WO2011095655A1 - Freno mecánico para aerogenerador - Google Patents

Freno mecánico para aerogenerador Download PDF

Info

Publication number
WO2011095655A1
WO2011095655A1 PCT/ES2011/000017 ES2011000017W WO2011095655A1 WO 2011095655 A1 WO2011095655 A1 WO 2011095655A1 ES 2011000017 W ES2011000017 W ES 2011000017W WO 2011095655 A1 WO2011095655 A1 WO 2011095655A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
mechanical brake
wind turbine
disc
multiplier
Prior art date
Application number
PCT/ES2011/000017
Other languages
English (en)
French (fr)
Inventor
César DÍAZ DE CERIO GARCÍA DE MENDAZA
Angel Fernandez Garcia
Original Assignee
Gamesa Innovation & Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Innovation & Technology, S.L. filed Critical Gamesa Innovation & Technology, S.L.
Priority to DK11739419.7T priority Critical patent/DK2532886T3/en
Priority to EP11739419.7A priority patent/EP2532886B1/en
Priority to BR112012020189-1A priority patent/BR112012020189B1/pt
Priority to US13/577,058 priority patent/US8864464B2/en
Publication of WO2011095655A1 publication Critical patent/WO2011095655A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • F03D7/0248Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking by mechanical means acting on the power train
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/90Braking
    • F05B2260/902Braking using frictional mechanical forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the object of the invention is to provide a wind turbine, with a power range close to 1 MW, of a mechanical brake that keeps the rotation axis locked during the start-up and maintenance operations of the wind turbine and that In turn, it meets the requirements of the emergency brake during braking due to a failure in the pitch mechanism.
  • the mechanical transmission system or power train of a wind turbine consists of a wind rotor, a multiplier (since the turbine's rotation speed does not normally correspond to that of the generator) and an electric generator.
  • the power train includes a low speed shaft that is coupled between the wind rotor and the multiplier and a high speed shaft that is coupled between the multiplier and the generator.
  • the mechanical brake is included in the power train, whose function is to block the turbine in maintenance operations and eventually contribute to emergency stops such as the one that may occur in the face of the pitch mechanism failure preventing the flagging of the blades.
  • the stop of a wind turbine is one of the most critical operations because it involves the generation of large loads that directly affect the wind turbine components.
  • the physical constitution of the mechanical brake consists of a disc that rotates in solidarity with the drive shaft and brake calipers that rub against the disc when activated either by electric, hydraulic or pneumatic means.
  • the critical braking of maximum energy lasts a certain time, since the torque must be of a certain determined value to stop the machine. This energy is converted to heat in the disk and its temperature rises. To maintain acceptable temperatures (above which the system overheats and fails), the volume of the disk must be of a certain value so that its thickness and diameter can be increased. Having a thick disk does not help much because heat is generated on the surface of it. During the braking time there is not enough time for a lot of heat to be driven from the surface to the middle plane of the disc. Therefore there is a gradient of disk temperature that decreases inward or midplane. There is therefore a practical limit of disc thickness beyond which there is no benefit of significant reduction in surface temperature when the thickness increases.
  • the brake diameter of a wind turbine near the power of 1 MW is such that it would interfere with the adjacent elements in that position of the nacelle (mainly yaw motor-reducers) and its wear and maintenance would make it An excessively expensive item.
  • the mechanical brake When the mechanical brake is designed solely to block the rotor, the torque generated in the power train that it must withstand is that transmitted by the the wind rotor set in flag in extreme wind conditions. However, in addition to the blocking function, the mechanical brake can be used for dynamic braking of the wind rotor during emergency stop processes (with the blades in power position).
  • Figure 1 shows a general representation of certain elements of a wind turbine, including a double disc integral to the transmission shaft.
  • Figure 2 represents a perspective view of the double disk and a section thereof.
  • Figure 3 is a perspective view of the assembly mounted on the multiplier. Description of the preferred embodiment
  • the mechanical brake object of the invention is formed by two discs (D1 and D2) parallel and separated a sufficient distance to allow the actuation of calipers (P1 and P2) provided with brake pads, located diametrically opposite and each of them applies its braking force on its corresponding disc.
  • Figure 2 shows the two disks (D1 and D2) and a section thereof.
  • the central part of the discs there are oval grooves (Ro) that pass through the set of the two discs allowing the insertion of straps, anchors or hooks for handling and placement on the high axis (Ea).
  • the central circle (Ce) has a key (Ch) that interlocks all the discs with the axis movement.
  • the disc brake necessary to carry out this certification being a double disc, can have a smaller diameter which allows it to adapt to the space between the multiplier (M) and the generator.
  • M multiplier
  • the diameter of a single disc of the same thickness that is heated in the same way that the double disc in said braking would have a diameter in excess of 800 mm and would interfere with other mechanical elements within the nacelle, which also makes it unfeasible. Additionally, this single disc would require deeper pliers to accommodate wider, longer and structurally reinforced pads with thicker sections of material to withstand the higher loads due to larger bending moments at the junctions of the two halves, which would be very large weight and higher cost, thus hindering installation and maintenance work.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)
  • Braking Arrangements (AREA)

Abstract

Freno mecánico que consiste en un doble disco (D1 y D2) que gira solidario al eje de transmisión y unas pinzas de frenado (P1 y P2) que rozan con el disco cuando se activan ya sea por vía eléctrica, hidráulica o neumática. El freno se caracteriza porque se dispone en el eje de alta velocidad (Ea) del tren de potencia, adaptando su diámetro a unas dimensiones marcadas por el espacio existente y anclando las pinzas de freno directamente a la carcasa de la multiplicadora (M). El freno mecánico así constituido es capaz de efectuar la frenada con el actuador del pitch en posición de potencia, en condiciones iniciales de potencia nominal y a la velocidad nominal de viento promedio para una instalación menor a 1 MW.

Description

FRENO MECANICO PARA AEROGENERADOR
Objeto de la invención El objeto de la invención es dotar a un aerogenerador, de la gama de potencia cercana a 1 MW, de un freno mecánico que mantenga bloqueado el eje de giro durante las operaciones de puesta en marcha y mantenimiento del aerogenerador y que a su vez cumpla los requerimientos de freno de emergencia en una frenada derivada de un fallo en el mecanismo de pitch.
Antecedentes de la invención
El sistema mecánico de transmisión o tren de potencia de un aerogenerador está formado por un rotor eólico, una multiplicadora (ya que la velocidad de giro de la turbina normalmente no se corresponde con la del generador) y un generador eléctrico. El tren de potencia incluye un eje de baja velocidad que se acopla entre el rotor eólico y la multiplicadora y un eje de alta velocidad que se acopla entre la multiplicadora y el generador. Además en el tren de potencia se incluye el freno mecánico, cuya función es bloquear la turbina en operaciones de mantenimiento y eventualmente contribuir a paradas de emergencia como la que puede presentarse frente al fallo del mecanismo de pitch impidiendo la puesta en bandera de las palas. La parada de un aerogenerador es una de las operaciones más críticas porque implica la generación de grandes cargas que afectan directamente a los componentes del aerogenerador.
La constitución física del freno mecánico consiste en un disco que gira solidario al eje de transmisión y unas pinzas de frenado que rozan con el disco cuando se activan ya sea por vía eléctrica, hidráulica o neumática.
Uno de los aspectos más relevantes en el diseño del freno mecánico es su ubicación en el tren de potencia ya que se puede instalar tanto en el eje de baja velocidad o en el eje de alta velocidad.
En turbinas de reducida potencia (alrededor de 1 MW o menos potencia) la ubicación más apropiada del freno mecánico es en el eje de baja velocidad, ubicación que viene reflejada en las patentes JP2004124771 (A) y NL8302191 (A). Si bien también se conocen frenos mecánicos formados por un solo disco e ¡nstalados en el eje de alta velocidad. Los frenos mecánicos formados por un solo disco tienen los siguientes problemas: La cantidad de energía a disipar es la cinética del conjunto del rotor más el trabajo mecánico desarrollado por el par aerodinámico durante la frenada, (que no es pequeño pues las palas están en posición de potencia ya que, si el mecanismo de pitch ha fallado, no pueden ir a bandera). Esta cantidad de energía define el volumen del disco de freno y por tanto define el espesor del disco y el diámetro.
La frenada crítica de máxima energía dura un tiempo determinado, ya que el par ha de ser de un cierto valor determinado para parar la máquina. Dicha energía se convierte en calor en el disco y sube su temperatura. Para mantener temperaturas aceptables (por encima de las cuales el sistema se sobrecalienta y falla), el volumen del disco ha de ser de cierto valor por lo que se pueden aumentar su espesor y su diámetro. El tener mucho espesor de disco no ayuda mucho pues el calor se genera en la superficie de este. Durante el tiempo de frenada no hay tiempo suficiente para que se conduzca mucho calor desde la superficie hacia el plano medio del disco. Por tanto hay un gradiente de temperatura de disco que disminuye hacia el interior o plano medio. Hay por tanto un límite práctico de espesor del disco más allá del cual no hay beneficio de reducción significativa de la temperatura en superficie cuando aumenta el espesor. Por tanto únicamente queda el diámetro del disco como última variable para incrementar el volumen de material férreo y conseguir temperaturas razonables en superficie de disco/pastilla. Con un solo disco, el diámetro del freno de un aerogenerador cercano a la potencia de 1 MW es tal que interferiría con los elementos adyacentes en esa posición de la nacelle (principalmente las moto-reductoras de yaw) y su desgaste y mantenimiento lo convertirían en un elemento excesivamente costoso.
Con la finalidad de ganar masa de material férreo donde acumular la energía disipada durante una frenada con fallo del mecanismo del pitch que imposibilite el llevar las palas a bandera, se ha desarrollado un freno mecánico con al menos dos discos de freno.
Descripción
Cuando el freno mecánico se diseña únicamente para bloquear el rotor, el par generado en el tren de potencia que debe soportar es el transmitido por el el rotor eólico puesto en bandera en condiciones de viento extremo. Ahora bien, además de la función de bloqueo, el freno mecánico se puede emplear para el frenado dinámico del rotor eólico durante procesos de parada de emergencia (con las palas en posición de potencia).
Es un objeto de la invención el mejorar el freno mecánico existente en máquinas cercanas al 1 MW para que bloqueen el rotor según las exigencias de diseño y para que incorporen la función de frenado en procesos de parada de emergencia.
Es otro objeto de la invención el constituir un freno mecánico formado por al menos dos discos de freno que garantice el volumen necesario de material férreo para conseguir temperaturas razonables en la superficie del disco y de la pastilla.
Es otro objeto de la invención instalar el freno mecánico formado por al menos dos discos dispuestos en el eje de alta velocidad de un tren de potencia, adaptándolo a las dimensiones permitidas por el espacio existente y anclando las pinzas directamente a la carcasa de la multiplicadora.
Estos y otros objetos de la invención se logran con un freno mecánico formado por al menos dos discos, que se explica en detalle en la realización preferencial según los dibujos que se adjuntan.
Breve descripción de los dibujos
La figura 1 muestra una representación general de ciertos elementos de un aerogenerador, incluyendo un doble disco solidario al eje de transmisión.
La figura 2 representa una vista en perspectiva del doble disco y una sección del mismo.
La figura 3 es una vista en perspectiva del conjunto montado sobre la multiplicadora. Descripción de la forma de realización preferida
Tal y como se muestra en la figura 1 el aerogenerador está constituido por un rotor eólico (R), una multiplicadora (M) y un generador eléctrico (no mostrado en la figura). Este conjunto de elementos constituye el tren de potencia e incluye un eje de baja velocidad (Eb) que conecta el rotor eólico (R) a la multiplicadora (M) y un eje de alta velocidad (Ea) que conecta la multiplicadora (M) al generador. El uso de una multiplicadora (M) se debe a que velocidad de giro del rotor (R) normalmente no se corresponde con la del generador y aprovechando el ratio de multiplicación el freno mecánico, cuya función es bloquear la turbina en operaciones de mantenimiento y en paradas de emergencia, se pone en el eje de alta (Ea). Al situar el freno en esta posición, el par necesario para frenar es más pequeño al verse reducida la velocidad por la relación de multiplicación de la multiplicadora.
El freno mecánico objeto de la invención está formado por dos discos (D1 y D2) paralelos y separados una distancia suficiente para permitir la actuación de unas pinzas (P1 y P2) provistas de pastillas de freno, situadas diametralmente opuestas y que cada una de ellas aplica su fuerza de frenado sobre su correspondiente disco.
La figura 2 muestra los dos discos (D1 y D2) y una sección de los mismos. En la parte central de los discos existen unas ranuras ovaladas (Ro) que atraviesan el conjunto de los dos discos permitiendo introducir en su interior cinchas, anclajes o ganchos para su manipulación y colocación sobre el eje de alta (Ea). El circulo central (Ce) tiene una chaveta (Ch) que enclava el conjunto de los discos con el movimiento del eje.
Tal y como se representa en la figura 3, el freno mecánico está dispuesto junto a la multiplicadora (M) y cada una de las pinzas (P1 y P2) se soporta en una pieza escalonada y alargada (Pe) que se ancla directamente al chasis de la multiplicadora (M) por medio de al menos un bulón roscado. Los discos (D1 y D2) presentan una superficie de frenado continua (sin orificios, ranuras o entrantes) ya que no necesitan una disipación rápida del calor acumulado durante la frenada.
Teniendo en cuenta las regulaciones administrativas de muchas jurisdicciones que exigen que los aerogeneradores dispongan de al menos de un freno mecánico capaz de efectuar la frenada con el actuador del pitch en posición de potencia. Es decir: sin ir a bandera, en condiciones iniciales de potencia nominal y a la velocidad nominal de viento promedio para esa instalación. Este tipo de frenada es la exigida para logra la certificación de la máquina. Así, el freno de disco necesario para llevar a cabo esta certificación, al ser un doble disco, puede tener un diámetro más pequeño lo que le permite adaptarse al espacio existente entre la multiplicadora (M) y el generador. En la siguiente gráfica se efectúa una comparativa entre el tipo de disco, y la temperatura que alcanza durante el frenado en relación a su diámetro y espesor.
Figure imgf000007_0001
Los datos descritos en la tabla se consideran como ejemplo práctico de aplicación de esta invención a un aerogenerador de 50 a 60 metros de diámetro de rotor (R), con un freno de disco único de aproximadamente 25mm de espesor y 600 mm de diámetro. En este caso hay que considerar que el incremento teórico de temperatura al frenar el rotor cuando el mecanismo del pitch está bloqueado y la maquina está en condiciones nominales de potencia y velocidad de viento, es aproximadamente de 600° C como promedio uniforme. Si tenemos en cuenta que la temperatura inicial del disco es aproximadamente 50° C, la temperatura final del disco es de 650° C. En el caso de doble disco el diámetro será de entre 550 y 700 mm, preferentemente de 610 mm de diámetro y el espesor varía entre 20 y 30 mm, siendo de preferentemente 25 mm, y por último la temperatura final del disco sería de 260° C aproximadamente. Esta temperatura corresponde a un 60% menos que en un freno de disco simple
Teniendo en cuanta que el calentamiento del disco durante la frenada no es uniforme, debido a la formación de anillos de mayor temperatura en la interfaz de la guarnición de la pastilla en contacto con la cara del disco, las temperaturas máximas puntuales instantáneas en la superficie del disco pueden ser cientos de grados superiores a las mencionadas anteriormente. Esto hace el disco único inviable para la frenada de referencia.
El diámetro del un disco único del mismo espesor que se calentase de la misma forma que el doble disco en dicha frenada tendría un diámetro en exceso de 800 mm e interferiría con otros elementos mecánicos dentro de la nacelle, lo cual le hace también inviable. Adicionalmente, este disco único requeriría pinzas de mayor profundidad para acomodar pastillas mas anchas, largas y estructuralmente reforzadas con secciones de material mas gruesas para soportar las mayores cargas debido a momentos flectores mayores en las uniones de las dos mitades, con lo cual serian de gran peso y mayor costo, dificultando así labores de instalación y mantenimiento.

Claims

Reivindicaciones
1.- Freno mecánico para aerogenerador que está constituido por un elemento tipo disco que gira solidario al eje de transmisión y unas pinzas de frenado que rozan con el disco cuando se activan ya sea por vía eléctrica, hidráulica o neumática, caracterizado está dispuesto en el eje de alta velocidad y está formado por al menos dos discos de superficie de frenada continua y por al menos dos pinzas aplicadas una sobre cada disco, anclándose dichas pinzas sobre el chasis de la multiplicadora.
2. - Freno mecánico para aerogenerador según reivindicación 1a, caracterizado porque el conjunto formado por los discos y las pinzas de frenado están colocado a continuación de la multiplicadora, lo más cercano a ella y lo más alejado del generador.
3. - Freno mecánico para aerogenerador según reivindicación 1a, caracterizado porque las pinzas de frenado se anclan al chasis de la multiplicadora a través de unos elementos de fijación como pernos roscados.
4.- Freno mecánico para aerogenerador según reivindicación 1a, caracterizado porque los discos tienen unas dimensiones de entre 20 y 30 mm de espesor, preferentemente 25mm de espesor y de entre 550 y 700 mm de diámetro, preferentemente 610 mm de diámetro.
5.- Freno mecánico para aerogenerador según reivindicación 1a, caracterizado porque la temperatura que alcanzan el conjunto de los discos durante la frenada con el actuador del pitch en posición de potencia (es decir, sin ir a bandera), en condiciones iniciales de potencia nominal y a la velocidad nominal de viento promedio para esa instalación es un 60% menor que con un freno de disco simple.
PCT/ES2011/000017 2010-02-04 2011-01-26 Freno mecánico para aerogenerador WO2011095655A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK11739419.7T DK2532886T3 (en) 2010-02-04 2011-01-26 MECHANICAL BRAKE FOR A WINDMILL
EP11739419.7A EP2532886B1 (en) 2010-02-04 2011-01-26 Mechanical brake for a wind turbine
BR112012020189-1A BR112012020189B1 (pt) 2010-02-04 2011-01-26 Freio mecânico para turbina eólica
US13/577,058 US8864464B2 (en) 2010-02-04 2011-01-26 Wind turbine mechanical brake

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201000131 2010-02-04
ES201000131A ES2384140B1 (es) 2010-02-04 2010-02-04 Freno mecánico para aerogenerador.

Publications (1)

Publication Number Publication Date
WO2011095655A1 true WO2011095655A1 (es) 2011-08-11

Family

ID=44354997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000017 WO2011095655A1 (es) 2010-02-04 2011-01-26 Freno mecánico para aerogenerador

Country Status (6)

Country Link
US (1) US8864464B2 (es)
EP (1) EP2532886B1 (es)
BR (1) BR112012020189B1 (es)
DK (1) DK2532886T3 (es)
ES (1) ES2384140B1 (es)
WO (1) WO2011095655A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093124A1 (es) * 2011-12-21 2013-06-27 Carpeno Velayos Angel Aerogenerador abatible con freno del rotor
EP2669510A1 (en) * 2012-05-30 2013-12-04 Siemens Aktiengesellschaft A brake system for a wind turbine
EP3179096A1 (en) * 2015-12-07 2017-06-14 Doosan Heavy Industries & Construction Co., Ltd. Yaw brake system
EP2929176B1 (de) 2012-12-10 2018-09-12 Senvion GmbH Turnantrieb für eine windenergieanlage und verfahren zum drehen der rotorwelle einer windenergieanlage
CN110425235A (zh) * 2019-08-29 2019-11-08 中国华能集团清洁能源技术研究院有限公司 一种风力发电机刹车制动装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2546266T3 (es) * 2010-09-20 2015-09-22 Alstom Renewable Technologies Rotor de un aerogenerador con freno para la inclinación de las palas
DE102012101484A1 (de) * 2012-02-24 2013-08-29 Setec Gmbh Verfahren und Einrichtung zur Abbremsung einer Windenergieanlage in einem Notfall
US9476467B2 (en) * 2012-07-24 2016-10-25 Haisheng Qiang Dual-directions braking method of disc brake, braking mechanism and braking system thereof
GB2516668B (en) * 2013-07-29 2015-10-28 Andritz Hydro Hammerfest Uk Ltd Improved underwater turbine brake
USD789854S1 (en) * 2015-12-22 2017-06-20 Mahindra N.A. Tech Center Disc brake rotor
CN105715702B (zh) * 2016-04-01 2018-03-20 宁波彰星车辆有限公司 一种隐藏式双动碟刹
USD787996S1 (en) * 2016-04-29 2017-05-30 Eaton Corporation Clutch cover
US10458206B2 (en) * 2016-10-06 2019-10-29 Saudi Arabian Oil Company Choke system for wellhead assembly having a turbine generator
EP3412907B1 (en) * 2017-06-07 2021-01-20 S.B. Patent Holding ApS Multi-surface yaw braking system for a wind turbine
USD852694S1 (en) * 2017-10-03 2019-07-02 Winhere Automotive, Inc. Brake disc
USD852695S1 (en) * 2017-10-03 2019-07-02 Winhere Automotive, Inc. Brake disc
ES2951887T3 (es) * 2018-12-20 2023-10-25 Vestas Wind Sys As Conjunto de generador-caja de engranajes para aerogenerador

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8302191A (nl) 1983-06-20 1985-01-16 Piet Huisjes Inrichting voor het omzetten van windenergie in warmte.
DE3516821A1 (de) * 1985-05-10 1986-11-13 Horst 2341 Brodersby Frees Windkraftmaschine
DE20212459U1 (de) * 2002-08-13 2003-12-24 Hawe Hydraulik Gmbh & Co. Kg Elektrohydraulischer Bremsmodul
JP2004124771A (ja) 2002-09-30 2004-04-22 Daiwa House Ind Co Ltd 水平軸型風車のブレーキシステム
ES2276293T3 (es) * 2003-05-07 2007-06-16 Bosch Rexroth Ag Dispositivo de freno para una planta de energia eolica con un rotor que convierte la energia eolica en un movimiento de giro, y procedimiento para el funcionamiento de un dispositivo de freno de este tipo.
DE102007058746A1 (de) * 2007-06-18 2008-12-24 Hanning & Kahl Gmbh & Co. Kg Arretierungsvorrichtung für eine Windturbine
DE102007040834A1 (de) * 2007-08-29 2009-03-05 S.B. Patent Holding Aps Verfahren zum Betreiben einer Windenergieanlage und Steuer- und Regeleinheit zur Ausführung des Verfahrens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE257218T1 (de) * 1998-08-13 2004-01-15 Neg Micon As Regelvorrichtung für das verstellen und stillsetzen der flügel einer windkraftmaschine
BRPI0806196A2 (pt) * 2007-01-17 2013-01-01 New World Generation Inc turbina pneumática com gerador múltiplo e método de operação
US8028604B2 (en) * 2007-01-26 2011-10-04 General Electric Company Methods and systems for turning rotary components within rotary machines
CN101981309A (zh) * 2009-04-02 2011-02-23 剪式风能技术公司 不去除机舱情况下可维修的偏航制动盘段
US20110033291A1 (en) * 2009-08-04 2011-02-10 Abundant Energy, LLC Energy transfer system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8302191A (nl) 1983-06-20 1985-01-16 Piet Huisjes Inrichting voor het omzetten van windenergie in warmte.
DE3516821A1 (de) * 1985-05-10 1986-11-13 Horst 2341 Brodersby Frees Windkraftmaschine
DE20212459U1 (de) * 2002-08-13 2003-12-24 Hawe Hydraulik Gmbh & Co. Kg Elektrohydraulischer Bremsmodul
JP2004124771A (ja) 2002-09-30 2004-04-22 Daiwa House Ind Co Ltd 水平軸型風車のブレーキシステム
ES2276293T3 (es) * 2003-05-07 2007-06-16 Bosch Rexroth Ag Dispositivo de freno para una planta de energia eolica con un rotor que convierte la energia eolica en un movimiento de giro, y procedimiento para el funcionamiento de un dispositivo de freno de este tipo.
DE102007058746A1 (de) * 2007-06-18 2008-12-24 Hanning & Kahl Gmbh & Co. Kg Arretierungsvorrichtung für eine Windturbine
DE102007040834A1 (de) * 2007-08-29 2009-03-05 S.B. Patent Holding Aps Verfahren zum Betreiben einer Windenergieanlage und Steuer- und Regeleinheit zur Ausführung des Verfahrens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2532886A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093124A1 (es) * 2011-12-21 2013-06-27 Carpeno Velayos Angel Aerogenerador abatible con freno del rotor
EP2669510A1 (en) * 2012-05-30 2013-12-04 Siemens Aktiengesellschaft A brake system for a wind turbine
CN103452758A (zh) * 2012-05-30 2013-12-18 西门子公司 风力涡轮机的制动系统
EP2929176B1 (de) 2012-12-10 2018-09-12 Senvion GmbH Turnantrieb für eine windenergieanlage und verfahren zum drehen der rotorwelle einer windenergieanlage
EP2929176B2 (de) 2012-12-10 2023-07-19 Siemens Gamesa Renewable Energy Service GmbH Turnantrieb für eine windenergieanlage und verfahren zum drehen der rotorwelle einer windenergieanlage
EP3179096A1 (en) * 2015-12-07 2017-06-14 Doosan Heavy Industries & Construction Co., Ltd. Yaw brake system
WO2017099334A1 (ko) * 2015-12-07 2017-06-15 두산중공업 주식회사 요 브레이크 시스템
KR101768340B1 (ko) * 2015-12-07 2017-08-14 두산중공업 주식회사 요 브레이크 시스템
US10436177B2 (en) 2015-12-07 2019-10-08 DOOSAN Heavy Industries Construction Co., LTD Yaw brake system
CN110425235A (zh) * 2019-08-29 2019-11-08 中国华能集团清洁能源技术研究院有限公司 一种风力发电机刹车制动装置

Also Published As

Publication number Publication date
ES2384140A1 (es) 2012-07-02
DK2532886T3 (en) 2019-01-07
BR112012020189B1 (pt) 2022-01-11
BR112012020189A2 (pt) 2016-08-02
EP2532886A1 (en) 2012-12-12
ES2384140B1 (es) 2013-05-16
US20130056314A1 (en) 2013-03-07
EP2532886A4 (en) 2015-04-01
US8864464B2 (en) 2014-10-21
EP2532886B1 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
ES2384140B1 (es) Freno mecánico para aerogenerador.
ES2412279B1 (es) Dispositivo de posicionamiento para aerogenerador, y aerogenerador
ES2857560T3 (es) Disposición de actuador de paso y procedimiento de instalación de una disposición de actuador de paso
KR101239778B1 (ko) 바람에 의해 동력을 공급받는 터빈 및 그 작동 방법
US20140133983A1 (en) Yaw brakes for wind turbines
JP2012522926A (ja) ナセルを取り外さずに保守可能なヨー・ブレーキ・ディスクのセグメント
US10036368B2 (en) Control device for a yaw system of a wind power plant
US20080131279A1 (en) Wind energy plant with a nacelle
ES2661265T3 (es) Sistema de mantenimiento y método para mantener un dispositivo de freno de un sistema de frenado que tiene un disco de freno dispuesto horizontalmente
US20070098549A1 (en) Device for driving a first part of a wind energy turbine with respect to a second part of the wind energy turbine
KR20140064587A (ko) 풍차 회전 날개의 터닝 장치, 이것을 구비한 풍력 발전 장치
ES2489017T3 (es) Mecanismo de ajuste para el ajuste de la posición angular de giro del rotor de una instalación de energía eólica
ES2941796T3 (es) Sistema de orientación para una turbina eólica
ES2934888T3 (es) Turbina eólica con un tren de accionamiento que comprende un limitador de par de torsión
ES2953435T3 (es) Turbina eólica de accionamiento directo
EP2987999A1 (en) Device and method for turning a rotor of a wind turbine
CN101915211A (zh) 风力发电机组及其变桨系统
US20130032436A1 (en) Hydraulic braking device for a yaw drive of a wind turbine and control device therefor
DK2896824T3 (en) Brake system for a wind turbine generator
ES2930174T3 (es) Turbina eólica con un sistema de bloqueo de rotor y un método del mismo
ES2942159T3 (es) Dispositivo de giro de rotor para un rotor de turbina eólica
DK2486275T3 (da) Drivstreng og vindkraftanlæg
US20100258390A1 (en) Hybrid electromechanical actuator brake for wind turbines
KR101778105B1 (ko) 풍력 터빈용 블레이드 피치각 조절 장치
US20190195197A1 (en) Rotor arresting device for a wind turbine and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011739419

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6903/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13577058

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012020189

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012020189

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120806