WO2011096358A1 - 燃料切替制御装置及び方法 - Google Patents

燃料切替制御装置及び方法 Download PDF

Info

Publication number
WO2011096358A1
WO2011096358A1 PCT/JP2011/051907 JP2011051907W WO2011096358A1 WO 2011096358 A1 WO2011096358 A1 WO 2011096358A1 JP 2011051907 W JP2011051907 W JP 2011051907W WO 2011096358 A1 WO2011096358 A1 WO 2011096358A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
valve
gaseous fuel
injection valve
Prior art date
Application number
PCT/JP2011/051907
Other languages
English (en)
French (fr)
Inventor
芳夫 齋藤
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Priority to US13/574,041 priority Critical patent/US20120291758A1/en
Priority to EP11739706.7A priority patent/EP2532861A4/en
Publication of WO2011096358A1 publication Critical patent/WO2011096358A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0623Failure diagnosis or prevention; Safety measures; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/024Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • F02D19/0615Switch-over from one fuel to another being initiated by automatic means, e.g. based on engine or vehicle operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel switching control device and method.
  • This application claims priority based on Japanese Patent Application No. 2010-024433 filed in Japan on February 5, 2010, the contents of which are incorporated herein by reference.
  • bi-fuel engine system that selectively switches between liquid fuel such as gasoline and gaseous fuel such as compressed natural gas (CNG) and supplies it to a single engine as a technology to improve vehicle fuel efficiency and environmental protection performance.
  • liquid fuel such as gasoline
  • gaseous fuel such as compressed natural gas (CNG)
  • CNG compressed natural gas
  • Patent Document 1 discloses a technique for switching the fuel supplied to the engine to liquid fuel when a fuel supply failure due to an abnormal pressure or the like of the gaseous fuel is detected in the bi-fuel engine system as described above. ing.
  • a high-pressure abnormality in gaseous fuel may cause damage to fuel supply piping and a malfunction of the fuel injection valve, while a low-pressure abnormality in gaseous fuel may cause engine stall due to fuel shortage.
  • Patent Document 1 since the technique of the above-mentioned Patent Document 1 simply switches to another fuel when a gas fuel pressure abnormality occurs, the fuel can be appropriately controlled according to the pressure state of the gas fuel (high pressure abnormality or low pressure abnormality). Switching control cannot be performed.
  • the present invention has been made in view of the above-described circumstances, and provides a fuel switching control apparatus and method capable of appropriately performing fuel switching control according to the pressure state of a first fuel (for example, gaseous fuel).
  • a first fuel for example, gaseous fuel.
  • the purpose is to do.
  • a fuel switching control device for an internal combustion engine that can use a plurality of types of fuel, and the pressure of the first fuel when the first fuel is used. Includes a control means for performing different fuel switching control depending on whether the upper limit threshold is exceeded or lower than the lower limit threshold. Further, in the fuel switching control device according to the present invention, when the pressure of the first fuel exceeds an upper limit threshold, the control means closes the shut-off valve of the first fuel while injecting the first fuel. When the valve operation is continued and the pressure of the first fuel falls below a decrease determination threshold value, the operation of the injection valve for the first fuel may be stopped to switch to another fuel.
  • the control means closes the first fuel shut-off valve and the first fuel injection valve when the pressure of the first fuel falls below a lower limit threshold. May be switched to another fuel.
  • the fuel switching control method according to the present invention when the first fuel is used, different fuel switching control is performed when the pressure of the first fuel exceeds the upper threshold and when the pressure falls below the lower threshold. Good.
  • the present invention when the first fuel is used, different fuel switching control is performed when the pressure of the first fuel exceeds the upper limit threshold and when the pressure of the first fuel falls below the lower limit threshold. It is possible to perform appropriate fuel switching control according to whether the abnormality is high pressure or low pressure.
  • FIG. 1 is a schematic configuration diagram of a bi-fuel engine system in the present embodiment.
  • 2 is a block configuration diagram of a 1st-ECU 5 in the present embodiment.
  • FIG. 2 is a block configuration diagram of a 2nd-ECU 6 in the present embodiment.
  • FIG. It is a flowchart showing the fuel switching control at the time of use of gaseous fuel. It is a figure showing the open / close state of the shut-off valve 41 and the operating state of the gaseous fuel injection valve when a high pressure abnormality occurs and a low pressure abnormality occurs in the gaseous fuel.
  • the fuel switching control device is used in a bi-fuel engine system that selectively switches between liquid fuel such as gasoline and gaseous fuel such as compressed natural gas (CNG) and supplies it to a single engine.
  • An ECU Electronic Control Unit
  • FIG. 1 is a schematic configuration diagram of a bi-fuel engine system in the present embodiment.
  • the bi-fuel engine system according to the present embodiment is roughly composed of an engine 1, a liquid fuel supply unit 2, a gaseous fuel supply unit 3, a fuel changeover switch 4, a 1st-ECU 5, and a 2nd-ECU 6. Yes.
  • the engine 1 is a four-cycle engine that can selectively use liquid fuel and gaseous fuel, and includes a cylinder 10, a piston 11, a connecting rod 12, a crankshaft 13, an intake valve 14, an exhaust valve 15, a spark plug 16, and an ignition coil. 17, intake pipe 18, exhaust pipe 19, air cleaner 20, throttle valve 21, liquid fuel injection valve 22, gaseous fuel injection valve 23, intake pressure sensor 24, intake air temperature sensor 25, throttle opening sensor 26, cooling water temperature sensor 27, A crank angle sensor 28 is provided.
  • the cylinder 10 is a hollow cylindrical member for reciprocating the piston 11 provided therein by repeating four strokes of intake, compression, combustion (expansion), and exhaust.
  • the cylinder 10 is an intake port 10a that is a flow path for supplying a mixture of air and fuel to the combustion chamber 10b.
  • the cylinder 10 retains the mixture and burns the mixture compressed in the compression stroke in the combustion stroke.
  • a combustion chamber 10b, which is a space, and an exhaust port 10c, which is a flow path for exhausting exhaust gas from the combustion chamber 10b to the outside during the exhaust stroke, are provided.
  • a cooling water passage 10 d for circulating cooling water is provided on the outer wall of the cylinder 10.
  • a crankshaft 13 for converting the reciprocating motion of the piston 11 into a rotational motion is connected to the piston 11 via a connecting rod 12.
  • the crankshaft 13 extends in a direction orthogonal to the reciprocating direction of the piston 11 and is connected to a flywheel, a transmission gear, etc. (not shown).
  • a rotor 13a used for detecting a crank angle is coaxially connected to the crankshaft 13.
  • a plurality of protrusions are provided on the outer periphery of the rotor 13a so that the rear ends of the protrusions are equiangularly spaced (for example, 20 ° apart) with respect to the rotation direction.
  • the intake valve 14 is a valve member for opening and closing an opening on the combustion chamber 10b side in the intake port 10a.
  • the intake valve 14 is connected to a camshaft (not shown) and is driven to open and close according to each stroke by the camshaft.
  • the exhaust valve 15 is a valve member for opening and closing the opening on the combustion chamber 10b side in the exhaust port 10c.
  • the exhaust valve 15 is connected to a camshaft (not shown) and is driven to open and close according to each stroke by the camshaft.
  • the spark plug 16 is installed in the upper part of the combustion chamber 10b so that the electrode is exposed inside the combustion chamber 10b.
  • the spark plug 16 generates a spark between the electrodes by a high voltage signal supplied from the ignition coil 17.
  • the ignition coil 17 is a transformer composed of a primary winding and a secondary winding, and boosts an ignition voltage signal supplied from the 1st-ECU 5 to the primary winding and supplies the boosted voltage signal to the ignition plug 16 from the secondary winding. To do.
  • the intake pipe 18 is a pipe for supplying air, and is connected to the cylinder 10 so that the internal intake flow path 18a communicates with the intake port 10a.
  • the exhaust pipe 19 is a pipe for exhaust gas discharge, and is connected to the cylinder 10 so that the internal exhaust passage 19a communicates with the exhaust port 10c.
  • the air cleaner 20 is provided upstream of the intake pipe 18, cleans the air taken in from the outside, and sends it to the intake passage 18a.
  • the throttle valve 21 is provided inside the intake passage 18a, and rotates according to a throttle operation (or an accelerator operation). That is, as the throttle valve 21 rotates, the cross-sectional area of the intake passage 18a changes, and the intake air amount changes.
  • the liquid fuel injection valve 22 is an electromagnetic valve (for example, a solenoid valve) installed in the intake pipe 18 so that the injection port is exposed to the intake port 10a side.
  • the liquid fuel injection valve 22 injects the liquid fuel (gasoline etc.) supplied from the liquid fuel supply unit 2 from the injection port in response to the fuel injection valve drive signal supplied from the 1st-ECU 5.
  • the gaseous fuel injection valve 23 is an electromagnetic valve (for example, a solenoid valve) installed in the intake pipe 18 so that the injection port is exposed to the intake port 10a side.
  • the gaseous fuel injection valve 23 injects gaseous fuel (CNG or the like) supplied from the gaseous fuel supply unit 3 from the injection port in response to a fuel injection valve drive signal supplied from the 2nd-ECU 6.
  • the intake pressure sensor 24 is a semiconductor pressure sensor using, for example, a piezoresistance effect.
  • the intake pressure sensor 24 is installed in the intake pipe 18 so that the sensitivity surface is exposed to the intake passage 18a downstream of the throttle valve 21, and an intake pressure signal corresponding to the intake pressure in the intake pipe 18 is 1st-. It outputs to ECU5.
  • the intake air temperature sensor 25 is installed in the intake pipe 18 so that the sensitive portion is exposed on the intake flow path 18a side upstream of the throttle valve 21, and an intake air temperature signal corresponding to the intake air temperature in the intake pipe 18 is 1st ⁇ . It outputs to ECU5.
  • the throttle opening sensor 26 outputs a throttle opening signal corresponding to the opening of the throttle valve 21 to the 1st-ECU 5.
  • the coolant temperature sensor 27 is installed in the cylinder 10 so that the sensitive part is exposed to the coolant channel 10d side, and outputs a coolant temperature signal corresponding to the temperature of the coolant flowing through the coolant channel 10d to the 1st-ECU 5.
  • the crank angle sensor 28 is, for example, an electromagnetic pickup sensor.
  • the crank angle sensor 28 outputs a pair of pulse signals having different polarities to the 1st-ECU 5 each time each protrusion provided on the outer periphery of the rotor 13a passes in the vicinity of the sensor. More specifically, the crank angle sensor 28 outputs a pulse-shaped signal having a negative amplitude when the front end of each protrusion passes in the rotation direction, and the rear end of each protrusion in the rotation direction. When the signal passes, a pulse-like signal having a positive polarity is output.
  • the liquid fuel supply unit 2 includes a liquid fuel tank 30 and a fuel pump 31.
  • the liquid fuel tank 30 is a container that stores liquid fuel such as gasoline fuel or alcohol fuel.
  • the fuel pump 31 pumps out the liquid fuel in the liquid fuel tank 30 according to the pump drive signal supplied from the 1st-ECU 5 and pumps it to the fuel inlet of the liquid fuel injection valve 22.
  • the gaseous fuel supply unit 3 includes a gaseous fuel tank 40, a shutoff valve 41, a regulator 42, a filter 43, a fuel pressure sensor 44, and a relief valve 45.
  • the gaseous fuel tank 40 is a pressure vessel filled with high-pressure gaseous fuel such as CNG.
  • the shutoff valve 41 is an electromagnetic valve installed at the fuel outlet of the gaseous fuel tank 40.
  • the shutoff valve 41 opens and closes the fuel outlet of the gaseous fuel tank 40 by performing a valve opening operation and a valve closing operation in accordance with the shutoff valve drive signal supplied from the 2nd-ECU 6.
  • the regulator 42 is a pressure regulating valve disposed downstream of the cutoff valve 41.
  • the regulator 42 depressurizes the gaseous fuel delivered from the gaseous fuel tank 40 to the desired pressure when the shut-off valve 41 is opened, and then sends the gaseous fuel to the filter 43 installed downstream.
  • the filter 43 removes foreign matters (for example, foreign matters such as compressor oil in the gaseous fuel) contained in the gaseous fuel delivered from the regulator 42, and delivers the gaseous fuel after removing the foreign matters to the fuel inlet of the gaseous fuel injection valve 23.
  • the fuel pressure sensor 44 is a pressure sensor installed in the filter 43. The fuel pressure sensor 44 detects the pressure (fuel pressure) of the gaseous fuel delivered to the gaseous fuel injection valve 23, and outputs a fuel pressure detection signal representing the detection result to the 2nd-ECU 6.
  • the relief valve 45 is a safety valve inserted in a branch pipe communicating with a pipe connecting the regulator 42 and the filter 43. The relief valve 45 opens when the fuel pressure downstream of the regulator 42 exceeds the set pressure, and discharges (relieves) gaseous fuel to the outside.
  • the fuel changeover switch 4 is a switch that allows the fuel to be changed manually.
  • the fuel changeover switch 4 outputs to the 2nd-ECU 6 a fuel designation signal indicating the state of the switch, that is, whether liquid fuel is designated as fuel used in the engine 1 or gaseous fuel is designated.
  • the 1st-ECU 5 performs operation control of the engine 1 mainly using liquid fuel.
  • a waveform shaping circuit 50 As shown in FIG. 2, a waveform shaping circuit 50, a rotation speed counter 51, an A / D converter 52, an ignition circuit 53, a fuel injection valve drive circuit 54, a pump drive circuit 55, a ROM (Read Memory) 56, a RAM ( A random access memory 57, a communication circuit 58, and a central processing unit 59 (CPU) are provided.
  • the waveform shaping circuit 50 converts the crank signal input from the crank angle sensor 28 into a square-wave pulse signal (for example, a negative crank signal is set to a high level and a positive polarity signal and a ground level crank signal are set to a low level).
  • the waveform is shaped and output to the rotation number counter 51 and the CPU 59. That is, this square-wave pulse signal is a signal whose period is the time required for the crankshaft 13 to rotate 20 °.
  • the square-wave pulse signal output from the waveform shaping circuit 50 is referred to as a crank pulse signal.
  • the rotation speed counter 51 calculates the engine rotation speed based on the crank pulse signal input from the waveform shaping circuit 50 and outputs the calculation result to the CPU 59.
  • the A / D converter 52 includes an intake pressure signal input from the intake pressure sensor 24, an intake air temperature signal input from the intake air temperature sensor 25, a throttle opening signal input from the throttle opening sensor 26, and a cooling water temperature sensor.
  • the cooling water temperature signal input from 27 is converted into a digital signal (intake pressure value, intake air temperature value, throttle opening value, cooling water temperature value) and output to the CPU 59.
  • the ignition circuit 53 includes a capacitor for accumulating a power supply voltage supplied from a battery (not shown), and in response to an ignition control signal input from the CPU 59, the electric charge accumulated in the capacitor is used as an ignition voltage signal for the ignition coil 17. Discharge to the primary winding.
  • the fuel injection valve drive circuit 54 generates a fuel injection valve drive signal in response to the fuel injection control signal input from the CPU 59 and outputs the fuel injection valve drive signal to the liquid fuel injection valve 22.
  • the pump drive circuit 55 generates a pump drive signal according to the fuel supply control signal input from the CPU 59, and outputs the pump drive signal to the fuel pump 31.
  • the ROM 56 is a non-volatile memory that stores in advance an engine control program for realizing various functions of the CPU 59 and various setting data.
  • the RAM 57 is a volatile working memory used as a temporary data storage destination when the CPU 59 executes an engine control program and performs various operations.
  • the communication circuit 58 is a communication interface that realizes data communication between the 1st-ECU 5 and the 2nd-ECU 6 under the control of the CPU 59, and is connected to the 2nd-ECU 6 via a communication cable.
  • the CPU 59 receives the crank pulse signal input from the waveform shaping circuit 50, the engine speed obtained from the speed counter 51, and the intake pressure obtained from the A / D converter 52. Based on the value, the intake air temperature value, the throttle opening value, the cooling water temperature value, and various information obtained from the 2nd-ECU 6 via the communication circuit 58, the operation control of the engine 1 with the liquid fuel is performed.
  • the CPU 59 monitors the rotation state of the crankshaft 13 (in other words, the position of the piston 11 in the cylinder 10) based on the crank pulse signal input from the waveform shaping circuit 50, and the piston 11 is ignited. When the position corresponding to the timing is reached, an ignition control signal is output to the ignition circuit 53 to spark the spark plug 16.
  • the CPU 59 drives the fuel pump 31 by outputting a fuel supply control signal to the pump drive circuit 55, so that the liquid fuel injection valve The supply of liquid fuel to 22 is started. Further, the CPU 59 outputs the fuel injection control signal to the fuel injection valve drive circuit 54 when the piston 11 reaches the position corresponding to the fuel injection timing, thereby injecting the liquid fuel by the liquid fuel injection valve 22. To do.
  • the CPU 59 transmits the position of the piston 11 recognized by the CPU 59, the engine speed, the intake pressure value, the intake air temperature value, the throttle opening value, and the cooling water temperature value to the 2nd-ECU 6 via the communication circuit 58. It also has a function to do.
  • the 2nd-ECU 6 performs operation control of the engine 1 mainly using gaseous fuel.
  • the communication circuit 60, the A / D converter 61, the fuel injection valve drive circuit 62, the cutoff valve drive circuit 63, the ROM 64, the RAM 65, and the CPU 66 are provided.
  • the communication circuit 60 is a communication interface that realizes data communication between the 1st-ECU 5 and the 2nd-ECU 6 under the control of the CPU 66, and is connected to the 1st-ECU 5 (specifically, the communication circuit 58) via a communication cable. Yes.
  • the A / D converter 61 converts the fuel pressure detection signal input from the fuel pressure sensor 44 into a digital signal (fuel pressure value) and outputs it to the CPU 66.
  • the fuel injection valve drive circuit 62 generates a fuel injection valve drive signal in accordance with the fuel injection control signal input from the CPU 66, and outputs the fuel injection valve drive signal to the gaseous fuel injection valve 23.
  • the shut-off valve drive circuit 63 generates a shut-off valve drive signal according to the shut-off valve control signal input from the CPU 66, and outputs the shut-off valve drive signal to the shut-off valve 41.
  • the ROM 64 is a non-volatile memory that stores in advance an engine control program for realizing various functions of the CPU 66 and various setting data.
  • the RAM 65 is a volatile working memory used as a temporary data storage destination when the CPU 66 executes an engine control program and performs various operations.
  • the CPU 66 follows the engine control program stored in the ROM 64, the fuel designation signal input from the fuel changeover switch 4, the position of the piston 11 obtained from the 1st-ECU 5 via the communication circuit 60, the engine speed, the intake pressure. Based on the value, the intake air temperature value, the throttle opening value, the cooling water temperature value, and the fuel pressure value obtained from the A / D converter 61, operation control of the engine 1 with gaseous fuel is performed.
  • the CPU 66 determines that the liquid fuel is designated as the fuel to be used in the engine 1 as a result of the analysis of the fuel designation signal input from the fuel changeover switch 4, the CPU 66 passes through the communication circuit 60. An operation instruction using the liquid fuel is transmitted to the 1st-ECU 5 (specifically, the communication circuit 58).
  • the CPU 66 determines that gaseous fuel is designated as the fuel to be used in the engine 1 as a result of analysis of the fuel designation signal input from the fuel changeover switch 4, the CPU 66 controls the cutoff valve drive circuit 63 to perform the cutoff valve control.
  • the shutoff valve 41 is opened by outputting a signal (the fuel outlet of the gaseous fuel tank 40 is opened). Then, the CPU 66 starts supplying gaseous fuel to the gaseous fuel injection valve 23 and outputs a fuel injection control signal to the fuel injection valve drive circuit 62 when the piston 11 reaches a position corresponding to the fuel injection timing.
  • the gaseous fuel is injected by the gaseous fuel injection valve 23.
  • the CPU 66 has a function of performing different fuel switching control depending on whether the pressure of the gaseous fuel exceeds the upper threshold value or lower than the lower threshold value when using the gaseous fuel. Have. Specifically, the CPU 66 closes the shutoff valve 41 when the fuel pressure value obtained from the A / D converter 61 falls below the lower limit threshold value when using the gaseous fuel (the fuel outlet of the gaseous fuel tank 40 is opened). Cut off). Then, the CPU 66 stops supplying the gaseous fuel to the gaseous fuel injection valve 23, stops driving the gaseous fuel injection valve 23 (stops the gaseous fuel injection by the gaseous fuel injection valve 23), and the communication circuit 60. The operation instruction using the liquid fuel is transmitted to the 1st-ECU 5 via the switch (switching to the liquid fuel is performed).
  • the CPU 66 closes the shutoff valve 41 and stops the supply of the gaseous fuel to the gaseous fuel injection valve 23.
  • the driving of the gaseous fuel injection valve 23 continues (the gaseous fuel injection by the gaseous fuel injection valve 23 is continued).
  • the CPU 66 stops driving the gaseous fuel injection valve 23 and transmits an operation instruction using liquid fuel to the 1st-ECU 5 via the communication circuit 60.
  • Step S1> When the gaseous fuel is used, the CPU 66 first determines whether or not the relief mode flag is set to “1” as processing in step S1. If “No”, the process proceeds to step S 2, while if “Yes”, the process proceeds to step S 6.
  • the relief mode flag is a flag that is set to “1” when the pressure (fuel pressure value) of the gaseous fuel exceeds the upper limit threshold, as will be described later.
  • Step S2> If “No” in step S1, that is, if the relief mode flag is not “1”, the CPU 66 determines whether or not the fuel pressure value obtained from the A / D converter 61 has exceeded the upper limit threshold value as the processing in step S2. Determine. If “No”, the process proceeds to step S3, whereas if “Yes”, the process proceeds to step S4.
  • the upper limit threshold is a threshold for detecting the occurrence of a high-pressure abnormality of the gaseous fuel, and is set to a value lower than the operation set pressure of the relief valve 45 (see FIG. 5).
  • the lower limit threshold is a threshold for detecting that a low-pressure abnormality of the gaseous fuel has occurred (see FIG. 5).
  • Step S4 If “Yes” in step S2, that is, if the fuel pressure value obtained from the A / D converter 61 exceeds the upper limit threshold, the CPU 66 sets “1” in the relief mode flag as a process in step S4. The process proceeds to step S5.
  • Step S5 If “No” in step S3, or after the process in step S4 is completed, the CPU 66 performs operation control of the engine 1 with gaseous fuel as the process in step S5 (then, the process returns to the process in step S1). Specifically, the CPU 66 opens the shutoff valve 41 by outputting a shutoff valve control signal to the shutoff valve drive circuit 63 (opens the fuel outlet of the gaseous fuel tank 40). Then, the CPU 66 starts supplying gaseous fuel to the gaseous fuel injection valve 23 and outputs a fuel injection control signal to the fuel injection valve drive circuit 62 when the piston 11 reaches a position corresponding to the fuel injection timing. Thus, the gaseous fuel is injected by the gaseous fuel injection valve 23.
  • Step S6> In the case of “Yes” in the above step S1, that is, when the relief mode flag is set to “1”, the CPU 66 determines that the fuel pressure value obtained from the A / D converter 61 is lower than the decrease determination threshold as the process of step S6. Determine if it is high. If “No”, the process proceeds to step S7, whereas if “Yes”, the process proceeds to step S8.
  • the decrease determination threshold is a threshold for detecting that the fuel pressure value has returned from the high pressure abnormal state to the safe state, and is set to a value between the upper limit threshold and the lower limit threshold (see FIG. 5). ).
  • Step S7 If “Yes” in step S3 or “No” in step S6, the CPU 66 switches to operation control of the engine 1 with liquid fuel as processing in step S7. Specifically, the CPU 66 stops the operation of the gaseous fuel injection valve 23 and transmits an operation instruction using liquid fuel to the 1st-ECU 5 via the communication circuit 60. As a result, the CPU 59 of the 1st-ECU 5 starts supplying liquid fuel to the liquid fuel injection valve 22 by driving the fuel pump 31, and when the piston 11 reaches a position corresponding to the fuel injection timing, the liquid fuel injection is performed. Liquid fuel is injected by the valve 22.
  • Step S8> The CPU 66 closes the shutoff valve 41 by outputting a shutoff valve control signal to the shutoff valve drive circuit 63 in the case of “Yes” in the above step S6 or after the process of the above step S7 ends as the process of step S8. (The fuel outlet of the gaseous fuel tank 40 is shut off). And CPU66 stops supply of the gaseous fuel to the gaseous fuel injection valve 23 (after that, it returns to the process of step S1).
  • FIG. 5 (a) shows the open / close state of the shut-off valve 41 and the operating state of the gaseous fuel injection valve 23 when a low pressure abnormality occurs during the use of gaseous fuel.
  • FIG. 5A it is assumed that the fuel pressure value decreases with time due to the occurrence of a low pressure abnormality and falls below the lower limit threshold at time t1.
  • the shutoff valve 41 is opened and the gaseous fuel injection valve 23 is operated, so that the operation control of the engine 1 with gaseous fuel is continued.
  • the shutoff valve 41 is closed, the gaseous fuel injection valve 23 is stopped, and the operation control of the engine 1 using liquid fuel is switched.
  • the operation control using the gaseous fuel is immediately stopped, and the operation control using the liquid fuel is switched to prevent the occurrence of the engine stall due to the shortage of fuel when the low pressure is abnormal. be able to.
  • FIG. 5B shows the open / close state of the shut-off valve 41 and the operating state of the gaseous fuel injection valve 23 when a high pressure abnormality occurs during the use of the gaseous fuel.
  • the fuel pressure value increases with time due to the occurrence of a high-pressure abnormality and exceeds the upper threshold at time t2.
  • the shutoff valve 41 is opened and the gaseous fuel injection valve 23 is operated, thereby continuing the operation control of the engine 1 with the gaseous fuel.
  • the shutoff valve 41 is closed and the supply of the gaseous fuel is stopped, but the operation of the gaseous fuel injection valve 23 is continued until the fuel pressure value falls below the lower determination threshold value.
  • the present embodiment it is possible to perform appropriate fuel switching control in accordance with the pressure state of the gaseous fuel (whether the abnormality is high pressure or low pressure). Further, when the pressure of the gaseous fuel is abnormal, the fuel used for the operation of the engine 1 is switched from the gaseous fuel to the liquid fuel, so that the safety against fuel leakage is improved while maintaining the running state of the vehicle. Furthermore, since the operation with the gaseous fuel is not performed in a state where the fuel pressure is abnormal, it is possible to prevent the deterioration of the emission and the drivability when the fuel pressure is abnormal.
  • this invention is not limited to the said embodiment, The following modifications are mentioned.
  • a bi-fuel engine system that selectively switches between liquid fuel such as gasoline and gaseous fuel such as compressed natural gas (CNG) and supplies it to a single engine has been described as an example.
  • the present invention can be applied to any system that selectively switches the type of fuel and supplies it to a single engine. For example, if the system can switch between CNG, gasoline, and light oil, it may be switched to operation control using gasoline or light oil when the CNG pressure is abnormal.
  • the fuel switching control device and method of the present invention when using the first fuel, different fuel switching control is performed when the pressure of the first fuel exceeds the upper threshold and when the pressure falls below the lower threshold.
  • the pressure state of the first fuel high pressure abnormality or low pressure abnormality.
  • Crank angle sensor 30 ... Liquid fuel tank, 31 ... Fuel pump, 40 ... Gas fuel tank, 41. Shut-off valve, 42 ... Regulator, 43 ... filter, 44 ... Fuel pressure sensor, 45 ... relief valve, 50 ... Waveform shaping circuit, 51 ... Rotation speed counter, 52 ... A / D converter, 53. Ignition circuit, 54 ... Fuel injection valve drive circuit, 55 ... pump drive circuit, 56: ROM (Read Only Memory), 57 ... RAM (Random Access Memory), 58 ... communication circuit, 59 ... CPU (Central Processing Unit), 60 ... communication circuit, 61 ... A / D converter, 62 ... Fuel injection valve drive circuit, 63 ... shut-off valve drive circuit, 64 ... ROM, 65 ... RAM, 66 ... CPU

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 本発明の燃料切替制御装置は、複数種類の燃料を使用可能な内燃機関の燃料切替制御装置であって、第1燃料の使用時に、前記第1燃料の圧力が上限閾値を越えた場合と下限閾値を下回った場合とで、異なる燃料切替制御を行う制御手段を備える。

Description

燃料切替制御装置及び方法
 本発明は、燃料切替制御装置及び方法に関する。
 本願は、2010年2月5日に、日本に出願された特願2010-024433に基づき優先権を主張し、その内容をここに援用する。
 近年では、車両の燃費性能及び環境保護性能を向上させる技術として、ガソリン等の液体燃料と圧縮天然ガス(CNG)等の気体燃料とを選択的に切替えて単一エンジンに供給するバイフューエルエンジンシステムの導入が進んでいる。このバイフューエルエンジンシステムでは、一般的に、気体燃料を使用する場合、ガスタンクに充填された高圧の気体燃料を、レギュレータによって所望の圧力まで減圧した後、気体燃料専用の燃料噴射弁に供給する。
 この気体燃料の圧力異常が発生すると、システム全体に深刻な悪影響を及ぼすため、従来から様々な対策技術が提案されている。例えば、下記特許文献1には、上記のようなバイフューエルエンジンシステムにおいて、気体燃料の圧力異常等による燃料供給不良が検知された場合に、エンジンに供給する燃料を液体燃料に切替える技術が開示されている。
特開2008-19804号公報
 バイフューエルエンジンシステムにおいて、気体燃料の高圧異常は、燃料供給用配管の破損や燃料噴射弁の動作不良を招く一方、気体燃料の低圧異常は燃料不足によるエンストを招く虞がある。しかしながら、上記特許文献1の技術は、気体燃料の圧力異常発生時に、単純に他の燃料に切替えるのみであるため、気体燃料の圧力状態(高圧異常か低圧異常か)に応じて適切に燃料の切替制御を行うことはできない。
 本発明は、上述した事情に鑑みてなされたものであり、第1燃料(例えば気体燃料)の圧力状態に応じて適切に燃料の切替制御を行うことが可能な燃料切替制御装置及び方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る燃料切替制御装置は、複数種類の燃料を使用可能な内燃機関の燃料切替制御装置であって、第1燃料の使用時に、前記第1燃料の圧力が上限閾値を越えた場合と下限閾値を下回った場合とで、異なる燃料切替制御を行う制御手段を備える。
 また、本発明に係る燃料切替制御装置において、前記制御手段は、前記第1燃料の圧力が上限閾値を越えた場合、前記第1燃料の遮断弁を閉弁する一方、前記第1燃料の噴射弁の作動を継続し、前記第1燃料の圧力が低下判断閾値を下回った場合に、前記第1燃料の噴射弁の作動を停止し、他の燃料への切替えを行ってもよい。
 また、本発明に係る燃料切替制御装置において、前記制御手段は、前記第1燃料の圧力が下限閾値を下回った場合、前記第1燃料の遮断弁を閉弁すると共に前記第1燃料の噴射弁の作動を停止し、他の燃料への切替えを行ってもよい。
 一方、本発明に係る燃料切替制御方法は、第1燃料の使用時に、前記第1燃料の圧力が上限閾値を越えた場合と下限閾値を下回った場合とで、異なる燃料切替制御を行ってもよい。
 本発明によると、第1燃料の使用時に、前記第1燃料の圧力が上限閾値を越えた場合と下限閾値を下回った場合とで、異なる燃料切替制御を行うため、第1燃料の圧力状態(高圧異常か低圧異常か)に応じた適切な燃料の切替制御を行うことが可能となる。
本実施形態におけるバイフューエルエンジンシステムの構成概略図である。 本実施形態における1st-ECU5のブロック構成図である。 本実施形態における2nd-ECU6のブロック構成図である。 気体燃料の使用時における燃料切替制御を表すフローチャートである。 気体燃料の高圧異常発生時及び低圧異常発生時における遮断弁41の開閉状態及び気体燃料噴射弁23の作動状態を表す図である。
 以下、本発明の一実施形態について、図面を参照しながら説明する。なお、以下では、本発明に係る燃料切替制御装置として、ガソリン等の液体燃料と圧縮天然ガス(CNG)等の気体燃料とを選択的に切替えて単一エンジンに供給するバイフューエルエンジンシステムで使用されるECU(Electronic Control Unit)を例示して説明する。
 図1は、本実施形態におけるバイフューエルエンジンシステムの構成概略図である。この図1に示すように、本実施形態におけるバイフューエルエンジンシステムは、エンジン1、液体燃料供給部2、気体燃料供給部3、燃料切替スイッチ4、1st-ECU5及び2nd-ECU6から概略構成されている。
 エンジン1は、液体燃料と気体燃料とを選択的に使用可能な4サイクルエンジンであり、シリンダ10、ピストン11、コンロッド12、クランクシャフト13、吸気バルブ14、排気バルブ15、点火プラグ16、点火コイル17、吸気管18、排気管19、エアクリーナ20、スロットルバルブ21、液体燃料噴射弁22、気体燃料噴射弁23、吸気圧センサ24、吸気温センサ25、スロットル開度センサ26、冷却水温センサ27及びクランク角度センサ28を備えている。
 シリンダ10は、内部に設けられたピストン11を、吸気、圧縮、燃焼(膨張)、排気の4行程を繰り返すことによって往復運動させるための中空の円筒形状部材である。シリンダ10は、空気と燃料との混合気を燃焼室10bに供給するための流路である吸気ポート10a、上記混合気を留め、圧縮行程において圧縮された混合気を燃焼行程において燃焼させるための空間である燃焼室10b、排気行程において燃焼室10bから排気ガスを外部に排出するための流路である排気ポート10cが設けられている。このシリンダ10の外壁には、冷却水を循環させるための冷却水路10dが設けられている。
 ピストン11には、ピストン11の往復運動を回転運動に変換するためのクランクシャフト13がコンロッド12を介して連結されている。
 クランクシャフト13は、ピストン11の往復方向と直交する方向に延在しており、不図示のフライホイール、ミッションギア等と連結されている。このクランクシャフト13には、クランク角度を検出するために用いられるロータ13aが同軸接続されている。このロータ13aの外周には、複数の突起が回転方向に対して、各突起の後端が等角度間隔(例えば20°間隔)になるように設けられている。
 吸気バルブ14は、吸気ポート10aにおける燃焼室10b側の開口部を開閉するための弁部材である。吸気バルブ14は、不図示のカムシャフトと連結されており、当該カムシャフトによって各行程に応じて開閉駆動される。
 排気バルブ15は、排気ポート10cにおける燃焼室10b側の開口部を開閉するための弁部材である。排気バルブ15は、不図示のカムシャフトと連結されており、当該カムシャフトによって各行程に応じて開閉駆動される。
 点火プラグ16は、燃焼室10bの内側に電極が露出するように燃焼室10bの上部に設置されている。点火プラグ16は、点火コイル17から供給される高電圧信号によって電極間に火花を発生する。点火コイル17は、1次巻線と2次巻線からなるトランスであり、1st-ECU5から1次巻線に供給される点火用電圧信号を昇圧して2次巻線から点火プラグ16に供給する。
 吸気管18は、空気供給用の配管であり、内部の吸気流路18aが吸気ポート10aと連通するようにシリンダ10に連結されている。
 排気管19は、排気ガス排出用の配管であり、内部の排気流路19aが排気ポート10cと連通するようにシリンダ10に連結されている。
 エアクリーナ20は、吸気管18の上流に設けられており、外部から取り込まれる空気を清浄化して吸気流路18aに送り込む。
 スロットルバルブ21は、吸気流路18aの内部に設けられており、スロットル操作(もしくはアクセル操作)に応じて回動する。つまり、スロットルバルブ21の回動によって吸気流路18aの断面積が変化し、吸気量が変化する。
 液体燃料噴射弁22は、吸気ポート10a側に噴射口が露出するように吸気管18に設置された電磁弁(例えばソレノイドバルブ等)である。液体燃料噴射弁22は、1st-ECU5から供給される燃料噴射弁駆動信号に応じて、液体燃料供給部2から供給される液体燃料(ガソリン等)を噴射口から噴射する。
 気体燃料噴射弁23は、吸気ポート10a側に噴射口が露出するように吸気管18に設置された電磁弁(例えばソレノイドバルブ等)である。気体燃料噴射弁23は、2nd-ECU6から供給される燃料噴射弁駆動信号に応じて、気体燃料供給部3から供給される気体燃料(CNG等)を噴射口から噴射する。
 吸気圧センサ24は、例えばピエゾ抵抗効果を利用した半導体圧力センサである。吸気圧センサ24は、スロットルバルブ21の下流において吸気流路18a側に感度面が露出するように吸気管18に設置されており、吸気管18内の吸気圧に応じた吸気圧信号を1st-ECU5に出力する。
 吸気温センサ25は、スロットルバルブ21の上流において吸気流路18a側に感部が露出するように吸気管18に設置されており、吸気管18内の吸気温度に応じた吸気温信号を1st-ECU5に出力する。
 スロットル開度センサ26は、スロットルバルブ21の開度に応じたスロットル開度信号を1st-ECU5に出力する。
 冷却水温センサ27は、冷却水路10d側に感部が露出するようにシリンダ10に設置されており、冷却水路10dを流れる冷却水の温度に応じた冷却水温信号を1st-ECU5に出力する。
 クランク角度センサ28は、例えば電磁式ピックアップセンサである。クランク角度センサ28は、ロータ13aの外周に設けられた各突起がセンサ近傍を通過する毎に極性の異なる1対のパルス状の信号を1st-ECU5に出力する。より詳細には、このクランク角度センサ28は、回転方向に対して各突起の前端が通過した場合、負極性の振幅を有するパルス状の信号を出力し、回転方向に対して各突起の後端が通過した場合、正極性の振幅を有するパルス状の信号を出力する。
 液体燃料供給部2は、液体燃料タンク30及び燃料ポンプ31から構成されている。
 液体燃料タンク30は、例えばガソリン燃料、或いはアルコール燃料などの液体燃料を貯留する容器である。燃料ポンプ31は、1st―ECU5から供給されるポンプ駆動信号に応じて、液体燃料タンク30内の液体燃料を汲み出して液体燃料噴射弁22の燃料入口に圧送する。
 気体燃料供給部3は、気体燃料タンク40、遮断弁41、レギュレータ42、フィルタ43、燃圧センサ44及びリリーフバルブ45から構成されている。
 気体燃料タンク40は、例えばCNG等の高圧の気体燃料が充填された耐圧容器である。
 遮断弁41は、気体燃料タンク40の燃料出口に設置された電磁弁である。遮断弁41は、2nd-ECU6から供給される遮断弁駆動信号に応じて開弁動作及び閉弁動作を行うことで、気体燃料タンク40の燃料出口を開閉する。
 レギュレータ42は、遮断弁41の下流に配置された調圧弁である。レギュレータ42は、遮断弁41の開弁時に気体燃料タンク40から送出される気体燃料を所望の圧力まで減圧した後、下流に設置されたフィルタ43に送出する。
 フィルタ43は、レギュレータ42から送出される気体燃料に含まれる異物(例えば気体燃料中のコンプレッサーオイル等の異物)を除去し、異物除去後の気体燃料を気体燃料噴射弁23の燃料入口に送出する。
 燃圧センサ44は、フィルタ43に設置された圧力センサである。燃圧センサ44は、気体燃料噴射弁23へ送出される気体燃料の圧力(燃圧)を検出し、その検出結果を表す燃圧検出信号を2nd-ECU6に出力する。
 リリーフバルブ45は、レギュレータ42とフィルタ43とを結ぶ配管に連通する分岐配管に介挿された安全弁である。リリーフバルブ45は、レギュレータ42の下流の燃圧が設定圧力を越えた場合に開弁して気体燃料を外部に排出する(リリーフする)。
 燃料切替スイッチ4は、手動操作による燃料の切替えを可能とするスイッチである。燃料切替スイッチ4は、そのスイッチの状態、つまりエンジン1で使用する燃料として液体燃料が指定されているのか、気体燃料が指定されているのかを示す燃料指定信号を2nd-ECU6に出力する。
 1st-ECU5は、主に液体燃料によるエンジン1の運転制御を行う。図2に示すように、波形整形回路50、回転数カウンタ51、A/D変換器52、点火回路53、燃料噴射弁駆動回路54、ポンプ駆動回路55、ROM(Read Only Memory)56、RAM(Random Access Memory)57、通信回路58及びCPU(Central Processing Unit)59を備えている。
 波形整形回路50は、クランク角度センサ28から入力されるクランク信号を、方形波のパルス信号(例えば負極性のクランク信号をハイレベルとし、正極性及びグランドレベルのクランク信号をローレベルとする)に波形整形し、回転数カウンタ51及びCPU59に出力する。つまり、この方形波のパルス信号は、クランクシャフト13が20°回転する際に要した時間を周期とする信号である。以下では、この波形整形回路50から出力される方形波のパルス信号をクランクパルス信号と称す。
 回転数カウンタ51は、上記波形整形回路50から入力されるクランクパルス信号に基づいてエンジン回転数を算出し、その算出結果をCPU59に出力する。
 A/D変換器52は、吸気圧センサ24から入力される吸気圧信号、吸気温センサ25から入力される吸気温信号、スロットル開度センサ26から入力されるスロットル開度信号、及び冷却水温センサ27から入力される冷却水温信号を、デジタル信号(吸気圧値、吸気温値、スロットル開度値、冷却水温値)に変換してCPU59に出力する。
 点火回路53は、不図示のバッテリから供給される電源電圧を蓄積するコンデンサを備え、CPU59から入力される点火制御信号に応じて、コンデンサに蓄積された電荷を点火用電圧信号として点火コイル17の1次巻線に放電する。
 燃料噴射弁駆動回路54は、CPU59から入力される燃料噴射制御信号に応じて燃料噴射弁駆動信号を生成し、当該燃料噴射弁駆動信号を液体燃料噴射弁22に出力する。
 ポンプ駆動回路55は、CPU59から入力される燃料供給制御信号に応じてポンプ駆動信号を生成し、当該ポンプ駆動信号を燃料ポンプ31に出力する。
 ROM56は、CPU59の各種機能を実現するためのエンジン制御プログラムや各種設定データを予め記憶している不揮発性メモリである。
 RAM57は、CPU59がエンジン制御プログラムを実行して各種動作を行う際に、データの一時保存先に用いられる揮発性のワーキングメモリである。
 通信回路58は、CPU59による制御の下、1st-ECU5と2nd-ECU6とのデータ通信を実現する通信インターフェイスであり、通信ケーブルを介して2nd-ECU6と接続されている。
 CPU59は、ROM56に記憶されているエンジン制御プログラムに従い、波形整形回路50から入力されるクランクパルス信号と、回転数カウンタ51から得られるエンジン回転数と、A/D変換器52から得られる吸気圧値、吸気温値、スロットル開度値及び冷却水温値と、通信回路58を介して2nd-ECU6から得られる各種情報とに基づいて、液体燃料によるエンジン1の運転制御を行う。
 具体的には、CPU59は、波形整形回路50から入力されるクランクパルス信号に基づいてクランクシャフト13の回転状態(換言すれば、シリンダ10内におけるピストン11の位置)を監視し、ピストン11が点火時期に対応する位置に到達した時点で、点火制御信号を点火回路53に出力することにより、点火プラグ16をスパークさせる。
 このCPU59は、通信回路58を介して2nd-ECU6から液体燃料による運転指示を受信した場合、燃料供給制御信号をポンプ駆動回路55に出力することで燃料ポンプ31を駆動させて、液体燃料噴射弁22への液体燃料の供給を開始する。また、CPU59は、ピストン11が燃料噴射時期に対応する位置に到達した時点で、燃料噴射制御信号を燃料噴射弁駆動回路54に出力することにより、液体燃料噴射弁22による液体燃料の噴射を実施する。
 なお、このCPU59は、自身が認識しているピストン11の位置、エンジン回転数、吸気圧値、吸気温値、スロットル開度値及び冷却水温値を、通信回路58を介して2nd-ECU6に送信する機能も有している。
 2nd-ECU6は、主に気体燃料によるエンジン1の運転制御を行う。図3に示すように、通信回路60、A/D変換器61、燃料噴射弁駆動回路62、遮断弁駆動回路63、ROM64、RAM65、及びCPU66を備えている。
 通信回路60は、CPU66による制御の下、1st-ECU5と2nd-ECU6とのデータ通信を実現する通信インターフェイスであり、通信ケーブルを介して1st-ECU5(詳細には通信回路58)と接続されている。
 A/D変換器61は、燃圧センサ44から入力される燃圧検出信号を、デジタル信号(燃圧値)に変換してCPU66に出力する。
 燃料噴射弁駆動回路62は、CPU66から入力される燃料噴射制御信号に応じて燃料噴射弁駆動信号を生成し、当該燃料噴射弁駆動信号を気体燃料噴射弁23に出力する。
 遮断弁駆動回路63は、CPU66から入力される遮断弁制御信号に応じて遮断弁駆動信号を生成し、当該遮断弁駆動信号を遮断弁41に出力する。
 ROM64は、CPU66の各種機能を実現するためのエンジン制御プログラムや各種設定データを予め記憶している不揮発性メモリである。
 RAM65は、CPU66がエンジン制御プログラムを実行して各種動作を行う際に、データの一時保存先に用いられる揮発性のワーキングメモリである。
 CPU66は、ROM64に記憶されているエンジン制御プログラムに従い、燃料切替スイッチ4から入力される燃料指定信号と、通信回路60を介して1st-ECU5から得られるピストン11の位置、エンジン回転数、吸気圧値、吸気温値、スロットル開度値及び冷却水温値と、A/D変換器61から得られる燃圧値とに基づいて、気体燃料によるエンジン1の運転制御を行う。
 具体的には、このCPU66は、燃料切替スイッチ4から入力される燃料指定信号の解析の結果、エンジン1で使用する燃料として液体燃料が指定されていると判断した場合、通信回路60を介して液体燃料による運転指示を1st-ECU5(詳細には通信回路58)に送信する。
 一方、このCPU66は、燃料切替スイッチ4から入力される燃料指定信号の解析の結果、エンジン1で使用する燃料として気体燃料が指定されていると判断した場合、遮断弁駆動回路63に遮断弁制御信号を出力することで遮断弁41を開弁する(気体燃料タンク40の燃料出口を開放する)。そして、CPU66は、気体燃料噴射弁23への気体燃料の供給を開始し、ピストン11が燃料噴射時期に対応する位置に到達した時点で、燃料噴射制御信号を燃料噴射弁駆動回路62に出力することにより、気体燃料噴射弁23による気体燃料の噴射を実施する。
 このCPU66は、本実施形態における特徴的な機能として、気体燃料の使用時において、気体燃料の圧力が上限閾値を越えた場合と下限閾値を下回った場合とで、異なる燃料切替制御を行う機能を有している。具体的には、CPU66は、気体燃料の使用時において、A/D変換器61から得られる燃圧値が下限閾値を下回った場合、遮断弁41を閉弁する(気体燃料タンク40の燃料出口を遮断する)。そして、CPU66は、気体燃料噴射弁23への気体燃料の供給を停止すると共に、気体燃料噴射弁23の駆動を停止し(気体燃料噴射弁23による気体燃料の噴射を停止し)、通信回路60を介して液体燃料による運転指示を1st-ECU5に送信する(液体燃料への切替を行う)。
 CPU66は、気体燃料の使用時において、A/D変換器61から得られる燃圧値が上限閾値を越えた場合、遮断弁41を閉弁して気体燃料噴射弁23への気体燃料の供給を停止する一方、気体燃料噴射弁23の駆動は継続する(気体燃料噴射弁23による気体燃料の噴射を継続する)。そして、その後、燃圧値が低下判断閾値を下回った場合に、CPU66は、気体燃料噴射弁23の駆動を停止し、通信回路60を介して液体燃料による運転指示を1st-ECU5に送信する。
 以下では、上記のような気体燃料の使用時における燃料切替制御について、図4のフローチャートを参照しながら詳細に説明する。
<ステップS1>
 CPU66は、気体燃料の使用時において、まずステップS1の処理として、リリーフモードフラグが「1」にセットされているか否かを判定する。「No」の場合にはステップS2の処理に移行する一方、「Yes」の場合にはステップS6の処理に移行する。ここで、リリーフモードフラグとは、後述のように、気体燃料の圧力(燃圧値)が上限閾値を越えた場合に、「1」にセットされるフラグである。
<ステップS2>
 CPU66は、上記ステップS1において「No」の場合、つまりリリーフモードフラグが「1」ではない場合、ステップS2の処理として、A/D変換器61から得られる燃圧値が上限閾値を越えたか否かを判定する。「No」の場合にはステップS3の処理に移行する一方、「Yes」の場合にはステップS4の処理に移行する。ここで、上限閾値は、気体燃料の高圧異常が発生したことを検知するための閾値であり、リリーフバルブ45の作動設定圧力より低い値に設定されている(図5参照)。
<ステップS3>
 CPU66は、上記ステップS2において「No」の場合、つまりA/D変換器61から得られる燃圧値が上限閾値を越えていない場合、ステップS3の処理として、その燃圧値が下限閾値を下回ったか否かを判定する。「No」の場合にはステップS5の処理に移行する一方、「Yes」の場合にはステップS7の処理に移行する。ここで、下限閾値は、気体燃料の低圧異常が発生したことを検知するための閾値である(図5参照)。
<ステップS4>
 CPU66は、上記ステップS2において「Yes」の場合、つまりA/D変換器61から得られる燃圧値が上限閾値を越えた場合、ステップS4の処理として、リリーフモードフラグに「1」をセットした後、ステップS5の処理に移行する。
<ステップS5>
 CPU66は、上記ステップS3において「No」の場合、または上記ステップS4の処理終了後、ステップS5の処理として、気体燃料によるエンジン1の運転制御を行う(その後、ステップS1の処理へ戻る)。具体的には、CPU66は、遮断弁駆動回路63に遮断弁制御信号を出力することで遮断弁41を開弁する(気体燃料タンク40の燃料出口を開放する)。そして、CPU66は、気体燃料噴射弁23への気体燃料の供給を開始し、ピストン11が燃料噴射時期に対応する位置に到達した時点で、燃料噴射制御信号を燃料噴射弁駆動回路62に出力することにより、気体燃料噴射弁23による気体燃料の噴射を実施する。
<ステップS6>
 CPU66は、上記ステップS1において「Yes」の場合、つまりリリーフモードフラグが「1」にセットされている場合、ステップS6の処理として、A/D変換器61から得られる燃圧値が低下判断閾値より高いか否かを判定する。「No」の場合にはステップS7の処理に移行する一方、「Yes」の場合にはステップS8の処理に移行する。ここで、低下判断閾値は、燃圧値が高圧異常状態から安全な状態へ戻ったことを検知するための閾値であり、上限閾値と下限閾値との間の値に設定されている(図5参照)。
<ステップS7>
 CPU66は、上記ステップS3において「Yes」の場合、または上記ステップS6において「No」の場合、ステップS7の処理として、液体燃料によるエンジン1の運転制御に切替える。具体的には、CPU66は、気体燃料噴射弁23の作動を停止すると共に、通信回路60を介して液体燃料による運転指示を1st-ECU5に送信する。これにより、1st-ECU5のCPU59は、燃料ポンプ31の駆動によって液体燃料噴射弁22への液体燃料の供給を開始し、ピストン11が燃料噴射時期に対応する位置に到達した時点で、液体燃料噴射弁22による液体燃料の噴射を実施する。
<ステップS8>
 CPU66は、上記ステップS6において「Yes」の場合、または上記ステップS7の処理終了後、ステップS8の処理として、遮断弁駆動回路63に遮断弁制御信号を出力することで遮断弁41を閉弁する(気体燃料タンク40の燃料出口を遮断する)。そして、CPU66は、気体燃料噴射弁23への気体燃料の供給を停止する(その後、ステップS1の処理へ戻る)。
 図5(a)は、気体燃料の使用時に低圧異常が発生した場合における遮断弁41の開閉状態及び気体燃料噴射弁23の作動状態を表したものである。この図5(a)に示すように、低圧異常の発生により、燃圧値が時間の経過に伴って低下していき、時刻t1に下限閾値を下回った場合を想定する。この場合、時刻t1以前では、遮断弁41を開弁し、気体燃料噴射弁23を作動させることにより、気体燃料によるエンジン1の運転制御を継続する。
 一方、燃圧値が下限閾値を下回った時刻t1以降では、遮断弁41を閉弁し、気体燃料噴射弁23を停止させ、液体燃料によるエンジン1の運転制御に切替える。このように、燃圧値が下限閾値を下回った場合には、即座に気体燃料による運転制御を停止し、液体燃料による運転制御に切替えることにより、低圧異常時の燃料不足によるエンストの発生を防止することができる。
 図5(b)は、気体燃料の使用時に高圧異常が発生した場合における遮断弁41の開閉状態及び気体燃料噴射弁23の作動状態を表したものである。この図5(b)に示すように、高圧異常の発生により燃圧値が時間の経過に伴って上昇していき、時刻t2に上限閾値を越えた場合を想定する。この場合、時刻t2以前では、遮断弁41を開弁し、気体燃料噴射弁23を作動させることにより、気体燃料によるエンジン1の運転制御を継続する。
 一方、燃圧値が上限閾値を越えた時刻t2以降では、遮断弁41を閉弁するが、気体燃料噴射弁23の作動は継続する。これにより、レギュレータ42の下流に残存している気体燃料は燃料噴射によって消費され、レギュレータ42の下流の燃圧値は徐々に低下していく。そして、図5(b)に示すように、燃圧値が上限閾値を越えた後、気体燃料の消費によって燃圧値が低下していき、時刻t3に低下判断閾値を下回ったとすると、その時刻t3以降、気体燃料噴射弁23を停止させ、液体燃料によるエンジン1の運転制御に切替える。
 このように、燃圧値が上限閾値を越えた場合には、遮断弁41を閉じて気体燃料の供給を停止するが、燃圧値が低下判断閾値を下回るまで気体燃料噴射弁23の作動を継続することにより、レギュレータ42の下流が高圧に曝されることを防止することができる。その結果、高圧異常時における燃料供給用配管の破損や燃料噴射弁の動作不良を防止することが可能となる。
 以上のように、本実施形態によれば、気体燃料の圧力状態(高圧異常か低圧異常か)に応じた適切な燃料の切替制御を行うことが可能となる。また、気体燃料の圧力異常時に、エンジン1の運転に使用する燃料を気体燃料から液体燃料に切替えることにより、車両の走行状態を維持しつつ、燃料漏れに対する安全性が向上する。さらに、燃圧が異常な状態で、気体燃料による運転が行われることがなくなるため、燃圧異常時におけるエミッションの悪化及びドライバビリティの悪化を防止することができる。
 なお、本発明は上記実施形態に限定されず、以下のような変形例が挙げられる。
 (1)上記実施形態では、ガソリン等の液体燃料と圧縮天然ガス(CNG)等の気体燃料とを選択的に切替えて単一エンジンに供給するバイフューエルエンジンシステムを例示して説明したが、複数種類の燃料を選択的に切替えて単一エンジンに供給するシステムであれば本発明を適用することが可能である。例えば、CNGと、ガソリンと、軽油とを切替可能なシステムであれば、CNGの圧力異常時に、ガソリン或いは軽油による運転制御に切替えれば良い。
 (2)上記実施形態では、液体燃料による運転制御を担う1st-ECU5と、気体燃料による運転制御を担う2nd-ECU6とを備えたシステムを例示したが、これら2つのECUの機能を1つのECUに統合するような構成を採用しても良い。
 本発明の燃料切替制御装置及び方法によれば、第1燃料の使用時に、前記第1燃料の圧力が上限閾値を越えた場合と下限閾値を下回った場合とで、異なる燃料切替制御を行うため、第1燃料の圧力状態(高圧異常か低圧異常か)に応じた適切な燃料の切替制御を行うことが可能となる。
 1…エンジン、
 2…液体燃料供給部、
 3…気体燃料供給部、
 4…燃料切替スイッチ、
 5…1st-ECU(Electronic Control Unit)、
 6…2nd-ECU、
 10…シリンダ、
 11…ピストン、
 12…コンロッド、
 13…クランクシャフト、
 14…吸気バルブ、
 15…排気バルブ、
 16…点火プラグ、
 17…点火コイル、
 18…吸気管、
 19…排気管、
 20…エアクリーナ、
 21…スロットルバルブ、
 22…液体燃料噴射弁、
 23…気体燃料噴射弁、
 24…吸気圧センサ、
 25…吸気温センサ、
 26…スロットル開度センサ、
 27…冷却水温センサ、
 28…クランク角度センサ、
 30…液体燃料タンク、
 31…燃料ポンプ、
 40…気体燃料タンク、
 41…遮断弁、
 42…レギュレータ、
 43…フィルタ、
 44…燃圧センサ、
 45…リリーフバルブ、
 50…波形整形回路、
 51…回転数カウンタ、
 52…A/D変換器、
 53…点火回路、
 54…燃料噴射弁駆動回路、
 55…ポンプ駆動回路、
 56…ROM(Read Only Memory)、
 57…RAM(Random Access Memory)、
 58…通信回路、
 59…CPU(Central Processing Unit)、
 60…通信回路、
 61…A/D変換器、
 62…燃料噴射弁駆動回路、
 63…遮断弁駆動回路、
 64…ROM、
 65…RAM、
 66…CPU

Claims (4)

  1.  複数種類の燃料を使用可能な内燃機関の燃料切替制御装置であって、
     第1燃料の使用時に、前記第1燃料の圧力が上限閾値を越えた場合と下限閾値を下回った場合とで、異なる燃料切替制御を行う制御手段を備える燃料切替制御装置。
  2.  前記制御手段は、前記第1燃料の圧力が上限閾値を越えた場合、前記第1燃料の遮断弁を閉弁する一方、前記第1燃料の噴射弁の作動を継続し、
     前記第1燃料の圧力が低下判断閾値を下回った場合に、前記第1燃料の噴射弁の作動を停止し、他の燃料への切替えを行う請求項1に記載の燃料切替制御装置。
  3.  前記制御手段は、前記第1燃料の圧力が下限閾値を下回った場合、前記第1燃料の遮断弁を閉弁すると共に前記第1燃料の噴射弁の作動を停止し、他の燃料への切替えを行う請求項1または2に記載の燃料切替制御装置。
  4.  複数種類の燃料を使用可能な内燃機関の燃料切替制御方法であって、
     第1燃料の使用時に、前記第1燃料の圧力が上限閾値を越えた場合と下限閾値を下回った場合とで、異なる燃料切替制御を行う燃料切替制御方法。 
PCT/JP2011/051907 2010-02-05 2011-01-31 燃料切替制御装置及び方法 WO2011096358A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/574,041 US20120291758A1 (en) 2010-02-05 2011-01-31 Fuel switchover control device and method
EP11739706.7A EP2532861A4 (en) 2010-02-05 2011-01-31 Fuel switchover control device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010024433A JP5401352B2 (ja) 2010-02-05 2010-02-05 燃料切替制御装置及び方法
JP2010-024433 2010-02-05

Publications (1)

Publication Number Publication Date
WO2011096358A1 true WO2011096358A1 (ja) 2011-08-11

Family

ID=44355356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051907 WO2011096358A1 (ja) 2010-02-05 2011-01-31 燃料切替制御装置及び方法

Country Status (4)

Country Link
US (1) US20120291758A1 (ja)
EP (1) EP2532861A4 (ja)
JP (1) JP5401352B2 (ja)
WO (1) WO2011096358A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362659A (zh) * 2012-03-27 2013-10-23 福特环球技术公司 用于排空罐体的系统和方法
US20140069383A1 (en) * 2012-09-13 2014-03-13 Toyota Jidosha Kabushiki Kaisha Controller for engine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597465B (zh) * 2010-03-23 2016-02-10 丰田自动车株式会社 内燃机的控制装置
JP5827587B2 (ja) * 2012-03-27 2015-12-02 株式会社ケーヒン 燃料噴射システム
JP2014118843A (ja) * 2012-12-13 2014-06-30 Denso Corp 内燃機関の燃料噴射制御装置
JP5862552B2 (ja) * 2012-12-13 2016-02-16 株式会社デンソー 内燃機関の燃料噴射制御装置
JP6208558B2 (ja) * 2013-11-21 2017-10-04 トヨタ自動車株式会社 内燃機関の燃料供給制御装置
RU2578770C1 (ru) * 2014-03-25 2016-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых" (ВлГУ) Система подачи топлива в камеру сгорания газодизеля
JP6315321B2 (ja) * 2014-04-07 2018-04-25 株式会社ケーヒン 燃料噴射制御装置
US10619599B1 (en) * 2014-05-28 2020-04-14 Econtrols, Llc Two-phase LPG fuel supply
EP3015699B1 (de) * 2014-10-31 2018-12-05 Winterthur Gas & Diesel AG Gaszuführsystem mit einem Kontrollsystem und Zylinder für eine Hubkolbenbrennkraftmaschine, Hubkolbenbrennkraftmaschine, sowie Verfahren zum Betreiben einer Hubkolbenbrennkraftmaschine
US11352965B2 (en) * 2019-10-18 2022-06-07 Caterpillar Inc. Reverse flow detection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734915A (ja) * 1993-07-20 1995-02-03 Nissan Motor Co Ltd 内燃機関の燃料供給制御装置
JPH07259686A (ja) * 1994-03-16 1995-10-09 Unisia Jecs Corp 気体−液体燃料噴射制御装置
JP2006250141A (ja) * 2005-02-14 2006-09-21 Mazda Motor Corp 気体燃料噴射弁の開故障検出装置
JP2007332879A (ja) * 2006-06-15 2007-12-27 Toyota Motor Corp 内燃機関の燃料供給装置
JP2009228444A (ja) * 2008-03-19 2009-10-08 Mazda Motor Corp 気体燃料供給装置
JP2010024433A (ja) 2008-06-18 2010-02-04 Bridgestone Corp 樹脂およびゴム組成物ならびに該ゴム組成物を用いたタイヤ

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2518400A (en) * 1948-07-23 1950-08-08 Fairbanks Morse & Co Safety means for internalcombustion engines
US2758576A (en) * 1951-04-20 1956-08-14 Shell Dev Internal combustion engine with antechamber and method of operating same
US3982516A (en) * 1974-11-11 1976-09-28 Dual Fuel Systems, Inc. Standby system
US4306532A (en) * 1979-08-08 1981-12-22 Technology Application Services Corporation Modified internal combustion engine and method for utilizing low and medium BTU gaseous fuels
US4373493A (en) * 1980-06-18 1983-02-15 Welsh James W Method and apparatus for utilizing gaseous and liquid fuels in an internal combustion engine
US4369751A (en) * 1980-08-13 1983-01-25 Ayres Technologies, Inc. Liquefied propane carburetor modification system
CA1226183A (en) * 1982-10-30 1987-09-01 Timothy J. Bedford Fuel oil injection engine
NZ205140A (en) * 1983-08-04 1987-02-20 H M Reid Electronically controlled dual fuel system for diesel engines
US4535728A (en) * 1984-02-02 1985-08-20 Propane Carburetion Systems, Inc. Fuel feed control system and control valve for dual fuel operation of an internal combustion engine
US4637353A (en) * 1984-02-06 1987-01-20 Codrington Ernest R Pilot fuel regulating device
US4597364A (en) * 1984-04-30 1986-07-01 Emco Wheaton International Limited Fuel control system for gaseous fueled engines
US4606319A (en) * 1984-08-20 1986-08-19 Silva Robert E System and method of vaporizing liquid fuel for delivery to an internal combustion engine
US4594990A (en) * 1985-06-03 1986-06-17 Propane Carburetion Systems, Inc. Carburetor for gaseous fuel
DE69130867T2 (de) * 1990-11-20 1999-08-12 Energy Res & Dev Corp Verfahren und vorrichtung zum brennstoffeinspritzen
US5224457A (en) * 1992-02-28 1993-07-06 Deere & Company Dual fuel electronic control system
US5411058A (en) * 1992-12-22 1995-05-02 Welsh; James W. Method and apparatus for utilizing gaseous and liquid fuels in an internal combustion device
US5355854A (en) * 1993-03-12 1994-10-18 Aubee Thomas A Supplemental gaseous fuel system for a diesel engine
US5367999A (en) * 1993-04-15 1994-11-29 Mesa Environmental Ventures Limited Partnership Method and system for improved fuel system performance of a gaseous fuel engine
US5408957A (en) * 1993-04-28 1995-04-25 Crowley; Timothy J. Continuous combustible gas injection into conventionally fueled internal combustion engines
US5477830A (en) * 1993-12-30 1995-12-26 Servojet Products International Electronic fuel injection system for internal combustion engines having a common intake port for each pair of cylinders
AUPM632494A0 (en) * 1994-06-21 1994-07-14 Biocom Pty Ltd Auxiliary injector
AUPN489595A0 (en) * 1995-08-18 1995-09-14 Orbital Engine Company (Australia) Proprietary Limited Gaseous fuel direct injection system for internal combustion engines
US6951211B2 (en) * 1996-07-17 2005-10-04 Bryant Clyde C Cold air super-charged internal combustion engine, working cycle and method
US6230683B1 (en) * 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
US6095101A (en) * 1997-01-29 2000-08-01 Man B&W Diesel A/S Internal combustion engine of the diesel type for combustion of gas, and a method of supplying such an engine with fuel
US5868121A (en) * 1997-12-19 1999-02-09 Caterpillar Inc. Method and apparatus for relieving a differential pressure across a gaseous fuel admission valve of a dual fuel engine
BR9904839A (pt) * 1998-02-23 2000-07-18 Cummins Engine Co Inc Motor a explosão por compressão de carga pré-misturada com comtrole de combustão ótimo
US6289871B1 (en) * 1998-03-06 2001-09-18 Caterpillar Inc. Method for achieving minimum liquid pilot fuel delivery to each cylinder of a dual fuel engine while operating in a dual fuel mode
US6032617A (en) * 1998-05-27 2000-03-07 Caterpillar Inc. Dual fuel engine which ignites a homogeneous mixture of gaseous fuel, air, and pilot fuel
US6026787A (en) * 1998-06-04 2000-02-22 Impco Technologies, Inc. Air-fuel control for alternative engine fuels
US6250260B1 (en) * 1998-10-13 2001-06-26 Jason E. Green Bi-fuel control system and assembly for reciprocating diesel engine powered electric generators
US6543395B2 (en) * 1998-10-13 2003-04-08 Gas Technologies, Inc. Bi-fuel control system and retrofit assembly for diesel engines
US6035837A (en) * 1998-11-06 2000-03-14 Siemens Automotive Corporation Bi-fuel liquid injection system for an internal combustion engine
IT1308747B1 (it) * 1999-06-22 2002-01-10 Fiat Ricerche Procedimento di controllo della fase di commutazione di carburante inun motore a combustione interna atto ad operare selettivamente con
US6484699B2 (en) * 2000-03-06 2002-11-26 Marius A. Paul Universal fuel injection system
US6588406B2 (en) * 2000-06-07 2003-07-08 Radu Oprea Dual fuel metering and supply system for internal combustion engines
US6598584B2 (en) * 2001-02-23 2003-07-29 Clean Air Partners, Inc. Gas-fueled, compression ignition engine with maximized pilot ignition intensity
US6591817B2 (en) * 2001-03-21 2003-07-15 Motorola, Inc. Dual fuel method and system
US7506638B2 (en) * 2001-04-09 2009-03-24 Geoffrey Russell Turner Fuel delivery system
US6543423B2 (en) * 2001-07-23 2003-04-08 Ford Global Technologies, Inc. Control system and method for a bi-fuel engine
GB0205062D0 (en) * 2002-03-05 2002-04-17 Autogas Supplies Ltd Dual fuel engine
AUPS094202A0 (en) * 2002-03-08 2002-03-28 I-Sense Pty Ltd Dual fuel engine control
US6662788B2 (en) * 2002-04-16 2003-12-16 Lance E. Nist Remote metering for gaseous fuels and oxidizers
BR0314685A (pt) * 2002-09-24 2005-08-09 Engine Control Technology Llc Métodos e aparelhos para operação de motores de combustìveis múltiplos
ITTO20021136A1 (it) * 2002-12-31 2004-07-01 Fiat Ricerche Sistema e procedimento di alimentazione ad iniezione
JP2004211610A (ja) * 2003-01-06 2004-07-29 Hitachi Ltd バイフューエル型内燃機関の燃料噴射制御方法及び装置
US6863034B2 (en) * 2003-01-17 2005-03-08 Robert D. Kern Method of controlling a bi-fuel generator set
US20040177837A1 (en) * 2003-03-11 2004-09-16 Bryant Clyde C. Cold air super-charged internal combustion engine, working cycle & method
US7045916B2 (en) * 2003-05-30 2006-05-16 Honeywell International Inc. Electronic fuel selection switch system
US6901889B1 (en) * 2004-03-10 2005-06-07 Tgi, Inc. Fumigation system for a diesel engine
US7387091B2 (en) * 2004-03-10 2008-06-17 Tgi, Inc. Process for use with dual-fuel systems
US7533634B2 (en) * 2004-03-10 2009-05-19 Tgi, Inc. Process for use with dual-fuel systems
DE102004021394B4 (de) * 2004-04-30 2006-09-28 Wacker Construction Equipment Ag Ölstandsüberwachungssystem für Verbrennungsmotor
US7066155B2 (en) * 2004-06-28 2006-06-27 Autotronic Controls Corporation Method and system for the control of fumigation
JP4407581B2 (ja) * 2004-11-30 2010-02-03 株式会社デンソー 気体燃料エンジン
US7019626B1 (en) * 2005-03-03 2006-03-28 Omnitek Engineering, Inc. Multi-fuel engine conversion system and method
US7497191B2 (en) * 2006-02-06 2009-03-03 Eden Innovations Ltd. System and method for producing, dispensing, using and monitoring a hydrogen enriched fuel
CA2538980C (en) * 2006-03-10 2008-09-23 Westport Research Inc. Method and apparatus for operating a dual fuel internal combustion engine
CA2539711C (en) * 2006-03-31 2009-06-09 Westport Research Inc. Method and apparatus of fuelling an internal combustion engine with hydrogen and methane
JP2008019804A (ja) * 2006-07-13 2008-01-31 Fujitsu Ten Ltd 燃料供給制御装置
US7591253B2 (en) * 2006-07-28 2009-09-22 Proinjects, L.L.C. Secondary fuel system for diesel engines
US20090076705A1 (en) * 2007-09-13 2009-03-19 Colesworthy Robert L Power modulated, dual fuel, small displacement engine control system
US7841322B2 (en) * 2007-11-16 2010-11-30 Dynamic Fuel Systems, Inc. Super cooled air and fuel induction system for internal combustion engines
US7546834B1 (en) * 2008-04-29 2009-06-16 Ford Global Technologies, Llc Selectably fueling with natural gas or direct injection ethanol
WO2010006356A1 (en) * 2008-06-30 2010-01-21 Orbital Australia Pty Ltd Gaseous fuel injection system for engines
US8275538B2 (en) * 2009-06-12 2012-09-25 Ford Global Technologies, Llc Multi-fuel engine starting control system and method
US8413643B2 (en) * 2009-06-12 2013-04-09 Ford Global Tehnologies, LLC Multi-fuel engine control system and method
US7913673B2 (en) * 2009-06-30 2011-03-29 Clean Air Power, Inc. Method and apparatus for controlling liquid fuel delivery during transition between modes in a multimode engine
US20110029177A1 (en) * 2009-07-30 2011-02-03 Hybrid Kinetic Automotive Holdings Multi-Fuel and Electric-Drive Hybrid Power Train and Vehicle Using the Same
US8706383B2 (en) * 2010-02-15 2014-04-22 GM Global Technology Operations LLC Distributed fuel delivery system for alternative gaseous fuel applications
US8918238B2 (en) * 2010-04-12 2014-12-23 Lung-Tan Hu Mackay cold-expansion engine system
US9140161B2 (en) * 2010-06-07 2015-09-22 Alset Ip S A R.L. Bi-fuel engine with variable air fuel ratio

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734915A (ja) * 1993-07-20 1995-02-03 Nissan Motor Co Ltd 内燃機関の燃料供給制御装置
JPH07259686A (ja) * 1994-03-16 1995-10-09 Unisia Jecs Corp 気体−液体燃料噴射制御装置
JP2006250141A (ja) * 2005-02-14 2006-09-21 Mazda Motor Corp 気体燃料噴射弁の開故障検出装置
JP2007332879A (ja) * 2006-06-15 2007-12-27 Toyota Motor Corp 内燃機関の燃料供給装置
JP2009228444A (ja) * 2008-03-19 2009-10-08 Mazda Motor Corp 気体燃料供給装置
JP2010024433A (ja) 2008-06-18 2010-02-04 Bridgestone Corp 樹脂およびゴム組成物ならびに該ゴム組成物を用いたタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2532861A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362659A (zh) * 2012-03-27 2013-10-23 福特环球技术公司 用于排空罐体的系统和方法
US20140069383A1 (en) * 2012-09-13 2014-03-13 Toyota Jidosha Kabushiki Kaisha Controller for engine

Also Published As

Publication number Publication date
JP5401352B2 (ja) 2014-01-29
US20120291758A1 (en) 2012-11-22
JP2011163155A (ja) 2011-08-25
EP2532861A4 (en) 2017-02-01
EP2532861A1 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5401352B2 (ja) 燃料切替制御装置及び方法
EP2549092B1 (en) Shut-off valve fault diagnosis device and fuel supply system
JP5425681B2 (ja) 内燃機関の燃料供給システム及び内燃機関の燃料供給制御装置
EP2549091B1 (en) Shut-off valve fault diagnosis device
RU2718654C2 (ru) Способ для ограничения течи топливного инжектора (варианты) и система для двигателя
JP4081819B2 (ja) 燃料噴射システム
KR102206923B1 (ko) 이중 연료 엔진의 기체 연료 모드의 종료 방법
WO2013156161A1 (en) Monitoring ignition fuel injection systems of dual fuel engines
CN102597465B (zh) 内燃机的控制装置
US9897016B2 (en) Apparatus for controlling the fuel supply of an internal combustion engine
EP2735722B1 (en) Fuel system for an excavator
JP2015090076A (ja) 燃料供給システムの異常診断装置
JP2014058882A (ja) エンジンに対する気体燃料の供給方法、および当該方法によって出力が向上したエンジン
JP2011094534A (ja) 燃料噴射制御装置
JP2012041872A (ja) エンジン制御システム
JP5904768B2 (ja) 内燃機関の燃焼状態判定装置
JP5741285B2 (ja) 内燃機関の制御装置
JP2004092540A (ja) ガス燃料内燃機関の燃料供給制御装置
JP2010071242A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739706

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13574041

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011739706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6685/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1201003950

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE