WO2011094911A1 - 一种增能翼和带有增能翼的垂直轴风力发电机风轮 - Google Patents

一种增能翼和带有增能翼的垂直轴风力发电机风轮 Download PDF

Info

Publication number
WO2011094911A1
WO2011094911A1 PCT/CN2010/000956 CN2010000956W WO2011094911A1 WO 2011094911 A1 WO2011094911 A1 WO 2011094911A1 CN 2010000956 W CN2010000956 W CN 2010000956W WO 2011094911 A1 WO2011094911 A1 WO 2011094911A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
wind wheel
wing
booster
blade
Prior art date
Application number
PCT/CN2010/000956
Other languages
English (en)
French (fr)
Inventor
蒋大龙
盛明凡
许金泉
Original Assignee
国能风力发电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国能风力发电有限公司 filed Critical 国能风力发电有限公司
Priority to AU2010345239A priority Critical patent/AU2010345239A1/en
Priority to EP10844996A priority patent/EP2535561A1/en
Priority to JP2012551457A priority patent/JP2013519018A/ja
Publication of WO2011094911A1 publication Critical patent/WO2011094911A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • F03D3/0445Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield being fixed with respect to the wind motor
    • F03D3/0454Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield being fixed with respect to the wind motor and only with concentrating action, i.e. only increasing the airflow speed into the rotor, e.g. divergent outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0427Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels with converging inlets, i.e. the guiding means intercepting an area greater than the effective rotor area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to the field of wind turbine technology, and provides a vertical axis wind power generator component, particularly an energizing wing, and also provides Vertical axis wind turbine rotor with booster wings.
  • BACKGROUND OF THE INVENTION Wind energy is a renewable energy source with the greatest application prospects other than water energy, and has been highly valued by countries all over the world. China has become the most active wind power market in the world. In 2009, the newly added wind power installed capacity in the country exceeded 8 million kilowatts, and the cumulative total capacity has reached more than 20 million kilowatts. Therefore, the market prospects of China's wind power equipment manufacturing industry and related fields are very broad.
  • Wind turbines are divided according to the direction of the rotating shaft and can be divided into two types: horizontal axis and vertical axis.
  • the solution to this problem in the prior art is to provide a flow guiding device on the windward side of the wind wheel to construct a guiding wind field, so that the incoming wind blows the wind wheel according to the channel provided by the guiding device to push the wind wheel to rotate.
  • This method of removing the wind resistance by introducing natural wind into the flow guiding passage and then pushing the wind turbine blade The law has the disadvantage of reducing the natural wind wind. At the same time, the wind direction of the natural wind will change frequently.
  • the object of the present invention is to improve the deficiencies of the prior art, and to provide a completely different principle from the existing established wind guiding wind field, which can minimize the resistance to prevent the rotation of the wind wheel, thereby increasing the rotational efficiency of the wind wheel. Can wing.
  • Another object of the present invention is to provide a vertical axis wind turbine rotor with energizing wings.
  • An energizing wing is a windshield having a windshield surface thereon, the energizing wing is disposed on a bracket for corresponding to a side of the wind wheel in a vertical axis wind power generator, the side For a part of the windward side of the wind wheel in use, the corresponding wind turbine blade of the part of the windward surface is blocked by the action of the incoming air flow, and the energy-increasing wing causes the side to be blocked.
  • a vertical axis wind turbine rotor with an energizing wing the wind wheel is rotatably fixed on a vertical axis central tower and connected to a generator rotor, and is provided with a plurality of blades, and further includes an increase
  • the energy-increasing wing is a wind-shielding member having a wind-shielding surface thereon, the energizing wing is disposed on a bracket in a manner that does not block the rotation of the blade, and is located in the windward direction of the wind wheel.
  • the wind-shielding surface of the booster wing corresponds to the blade of the wind wheel that receives the wind flow and is blocked by the windward side, so that the wind wheel is blocked by the wind flow Blocked.
  • the invention solves the problem that the efficiency of the generator is reduced due to the wind wheel resistance torque caused by the wind, and adopts a completely different concept from the prior art, that is, the principle of cutting off the wind flow field is applied, and the setting is adopted.
  • the wind-shielding object will block the airflow that generates the resistance torque of the wind wheel, so that it cannot act on the corresponding blade of the wind wheel.
  • By blocking the wind-shielding object the power generation of the generator can be increased, so that the wind-shielding object is called an energizing wing.
  • the energizing wing is used to block a part of the windward side in the wind wheel, and any object capable of functioning as a windshield belongs to the energizing wing of the present invention.
  • the energizing wing may be a plate-type empowerment wing, and includes a plate member fixed on the bracket,
  • the booster wing is a wind turbine type energizing wing, and includes a wind wheel rotatably disposed on a wind wheel shaft, the wind wheel shaft is fixed on the bracket, and the wind turbine blade is mounted on the wind turbine
  • the cylindrical track formed by the outermost rotation constitutes the windshield.
  • the vertical axis wind turbine wind wheel is a vertical blade wind wheel, wherein the blade is connected to the hub rotating shaft in the wind wheel through a support rod and is connected with the rotor of the generator, the blade is shaped like a vertical column body,
  • the horizontal section is the cross-sectional shape of the aircraft wing, that is, with respect to the rotating shaft of the wind wheel, the outwardly facing outer surface of the blade is a streamlined curved surface, and the smooth transition between the outer surface and the opposite inner surface forms a large windward
  • the end is the head of the blade and the smaller tail; and/or the column has the same size and shape in the vertical direction.
  • the spacing between the outer side surface and the inner side surface of the blade is such that the one end of the windward end face of the blade is spaced apart, and the spacing is gradually reduced along the downwind direction, that is, the width direction of the blade.
  • the columnar body has the same size and shape in the horizontal direction in the vertical direction.
  • the wind wheel of the booster wing may also be the same as the wind wheel in the wind power generator, which is a vertical blade wind wheel, wherein the blade is connected to the hub in the wind wheel through a support rod, the wheel wheel is rotatably Fixing on the rotating shaft of the wind turbine disposed parallel to the tower column, the shape of the blade is a vertical columnar body, and the horizontal section thereof is a sectional shape of the aircraft wing, that is, relative to the rotating shaft of the wind wheel,
  • the outwardly facing outer surface of the blade is a streamlined arcuate surface, the rounded transition between the outer side surface and the opposite inner side surface forming a larger windward end, ie the head of the blade and a smaller tail; and/or the columnar shape
  • the horizontal cross-section has the same size and shape in the vertical direction.
  • the spacing between the outer side surface and the inner side surface of the blade is such that the one end of the windward end face of the blade is spaced apart, and the spacing is gradually reduced along the downwind direction, that is, the width direction of the blade.
  • the columnar body has the same size and shape in the horizontal direction in the vertical direction.
  • the wind wheel of the booster wing may also be other forms of wind wheel, for example, a propeller type wind wheel.
  • the wind turbine-style energizing wing which rotates under the action of the incoming airflow, can function as a blocking airflow on the wind turbine rotor to generate a resisting torque as the flat-plate energizing wing.
  • the wind wheel of the booster wing may be one; or several may be disposed on the wind wheel shaft.
  • the height of the blade on the wind wheel is equivalent to the height of the blade of the wind turbine of the wind generator; or, when the wind When the number of wheels is several, the sum of the height of the blades on each of the wind wheels and the vertical direction between the adjacent rotor blades is comparable to the height of the blades of the wind turbine.
  • a generator set is disposed between the wind wheel of the booster wing and the wind wheel shaft, and the wind wheel is connected to the rotor of the generator set, thereby forming a smaller vertical axis wind power generator Wind turbines.
  • a small genset device may be disposed between the wind wheel and the wind wheel shaft in the small wind wheel device formed by the wind wheel and the wind wheel shaft disposed in the booster wing.
  • the structure of the smaller generator device provided on the booster wing may be substantially the same as or different from that of the large vertical axis wind turbine. It can be a generator assembly in a conventional wind turbine.
  • the wind-shielding surface of the booster wing is a flat or curved surface or a combination of a flat surface and a curved surface.
  • the outermost side of the side surface of the windward side corresponds.
  • the side of the booster wing remote from the center tower corresponds to at least the outermost side of the windward side of the side of the wind turbine that receives the wind flow and the rotation is blocked; and/or ,
  • the windward surface of the booster wing is adjacent to a side edge of the vertical tower wind turbine that is disposed at a center column of the wind wheel at a midpoint of the windward surface as a starting point to the center tower
  • the column is centered on a windward surface corresponding to a clockwise angle of 180 degrees to 330 degrees;
  • the width of the wind-shielding surface of the booster wing is one-third to one-half of the entire windward surface of the wind turbine of the wind power generator;
  • the windshield surface of the energizing wing is curved, and the two ends of the arc surface can be:
  • both ends of the energizing wing arc surface are disposed in the second quadrant of the center of the wind wheel as the origin of the coordinate system or extend from the second quadrant to the third quadrant.
  • the windward surface of the wind wheel corresponding to the second quadrant has at least a portion from the outermost end thereof to the side surface of the blade corresponding to the wind wheel.
  • One end of the booster wing may extend to the third quadrant after reaching the outer end of the second quadrant.
  • the energizing wing at this time can be an arc-shaped windshield, or a combination of a flat surface and a curved surface.
  • the bracket can be disposed on a fixed frame. That is, the booster wing is disposed on a fixed frame, which may be the center tower or other supports.
  • the support frame includes two support rods, one end of the two support rods is connected to the upper and lower ends of the booster wing, and the other end of the support rod is connected to a fixed frame, that is, the vertical axis wind a central tower of the wind wheel is disposed in the generator, and the two support rods are respectively located on the wind wheel of the wind power generator Above and below, and the length of the support rod is such that the booster wing is located outside the circular path of the rotor blade rotation so as not to affect the movement of the vertical axis generator wind wheel.
  • the booster wing is a wind wheel, and upper and lower ends of the wind wheel shaft are respectively fixed on the two support rods.
  • the booster wings can also be placed on other supports.
  • the bracket is disposed on the side of the vertical axis wind turbine rotor such that the booster wing is located outside of the circumferential trajectory of the rotor blade. .
  • the bracket is preferably designed as a movable structure.
  • the bracket is rotatably and positionally fixable on a central tower of the vertical axis wind turbine in which the wind wheel is disposed;
  • the support rod may be rotatably and positionally fixed on the central tower.
  • a rail can be provided on the basis, and the bracket is movably positioned on the rail.
  • a drive mechanism is disposed between the bracket and the stationary frame such that an energizing wing on the bracket is displaced about the generator rotor.
  • a drive mechanism is coupled to the bracket to drive the bracket to in turn drive the energizing wing relative to the center tower or the base displacement.
  • FIG. 1 is a schematic view of a wind turbine wind turbine in the prior art
  • Figure 2 is a diagram showing the relationship between power and wind speed of an existing wind power generator
  • FIG. 3 is a schematic view showing the structure of a vertical axis wind turbine rotor with a plate type booster wing according to the present invention
  • Figure 3a is a structural schematic view showing the positional relationship between the plate of the plate type energizing wing and the wind wheel of the generator;
  • Figure 4 is a diagram showing the relationship between the power of the present wind wheel with the energizing wings and the wind speed;
  • Figure 5 is a front view showing the structure of a vertical axis wind turbine rotor with a wind wheel type energizing wing provided by the present invention
  • Figure 6 is a top plan view of Figure 5;
  • Figure 7 is a schematic diagram showing the main structure of a vertical axis wind turbine with energized wings composed of a plurality of wind wheels.
  • the energizing wing provided by the present invention is a windshield member having a windshield surface thereon, and the energizing wing is disposed on a bracket for use in a vertical axis wind power generator Corresponding to one side of the wind wheel, the side is a part of the windward surface of the wind wheel in use, and the wind turbine blade corresponding to the windward side of the part is blocked by the action of the incoming air flow, and the energy-increasing wing causes the side to be blocked .
  • a vertical axis wind turbine rotor with an energizing wing the wind wheel is rotatably fixed on a vertical axis central tower and connected to the generator rotor, and is provided with a plurality of blades, and an energizing wing ,
  • the energizing wing is a wind-shielding object disposed on a bracket and located outside the circular trajectory of the rotor blade, in front of the windward side of the wind wheel, the wind-off surface of the booster wing and the The blades of the wind wheel that receive the incoming air flow and rotate the blocked side correspond to the blades on the windward side.
  • the invention solves the problem that the efficiency of the generator is reduced due to the wind wheel resistance torque caused by the wind, and the principle of cutting off the wind flow field is applied, and the wind deflecting object is blocked by the set wind deflecting object, so that it cannot function.
  • the corresponding blades on the wind wheel By blocking the wind deflecting object, the power generation of the generator can be increased, so that the wind deflecting object is called an energizing wing.
  • the bracket includes two support rods, one end of the two support rods is connected to the upper and lower ends of the booster wing, and the other end of the support rod is connected to the central tower column, and the two support rods are respectively located at the Above and below the wind turbine of the wind turbine.
  • the energy-increasing wing may be a plate-type power-enhancing wing, and includes a plate member, such as a flat plate, which is fixed on the bracket. For example, upper and lower ends of the flat plate are fixed on the two support rods.
  • the energy-increasing wing of the plate may also be a wind-wheel-type booster wing, which comprises a wind wheel, such as a vertical blade wind wheel, which is rotatably disposed on a wind wheel shaft, the wind wheel shaft is fixed at the On the bracket, for example, the upper and lower ends of the wind turbine shaft are fixed to the two support rods.
  • a cylindrical track formed by the outermost rotation of the blades on the energizing wing wind wheel constitutes the wind shield.
  • a vertical axis wind turbine with a plate-type booster wing includes a vertical blade wind wheel 01, and the blade 02 on the vertical blade wind wheel 01 passes through at least two support rods 05.
  • the hub in the rotor Connected to the hub in the rotor, at least one hub connected to the support rod is coupled to the rotor in the generator assembly, and the rotor hub not coupled to the generator assembly is rotatably disposed on the tower 03.
  • the stator corresponding to the generator rotor is also fixed on the tower 03.
  • the shape of the blade is a vertical columnar body, and the horizontal section is the sectional shape of the aircraft wing, that is, the outer surface and the windward end surface are smooth and streamlined curved surfaces with respect to the rotating shaft of the wind wheel, and the windward surface of the blade
  • the spacing is large, and the spacing is gradually reduced along the downwind direction.
  • the columnar body has the same horizontal cross-sectional shape and shape in the vertical direction.
  • the utility model further includes an energy-increasing wing, which is a flat plate 1 , the upper and lower ends of which are respectively fixed at one ends of two upper and lower support rafts (not shown), and the other ends of the two support rods are fixed to the central tower column 03, the two support rods are respectively located above and below the vertical wind turbine blade; the flat plate 1 of the booster wing is located outside the circular track a of the rotor blade.
  • an energy-increasing wing which is a flat plate 1 , the upper and lower ends of which are respectively fixed at one ends of two upper and lower support rafts (not shown), and the other ends of the two support rods are fixed to the central tower column 03, the two support rods are respectively located above and below the vertical wind turbine blade; the flat plate 1 of the booster wing is located outside the circular track a of the rotor blade.
  • the energizing wing thus arranged does not affect the rotation of the wind wheel 01 of the generator, which is located in front of the windward side of the wind turbine, and the side of the flat plate surface and the wind wheel 01 that receives the incoming air flow and is blocked by the rotation
  • the blades of the windward side correspond to block the windward side of one side of the wind wheel, so that the generator vertical wind wheel receives the incoming air flow A so that one side of the blocked rotation is blocked.
  • An end of the booster wing plate 1 remote from the center tower is at least outside the outermost end of the one side of the side where the vertical blade wind turbine of the wind power generator is blocked.
  • the width of the flat plate is preferably at least one-third to one-half of the width S of the entire windward surface of the wind wheel 01, and the flat plate as shown in Fig. 3a has a width which is one-half of the width S of the windward surface.
  • the energizing wing may also be a curved plate, or a combination of a plane and a curved surface; the side of the flat plate near the central tower 03 is between 180 degrees and 330 degrees on the windward side, or The top view angle of the wind wheel 01 is disposed at a position where the center of the wind wheel is in the second quadrant of the coordinate system origin or extends from the second quadrant to the third quadrant.
  • the end of the plate 1 or 2 near the center column is at a position of 330° from the midpoint of the windward surface (0°), or the width of the plate 1 is blocked at one side.
  • One third of the windward face of the wind turbine or the central angle corresponding to the windward side is 60°, or a section of the flat plate 1 near the center column is 320 at the midpoint of the windward surface (0°). The location.
  • Such an energizing wing ensures that the wind wheel does not generate a drag torque that is detrimental to rotational power generation.
  • the curved plate or the combined shape of the plane and the curved surface of the plate-type booster wing on both sides of the edge and the tower of the wind wheel may be: corresponding to the top view angle of the wind wheel of the vertical axis wind power generator, the two ends of the wind shield surface of the booster wing are disposed at the center of the wind wheel as the origin of the coordinate system Within the second quadrant or extending from the second quadrant to the third quadrant. That is, the booster wing is a curved plate in the second quadrant, and the curved plate can also extend to the third quadrant.
  • the windward surface of the wind wheel corresponding to the second quadrant has at least a portion from the outermost end thereof to the side surface which can generate a resistance torque of the blade corresponding to the wind wheel.
  • the energizing wing at this time can be an arc-shaped windshield surface, or a windshield surface combined with a plane and a curved surface.
  • the booster wing is a wind wheel 2
  • the vertical axis wind turbine wind wheel with the wind wheel type booster wing includes a vertical blade wind wheel 01, Rotatablely fixed on a central tower 03, on which a plurality of blades 02 are provided through a support rod 021, and a vertical wing-type energizing wing 2 is rotated under the action of the incoming air flow A, which can The same blocking air flow as the flat-plate energizing wing acts to generate a drag torque on the wind turbine rotor.
  • the structure of the booster wind wheel 2 may also be the same as the structure of the wind wheel 01 in the wind power generator, that is, the blade 23 is connected to the hub in the wind wheel through the support rod 21, and the hub may be Rotatingly fixed on the wind turbine shaft 20, the upper and lower ends of the wind turbine shaft 20 are respectively connected to the central tower 03 through two support rods 21, which are a rotatable and positioning connection structure, so that the energizing wing wind wheel can be according to the wind direction and The relative positional relationship between the generator and the wind turbine needs to be adjusted. It is also possible to connect a diagonal tie rod 22 between the top of the central tower and the upper end of the wind turbine shaft of the booster wing 2 to increase the stability of the connection between the booster and the tower.
  • the shape of the blade of the energizing wing wind wheel is a vertical columnar body whose horizontal section is the sectional shape of the aircraft wing, that is, the outer side surface and the windward end surface are smooth transitional streamlined curved surfaces with respect to the rotating shaft of the wind wheel.
  • the spacing between the outer side surface and the inner side surface is such that the windward surface of the blade has a large spacing, and the spacing is gradually decreased along the downwind direction.
  • the columnar body has the same horizontal cross-sectional shape and shape in the vertical direction. Energizing wind
  • the height of the blades on the wheel is comparable to the blade height of the wind turbine vertical blade rotor.
  • a small genset device may be disposed between the booster wing wind wheel 2 and the wind turbine shaft 20.
  • the structure of the small generator device is basically similar to that of a large vertical axis wind turbine.
  • the stator is disposed on the wind turbine shaft, the rotor is disposed on the periphery of the stator, and the blades are fixed on the circumferential surface of the rotor through the support rod 21.
  • Such an energizing wing can not only block the airflow to generate a resisting torque on the wind turbine rotor, but also increase the power and efficiency of the generator.
  • it can additionally generate electric energy, which can be sent out with the wind turbine.
  • the electric power is combined and sent to the power grid to further increase the power generation of the wind power generator. This part of the electric energy can also be accumulated by connecting the power storage device for other purposes of the wind power generator.
  • the wind wheel of the booster wing may also be several, as shown in Figure 7, each vertical wind wheel
  • the plurality of wind wheels may be the same structure as the above-described energizing wing wind wheel shown in Figs. 5 and 6, or may be other types of wind wheels, such as a propeller type wind wheel.
  • the blades on the corresponding wind wheel may be five pieces, which are evenly distributed on the circumference of the rotating shaft of the wind wheel.
  • the number of blades can also be eight or twelve.
  • the number of blades of the wind wheel 01 of the vertical axis wind power generator may be 4-24.
  • the bracket supporting the booster wing may be the aforementioned support rod structure rotatable about the center tower.
  • a driving mechanism may be disposed on the tower, which is connected to the support rod, and the driving mechanism drives the energizing wing to rotate around the tower column, thereby adjusting the relative position of the booster wing and the wind wheel according to the wind direction, or the wind speed is larger When the wing is not required, it is turned from the windward side of the wind wheel to the side of the wind side.
  • the bracket supporting the booster wing plate or the wind wheel may also be a bracket provided on the foundation beside the wind turbine.
  • a track can be placed on the foundation, such as a circular track in which the frame can be moved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

一种增能翼和带有增能翼的垂直轴风力发电机风轮 技术领域 本发明属于风力发电机技术领域, 提供一种垂直轴风力发电机构件, 尤其是一种增能翼, 还提供带有增能翼的垂直轴风力发电机风轮。 背景技术 风能是水能之外最具规模应用前景的可再生能源,受到世界各国的高 度重视。 中国已成为世界上最活跃的风电市场。 2009 年全国新增风电装 机容量超过 800万千瓦, 累计总容量已达 2000万千瓦以上。 因此, 我国 风力发电设备制造业及相关领域的市场前景十分广阔。
风力发电机按旋转轴的方向来分, 可分为水平轴和垂直轴两种。
在现有技术中, 垂直轴风力发电机越来越显示出其高效、 功率大和便 于安装、 使用寿命长等优点。 但是, 在垂直设置的风轮被风吹动旋转时, 风轮的转动速度并不能随风力成比例增加,在风力不是很大的情况下这一 情况更加突出, 究其原因是, 如图 1所示, 当来风气流(图 1中平行的若 干箭头所示)沖击风轮时, 在其迎风面的一侧受到的是驱动风轮转动的有 效推力, 而在另一侧受到的则是阻止风轮转动的阻力, 上述两种力的合力 是来风气流致使风轮旋转作功的有效动力。 由于迎风面上一侧风阻的存 在, 显著降低了垂直轴风轮受来风获得的驱动力, 如图 2所示, 使得发电 机的效率降^ [氐。
现有技术中解决这一问题的方法是在风轮迎风面设置导流装置,构建 一个导流风场,使得来风按照导流装置提供的通道吹向风轮而推动风轮转 动。 这种通过将自然风引入导流通道, 再推动风轮叶片的消除风阻力的方 法, 存在降低自然风风力 '的缺点, 同时, 自然风的风向会频繁变化, 如果 导流装置不随风向改变导流方向, 导流装置带来的风能损耗将更大, 如果 设计可以随风向变化而改变导流方向的导流装置,势必使得导流装置的结 构变得复杂, 这给在风场这样特定严酷的环境中的使用、 管理和维护都会 带来不便。 发明内容 本发明的目的在于改进现有技术的不足,提供一种与现有建立导流风 场原理完全不同, 能够最大限度地减少阻止风轮转动的阻力, 从而提高风 轮的转动效率的增能翼。
本发明另一目的是提供带有增能翼的垂直轴风力发电机风轮。
本发明的目的是这样实现的:
一种增能翼, 为一挡风件, 其上具有一挡风面, 该增能翼设置在一支 架上, 用以与一垂直轴风力发电机中的风轮的一个侧面对应, 该侧面为该 风轮在使用中迎风面的一部分,该部分迎风面对应的风轮叶片由于来风气 流作用使转动受阻, 所述增能翼使得该侧面被挡住。
一种带有增能翼的垂直轴风力发电机风轮,该风轮可转动地固设在一 垂直轴中心塔柱上并与发电机转子连接, 其上设有若干叶片, 还包括一增 能翼, 该增能翼为一挡风件, 其上具有一挡风面, 该增能翼以不阻挡所述 叶片转动的方式设置在一支架上, 且位于所述风轮使用中的迎风面的前 方,该增能翼的挡风面与所述风轮的接受来风气流而转动受阻的一侧迎风 面的叶片相对应, 使得所述风轮由于来风气流而转动受阻的侧面被挡住。
本发明解决因来风造成风轮阻力矩而使发电机效率降低的问题是采 用与现有技术完全不同的理念, 即应用了切断风流场的原理, 通过设置的 挡风物体, 将对风轮产生阻力矩的气流挡住, 使其不能作用于风轮相应的 叶片。 通过该挡风物体的阻拦, 可以增加发电机的发电功率, 故而称该挡 风物体为增能翼。 所述增能翼就是用来挡住风轮中的部分迎风面, 只要是 能够起到挡风作用的物体均属于本发明所述的增能翼。
所述增能翼可以是板式增能翼,其包括一板件,其固设在所述支架上,
M
或者,
所述增能翼是风轮式增能翼, 其包括一风轮, 其可转动地设置在一根 风轮轴上, 该风轮轴固设在所述支架上, 该增能翼风轮上叶片的最外侧旋 转形成的圓柱体轨迹构成所述挡风面。
本垂直轴风力发电机风轮为垂直叶片风轮,其中的叶片通过支撑杆连 接到风轮中的轮毂转轴上并与发电机的转子相连接,该叶片的形状为一垂 直的柱状体, 其水平截面为飞机机翼的断面形状, 即相对于风轮的转轴, 叶片朝外的外侧表面为流线形状弧面,该外侧表面与相对的内侧表面之间 的圓滑过渡, 形成较大的迎风端即叶片的头部和较小的尾部; 和 /或, 该 柱状体在垂直方向上各水平截面大小形状相同。
相对于风轮的转轴, 该叶片的外侧表面和内侧表面之间的间距为, 叶 片的迎风端面一端间距较大, 沿顺风方向即叶片的宽度方向, 间距逐渐减 小。
该柱状体在垂直方向上各水平截面大小形状相同。
所述增能翼的所述风轮也可以是与本风力发电机中的风轮相同,为垂 直叶片风轮, 其中的叶片通过支撑杆连接到风轮中的轮毂上, 该轮毂可转 动地固定在与所述塔柱平行设置的所述风轮转轴上,该叶片的形状为一垂 直的柱状体, 其水平截面为飞机机翼的断面形状, 即相对于风轮的转轴, 叶片朝外的外侧表面为流线形状弧面,该外侧表面与相对的内侧表面之间 的圓滑过渡, 形成较大的迎风端即叶片的头部和较小的尾部; 和 /或, 该 柱状体在垂直方向上各水平截面大小形状相同。
相对于风轮的转轴, 该叶片的外侧表面和内侧表面之间的间距为, 叶 片的迎风端面一端间距较大, 沿顺风方向即叶片的宽度方向, 间距逐渐减 小。
该柱状体在垂直方向上各水平截面大小形状相同。
所述增能翼的风轮也可以是其它形式的风轮, 例如, 可以是螺旋桨式 的风轮。
风轮样式的增能翼, 在来风气流的作用下旋转, 其可以起到与平板样 式的增能翼相同的阻断气流作用在风力发电机风轮上产生阻力矩的作用。
所述增能翼的所述风轮可以是一个; 也可以为若干个, 其均设置在所 述风轮转轴上。
当所述增能翼的所述风轮风轮是一个时,所述风轮上的叶片的高度与 所述风力发电机的所述风轮的所述叶片高度相当; 或者, 当所述风轮是若 干个时,各个所述风轮上的叶片的高度以及相邻风轮叶片之间的垂直方向 的间隙之和与风力发电机的所述风轮的所述叶片高度相当。
更进一步地,在所述增能翼的所述风轮和所述风轮轴之间设置发电机 组, 所述风轮连接所述发电机组的转子上, 由此构成一较垂直轴风力发电 机小型的风力发电机。
所述增能翼中设置的风轮与风轮轴构成的小风轮装置中的所述风轮 和所述风轮轴之间可以设有小型发电机组装置。该增能翼上设置的较小型 的发电机装置的结构形式与大型垂直轴风力发电机的结构形式可以是基 本相同的, 也可以是不同的。 可以是常规风力发电机中的发电机组件。 所述增能翼的所述挡风面为平面或弧面或平面和弧面结合的形状。 所述增能翼的所述挡风面的远离所述垂直轴风力发电机中设置所述 风轮的中心塔柱的最外侧边缘边至少与所述垂直轴风力发电机的所述风 轮的所述迎风面的所述侧面的最外侧对应。 或者是, 所述增能翼的远离所 述中心塔柱的一侧至少与所述风力发电机的所述风轮接受来风气流而转 动受阻的一侧迎风面的最外侧对应; 和 /或,
所述增能翼的所述挡风面靠近所述垂直轴风力发电机中设置所述风 轮的中心塔柱的一侧边缘在所述迎风面的中点为起始点起以所述中心塔 柱为中心顺时针转角 180度至 330度所对应的迎风面上; 或者,
所述增能翼的所述挡风面的宽度为所述风力发电机的风轮整个迎风 面的三分之一至二分之一;
所述增能翼的挡风面是弧面的, 该弧面的两端可以是:
对应所述风轮的俯视角度,所述增能翼弧面的两端设置在风轮中心为 坐标系原点的第二象限中或从第二象限延伸至第三象限的范围内。
其中的第二象限对应的风轮迎风面,从其最外端向内至少一部分为可 使风轮对应的叶片产生阻力矩的所述侧面。所述增能翼的一端到达第二象 限的外端后还可以向第三象限延伸一段。这时的增能翼即可以为弧形挡风 面, 或平面和弧面组合的挡风面。
这样的增能翼可以确保风轮基本不产生不利于转动发电的阻力矩。 所述支架可设置在一固定机架上。 即所述增能翼设置在固定机架上, 该固定机架可以是所述中心塔柱, 也可以是其他支承物。 具体地, 所述支. 架包括两根支撑杆, 两根支撑杆的一端与所述增能翼的上下两端连接, 该 支撑杆的另一端连接在一固定机架即所述垂直轴风力发电机中设置所述 风轮的中心塔柱上,该两根支撑杆分别位于所述风力发电机的所述风轮的 上方和下方,且所述支撑杆的长度为使得所述增能翼位于所述风轮叶片回 转圆周轨迹的外面使之不会影响到本垂直轴发电机风轮的运动。
作为板体的所述增能翼,该板体的上下两端分别固设在两根所述支撑 杆上。
所述增能翼是风轮的,该风轮轴的上下端分别固定在两根所述支撑杆 上。
所述增能翼也可以设置在其他支承物上。 例如, 所述支架设置在所述 垂直轴风力发电机风轮旁边的基础上,使得所述增能翼位于所述风轮叶片 回转圆周轨迹的外面。 。
吹向本发电机风轮的风向通常是会有变化的,增能翼的位置也就应该 能够随风轮迎风面的改变和改变。 另外, 有些时候, 不需要使用增能翼挡 风, 则需要将增能翼从迎风面移到背风面或顺风面, 为了使用这一需求, 所述支架最好设计成可运动的结构。所述支架可转动且可定位地固设在所 述垂直轴风力发电机中设置所述风轮的中心塔柱上;
具体的, 所述支撑杆可以是可转动且可定位地固设在所述中心塔柱 上。
而对于支架支承的所述基础上的方案中, 在所述基础上可设置轨道, 所述支架可移动地设于该轨道上定位。
在所述支架和所述固定机架之间设置驱动机构,使得所述支架上的增 能翼绕所述发电机风轮位移。
所述支架上连接一驱动机构,驱动所述支架继而驱动所述增能翼相对 于所述中心塔柱或所述基础位移。
本发明提供的带有增能翼的垂直轴风力发电机风轮通过在风轮迎风 面的前面设置增能翼, 通过阻断气流作用在风力发电机风轮上产生阻力 矩, 可以使风轮的旋转力矩增大, 提高风力发电机的效率。 通过设置增能 翼, 风力发电机的效率可以增大 25%以上。 附图概述 图 1为现有技术中风力发电机风轮迎风时的示意图;
图 2为现有风力发电机的功率与风速关系图;
图 3 为本发明提供的带有板式增能翼的垂直轴风力发电机风轮的结 构的示意图;
图 3a 为示出板式增能翼的平板与发电机风轮位置关系的结构示意 图;
图 4为具有增能翼的本风轮的功率与风速的关系图;
图 5 为本发明提供的带有风轮式增能翼的垂直轴风力发电机风轮的 主视结构示意图;
图 6为图 5的俯视结构示意图;
图 7 为多个风轮组成的增能翼的垂直轴风力发电机的主视结构示意 图。 本发明的最佳实施方式 本发明提供的增能翼, 为一挡风件, 其上具有一挡风面, 该增能翼设 置在一支架上, 用以与一垂直轴风力发电机中的风轮的一个侧面对应, 该 侧面为该风轮在使用中迎风面的一部分,该部分迎风面对应的风轮叶片由 于来风气流作用使转动受阻, 所述增能翼使得该侧面被挡住。
带有增能翼的垂直轴风力发电机风轮,该风轮可转动地固设在一垂直 轴中心塔柱上并与发电机转子连接,其上设有若干叶片,还包括一增能翼, 该增能翼为一挡风物体,其设置在一支架上且位于所述风轮叶片回转圓周 轨迹的外面, 在所述风轮迎风面的前方, 该增能翼的挡风面与所述风轮的 接受来风气流而转动受阻的一侧迎风面的叶片相对应。
本发明解决因来风造成风轮阻力矩而使发电机效率降低的问题是应 用了切断风流场的原理, 通过设置的挡风物体, 将对风轮产生阻力矩的气 流挡住, 使其不能作用于风轮相应的叶片。 通过该挡风物体的阻拦, 可以 增加发电机的发电功率, 故而称该挡风物体为增能翼。
所述支架包括两根支撑杆,两根支撑杆的一端与所述增能翼的上下两 端连接, 该支撑杆的另一端连接在所述中心塔柱上, 该两根支撑杆分别位 于所述风力发电机的所述风轮的上方和下方。
所述增能翼可以是板式增能翼, 其包括一板件例如为一平板, 其固设 在所述支架上, 例如, 该平板的上下两端固设在两根所述支撑杆上, 该板 所述增能翼也可以是风轮式增能翼, 其包括一风轮, 例如为一垂直叶 片风轮, 其可转动地设置在一根风轮轴上, 该风轮轴固设在所述支架上, 例如, 该风轮轴的上下端固定在两根所述支撑杆上。 该增能翼风轮上叶片 的最外侧旋转形成的圆柱体轨迹构成所述挡风面。
具体的, 如图 3a所示, 一种带有板式增能翼的垂直轴风力发电机, 包括一垂直叶片风轮 01 , 所述垂直叶片风轮 01上的叶片 02通过至少两 个支撑杆 05连接到风轮中的轮毂上, 至少一根支撑杆连接的轮毂与发电 机组件中的转子相连接, 不与发电机组件连接的风轮轮毂可转动地设在塔 柱 03上。 而与发电机转子对应的定子也固设在塔柱 03上。 该叶片的形状 为一垂直的柱状体, 其水平截面为飞机机翼的断面形状, 即相对于风轮的 转轴, 其外侧表面和迎风的端面为圆滑过渡的流线型弧面, 叶片的迎风面 间距较大, 沿顺风方向, 间距逐渐减小, 该柱状体在垂直方向上水平截面 大小形状相同。
还包括一增能翼, 为一平板 1, 其上下两端分别固联在上下两根支撑 杵 (图中未示出) 的一端, 该两根支撑杆的另一端固定在所述中心塔柱 03 上, 该两根支撑杆分别位于所述垂直风轮叶片的上方和下方; 该增能 翼的平板 1, 其位于所述风轮叶片回转圓周轨迹 a的外面。 这样设置的增 能翼不会影响发电机的风轮 01的旋转,该增能翼位于风轮迎风面的前方, 平板板面与所述风轮 01 的接受来风气流而转动受阻的一侧迎风面的叶片 相对应, 挡住所述风轮的一侧迎风面, 使得发电机垂直风轮接受来风气流 A而使得转动受阻的一侧面被挡住。
所述增能翼平板 1 的远离所述中心塔柱的一端在所述风力发电机的 所述垂直叶片风轮被遮挡的所述一侧的最外端的外側,至少与该最外端对 应。 平板的宽度优选至少为风轮 01的整个迎风面宽度 S的三分之一至二 分之一, 如图 3a所示的平板 即为其宽度是迎风面宽度 S的二分之一。
所述增能翼也可以是弧形板, 或平面和弧面结合的形状; 所述平板靠 近所述中心塔柱 03的一侧在迎风面的 180度至 330度之间, 或者, 对应 所述风轮 01 的俯视角度, 所述增能翼弧面的两端设置在风轮中心为坐标 系原点的第二象限中或从第二象限延伸至第三象限的范围内。
例如, 如图 3、 3a所示的平板 1或 2, 的靠近中心塔柱的一端在迎风 面中点(0° )为起始点起的 330° 的位置上, 或平板 1宽度在一侧挡住风 轮迎风面的三分之一或迎风面对应的中心角 60° , 或者, 平板 1 的靠近 中心塔柱的一段在迎风面中点(0° )为起始点起的 320。 的位置上。 这样 的增能翼可以确保风轮不产生不利于转动发电的阻力矩。
另外,弧形板或平面和弧面组合形状板式增能翼两侧边缘与风轮的塔 柱中心所做的坐标系的关系可以是:对应所述垂直轴风力发电机中风轮的 俯视角度,所述增能翼的挡风面的两端设置在所述风轮中心为坐标系原点 的第二象限内或者从第二象限延伸至第三象限范围内。即增能翼是在第二 象限内的弧形板, 该弧形板还可以延伸到第三象限。 其中的第二象限对应 的风轮迎风面,从其最外端向内至少一部分为可使风轮对应的叶片产生阻 力矩的所述侧面。所述增能翼的一端到达第二象限的外端后还可以向第三 象限延伸一段。 这时的增能翼即可以为弧形挡风面, 或平面和弧面组合的 挡风面。
如图 5、 6所示, 在另一个实施例中, 增能翼为风轮 2 , 本带有风轮 式增能翼的垂直轴风力发电机风轮, 包括一垂直叶片风轮 01, 其可转动 地固设在一中心塔柱 03上, 其上通过支撑杆 021设有若干叶片 02 , 竖直 风轮样式的增能翼 2, 在来风气流 A的作用下旋转, 其可以起到与平板样 式的增能翼相同的阻断气流作用在风力发电机风轮上产生阻力矩的作用。 增能翼风轮 2的结构也可以是与所述风力发电机中的所述风轮 01结构形 状相同, 即其中的叶片 23通过支撑杆 21, 连接到风轮中的轮毂上, 该轮 毂可转动地固定在风轮轴 20上,风轮轴 20的上下两端分别通过两根支撑 杆 21与中心塔柱 03连接, 其为可转动且定位的连接结构, 使得增能翼风 轮可以根据风向和需要调整和发电机风轮之间的相对位置关系。还可以在 中心塔柱的顶部和增能翼风轮 2 的风轮轴的上端之间连接一斜拉杆 22, 以增加增能翼与塔柱的连接稳定性。该增能翼风轮的叶片的形状为一垂直 的柱状体, 其水平截面为飞机机翼的断面形状, 即相对于风轮的转轴, 其 外侧表面和迎风的端面为圓滑过渡的流线型弧面,外侧表面和内侧表面之 间的间距为, 叶片的迎风面间距较大, 沿顺风方向, 间距逐渐减小, 在垂 直方向上, 该柱状体在垂直方向上水平截面大小形状相同。 所述增能翼风 轮上的叶片的高度与所述风力发电机垂直叶片风轮的叶片高度相当。更进 一步地,所述增能翼风轮 2和风轮轴 20之间可以设有小型发电机组装置。 该小型发电机装置的结构形式与大型垂直轴风力发电机的结构形式基本 相似, 定子设置在风轮轴上, 转子设置在定子的外围, 叶片通过支撑杆 21, 固定在转子的周面上。这样的增能翼不仅可以起到阻断气流作用在风 力发电机风轮上产生阻力矩的作用, 提高发电机的功率和效率, 同时, 还 能够额外发出电能,该电能可以与风力发电机发出的电力合并起来输送到 电网上, 更加提高本风力发电机的发电功率, 也可以通过连接蓄电装置而 将这一部分电能蓄积起来, 用于本风力发电机的其他用途。
所述增能翼的所述风轮也可以为若干个, 如图 7所示, 每个竖直风轮
23, 连接在所述风轮轴 20上。 纵向固设在所述风轮轴上, 各个所述风轮 上的叶片的高度以及相邻风轮叶片之间的间隙之和与所述垂直叶片风轮 的叶片高度相当。 这时, 若干个风轮可以是与上述如图 5、 6所示的增能 翼风轮相同结构的风轮,也可以是其它形式的风轮,例如为螺旋桨式风轮。 这时, 对应风轮上的叶片可以是五片, 均布在风轮转轴的圆周上。 叶片数 量也可以是八个、 十二个。
本垂直轴风力发电机的风轮 01的叶片数可以是 4-24个。
通过在风力发电机的风轮的前面设置增能翼,提高发电机的发电功率 和效率是明显的, 比较图 2和图 4所示, 两幅图的横坐标为叶片位置角, 单位为 "度" , 纵坐标为叶片从风气流获得的有效驱动力矩值。 图 2所示 为没有设置本增能翼的发电机风轮, 风轮单叶片的扭矩在其转动的一周 中, 有效驱动力矩在 0以下的负值约占 25%。 图 4显示出安装了增能翼后 风力发电机的扭矩图, 可以看出, 扭矩一直是处于 0以上的正值。 由此可 以清楚地看出, 有了增能翼后可以增加功率 20%- 25%左右, 并且可以明显 降低启动风轮所需最低风速,使得使用本增能翼的风力发电机可在低风速 情况下的发电。
支撑所述增能翼的支架可以是前述的可绕中心塔柱转动的支撑杆结 构。 可以在所述塔柱上设置驱动机构, 其连接所述支撑杆, 通过该驱动机 构驱动增能翼绕塔柱转动, 从而根据风向调节增能翼与风轮的相对位置, 或者在风速较大不需要增能翼时将其从风轮的迎风面转到顺风面一侧。
支撑增能翼平板或风轮的支架也可以是设置在风力发电机旁边地基 上的支架。 为了使得增能翼可以调整位置, 可在地基上设置一个轨道, 例 如为一圆环形的轨道, 支架可在该轨道中移动。 工业实用性 本发明的增能翼和带有增能翼的垂直轴风力发电机风轮, 应用于垂直 轴风力发电机, 可提高风轮的转动效率。

Claims

权利 要 求
1. 一种增能翼, 其特征在于, 为一挡风件, 其上具有一挡风面, 该 增能翼设置在一支架上,用以与一垂直轴风力发电机中的风轮的一个侧面 对应, 该侧面为该风轮在使用中迎风面的一部分, 该部分迎风面对应的风 轮叶片由于来风气流作用使转动受阻, 所述增能翼使得该侧面被挡住。
2. 根据权利要求 1所述的增能翼, 其特征在于, 所述增能翼是板式 增能翼,其包括一板件,其固设在所述支架上,该板件上具有所述挡风面; 或者,
所述增能翼是风轮式增能翼, 其包括一风轮, 其可转动地设置在一根 风轮轴上, 该风轮轴固设在所述支架上, 该增能翼风轮上叶片的最外侧旋 转形成的轨迹构成所述挡风面。
3. 根据权利要求 2所述的增能翼, 其特征在于, 所述增能翼的所述 风轮为垂直叶片风轮, 其中的叶片通过支撑杆连接到风轮中的轮毂上, 该 轮毂可转动地固定在所述风轮转轴上, 该叶片的形状为一垂直的柱状体, 其水平截面为飞机机翼的断面形状, 即相对于风轮的转轴, 叶片朝外的外 侧表面为流线形状弧面, 该外侧表面与相对的内侧表面之间的圓滑过渡, 形成较大的迎风端即叶片的头部和较小的尾部; 和 /或, 该柱状体在垂直 方向上各水平截面大小形状相同; 或者,
所述增能翼的风轮为螺旋桨式风轮。
4. 根据权利要求 2所述的增能翼, 其特征在于, 所述增能翼的所述 风轮的风轮转轴与所述垂直轴风力发电机中设置所述风轮的中心塔柱平 行设置。
5.根据权利要求 2至 4中任何一项所述的增能翼, 其特征在于, 所述 增能翼的所述风轮是一个; 或者, 所述增能翼的所述风轮为若干个, 其均 设置在所述风轮转轴上; 或者,
在所述增能翼的所述风轮和所述风轮轴之间设置发电机组,所述风轮 连接在所述发电机组的转子上, 由此构成一风力发电机。
6.根据权利要求 5所述的增能翼, 其特征在于, 当所述增能翼的所述 风轮是一个时,所述风轮上的叶片的高度与所述风力发电机的所述风轮的 所述叶片高度相当; 或者, 当所述风轮是若干个时, 各个所述风轮上的叶 所述风轮的所述叶片高度相当。
7.根据权利要求 1至 4中任何一项所述的增能翼, 其特征在于, 所述增能翼的所述挡风面为平面或弧面或平面和弧面结合的形状;和
/或,
所述增能翼的所述挡风面的远离所述垂直轴风力发电机中设置所述 风轮的中心塔柱的最外侧边缘边至少与所述垂直轴风力发电机的所述风 轮的所述迎风面的所述侧面的最外侧对应; 和 /或,
所述增能翼的所述挡风面的宽度为所述风力发电机的风轮整个迎风 面的三分之一至二分之一; 和 /或,
所述增能翼的所述挡风面靠近所述垂直轴风力发电机中设置所述风 轮的中心塔柱的一侧边缘在所述迎风面的中点为起始点起以所述中心塔 柱为中心顺时针转角 180度至 330度所对应的迎风面上; 或者,
所述增能翼的所述挡风面为弧面, 该弧面的两端是:
对应所述垂直轴风力发电机中风轮的俯视角度,所述增能翼的挡风面 的两端设置在所述风轮中心为坐标系原点的第二象限内或者从第二象限 延伸至第三象限范围内。
8. 根据权利要求 1-7 中任何一项所述的增能翼, 其特征在于, 所述 支架包括两根支撑杆, 两根所述支撑杆的一端与所述增能翼的上下两端连 接,两根该支撑杆的另一端连接在一固定机架即所述垂直轴风力发电机中 设置所述风轮的中心塔柱上,该两根支撑杆分别位于所述风力发电机的所 述风轮的上方和下方,且所述支撑杆的长度为使得所述增能翼位于所述风 轮叶片回转圆周轨迹的外面; 或者,
所述支架设置在所述垂直轴风力发电机风轮旁边的基础上。
9. 根据权利要求 1或 8所述的增能翼, 其特征在于, 所述支架可转 动且可定位地固设在所述垂直轴风力发电机中设置所述风轮的中心塔柱 上; 或者,
在支承所述支架的所述基础上设置轨道,所述支架可移动地设于该轨 道上。
10. 根据权利要求 9所述的增能翼, 其特征在于, 所述支架上连接一 驱动机构,驱动所述支架继而驱动所述增能翼相对于所述中心塔柱或所述 基础位移。
11.一种带有增能翼的垂直轴风力发电机风轮, 其特征在于, 该风轮 可转动地固设在一垂直轴中心塔柱上并与发电机转子连接,其上设有若干 叶片, 还包括至少一增能翼, 该增能翼为一挡风件, 其上具有一挡风面, 该增能翼以不阻挡所述叶片的转动的方式设置在一支架上,且位于所述风 轮使用中的迎风面前方,该增能翼的挡风面与所述风轮的接受来风气流而 转动受阻的一侧迎风面的叶片相对应,使得所述风轮由于来风气流而转动 受阻的侧面被挡住。
12. 根据权利要求 11所述的带有增能翼的垂直轴风力发电机风轮, 其特征在于, 所述风轮为垂直叶片风轮, 其中的叶片通过支撑杆连接到风 轮中的轮毂转轴上并与发电机的转子相连接,该叶片的形状为一垂直的柱 状体, 其水平截面为飞机机翼的断面形状, 即相对于风轮的转轴, 叶片朝 外的外侧表面为流线形状弧面,该外侧表面与相对的内侧表面之间的圓滑 过渡, 形成较大的迎风端即叶片的头部和较小的尾部; 和 /或, 该柱状体 在垂直方向上各水平截面大小形状相同。
PCT/CN2010/000956 2010-02-08 2010-06-28 一种增能翼和带有增能翼的垂直轴风力发电机风轮 WO2011094911A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2010345239A AU2010345239A1 (en) 2010-02-08 2010-06-28 Energization wing and wind wheel of windmill generator with vertical axis having energization wing
EP10844996A EP2535561A1 (en) 2010-02-08 2010-06-28 Energization wing and wind wheel of windmill generator with vertical axis having energization wing
JP2012551457A JP2013519018A (ja) 2010-02-08 2010-06-28 ブースター翼とブースター翼付き垂直軸風力発電機用風車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010191140677 2010-02-08
CN2010191140677A CN102146878B (zh) 2010-02-08 2010-02-08 一种增能翼和带有增能翼的垂直轴风力发电机风轮

Publications (1)

Publication Number Publication Date
WO2011094911A1 true WO2011094911A1 (zh) 2011-08-11

Family

ID=44354865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000956 WO2011094911A1 (zh) 2010-02-08 2010-06-28 一种增能翼和带有增能翼的垂直轴风力发电机风轮

Country Status (4)

Country Link
EP (1) EP2535561A1 (zh)
CN (1) CN102146878B (zh)
AU (1) AU2010345239A1 (zh)
WO (1) WO2011094911A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113969874A (zh) * 2021-10-28 2022-01-25 中国电建集团河北省电力勘测设计研究院有限公司 一种智能风场专用导流装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2446300Y (zh) * 2000-08-12 2001-09-05 杨勇 风板可摆式板筒风轮风力发电装置
CN1603616A (zh) * 2004-11-09 2005-04-06 陈忠生 大功率储能风力发电机组
CN2714834Y (zh) * 2004-06-28 2005-08-03 蔡坤龙 风力发电机组的风向定位装置
CN2733031Y (zh) * 2004-11-09 2005-10-12 陈忠生 大功率储能风力发电机组
JP2007298007A (ja) * 2006-05-02 2007-11-15 Shangyin Sci & Technol Co Ltd 輸送機械の風力発電装置
CN101196170A (zh) * 2007-12-24 2008-06-11 常州市绿空能源设备有限公司 一种垂直轴风力发电机
CN101509466A (zh) * 2009-03-12 2009-08-19 上海理工大学 带有多段组合式导流叶片的导风轮
KR20100010877A (ko) * 2008-07-23 2010-02-02 기철 김 더블 풍차 바람막이 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2446300Y (zh) * 2000-08-12 2001-09-05 杨勇 风板可摆式板筒风轮风力发电装置
CN2714834Y (zh) * 2004-06-28 2005-08-03 蔡坤龙 风力发电机组的风向定位装置
CN1603616A (zh) * 2004-11-09 2005-04-06 陈忠生 大功率储能风力发电机组
CN2733031Y (zh) * 2004-11-09 2005-10-12 陈忠生 大功率储能风力发电机组
JP2007298007A (ja) * 2006-05-02 2007-11-15 Shangyin Sci & Technol Co Ltd 輸送機械の風力発電装置
CN101196170A (zh) * 2007-12-24 2008-06-11 常州市绿空能源设备有限公司 一种垂直轴风力发电机
KR20100010877A (ko) * 2008-07-23 2010-02-02 기철 김 더블 풍차 바람막이 장치
CN101509466A (zh) * 2009-03-12 2009-08-19 上海理工大学 带有多段组合式导流叶片的导风轮

Also Published As

Publication number Publication date
CN102146878B (zh) 2013-03-20
EP2535561A1 (en) 2012-12-19
AU2010345239A1 (en) 2012-07-05
CN102146878A (zh) 2011-08-10

Similar Documents

Publication Publication Date Title
US20160377053A1 (en) Vertical axis wind turbine
WO2017096645A1 (zh) 一种基于倾斜铰接叶片的前端支撑可调变桨装置
CN201526413U (zh) 阻力型垂直轴风力机复合叶片
WO2008092331A1 (fr) Éolienne de type aérovanne à pales anti-traînée mobiles
US11236724B2 (en) Vertical axis wind turbine
TW201326545A (zh) 風力發電裝置
WO2010102459A1 (zh) 一种活叶调速型风力发电机组
WO2011095054A1 (zh) 高效大功率垂直轴风力发电机
CN203098139U (zh) 一种适用于小型风力发电机的双叶轮对转风轮结构
CN104847579A (zh) 可调叶片攻角双层式风轮垂直轴风力发电机
CN202250597U (zh) 垂直轴风力发电机用窗扇形叶片组合式风轮
CN110360049A (zh) 一种水平轴风力发电机
CN203835619U (zh) 一种叶轮、叶轮的叶片及使用该叶轮的垂直轴风力发电机
KR20110005920A (ko) 터보형 수직축 풍력장치
CN201982243U (zh) 一种可调控挡风罩位置的垂直轴风力机
CN115324819B (zh) 马格努斯式垂直轴风轮及风力机
WO2021017033A1 (zh) 一种摆动叶片式导流型垂直轴风轮机
WO2011094911A1 (zh) 一种增能翼和带有增能翼的垂直轴风力发电机风轮
KR20110004803A (ko) 터보형 수직축 풍력장치
WO2015165141A1 (zh) 低重心高效垂直轴风力机
CN204755184U (zh) 一种带导流条的垂直轴风力机叶片
JP2013519018A (ja) ブースター翼とブースター翼付き垂直軸風力発電機用風車
CN206816438U (zh) 大型立轴风力发电机
CN202250596U (zh) 一种垂直轴风力发电机叶片
US20100266383A1 (en) Balanced sail wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844996

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010345239

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010844996

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012551457

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2010345239

Country of ref document: AU

Date of ref document: 20100628

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE