WO2015165141A1 - 低重心高效垂直轴风力机 - Google Patents

低重心高效垂直轴风力机 Download PDF

Info

Publication number
WO2015165141A1
WO2015165141A1 PCT/CN2014/078743 CN2014078743W WO2015165141A1 WO 2015165141 A1 WO2015165141 A1 WO 2015165141A1 CN 2014078743 W CN2014078743 W CN 2014078743W WO 2015165141 A1 WO2015165141 A1 WO 2015165141A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
frame
transmission frame
connecting frame
tower
Prior art date
Application number
PCT/CN2014/078743
Other languages
English (en)
French (fr)
Inventor
李锋
李宏春
Original Assignee
苏州飞能可再生能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州飞能可再生能源科技有限公司 filed Critical 苏州飞能可再生能源科技有限公司
Publication of WO2015165141A1 publication Critical patent/WO2015165141A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to a vertical axis wind turbine, in particular to a low center of gravity high efficiency vertical axis wind turbine, belonging to the technical field of wind power generation equipment. Background technique
  • vertical axis wind turbines which are characterized by no wind direction requirements, low noise, and no infrasound.
  • vertical-axis wind turbines can utilize two-dimensional airfoil blades, which can utilize both the lift of the blades and the thrust of the blades (also called resistance); the blades of the wind turbine are not operated when the wind turbine is running.
  • the force is output, but the rotation force is replaced in turn, and the blade load changes periodically (the vertical axis blade rotates one week, and the angle of attack experiences 360.
  • the change, only the angle of attack is within the range of about ⁇ 20°, the blade can output, and the other angle range is in the stall state. Can't contribute).
  • These characteristics of vertical axis wind turbines have advantages and disadvantages.
  • the advantages and disadvantages of using vertical axis wind turbines are key to the development of vertical axis wind turbine technology for annual average wind speeds of ⁇ 6.5 m / s and urban habitats.
  • the blades used in vertical axis wind turbines have three types of airfoils:
  • the first type is thrust type blades, and the wind wheels that use such blades are easy to self-rotate, but the wind energy utilization coefficient of such blades is Cp max ⁇ 0.15 and the rotation speed is low, which is not applicable.
  • the third type is the airfoil type with the convex suction surface and the convex surface with concave surface. The number of blades of this type is large, and the Cp max is between 0.20 and 0.30.
  • the wind wheel of the blade can be self-rotating, but the starting torque is lower than that of the first type of blade, and the rotational speed corresponding to Cp max is lower than that of the first type.
  • vertical axis wind turbines using lift-type airfoil blades basically use the " ⁇ " wind wheel or "H” wind wheel of Darrieus technology.
  • the common characteristics of these two wind wheels are the length of the main shaft ⁇ the height of the wind wheel.
  • the center of gravity of the two types of wind wheels is relatively high.
  • the main shaft of the wind wheel is required to have high strength and rigidity, resulting in a heavy weight of the main shaft.
  • the " ⁇ ” wind wheel consists of the aforementioned second type of blade in the shape of "jumping curve" (usually a thin-wing type blade), and the two ends of the blade are directly connected to the main shaft (to solve the " ⁇ ” wind wheel self-rotating, it can be”
  • the aforementioned first type of blade of the S" shape is also connected to the main shaft.
  • the blade of the " ⁇ ” wind wheel must have sufficient flexibility, and its tip speed ratio ⁇ corresponding to Cp max is higher, resulting in poor performance of the middle and low wind speed of the " ⁇ ” wind wheel.
  • Most of the " ⁇ " wind turbines are connected to the main shaft by the cantilever of the aforementioned third type of blade.
  • the cantilever In order to suppress the blade chatter, the cantilever has high strength and rigidity, resulting in heavy weight of the cantilever; meanwhile, the third type of blade Cp max
  • the corresponding optimum blade width (also called chord length) is 50-60% larger than the aforementioned second type of blade, and correspondingly, the blade weight is also 80-100%.
  • the "H" wind wheel weighs 1-2 times more than the " ⁇ " wind wheel, and its centrifugal load is greater, requiring higher strength and stiffness for the main shaft.
  • the Chinese invention patent of the inventor of the present invention which is filed on Apr. 4, 2010, the patent number 201010162074.7, the authorization publication number CN102213180B, discloses a vertical axis (also called vertical axis) wind turbine.
  • the technical solution still has the following main disadvantages: (1) The interlayer support members are too bloated, which has a large disturbance to the airflow and affects the wind energy utilization performance of the blades; (2) The interlayer support structure is not optimized enough, resulting in its unit weight.
  • the technical problem to be solved by the present invention is: to overcome the problems existing in the prior art, to provide a low center of gravity and high efficiency vertical axis wind turbine, which adopts a special blade designed for a vertical axis wind turbine, and can effectively utilize the wind energy utilization of the blade. performance.
  • a low center of gravity high efficiency vertical axis wind turbine comprising a fixed tower defining a vertical axis of rotation and a wind wheel supported on the tower, the wind wheel and the tower forming an axially constrained horizontal rotating pair; the wind wheel a wheel carrier including a rotating center supported on the tower, and a blade distributed around the periphery of the wheel frame; wherein the blade is a streamlined section blade extending up and down; the wheel frame includes a set of circumferential uniformity Horizontally extending and corresponding upper and lower spokes; the spokes of the wheel frame respectively constitute a transmission frame supported by the rotation center of the tower, and at least one connecting frame, the connecting frame is supported by the supporting member and the adjacent connecting frame or transmission The frame is fixedly connected; the outer ends of the transmission frame and the connecting frame spokes respectively correspond to the upper and lower parts of the blade The position is directly fixedly connected or fixedly connected or rotatably connected to the fixing member fixed to the blade.
  • the applicant has found through in-depth practice that the above structure can effectively shorten the length of the main shaft of the wind wheel, and even cancel the main shaft, thereby effectively reducing the center of gravity of the wind wheel and reducing the weight of the wind wheel.
  • the wheel carrier adopts a first structure:
  • the transmission frame has a regular polygonal shape and is provided with a truss; the truss is composed of a first flange and a load-bearing arm extending circumferentially and extending in the radial direction of the first flange, and the end of the load-bearing arm and the transmission frame respectively
  • Each of the vertices of the central regular polygon or the middle of each side of the regular polygon is fixed; when the ends of the truss load-bearing arms are respectively fixed to the middle of each side of the regular polygon of the transmission frame, the adjacent sides of the transmission frame are adjacent to the regular polygon
  • a connecting rod fixed to the load bearing arm is further provided; the first flange forms a center of rotation of the transmission frame and forms an axially constrained horizontal rotating pair with the top end of the tower.
  • the wind wheel further comprises a main shaft or a load power input shaft rotatably connected to the top end of the tower and arranged in a vertical direction, the first flange being coaxially fixed with the main shaft or the power input shaft;
  • the blade is a vertically extending streamlined section blade; the blade has an outwardly facing and an inwardly facing surface that are respectively convexly and asymmetrically distributed on both sides of the blade chord; the blade cross section
  • the shape is in an asymmetrical droplet shape; the middle arc of the blade is arched toward the rotation axis; the thickness of the blade is perpendicular to the chord direction and the maximum and the leading edge point on the chord The distance between them is 0.12-0.29 times the length of the chord.
  • the first structure can utilize the power input shaft of the load and the main shaft of the wind wheel can be omitted, which can minimize the center of gravity and reduce the weight of the wind wheel, and reduce the cost.
  • the truss acts as a receiving structure between the wheel frame and the load power input shaft, and the strength within the unit weight is high, and the desired strength is not increased while the weight of the wind wheel is increased, and even The weight of the wind wheel is reduced, so that the wind wheel can be effectively enlarged.
  • This structure can also be used for wind wheels that are connected to the top end of the tower.
  • the preferred structure adopts a special blade designed for the unsteady flow field around the vertical axis wind turbine, which has the self-starting wind wheel capability and a high wind energy utilization coefficient Cp max (up to 0.45 - 0.50)
  • the blade is fixedly connected or rotatably connected to the wheel frame, and the self-rotating ability and wind energy utilization performance of the blade can be well exerted; especially when the rotary connection mode is adopted, the blade will automatically wind under the action of the wind force. Rotate the joint to rotate a certain angle to better utilize the wind energy utilization performance of the blade.
  • the wheel carrier adopts a second structure:
  • the transmission frame has a regular polygonal shape and is provided with a truss; the truss is arranged by two upper and lower coaxial and second flanges, and is respectively distributed on the second and third flanges in a circumferential direction and along the diameter And extending to the extended load-bearing arm and the reinforcing arm, the ends of the load-bearing arm and the reinforcing arm are respectively fixed to the vertices of the regular polygon of the transmission frame; at least one supporting rib is disposed between the corresponding bearing arm and the reinforcing arm; 2.
  • the third flange forms the center of rotation of the transmission frame and forms an axially constrained horizontal rotation pair with the top end of the tower.
  • the wind wheel further comprises a main shaft or a load which is rotatably connected to the top end of the tower and arranged in a vertical direction a power input shaft, the second and third flanges are coaxially fixed to the main shaft or to the power input shaft; the blades are vertically extending streamlined section blades; the blades are respectively convex and An outwardly facing and an inwardly facing surface asymmetrically distributed on both sides of the blade chord; the blade has a cross-sectional shape in an asymmetrical droplet shape; the central arc of the blade is arched toward the axis of rotation; In the section of the blade, the thickness perpendicular to the chord direction is the largest at the chord and the distance between the foot and the leading edge point is 0.12-0.29 times the length of the chord.
  • the truss acts as a receiving structure between the wheel frame and the main shaft, and the strength in the unit weight is high, and the desired strength is not increased while the weight of the wind wheel is increased, and the weight of the wind wheel is reduced, thereby making the wind wheel Can be effectively enlarged.
  • the uniformity of the wind wheel is good, which is more conducive to the rotation of the wind wheel.
  • This structure can also be used for wind wheels that are connected to the top load power input shaft of the tower.
  • the blade of the preferred structure is a dedicated blade as described above.
  • the fixing member is a straight plate whose one end is fixedly connected or rotatably connected to the outer end of the spoke of the transmission frame or the connecting frame, and the other end is fixed to the inner blade surface of the blade; or the fixing member has two outer ends and a "V" shaped member at the corner end, the two outer ends of the "V” shaped member are respectively fixed to the inner blade surface or the blade end surface, and the corner end of the "V” shaped member is connected to the transmission frame or the connecting frame
  • the outer end of the spoke is fixedly connected or rotatably connected; or the fixing member is a plate member having a streamlined outer edge, the plate surface of the plate member is fixedly connected to the blade end surface, and the plate member extends toward the transmission frame or the connecting frame
  • the protruding ear is fixedly connected or rotatably connected to the outer end of the transmission frame and the spoke of the connecting frame; or the fixing member is a hoop having a streamlined outer edge, and the inner edge of the hoop is ho
  • the fixing member itself does not affect the utilization of the wind energy by the blade, and the rotation of the blade facilitates the angular rotation of the blade smoothly, thereby better utilizing the wind energy utilization performance of the dedicated blade.
  • the fixing member is provided with a telescopic controller for rotating the blade angle between one side of the transmission frame or the connecting frame and the spoke of the transmission frame or the connecting frame, or the fixing member is close to the blade and the driving frame Or a telescopic controller for rotating the blade angle between the spokes of the connecting frame; the controller is an elastic component, or the controller is an electric controller of the controlled end external control device.
  • the wind turbine power control can be implemented in a manner that balances the force between the blade centrifugal force and the elastic force; when the controller is an electric controller, the wind turbine power control can be implemented in an electrically controlled manner. After the wind turbine power control is implemented, the wind speed application range of the wind turbine can be expanded.
  • the technical solution of the present invention is further improved as follows: a regular polygon having a shape of the middle portion and a parallel portion of the connecting frame, and a parallel polygon; the vertices of the regular polygon of the transmission frame and the vertices of the regular polygon of the connecting frame are fixed by the support member; the support member has four Ends of the "X" shape, the upper and lower ends of the "X" shaped member are respectively adjacent to the transmission frame or the connecting frame The apex is fixed, and the "X"-shaped member is located on the same side of the transmission frame and the connecting frame; or, the supporting member is a straight rod that fixes the transmission frame and connects corresponding vertices of the regular polygon of the frame; or
  • the support member comprises a fixed transmission frame, a straight
  • the adjacent spokes on the outer side of the regular polygon of the transmission frame are further provided with a connecting rib for reinforcing; and a connecting rod is further disposed between adjacent spokes of the regular polygon in the connecting frame; or A connecting rod is further disposed between adjacent spokes on the outer side of the regular polygon in the connecting frame to provide reinforcement;
  • the connecting cable is fixedly connected or rotatably connected between the top ends of the adjacent blades and the bottom end, and the connecting cable can be reduced
  • the connecting frame has at least two and forms at least two spokes with the transmission frame, and each of the spokes is respectively provided with a corresponding blade, and the blades mounted on the adjacent two spokes are staggered.
  • the windward probability of the blade's optimal angle of attack can be increased, the wind wheel can be more easily rotated, and the blade length can be reduced in a segmented manner, thereby reducing the manufacturing, transportation and installation costs of the blade.
  • the structure of the blade fixtures is optimized to ensure that the wind energy utilization performance of the dedicated blades can be fully utilized.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • Figure 2 and Figure 3 are enlarged views of the A and B regions of Figure 1, respectively.
  • FIG. 4 is a schematic structural view of a wheel carrier according to an embodiment of the present invention.
  • Fig. 5 is a structural schematic view of a transmission frame and a truss according to Embodiment 1 of the present invention.
  • FIG. 6 and FIG. 7 are schematic structural views of a connecting frame and a support member according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic structural view of Embodiment 2 of the present invention.
  • Figure 9 and Figure 10 are respectively shown in Figure 8. , D area enlargement.
  • Figure 11 is a schematic view showing the structure of a wheel carrier according to a second embodiment of the present invention.
  • Figure 12 is a schematic view showing the structure of a transmission frame and a truss according to Embodiment 2 of the present invention.
  • FIG. 13 and FIG. 14 are schematic structural views of a connecting frame and a supporting member according to Embodiment 2 of the present invention.
  • Figure 15 is a schematic view showing the structure of Embodiment 3 of the present invention.
  • Fig. 16 and Fig. 17 are respectively the 5, F area i or enlarged view of Fig. 15.
  • Figure 18 is a schematic view showing the structure of a three-wheeled frame according to an embodiment of the present invention.
  • Figure 19 is an enlarged view of the G area of Figure 18.
  • FIG. 20 and FIG. 21 are respectively schematic structural views of a connection frame and a support member according to Embodiment 3 of the present invention.
  • Figure 22 is a schematic view showing the structure of Embodiment 4 of the present invention.
  • Figure 25 is an enlarged view of the J area of Figure 24.
  • Figure 26 is a schematic view showing the structure of a wheel carrier according to an embodiment of the present invention.
  • Figure 27 is a structural schematic view of a transmission frame and a truss according to Embodiment 4 of the present invention.
  • Figure 28 is an enlarged view of the K area of Figure 27 .
  • Figure 29 is a schematic view of the truss structure of Figure 27;
  • FIGS. 30 and 31 are structural views of a connection frame used in Embodiment 4 of the present invention.
  • Figure 32 is a schematic view showing the structure of Embodiment 5 of the present invention.
  • Figure 33 and Figure 34 are respectively shown in Figure 32! ⁇ , M area enlargement.
  • Figure 35 is a schematic view showing the structure of a wheel carrier according to a fifth embodiment of the present invention.
  • Figure 36 is a schematic view showing the structure of a transmission frame and a truss according to Embodiment 5 of the present invention.
  • Figure 37 is an enlarged view of the N area of Figure 36.
  • Figure 38 is a schematic view showing the structure of Embodiment 6 of the present invention.
  • Figure 39 is an enlarged view of the area 0 of Figure 38.
  • Figure 40 is a schematic view showing the structure of a wheel carrier of Embodiment 6 of the present invention.
  • Figure 41 is a schematic view showing the structure of Embodiment 9 of the present invention.
  • Figure 42 is a schematic view showing the structure of Embodiment 7 of the present invention.
  • Fig. 43, Fig. 44, and Fig. 45 are enlarged views of the Q, R, and S regions of Fig. 42, respectively.
  • Figure 46 is an enlarged view of the T area of Figure 45.
  • Figure 47 is a schematic view showing the structure of a wheel carrier according to a seventh embodiment of the present invention.
  • Figure 48 is a schematic structural view of a transmission frame and a truss according to Embodiment 7 of the present invention.
  • Figure 49 is an enlarged view of the U area of Figure 48.
  • Figure 50 is a schematic view of the truss structure of Figure 48.
  • 51 and 52 are structural schematic views of a connecting frame and a fixing member according to an embodiment of the present invention.
  • Figure 53 is a schematic view showing the structure of Embodiment 8 of the present invention.
  • Figure 54 is an enlarged view of the V area of Figure 53.
  • Figure 55 is a top plan view of Figure 54.
  • Figure 63 is a schematic illustration of other drive trains that may be used in embodiments 4 through 8 of the present invention.
  • Figure 64 is a schematic view of the truss structure of Figure 63.
  • connection frames 65 to 67 are schematic views of other connection frames usable in the present invention.
  • Figure 68 is a schematic view of a transmission frame that can be used in the embodiments 1 to 3, 9.
  • 69 and 70 are schematic views of other fixing members usable in the present invention.
  • Figure 71 is a schematic view showing a section of a blade for a vertical axis wind turbine used in the present invention. detailed description
  • the low center of gravity high efficiency vertical axis wind turbine of the present embodiment includes a fixed tower 1 for determining a vertical rotation axis and a wind wheel 2 supported on the tower 1.
  • the wind wheel 2 and the tower 1 constitute An axially constrained horizontal rotating pair;
  • the wind wheel 2 comprises a wheel frame 3 supported by the rotating center on the tower 1 and a blade 4 distributed around the periphery of the wheel frame 3;
  • the blade 4 is a vertically extending streamlined section blade, the blade 4 An outwardly facing and an inwardly facing surface which are respectively convexly and asymmetrically distributed on both sides of the blade chord;
  • the wheel carrier 3 includes a set of circumferentially uniform horizontally extending and upper and lower corresponding spokes, upper and lower corresponding The outer ends of the spokes are fixedly connected to the upper and lower corresponding portions of the blade 4, respectively.
  • the spokes of the wheel frame 3 respectively constitute a transmission frame 6 supported by the rotation center of the tower 1, and two connection frames 7, and the connection frame 7 is supported by the support member 11 and the adjacent transmission frame 6 fixed connection; the outer end of the transmission frame 6, the spokes of the connecting frame 7 are directly fixedly connected with the blade 4; as shown in FIG. 3, the cross-sectional shape of the blade 4 is asymmetrically shaped, and the middle arc of the blade 4 is rotated.
  • axis shown in Figure 71, the section of the blade 4 perpendicular to the chord direction at a maximum thickness of the foot of the distance between the X t and the leading edge point on the chord to chord length of 0.12-0.29 times .
  • a two-layer structure formed by two connecting frames ⁇ and one transmission frame 6 is formed, and two layers of spokes are formed.
  • Each of the blades 4 is respectively mounted on each layer of spokes, and the blades 4 mounted on the adjacent two layers of spokes are staggered.
  • the top end of the tower 1 is rotatably connected with the power input shaft 13 of the load, and the power input shaft 13 is The axis is arranged vertically; the first flange 10-6 forming a center of rotation is disposed in the middle of the transmission frame 6, and the first flange 10-6 is fixedly connected with the power input shaft 13; the first flange and the top end of the tower form an axial direction Constrained horizontal rotation pair.
  • the middle of the transmission frame 6 has a regular polygon and is provided with a truss 10;
  • the truss 10 includes a first flange 10-6, and the first flange 10-6 is fixedly connected with the power input shaft 13, and the first flange 10-6
  • the circumferential direction is evenly distributed with the radially extending load-bearing arms 10-3, and the ends of the load-bearing arms 10-3 are respectively fixed to the vertices of the regular polygons in the middle of the transmission frame 6. It should be noted that, as shown in FIG.
  • the ends of the load-bearing arms 10-3 can also be respectively fixed to the middle portions of the sides of the regular polygon in the middle of the transmission frame 6, and the adjacent sides of the regular polygon in the middle of the transmission frame 6 are also provided with A connecting rod 10-7 to which the end of the load-bearing arm 10-3 is fixed.
  • the middle portion of the transmission frame 6 and the middle portion of the connecting frame have the same polygonal shape and the corresponding sides are parallel to each other (the regular hexagon in this embodiment); the vertices and connections of the central polygon in the middle of the transmission frame 6
  • the vertices of the central regular polygon of the frame 7 are fixed by the support member 11;
  • the support member 11 is an "X"-shaped member having four ends, and the upper ends and the lower ends of the "X"-shaped member are respectively connected with the transmission frame 6 or
  • the two adjacent vertices of the frame 7 are fixed, and the "X" shaped member is located on the same side of the transmission frame 6 and the connecting frame 7.
  • Figs. 8 to 14 The low center of gravity high efficiency vertical axis wind turbine of this embodiment is shown in Figs. 8 to 14, and its basic structure adopts a spindleless structure similar to that of the embodiment 1, and further:
  • the middle portion of the transmission frame 6 is in the shape of a square having the same shape and the corresponding sides are parallel to each other in the middle of the connecting frame 7;
  • the supporting member 11 includes a fixing rod 6 and a straight rod 11-1 connecting the corresponding vertices of the central polygon of the connecting frame 7, the straight rod 11
  • the low center of gravity high efficiency vertical axis wind turbine of this embodiment is shown in Figs. 15 to 21, and its basic structure adopts a spindleless structure similar to that of the embodiment 1, in addition:
  • This embodiment employs a single layer structure formed by a connecting frame 7 and a transmission frame 6.
  • Connecting rods 10-8 are also provided between adjacent load-bearing arms 10-3 of the truss 10.
  • the middle portion of the transmission frame 6 and the middle portion of the connecting frame 7 have the same shape and the corresponding sides are parallel to each other; the supporting member 11 is a fixed rod of the fixed transmission frame 6, and the corresponding vertex of the central regular polygon of the connecting frame 7.
  • the low center of gravity high efficiency vertical axis wind turbine of the present embodiment includes a fixed tower 1 for determining a vertical rotation axis and a wind wheel 2 supported on the tower 1.
  • the wind wheel 2 and the tower 1 constitute An axially constrained horizontal rotating pair;
  • the wind wheel 2 comprises a wheel frame 3 supported by the rotating center on the tower 1 and a blade 4 distributed around the periphery of the wheel frame 3, wherein the upper blade is closer to the axis of rotation than the lower blade;
  • the blade 4 is vertically To the extended streamlined section blade, the blade 4 has an outwardly facing and an inwardly facing surface that are convexly and asymmetrically distributed on both sides of the blade chord;
  • the wheel carrier 3 includes a set of circumferentially uniform horizontal extensions and The upper and lower corresponding spokes, the upper ends of the corresponding spokes are respectively rotatably connected with the upper and lower corresponding portions of the blade 4.
  • the spokes of the wheel frame 3 respectively constitute a transmission frame 6 supported by the rotation center in the tower 1, and two connection frames 7 of different sizes, wherein the larger connection frame 7 is supported.
  • the piece 11 is fixedly connected with the same size connection point of the transmission frame 6, and the smaller connection frame 7 is fixedly connected with the same size connection point on the larger connection frame 7 via the support member 11; as shown in FIG. 25, the transmission frame 6,
  • the outer ends of the connecting frame and the spokes are respectively rotatably connected to the fixing member 8 fixed to the blade 4.
  • the fixing member 8 has one end rotatably connected with the outer end of the spoke of the transmission frame 6 or the connecting frame 7, and the other end and the blade 4 are facing the inner leaf surface.
  • the cross-sectional shape of the blade 4 is in the shape of an asymmetrical droplet, and the middle arc of the blade 4 is arched toward the rotation axis; as shown in Fig. 71, the section of the blade 4 is perpendicular to the chord
  • the distance in the direction of the greatest distance between the foot of the chord and the leading edge point X t is 0.12-0.29 times the length of the chord.
  • This embodiment adopts a two-layer structure in which the two connecting frames 7 and one of the transmission frames 6 are formed to be large and small.
  • the wind wheel 2 further includes a main shaft 9 which is rotatably connected to the top end of the tower 1 and arranged in a vertical direction; the middle of the transmission frame 6 has a regular polygon and is provided with a truss 10;
  • the second and third flanges 10-1 and 10-2 are arranged on the upper and lower sides and coaxial, and the second and third flanges 10-1 and 10-2 are respectively disposed on the circumference of the main shaft 9 and fixed to the main shaft 9.
  • the second and third flanges 10-1, 10-2 are circumferentially uniformly distributed with the radially extending load bearing arms 10-3 and the reinforcing arms 10-4, respectively, and the ends of the load bearing arms 10-3 and the reinforcing arms 10-4 are respectively It is fixed to the vertices of the regular polygon in the middle of the transmission frame 6; a supporting rib 10-5 is arranged between the corresponding bearing arm 10-3 and the reinforcing arm 10-4; the second and third flanges 10-1, 10-2 Forming a rotation center of the transmission frame 6 and forming an axially constrained horizontal rotation pair with the tower top end spindle 9; forming a triangular support structure between the rib 10-5 of the truss 10, the load bearing arm 10-3, and the reinforcing arm 10-4 .
  • the middle portion of the transmission frame 6 and the central portion of the connecting frame 7 have the same polygonal shape and the corresponding sides are parallel to each other (the regular hexagon in this embodiment), and the connecting frame 7
  • Two structures are used, one as shown in FIG. 30, the whole is triangular, and the other as shown in FIG. 31, the whole is a hexagon formed by two triangles of different sizes; the transmission frame 6 is generally triangular; the transmission frame 6 vertices of the central regular polygon and the vertices of the central regular polygon of the connecting frame 7 are fixed by the support member 11.
  • the support member 11 of this embodiment is the same as that of the embodiment 1. As shown in FIG.
  • the support member 11 is an "X"-shaped member having four ends, and the upper end and the lower end of the "X"-shaped member are respectively connected to the drive frame. 6 or two adjacent vertices of the connecting frame ⁇ are fixed, and the "X" shaped member is located on the same side of the transmission frame 6 and the connecting frame 7.
  • fixing member 8 can also be fixedly connected with the outer ends of the spokes of the transmission frame 6 and the connecting frame 7, so that the blade 4 is fixedly connected with the spoke spokes.
  • the low center of gravity high efficiency vertical axis wind turbine of this embodiment is shown in Figs. 32 to 37, and its basic structure adopts a spindle structure similar to that of the embodiment 4, and further:
  • This embodiment employs a three-layer structure formed by three connection frames 7 and one transmission frame 6.
  • the transmission frame 6 has a hexagonal shape as a whole.
  • the structure of the connection frame is shown in Figure 30 and Figure 31.
  • the low center of gravity high efficiency vertical axis wind turbine of this embodiment is shown in Figs. 38 to 40, and its basic structure adopts a spindle structure similar to that of the embodiment 4, and further:
  • This embodiment employs a four-layer structure formed by four connection frames 7 and one transmission frame 6.
  • the transmission frame 6 has a hexagonal shape as a whole.
  • the structure of the connection frame 7 is as shown in Figs. 30 and 31.
  • the low center of gravity high efficiency vertical axis wind turbine of this embodiment is shown in Figs. 42 to 52, and its basic structure adopts a spindle structure similar to that of the embodiment 4, and further:
  • This embodiment employs a two-layer structure formed by two connection frames ⁇ and one transmission frame 6; and the two connection frames ⁇ are respectively located above and below the transmission frame 6, and the blades mounted on the respective layers are aligned.
  • the fixing member 8 is a "V" shaped member having two outer ends and a corner end, and the two outer ends 8-1 of the "V" shaped member are respectively directed to the blade 4
  • the inner blade surface or the end surface of the blade 4 is fixedly connected, and the corner end 8-2 of the "V" shaped member is rotatably connected to the outer end of the spoke of the transmission frame 6 or the connecting frame 7.
  • the connecting rod 10-8 is disposed between the adjacent load-bearing arms 10-3 of the truss 10; three are provided between the corresponding bearing arm 10-3 and the reinforcing arm 10-4.
  • the ribs 10-5 form a plurality of triangular support structures.
  • the middle portion of the transmission frame 6 and the middle portion of the connecting frame have the same shape and the corresponding sides are parallel to each other; the adjacent spokes of the outer side of the connecting frame 7 in the middle of the regular pentagon There is also a connecting rod 7-1; a connecting rib 6-1 is also arranged between adjacent spokes on the outer side of the central pentagon in the middle of the transmission frame 6.
  • a connecting cable 14 is fixedly connected or rotatably connected between the top ends of the adjacent vanes 4 and the bottom end, respectively.
  • the function of the connecting cable is as follows: the outward bending moment applied to the end of the blade by the centrifugal force of the rotation of the blade can be reduced, the adjacent blades can be interlocked with each other to change the installation angle of all the blades synchronously, and the lightning strike at the tip of a certain blade can be The shunt is in the lightning protection line of each blade.
  • a telescopic controller 12 for rotating the blade angle is disposed between the fixing member 8 near the blade 4 and the transmission frame 6 or the connecting frame spoke; the controller 12 is an elastic member, or the controller 12 is controlled The external controller of the external control device.
  • the rotational connection point of the fixing member and the transmission frame or the connecting frame is point c
  • the intersection point of the fixing member extension line and the blade axis away from the controller 12 is 0, and the tower axis and the fixed point are fixed.
  • the intersection point of the piece plane is point a; the angle between the line connecting point 0 and point a and the axis of the blade is the angle of the corner.
  • the controller 12 can be an elastic component, and its length can change or recover when an external force is applied or revoked; when a certain wind speed changes the rotational speed of the wind turbine, the centrifugal force of the blade changes accordingly, and the blade rotates at a certain angle with the point c as an axis.
  • the controller 12 can also adopt the electric controller of the controlled end external control device, but in the electric control, there is a response time delay in the feedback from the start change to the start control, and the shorter the response time, the electric control.
  • the higher the cost on the other hand, the higher the reliability, the higher the cost of electrical components, and the need for regular maintenance.
  • Fig. 41 The low center of gravity high efficiency vertical axis wind turbine of this embodiment is shown in Fig. 41, and its basic structure adopts a spindleless structure similar to that of the embodiment 1, and further:
  • the structure of the transmission frame 6 is as shown in Fig. 61, and the structure of the connection frame 7 is as shown in Fig. 30.
  • the blade 4 is a spiral blade extending from top to bottom.
  • the present invention may have other embodiments, such as:
  • the transmission frame 6 can have various structural forms, and the middle of the transmission frame 6 can be an equilateral triangle, a square, a regular pentagon, a regular hexagon, and the like.
  • FIG. 63 An example of a portion that can be used in the embodiments 4 to 8 is shown in Fig. 63, in which five ribs 10-5 are provided between the corresponding load-bearing arm 10-3 of the truss 10 and the reinforcing arm 10-4 as shown in Fig. 64.
  • connection frame 7 can have various structural forms, and the middle portion of the connection frame 7 can be an equilateral triangle, a square, a regular pentagon, a regular hexagon, etc.; some examples are shown in Figs. 65 to 67.
  • the fixing member may also adopt the following structure: as shown in FIG. 71, the fixing member 8 is a plate member having a streamlined outer edge, and the plate surface of the plate member is fixedly connected to the blade end surface, and the plate member faces the transmission frame or the connecting frame. Extending the protruding ear 8-1, the protruding ear 8-1 is fixedly connected or rotatably connected to the outer end of the transmission frame and the connecting frame spoke; or, as shown in Fig. 70, the fixing member 8 is a hoop having a streamlined outer edge.
  • the inner edge of the hoop is hooped in the circumferential direction of the blade, and the outer edge of the hoop extends toward the transmission frame or the connecting frame with a protruding ear 8-1.
  • the protruding ear 8-1 is fixedly connected or rotatably connected to the outer end of the transmission frame and the spoke of the connecting frame.
  • the power control structure is: a telescopic controller for rotating the blade angle between the side of the fixing member facing the transmission frame or the connecting frame and the spoke of the transmission frame or the connecting frame.

Abstract

低重心高效垂直轴风力机,包括确定垂向旋转轴线的固定塔架(1)和支撑于塔架(1)上的风轮(2),风轮(2)与塔架(1)构成轴向约束的水平转动副;风轮(2)包括旋转中心支撑于所述塔架(1)的轮架(3)、以及分布于所述轮架(3)周边的叶片(4);叶片(4)为垂直延伸的流线形截面叶片,叶片(4)的两面呈凸形、且为非对称翼形;轮架(3)包括一组周向均布水平延伸且上、下对应的辐条,上、下对应的辐条外端分别与叶片(4)的上、下相应部位固定连接或转动连接。通过采用针对垂直轴风力机周围的非常流场特点设计的专用叶片,并能有效发挥该类叶片的风能利用性能。

Description

低重心高效垂直轴风力机 相关申请
本专利申请要求 2014年 4月 29日申请的, 申请号为 201410177840.5 , 名称为 "低重 心高效垂直轴风力机 "的中国专利申请的优先权, 在此将其全文引入作为参考。 技术领域
本发明涉及一种垂直轴风力机, 尤其是一种低重心高效垂直轴风力机,属于风力发电 设备技术领域。 背景技术
据申请人了解, 目前市场上运行的风力发电机组中, 所用风力机绝大多数为风轮转轴 水平放置的水平轴涡轮式风力机, 属于高风速风力机范畴, 其中低风速性能差, 在年均风 速 ≤6.5米 /秒的地区运行经济效益不佳。此外, 这类风力机运行噪音大、会产生次声波, 不适合在都市和社区中使用, 而且还会危害鸟类的生存环境。
此外, 还有垂直轴风力机, 此类风力机的特点是无风向性要求、 噪音小、 不产生次声 波。 与水平轴风力机相比, 垂直轴风力机可利用二维翼型叶片, 既能利用叶片的升力、 又 能利用叶片的推力 (也称阻力); 其风轮各叶片在风力机运行时不同时出力, 而是依次接替 轮换出力, 叶片荷载周期性变化 (垂直轴叶片转动一周, 攻角经历 360。变化, 只有攻角在 约 ±20°范围内叶片才能出力、在其他角度范围处于失速状态而不能出力)。 垂直轴风力机的 这些特点有利有弊, 利用优点、 抑制缺点是研发适用于年均风速 ≤6.5 米 /秒地区和都市 人居环境的垂直轴风力机技术的关键。
垂直轴风力机所用叶片有三类翼型: 第一类是推力型叶片, 釆用该类叶片的风轮易自 起转,但是该类叶片的风能利用系数 Cpmax≤0.15且转速低,无法适用于高效的风力发电机; 第二类是升力型的对称翼型叶片, 该类叶片的翼型为 NACA00xy(x=l或 2; y=0,l,...,8或 9), 其 Cpmax高, 某些叶片的 Cpmax能达到 0.45 , 但釆用该类叶片的风轮无法自起转; 第三 类是升力型的吸力面为凸形、 压力面有凹形的翼型叶片, 该类叶片数量众多, 其 Cpmax在 0.20—0.30之间, 釆用该类叶片的风轮能自起转, 但起转力矩低于第一类叶片、 且 Cpmax 对应的转速低于第二类叶片。
目前,利用升力型翼型叶片的垂直轴风力机,基本上釆用 Darrieus技术的 "Φ"风轮或 "H" 风轮, 这两种风轮的共有特征为主轴长度≥风轮高度, 因而这两种风轮重心偏高, 为了保 证整个风轮的稳定性, 要求风轮主轴具有很高的强度和刚度, 导致主轴重量很重。 其中, "Φ"风轮由 "跳绳曲线"形的前述第二类叶片构成(通常采用薄翼型叶片), 叶片两端直接连 接于主轴 (若要解决" Φ"风轮自起转,可将" S"形的前述第一类叶片也连接于主轴)。 "Φ"风轮 釆用的叶片要有足够的柔性,其 Cpmax对应的尖速比 λ较高,导致" Φ"风轮的中低风速性能 差。 "Η"风轮大多数由前述第三类叶片通过悬臂连接于主轴而成, 为抑制叶片震颤, 要求 悬臂具有很高的强度和刚度, 导致悬臂重量很重; 同时, 第三类叶片 Cpmax对应的最佳叶 片宽度 (也称弦长)比前述第二类叶片要大 50-60%, 相应地, 叶片重量也要重 80-100%。 受 制于此, 在相同高度下, "H"风轮的重量比 "Φ"风轮要重 1-2倍, 其离心载荷更大, 对主轴 的强度和刚度要求更高。
由此可见, 降低重心并减轻重量、 增大高 Cpmax翼型的起转力矩是设计高效风力机的 两个技术突破点, 特别是提高风力机中低风速性能的突破点。
本发明发明人于 2010年 4 月 4 日申请的、 专利号 201010162074.7、 授权公告号 CN102213180B的中国发明专利公开了一种垂直轴 (也称立轴)风力发电机组的风机。 然而, 该技术方案尚存在以下主要不利之处: ( 1 )层间支撑部件过于臃肿, 对气流干扰较大, 影 响叶片的风能利用性能; (2 )层间支撑结构不够优化, 导致其单位重量内的强度和刚度较 低, 要达到预期的强度和刚度仍需要较大的重量, 不利于减轻风轮重量; (3 )风轮的轮架 与主轴之间的承接结构强度较差, 然而为提高强度势必会增加风轮重量, 这一问题导致风 轮无法大型化; (4 )无法实现风力机功率控制。 亟需研制出单位重量内强度较高的层间支 撑结构和承接结构, 从而在达到预期强度的同时不会增加风轮重量、 甚至减轻风轮重量; 同时研制出能实现功率控制的结构, 通过功率控制来扩大风力机运行的风速范围, 提高发 电量。 发明内容
本发明所要解决的技术问题是: 克服现有技术存在的问题, 提供一种低重心高效垂直 轴风力机, 采用了针对垂直轴风力机设计的专用叶片, 并能有效发挥该类叶片的风能利用 性能。
本发明解决其技术问题的基本技术方案如下:
一种低重心高效垂直轴风力机,包括确定垂向旋转轴线的固定塔架和支撑于塔架上的 风轮, 所述风轮与塔架构成轴向约束的水平转动副; 所述风轮包括旋转中心支撑于所述塔 架的轮架、 以及分布于所述轮架周边的叶片; 其特征是, 所述叶片为上下延伸的流线形截 面叶片; 所述轮架包括一组周向均布水平延伸且上、 下对应的辐条; 所述轮架的辐条分别 构成一旋转中心支撑于塔架的传动框、 以及至少一个连接框, 所述连接框经支撑件与相邻 的连接框或传动框固定连接; 所述传动框、 连接框辐条的外端分别与叶片的上、 下相应部 位直接固定连接、 或者与固连于叶片的固定件固定连接或转动连接。
申请人经深入实践研究发现, 采用上述结构可有效缩短风轮主轴长度, 甚至可以取消 主轴, 从而有效降低风轮重心, 减少风轮重量。
优选地, 所述轮架采用第一结构:
所述传动框中部呈正多边形、 并设有桁架; 所述桁架由第一法兰和均布于第一法兰周 向且沿径向延伸的承重臂构成, 所述承重臂末端分别与传动框中部正多边形各顶点、 或者 正多边形各边的中部固连; 当所述桁架承重臂末端分别与传动框中部正多边形各边的中部 固连时, 所述传动框中部正多边形相邻两边之间还设有与承重臂固连的连杆; 所述第一法 兰形成传动框的旋转中心, 并与塔架顶端构成轴向约束的水平转动副。
更优选地, 所述风轮还包括与塔架顶端转动连接、且轴线沿垂向布置的主轴或者负载 的动力输入轴, 所述第一法兰与主轴或者与动力输入轴同轴固连; 所述叶片为垂向延伸的 流线形截面叶片; 所述叶片具有分别呈凸形、 且非对称地分布于叶片翼弦两侧的朝外叶面 和朝内叶面;所述叶片横截面形状呈非对称液滴形;所述叶片的中弧线拱向所述旋转轴线; 所述叶片的截面中、 垂直于翼弦方向上的厚度最大处在翼弦上的垂足与前缘点之间的距离 为翼弦长度的 0.12-0.29倍。
采用第一结构可利用负载的动力输入轴而省去了风轮的主轴,能最大限度地降低重心 和减轻风轮重量、 又降低了成本。 同时, 采用该结构的传动框后, 其桁架作为轮架与负载 动力输入轴之间的承接结构, 其单位重量内的强度较高, 在达到预期强度的同时不会增加 风轮重量、 甚至能减轻风轮重量, 从而使风轮能有效大型化。 该结构也可用于与塔架顶端 主轴连接的风轮。
此外,该优选结构中采用了针对垂直轴风力机周围的非定常流场特点设计的专用叶片, 该叶片具有自起转风轮能力和很高的风能利用系数 Cpmax (可达 0.45— 0.50 ); 按上述结构 将该叶片固定连接或转动连接于轮架后, 可很好地发挥该叶片的自起转能力和风能利用性 能; 尤其在采用转动连接方式时, 叶片会在风力作用下自动绕转动连接点转动一定角度, 从而更好地发挥叶片的风能利用性能。
优选地, 所述轮架采用第二结构:
所述传动框中部呈正多边形、 并设有桁架; 所述桁架由两上下排布且同轴的第二、 第 三法兰, 以及分别均布于第二、 第三法兰周向且沿径向延伸的承重臂和加强臂构成, 所述 承重臂和加强臂的末端分别与传动框中部正多边形各顶点固连; 对应的承重臂和加强臂之 间设有至少一个支筋; 所述第二、 第三法兰形成传动框的旋转中心, 并与塔架顶端构成轴 向约束的水平转动副。
更优选地, 所述风轮还包括与塔架顶端转动连接、且轴线沿垂向布置的主轴或者负载 的动力输入轴, 所述第二、 第三法兰与主轴或者与动力输入轴同轴固连; 所述叶片为垂向 延伸的流线形截面叶片; 所述叶片具有分别呈凸形、 且非对称地分布于叶片翼弦两侧的朝 外叶面和朝内叶面; 所述叶片横截面形状呈非对称液滴形; 所述叶片的中弧线拱向所述旋 转轴线; 所述叶片的截面中、 垂直于翼弦方向上的厚度最大处在翼弦上的垂足与前缘点之 间的距离为翼弦长度的 0.12-0.29倍。
第二结构中, 桁架作为轮架与主轴之间的承接结构, 其单位重量内的强度较高, 在达 到预期强度的同时不会增加风轮重量、 甚至能减轻风轮重量, 从而使风轮能有效大型化。 同时, 采用第二结构后, 风轮受力均匀性良好, 更利于风轮转动。 该结构也可用于与塔架 顶端负载动力输入轴连接的风轮。 此外, 该优选结构釆用的叶片为前文所述的专用叶片。
优选地, 所述固定件为一端与传动框或连接框的辐条外端固定连接或转动连接、 另一 端与叶片朝内叶面固连的直板; 或者, 所述固定件为具有两外端和一转角端的" V"形件, 所述" V"形件的两外端分别与叶片朝内叶面或叶片端面固连, 所述" V"形件的转角端与传动 框或连接框的辐条外端固定连接或转动连接; 或者, 所述固定件为具有流线形外边缘的板 件, 所述板件的板面与叶片端面固连, 所述板件朝传动框或连接框延伸有突出耳, 所述突 出耳与传动框、 连接框辐条的外端固定连接或转动连接; 或者, 所述固定件为具有流线形 外边缘的箍环, 所述箍环内边缘箍于叶片周向, 所述箍环外边缘朝传动框或连接框延伸有 突出耳, 所述突出耳与传动框、 连接框辐条的外端固定连接或转动连接。
这样固定件本身不会影响叶片对风能的利用, 而且在转动连接时有利于叶片顺畅地进 行角向转动, 能更好地发挥专用叶片的风能利用性能。
为实现风力机功率控制, 本发明进一步完善的技术方案如下:
优选地,所述固定件朝向传动框或连接框的一側与传动框或连接框辐条之间设有用以 转动叶片角度的伸缩式控制器, 或者, 所述固定件靠近叶片的部位与传动框或连接框辐条 之间设有用以转动叶片角度的伸缩式控制器; 所述控制器为弹性部件, 或者, 所述控制器 为受控端外接控制设备的电动控制器。
当控制器为弹性部件时则能以叶片离心力与弹性力之间的作用力平衡的方式实施风 力机功率控制; 当控制器为电动控制器时则能以电动控制的方式实施风力机功率控制。 实 施风力机功率控制后, 可扩大风力机的风速适用范围。
为简化支撑结构, 避免干扰气流、 影响叶片的风能利用性能; 同时, 为提高支撑结构 单位重量内的强度和刚度, 以利减轻风轮重量, 本发明进一步完善的技术方案如下: 所述传动框中部与连接框中部呈形状相同且各对应边相互平行的正多边形; 所述传动 框中部正多边形各顶点与连接框中部正多边形各顶点之间经支撑件固连; 所述支撑件为具 有四个末端的" X"形件, 所述" X"形件上部两端、 下部两端分别与传动框或连接框的两相邻 顶点固连, 且所述 "X"形件位于传动框和连接框的同一侧; 或者, 所述支撑件为固连传动 框、 连接框中部正多边形各对应顶点的直杆; 或者, 所述支撑件包括固连传动框、 连接框 中部正多边形各对应顶点的直杆, 所述直杆与顶点的两侧边之间还设有斜撑。
申请人经深入实践研究发现, 采用上述优选结构后, 不仅能避免干扰气流, 还能在满 足预期刚度和强度要求的同时进一步减轻风轮重量。
优选地, 所述传动框中部正多边形外側的相邻辐条之间还设有连筋, 起到加固作用; 所述连接框中部正多边形的相邻辐条之间还设有连杆; 或者, 所述连接框中部正多边形外 侧的相邻辐条之间还设有连杆, 起到加固作用; 相邻叶片的顶端之间、 底端之间分别固定 连接或转动连接有连接缆, 连接缆可减小叶片旋转的离心力对叶片端部施加的向外弯矩, 能使相邻叶片彼此联动而使所有叶片的安装角同步变化, 并使某个叶片顶端的雷击能分流 在各个叶片的避雷线中。
优选地, 所述连接框有至少两个、 并与传动框形成至少两层辐条, 每层辐条分别安装 有对应的叶片, 相邻两层辐条上安装的叶片交错分布。
这样既能提高叶片最佳攻角的迎风概率,使风轮更易起转, 又能以分段的形式降低叶 片长度, 从而降低叶片的制造、 运输和安装成本。
与现有技术相比, 本发明的有益效果如下:
( 1 )通过采用优化轮架本身结构, 有效降低风轮重心并减轻风轮重量。
( 2 )通过设置并优化桁架结构, 使承接结构单位重量内的强度较高, 从而有利于风 轮大型化。
( 3 )通过采用垂直轴风力机专用叶片, 优化叶片固定件结构, 确保专用叶片的风能 利用性能可得到充分发挥。
( 4 )通过优化支撑结构, 不仅能避免干扰气流, 还能通过提高支撑结构单位重量内 的强度和刚度来进一步减轻风轮重量。
( 5 )通过分段、交错安装叶片,提高了叶片最佳攻角的迎风概率而更容易起转风轮, 并降低叶片的制造、 运输和安装成本。 附图说明
图 1为本发明实施例 1的结构示意图。
图 2、 图 3分别为图 1的 A、 B区域放大图。
图 4为本发明实施例 1轮架的结构示意图。
图 5为本发明实施例 1传动框和桁架的结构示意图。
图 6、 图 7分别为本发明实施例 1连接框、 支撑件的结构示意图。 图 8为本发明实施例 2的结构示意图。
图 9、 图 10分别为图 8的。、 D区域放大图。
图 11为本发明实施例 2轮架的结构示意图。
图 12为本发明实施例 2传动框和桁架的结构示意图。
图 13、 图 14分别为本发明实施例 2连接框、 支撑件的结构示意图。 图 15为本发明实施例 3的结构示意图。
图 16、 图 17分别为图 15的5、 F区 i或放大图。
图 18为本发明实施例 3轮架的结构示意图。
图 19为图 18的 G区域放大图。
图 20、 图 21分别为本发明实施例 3连接框、 支撑件的结构示意图。 图 22为本发明实施例 4的结构示意图。
图 23、 图 24分别为图 22的 H、 I区域放大图。
图 25为图 24的 J区域放大图。
图 26为本发明实施例 4轮架的结构示意图。
图 27为本发明实施例 4传动框和桁架的结构示意图。
图 28为图 27的 K区域放大图。
图 29为图 27中桁架结构示意图。
图 30、 图 31分别为本发明实施例 4所用连接框的结构示意图。 图 32为本发明实施例 5的结构示意图。
图 33、 图 34分别为图 32的!^、 M区域放大图。
图 35为本发明实施例 5轮架的结构示意图。
图 36为本发明实施例 5传动框和桁架的结构示意图。
图 37为图 36的 N区域放大图。
图 38为本发明实施例 6的结构示意图。
图 39为图 38的 0区域放大图。
图 40为本发明实施例 6轮架的结构示意图。
图 41为本发明实施例 9的结构示意图。
图 42为本发明实施例 7的结构示意图。
图 43、 图 44、 图 45分别为图 42的 Q、 R、 S区域放大图。
图 46为图 45的 T区域放大图。
图 47为本发明实施例 7轮架的结构示意图。
图 48为本发明实施例 7传动框和桁架的结构示意图。 图 49为图 48的 U区域放大图。
图 50为图 48中桁架结构示意图。
图 51、 图 52分别为本发明实施例 Ί连接框、 固定件的结构示意图。
图 53为本发明实施例 8的结构示意图。
图 54为图 53的 V区域放大图。
图 55为图 54的俯视示意图。
图 56至图 62为本发明可用于实施例 1至 3、 9的其它传动框示意图。
图 63为本发明可用于实施例 4至 8的其它传动框示意图。
图 64为图 63中桁架结构示意图。
图 65至图 67为本发明可用的其它连接框示意图。
图 68为本发明可用于实施例 1至 3、 9的一种传动框示意图。
图 69、 图 70为本发明可用的其它固定件示意图。
图 71为本发明所用垂直轴风力机专用叶片截面的示意图。 具体实施方式
下面参照附图并结合实施例对本发明作进一步详细描述。但是本发明不限于所给出的 例子。
实施例 1
本实施例低重心高效垂直轴风力机如图 1至图 3所示, 包括确定垂向旋转轴线的固定 塔架 1和支撑于塔架 1上的风轮 2 , 风轮 2与塔架 1构成轴向约束的水平转动副; 风轮 2 包括旋转中心支撑于塔架 1的轮架 3、 以及分布于轮架 3周边的叶片 4; 叶片 4为垂向延 伸的流线形截面叶片, 叶片 4具有分别呈凸形、 且非对称地分布于叶片翼弦两侧的朝外叶 面和朝内叶面; 轮架 3包括一组周向均布水平延伸且上、 下对应的辐条, 上、 下对应的辐 条外端分别与叶片 4的上、 下相应部位固定连接。
具体而言,如图 4所示,轮架 3的辐条分别构成一旋转中心支撑于塔架 1的传动框 6、 以及两个连接框 7, 连接框 7经支撑件 11与相邻的传动框 6固定连接; 传动框 6、 连接框 7辐条的外端分别与叶片 4直接固定连接; 如图 3所示, 叶片 4横截面形状呈非对称液滴 形, 叶片 4的中弧线拱向旋转轴线; 如图 71所示, 叶片 4的截面中、 垂直于翼弦方向上 的厚度最大处在翼弦上的垂足与前缘点之间的距离 Xt为翼弦长度的 0.12-0.29倍。 本实施 例采用由两个连接框 Ί与一个传动框 6形成的双层结构, 形成两层辐条, 各叶片 4分别安 装于各层辐条, 相邻两层辐条上安装的叶片 4交错分布。
如图 2、 图 5所示, 塔架 1顶端与负载的动力输入轴 13转动连接, 动力输入轴 13的 轴线沿垂向布置;传动框 6中部设有形成旋转中心的第一法兰 10-6,第一法兰 10-6与动力 输入轴 13固定连接; 第一法兰与塔架顶端构成轴向约束的水平转动副。
具体而言, 传动框 6中部呈正多边形、 并设有桁架 10; 桁架 10包括第一法兰 10-6, 第一法兰 10-6与动力输入轴 13固定连接,第一法兰 10-6周向均布有径向延伸的承重臂 10-3 , 承重臂 10-3末端分别与传动框 6中部正多边形各顶点固连。需要说明的是,如图 67所示, 承重臂 10-3末端也可分别与传动框 6中部正多边形各边的中部固连,同时传动框 6中部正 多边形相邻两边之间还设有与承重臂 10-3末端固连的连杆 10-7。
如图 4至图 7所示, 传动框 6中部与连接框 Ί中部呈形状相同且各对应边相互平行的 正多边形 (本实施例为正六边形); 传动框 6中部正多边形各顶点与连接框 7中部正多边 形各顶点之间经支撑件 11固连;支撑件 11为具有四个末端的" X"形件, "X"形件上部两端、 下部两端分别与传动框 6或连接框 7的两相邻顶点固连, 且" X"形件位于传动框 6和连接 框 7的同一侧。
实施例 2
本实施例低重心高效垂直轴风力机如图 8至图 14所示, 其基本结构采用与实施例 1 类似的无主轴结构, 此外:
传动框 6中部与连接框 7中部呈形状相同且各对应边相互平行的正方形; 支撑件 11 包括固连传动框 6、 连接框 7中部正多边形各对应顶点的直杆 11-1 , 直杆 11-1与顶点的两 侧边之间还设有斜撑 11-2。
实施例 3
本实施例低重心高效垂直轴风力机如图 15至图 21所示, 其基本结构采用与实施例 1 类似的无主轴结构, 此外:
( 1 )本实施例采用由一个连接框 7和一个传动框 6形成的单层结构。
( 2 )桁架 10的相邻承重臂 10-3之间还设有连杆 10-8。
( 3 )传动框 6中部与连接框 7中部呈形状相同且各对应边相互平行的正五边形; 支 撑件 11为固连传动框 6、 连接框 7中部正多边形各对应顶点的直杆。
实施例 4
本实施例低重心高效垂直轴风力机如图 22至图 31所示, 包括确定垂向旋转轴线的固 定塔架 1和支撑于塔架 1上的风轮 2, 风轮 2与塔架 1构成轴向约束的水平转动副; 风轮 2包括旋转中心支撑于塔架 1的轮架 3、 以及分布于轮架 3周边的叶片 4, 其中上层叶片比 下层叶片更靠近旋转轴线;叶片 4为垂向延伸的流线形截面叶片,叶片 4具有分别呈凸形、 且非对称地分布于叶片翼弦两侧的朝外叶面和朝内叶面; 轮架 3包括一组周向均布水平延 伸且上、下对应的辐条,上、下对应的辐条外端分别与叶片 4的上、下相应部位转动连接。 具体而言,如图 26所示,轮架 3的辐条分别构成一旋转中心支撑于塔架 1的传动框 6、 以及两种不同尺寸的连接框 7, 其中, 较大的连接框 7经支撑件 11与传动框 6的同尺寸连 接点固定连接,较小的连接框 7经支撑件 11与较大的连接框 7上的同尺寸连接点固定连接; 如图 25所示, 传动框 6、 连接框 Ί辐条的外端分别与固连于叶片 4的固定件 8转动连接, 固定件 8为一端与传动框 6或连接框 7的辐条外端转动连接、 另一端与叶片 4朝内叶面固 连的直板; 如图 24所示, 叶片 4横截面形状呈非对称液滴形, 叶片 4的中弧线拱向旋转 轴线; 如图 71所示, 叶片 4的截面中、 垂直于翼弦方向上的厚度最大处在翼弦上的垂足 与前缘点之间的距离 Xt为翼弦长度的 0.12-0.29倍。 本实施例采用由两种连接框 7与一个 传动框 6形成上小下大的双层结构。
如图 23、 图 26至图 29所示, 风轮 2还包括与塔架 1顶端转动连接、 且轴线沿垂向布 置的主轴 9; 传动框 6中部呈正多边形、 并设有桁架 10; 桁架 10包括两上下排布且同轴 的第二、 第三法兰 10-1、 10-2, 第二、 第三法兰 10-1、 10-2分别设于主轴 9周向并与主轴 9固连,第二、第三法兰 10-1、 10-2分别周向均布有径向延伸的承重臂 10-3和加强臂 10-4, 承重臂 10-3和加强臂 10-4的末端分别与传动框 6中部正多边形各顶点固连; 对应的承重 臂 10-3和加强臂 10-4之间设有一个支筋 10-5; 第二、 第三法兰 10-1、 10-2形成传动框 6 的旋转中心, 并与塔架顶端主轴 9构成轴向约束的水平转动副; 桁架 10的支筋 10-5、 承 重臂 10-3、 加强臂 10-4之间形成三角形支撑结构。
如图 26、 图 27、 图 30、 图 31所示, 传动框 6中部与连接框 7中部呈形状相同且各对 应边相互平行的正多边形 (本实施例为正六边形), 且连接框 7采用两种结构, 一种如图 30所示, 整体呈三角形, 另一种如图 31所示, 整体呈由两个不同尺寸的三角形交错构成 的六角形; 传动框 6整体呈三角形; 传动框 6中部正多边形各顶点与连接框 7中部正多边 形各顶点之间经支撑件 11固连。 本实施例的支撑件 11与实施例 1相同, 如图 7所示, 支 撑件 11为具有四个末端的" X"形件, "X"形件上部两端、 下部两端分别与传动框 6或连接 框 Ί的两相邻顶点固连, 且" X"形件位于传动框 6和连接框 7的同一侧。
需要说明的是, 以上固定件 8也可与传动框 6、 连接框 7辐条的外端固定连接, 从而 使叶片 4与轮架辐条固定连接。
实施例 5
本实施例低重心高效垂直轴风力机如图 32至图 37所示, 其基本结构采用与实施例 4 类似的有主轴结构, 此外:
( 1 )本实施例采用由三个连接框 7和一个传动框 6形成的三层结构。
( 2 )如图 36所示, 传动框 6整体呈六角形。 同时, 连接框 Ί的结构如图 30、 图 31 所示。 实施例 6
本实施例低重心高效垂直轴风力机如图 38至图 40所示, 其基本结构采用与实施例 4 类似的有主轴结构, 此外:
( 1 )本实施例采用由四个连接框 7和一个传动框 6形成的四层结构。
( 2 )如图 36所示, 传动框 6整体呈六角形。 同时, 连接框 7的结构如图 30、 图 31 所示。
实施例 7
本实施例低重心高效垂直轴风力机如图 42至图 52所示, 其基本结构采用与实施例 4 类似的有主轴结构, 此外:
( 1 )本实施例采用由两个连接框 Ί和一个传动框 6形成的双层结构; 且两连接框 Ί 分别位于传动框 6的上方和下方, 各层安装的叶片对齐分布。
( 2 )如图 44至图 46、 图 52所示, 固定件 8为具有两外端和一转角端的 "V"形件, "V" 形件的两外端 8-1分别与叶片 4朝内叶面或叶片 4端面固连, " V"形件的转角端 8-2与传动 框 6或连接框 7的辐条外端转动连接。
( 3 )如图 48至图 50所示, 桁架 10的相邻承重臂 10-3之间设有连杆 10-8; 对应的承 重臂 10-3和加强臂 10-4之间设有三个支筋 10-5 , 形成多个三角形支撑结构。
( 4 )如图 48、 图 51所示, 传动框 6中部与连接框 Ί中部呈形状相同且各对应边相互 平行的正五边形; 连接框 7 中部正五边形外侧的相邻辐条之间还设有连杆 7-1 ; 传动框 6 中部正五边形外侧的相邻辐条之间还设有连筋 6- 1。
实施例 8
本实施例低重心高效垂直轴风力机如图 53至图 55所示,其基本结构与实施例 7类似, 不同之处有:
( 1 )相邻叶片 4的顶端之间、 底端之间分别固定连接或转动连接有连接缆 14。 连接 缆的作用为: 可减小叶片旋转的离心力对叶片端部施加的向外弯矩, 能使相邻叶片彼此联 动而使所有叶片的安装角同步变化, 并使某个叶片顶端的雷击能分流在各个叶片的避雷线 中。
( 2 ) 固定件 8靠近叶片 4的部位与传动框 6或连接框 Ί辐条之间设有用以转动叶片 角度的伸缩式控制器 12; 控制器 12为弹性部件, 或者, 控制器 12为受控端外接控制设备 的电动控制器。
此外, 如图 55所示, 固定件与传动框或连接框的转动连接点为 c点, 固定件延伸线与 叶片轴线的两交点中远离控制器 12的交点为 0点,塔架轴线与固定件平面的交点为 a点; 0点与 a点的连线和叶片轴线之间的夹角为 Θ角。 控制器 12可为弹性部件, 在施加或撤销外力时, 其长度能变化或回复; 当某一风速 使风力机转速变化时, 叶片离心力随之变化, 且叶片以 c点为轴心转动一定角度, 使控制 器 12伸长或缩短, 并使 Θ值变化, 从而改变气流对叶片的作用, 该作用又导致风力机转 速和叶片离心力的负反馈变化, 这时控制器 12的弹性力使控制器 12的长度、 Θ值、 风力 机转速和叶片离心力均再次产生负反馈变化, 在这样的循环中, 各变量的变化幅度越来越 小, 直至动态平衡建立、 Θ值不再变化为止。
这样, 一方面可即时反馈且成本低, 也即从开始变化到开始控制的反馈是由弹性材料 瞬时进行的, 另一方面控制可靠性高且免维护。
此外,控制器 12也可采用受控端外接控制设备的电动控制器,但是,在电动控制时, 一方面从开始变化到开始控制的反馈中存在响应时间延迟, 响应时间越短则电动控制的成 本越高, 另一方面要提高可靠性只能采用高成本电气元件, 且需定期维护。
实施例 9
本实施例低重心高效垂直轴风力机如图 41所示, 其基本结构采用与实施例 1类似的 无主轴结构, 此外:
( 1 )传动框 6结构如图 61所示, 连接框 7结构如图 30所示。
( 2 )叶片 4为上下延伸而成的螺旋型叶片。
除上述实施例外, 本发明还可以有其他实施方式, 例如:
( 1 )传动框 6可以有多种结构形式, 传动框 6中部可呈正三角形、 正方形、 正五边 形、 正六边形等。
部分可用于实施例 1至 3、 9的示例如图 56至图 62、 图 68所示。
部分可用于实施例 4至 8的示例如图 63所示, 其中, 如图 64所示桁架 10的对应承 重臂 10-3与加强臂 10-4之间设有五个支筋 10-5。
( 2 )连接框 7可以有多种结构形式, 连接框 7中部可呈正三角形、 正方形、 正五边 形、 正六边形等; 部分示例如图 65至图 67所示。
( 3 )固定件还可采用如下结构:如图 71所示,固定件 8为具有流线形外边缘的板件, 板件的板面与叶片端面固连,板件朝传动框或连接框延伸有突出耳 8-1, 突出耳 8-1与传动 框、 连接框辐条的外端固定连接或转动连接; 或者, 如图 70所示, 固定件 8为具有流线 形外边缘的箍环, 箍环内边缘箍于叶片周向, 箍环外边缘朝传动框或连接框延伸有突出耳 8-1 , 突出耳 8-1与传动框、 连接框辐条的外端固定连接或转动连接。 采用这种结构的固定 件后, 实施功率控制的结构为: 固定件朝向传动框或连接框的一侧与传动框或连接框辐条 之间设有用以转动叶片角度的伸缩式控制器。
凡采用等同替换或等效变换形成的技术方案, 均落在本发明要求的保护范围。

Claims

权利要求
1. 一种低重心高效垂直轴风力机, 包括确定垂向旋转轴线的固定塔架和支撑于塔架上 的风轮, 所述风轮与塔架构成轴向约束的水平转动副; 所述风轮包括旋转中心支撑于所述 塔架的轮架、 以及分布于所述轮架周边的叶片; 其特征是, 所述叶片为上下延伸的流线形 截面叶片; 所述轮架包括一组周向均布水平延伸且上、 下对应的辐条; 所述轮架的辐条分 别构成一旋转中心支撑于塔架的传动框、 以及至少一个连接框, 所述连接框经支撑件与相 邻的连接框或传动框固定连接; 所述传动框、 连接框辐条的外端分别与叶片的上、 下相应 部位直接固定连接、 或者与固连于叶片的固定件固定连接或转动连接。
2. 根据权利要求 1 所述低重心高效垂直轴风力机, 其特征是, 所述轮架釆用第一结 构:
所述传动框中部呈正多边形、 并设有桁架; 所述桁架由第一法兰和均布于第一法兰周 向且沿径向延伸的承重臂构成, 所述承重臂末端分别与传动框中部正多边形各顶点、 或者 正多边形各边的中部固连; 当所述桁架承重臂末端分别与传动框中部正多边形各边的中部 固连时, 所述传动框中部正多边形相邻两边之间还设有与承重臂固连的连杆; 所述第一法 兰形成传动框的旋转中心, 并与塔架顶端构成轴向约束的水平转动副。
3. 根据权利要求 2所述低重心高效垂直轴风力机, 其特征是, 所述风轮还包括与塔架 顶端转动连接、 且轴线沿垂向布置的主轴或者负载的动力输入轴, 所述第一法兰与主轴或 者与动力输入轴同轴固连; 所述叶片为垂向延伸的流线形截面叶片; 所述叶片具有分别呈 凸形、 且非对称地分布于叶片翼弦两侧的朝外叶面和朝内叶面; 所述叶片横截面形状呈非 对称液滴形; 所述叶片的中弧线拱向所述旋转轴线; 所述叶片的截面中、 垂直于翼弦方向 上的厚度最大处在翼弦上的垂足与前缘点之间的距离为翼弦长度的 0.12-0.29倍。
4. 根据权利要求 1 所述低重心高效垂直轴风力机, 其特征是, 所述轮架釆用第二结 构:
所述传动框中部呈正多边形、 并设有桁架; 所述桁架由两上下排布且同轴的第二、 第 三法兰, 以及分别均布于第二、 第三法兰周向且沿径向延伸的承重臂和加强臂构成, 所述 承重臂和加强臂的末端分别与传动框中部正多边形各顶点固连; 对应的承重臂和加强臂之 间设有至少一个支筋; 所述第二、 第三法兰形成传动框的旋转中心, 并与塔架顶端构成轴 向约束的水平转动副。
5. 根据权利要求 4所述低重心高效垂直轴风力机, 其特征是, 所述风轮还包括与塔架 顶端转动连接、 且轴线沿垂向布置的主轴或者负载的动力输入轴, 所述第二、 第三法兰与 主轴或者与动力输入轴同轴固连; 所述叶片为垂向延伸的流线形截面叶片; 所述叶片具有 分别呈凸形、 且非对称地分布于叶片翼弦两侧的朝外叶面和朝内叶面; 所述叶片横截面形 状呈非对称液滴形; 所述叶片的中弧线换向所述旋转轴线; 所述叶片的截面中、 垂直于翼 弦方向上的厚度最大处在翼弦上的垂足与前缘点之间的距离为翼弦长度的 0, 12-0.29倍。
6.根据权利要求 1至 5任一项所述低重心高效垂直轴风力机, 其特征是, 所述固定件 为一端与传动框或连接框的辐条外端固定连接或转动连接、 另一端与叶片朝内叶面固连的 直板; 或者, 所述固定件为具有两外端和一转角端的" V"形件, 所述" V"形件的两外端分别 与叶片朝内叶面或叶片端面固连, 所述 "V"形件的转角端与传动框或连接框的辐条外端固 定连接或转动连接; 或者, 所述固定件为具有流线形外边缘的板件, 所述板件的板面与叶 片端面固连, 所述板件朝传动框或连接框延伸有突出耳, 所述突出耳与传动框、 连接框辐 条的外端固定连接或转动连接; 或者, 所述固定件为具有流线形外边缘的箍环, 所述箍环 内边缘箍于叶片周向, 所述箍环外边缘朝传动框或连接框延伸有突出耳, 所述突出耳与传 动框、 连接框辐条的外端固定连接或转动连接。
7.根据权利要求 1至 5任一项所述低重心高效垂直轴风力机, 其特征是, 所述固定件 朝向传动框或连接框的一侧与传动框或连接框辐条之间设有用以转动叶片角度的伸缩式 控制器, 或者, 所述固定件靠近叶片的部位与传动框或连接框辐条之间设有用以转动叶片 角度的伸缩式控制器; 所述控制器为弹性部件, 或者, 所述控制器为受控端外接控制设备 的电动控制器。
8.根据权利要求 1至 5任一项所述低重心高效垂直轴风力机, 其特征是, 所述传动框 中部与连接框中部呈形状相同且各对应边相互平行的正多边形; 所述传动框中部正多边形 各顶点与连接框中部正多边形各顶点之间经支撑件固连; 所述支撑件为具有四个末端的" X" 形件, 所述" X"形件上部两端、 下部两端分别与传动框或连接框的两相邻顶点固连, 且所 述" X"形件位于传动框和连接框的同一侧; 或者, 所述支撑件为固连传动框、 连接框中部 正多边形各对应顶点的直杆; 或者, 所述支撑件包括固连传动框、 连接框中部正多边形各 对应顶点的直杆, 所述直杆与顶点的两侧边之间还设有斜撑。
9.根据权利要求 8所述低重心高效垂直轴风力机, 其特征是, 所述传动框中部正多边 形外侧的相邻辐条之间还设有连筋; 所述连接框中部正多边形的相邻辐条之间还设有连扞 , 或者, 所述连接框中部正多边形外侧的相邻辐条之间还设有连杆; 相邻叶片的顶端之间、 底端之间分别固定连接或转动连接有连接缆。
10.根据权利要求 1至 5任一项所述低重心高效垂直轴风力机, 其特征是, 所述连接 框有至少两个、 并与传动框形成至少两层辐条, 每层辐条分别安装有对应的叶片, 相邻两 层辐条上安装的叶片交错分布。
PCT/CN2014/078743 2014-04-29 2014-05-29 低重心高效垂直轴风力机 WO2015165141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410177840.5 2014-04-29
CN201410177840.5A CN103939281B (zh) 2014-04-29 2014-04-29 低重心高效垂直轴风力机

Publications (1)

Publication Number Publication Date
WO2015165141A1 true WO2015165141A1 (zh) 2015-11-05

Family

ID=51187114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078743 WO2015165141A1 (zh) 2014-04-29 2014-05-29 低重心高效垂直轴风力机

Country Status (2)

Country Link
CN (1) CN103939281B (zh)
WO (1) WO2015165141A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397332A (zh) * 2018-02-09 2018-08-14 浙江省交通规划设计研究院 一种加装端板的竖轴双转子潮流能水轮机
CN109272889A (zh) * 2018-11-23 2019-01-25 覃庆冬 多版面可旋转式的公交站广告牌
CN109356788A (zh) * 2018-12-20 2019-02-19 渭南风云海新能源科技有限公司 一种垂直轴风力发电设备上的叶片支撑臂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006044222A1 (de) * 2006-09-15 2008-03-27 Tassa Gmbh Windkraftmaschine
CN101688523A (zh) * 2007-06-11 2010-03-31 垂直风公司 具有竖直轴的风力涡轮机
CN101956670A (zh) * 2010-09-17 2011-01-26 青海风发科技发展有限公司 一种具有多层风轮的垂直轴风力机
WO2011075833A1 (en) * 2009-12-23 2011-06-30 Bri Energy Solutions Limited Wind turbine blades, and their use
CN202300832U (zh) * 2011-09-29 2012-07-04 王玮林 一种垂直轴风力发电机
CN103629045A (zh) * 2013-12-13 2014-03-12 兰州理工大学 一种h型垂直轴风力机叶轮的多系统组合结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004019620B4 (de) * 2004-04-16 2006-02-16 Jaroslaw Warszewski Strömungsgesteuertes Windrad
US7802967B2 (en) * 2007-08-24 2010-09-28 Frenchy Krauss Vertical axis self-breaking wind turbine
CN102213180B (zh) * 2010-04-04 2013-07-10 李锋 一种立轴风力发电机组的风机
CN102619679A (zh) * 2011-01-28 2012-08-01 李锋 一种立轴风轮及其风力发电机组
KR101230324B1 (ko) * 2011-05-18 2013-02-06 주식회사 웨스텍 에이치 로우터 수직축 풍력발전

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006044222A1 (de) * 2006-09-15 2008-03-27 Tassa Gmbh Windkraftmaschine
CN101688523A (zh) * 2007-06-11 2010-03-31 垂直风公司 具有竖直轴的风力涡轮机
WO2011075833A1 (en) * 2009-12-23 2011-06-30 Bri Energy Solutions Limited Wind turbine blades, and their use
CN101956670A (zh) * 2010-09-17 2011-01-26 青海风发科技发展有限公司 一种具有多层风轮的垂直轴风力机
CN202300832U (zh) * 2011-09-29 2012-07-04 王玮林 一种垂直轴风力发电机
CN103629045A (zh) * 2013-12-13 2014-03-12 兰州理工大学 一种h型垂直轴风力机叶轮的多系统组合结构

Also Published As

Publication number Publication date
CN103939281B (zh) 2017-01-11
CN103939281A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
CN103925149B (zh) 组配型低重心高效垂直轴风力机
CN103562547B (zh) 自然能量取出装置
US20110084495A1 (en) Vertical axis wind turbine
CA2685189A1 (en) Modified darrieus vertical axis turbine
WO2009067845A1 (fr) Aérogénérateur à axe vertical de type à portance à quatre quadrants à direction constante
WO2018049827A1 (zh) 风轮悬挂型垂直轴风力发电机
CN103807100B (zh) 一种展翼变桨式垂直轴风力发电机组
EP2906819A1 (en) Joined blade wind turbine rotor
WO2010102459A1 (zh) 一种活叶调速型风力发电机组
CN103939284B (zh) 集流叶片低重心垂直轴风力机
CN108431402B (zh) 遮挡叶片支撑件型垂直轴风力机
WO2015165141A1 (zh) 低重心高效垂直轴风力机
CN202250597U (zh) 垂直轴风力发电机用窗扇形叶片组合式风轮
JP2023095968A (ja) 風力発電所
CN103726985B (zh) 一种展翼双摆叶式垂直轴风力发电机组
CN110360049A (zh) 一种水平轴风力发电机
WO2011095054A1 (zh) 高效大功率垂直轴风力发电机
CN104696165B (zh) 一种展翼减振式垂直轴风力发电机组
CN203717235U (zh) 一种多层展翼摆叶式的垂直轴风力发电机组
CN201116512Y (zh) 轻质结构垂直轴风力发电机风轮
JP4754316B2 (ja) 直線翼垂直軸風車
CN203847324U (zh) 集流叶片组配型低重心高效垂直轴风力机
JP2013519022A (ja) 高効率・ハイパワー垂直軸風力発電機
WO2021017036A1 (zh) 一种柔性叶片式萨布纽斯风轮机
CN103807101B (zh) 一种大型变桨式垂直轴风力发电机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30/03/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14890660

Country of ref document: EP

Kind code of ref document: A1