つの領域に配向分割されることとなる。 Next, as shown in FIG. 17, after the second substrate 2 is rotated by 180 ° in the plane, the y-axis is set so that the slits provided in the photomasks 21g and 21h correspond to the unexposed areas of the pixels. The second substrate 2 is horizontally moved in the direction by about 1/4 of the pitch Py. After that, as shown in FIG. 18, exposure is performed from end to end of the alignment film while moving the second substrate 2 (2nd scan), as in the case of the first scan shown in FIG. Thereby, the remaining half of the remaining area of each pixel (each sub-pixel) is subjected to orientation treatment, and the second substrate 2 is exposed over the entire surface. The direction of the light beam with respect to the second substrate 2 at the time of the first scan and the direction of the light beam with respect to the second substrate 2 at the time of the 2nd scan are as follows when the second substrate 2 is viewed in plan as shown in FIG. Reverse. That is, each sub-pixel of the second substrate 2 is divided into two regions whose alignment directions are antiparallel to each other.
なお、本実施形態では1サブ画素を4ドメインに配向分割するために、横方向の画素ピッチPx(図5、6中、x軸方向)の略1/2の幅でストライプパターンが形成されたフォトマスクを用いてTFTアレイ基板を露光し、一方、縦方向のサブ画素ピッチPy(図5、6中、y軸方向、なお、本実施形態において縦方向のサブ画素ピッチと画素ピッチとは同一)の略1/4の幅でストライプパターンが形成されたフォトマスクを用いてCF基板を露光する態様について説明した。しかしながら、透光部のパターンは特に限定されず、画素(サブ画素)のレイアウト、画素(サブ画素)サイズ、パネルの解像度等に応じて適宜設定すればよい。また、本実施形態では4つのドメインをマトリクス状に形成したが、ドメインの配置形態はマトリクス状に特に限定されず、目の字のようなストライプ状であってもよい。更に、各サブ画素が副画素を有する場合には、各副画素を配向分割するために、各副画素に応じてスリットパターンが形成されてもよい。 In the present embodiment, in order to align and divide one subpixel into four domains, a stripe pattern is formed with a width approximately half of the horizontal pixel pitch Px (x-axis direction in FIGS. 5 and 6). The TFT array substrate is exposed using a photomask, while the vertical sub-pixel pitch Py (in FIGS. 5 and 6, the y-axis direction, and in this embodiment, the vertical sub-pixel pitch and the pixel pitch are the same). In the above description, the CF substrate is exposed using a photomask in which a stripe pattern is formed with a width of approximately ¼ of the above. However, the pattern of the light transmitting portion is not particularly limited, and may be set as appropriate according to the layout of the pixel (subpixel), the pixel (subpixel) size, the resolution of the panel, and the like. Further, in the present embodiment, four domains are formed in a matrix, but the arrangement form of the domains is not particularly limited to a matrix, and may be a stripe shape like an eye shape. Furthermore, when each subpixel has a subpixel, a slit pattern may be formed according to each subpixel in order to divide and align each subpixel.
本実施形態で使用可能な材料及び適応可能な製造プロセスにおける条件としては下記が挙げられる。ただし、本実施形態で使用可能な材料及び条件は、下記に限定されるものではない。また、露光に用いる光線の種類は偏光紫外線に特に限定されず、配向膜材料、製造プロセス等によって適宜設定することができ、無偏光(消光比=1:1)であってもよい。
・液晶材料:Δn(複屈折)=0.06~0.14、Δε(誘電率異方性)=-2.0~-8.0、Tni(ネマチック-アイソトロピック相転移温度)=60~110℃を有するネマチック液晶。
・プレチルト角:85~89.9°
・セル厚:2~5μm
・照射エネルギー密度:0.01~5J/cm
・プロキシミティギャップ:10~250μm
・光源:低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマーレーザ。
・紫外線の消光比(偏光度):1:1~60:1
・紫外線の照射方向:基板面法線方向から0~60°方向
Examples of materials that can be used in the present embodiment and conditions in an applicable manufacturing process include the following. However, materials and conditions that can be used in the present embodiment are not limited to the following. The type of light used for exposure is not particularly limited to polarized ultraviolet rays, and can be set as appropriate depending on the alignment film material, manufacturing process, etc., and may be non-polarized light (extinction ratio = 1: 1).
Liquid crystal materials: Δn (birefringence) = 0.06 to 0.14, Δε (dielectric anisotropy) = − 2.0 to −8.0, Tni (nematic-isotropic phase transition temperature) = 60 to Nematic liquid crystal having 110 ° C.
・ Pretilt angle: 85 ~ 89.9 °
・ Cell thickness: 2-5μm
・ Irradiation energy density: 0.01 to 5 J / cm 2
・ Proximity gap: 10-250μm
Light source: Low pressure mercury lamp, high pressure mercury lamp, deuterium lamp, metal halide lamp, argon resonance lamp, xenon lamp, excimer laser.
・ Extinction ratio of ultraviolet rays (degree of polarization): 1: 1 to 60: 1
-UV irradiation direction: 0 to 60 ° direction from the normal direction of the substrate surface
次に、フォトマスク21a、21bのパターンについて詳述する。
図19に示すように、フォトマスク21aは、中央部19aと、グレイトーンが形成されたグレイトーン部20aとを有する。フォトマスク21bは、中央部19bと、グレイトーンが形成されたグレイトーン部20bとを有する。継ぎ部24に対応してグレイトーン部20a、20bを設けている。
Next, the patterns of the photomasks 21a and 21b will be described in detail.
As shown in FIG. 19, the photomask 21a has a central portion 19a and a gray tone portion 20a in which a gray tone is formed. The photomask 21b has a central portion 19b and a gray tone portion 20b in which a gray tone is formed. Corresponding to the joint portion 24, gray tone portions 20a and 20b are provided.
中央部19aには、複数の透光部27aが形成されている。透光部27aの平面形状は、矩形であり、透光部27aは、ストライプ状に形成されている。各透光部27aのサイズは同じである。透光部27aは、スキャン方向に対して垂直な方向(垂直方向)において画素ピッチPxと同じピッチで配列されている。また、図20に示すように、透光部27aの幅(垂直方向における長さ)Δxは、例えば、ピッチPxの略半分である。なお、Δxは、ピッチPxの半分に数μm程度加えた値に設定されてもよい。すなわち、各ドメイン間の境界に複数回露光される部分を形成してもよい。透光部27aのスキャン方向における長さy1は、例えば、40mmである。 In the central portion 19a, a plurality of light transmitting portions 27a are formed. The planar shape of the light transmitting portion 27a is a rectangle, and the light transmitting portion 27a is formed in a stripe shape. The size of each translucent part 27a is the same. The light transmitting portions 27a are arranged at the same pitch as the pixel pitch Px in a direction (vertical direction) perpendicular to the scanning direction. Further, as shown in FIG. 20, the width (length in the vertical direction) Δx of the light transmitting portion 27a is, for example, approximately half of the pitch Px. Note that Δx may be set to a value obtained by adding about a few μm to half of the pitch Px. That is, you may form the part exposed in multiple times at the boundary between each domain. The length y1 in the scanning direction of the translucent part 27a is, for example, 40 mm.
グレイトーンとは、特許文献2に記載の技術のように一繋がりの透光部の長さで開口率を調整するのではなく、複数の微小な透光部の大きさ、個数及び/又は密度で開口率を調整するパターンである。開口率とは、中央部の透光部の平均面積に対するグレイトーン部の各透光部の面積の割合(百分率)である。グレイトーン部20aにも複数の透光部が形成されているが、ここでは、マスク21aの端に向かうにつれて、透光部の大きさが減少するか、透光部の個数が減少するか、及び/又は、透光部の密度が減少することによって開口率が変化している。N列分の画素と重なるようにグレイトーン部20aが設けられているとすると、図21に示すように、長さy1を例えば(N-1)分割した長さを単位長さΔyとし、グレイトーン部20aの透光部のスキャン方向における長さy2をΔyの整数倍とする。なお、グレイトーン部20aの透光部の幅(垂直方向における長さ)は、Δxと同様に設定される。 The gray tone does not adjust the aperture ratio by the length of the continuous light transmitting parts as in the technique described in Patent Document 2, but the size, number and / or density of a plurality of minute light transmitting parts. This is a pattern for adjusting the aperture ratio. The aperture ratio is a ratio (percentage) of the area of each light transmitting portion of the gray tone portion to the average area of the light transmitting portion at the center. A plurality of light-transmitting portions are also formed in the gray tone portion 20a, but here, as it goes to the end of the mask 21a, the size of the light-transmitting portion decreases or the number of light-transmitting portions decreases. And / or the aperture ratio is changed by decreasing the density of the translucent part. Assuming that the gray tone portion 20a is provided so as to overlap the pixels for N columns, as shown in FIG. 21, the length obtained by dividing the length y1 by (N−1), for example, is set as the unit length Δy, The length y2 in the scanning direction of the light transmitting portion of the tone portion 20a is set to an integer multiple of Δy. Note that the width (the length in the vertical direction) of the light transmitting portion of the gray tone portion 20a is set in the same manner as Δx.
図22にグレイトーン部のパターンの詳細を示す。
ここには、16列分の画素と重なるようにグレイトーン部20a、20bが設けられている場合を例として説明する。したがって、単位長さΔyは、40mmを15分割した値となる。また、スキャン方向における長さがΔyであり、幅がΔxである平面視矩形状の透光部を単位エリア(図22中、格子で区画された領域)と規定する。
FIG. 22 shows details of the gray tone pattern.
Here, a case where the gray tone portions 20a and 20b are provided so as to overlap with pixels for 16 columns will be described as an example. Therefore, the unit length Δy is a value obtained by dividing 40 mm into 15 parts. Further, a rectangular light transmission portion having a length in the scanning direction of Δy and a width of Δx is defined as a unit area (a region partitioned by a lattice in FIG. 22).
図22に示すように、グレイトーン部20aには、透光部27aよりも小さい複数の透光部28aが形成されている。透光部28aの平面形状は、矩形であり、透光部28aは、垂直方向において画素ピッチPxと同じピッチで配列されている。すなわち、透光部27a及び28aは全て、画素(サブ画素)に対応して形成され、垂直方向においてピッチPxで配列されている。ここで、グレイトーン部20aの右端に位置する画素を1列目の画素、グレイトーン部20aの左端に位置する画素を16列目の画素とする(図22中、グレイトーン部20aの上部に記載された数字参照。)。また、画素と同じように透光部28aにも順番をつける。すなわち、2列目の画素に重なる透光部28aを2列目の透光部、16列目の画素に重なる透光部28aを16列目の透光部とする。なお、グレイトーン部20aの、1列目の画素に重なる部分には、透光部は形成されていない。そうすると、3列目から15列目の透光部28aにおいて、同じ列の透光部28aの個数は2個以上であり、また、同じ列の透光部28aはスキャン方向において分散して配置されている。また、各透光部28aは、1つ又は複数の単位エリアを含み、同じ列の透光部28aに含まれる単位エリアの個数は、中央部19aに近い列ほど多くなっている。具体的には、1列目の画素に対応する部分には透光部が形成されておらず、2列目の透光部28aには1個、・・・、15列目の透光部28aには14個、16列目の透光部28aには15個の単位エリアが含まれている。9列目までの透光部28aは、いずれも1つの単位エリアを含むが、10列目以降の透光部28aのいくつかは、複数の単位エリアを含んで構成される。そして、最終的に16列目の透光部28aは、中央部19aの透光部27aと同じ大きさとなる。このように、透光部27aには15個の単位エリアが含まれている。 As shown in FIG. 22, the gray tone part 20a is formed with a plurality of light transmitting parts 28a smaller than the light transmitting part 27a. The planar shape of the light transmitting portions 28a is a rectangle, and the light transmitting portions 28a are arranged at the same pitch as the pixel pitch Px in the vertical direction. That is, all of the light transmitting portions 27a and 28a are formed corresponding to the pixels (sub-pixels), and are arranged at a pitch Px in the vertical direction. Here, the pixel located at the right end of the gray tone portion 20a is the pixel in the first column, and the pixel located at the left end of the gray tone portion 20a is the pixel in the 16th column (in FIG. 22, above the gray tone portion 20a). (See the numbers listed.) In addition, the light transmitting portion 28a is also ordered in the same manner as the pixels. That is, the light transmitting portion 28a that overlaps the pixels in the second column is the light transmitting portion in the second column, and the light transmitting portion 28a that overlaps the pixels in the 16th column is the light transmitting portion in the 16th column. Note that no light-transmitting portion is formed in the portion of the gray tone portion 20a that overlaps the pixels in the first column. Then, in the light transmitting portions 28a in the 3rd to 15th rows, the number of the light transmitting portions 28a in the same row is two or more, and the light transmitting portions 28a in the same row are dispersedly arranged in the scanning direction. ing. Each translucent portion 28a includes one or a plurality of unit areas, and the number of unit areas included in the translucent portions 28a in the same row increases as the row is closer to the central portion 19a. Specifically, the light-transmitting portion is not formed in the portion corresponding to the pixel in the first column, and one piece is provided in the light-transmitting portion 28a in the second row,. The unit 28a includes 14 unit areas, and the light-transmitting unit 28a in the 16th column includes 15 unit areas. The translucent portions 28a up to the ninth row all include one unit area, but some of the translucent portions 28a in the tenth and subsequent rows include a plurality of unit areas. Finally, the 16th row of translucent portions 28a has the same size as the translucent portion 27a of the central portion 19a. As described above, the light transmitting part 27a includes 15 unit areas.
また、フォトマスク21bの中央部19bには、透光部27aと同様の透光部27bが形成され、グレイトーン部20bには、透光部28aと同様の透光部28bが形成されている。 Further, a light transmitting portion 27b similar to the light transmitting portion 27a is formed in the central portion 19b of the photomask 21b, and a light transmitting portion 28b similar to the light transmitting portion 28a is formed in the gray tone portion 20b. .
以上、説明したように、フォトマスク21a、21bにおいて、透光部28a、28bの大多数がスキャン方向において離散的に分散されている。したがって、例えスキャン露光中に第1基板1が停止したとしても、第1基板1(配向膜)に転写される透光部28a、28bのパターンをぼやけさせることができる。その結果、図23に示すように、露光領域22、23のみならず継ぎ部24においても、透光部28a、28bに起因する表示ムラが視認されないようにすることができる。 As described above, in the photomasks 21a and 21b, the majority of the light transmitting portions 28a and 28b are discretely dispersed in the scanning direction. Therefore, even if the first substrate 1 stops during scan exposure, the pattern of the light transmitting portions 28a and 28b transferred to the first substrate 1 (alignment film) can be blurred. As a result, as shown in FIG. 23, it is possible to prevent display unevenness due to the light transmitting portions 28a and 28b from being visually recognized not only in the exposure regions 22 and 23 but also in the joint portion 24.
この表示ムラをより効果的に消す観点からは、透光部28a、28bは、以下のように配置することが好ましい(図22参照。)。まず、スキャン方向において透光28a、28bができるだけ分散するように配置することが好ましい。また、グレイトーン部20aの中心線であってスキャン方向に平行な中心線(継ぎ部中心線)に対して、透光部28aのパターンと、グレイトーン部20aにおける遮光部のパターンとが反転するように、透光部28aを偏らずに設置することが好ましい。すなわち、透光部28aのパターンと、グレイトーン部20aにおける遮光部のパターンとが、継ぎ部中心線に対してネガ・ポジ又は鏡像の関係にあることが好ましい。フォトマスク21bについても同様のことが言える。更に、フォトマスク21b(グレイトーン部20b)については、フォトマスク21a(グレイトーン部20a)をちょうどネガ・ポジ反転させたものであることが好ましい。すなわち、フォトマスク21bの透光部28bのパターンと、フォトマスク21aのグレイトーン部20aにおける遮光部のパターンとが一致することが好ましい。また、フォトマスク21aとフォトマスク21bとは、両者の継ぎ部中心線が一致するように配置され、フォトマスク21aの透光部28bのパターンと、フォトマスク21bの透光部28bのパターンとが、両継ぎ部中心線に対して鏡像の関係にあることが好ましい。 From the viewpoint of more effectively eliminating the display unevenness, it is preferable to arrange the light transmitting portions 28a and 28b as follows (see FIG. 22). First, it is preferable to arrange the light transmissions 28a and 28b to be dispersed as much as possible in the scanning direction. Further, the pattern of the translucent portion 28a and the pattern of the light shielding portion in the gray tone portion 20a are inverted with respect to the center line of the gray tone portion 20a that is parallel to the scanning direction (joint portion center line). Thus, it is preferable to install the translucent portion 28a without bias. That is, it is preferable that the pattern of the translucent part 28a and the pattern of the light shielding part in the gray tone part 20a have a negative / positive or mirror image relationship with respect to the joint center line. The same can be said for the photomask 21b. Furthermore, it is preferable that the photomask 21b (gray tone portion 20b) is a photomask 21a (gray tone portion 20a) that is just negative / positive inverted. That is, it is preferable that the pattern of the light transmitting portion 28b of the photomask 21b and the pattern of the light shielding portion in the gray tone portion 20a of the photomask 21a match. In addition, the photomask 21a and the photomask 21b are arranged so that the joint centerlines of the two coincide with each other, and the pattern of the light transmitting portion 28b of the photomask 21a and the pattern of the light transmitting portion 28b of the photomask 21b are In addition, it is preferable to have a mirror image relationship with respect to the center line of both joints.
また、透光部28a、28bは、各々、透光部27a、27bよりも小さく、グレイトーン部20a、20bの開口率は、各々、中央部19a、19bの開口率よりも小さい。そして、グレイトーン部20a、20bに重なる各画素は、2つのフォトマスク21a、21bの透光部28a、28bを介して露光される。したがって、特許文献2と同様に、継ぎ目が視認されるのを抑制することができる。 Further, the translucent portions 28a and 28b are smaller than the translucent portions 27a and 27b, respectively, and the aperture ratios of the gray tone portions 20a and 20b are smaller than the aperture ratios of the central portions 19a and 19b, respectively. Each pixel overlapping the gray tone portions 20a and 20b is exposed through the light transmitting portions 28a and 28b of the two photomasks 21a and 21b. Therefore, similarly to Patent Document 2, it is possible to suppress the seam from being visually recognized.
更に、グレイトーン部20a、20bの開口率はそれぞれ、中央部19a、19bから離れるにしたがって徐々に減少している。したがって、継ぎ目が視認されるのをより効果的に抑制することができる。 Further, the aperture ratios of the gray tone portions 20a and 20b are gradually decreased as the distance from the central portions 19a and 19b is increased. Therefore, it can suppress more effectively that a joint is visually recognized.
また、フォトマスク21c、21dには、フォトマスク21a、21bと同じパターンが形成されていることから、これらの効果については、フォトマスク21c、21dにおいても発揮することができる。 Further, since the same patterns as the photomasks 21a and 21b are formed on the photomasks 21c and 21d, these effects can also be exhibited in the photomasks 21c and 21d.
また、フォトマスク21e、21fの中央部19e、19fには、透光部27aと同様の透光部が形成され、フォトマスク21e、21fのグレイトーン部20e、20fには、透光部28aと同様の透光部が形成されている。ただし、フォトマスク21e、21fの透光部の幅は、ピッチPyの略1/4であり、ピッチは、ピッチPyの略半分である。また、フォトマスク21g、21hには、フォトマスク21e、21fと同じパターンが形成されている。 In addition, the central portions 19e and 19f of the photomasks 21e and 21f are formed with a light-transmitting portion similar to the light-transmitting portion 27a, and the gray- tone portions 20e and 20f of the photomasks 21e and 21f are provided with a light-transmitting portion 28a. Similar light-transmitting portions are formed. However, the width of the light transmitting portions of the photomasks 21e and 21f is approximately 1/4 of the pitch Py, and the pitch is approximately half of the pitch Py. Further, the same patterns as the photomasks 21e and 21f are formed on the photomasks 21g and 21h.
したがって、例えスキャン露光中に第2基板2が停止したとしても、第2基板2(配向膜)に転写されるグレイトーン部20e、20fの透光部のパターンをぼやけさせることができる。その結果、露光領域32、33のみならず継ぎ部34においても、グレイトーン部20e、20fの透光部に起因する表示ムラが視認されないようにすることができる。 Therefore, even if the second substrate 2 is stopped during the scan exposure, the pattern of the light transmitting portions of the gray tone portions 20e and 20f transferred to the second substrate 2 (alignment film) can be blurred. As a result, not only the exposure areas 32 and 33 but also the joint portion 34 can prevent the display unevenness caused by the light transmitting portions of the gray tone portions 20e and 20f from being visually recognized.
更に、第1基板1と同様に、継ぎ目が視認されるのを効果的に抑制することができる。 Furthermore, as with the first substrate 1, it is possible to effectively suppress the seam from being visually recognized.
以下、第1基板及び第2基板の貼り合わせ工程について説明する。貼り合わせ工程では、上述の通り作製した第1基板又は第2基板の周囲にシール材を塗布する。次に、例えば4μmのプラスチックビーズをシール材が塗布された基板上に散布した後、第1基板及び第2基板を貼り合わせる。このとき、1サブ画素における両基板の光線照射方向の関係は、図4のようになり、各ドメイン内では、スキャン方向は対向する基板同士で略直交する。また、第1基板1の継ぎ部24と、第2基板2の継ぎ部34とは、図24に示すように、略直交することとなる。 Hereinafter, the bonding process of the first substrate and the second substrate will be described. In the bonding step, a sealing material is applied around the first substrate or the second substrate manufactured as described above. Next, for example, 4 μm plastic beads are spread on a substrate coated with a sealing material, and then the first substrate and the second substrate are bonded together. At this time, the relationship between the light irradiation directions of the two substrates in one sub-pixel is as shown in FIG. 4, and the scanning directions are substantially orthogonal between the opposing substrates in each domain. Also, the joint portion 24 of the first substrate 1 and the joint portion 34 of the second substrate 2 are substantially orthogonal as shown in FIG.
次に、第1基板及び第2基板の間に、例えば上記液晶材料を封入すると、各ドメインの液晶分子は互いに異なった方向にプレチルト角を発現する。これにより、各ドメインの液晶層の層面内方向及び厚さ方向における中央付近の液晶分子3aの配向方位は、図4に示すように、基板を平面視したときに、光線照射された方向から45°傾いた方向となる。 Next, when, for example, the liquid crystal material is sealed between the first substrate and the second substrate, the liquid crystal molecules in each domain develop pretilt angles in different directions. As a result, the orientation direction of the liquid crystal molecules 3a near the center in the in-plane direction and the thickness direction of the liquid crystal layer of each domain is 45 from the direction irradiated with light when the substrate is viewed in plan, as shown in FIG. ° Inclined direction.
次に、第1基板1及び第2基板2の外側に、図4で示した向きに偏光軸が向くように2枚の偏光板6a、6bを貼り付ける。そして、電圧無印加時に、液晶分子はほぼ垂直配向するため、本実施形態の液晶表示パネルは、良好な黒表示(ノーマリーブラックモード)を実現することができる。また、本実施形態の液晶表示パネルは、4つのドメインを有し、4つのドメインの液晶分子は、互い異なる4方向に応答するため、視角方向にほとんど依存しない表示特性を示すことができる。 Next, two polarizing plates 6a and 6b are attached to the outside of the first substrate 1 and the second substrate 2 so that the polarization axes are oriented in the direction shown in FIG. When no voltage is applied, the liquid crystal molecules are substantially vertically aligned, so that the liquid crystal display panel of the present embodiment can realize a good black display (normally black mode). In addition, the liquid crystal display panel of this embodiment has four domains, and the liquid crystal molecules in the four domains respond to four different directions, so that display characteristics almost independent of the viewing angle direction can be exhibited.
その後、一般的なモジュール製造工程を経て、実施形態1の液晶表示装置を完成することができる。 Thereafter, the liquid crystal display device of Embodiment 1 can be completed through a general module manufacturing process.
なお、本実施形態において、同時に使用するフォトマスクの枚数は2枚に限定されず、3枚以上であってもよい。例えば、図25に示すように、千鳥状に配置された6枚のフォトマスク21を用いて基板18のスキャン露光を行ってもよい。これにより、より小型のフォトマスクを使用できるので、フォトマスクの作製コストを安くすることができる。また、マスクサイズが小さいことで、マスクの自重によってマスクに撓みが発生するのを抑制することができるので、より高精度に配向処理を行うことができる。更に、マスクサイズが小さいことで、マスク自体のパターン精度を向上することができる。 In the present embodiment, the number of photomasks used simultaneously is not limited to two, and may be three or more. For example, as shown in FIG. 25, the scan exposure of the substrate 18 may be performed using six photomasks 21 arranged in a staggered pattern. Accordingly, since a smaller photomask can be used, the manufacturing cost of the photomask can be reduced. Further, since the mask size is small, it is possible to suppress the mask from being bent due to its own weight, so that the alignment process can be performed with higher accuracy. Furthermore, since the mask size is small, the pattern accuracy of the mask itself can be improved.
以上、本実施形態によれば、表示ムラの発生を抑制することができるが、しかしながら、本実施形態においては懸念される点がある。フォトマスク21aを例にしてこの点について説明する。中央部19a及びグレイトーン部20aにおける透光部のエッジであって、スキャン方向に直交するエッジの数は、図26に示す通りとなり、9列目から11列目の透光部28aの間でエッジの数が不連続になっている。 As described above, according to this embodiment, it is possible to suppress the occurrence of display unevenness, however, there is a concern in this embodiment. This point will be described by taking the photomask 21a as an example. The number of edges of the light transmitting portions in the central portion 19a and the gray tone portion 20a, which are orthogonal to the scanning direction, is as shown in FIG. 26, and is between the 9th to 11th light transmitting portions 28a. The number of edges is discontinuous.
非特許文献1によると、本実施形態のように斜め方向からの配向膜を露光しなくとも、スキャンしながら配向膜を法線方向から露光してもチルト角が発現することが開示されている。つまり、透光部のエッジの通過だけで配向膜に配向能が付与されることがある。当該文献は水平配向膜によるものではあるが、垂直配向膜でも同様の現象が起きると推定される。したがって、本実施形態のようにグレイトーン部20aを設け、グレイトーン部20a内でエッジの数に不連続性が生じると、配向膜が受ける実効的な照射エネルギーに不連続性が生じ、結果的にムラとして視認される懸念がある。 According to Non-Patent Document 1, it is disclosed that even if the alignment film from the oblique direction is not exposed as in the present embodiment, the tilt angle appears even if the alignment film is exposed from the normal direction while scanning. . That is, the alignment ability may be imparted to the alignment film only by passing through the edge of the light transmitting part. Although this document is based on a horizontal alignment film, it is estimated that the same phenomenon occurs in a vertical alignment film. Therefore, when the gray tone portion 20a is provided as in the present embodiment and discontinuity occurs in the number of edges in the gray tone portion 20a, discontinuity occurs in the effective irradiation energy received by the alignment film. There is a concern that it is visually recognized as unevenness.
そこで、この懸念を解消するために本発明者らが創作した実施形態2について説明する。 Therefore, Embodiment 2 created by the present inventors in order to eliminate this concern will be described.
(実施形態2)
本実施形態では、フォトマスク21aを例にして説明するが、フォトマスク21b~21gについても同様の形態を有してもよい。実施形態2は、以下の点で実施形態1と異なる。すなわち、図27に示すように、中央部19a及びグレイトーン部20aの双方において、単位エリアの境界に遮光部(以下、ブリッジ29とする)を設ける。これにより、透光部27aは、スキャン方向において離散的に分散して(分割して)配置されることとなる。図27では、ブリッジ29の設置により新たに発生した透光部のエッジ(スキャン方向に直交するエッジ)を楕円で囲んでいる。1つの楕円あたり実際には2つのエッジが存在する。また、同じ列の透光部が含むエッジの合計をフォトマスク21aの下部に示す。このように、本実施形態では、中央部19aからグレイトーン部20aに向かって、エッジの数は連続的に変化し、徐々に減少している。
(Embodiment 2)
In the present embodiment, the photomask 21a will be described as an example, but the photomasks 21b to 21g may have the same form. The second embodiment is different from the first embodiment in the following points. That is, as shown in FIG. 27, in both the central portion 19a and the gray tone portion 20a, a light shielding portion (hereinafter referred to as a bridge 29) is provided at the boundary between unit areas. Thereby, the translucent part 27a is discretely dispersed (divided) in the scanning direction. In FIG. 27, the edge of the light transmitting part newly generated by the installation of the bridge 29 (edge orthogonal to the scanning direction) is surrounded by an ellipse. There are actually two edges per ellipse. Further, the total of the edges included in the light-transmitting portions in the same row is shown below the photomask 21a. As described above, in the present embodiment, the number of edges continuously changes and gradually decreases from the central portion 19a toward the gray tone portion 20a.
したがって、本実施形態によれば、エッジの数の不連続性に起因するムラが発生するのを抑制することができる。 Therefore, according to the present embodiment, it is possible to suppress the occurrence of unevenness due to the discontinuity of the number of edges.
また、実施形態1に比べてエッジの数が多くなるので、チルト角をより効果的に発現することができる。そのため、スキャン速度を上げてタクトタイムを短縮することができる。若しくは、光源の照度を低下して光源の寿命を延ばすことができる。 Further, since the number of edges is increased as compared with the first embodiment, the tilt angle can be expressed more effectively. Therefore, it is possible to shorten the tact time by increasing the scanning speed. Alternatively, the illuminance of the light source can be reduced to extend the life of the light source.
もちろん、本実施形態によっても、例えスキャン露光中に第1基板1が停止したとしても、露光領域22、23のみならず継ぎ部24においても、透光部28aに起因する表示ムラが視認されないようにすることができる。 Of course, even in the present embodiment, even if the first substrate 1 is stopped during the scan exposure, display unevenness caused by the light transmitting portion 28a is not visually recognized not only in the exposure regions 22 and 23 but also in the joint portion 24. Can be.
なお、ブリッジ29の幅(短手方向(スキャン方向)の長さ)αは、スキャン露光が静止した時にも当該ブリッジが配向膜に転写されないようにできるだけ細いことが好ましい。具体的には、αの下限値はマスクの描画線幅の最小値である1μmであることが好ましく、上限値は20μm程度であることが好ましい。スキャン露光時に基板とマスクとの間にはギャップ(100~200μm程度)が存在するため、透光部を透過した光線に回折が生じる。したがって、透光部を透過した光線の配向膜上での強度分布が均一となるように、この上限値は決定される。すなわち、ブリッジ29の像が配向膜上で充分にボケるように上限値は決定される。また、図28に示すように、本実施形態の単位エリアのスキャン方向における長さΔy2(μm)は下式で求まる。
(N-1)×Δy2+(N-2)×α=40000
Note that the width (length in the short direction (scan direction)) α of the bridge 29 is preferably as thin as possible so that the bridge is not transferred to the alignment film even when the scan exposure is stopped. Specifically, the lower limit value of α is preferably 1 μm, which is the minimum value of the drawing line width of the mask, and the upper limit value is preferably about 20 μm. Since a gap (about 100 to 200 μm) exists between the substrate and the mask at the time of scan exposure, diffraction occurs in the light beam transmitted through the light transmitting portion. Therefore, the upper limit value is determined so that the intensity distribution on the alignment film of the light beam that has passed through the light transmitting portion is uniform. That is, the upper limit value is determined so that the image of the bridge 29 is sufficiently blurred on the alignment film. As shown in FIG. 28, the length Δy2 (μm) in the scanning direction of the unit area of the present embodiment is obtained by the following equation.
(N−1) × Δy2 + (N−2) × α = 40000
図29に、実施形態2の変形例を示す。
本変形例は、図29に示すように、実施形態1においてエッジ数が不連続になっていた部分に対してのみ、ブリッジ29を形成している。すなわち、本変形例では、10列目の透光部28aにのみブリッジ29を2本追加している。これによっても、中央部19aからグレイトーン部20aにおいてエッジの数を連続的に変化させることができるので、エッジの数の不連続性に起因するムラが発生するのを抑制することができる。
FIG. 29 shows a modification of the second embodiment.
In this modification, as shown in FIG. 29, the bridge 29 is formed only in the portion where the number of edges is discontinuous in the first embodiment. In other words, in the present modification, two bridges 29 are added only to the translucent portion 28a in the tenth row. Also by this, since the number of edges can be continuously changed from the central portion 19a to the gray tone portion 20a, it is possible to suppress the occurrence of unevenness due to the discontinuity of the number of edges.
(実施形態3)
本実施形態では、フォトマスク21aを例にして説明するが、フォトマスク21b~21gについても同様の形態を有してもよい。実施形態3は、以下の点で実施形態1、2と異なる。すなわち、図30に示すように、実施形態3のフォトマスクのパターンが、実施形態1、2のようなモザイク状のパターンではない。N列分の画素と重なるようにグレイトーン部20aが設けられているとし、グレイトーン部20aの右端に位置する画素を1列目の画素、グレイトーン部20aの左端に位置する画素をN列目の画素とする(図30中、グレイトーン部20aの上部に記載された数字参照。)。また、画素と同じように透光部28aにも順番をつける。すなわち、1列目の画素に重なる透光部28aを1列目の透光部、N列目の画素に重なる透光部28aをN列目の透光部とする。更に、スキャン方向に平行な直線を走査線とする。そうすると、同じ列の透光部28aの個数は、中央部19aに近い列ほど多く、1個ずつ増加している。また、各透光部28aは、1つの単位エリアを含み、そして、3列目以上の透光部28aのうちで、同じ列の透光部28a、すなわち同じ走査線上に存在する透光部28aがスキャン方向において等間隔で配列されている。また、グレイトーン部20aにおいて、透光部28aの密度は、中央部19aから離れるにつれて疎に変化する。
(Embodiment 3)
In the present embodiment, the photomask 21a will be described as an example, but the photomasks 21b to 21g may have the same form. The third embodiment is different from the first and second embodiments in the following points. That is, as shown in FIG. 30, the photomask pattern of the third embodiment is not a mosaic pattern as in the first and second embodiments. It is assumed that the gray tone part 20a is provided so as to overlap with the pixels for N columns. The pixel located at the right end of the gray tone part 20a is the first pixel, and the pixel located at the left end of the gray tone part 20a is N columns. It is assumed that the pixel is an eye (refer to the number described above the gray tone portion 20a in FIG. 30). In addition, the light transmitting portion 28a is also ordered in the same manner as the pixels. That is, the light transmitting portion 28a that overlaps the pixels in the first column is the light transmitting portion in the first column, and the light transmitting portion 28a that overlaps the pixels in the Nth column is the light transmitting portion in the Nth column. Further, a straight line parallel to the scan direction is defined as a scan line. Then, the number of the light transmitting portions 28a in the same row is larger as the row is closer to the central portion 19a, and increases by one. Each translucent portion 28a includes one unit area, and among the translucent portions 28a in the third column or more, the translucent portions 28a in the same row, that is, the translucent portions 28a existing on the same scanning line. Are arranged at equal intervals in the scanning direction. In the gray tone portion 20a, the density of the light transmitting portion 28a changes sparsely as the distance from the central portion 19a increases.
本実施形態によれば、同じ列の透光部28aがスキャン方向において等間隔で配列されている。そのため、実施形態1、2で示したモザイク状のパターンのように、透光部28aの位置が偏ることがない。したがって、透光部28aの位置の偏りに起因する表示ムラが発生するのを抑制することができる。 According to the present embodiment, the translucent portions 28a in the same row are arranged at equal intervals in the scanning direction. Therefore, unlike the mosaic pattern shown in the first and second embodiments, the position of the light transmitting portion 28a is not biased. Therefore, it is possible to suppress the occurrence of display unevenness due to the uneven position of the light transmitting portion 28a.
また、中央部19aの透光部27aにブリッジを設けているので、中央部19aからグレイトーン部20aに向かって、スキャン方向に直交するエッジの数は連続的に変化し、徐々に減少している。したがって、本実施形態によっても、エッジの数の不連続性に起因するムラが発生するのを抑制することができる。なお、本実施形態において、単位エリアのスキャン方向における長さΔy3と、ブリッジ29の幅αとは、図31に示すように、実施形態2と同様の考え方で求めることができる。もちろん、本実施形態でも、透光部27aにブリッジ29を設けなくてもよい。 In addition, since a bridge is provided in the light transmitting portion 27a of the central portion 19a, the number of edges orthogonal to the scanning direction continuously changes from the central portion 19a toward the gray tone portion 20a, and gradually decreases. Yes. Therefore, according to this embodiment, it is possible to suppress the occurrence of unevenness due to the discontinuity of the number of edges. In the present embodiment, the length Δy3 in the scanning direction of the unit area and the width α of the bridge 29 can be obtained in the same way as in the second embodiment as shown in FIG. Of course, in this embodiment, the bridge 29 may not be provided in the light transmitting portion 27a.
本願は、2010年1月25日に出願された日本国特許出願2010-13453号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。 This application claims the priority based on the Paris Convention or the laws and regulations in the country of transition based on Japanese Patent Application No. 2010-13453 filed on January 25, 2010. The contents of the application are hereby incorporated by reference in their entirety.
1:第1基板
2:第2基板
3:液晶層
3a、3b:液晶分子
4a、4b:透明電極
5a、5b:垂直配向膜
6a、6b:偏光板
7a、7b:位相差板
8:サブ画素
9:走査信号線
10:データ信号線
11:TFT
12:画素電極
13:ブラックマトリクス(BM)
14:カラーフィルタ
15:光線(偏光紫外線)
16:プロキシミティギャップ
17:プレチルト角
18:基板
19a~19h:中央部
20a~20h:グレイトーン部
21、21a~21h:フォトマスク
22、23、32、33:露光領域
24、34:継ぎ部
25:光源
26a、26b:絶縁基板
27a、27b、28a、28b:透光部
29:ブリッジ
30:画像検出用カメラ
100:液晶表示装置
P、Q:偏光板の偏光軸方向
A、B:方向
R:赤の着色層
G:緑の着色層
B:青の着色層
 
1: first substrate 2: second substrate 3: liquid crystal layers 3a, 3b: liquid crystal molecules 4a, 4b: transparent electrodes 5a, 5b: vertical alignment films 6a, 6b: polarizing plates 7a, 7b: retardation plate 8: sub-pixel 9: Scanning signal line 10: Data signal line 11: TFT
12: Pixel electrode 13: Black matrix (BM)
14: Color filter 15: Light beam (polarized ultraviolet light)
16: Proximity gap 17: Pretilt angle 18: Substrate 19a to 19h: Center portion 20a to 20h: Gray tone portion 21, 21a to 21h: Photomask 22, 23, 32, 33: Exposure region 24, 34: Joint portion 25 : Light sources 26a, 26b: Insulating substrates 27a, 27b, 28a, 28b: Translucent part 29: Bridge 30: Image detection camera 100: Liquid crystal display device P, Q: Polarization axis direction A of polarizing plate, B: Direction R: Red colored layer G: Green colored layer B: Blue colored layer

Claims (28)

  1. 基板上に設けられた光配向膜を露光するための露光装置であって、
    前記露光装置は、光源及びフォトマスクを備え、前記光源及び前記基板の少なくとも一方を走査しながら前記フォトマスクを介して前記光配向膜を露光し、
    前記光源及び前記基板の少なくとも一方が走査される方向を走査方向、前記走査方向に対して垂直な方向を垂直方向とすると、
    前記フォトマスクは、第1領域と、前記第1領域に垂直方向に隣接する第2領域とを有し、
    前記第1領域は、第1遮光部内に複数の第1透光部を有し、
    前記複数の第1透光部は、垂直方向に配列され、
    前記第2領域は、第2遮光部内に複数の第2透光部を有し、
    前記複数の第2透光部は、前記複数の第1透光部よりも小さく、
    前記複数の第2透光部は、垂直方向に配列されるとともに、走査方向に離散的に分散されていることを特徴とする露光装置。
    An exposure apparatus for exposing a photo-alignment film provided on a substrate,
    The exposure apparatus includes a light source and a photomask, and exposes the photo-alignment film through the photomask while scanning at least one of the light source and the substrate,
    When a direction in which at least one of the light source and the substrate is scanned is a scanning direction and a direction perpendicular to the scanning direction is a vertical direction,
    The photomask has a first region and a second region adjacent to the first region in the vertical direction,
    The first region has a plurality of first light transmitting parts in the first light shielding part,
    The plurality of first light transmission parts are arranged in a vertical direction,
    The second region has a plurality of second light transmitting parts in the second light shielding part,
    The plurality of second light transmission parts are smaller than the plurality of first light transmission parts,
    The exposure apparatus according to claim 1, wherein the plurality of second light transmitting portions are arranged in the vertical direction and are dispersed in the scanning direction.
  2. 前記第2領域の開口率は、前記第1領域から離れるにしたがって減少することを特徴とする請求項1記載の露光装置。 2. The exposure apparatus according to claim 1, wherein the aperture ratio of the second area decreases as the distance from the first area increases.
  3. 前記複数の第2透光部及び前記第2遮光部は、前記走査方向に平行な前記第2領域の中心線に対して、互いに対称に設けられることを特徴とする請求項1又は2記載の露光装置。 The plurality of second light-transmitting portions and the second light-shielding portion are provided symmetrically with respect to a center line of the second region parallel to the scanning direction. Exposure device.
  4. 前記複数の第2透光部及び前記第2遮光部は、前記走査方向に平行な前記第2領域の中心線に対して、互いに鏡像の関係にあることを特徴とする請求項1~3のいずれかに記載の露光装置。 The plurality of second light-transmitting portions and the second light-shielding portion are mirror images of each other with respect to a center line of the second region parallel to the scanning direction. The exposure apparatus according to any one of the above.
  5. 前記フォトマスクは、第1のフォトマスクであり、
    前記露光装置は、第2のフォトマスクを更に備え、前記光源及び前記基板の少なくとも一方を走査しながら前記第1及び第2のフォトマスクを介して前記光配向膜を露光し、
    前記第2のフォトマスクは、第3領域と、前記第3領域に垂直方向に隣接する第4領域とを有し、
    前記第3領域は、第3遮光部内に複数の第3透光部を有し、
    前記複数の第3透光部は、垂直方向に配列され、
    前記第4領域は、第4遮光部内に複数の第4透光部を有し、
    前記複数の第4透光部は、前記複数の第3透光部よりも小さく、
    前記複数の第4透光部は、垂直方向に配列されるとともに、走査方向に離散的に分散され、
    前記光配向膜の一部は、前記複数の第2透光部を通して露光されるとともに、前記複数の第4透光部を通して露光されることを特徴とする請求項1~4のいずれかに記載の露光装置。
    The photomask is a first photomask;
    The exposure apparatus further includes a second photomask, and exposes the photo-alignment film through the first and second photomasks while scanning at least one of the light source and the substrate,
    The second photomask has a third region and a fourth region adjacent to the third region in the vertical direction,
    The third region has a plurality of third light transmitting parts in a third light shielding part,
    The plurality of third light transmitting parts are arranged in a vertical direction,
    The fourth region has a plurality of fourth light transmitting parts in a fourth light shielding part,
    The plurality of fourth light transmissive portions are smaller than the plurality of third light transmissive portions,
    The plurality of fourth light transmission parts are arranged in the vertical direction and discretely dispersed in the scanning direction,
    The part of the photo-alignment film is exposed through the plurality of second light transmitting portions and exposed through the plurality of fourth light transmitting portions. Exposure equipment.
  6. 前記第4領域の開口率は、前記第3領域から離れるにしたがって減少することを特徴とする請求項5記載の露光装置。 6. The exposure apparatus according to claim 5, wherein the aperture ratio of the fourth area decreases with increasing distance from the third area.
  7. 前記複数の第2透光部は、前記第4遮光部に対応して設けられ、
    前記複数の第4透光部は、前記第2遮光部に対応して設けられることを特徴とする請求項5又は6記載の露光装置。
    The plurality of second light transmitting portions are provided corresponding to the fourth light shielding portions,
    The exposure apparatus according to claim 5, wherein the plurality of fourth light transmitting portions are provided corresponding to the second light shielding portions.
  8. 前記第1及び第2のフォトマスクは、前記走査方向に平行な前記第2領域の中心線と、前記走査方向に平行な前記第4領域の中心線とが一致するように配置され、
    前記複数の第2透光部及び前記複数の第4透光部は、前記両中心線に対して、互いに鏡像の関係にあることを特徴とする請求項5~7のいずれかに記載の露光装置。
    The first and second photomasks are arranged such that a center line of the second region parallel to the scanning direction coincides with a center line of the fourth region parallel to the scanning direction,
    The exposure according to any one of claims 5 to 7, wherein the plurality of second light transmitting portions and the plurality of fourth light transmitting portions are mirror images of each other with respect to the center lines. apparatus.
  9. 前記走査方向に平行な直線を走査線とすると、
    同じ走査線上に存在する複数の第2透光部は、実質的に等間隔に配置されることを特徴とする請求項1又は2記載の露光装置。
    When a straight line parallel to the scanning direction is a scanning line,
    The exposure apparatus according to claim 1, wherein the plurality of second light transmitting portions existing on the same scanning line are arranged at substantially equal intervals.
  10. 前記複数の第1透光部は、前記走査方向に離散的に分散されていることを特徴とする請求項1~9のいずれかに記載の露光装置。 The exposure apparatus according to any one of claims 1 to 9, wherein the plurality of first light transmitting parts are discretely dispersed in the scanning direction.
  11. 前記走査方向に隣接する第1透光部の間の領域は、遮光されていることを特徴とする請求項10記載の露光装置。 The exposure apparatus according to claim 10, wherein a region between the first light transmitting portions adjacent to each other in the scanning direction is shielded from light.
  12. 基板上に設けられた光配向膜を備える液晶表示装置の製造方法であって、
    前記製造方法は、光源及び前記基板の少なくとも一方を走査しながらフォトマスクを介して前記光配向膜を露光する露光工程を含み、
    前記光源及び前記基板の少なくとも一方が走査される方向を走査方向、前記走査方向に対して垂直な方向を垂直方向とすると、
    前記フォトマスクは、第1領域と、前記第1領域に垂直方向に隣接する第2領域とを有し、
    前記第1領域は、第1遮光部内に複数の第1透光部を有し、
    前記複数の第1透光部は、垂直方向に配列され、
    前記第2領域は、第2遮光部内に複数の第2透光部を有し、
    前記複数の第2透光部は、前記複数の第1透光部よりも小さく、
    前記複数の第2透光部は、垂直方向に配列されるとともに、走査方向に離散的に分散されていることを特徴とする液晶表示装置の製造方法。
    A method of manufacturing a liquid crystal display device comprising a photo-alignment film provided on a substrate,
    The manufacturing method includes an exposure step of exposing the photo-alignment film through a photomask while scanning at least one of a light source and the substrate,
    When a direction in which at least one of the light source and the substrate is scanned is a scanning direction and a direction perpendicular to the scanning direction is a vertical direction,
    The photomask has a first region and a second region adjacent to the first region in the vertical direction,
    The first region has a plurality of first light transmitting parts in the first light shielding part,
    The plurality of first light transmission parts are arranged in a vertical direction,
    The second region has a plurality of second light transmitting parts in the second light shielding part,
    The plurality of second light transmission parts are smaller than the plurality of first light transmission parts,
    The method for manufacturing a liquid crystal display device, wherein the plurality of second light transmitting portions are arranged in a vertical direction and are dispersed in a scanning direction.
  13. 前記第2領域の開口率は、前記第1領域から離れるにしたがって減少することを特徴とする請求項12記載の液晶表示装置の製造方法。 The method of manufacturing a liquid crystal display device according to claim 12, wherein the aperture ratio of the second region decreases with increasing distance from the first region.
  14. 前記複数の第2透光部及び前記第2遮光部は、前記走査方向に平行な前記第2領域の中心線に対して、互いに対称に設けられることを特徴とする請求項12又は13記載の液晶表示装置の製造方法。 The plurality of second light-transmitting parts and the second light-shielding part are provided symmetrically with respect to a center line of the second region parallel to the scanning direction. A method for manufacturing a liquid crystal display device.
  15. 前記複数の第2透光部及び前記第2遮光部は、前記走査方向に平行な前記第2領域の中心線に対して、互いに鏡像の関係にあることを特徴とする請求項12~14のいずれかに記載の液晶表示装置の製造方法。 The plurality of second light-transmitting portions and the second light-shielding portion are mirror images of each other with respect to a center line of the second region parallel to the scanning direction. The manufacturing method of the liquid crystal display device in any one.
  16. 前記フォトマスクは、第1のフォトマスクであり、
    前記露光工程は、前記光源及び前記基板の少なくとも一方を走査しながら前記第1のフォトマス及び第2のフォトマスクを介して前記光配向膜を露光し、
    前記第2のフォトマスクは、第3領域と、前記第3領域に垂直方向に隣接する第4領域とを有し、
    前記第3領域は、第3遮光部内に複数の第3透光部を有し、
    前記複数の第3透光部は、垂直方向に配列され、
    前記第4領域は、第4遮光部内に複数の第4透光部を有し、
    前記複数の第4透光部は、前記複数の第3透光部よりも小さく、
    前記複数の第4透光部は、垂直方向に配列されるとともに、走査方向に離散的に分散され、
    前記光配向膜の一部は、前記複数の第2透光部を通して露光されるとともに、前記複数の第4透光部を通して露光されることを特徴とする請求項12~15のいずれかに記載の液晶表示装置の製造方法。
    The photomask is a first photomask;
    The exposure step exposes the photo-alignment film through the first photomass and the second photomask while scanning at least one of the light source and the substrate,
    The second photomask has a third region and a fourth region adjacent to the third region in the vertical direction,
    The third region has a plurality of third light transmitting parts in a third light shielding part,
    The plurality of third light transmitting parts are arranged in a vertical direction,
    The fourth region has a plurality of fourth light transmitting parts in a fourth light shielding part,
    The plurality of fourth light transmissive portions are smaller than the plurality of third light transmissive portions,
    The plurality of fourth light transmission parts are arranged in the vertical direction and discretely dispersed in the scanning direction,
    The part of the photo-alignment film is exposed through the plurality of second light-transmitting portions and exposed through the plurality of fourth light-transmitting portions. Liquid crystal display device manufacturing method.
  17. 前記第4領域の開口率は、前記第3領域から離れるにしたがって減少することを特徴とする請求項16記載の液晶表示装置の製造方法。 The method of manufacturing a liquid crystal display device according to claim 16, wherein the aperture ratio of the fourth region decreases with increasing distance from the third region.
  18. 前記複数の第2透光部は、前記第4遮光部に対応して設けられ、
    前記複数の第4透光部は、前記第2遮光部に対応して設けられることを特徴とする請求項16又は17記載の液晶表示装置の製造方法。
    The plurality of second light transmitting portions are provided corresponding to the fourth light shielding portions,
    18. The method of manufacturing a liquid crystal display device according to claim 16, wherein the plurality of fourth light transmission parts are provided corresponding to the second light shielding parts. 19.
  19. 前記第1及び第2のフォトマスクは、前記走査方向に平行な前記第2領域の中心線と、前記走査方向に平行な前記第4領域の中心線とが一致するように配置され、
    前記複数の第2透光部及び前記複数の第4透光部は、前記両中心線に対して、互いに鏡像の関係にあることを特徴とする請求項16~18のいずれかに記載の液晶表示装置の製造方法。
    The first and second photomasks are arranged such that a center line of the second region parallel to the scanning direction coincides with a center line of the fourth region parallel to the scanning direction,
    The liquid crystal according to any one of claims 16 to 18, wherein the plurality of second light-transmitting portions and the plurality of fourth light-transmitting portions are mirror images of each other with respect to the center lines. Manufacturing method of display device.
  20. 前記走査方向に平行な直線を走査線とすると、
    同じ走査線上に存在する複数の第2透光部は、実質的に等間隔に配置されることを特徴とする請求項12又は13記載の液晶表示装置の製造方法。
    When a straight line parallel to the scanning direction is a scanning line,
    The method of manufacturing a liquid crystal display device according to claim 12 or 13, wherein the plurality of second light transmitting portions existing on the same scanning line are arranged at substantially equal intervals.
  21. 前記複数の第1透光部は、前記走査方向に離散的に分散されていることを特徴とする請求項12~20のいずれかに記載の液晶表示装置の製造方法。 The method for manufacturing a liquid crystal display device according to any one of claims 12 to 20, wherein the plurality of first light-transmitting portions are discretely dispersed in the scanning direction.
  22. 前記走査方向に隣接する第1透光部の間の領域は、遮光されていることを特徴とする請求項21記載の液晶表示装置の製造方法。 The method for manufacturing a liquid crystal display device according to claim 21, wherein a region between the first light-transmitting portions adjacent to each other in the scanning direction is shielded from light.
  23. 前記露光工程は、前記基板を平面視したときに、互いに反平行方向に露光される2つの領域を各画素内に形成するように、前記光配向膜を露光することを特徴とする請求項12~22のいずれかに記載の液晶表示装置の製造方法。 13. The photo-alignment film is exposed in the exposure step so as to form in each pixel two regions that are exposed in antiparallel directions when the substrate is viewed in plan. 23. A method of manufacturing a liquid crystal display device according to any one of items 1 to 22.
  24. 請求項12~23のいずれかに記載の液晶表示装置の製造方法によって作製されたことを特徴とする液晶表示装置。 A liquid crystal display device produced by the method for producing a liquid crystal display device according to any one of claims 12 to 23.
  25. 前記液晶表示装置は、垂直配向型の液晶層を備え、
    前記液晶層は、誘電率異方性が負の液晶材料を含有することを特徴とする請求項24記載の液晶表示装置。
    The liquid crystal display device includes a vertical alignment type liquid crystal layer,
    The liquid crystal display device according to claim 24, wherein the liquid crystal layer contains a liquid crystal material having a negative dielectric anisotropy.
  26. 前記液晶表示装置は、水平配向型の液晶層を備え、
    前記液晶層は、誘電率異方性が正の液晶材料を含有することを特徴とする請求項24記載の液晶表示装置。
    The liquid crystal display device includes a horizontal alignment type liquid crystal layer,
    The liquid crystal display device according to claim 24, wherein the liquid crystal layer contains a liquid crystal material having a positive dielectric anisotropy.
  27. 前記液晶層は、ツイストネマチック液晶を含有することを特徴とする請求項25又は26記載の液晶表示装置。 27. The liquid crystal display device according to claim 25, wherein the liquid crystal layer contains twisted nematic liquid crystal.
  28. 前記液晶表示装置は、2以上のドメインを有することを特徴とする請求項24~27のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 24 to 27, wherein the liquid crystal display device has two or more domains.
PCT/JP2010/069338 2010-01-25 2010-10-29 Exposure apparatus, liquid crystal display device, and method for manufacturing liquid crystal display device WO2011089772A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2012136465/28A RU2509327C1 (en) 2010-01-25 2010-10-29 Exposure device, liquid crystal display device and method of manufacturing liquid crystal display device
EP10843936A EP2530527A1 (en) 2010-01-25 2010-10-29 Exposure apparatus, liquid crystal display device, and method for manufacturing liquid crystal display device
US13/574,893 US9069212B2 (en) 2010-01-25 2010-10-29 Exposure apparatus, liquid crystal display device, and method for manufacturing liquid crystal display device
JP2011550795A JP5400176B2 (en) 2010-01-25 2010-10-29 Exposure apparatus and method of manufacturing liquid crystal display device
CN201080059879.7A CN102687078B (en) 2010-01-25 2010-10-29 Exposure apparatus, liquid crystal display device, and method for manufacturing liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010013453 2010-01-25
JP2010-013453 2010-01-25

Publications (1)

Publication Number Publication Date
WO2011089772A1 true WO2011089772A1 (en) 2011-07-28

Family

ID=44306588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069338 WO2011089772A1 (en) 2010-01-25 2010-10-29 Exposure apparatus, liquid crystal display device, and method for manufacturing liquid crystal display device

Country Status (6)

Country Link
US (1) US9069212B2 (en)
EP (1) EP2530527A1 (en)
JP (1) JP5400176B2 (en)
CN (1) CN102687078B (en)
RU (1) RU2509327C1 (en)
WO (1) WO2011089772A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032779A (en) * 2010-07-30 2012-02-16 Samsung Electronics Co Ltd Liquid-crystal display panel in which unit pixels each having plural domains are formed and optical mask for manufacturing the same
JP6156540B1 (en) * 2016-03-31 2017-07-05 大日本印刷株式会社 Light control film and method of manufacturing light control film
WO2018139274A1 (en) * 2017-01-26 2018-08-02 株式会社ブイ・テクノロジー Polarized light radiation device and polarized light radiation method
JP2018526678A (en) * 2015-09-01 2018-09-13 深▲セン▼市華星光電技術有限公司 Photomask used for photoalignment and photoalignment method
WO2019035321A1 (en) * 2017-08-14 2019-02-21 株式会社ブイ・テクノロジー Polarized light irradiation device
JP2019035930A (en) * 2017-08-14 2019-03-07 株式会社ブイ・テクノロジー Polarized light irradiating device
WO2019216287A1 (en) * 2018-05-11 2019-11-14 株式会社ブイ・テクノロジー Exposure device and exposure method
US11131888B2 (en) 2017-05-22 2021-09-28 Sakai Display Products Corporation Display panel and display apparatus

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103261955B (en) * 2010-12-15 2016-04-20 株式会社V技术 Orientation process device and method for orientation treatment
US9063380B2 (en) * 2011-08-29 2015-06-23 Sharp Kabushiki Kaisha Method for manufacturing liquid crystal display device
KR101678512B1 (en) * 2012-03-22 2016-11-22 가부시키가이샤 히다치 고쿠사이 덴키 Method for manufacturing semiconductor device, method for processing substrate, substrate processing device and recording medium
JP2015090437A (en) * 2013-11-06 2015-05-11 株式会社ジャパンディスプレイ Liquid crystal display device
KR102222005B1 (en) * 2014-01-09 2021-03-04 삼성디스플레이 주식회사 Exposure apparatus and exposure method using the same
CN103869547A (en) * 2014-03-31 2014-06-18 南京中电熊猫液晶显示科技有限公司 Optical alignment equipment and manufacturing method thereof
CN104714342B (en) * 2015-03-04 2017-11-03 深圳市华星光电技术有限公司 Display panel and its manufacture method
CN104730857B (en) * 2015-03-24 2019-05-17 南京中电熊猫液晶显示科技有限公司 A kind of mask plate of liquid crystal display panel and exposure method using the mask plate
CN104777674B (en) * 2015-04-27 2018-10-19 深圳市华星光电技术有限公司 A kind of light shield apparatus and application apparatus for light orientation
CN104965388B (en) * 2015-07-06 2019-05-31 深圳市华星光电技术有限公司 Light shield and light alignment method for light orientation
JP6574844B2 (en) * 2015-10-02 2019-09-11 シャープ株式会社 Liquid crystal display panel, liquid crystal display panel manufacturing method, and liquid crystal display panel manufacturing apparatus
CN106773329B (en) * 2015-11-25 2020-02-07 群创光电股份有限公司 Exposure system and exposure method
CN106405891A (en) * 2016-10-24 2017-02-15 深圳市华星光电技术有限公司 Mosaic area splicing method and system
CN106444106A (en) * 2016-10-24 2017-02-22 深圳市华星光电技术有限公司 Mosaic area splicing method and system
US10509265B2 (en) * 2017-04-10 2019-12-17 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Photo-alignment apparatus and photo-alignment method
CN107255891B (en) * 2017-08-08 2023-02-03 惠科股份有限公司 Manufacturing method of display device
US10520772B1 (en) * 2017-12-15 2019-12-31 Facebook Technologies, Llc Self-compensated liquid crystal polymer coatings on curved optical surface
CN108363271B (en) * 2018-03-15 2021-02-23 京东方科技集团股份有限公司 Mask plate, signal line and digital mark preparation method, substrate and display device
CN110136625A (en) * 2019-05-17 2019-08-16 京东方科技集团股份有限公司 Display panel and display device
CN111290175A (en) * 2020-02-16 2020-06-16 南京中电熊猫液晶显示科技有限公司 Mask plate
CN112068396A (en) * 2020-09-25 2020-12-11 南京中电熊猫液晶显示科技有限公司 Mask plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324474A (en) * 1993-05-10 1994-11-25 Nikon Corp Photomask and exposing method
JP2000066235A (en) * 1998-08-20 2000-03-03 Mitsubishi Electric Corp Liquid crystal display device and its production
JP2001281669A (en) 2000-03-30 2001-10-10 Matsushita Electric Ind Co Ltd Liquid crystal alignment layer, its manufacturing method and liquid crystal display device and its manufacturing method
WO2007086474A1 (en) 2006-01-26 2007-08-02 Sharp Kabushiki Kaisha Liquid crystal display device manufacturing method, and liquid crystal display device
JP2009080312A (en) * 2007-09-26 2009-04-16 Hitachi Ltd Photomask and method for manufacturing display panel
JP2010013453A (en) 2001-12-28 2010-01-21 Neochemir Inc Fermentation bacteria-containing carbon dioxide composition for external use

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314113A (en) * 1995-05-17 1996-11-29 Fujitsu Ltd Mask and printed circuit board formed by using the same
JP2000180894A (en) * 1998-12-18 2000-06-30 Advanced Display Inc Liquid crystal display device and its manufacture
KR100818193B1 (en) * 2000-07-05 2008-04-01 롤리크 아게 Nematic liquid crystal electrooptical element and device
US6943930B2 (en) * 2002-09-12 2005-09-13 Eastman Kodak Company Method and system for fabricating optical film using an exposure source and reflecting surface
JP2004341465A (en) * 2003-05-14 2004-12-02 Obayashi Seiko Kk High quality liquid crystal display device and its manufacturing method
US7582394B2 (en) * 2003-10-06 2009-09-01 Panasonic Corporation Photomask and method for forming pattern
JP4984810B2 (en) * 2006-02-16 2012-07-25 株式会社ニコン Exposure method, exposure apparatus, and photomask
CN101622572B (en) 2007-03-05 2012-01-11 夏普株式会社 Liquid crystal display device and its manufacturing method
WO2009037965A1 (en) * 2007-09-19 2009-03-26 Sharp Kabushiki Kaisha Liquid crystal display panel manufacturing method and photomask
CN103261955B (en) * 2010-12-15 2016-04-20 株式会社V技术 Orientation process device and method for orientation treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324474A (en) * 1993-05-10 1994-11-25 Nikon Corp Photomask and exposing method
JP2000066235A (en) * 1998-08-20 2000-03-03 Mitsubishi Electric Corp Liquid crystal display device and its production
JP2001281669A (en) 2000-03-30 2001-10-10 Matsushita Electric Ind Co Ltd Liquid crystal alignment layer, its manufacturing method and liquid crystal display device and its manufacturing method
JP2010013453A (en) 2001-12-28 2010-01-21 Neochemir Inc Fermentation bacteria-containing carbon dioxide composition for external use
WO2007086474A1 (en) 2006-01-26 2007-08-02 Sharp Kabushiki Kaisha Liquid crystal display device manufacturing method, and liquid crystal display device
JP2009080312A (en) * 2007-09-26 2009-04-16 Hitachi Ltd Photomask and method for manufacturing display panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. KIMURA ET AL.: "Photo-Rubbing Method: A Single-Exposure Method to Stable Liquid-Crystal Pretilt Angle on Photo-Alignment Film", IDW '04: PROCEEDINGS OF THE LLTH INTERNATIONAL DISPLAY WORKSHOPS, IDW '04 PUBLICATION COMMITTEE, vol. LCT 2-1, 2004, pages 35 - 38

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032779A (en) * 2010-07-30 2012-02-16 Samsung Electronics Co Ltd Liquid-crystal display panel in which unit pixels each having plural domains are formed and optical mask for manufacturing the same
US9494816B2 (en) 2010-07-30 2016-11-15 Samsung Display Co., Ltd. Liquid crystal display panel with multi-domain unit pixels and an optical mask for manufacturing the same
JP2018526678A (en) * 2015-09-01 2018-09-13 深▲セン▼市華星光電技術有限公司 Photomask used for photoalignment and photoalignment method
JP6156540B1 (en) * 2016-03-31 2017-07-05 大日本印刷株式会社 Light control film and method of manufacturing light control film
JP2017181989A (en) * 2016-03-31 2017-10-05 大日本印刷株式会社 Light control film and production method of light control film
WO2018139274A1 (en) * 2017-01-26 2018-08-02 株式会社ブイ・テクノロジー Polarized light radiation device and polarized light radiation method
US11131888B2 (en) 2017-05-22 2021-09-28 Sakai Display Products Corporation Display panel and display apparatus
WO2019035321A1 (en) * 2017-08-14 2019-02-21 株式会社ブイ・テクノロジー Polarized light irradiation device
JP2019035930A (en) * 2017-08-14 2019-03-07 株式会社ブイ・テクノロジー Polarized light irradiating device
WO2019216287A1 (en) * 2018-05-11 2019-11-14 株式会社ブイ・テクノロジー Exposure device and exposure method

Also Published As

Publication number Publication date
CN102687078B (en) 2014-09-17
JP5400176B2 (en) 2014-01-29
JPWO2011089772A1 (en) 2013-05-20
US20120293763A1 (en) 2012-11-22
US9069212B2 (en) 2015-06-30
CN102687078A (en) 2012-09-19
EP2530527A1 (en) 2012-12-05
RU2509327C1 (en) 2014-03-10

Similar Documents

Publication Publication Date Title
JP5400176B2 (en) Exposure apparatus and method of manufacturing liquid crystal display device
JP4606510B2 (en) Method for manufacturing liquid crystal display device and liquid crystal display device
US8189152B2 (en) Production method of liquid crystal display device and liquid crystal display device
US8670090B2 (en) Liquid crystal display device and production method thereof
US8134668B2 (en) Liquid crystal display device and production method thereof
JP5711038B2 (en) Liquid crystal display panel in which unit pixels having a plurality of domains are formed, and optical mask for manufacturing the same
US8593602B2 (en) Production method for liquid crystal display device and exposure device including exposure of alignment layers
WO2011155272A1 (en) Method for manufacturing liquid crystal display device, and liquid crystal display device
WO2012102104A1 (en) Exposure apparatus, liquid crystal display device and method for manufacturing same
WO2012105393A1 (en) Exposure device, liquid crystal display device, and method of manufacturing same
JP5332548B2 (en) Color filter and liquid crystal display device including the same
TWI504999B (en) Substrate, dislay device having the same and mathod for manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059879.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843936

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550795

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010843936

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13574893

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7286/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012136465

Country of ref document: RU