WO2011094955A1 - 有机-无机复合材料的制备方法 - Google Patents

有机-无机复合材料的制备方法 Download PDF

Info

Publication number
WO2011094955A1
WO2011094955A1 PCT/CN2010/070567 CN2010070567W WO2011094955A1 WO 2011094955 A1 WO2011094955 A1 WO 2011094955A1 CN 2010070567 W CN2010070567 W CN 2010070567W WO 2011094955 A1 WO2011094955 A1 WO 2011094955A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
polymer
organic
introduction
stirring
Prior art date
Application number
PCT/CN2010/070567
Other languages
English (en)
French (fr)
Inventor
卫旺
刘公平
徐南平
Original Assignee
南京工业大学
金万勤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学, 金万勤 filed Critical 南京工业大学
Priority to US13/521,534 priority Critical patent/US8809420B2/en
Priority to PCT/CN2010/070567 priority patent/WO2011094955A1/zh
Publication of WO2011094955A1 publication Critical patent/WO2011094955A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3676Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/42Clays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Definitions

  • the invention relates to the field of composite material preparation, in particular to a method for preparing an organic-inorganic composite material which uniformly introduces an inorganic phase into a polymer matrix. Background technique
  • organic-inorganic composite materials can take advantage of the respective advantages of polymer matrix and inorganic phase, and can complement each other to produce synergistic effects, so that the comprehensive performance of organic-inorganic composite materials is greatly improved, and thus Great attention.
  • the density of the inorganic phase is generally greater than the density of the polymer matrix, so the inorganic phase is easily settled in the solution of the polymer matrix, and the nano-scale inorganic phase, due to its large surface area, is easily agglomerated between the nanoparticles. Therefore, the key technical difficulty in the preparation of organic-inorganic composite materials is how to uniformly disperse the inorganic phase in the polymer matrix.
  • Another commonly used dispersing means is to demonstrate the functional modification of the inorganic phase, and to separate it and finally introduce it into the bulk phase of the polymer. This dispersion increases the step of modifying and separating the inorganic phase. Therefore, the development of a universal dispersion method is of great significance for the preparation of organic-inorganic composite materials.
  • An object of the present invention is to provide a method for preparing an organic-inorganic composite material in order to solve the problems of the prior art described above.
  • the technical scheme of the invention is: in the same reactor, the inorganic phase is first wrapped with a polymer material to form a core-shell structure with an inorganic core at the center and an organic shell at the outer layer, and an inorganic phase and a polymer are added. Match between matrix polarities.
  • the inorganic phase is pre-wetted with a solvent that can dissolve the polymer; secondly, a surfactant or a functional group-containing silicon germanium is added, through strong chemical action (covalent bond), weak interaction (van der Waals force, hydrophobicity) Role, etc.), or both Synergistic action to promote the interaction between the polymer and the inorganic phase; then a portion of the polymer is added to encapsulate the inorganic phase.
  • the conventional dispersion means pretreatment of the inorganic phase, and separating it, and then introducing it into the polymer solution), directly participating in other groups participating in the formation of the organic-inorganic composite material.
  • the components are introduced into the same reactor for low-speed stirring to form a homogeneous solution, and after the molding process and corresponding subsequent treatment, a highly dispersed inorganic-inorganic composite material is finally formed.
  • a specific technical solution of the present invention is: A method for preparing an organic-inorganic composite material, and the specific steps thereof are as follows:
  • the total addition mass of the solvent in the above steps 1) and 4) is 3-100 times of the inorganic introduction based on the mass of the inorganic introduction; wherein the solvent is added in the step 1) to 40% of the total amount of the solvent- 60%.
  • the total addition mass of the above steps 3) and 4) is based on the mass of the inorganic introduction, which is 1-100 times of the inorganic introduction; wherein the step 3) the amount of the polymer added is 10% of the total amount of the polymer added. -60%.
  • the above-mentioned surfactant or silicon germanium with a functional group is added in an amount of 0.1 to 1 times the mass of the inorganic introduction based on the mass of the inorganic introduction.
  • step 1) stirring speed is 150-500 rpm, stirring time is 2-8 hours; step 2) stirring speed is 150-500 rpm, stirring time is 4-8 hours; step 3) stirring speed is 150-500 rpm, stirring time is 2-8 hours; Step 4) The stirring speed is 150-500 rpm, and the stirring time is 4-8 hours.
  • the polymer of the present invention is a water-soluble polymer or an organic solvent-dissolved polymer; the solvent used for the water-soluble polymer is water, and the solvent used for dissolving the polymer in the organic solvent is n-glycol, octyl, toluene, and Methylformamide, N-methylpyrrolidone or dimethyl sulfoxide.
  • the water-soluble polymer is polyvinyl alcohol, polyethylene glycol or chitosan; and the organic solvent-dissolved polymer is polydimethylsiloxane, polyethersulfone or polyvinylidene fluoride.
  • the above inorganic inductive substance is an inorganic oxide, a titanium ore type powder, a molecular sieve or a clay; wherein the inorganic introduction has a particle diameter of 2 ⁇ -30 ⁇ .
  • the inorganic oxide is at least one of Si0 2 , A1 2 0 3 , Ti0 2 , MgO or Zr0 2 ;
  • the perovskite powder is BaCoFeZrO, BaSrCoFeO or LaSrCoFeO;
  • the molecular sieve is at least NaA, NaY, Silicalite -1 Or ZSM-5;
  • clay is at least one of montmorillonite or kaolin.
  • the surfactant is sodium dodecylbenzenesulfonate, dodecyltrimethylammonium chloride, dodecyl polyglyceryl ether or ammonium decyl sulfate; silicon germanium is n-octyl III Ethoxysilane, dodecyltrimethoxysilane, diethylaminomethyltriethoxysilane, hexadecyltrimethylsilane, hexadecyltriethoxysilane or 3 -Aminopropyltriethoxysilane.
  • the invention utilizes the physical and chemical properties of the dispersed organic-inorganic composite system to provide a dispersing means which is universal, simple and does not require special equipment, and the method also simplifies the inorganic phase by eliminating many complicated dispersing steps.
  • the dispersing step, and reducing the preparation cost of the organic-inorganic composite material plays an important role in the development of the organic-inorganic composite material, and is beneficial to popularization and application in practical industrial production.
  • the invention relates to a method for uniformly dispersing an inorganic phase in a polymer matrix in the process of preparing an organic-inorganic composite material, which is suitable not only for polarity matching of organic-inorganic materials (hydrophilic polymer and hydrophilic inorganic substance, hydrophobic polymerization)
  • the material of the material and the hydrophobic inorganic substance is also suitable for the material in which the organic-inorganic material does not match in polarity (a hydrophilic polymer and a hydrophobic inorganic substance, a hydrophobic polymer and a hydrophilic inorganic substance).
  • the precursor solution of the entire organic-inorganic composite material is carried out in the same reaction vessel, avoiding complicated surface modification of the inorganic phase and separating, rinsing and drying, and arranging the precursor solution of the organic-inorganic composite material Process steps. Without the need of ultrasonic dispersion and high-energy mechanical agitation, the energy consumption of the organic-inorganic composite material preparation is reduced, thereby reducing the preparation cost of the organic-inorganic composite material.
  • the core-shell structure with the center of the inorganic core and the outer layer of the organic shell increases the compatibility of the inorganic phase in the polymer matrix, and at the same time releases the inorganic phase and the polymer matrix at the interface during the subsequent treatment.
  • Fig. 1 is an electron microscopic analysis photograph of the cross section of the organic-inorganic composite material prepared in Example 1.
  • Fig. 2 is an electron microscopic analysis photograph of the cross section of the organic-inorganic composite material prepared in Comparative Example 1. detailed description
  • Example 1 1 g of ZSM-5 molecular sieve with a particle diameter of 300 nm was mixed with 60 mL of n-gumazine. After stirring at low speed for 2 h, O.lg of n-octyltriethoxysilane was added for 2 h, and then 0.5 was added. g of polydimethylsiloxane (PDMS), After stirring at low speed for 8 h, 4.5 g of PDMS polymer and 25 mL of n-glycine were added, and the mixture was stirred at low speed for 4 h to obtain a precursor of the uniformly dispersed and very stable ZSM-5-PDMS composite, and finally scraped on a glass plate.
  • PDMS polydimethylsiloxane
  • Membrane a highly dispersed ZSM-5 molecular sieve doped PDMS organic-inorganic composite material can be obtained.
  • Comparative Example 1 1 g of ZSM-5 molecular sieve having a particle diameter of 300 nm was directly mixed with 85 mL of n-gumazine and 5 g of PDMS polymer, and stirred at a low speed for 12 h, and the obtained ZSM-5-PDMS composite precursor was not.
  • the stability and sedimentation phenomenon are very obvious.
  • the prepared ZSM-5 molecular sieve doped PDMS organic-inorganic composite material has a serious agglomeration of ZSM-5 molecular sieve, and there are defects in the organic-inorganic composite material.
  • Example 2 0.5 g of NaA molecular sieve having a particle size of ⁇ was mixed with 40 mL of deionized water, and stirred at a low speed for 3 h, then 0.5 g of 3-aminopropyltriethoxysilane was added, and after reacting for 1 h, 0.5 g was added.
  • Polyvinyl alcohol (PVA) after stirring at low speed for 8 h, adding 4.5 g of PVA polymer and 30 mL of deionized water, stirring at low speed for 4 h, can obtain a uniform and stable NaA-PVA composite precursor solution, and finally By the coating process, a highly dispersed NaA molecular sieve doped PVA organic-inorganic composite material can be obtained.
  • Comparative Example 2 0.5 g of NaA molecular sieve having a particle size of ⁇ was directly mixed with 70 mL of deionized water and 5 g of PVA polymer, and stirred at a low speed for 12 h, and the obtained NaA-PVA composite precursor liquid was unstable and sedimentation phenomenon. It is obvious that the prepared NaA molecular sieve doped PVA organic-inorganic composite material has poor dispersibility and obvious defects and cracks on the surface.
  • Example 3 5 g of titanium ore phase nano-sized samarium cobalt iron with a particle size of 100 nm was mixed with 60 mL of dimethylformamide (DMF), and stirred at low speed for 4 h, then added with lg diethylaminomethyltriethoxy After reacting for 1 hour, add 0.5 g of polyethersulfone (PES), stir at low speed for 8 h, then add 4.5 g of PES polymer and 20 mL of DMF, stir at low speed for 4 h to obtain uniform dispersion and very stable The precursor fluid of samarium-cobalt-PES composite material is finally obtained by extrusion molding to obtain a highly dispersed skutter-cobalt-iron-doped PES organic-inorganic composite material.
  • DMF dimethylformamide
  • Comparative Example 3 5 g of samarium cobalt iron having a particle diameter of 100 nm was directly mixed with 80 mL of DMF and 5 g of PES polymer, and stirred at a low speed for 12 h, and the obtained samarium cobalt-PES composite precursor was not. Stable, agglomeration is very serious, the prepared samarium-cobalt-iron-doped PES organic-inorganic composite material has poor dispersibility, the surface is very rough, and there are obvious agglomerates.
  • Example 4 3 g of NaY molecular sieve with a particle diameter of 500 nm was mixed with 60 mL of n-heptane, and after stirring at low speed for 6 hours, 0.2 g of sodium dodecylbenzenesulfonate was added for 2 hours, and then 0.5 g of PDMS polymer was added. After stirring at low speed for 8 h, add 4.5 g of PDMS polymer and 20 mL of n-glycol, and stir at low speed for 4 h to obtain a precursor of NaY-PDMS composite with uniform dispersion and very stable, and finally cast into a film by casting. , can get highly dispersed NaY Molecular sieve doped PDMS organic-inorganic composites.
  • Comparative Example 4 3 g of NaY molecular sieve with a particle diameter of 500 nm was directly mixed with 80 mL of n-gumazine and 5 g of PDMS polymer, and stirred at a low speed for 12 h.
  • the obtained NaY-PDMS composite precursor was unstable and the sedimentation phenomenon was very high.
  • the prepared NaY molecular sieve doped PDMS organic-inorganic composite material has poor dispersibility, and a large amount of NaY molecular sieve is accumulated at the bottom.
  • Example 5 SiO 2 nanopowder having an O.lg particle size of 10 nm and Silicalite-1 having an O.lg particle diameter of 300 nm were mixed with 60 mL of n-gumazine, and stirred at low speed for 6 hours and then added to O.lg.
  • Comparative Example 5 The particle diameter of 10nm O.lg of Si0 2 powder and the nano-particle diameter of 300nm O.lg of Silicalite-1 directly to the embankment 75 mL n-heptyl, the 5 G PDMS polymer mixed at slow speed for 12 h
  • the obtained Si0 2 -PDMS composite precursor liquid is very unstable, and the sedimentation phenomenon is very obvious.
  • the prepared Si0 2 molecular sieve doped PDMS organic-inorganic composite material has a serious agglomeration of Si0 2 particles.

Description

说明书
有机 -无机复合材料的制备方法
技术领域
本发明涉及复合材料制备领域,具体是指一种将无机相均匀引入到聚合物基质中的有 机 -无机复合材料制备方法。 背景技术
目前在材料制备领域, 有机-无机复合材料由于能够发挥聚合物基质和无机相各自的 优点, 相互之间能够取长补短, 产生协同效应, 使有机 -无机复合材料的综合性能得到极 大提高, 因此受到极大的关注。无机相的密度一般都比聚合物基质的密度要大, 所以无机 相在聚合物基质的溶液中, 很容易沉降, 而且纳米级的无机相, 由于其表面积大, 纳米粒 子之间很容易团聚, 因此有机-无机复合材料制备过程中的关键技术难点就是如何使无机 相在聚合物基质中均匀分散。
传统的分散多借助超声分散和高能机械搅拌,或者超声、搅拌联合使用的方法来提高 无机相的分散性,这些分散手段有时并不能从根本上解决无机相难分散的问题,而且还增 加了有机-无机复合材料制备的成本。现代分散手段包括原位聚合以及原位生成 (在聚合物 基质中原位的生成无机相), 这两种手段受到体系的限制, 譬如聚合物体系不具有反应性, 原位聚合就不适合;所需引入的无机相在聚合物基质中不能原位的生成,原位生成就不适 用。另外一种常用的分散手段是对无机相进行表明官能化改性, 并将其分离出来, 最后引 入到聚合物主体相中, 这种分散方法增加了改性和分离出无机相的步骤。 因此, 开发一种 具有普适性的分散手段对于有机-无机复合材料的制备来说具有非常重要的意义。
^:咖
本发明的目的就是为了解决上述现有技术存在的问题而提出了一种有机 -无机复合材 料的制备方法。
本发明的技术方案为: 在同一个反应器中, 先用聚合物材料对无机相进行包裹, 形成 中心为无机核, 外层为有机壳的核-壳结构, 增加了无机相和聚合物基质极性之间的匹配。 首先用可以溶解聚合物的溶剂对无机相进行预润湿;其次,加入表面活性剂或者带有功能 基团的硅垸, 通过强化学作用 (共价键)、 弱相互作用 (范德华力、 疏水作用等), 或者二者 的协同作用来促进聚合物和无机相之间的相互作用;然后加入部分聚合物,以包裹无机相。 无需分离出形成核-壳结构的无机相 (常规的分散手段是对无机相进行预处理, 并将其分离 出来, 再引入到聚合物溶液), 直接将其他参与形成有机 -无机复合材料的组分引入到同一 个反应器中进行低速搅拌配成均相溶液,经过成型工艺以及相应的后续处理,最终形成无 机相高度分散的有机-无机复合材料。
本发明的具体技术方案为: 一种有机-无机复合材料的制备方法, 其具体步骤如下:
1 ) 用溶剂对无机引入物进行预润湿, 搅拌均匀;
2) 加入表面活性剂或者带有功能基团的硅垸, 对无机引入物进行表面改性, 搅拌均 匀;
3 ) 再加入聚合物, 以包裹已改性的无机引入相, 搅拌均匀;
4) 再加入溶剂和聚合物, 搅拌配成均相溶液;
5 ) 经过成型, 得到无机引入物高度分散的有机-无机复合材料。
上述步骤 1)和 4)中溶剂的总加入质量以无机引入物的质量为基准, 为无机引入物的 3-100倍; 其中步骤 1 ) 中溶剂的加入量占溶剂的总加入量 40%-60%。
上述步骤 3)和 4)聚合物的总加入质量以无机引入物的质量为基准, 为无机引入物的 1-100倍; 其中步骤 3)聚合物的加入量占聚合物的总加入量 10%-60%。
上述表面活性剂或者带有功能基团的硅垸的加入质量以无机引入物质量为基准,为无 机引入物的 0.1-1倍。
优选步骤 1 ) 搅拌速度为 150-500rpm, 搅拌时间为 2-8 小时; 步骤 2) 搅拌速度为 150-500rpm, 搅拌时间为 4-8小时; 步骤 3 ) 搅拌速度为 150-500rpm, 搅拌时间为 2-8小 时; 步骤 4) 搅拌速度为 150-500rpm, 搅拌时间为 4-8小时。
本发明所述的聚合物为水溶性的聚合物或有机溶剂溶解的聚合物;水溶性的聚合物所 用溶剂为水, 有机溶剂溶解的聚合物所用溶剂为正庚垸、 辛垸、 甲苯、 二甲基甲酰胺、 N-甲基吡咯垸酮或二甲基亚砜。
优选所述的水溶性的聚合物为聚乙烯醇、聚乙二醇或壳聚糖;所述的有机溶剂溶解的 聚合物为聚二甲基硅氧垸、 聚醚砜或聚偏氟乙烯。
上述的无机引入物为无机氧化物、钛矿型粉体、 分子筛或黏土; 其中无机引入物的粒 径为 2ηιη-30μηΐο
优选所述的无机氧化物至少为 Si02、 A1203、 Ti02、 MgO或 Zr02中的一种; 钙钛矿 型粉体为 BaCoFeZrO、 BaSrCoFeO或 LaSrCoFeO; 分子筛至少为 NaA、 NaY、 Silicalite-1 或 ZSM-5; 黏土至少为蒙脱土或高岭土中的一种。
优选所述的表面活性剂为十二垸基苯磺酸钠、十二垸基三甲基氯化铵、十二垸基聚甘 油醚或十二垸基硫酸铵; 硅垸为正辛基三乙氧基硅垸、十二垸基三甲氧基硅垸、二乙氨基 甲基三乙氧基硅垸、 十六垸基三甲基硅垸、 十六垸基三乙氧基硅垸或 3-氨基丙基三乙氧 基硅垸。
有益效果:
本发明利用所分散的有机-无机复合体系自身的物理化学性质, 提供一种具有普适、 简便以及无需特殊设备辅助的分散手段,该方法还省去许多繁琐的分散步骤,从而简化了 无机相的分散步骤, 并降低了有机-无机复合材料的制备成本, 对于有机-无机复合材料的 发展起着至观重要的作用, 有利于在实际的工业生产中推广应用。
本发明涉及一种制备有机-无机复合材料过程中无机相在聚合物基质中均匀分散的方 法, 不仅适合于有机 -无机材料在极性方面匹配 (亲水聚合物和亲水无机物, 疏水聚合物和 疏水无机物)的材料, 也适合有机-无机材料在极性方面不匹配 (亲水聚合物和疏水无机物, 疏水聚合物和亲水无机物)的材料。
整个有机-无机复合材料的前驱溶液都是在同一个反应容器中进行, 避免了对无机相 进行复杂的表面改性并进行分离、 冲洗和干燥, 再配置有机-无机复合材料的前驱溶液这 样繁琐的工艺步骤。 无须借助超声分散和高能机械搅拌等手段, 降低了有机 -无机复合材 料制备的能耗, 从而降低有机-无机复合材料的制备成本。 采用形成中心为无机核, 外层 为有机壳的核-壳结构, 增加了无机相在聚合物基质中的相容性, 同时缓释了后续处理过 程中无机相和聚合物基质在界面处的应力,制备出界面无缺陷的,无机相高度均匀分散的 有机-无机复合材料。 附图说明
图 1实施例 1所制备的有机-无机复合材料断面的电子显微分析照片。
图 2比较例 1所制备的有机-无机复合材料断面的电子显微分析照片。 具体实施方式
下面结合实施例, 对本发明做进一步详细说明, 但本发明不限于这些实施例。
实施例 1 : 取 1 g的粒径为 300nm的 ZSM-5分子筛与 60 mL的正庚垸混合, 低速搅 拌 2h后加入 O.lg的正辛基三乙氧基硅垸反应 2h后,加入 0.5 g的聚二甲基硅氧垸 (PDMS), 低速搅拌 8 h后, 加入 4.5 g PDMS聚合物和 25 mL正庚垸, 低速搅拌 4 h, 即可得到分散 均匀且非常稳定的 ZSM-5-PDMS复合材料的前驱液, 最后在玻璃板上刮膜, 可以得到高 度分散的 ZSM-5分子筛掺杂 PDMS的有机-无机复合材料。
比较例 1 : 将 1 g粒径为 300nm的 ZSM-5分子筛直接与 85 mL正庚垸、 5 g的 PDMS 聚合物混合, 低速搅拌 12 h, 得到的 ZSM-5-PDMS复合材料前驱液很不稳定, 沉降现象 非常明显, 制备出的 ZSM-5分子筛掺杂 PDMS的有机-无机复合材料中 ZSM-5分子筛团 聚严重, 且有机-无机复合材料内部存在缺陷。
由附图 1和 2比较可以看出, 形成核 -壳结构的无机相有利于在聚合物基质中分散。 实施例 2: 取 0.5 g粒径为 Ιμηι的 NaA分子筛与 40 mL的去离子水混合, 低速搅拌 3 h后, 加入 0.5 g3-氨基丙基三乙氧基硅垸, 反应 l h后, 加入 0.5 g的聚乙烯醇 (PVA), 低 速搅拌 8 h后, 再加入 4.5 g PVA聚合物和 30mL的去离子水, 低速搅拌 4 h, 即可得到分 散均匀且稳定的 NaA-PVA 复合材料前驱液, 最后通过涂膜工序, 可以得到高度分散的 NaA分子筛掺杂 PVA的有机-无机复合材料。
比较例 2:将 0.5 g粒径为 Ιμηι的 NaA分子筛直接与 70 mL去离子水、 5 g的 PVA聚 合物混合, 低速搅拌 12 h, 得到的 NaA-PVA复合材料前驱液很不稳定, 沉降现象非常明 显, 制备出的 NaA分子筛掺杂 PVA的有机-无机复合材料的分散性很差, 表面存在明显 的缺陷和裂纹。
实施例 3: 取 5 g粒径为 lOOnm的钛矿相纳米级钡锶钴铁与 60 mL的二甲基甲酰胺 (DMF)混合, 低速搅拌 4 h后加入 lg二乙氨基甲基三乙氧基硅垸反应 lh后, 加入 0.5 g 的聚醚砜 (PES), 低速搅拌 8 h后, 再加入 4.5 g PES聚合物和 20 mL DMF, 低速搅拌 4 h, 即可得到分散均匀且非常稳定的钡锶钴铁 -PES 复合材料的前驱液, 最后通过挤出成形, 可以得到高度分散的钡锶钴铁掺杂 PES的有机-无机复合材料。
比较例 3: 将 5 g粒径为 lOOnm的钡锶钴铁直接与 80 mL的 DMF、 5 g的 PES聚合 物混合, 低速搅拌 12 h, 得到的钡锶钴铁 -PES复合材料前驱液很不稳定, 结块现象很严 重, 制备出的钡锶钴铁掺杂 PES的有机-无机复合材料的分散性很差, 表面非常粗糙, 有 明显的团块存在。
实施例 4: 取 3g粒径为 500nm的 NaY分子筛与 60 mL的正庚垸混合, 低速搅拌 6h 后加入 0.2g的十二垸基苯磺酸钠处理 2h后, 加入 0.5 g的 PDMS聚合物, 低速搅拌 8 h 后, 再加入 4.5 g PDMS聚合物和 20 mL的正庚垸, 低速搅拌 4 h, 即可得到分散均匀且 非常稳定的 NaY-PDMS复合材料的前驱液,最后通过倾铸成膜,可以得到高度分散的 NaY 分子筛掺杂 PDMS的有机-无机复合材料。
比较例 4: 将 3g粒径为 500nm的 NaY分子筛直接与 80 mL正庚垸、 5 g的 PDMS聚 合物混合, 低速搅拌 12 h, 得到的 NaY-PDMS复合材料前驱液很不稳定, 沉降现象非常 明显,制备出的 NaY分子筛掺杂 PDMS的有机-无机复合材料的分散性很差,底部累积大 量的 NaY分子筛。
实施例 5:取 O.lg粒径为 10nm的 Si02纳米粉料以及 O.lg粒径为 300nm的 Silicalite-1 与 60 mL的正庚垸混合, 低速搅拌 6h后加入 O.lg的十二垸基三甲基氯化铵处理 2h, 加 入 0.5 g的 PDMS聚合物, 低速搅拌 8 h后, 加入另外的 4.5 g PDMS聚合物和 15 mL的 正庚垸, 低速搅拌 4 h, 即可得到分散均匀且非常稳定的 Si02-PDMS复合材料的前驱液, 最后通过在玻璃板上刮膜, 可以得到高度分散的 Si02掺杂 PDMS的有机-无机复合材料。
比较例 5: 将 O.lg粒径为 10nm的 Si02纳米粉料和 O.lg粒径为 300nm的 Silicalite-1 直接与 75 mL正庚垸、 5 g的 PDMS聚合物混合, 低速搅拌 12 h, 得到的 Si02-PDMS复 合材料前驱液很不稳定, 沉降现象非常明显, 制备出的 Si02分子筛掺杂 PDMS 的有机- 无机复合材料中 Si02粒子团聚严重。

Claims

权利要求书
1. 一种有机-无机复合材料的制备方法, 其具体步骤如下:
1 ) 用溶剂对无机引入物进行预润湿, 搅拌均匀;
2) 加入表面活性剂或者带有功能基团的硅垸, 对无机引入物进行表面改性, 搅拌均 匀;
3 ) 再加入聚合物, 以包裹已改性的无机引入相, 搅拌均匀;
4) 再加入溶剂和聚合物, 搅拌配成均相溶液;
5 ) 经过成型, 得到有机-无机复合材料。
2. 根据权利要求 1所述的方法, 其特征在于步骤 1 )和 4)中溶剂的总的质量以无机引 入物的质量为基准, 为无机引入物的 3-100倍; 其中步骤 1 ) 中溶剂的加入量占溶剂总加 入量的 40%-60%。
3. 根据权利要求 1所述的方法, 其特征在于步骤 3 ) 和 4)中聚合物的总的质量以无 机引入物的质量为基准, 为无机引入物的 1-100倍; 其中步骤 3 ) 聚合物的加入量占聚合 物总加入量 10%-60%。
4. 根据权利要求 1所述的方法, 其特征在于表面活性剂或者带有功能基团的硅垸以 无机引入物量为基准, 为无机引入物的 0.1-1倍。
5. 根据权利要求 1所述的方法, 其特征在于步骤 1 ) 搅拌速度为 150-500rpm, 搅拌 时间为 2-8小时; 步骤 2) 搅拌速度为 150-500rpm, 搅拌时间为 4-8小时; 步骤 3 ) 搅拌 速度为 150-500rpm, 搅拌时间为 2-8小时; 步骤 4)搅拌速度为 150-500rpm, 搅拌时间为 4-8小时。
6. 根据权利要求 1所述的方法, 其特征在于所述的聚合物为水溶性的聚合物或有机 溶剂溶解的聚合物; 水溶性的聚合物所用溶剂为水, 有机溶剂溶解的聚合物所用溶剂为正 庚垸、 辛垸、 甲苯、 二甲基甲酰胺、 N-甲基吡咯垸酮或二甲基亚砜。
7. 根据权利要求 6所述的方法, 其特征在于所述的水溶性的聚合物为聚乙烯醇、 聚 乙二醇或壳聚糖;所述的有机溶剂溶解的聚合物为聚二甲基硅氧垸、聚醚砜或聚偏氟乙烯。
8. 根据权利要求 1所述的方法, 其特征在于所述的无机引入物为无机氧化物、 钛矿 型粉体、 分子筛或黏土; 其中无机引入物的粒径为 2nm-30um。
9. 根据权利要求 1所述的方法, 其特征在于所述的无机氧化物至少为 Si02、 A1203、 Ti02、 MgO或 Zr02中的一种; 钙钛矿型粉体为 BaCoFeZrO、 BaSrCoFeO或 LaSrCoFeO; 分子筛至少为 NaA、 NaY、 Silicalite-1或 ZSM-5; 黏土至少为蒙脱土或高岭土中的一种。
10. 根据权利要求 1 所述的方法, 其特征在于所述的表面活性剂为十二垸基苯磺酸 钠、 十二垸基三甲基氯化铵、 十二垸基聚甘油醚或十二垸基硫酸铵; 硅垸为为正辛基三乙 氧基硅垸、 十二垸基三甲氧基硅垸、 十六垸基三甲基硅垸、 二乙氨基甲基三乙氧基硅垸、 十六垸基三乙氧基硅垸或 3-氨基丙基三乙氧基硅垸。
- 1 -
PCT/CN2010/070567 2010-02-08 2010-02-08 有机-无机复合材料的制备方法 WO2011094955A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/521,534 US8809420B2 (en) 2010-02-08 2010-02-08 Method for preparing organic-inorganic composite materials
PCT/CN2010/070567 WO2011094955A1 (zh) 2010-02-08 2010-02-08 有机-无机复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/070567 WO2011094955A1 (zh) 2010-02-08 2010-02-08 有机-无机复合材料的制备方法

Publications (1)

Publication Number Publication Date
WO2011094955A1 true WO2011094955A1 (zh) 2011-08-11

Family

ID=44354900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070567 WO2011094955A1 (zh) 2010-02-08 2010-02-08 有机-无机复合材料的制备方法

Country Status (2)

Country Link
US (1) US8809420B2 (zh)
WO (1) WO2011094955A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017083408A1 (en) * 2015-11-09 2017-05-18 Wake Forest University Hybrid halide perovskite-based field effect transistors
CN110845872A (zh) * 2019-10-29 2020-02-28 东南大学 一种高分散纳米二氧化硅的表面改性方法
CN114345366B (zh) * 2022-01-14 2023-05-30 万华化学集团股份有限公司 一种3-甲氧基-4-羟基扁桃酸氧化催化剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023353A1 (en) * 2007-05-23 2009-02-19 Carnegie Mellon University Hybrid particle composite structures with reduced scattering
CN101445580A (zh) * 2008-12-11 2009-06-03 上海交通大学 乳液聚合制备聚乙烯/二氧化硅壳核结构复合材料的方法
CN101580570A (zh) * 2009-06-17 2009-11-18 厦门大学 硅丙聚合物/纳米二氧化硅有机无机杂化纳米材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732497B2 (en) * 2007-04-02 2010-06-08 The Clorox Company Colloidal particles for lotus effect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023353A1 (en) * 2007-05-23 2009-02-19 Carnegie Mellon University Hybrid particle composite structures with reduced scattering
CN101445580A (zh) * 2008-12-11 2009-06-03 上海交通大学 乳液聚合制备聚乙烯/二氧化硅壳核结构复合材料的方法
CN101580570A (zh) * 2009-06-17 2009-11-18 厦门大学 硅丙聚合物/纳米二氧化硅有机无机杂化纳米材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENJUAN XIANGLI ET AL.: "Optimization of Preparation Conditions for Polydimethylsiloxane (PDMS)/Ceramic Composite Pervaporation Membranes using Response Surface Methodology.", JOURNAL OF MEMBRANE SCIENCE., vol. 311, 15 January 2008 (2008-01-15), pages 23 - 33, XP022487825 *
YAO, TONGJIE ET AL.: "Preparation of SiO2@Polystyrene@Polypyrrole Sandwich Composites and Hollow Polypyrrole Capsules with Movable SiO2 Spheres inside.", JOURNAL OF COLLOID AND INTERFACE SCIENCE., vol. 315, 13 August 2007 (2007-08-13), pages 434 - 438, XP022267661, DOI: doi:10.1016/j.jcis.2007.06.072 *

Also Published As

Publication number Publication date
US20120302682A1 (en) 2012-11-29
US8809420B2 (en) 2014-08-19

Similar Documents

Publication Publication Date Title
Liu et al. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets
CN110862092B (zh) 一种机械球磨法制备聚多巴胺修饰蒙脱土纳米材料的方法
Zhao et al. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution
Huang et al. Learning from nacre: Constructing polymer nanocomposites
Guo et al. High thermal conductive poly (vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance
CN102146190B (zh) 有机-无机复合材料的制备方法
Papanikolaou et al. Investigation of the dispersion of multi-layer graphene nanoplatelets in cement composites using different superplasticiser treatments
CN105820276B (zh) 一种超高电导率石墨烯改性聚甲基丙烯酸甲酯复合材料的制备方法
Luo et al. Interfacial enhancement of maleated polypropylene/silica composites using graphene oxide
WO2003097529A1 (en) CaCO3/Si2O • nH2O NANOCOMPOSITE PARTICLES, Si2O • nH2O NANOMATERIAL AND METHOD OF PRODUCING THE SAME
CN105315801A (zh) 一种SiO2/聚合物复合超疏水涂层的制备方法
CN108543505A (zh) 一种具有多重核壳结构的复合粒子及其制备方法
Peng et al. Effect of silane modification on CNTs/silica composites fabricated by a non-firing process to enhance interfacial property and dispersibility
Nguyen et al. Dispersion of silane-functionalized GO and its reinforcing effects in cement composites
Ghazanlou et al. High-performance cement containing nanosized Fe3O4–decorated graphene oxide
WO2011094955A1 (zh) 有机-无机复合材料的制备方法
Wang et al. In situ formation of surface-functionalized ionic calcium carbonate nanoparticles with liquid-like behaviours and their electrical properties
Yang et al. Hydroxylated graphene: A promising reinforcing nanofiller for nanoengineered cement composites
CN108905501B (zh) 一种具有多孔结构的液体材料及其制备方法
Tang et al. Silane-modified graphene oxide in geopolymer: Reaction kinetics, microstructure, and mechanical performance
Guo et al. Carbon spheres surface modification and dispersion in polymer matrix
Snehal et al. Techniques for preparation and dispersion of nano-SiO 2 in cementitious system—a review
Xu et al. Surface modification and structure analysis of coated iron oxide yellow pigments to improve dispersion in organic solvents
CN110508159B (zh) 沸石纳米过滤膜及其制备方法
Rahmani et al. Dispersion stability of chitosan grafted graphene oxide nanosheets in cementitious environments and their effects on the fluidity of cement mortar nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13521534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845040

Country of ref document: EP

Kind code of ref document: A1