WO2011093421A1 - Conductive sheet, method for using conductive sheet, and capacitance type touch panel - Google Patents

Conductive sheet, method for using conductive sheet, and capacitance type touch panel Download PDF

Info

Publication number
WO2011093421A1
WO2011093421A1 PCT/JP2011/051694 JP2011051694W WO2011093421A1 WO 2011093421 A1 WO2011093421 A1 WO 2011093421A1 JP 2011051694 W JP2011051694 W JP 2011051694W WO 2011093421 A1 WO2011093421 A1 WO 2011093421A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
conductive
lattice
lattices
pattern
Prior art date
Application number
PCT/JP2011/051694
Other languages
French (fr)
Japanese (ja)
Inventor
栗城匡志
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to BR112012017874A priority Critical patent/BR112012017874A2/en
Publication of WO2011093421A1 publication Critical patent/WO2011093421A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a conductive sheet, a method for using the conductive sheet, and a capacitive touch panel, and more particularly to a conductive sheet suitable for use in a projected capacitive touch panel, a method for using the conductive sheet, and a capacitive touch panel.
  • the touch panel is mainly applied to a small size such as a PDA (personal digital assistant) or a mobile phone, but it is considered that the touch panel will be increased in size by being applied to a personal computer display or the like.
  • ITO Indium Tin Oxide
  • Examples of the touch panel using a thin metal wire as an electrode include, for example, Japanese Patent Application Laid-Open No. 5-224818, US Pat. No. 5,130,041, International Publication No. 1995/27334, US Patent Application Publication No. 2004/0239650. US Pat. No. 7,202,859, pamphlet of International Publication No. 1997/18508, and Japanese Patent Application Laid-Open No. 2003-099185 are known.
  • the present invention has been made in consideration of such problems, and in a touch panel, even when an electrode is configured with a thin metal wire pattern, a conductive sheet capable of ensuring high transparency, a method of using the conductive sheet, and An object is to provide a capacitive touch panel.
  • the conductive sheet according to the first aspect of the present invention includes a base and a conductive portion formed on the base, and the conductive portion is adjacent to two or more conductive large lattices formed of thin metal wires.
  • a connection portion is formed by a thin metal wire that electrically connects the large lattices, and each large lattice is configured by combining two or more small lattices, and a circuit is configured by a combination of the large lattices,
  • the width Wc of the connecting portion is Ps when the pitch of the small lattice is Ps. Wc> Ps / ⁇ 2 It is characterized by satisfying.
  • two or more large lattices are arranged in the first direction via the connecting portion to constitute one conductive pattern, and two or more conductive patterns are arranged in the first direction.
  • An electrically insulated insulating portion in which the small lattice does not exist is arranged between the adjacent conductive patterns arranged in the second direction orthogonal to each other, and the circuit is configured by the arrangement of the conductive patterns and the insulating portions. It is characterized by being.
  • the length of one side of the large lattice is 3 to 10 mm.
  • the length of one side of the small lattice is 30 to 500 ⁇ m.
  • a conductive sheet according to a second aspect of the present invention includes a base, a first conductive portion formed on one main surface of the base, and a second conductive portion formed on the other main surface of the base.
  • the first conductive portion has two or more conductive first large lattices made of fine metal wires, and a first connection portion made of metal fine wires that electrically connects the adjacent first large lattices.
  • the second conductive portion includes two or more conductive second large lattices formed of metal thin wires and a second connection portion formed of metal thin wires that electrically connect the adjacent second large lattices.
  • Each of the first large lattices and each of the second large lattices is configured by combining two or more small lattices, and the first large lattices are arranged in the first direction via the first connection portions.
  • Two first conductive patterns are configured, and a circuit is configured by a combination of the first large lattice and the second large lattice,
  • the width Wc1 of the first connecting portion and the width Wc2 of the second connecting portion are set when the pitch of the small lattice is Ps.
  • the first large lattice is arranged in the first direction via the first connection portion to constitute one first conductive pattern by a thin metal wire
  • two or more second A large lattice is arranged in a second direction orthogonal to the first direction via the second connection portion to form one second conductive pattern by a fine metal wire
  • the small first conductive pattern is adjacent to the small first conductive pattern.
  • an electrically insulated first insulating part without a lattice is disposed, and between the adjacent second conductive patterns, an electrically insulated second insulating part without the small lattice is disposed,
  • the circuit is configured by an arrangement of one conductive pattern, the second conductive pattern, the first insulating portion, and the second insulating portion.
  • the thin metal wire has a line width of 10 ⁇ m or less.
  • the projection distance between the straight line portion at the side portion of the first large lattice and the straight line portion at the side portion of the second large lattice is set based on the size of the small lattice. It is characterized by that.
  • the projection distance is 100 to 400 ⁇ m.
  • the first conductive portion includes a first terminal wiring pattern connected to an end of each of the first conductive patterns and a length of one side of one main surface of the base. A plurality of first terminals connected to the corresponding first terminal wiring patterns, and the second conductive portions are connected to ends of the second conductive patterns. A second terminal wiring pattern; and a plurality of second terminals formed at a central portion in the length direction of one side of the other main surface of the base and connected to the corresponding second terminal wiring pattern.
  • each first conductive pattern is connected to the corresponding first terminal wiring pattern via a first connection portion, and an end portion of each second conductive pattern.
  • the corresponding second terminal wiring patterns are respectively connected via the second connection portions, and the plurality of first connection portions are arranged linearly along the second direction, and the plurality of second connection portions Are arranged in a straight line along the first direction.
  • the first insulating portion and the second insulating portion are opposed to each other with the base interposed therebetween, and a facing portion between the first insulating portion and the second insulating portion is an upper surface.
  • the shape seen from the above is a polygonal shape.
  • the polygonal shape is a square shape.
  • the polygonal shape is a wedge shape.
  • the small lattice has a polygonal shape.
  • the small lattice has a square shape.
  • a method for using a conductive sheet according to a third aspect of the present invention is a method of using two or more conductive first large lattices made of metal fine wires and a metal fine wire electrically connecting the adjacent first large lattices.
  • 1 connecting portion is formed, and each of the first large lattices is configured by combining two or more small lattices, and when the width Wc1 of the first connecting portion is Ps as the pitch of the small lattices, A first conductive sheet satisfying Wc1> Ps / ⁇ 2, a second large lattice of two or more conductive wires formed by a thin metal wire, and a second connection formed by a thin metal wire that electrically connects the adjacent second large lattices.
  • Each of the second large lattices is formed by combining two or more small lattices, and when the width Wc2 of the second connection portion is Ps, the pitch of the small lattices is Wc2> Conductivity using second conductive sheet satisfying Ps / ⁇ 2.
  • a method of using a sheet wherein the first conductive sheet includes two or more first large lattices arranged in a first direction via the first connection portion to form one first conductive pattern, In the second conductive sheet, two or more second large lattices are arranged in a second direction orthogonal to the first direction via the second connection portion to form one second conductive pattern, By combining the conductive sheet and the second conductive sheet, the first connection portion of the first conductive sheet and the second connection portion of the second conductive sheet are combined to form the small lattice array. It is arranged so that it may be arranged.
  • a capacitive touch panel according to a fourth aspect of the present invention includes the conductive sheet according to the first or second aspect of the present invention described above.
  • the resistance of the conductive pattern formed on the substrate can be reduced, and the electrode is formed with the metal fine line pattern on the touch panel. Even when configured, high transparency can be ensured, and it is suitable for use in, for example, a projected capacitive touch panel.
  • the capacitive touch panel according to the present invention can reduce the resistance of the conductive pattern formed on the substrate, and also ensures high transparency even when the electrode is configured with a fine metal wire pattern. For example, it is possible to cope with an increase in the size of a projected capacitive touch panel.
  • FIG. 5A is a cross-sectional view showing an example of the first laminated conductive sheet with a part omitted
  • FIG. 5B is a cross-sectional view showing another example of the first laminated conductive sheet, with a part omitted.
  • FIG. 8A is a schematic diagram illustrating a first configuration example to which an antireflection film is applied
  • FIG. 8B is a schematic diagram illustrating the second configuration example
  • FIG. 8C is a schematic diagram illustrating the second configuration example. It is a disassembled perspective view which abbreviate
  • FIG. 16A is a cross-sectional view in which a part of the produced photosensitive material is omitted
  • FIG. 16B is an explanatory view showing double-sided simultaneous exposure on the photosensitive material. The first exposure process and the second exposure process are performed so that the light irradiated to the first photosensitive layer does not reach the second photosensitive layer and the light irradiated to the second photosensitive layer does not reach the first photosensitive layer.
  • FIG. 16A is a cross-sectional view in which a part of the produced photosensitive material is omitted
  • FIG. 16B is an explanatory view showing double-sided simultaneous exposure on the photosensitive material. The first exposure process and the second exposure process are performed so that the light irradiated to the first photosensitive layer does not reach the second photosensitive layer and the light irradiated to the second photosensitive layer does not reach the first photosensitive layer.
  • FIG. 16A is a cross-sectional view in which a part of the produced photosensitive material is omitted
  • FIG. 16B is
  • indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • the conductive sheet according to the first embodiment (hereinafter referred to as the first conductive sheet 10A) is formed on one main surface of the first transparent base 12A (see FIG. 2).
  • One conductive portion 13A is provided.
  • the first conductive portion 13A includes two or more conductive first large lattices 14A made of fine metal wires, and first connection portions 16A made of metal fine wires that electrically connect the adjacent first large lattices 14A.
  • Each first large lattice 14A is configured by combining two or more small lattices 18, and a circuit (conductive circuit pattern) is configured by combining the first large lattice 14A.
  • the small lattice 18 has the smallest square shape.
  • the fine metal wire is made of, for example, gold (Au), silver (Ag), or copper (Cu).
  • the length of one side of the first large lattice 14A is preferably 3 to 10 mm, and more preferably 4 to 6 mm. If the length of one side is less than the above lower limit value, when the first conductive sheet 10A is used for a touch panel, for example, the capacitance of the first large lattice 14A at the time of detection is reduced, and thus there is a possibility of detection failure. Becomes higher. On the other hand, if the upper limit is exceeded, the position detection accuracy may be reduced. From the same viewpoint, the length of one side of the small lattice 18 constituting the first large lattice 14A is preferably 50 to 500 ⁇ m, and more preferably 150 to 300 ⁇ m. When the small lattice 18 is in the above range, it is possible to keep the transparency better, and when it is attached to the front surface of the display device, the display can be visually recognized without a sense of incongruity.
  • first large lattices 14A are arranged in the x direction (first direction) via the first connection portion 16A, and one conductive circuit pattern (hereinafter referred to as a first conductive pattern 22A) is formed by a thin metal wire.
  • first conductive patterns 22A are arranged in the y direction (second direction) orthogonal to the x direction, and the adjacent first conductive patterns 22A are electrically insulated without the small lattice 18
  • the first insulating portion 24A is disposed.
  • the x direction indicates, for example, the horizontal direction (or vertical direction) of a projection capacitive touch panel 100 (see FIG. 3) described later or the horizontal direction (or vertical direction) of the display panel 110 on which the touch panel 100 is installed.
  • the side portion 28b has a configuration in which a large number of needle-like lines 32 (sides of the small lattice 18) project in a comb-tooth shape from the linear portion 30 continuous along the first side portion 28a and the second side portion 28b.
  • the line 32 is also referred to as a comb 32).
  • the third side portion 28c and the fourth side portion 28d adjacent to the other vertex portion 26b not connected to the adjacent first large lattice 14A are along the third side portion 28c and the fourth side portion 28d, respectively.
  • a straight line portion 30 is formed, and one small lattice 18 (exactly two adjacent sides) corresponding to the other apex portion 26b is removed.
  • the first connecting portion 16A has a shape in which four medium lattices 20 having a size including four small lattices 18 (first medium lattice 20a to fourth medium lattice 20d) are arranged in a zigzag shape. That is, the first middle lattice 20a exists at the boundary portion between the straight portion 30 of the second side portion 28b and the straight portion 30 of the fourth side portion 28d, and one small lattice 18 and an L-shaped space are formed. Have a different shape.
  • the second intermediate lattice 20b is adjacent to one side of the first intermediate lattice 20a (the straight portion 30 of the second side portion 28b) and has a shape in which a square space is formed, that is, four small lattices 18.
  • the third intermediate lattice 20c is adjacent to the first intermediate lattice 20a and adjacent to the second intermediate lattice 20b, and has the same shape as the second intermediate lattice 20b.
  • the fourth middle lattice 20d includes a second straight portion 30 (second straight portion 30 from the outermost side toward the inside of the first large lattice 14A) of the third side portion 28c, and the first side portion 28a. And adjacent to the second intermediate lattice 20b and adjacent to the third intermediate lattice 20c, and similarly to the first intermediate lattice 20a, one small lattice 18 and an L-shaped space are provided. It has a formed shape.
  • the fourth middle lattice 20d exists on the extension of the straight portion 30 of the fourth side portion 28d in the first large lattice 14A.
  • the arrangement pitch of the small lattices 18 is Ps
  • the arrangement pitch Pm of the medium lattice 20 has a relationship of 2 ⁇ Ps.
  • the width Wc1 of the first connecting portion 16A is Wc1> Ps / ⁇ 2
  • the open end of the first large lattice 14A existing on one end side of each first conductive pattern 22A has a shape in which the first connection portion 16A does not exist.
  • the end portion of the first large lattice 14A existing on the other end portion side of each first conductive pattern 22A is electrically connected to the first terminal wiring pattern 41a by a thin metal wire via the first connection portion 40a (see FIG. 3). It is connected to the.
  • one first conductive pattern 22A is configured by arranging two or more first large lattices 14A in the x direction via the first connection portions 16A.
  • the large lattice 14A is configured by combining two or more small lattices 18 and the width Wc1 of the first connecting portion 16A is Ps and the pitch of the small lattice 18 is Ps, Wc1> Ps / ⁇ 2 is satisfied. Therefore, the electrical resistance can be greatly reduced as compared with the configuration in which one electrode is formed by one ITO film. Accordingly, when the first conductive sheet 10A is used for a projection capacitive touch panel, for example, the response speed can be increased, and the touch panel can be increased in size.
  • the touch panel 100 includes a sensor body 102 and a control circuit (configured by an IC circuit or the like) not shown.
  • the sensor main body 102 is for the touch panel according to the first embodiment configured by laminating the first conductive sheet 10A and the second conductive sheet 10B described later. It has a conductive sheet (hereinafter referred to as the first laminated conductive sheet 50A) and a protective layer 106 laminated thereon (the description of the protective layer 106 is omitted in FIG. 5A).
  • the first laminated conductive sheet 50A and the protective layer 106 are arranged on the display panel 110 in the display device 108 such as a liquid crystal display.
  • the sensor main body 102 has a sensor unit 112 disposed in a region corresponding to the display screen 110 a of the display panel 110 and a terminal wiring unit 114 disposed in a region corresponding to the outer peripheral portion of the display panel 110. (So-called picture frame).
  • the first conductive sheet 10 ⁇ / b> A applied to the touch panel 100 has a large number of the first conductive patterns 22 ⁇ / b> A arranged at portions corresponding to the sensor portions 112.
  • a plurality of first terminal wiring patterns 41a made of fine metal wires led out from the connection portion 40a are arranged.
  • the outer shape of the first conductive sheet 10A has a rectangular shape when viewed from above, and the outer shape of the sensor unit 112 also has a rectangular shape.
  • a plurality of first terminals 116a are arranged in the lengthwise central portion at the peripheral portion on the one long side of the first conductive sheet 10A in the length direction of the one long side. Is formed.
  • a plurality of first connection portions 40a are linearly arranged along one long side of sensor portion 112 (long side closest to one long side of first conductive sheet 10A: y direction).
  • the first terminal wiring patterns 41a derived from the first connection portions 40a are routed toward the substantially central portion of one long side of the first conductive sheet 10A, and are electrically connected to the corresponding first terminals 116a. It is connected. Accordingly, the first terminal wiring patterns 41a connected to the first connection portions 40a corresponding to both sides of one long side in the sensor unit 112 are routed with substantially the same length.
  • the first terminal 116a may be formed at or near the corner of the first conductive sheet 10A, but the longest first terminal wiring pattern 41a and the shortest first among the plurality of first terminal wiring patterns 41a.
  • a large difference in length occurs between the terminal wiring pattern 41a and signal transmission to the first conductive pattern 22A corresponding to the longest first terminal wiring pattern 41a and a plurality of first terminal wiring patterns 41a in the vicinity thereof.
  • the second conductive sheet 10B has a second conductive portion 13B formed on one main surface of the second transparent base 12B.
  • the second conductive portion 13B is formed with two or more conductive second large lattices 14B made of fine metal wires and second connection portions 16B made of metal fine wires that electrically connect the adjacent second large lattices 14B.
  • each of the second large lattices 14B is configured by combining two or more small lattices 18, and the second connection portion 16B has n times the small lattice 18 (n is a real number larger than 1). 1) one or more medium grids 20 having a pitch of (1) are arranged.
  • the length of one side of the second large lattice 14B is also preferably 3 to 10 mm, and more preferably 4 to 6 mm, like the first large lattice 14A.
  • two or more second large lattices 14B are arranged in the y direction (second direction) via the second connection portion 16B, and one conductive circuit pattern (hereinafter referred to as a second conductive pattern 22B) is formed by a thin metal wire. ).
  • Two or more second conductive patterns 22B are arranged in the x direction (first direction) orthogonal to the y direction, and the adjacent second conductive patterns 22B are electrically insulated without the small lattice 18
  • a second insulating portion 24B is arranged.
  • the second connecting portion 16B does not exist at the open end of the second large lattice 14B existing on the end side.
  • the ends of the large lattice 14B are electrically connected to the second terminal wiring patterns 41b made of fine metal wires through the second connection portions 40b.
  • a number of second conductive patterns 22B are arranged at portions corresponding to the sensor unit 112, and a plurality of second terminal wiring patterns 41b derived from the respective second connection portions 40b are arranged at the terminal wiring unit 114. Yes.
  • a plurality of second terminals 116 b are arranged on the one long side side of the second conductive sheet 10 ⁇ / b> B at the central portion in the length direction.
  • An array is formed in the length direction of the side.
  • a plurality of second connection portions 40b (for example, odd-numbered second connection portions 40b) along one short side of the sensor unit 112 (short side closest to one short side of the second conductive sheet 10B: x direction).
  • Second connection portions 40b (for example, even-numbered ones) along the other short side of sensor portion 112 (short side closest to the other short side of second conductive sheet 10B: x direction) Are connected in a straight line.
  • odd-numbered second conductive patterns 22B are respectively connected to the corresponding odd-numbered second connection portions 40b, and even-numbered second conductive patterns 22B are respectively corresponding even-numbered. It is connected to the second second connection part 40b.
  • the second terminal wiring pattern 41b derived from the odd-numbered second connection portion 40b and the second terminal wiring pattern 41b derived from the even-numbered second connection portion 40b are arranged on one long side of the second conductive sheet 10B.
  • the wires are routed substantially toward the center and are electrically connected to the corresponding second terminals 116b. Therefore, for example, the first and second second terminal wiring patterns 41b are routed with substantially the same length.
  • the second terminal 116b may be formed in the corner portion of the second conductive sheet 10B or in the vicinity thereof, but as described above, the longest second terminal wiring pattern 41b and a plurality of second terminal wiring patterns in the vicinity thereof.
  • signal transmission to the second conductive pattern 22B corresponding to 41b becomes slow. Therefore, as in the present embodiment, local signal transmission delay can be suppressed by forming the second terminal 116b in the central portion in the length direction of one long side of the second conductive sheet 10B. it can. This leads to an increase in response speed.
  • the derivation form of the first terminal wiring pattern 41a may be the same as the second terminal wiring pattern 41b described above, and the derivation form of the second terminal wiring pattern 41b may be the same as the first terminal wiring pattern 41a described above.
  • this first laminated conductive sheet 50A is used as a touch panel, a protective layer is formed on the first conductive sheet 10A, and the first terminals derived from the multiple first conductive patterns 22A of the first conductive sheet 10A.
  • the wiring pattern 41a and the second terminal wiring pattern 41b derived from the multiple second conductive patterns 22B of the second conductive sheet 10B are connected to, for example, a control circuit that controls scanning.
  • a touch position detection method a self-capacitance method or a mutual capacitance method can be preferably employed. That is, in the case of the self-capacitance method, voltage signals for touch position detection are sequentially supplied to the first conductive pattern 22A, and voltage signals for touch position detection are sequentially supplied to the second conductive pattern 22B.
  • the control circuit calculates the touch position based on the transmission signal supplied from the first conductive pattern 22A and the second conductive pattern 22B.
  • a voltage signal for touch position detection is sequentially supplied to the first conductive pattern 22A, and sensing (detection of a transmission signal) is sequentially performed on the second conductive pattern 22B.
  • sensing detection of a transmission signal
  • the stray capacitance of the finger is added in parallel to the parasitic capacitance between the first conductive pattern 22A and the second conductive pattern 22B facing the touch position.
  • the waveform of the transmission signal from the second conductive pattern 22B is different from the waveform of the transmission signal from the other second conductive pattern 22B.
  • the touch position is calculated based on the order of the first conductive patterns 22A supplying the voltage signal and the transmission signal from the supplied second conductive pattern 22B.
  • the fifth adjacent to one apex portion 26a not connected to the adjacent second large lattice 14B is along the fifth side part 28e in the same manner as the first side part 28a of the first large lattice 14A in the first conductive sheet 10A.
  • a large number of needle-like lines 32 protrude from the continuous straight part 30 in a comb-tooth shape.
  • the 6th side part 28f is set as the form by which the linear part 30 continuous along the 6th side part 28f was formed similarly to the 3rd side part 28c of 14 A of 1st large lattices in the 1st conductive sheet 10A. Yes. Looking at the seventh side portion 28g and the eighth side portion 28h adjacent to the other vertex portion 26b not connected to the adjacent second large lattice 14B, the seventh side portion 26g is the same as the fifth side portion 28e. In addition, a large number of needle-like lines 32 (sides of the small lattice 18) project in a comb-tooth shape from the straight portion 30 continuous along the seventh side portion 28g. Similar to the side portion 28f, a linear portion 30 that is continuous along the eighth side portion 28h is formed.
  • the second connection portion 16B has a shape in which four medium lattices 20 having a size including four small lattices 18 (fifth medium lattice 20e to eighth medium lattice 20h) are arranged in a zigzag shape.
  • the fifth middle lattice 20e includes the second straight portion 30 (second straight portion from the outermost side toward the inside of the second large lattice 14B) and the eighth side portion 28h of the sixth side portion 28f. And has a shape in which one small lattice 18 and an L-shaped space are formed.
  • the sixth intermediate lattice 20f is adjacent to one side of the fifth intermediate lattice 20e (the second straight portion 30 of the sixth side portion 28f), and has a shape in which a square space is formed, that is, four portions.
  • the small lattices 18 are arranged in a matrix, and the cross is removed from the center.
  • the seventh intermediate lattice 20g is adjacent to the fifth intermediate lattice 20e and is adjacent to the sixth intermediate lattice 20f, and has the same shape as the sixth intermediate lattice 20f.
  • the eighth middle lattice 20h exists at the boundary between the straight portion 30 of the seventh side 28g and the fifth side 28e, is adjacent to the sixth middle lattice 20f, and is adjacent to the seventh middle lattice 20g.
  • the fifth middle lattice 20e has a shape in which one small lattice 18 and an L-shaped space are formed.
  • One side of the eighth middle lattice 20h exists on the extension of the straight portion 30 of the eighth side 28h in the fifth middle lattice 20e.
  • the arrangement pitch Pm of the medium lattice 20 has a relationship of 2 ⁇ Ps.
  • the width Wc2 of the second connection portion (the distance between the vertex of the sixth middle lattice 20f and the vertex of the seventh middle lattice 20g and along the x direction) satisfies Wc2> Ps / ⁇ 2. Satisfactory, here 6 ⁇ (Ps / ⁇ 2).
  • the first connection portion 16A and the second connection portion 16A of the first conductive pattern 22A are opposed to the first transparent base 12A (see FIG. 5A), and the first insulation portion 24A of the first conductive pattern 22A and the second insulation of the second conductive pattern 22B are opposed to each other.
  • the portion 24B is opposed to the first transparent base 12A.
  • the line widths of the first conductive pattern 22A and the second conductive pattern 22B are the same, but in FIG. 7, the first conductive pattern 22A is shown so that the positions of the first conductive pattern 22A and the second conductive pattern 22B can be seen.
  • the line width of the second conductive pattern 22B is exaggerated and narrowed.
  • the second large size of the second conductive sheet 10B is filled so as to fill the gaps of the first large lattice 14A formed in the first conductive sheet 10A.
  • the lattice 14B is arranged. In other words, a large lattice is spread.
  • the tips of the comb teeth 32 in the first side portion 28a and the second side portion 28b of the first large lattice 14A are the straight portions 30 of the sixth side portion 28f and the eighth side portion 28h of the second large lattice 14B.
  • the small lattices 18 are arranged, and similarly, the comb teeth 32 on the fifth side portion 28e and the seventh side portion 28g of the second large lattice 14B are formed.
  • Each tip has a shape connected to each of the straight portions 30 of the third side portion 28c and the fourth side portion 28d of the first large lattice 14A.
  • the small lattices 18 are arranged, The boundary between the first large lattice 14A and the second large lattice 14B is almost indistinguishable.
  • the straight portions 30 that is, project from the first side portion 28a and the second side portion 28b of the first large lattice 14A.
  • the new straight line portion 30 is used, the width of the overlapping portion between the straight line portions 30 increases (thickening of the line) due to a slight shift in the overlay position accuracy.
  • first side portion 28a to the eighth side portion 28h of the first large lattice 14A and the second large lattice 14B are all formed as the straight portion 30, the first side portion 28a to the fourth side portion of the first large lattice 14A.
  • the straight line portions 30 in the fifth side portion 28e to the eighth side portion 28h of the second large lattice 14B are located immediately below the straight line portion 30 in the side portion 28d.
  • each straight line portion 30 also functions as a conductive portion, a parasitic capacitance is formed between the side portion of the first large lattice 14A and the side portion of the second large lattice 14B.
  • the rising time or falling time of the waveform of the transmission signal from the first conductive pattern 22A and the second conductive pattern 22B is also delayed, and there is a possibility that the change in the waveform of the transmission signal cannot be captured during a predetermined scan time. .
  • the projection distance Lf between the straight portion 30 at the side portion of the first large lattice 14A and the straight portion 30 at the side portion of the second large lattice 14B is set.
  • the length of one side of the small lattice 18 is approximately the same (50 to 500 ⁇ m).
  • the needle-like lines 32 projecting from the first side portion 28a and the second side portion 28b of the first large lattice 14A are only the tips of the sixth side portion 28f and the eighth side portion of the second large lattice 14B, respectively.
  • the needle-like lines 32 facing the straight line portion 30 in 28h and projecting from the fifth side portion 28e and the seventh side portion 28g of the second large lattice 14B are only the tips of the third side of the first large lattice 14A. Since the portion 28c and the fourth side portion 28d only face the straight line portion 30, the parasitic capacitance formed between the first large lattice 14A and the second large lattice 14B is reduced. As a result, the CR time constant is also reduced, and the detection accuracy and response speed can be improved.
  • the optimum distance of the projection distance Lf described above is not the size of the first large lattice 14A and the second large lattice 14B, but the size (line width and one side) of the small lattice 18 constituting the first large lattice 14A and the second large lattice 14B. It is preferable to set appropriately according to the length). In this case, if the size of the small lattice 18 is too large with respect to the first large lattice 14A and the second large lattice 14B having a certain size, the translucency is improved, but the dynamic range of the transmission signal is decreased. Therefore, there is a risk of causing a decrease in detection sensitivity. On the other hand, if the size of the small lattice 18 is too small, the detection sensitivity is improved, but there is a limit to the reduction of the line width, so that the translucency may be deteriorated.
  • the optimum value (optimum distance) of the projection distance Lf is preferably 100 to 400 ⁇ m, more preferably 200 to 300 ⁇ m, when the line width of the small lattice 18 is 1 to 9 ⁇ m. If the line width of the small lattice 18 is reduced, the above-mentioned optimum distance can be shortened. However, since the electrical resistance increases, the CR time constant increases even if the parasitic capacitance is small, resulting in detection sensitivity. May cause a decrease in response speed and response speed. Therefore, the line width of the small lattice 18 is preferably in the above range.
  • the size of the first large lattice 14A and the second large lattice 14B and the small lattice 18 The size is determined, and the optimum distance between the first large lattice 14A and the second large lattice 14B is determined based on the line width of the small lattice 18.
  • the intersection of the fifth middle lattice 20e and the seventh middle lattice 20g of the second connection portion 16B is the first large lattice.
  • 14A is located substantially at the center of the second middle grating 20b, and the intersection of the sixth middle grating 20f and the eighth middle grating 20h of the second connecting portion 16B is at the middle of the third middle grating 20c of the first large grating 14A.
  • a plurality of small lattices 18 are formed by a combination of the first medium lattice 20a to the eighth medium lattice 20h.
  • a plurality of small lattices 18 are arranged in a portion where the first connection portion 16A and the second connection portion 16B face each other by a combination of the first connection portion 16A and the second connection portion 16B. It becomes indistinguishable from the small lattice 18 constituting the first large lattice 14A and the small lattice 18 constituting the second large lattice 14B, and visibility is improved.
  • a plurality of first terminals 116a are formed in the center portion in the length direction at the peripheral portion on one long side of the first conductive sheet 10A, and the second conductive sheet 10B
  • a plurality of second terminals 116b are formed in the central portion in the length direction of the peripheral portion on one long side.
  • the first terminal 116 a and the second terminal 116 b are arranged so as not to overlap with each other, and further, the first terminal wiring pattern 41 a and the second terminal wiring pattern 41 b are arranged. To avoid overlapping.
  • the first terminal 116a and, for example, the odd-numbered second terminal wiring pattern 41b may partially overlap each other.
  • the plurality of first terminals 116a and the plurality of second terminals 116b are connected to two connectors (first terminal connector and second terminal connector) or one connector (first terminal 116a and second terminal 116b). And can be electrically connected to the control circuit via a cable.
  • the first terminal wiring pattern 41a and the second terminal wiring pattern 41b do not overlap with each other, generation of parasitic capacitance between the first terminal wiring pattern 41a and the second terminal wiring pattern 41b is suppressed. , A decrease in response speed can be suppressed.
  • the area of the terminal wiring part 114 can be reduced. This can promote downsizing of the display panel 110 including the touch panel 100 and can make the display screen 110a look impressively large. In addition, the operability as the touch panel 100 can be improved. In order to further reduce the area of the terminal wiring portion 114, it is conceivable to reduce the distance between the adjacent first terminal wiring patterns 41a and the distance between the adjacent second terminal wiring patterns 41b. In consideration of prevention of occurrence, it is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the distance between the adjacent first terminal wiring patterns 41a be 50 ⁇ m or more and 100 ⁇ m or less.
  • the response speed can be increased. Increase in size can be promoted.
  • the boundary between the first large lattice 14A of the first conductive sheet 10A and the second large lattice 14B of the second conductive sheet 10B becomes inconspicuous, and there are a plurality of combinations depending on the combination of the first connection portion 16A and the second connection portion 16B. Since the small lattice 18 is formed, there is no inconvenience such as local thickening of the line, and the visibility is improved as a whole.
  • first conductive patterns 22A and second conductive patterns 22B can be greatly reduced, thereby increasing the response speed and detecting the position within the drive time (scan time). Will also be easier. This leads to an increase in the screen size of the touch panel 100 (vertical x horizontal size, not including thickness).
  • the first conductive pattern 22A is formed on one main surface of the first transparent substrate 12A, and the first conductive surface 22B is formed on the main surface of the second transparent substrate 12B.
  • the second conductive pattern 22B is formed, but as shown in FIG. 5B, the first conductive pattern 22A is formed on one main surface of the first transparent substrate 12A, and the other main surface of the first transparent substrate 12A is formed.
  • the second conductive pattern 22B may be formed.
  • the second transparent substrate 12B does not exist, the first transparent substrate 12A is laminated on the second conductive portion 13B, and the first conductive portion 13A is laminated on the first transparent substrate 12A.
  • three configuration modes can be preferably employed. That is, in the first configuration example shown in FIG. 8A, the first laminated conductive sheet 50A (first conductive portion 13A, first transparent base 12A, and second conductive material shown in FIG. 13B), a hard coat layer 122 is laminated on the first laminated conductive sheet 50A, and an antireflection layer 124 is laminated on the hard coat layer 122.
  • the touch panel 100 is configured by the transparent adhesive 120, the second conductive portion 13 ⁇ / b> B, the first transparent base 12 ⁇ / b> A, and the first conductive portion 13 ⁇ / b> A on the display device 108, and the hard coat layer 122 and the antireflection on the touch panel 100.
  • the layer 124 constitutes an antireflection film 126.
  • the first laminated conductive sheet 50A and the protective resin layer 128 shown in FIG. 5B are laminated on the display device 108 via the transparent adhesive 120, and further on the protective resin layer 128.
  • a hard coat layer 122 is laminated, and an antireflection layer 124 is laminated on the hard coat layer 122.
  • the touch panel 100 is configured by the transparent adhesive 120, the second conductive portion 13B, the first transparent base 12A, the first conductive portion 13A, and the protective resin layer 128 on the display device 108, and the hard coat on the touch panel 100 is formed.
  • the layer 122 and the antireflection layer 124 constitute an antireflection film 126.
  • the first laminated conductive sheet 50A and the second transparent adhesive 120B shown in FIG. 5B are laminated on the display device 108 via the first transparent adhesive 120A.
  • a transparent film 130 is laminated on the transparent adhesive 120B, a hard coat layer 122 is laminated on the transparent film 130, and an antireflection layer 124 is laminated on the hard coat layer 122.
  • the touch panel 100 is configured by the first transparent adhesive 120A, the second conductive portion 13B, the first transparent base 12A, the first conductive portion 13A, and the second transparent adhesive 120B on the display device 108.
  • the upper transparent film 130, the hard coat layer 122, and the antireflection layer 124 constitute an antireflection film 126.
  • the first conductive sheet 10A and the second conductive sheet 10B are positioned at the corner portions, for example, at the first conductive sheet 10A and the second conductive sheet 10B. It is preferable to form the first alignment mark 118a and the second alignment mark 118b.
  • the first alignment mark 118a and the second alignment mark 118b become a new composite alignment mark when the first conductive sheet 10A and the second conductive sheet 10B are bonded to form the first laminated conductive sheet 50A.
  • the mark also functions as an alignment mark for positioning used when the first laminated conductive sheet 50A is installed on the display panel 110.
  • the second laminated conductive sheet 50B has substantially the same configuration as the first laminated conductive sheet 50A described above, but as shown in FIG. 10, the first side portion of the first large lattice 14A. 28a to 4th side portion 28d each have a rectangular wave shape in which two or more rectangular shapes are arranged, and as shown in FIG. 11, the fifth side portion 28e to the eighth side portion 28h of the second large lattice 14B Each is different in that it has a rectangular wave shape in which two or more rectangular shapes are arranged.
  • one comb tooth 32 on each of the first side portion 28a and the second side portion 28b of the first large lattice 14A of the first conductive sheet 10A shown in FIG. are connected to each other, so that every other small lattice 18 is arranged, and each straight portion 30 of the third side portion 28c and the fourth side portion 28d is separated every other portion, so that one small lattice 18 is provided.
  • the first side portion 28a to the fourth side portion 28d of the first large lattice 14A of the second laminated conductive sheet 50B are each formed in two or more rectangular shapes.
  • the rectangular wave shapes of the first side portion 28a of the first large lattice 14A and the fourth side portion 28d facing the first side portion 28a are staggered, and the first The second side 28b of the one large lattice 14A is opposed to the second side 28b.
  • Each rectangular wave shape of the third side portion 28c is set to be staggered.
  • the small lattices 18 are arranged every other one, the straight portions 30 of the sixth side portion 28f and the eighth side portion 28h are separated every other portion, and the small lattices 18 are arranged every other portion.
  • two or more rectangular shapes are arranged in each of the fifth side portion 28e to the eighth side portion 28h of the second large lattice 14B of the second conductive sheet 10B.
  • the rectangular wave shapes of the fifth side portion 28e of the second large lattice 14B and the eighth side portion 28h facing the fifth side portion 28e are staggered so that the second large lattice 14B has a rectangular wave shape.
  • the sixth side portion 28f of the present invention and the seventh side portion facing the sixth side portion 28f Each rectangular wave shape of 8g is made to be staggered.
  • the first conductive sheet 10A is laminated on the second conductive sheet 10B to form the second laminated conductive sheet 50B, as shown in FIG. 12, the first laminated conductive sheet 50A (see FIG. 7) and Similarly, the first connection portion 16A of the first conductive pattern 22A and the second connection portion 16B of the second conductive pattern 22B are opposed to each other with the first transparent base 12A (see FIG. 5A) therebetween, and the first conductive pattern The first insulating portion 24A of 22A and the second insulating portion 24B of the second conductive pattern 22B are opposed to each other with the first transparent base 12A interposed therebetween.
  • the line widths of the first conductive pattern 22A and the second conductive pattern 22B are the same, the positions of the first conductive pattern 22A and the second conductive pattern 22B in FIG.
  • the line width of the first conductive pattern 22A is widened, and the line width of the second conductive pattern 22B is narrowed and exaggerated.
  • the second large size of the second conductive sheet 10B is filled so as to fill the gaps of the first large lattice 14A formed in the first conductive sheet 10A.
  • the lattice 14B is arranged.
  • the opening portions of the rectangular wave-shaped concave portions 42a in the first side portion 28a and the second side portion 28b of the first large lattice 14A correspond to the sixth side portion 28f and the eighth side portion 28h of the second large lattice 14B.
  • the small lattices 18 are continuously arranged, and similarly, the third large lattice 14A has a third shape.
  • the opening portions of the rectangular wave-shaped concave portions 42a in the side portion 28c and the fourth side portion 28d are the tip portions of the rectangular wave-shaped convex portions 42b of the fifth side portion 28e and the seventh side portion 28g of the second large lattice 14B.
  • the small lattices are continuously arranged, and the boundary between the first large lattice 14A and the second large lattice 14B is almost indistinguishable. .
  • the overlap between the opening portion of the rectangular wave-shaped concave portion 42a and the tip portion of the convex portion 42b makes the boundary between the first large lattice 14A and the second large lattice 14B inconspicuous, and visibility is improved.
  • a cross-shaped opening is formed at the portion where the first insulating portion 24A and the second insulating portion 24B face each other.
  • the portion does not block light. There is almost no noticeable.
  • the intersection point of the fifth middle lattice 20e and the seventh middle lattice 20g of the second connection portion 16B is similar to the first laminated conductive sheet 50A.
  • the intersection of the sixth intermediate lattice 20f of the second connection portion 16B and the eighth intermediate lattice 20h is located substantially at the center of the second intermediate lattice 20b of the first connection portion 16A, and the third intermediate lattice 20c of the first connection portion 16A.
  • a plurality of small lattices 18 are formed by a combination of the first middle lattice 20a to the eighth middle lattice 20h.
  • a plurality of small lattices 18 are arranged in a portion where the first connection portion 16A and the second connection portion 16B face each other by a combination of the first connection portion 16A and the second connection portion 16B. It becomes indistinguishable from the small lattice 18 constituting the first large lattice 14A and the small lattice 18 constituting the second large lattice 14B, and visibility is improved.
  • the arrangement state of the first connection part 40a and the second connection part 40b, the arrangement of the first terminal wiring pattern 41a and the second terminal wiring pattern 41b in the terminal wiring part 114 The state and the arrangement state of the first terminals 116a and the second terminals 116b are the same as those of the first laminated conductive sheet 50A described above.
  • the response speed can be increased. Increase in size can be promoted.
  • the boundary between the first large lattice 14A of the first conductive sheet 10A and the second large lattice 14B of the second conductive sheet 10B becomes inconspicuous, and there are a plurality of combinations depending on the combination of the first connection portion 16A and the second connection portion 16B. Since the small lattice 18 is formed, there is no inconvenience such as local thickening of the line, and the visibility is improved as a whole.
  • the second laminated conductive sheet 50B four sides (first side portion 28a to fourth side portion 28d) of the first large lattice 14A and four sides (fifth side portion 28e) of the second large lattice 14B. Since the shape of each of the eighth side portion 28h) is a rectangular wave shape and the shape of each side is equivalently the same, the end portions of the first large lattice 14A and the second large lattice 14B are the same. The charge localization is suppressed, and erroneous detection of the fingertip position can be prevented. Also in the second laminated conductive sheet 50B, as shown in FIG.
  • the projection distance Lf between the straight portion 30 at the side portion of the first large lattice 14A and the straight portion 30 at the side portion of the second large lattice 14B. is substantially the same as the length of one side of the small lattice 18 (50 to 500 ⁇ m). Furthermore, since the vertices of the rectangular wave shape projecting from each side of the first large lattice 14A and the vertices of the rectangular waveform projecting from each side of the second large lattice 14B only face each other, the first The parasitic capacitance formed between the large lattice 14A and the second large lattice 14B is reduced. As a result, the CR time constant is also reduced, and the detection accuracy and response speed can be improved.
  • the first conductive sheet 10Aa of the laminated conductive sheet 50Ba according to this modification has substantially the same configuration as the first conductive sheet 10A (see FIG. 10) of the second laminated conductive sheet 50B described above, but as shown in FIG.
  • the first connecting portion 16A is different in that the first connecting portion 16A is formed in a substantially Z-shaped (zigzag) line shape instead of a lattice shape.
  • the first connecting portion 16A includes a boundary portion between the straight portion 30 of the second side portion 28b of the first large lattice 14A and the straight portion 30 of the fourth side portion 28d, and the first side portion 28a of the first large lattice 14A.
  • the second conductive sheet 10Ba has substantially the same configuration as the second conductive sheet 10B (see FIG. 11) of the second laminated conductive sheet 50B described above, but as shown in FIG. 14, the second connection portion 16B. However, it is different in that it is formed in a substantially Z-shaped (zigzag) line shape instead of a lattice shape.
  • the second connection portion 16B includes a boundary portion between the straight portion 30 of the sixth side portion 28f of the second large lattice 14B and the straight portion 30 of the eighth side portion 28h, and the fifth side portion 28e of the second large lattice 14B. Are formed between the straight portion 30 and the boundary portion between the straight portion 30 of the seventh side portion 28g.
  • the width Wc1 (the distance between one bending point and the other bending point and along the y direction) of the first connection portion 16A satisfies Wc1> Ps / ⁇ 2, where 2 ⁇ (Ps / ⁇ 2).
  • the width Wc2 (the distance between one bending point and the other bending point and along the x direction) of the second connecting portion 16B satisfies Wc2> Ps / ⁇ 2, where Then, 2 ⁇ (Ps / ⁇ 2).
  • the response speed can be increased and the touch panel can be increased in size. Can be made.
  • the width of the first connection portion 16A and the width of the second connection portion 16B are too large, the arrangement of the large lattices 14 is reduced.
  • the upper limit is preferably 2 ⁇ (Ps / ⁇ 2) to 20 ⁇ (Ps / ⁇ 2), and may be 8 ⁇ (Ps / ⁇ 2) to 14 ⁇ (Ps). / ⁇ 2) is more preferable.
  • the size of the small lattice 18 (the length of one side, the length of the diagonal line, etc.) and the first large lattice 14A are configured.
  • the number of small lattices 18 and the number of small lattices 18 constituting the second large lattice 14B can also be set as appropriate according to the size and resolution (number of wires) of the applied touch panel.
  • the arrangement pitch Pm of the medium lattice 20 constituting the first connection portion 16A and the second connection portion 16B is set to the arrangement pitch of the small lattices 18. Although it is set to twice Ps, it can be arbitrarily set according to the number of medium lattices, such as 1.5 times and 3 times. Since the arrangement pitch Pm of the medium lattice 20 is too small or too large, the arrangement of the first large lattice 14A and the second large lattice 14B becomes difficult and may deteriorate in appearance. It is preferably 1 to 10 times the 18 arrangement pitch Ps, more preferably 1 to 5 times.
  • the size of the small lattice 18 (the length of one side, the length of the diagonal line, etc.), the number of small lattices 18 constituting the first large lattice 14A, and the number of small lattices 18 constituting the second large lattice 14B are also as follows. It can be set as appropriate according to the size and resolution (number of wires) of the applied touch panel.
  • the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) are applied to the projected capacitive touch panel 100. Of course, it can be applied to a touch panel and a resistive touch panel.
  • a photosensitive silver halide salt is contained on the first transparent substrate 12A and the second transparent substrate 12B.
  • the photosensitive material having the emulsion layer to be exposed is exposed and developed to form a metallic silver portion and a light transmissive portion in the exposed portion and the unexposed portion, respectively, thereby forming the first conductive pattern 22A and the second conductive pattern 22B.
  • the desired first conductive pattern 22A and second conductive pattern 22B may not be obtained.
  • a pattern in which the comb teeth 32 protrude from the sides of the first large lattice 14A and the second large lattice 14B and a pattern in which a rectangular wave shape protrudes from the sides of the first large lattice 14A and the second large lattice 14B are uniform. It is difficult to form.
  • the photosensitive silver halide emulsion layer formed on both surfaces of the first transparent substrate 12A is collectively exposed to form the first conductive pattern 22A on one main surface of the first transparent substrate 12A.
  • a second conductive pattern 22B is formed on the other main surface of the transparent substrate 12A.
  • step S1 of FIG. 15 a long photosensitive material 140 is produced.
  • the photosensitive material 140 includes a first transparent substrate 12A and a photosensitive silver halide emulsion layer (hereinafter referred to as a first photosensitive layer 142a) formed on one main surface of the first transparent substrate 12A. And a photosensitive silver halide emulsion layer (hereinafter referred to as a second photosensitive layer 142b) formed on the other main surface of the first transparent substrate 12A.
  • step S2 of FIG. 15 the photosensitive material 140 is exposed.
  • the first photosensitive layer 142a is irradiated with light toward the first transparent substrate 12A to expose the first photosensitive layer 142a along the first exposure pattern, and the second photosensitive layer.
  • the layer 142b is subjected to a second exposure process in which light is irradiated toward the first transparent substrate 12A to expose the second photosensitive layer 142b along the second exposure pattern (double-sided simultaneous exposure).
  • the first photosensitive layer 142a is irradiated with the first light 144a (parallel light) through the first photomask 146a and the second photosensitive material 140a is irradiated.
  • the layer 142b is irradiated with the second light 144b (parallel light) through the second photomask 146b.
  • the first light 144a is obtained by converting the light emitted from the first light source 148a into parallel light by the first collimator lens 150a
  • the second light 144b is emitted from the second light source 148b. It is obtained by converting the light into parallel light by the second collimator lens 150b in the middle.
  • FIG. 16B the case where two light sources (first light source 148a and second light source 148b) are used is shown, but the light emitted from one light source is divided through the optical system to generate the first light.
  • the first photosensitive layer 142a and the second photosensitive layer 142b may be irradiated as the 144a and the second light 144b.
  • the exposed photosensitive material 140 is developed to produce the first laminated conductive sheet 50A as shown in FIG. 5B.
  • the first laminated conductive sheet 50A includes a first transparent base 12A and a first conductive portion 13A (first conductive pattern 22A, etc.) along a first exposure pattern formed on one main surface of the first transparent base 12A. And a second conductive portion 13B (second conductive pattern 22B, etc.) along the second exposure pattern formed on the other main surface of the first transparent substrate 12A.
  • the exposure time and development time of the first photosensitive layer 142a and the second photosensitive layer 142b vary depending on the type of the first light source 148a and the second light source 148b, the type of the developer, and the like. However, the exposure time and the development time are adjusted so that the development rate becomes 100%.
  • a first photomask 146a is disposed in close contact with the first photosensitive layer 142a, for example, and the first photomask 146a.
  • the first photosensitive layer 142a is exposed by irradiating the first light 144a from the first light source 148a disposed opposite to the first photomask 146a.
  • the first photomask 146a is composed of a glass substrate made of transparent soda glass and a mask pattern (first exposure pattern 152a) formed on the glass substrate. Accordingly, the first exposure process exposes a portion of the first photosensitive layer 142a along the first exposure pattern 152a formed on the first photomask 146a.
  • a gap of about 2 to 10 ⁇ m may be provided between the first photosensitive layer 142a and the first photomask 146a.
  • the second photomask 146b is disposed in close contact with the second photosensitive layer 142b, and the second photomask 146b is supplied from the second light source 148b disposed to face the second photomask 146b.
  • the second photosensitive layer 142b is exposed by irradiating the second light 144b toward.
  • the second photomask 146b includes a glass substrate formed of transparent soda glass and a mask pattern (second exposure pattern 152b) formed on the glass substrate. Yes.
  • the second exposure process exposes a portion of the second photosensitive layer 142b along the second exposure pattern 152b formed on the second photomask 146b.
  • a gap of about 2 to 10 ⁇ m may be provided between the second photosensitive layer 142b and the second photomask 146b.
  • the emission timing of the first light 144a from the first light source 148a and the emission timing of the second light 144b from the second light source 148b may be made simultaneously or different. Also good.
  • the first photosensitive layer 142a and the second photosensitive layer 142b can be exposed simultaneously by one exposure process, and the processing time can be shortened.
  • the exposure from one side affects the image formation on the other side (back side). Will be affected. That is, the first light 144a from the first light source 148a that has reached the first photosensitive layer 142a is scattered by the silver halide grains in the first photosensitive layer 142a, passes through the first transparent substrate 12A as scattered light, Part of it reaches the second photosensitive layer 142b. Then, the boundary portion between the second photosensitive layer 142b and the first transparent substrate 12A is exposed over a wide range, and a latent image is formed.
  • the exposure with the second light 144b from the second light source 148b and the exposure with the first light 144a from the first light source 148a are performed, and the first stacked conductive layer is subjected to subsequent development processing.
  • the conductive pattern (second conductive portion 13B) by the second exposure pattern 152b a thin conductive layer by the first light 144a from the first light source 148a is formed between the conductive patterns.
  • a desired pattern (pattern along the second exposure pattern 152b) cannot be obtained. The same applies to the first photosensitive layer 142a.
  • the thickness of the first photosensitive layer 142a and the second photosensitive layer 142b is set to a specific range, and the amount of silver applied to the first photosensitive layer 142a and the second photosensitive layer 142b is specified. By doing so, it was found that the silver halide itself absorbs light and can limit light transmission to the back surface.
  • the thickness of the first photosensitive layer 142a and the second photosensitive layer 142b can be set to 1 ⁇ m or more and 4 ⁇ m or less. The upper limit is preferably 2.5 ⁇ m.
  • the coating silver amount of the first photosensitive layer 142a and the second photosensitive layer 142b was regulated to 5 to 20 g / m 2 .
  • the silver halide with a reduced amount of binder provided the necessary conductivity for antistatic, and the volume ratio of silver / binder in the first photosensitive layer 142a and the second photosensitive layer 142b was defined. . That is, the silver / binder volume ratio of the first photosensitive layer 142a and the second photosensitive layer 142b is 1/1 or more, and preferably 2/1 or more.
  • the first photosensitive layer 142a can be formed as shown in FIG.
  • the reached first light 144a from the first light source 148a does not reach the second photosensitive layer 142b.
  • the second light 144b from the second light source 148b that reaches the second photosensitive layer 142b is changed to the first photosensitive layer.
  • the first laminated conductive sheet 50A is formed in the subsequent development processing, as shown in FIG. 5B, one main surface of the first transparent substrate 12A is formed by the first exposure pattern 152a.
  • the first photosensitive layer 142a and the second photosensitive layer 142b that have both conductivity and suitability for double-sided exposure.
  • the same pattern or different patterns can be arbitrarily formed on both surfaces of the first transparent substrate 12A, whereby the electrodes of the touch panel 100 can be easily formed,
  • the touch panel 100 can be thinned (low profile).
  • the above-described example is a manufacturing method in which the first conductive pattern 22A and the second conductive pattern 22B are formed using a photosensitive silver halide emulsion layer.
  • Other manufacturing methods include the following manufacturing methods. . That is, the photoresist film on the copper foil formed on the first transparent substrate 12A and the second transparent substrate 12B is exposed and developed to form a resist pattern, and the copper foil exposed from the resist pattern is etched.
  • the first conductive pattern 22A and the second conductive pattern 22B may be formed.
  • the first conductive pattern 22A and the second conductive pattern 22B are formed by printing a paste containing metal fine particles on the first transparent substrate 12A and the second transparent substrate 12B and performing metal plating on the paste. Also good.
  • the first conductive pattern 22A and the second conductive pattern 22B may be printed and formed on the first transparent substrate 12A and the second transparent substrate 12B by a screen printing plate or a gravure printing plate.
  • the first conductive pattern 22A and the second conductive pattern 22B may be formed by inkjet on the first transparent substrate 12A and the second transparent substrate 12B.
  • the manufacturing method of the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) according to the present embodiment includes the following three modes depending on the photosensitive material and the mode of development processing.
  • the aspect (1) is an integrated black-and-white development type, and a light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material.
  • the resulting developed silver is chemically developed silver or heat developed silver, and is highly active in the subsequent plating or physical development process in that it is a filament with a high specific surface.
  • the light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material by dissolving silver halide grains close to the physical development nucleus and depositing on the development nucleus in the exposed portion. A characteristic film is formed.
  • This is also an integrated black-and-white development type.
  • the development action is precipitation on the physical development nuclei, it is highly active, but developed silver is a sphere with a small specific surface.
  • the silver halide grains are dissolved and diffused in the unexposed area and deposited on the development nuclei on the image receiving sheet, thereby translucent light transmitting conductive film or the like on the image receiving sheet.
  • a conductive film is formed. This is a so-called separate type in which the image receiving sheet is peeled off from the photosensitive material.
  • either negative development processing or reversal development processing can be selected (in the case of the diffusion transfer method, negative development processing is possible by using an auto-positive type photosensitive material as the photosensitive material).
  • the chemical development, thermal development, dissolution physical development, and diffusion transfer development mentioned here have the same meanings as are commonly used in the industry, and are general textbooks of photographic chemistry such as Shinichi Kikuchi, “Photochemistry” (Kyoritsu Publishing) (Published in 1955), C.I. E. K. It is described in "The Theory of Photographic Processes, 4th ed.” Edited by Mees (Mcmillan, 1977).
  • a technique of applying a thermal development system as another development system can also be referred to.
  • the techniques described in Japanese Patent Application Laid-Open Nos. 2004-184893, 2004-334077, and 2005-010752, and Japanese Patent Application Nos. 2004-244080 and 2004-085655 can be applied. it can.
  • first transparent substrate 12A and the second transparent substrate 12B include a plastic film, a plastic plate, and a glass plate.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, and EVA; Resin;
  • polycarbonate (PC) polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC) and the like can be used.
  • PET melting point: 258 ° C.
  • PEN melting point: 269 ° C.
  • PE melting point: 135 ° C.
  • PP melting point: 163 ° C.
  • polystyrene melting point: 230 ° C.
  • polyvinyl chloride melting point: 180 ° C.
  • polyvinylidene chloride melting point: 212 ° C.
  • TAC melting point: 290 ° C.
  • PET is preferable from the viewpoints of light transmittance and processability.
  • the conductive films such as the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) used for the first laminated conductive sheet 50A and the second laminated conductive sheet 50B (50Ba) are required to be transparent. Therefore, it is preferable that the transparency of the first transparent substrate 12A and the second transparent substrate 12B is high.
  • the silver salt emulsion layer serving as the conductive portion contains additives such as a solvent and a dye in addition to the silver salt and the binder.
  • additives such as a solvent and a dye in addition to the silver salt and the binder.
  • the silver salt used in the present embodiment include inorganic silver salts such as silver halide and organic silver salts such as silver acetate. In the present embodiment, it is preferable to use silver halide having excellent characteristics as an optical sensor.
  • Silver coating amount of silver salt emulsion layer is preferably 1 ⁇ 30g / m 2 in terms of silver, more preferably 1 ⁇ 25g / m 2, more preferably 5 ⁇ 20g / m 2 .
  • the binder used in this embodiment include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, and polyacryl.
  • the content of the binder contained in the silver salt emulsion layer 16 of the present embodiment is not particularly limited, and can be appropriately determined as long as dispersibility and adhesion can be exhibited.
  • the binder content in the silver salt emulsion layer 16 is preferably 1 ⁇ 4 or more, and more preferably 1 ⁇ 2 or more in terms of a silver / binder volume ratio.
  • the silver / binder volume ratio is preferably 100/1 or less, and more preferably 50/1 or less.
  • the silver / binder volume ratio is more preferably 1/1 to 4/1.
  • the silver / binder volume ratio in the silver salt emulsion layer is 1/1 to 3/1.
  • the silver / binder volume ratio is converted from the amount of silver halide in the raw material / the amount of binder (weight ratio) to the amount of silver / binder amount (weight ratio), and the amount of silver / binder amount (weight ratio) is further converted to the amount of silver. / It can obtain
  • the solvent used for forming the silver salt emulsion layer is not particularly limited.
  • water organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, dimethyl sulfoxide, etc. Sulphoxides such as, esters such as ethyl acetate, ethers, etc.), ionic liquids, and mixed solvents thereof.
  • the content of the solvent used in the silver salt emulsion layer of the present embodiment is in the range of 30 to 90% by mass with respect to the total mass of silver salt and binder contained in the silver salt emulsion layer, and 50 to 80%. It is preferably in the range of mass%.
  • a protective layer (not shown) may be provided on the silver salt emulsion layer.
  • the “protective layer” means a layer made of a binder such as gelatin or a high molecular polymer, and is formed on a silver salt emulsion layer having photosensitivity in order to exhibit an effect of preventing scratches and improving mechanical properties. It is formed.
  • the thickness is preferably 0.5 ⁇ m or less.
  • the coating method and forming method of the protective layer are not particularly limited, and a known coating method and forming method can be appropriately selected.
  • An undercoat layer for example, can be provided below the silver salt emulsion layer 16.
  • the first conductive pattern 22A and the second conductive pattern 22B are applied by a printing method is included, but the first conductive pattern 22A and the second conductive pattern 22B are formed by exposure and development, etc., except for the printing method.
  • exposure is performed on a photosensitive material having a silver salt-containing layer provided on the first transparent substrate 12A and the second transparent substrate 12B or a photosensitive material coated with a photolithography photopolymer.
  • the exposure can be performed using electromagnetic waves. Examples of the electromagnetic wave include light such as visible light and ultraviolet light, and radiation such as X-rays.
  • a light source having a wavelength distribution may be used for exposure, or a light source having a specific wavelength may be used.
  • development processing is further performed.
  • the development processing can be performed by a normal development processing technique used for silver salt photographic film, photographic paper, printing plate-making film, photomask emulsion mask, and the like.
  • the developer is not particularly limited, but PQ developer, MQ developer, MAA developer and the like can also be used.
  • Commercially available products include, for example, CN-16, CR-56, CP45X, FD prescribed by FUJIFILM Corporation. -3, Papitol, developers such as C-41, E-6, RA-4, D-19, and D-72 prescribed by KODAK, or developers included in the kit can be used.
  • a lith developer can also be used.
  • the development processing in the present invention can include a fixing processing performed for the purpose of removing and stabilizing the silver salt in the unexposed portion.
  • a technique of a fixing process used for a silver salt photographic film, photographic paper, a printing plate making film, a photomask emulsion mask, or the like can be used.
  • the fixing temperature in the fixing step is preferably about 20 ° C. to about 50 ° C., more preferably 25 to 45 ° C.
  • the fixing time is preferably 5 seconds to 1 minute, more preferably 7 seconds to 50 seconds.
  • the replenishing amount of the fixing solution is preferably 600 ml / m 2 or less with respect to the processing of the photosensitive material, more preferably 500 ml / m 2 or less, 300 ml / m 2 or less is particularly preferred.
  • the light-sensitive material that has been subjected to development and fixing processing is preferably subjected to water washing treatment or stabilization treatment.
  • the washing water amount is usually 20 liters or less per 1 m 2 of the light-sensitive material, and can be replenished in 3 liters or less (including 0, ie, rinsing with water).
  • the mass of the metallic silver contained in the exposed portion after the development treatment is preferably a content of 50% by mass or more, and 80% by mass or more with respect to the mass of silver contained in the exposed portion before exposure. More preferably. If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, it is preferable because high conductivity can be obtained.
  • the gradation after the development processing in the present embodiment is not particularly limited, but is preferably more than 4.0.
  • the conductivity of the conductive metal portion can be increased while keeping the light transmissive property of the light transmissive portion high.
  • Examples of means for setting the gradation to 4.0 or higher include the aforementioned doping of rhodium ions and iridium ions.
  • the conductive sheet is obtained through the above steps, the surface resistance of the obtained conductive sheet is 0.1 to 100 ohm / sq. It is preferable that it exists in the range.
  • the lower limit is 1 ohm / sq. 3 ohm / sq. 5 ohm / sq. 10 ohm / sq.
  • the upper limit is 70 ohm / sq.
  • the following is preferable.
  • the conductive sheet after the development process may be further subjected to a calendar process, and can be adjusted to a desired surface resistance by the calendar process.
  • “Physical development and plating” for the purpose of improving the conductivity of the metallic silver portion formed by the exposure and development processing, physical development and / or plating treatment for supporting the conductive metal particles on the metallic silver portion is performed. May be.
  • the conductive metal particles may be supported on the metallic silver portion by only one of physical development and plating treatment, or the conductive metal particles are supported on the metallic silver portion by combining physical development and plating treatment. May be.
  • the thing which performed the physical development and / or the plating process to the metal silver part is called "conductive metal part”.
  • “Physical development” in the present embodiment means that metal particles such as silver ions are reduced with a reducing agent on metal or metal compound nuclei to deposit metal particles.
  • the plating treatment can use electroless plating (chemical reduction plating or displacement plating), electrolytic plating, or both electroless plating and electrolytic plating.
  • electroless plating chemical reduction plating or displacement plating
  • electrolytic plating electrolytic plating
  • electroless plating technique for example, an electroless plating technique used in a printed wiring board or the like can be used.
  • Plating is preferred.
  • Oxidation treatment it is preferable to subject the metallic silver portion after the development treatment and the conductive metal portion formed by physical development and / or plating treatment to oxidation treatment.
  • oxidation treatment for example, when a metal is slightly deposited on the light transmissive portion, the metal can be removed and the light transmissive portion can be made almost 100% transparent.
  • the lower limit of the line width of the conductive metal part of the present embodiment is preferably 1 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, or 5 ⁇ m or more, and the upper limit is 10 ⁇ m. Hereinafter, it is preferably 9 ⁇ m or less and 8 ⁇ m or less.
  • the line width is less than the above lower limit, the conductivity becomes insufficient, so that when used for the touch panel 100, the detection sensitivity becomes insufficient.
  • the above upper limit is exceeded, moire due to the conductive metal portion becomes noticeable, or the visibility becomes worse when used for the touch panel 100.
  • the line interval (here, the interval between the opposing sides of the small lattice 18) is preferably 30 ⁇ m or more and 500 ⁇ m or less, more preferably 50 ⁇ m or more and 400 ⁇ m or less, and most preferably 100 ⁇ m or more and 350 ⁇ m or less.
  • the conductive metal portion may have a portion whose line width is wider than 200 ⁇ m for the purpose of ground connection or the like.
  • the conductive metal portion in the present embodiment preferably has an aperture ratio of 85% or more, more preferably 90% or more, and most preferably 95% or more from the viewpoint of visible light transmittance.
  • the aperture ratio is the ratio of the light-transmitting portion excluding the conductive portion such as the first large lattice 14A, the first connection portion 16A, the second large lattice 14B, the second connection portion 16B, and the small lattice 18 to the whole.
  • the aperture ratio of a square lattice having a line width of 15 ⁇ m and a pitch of 300 ⁇ m is 90%.
  • the “light transmissive part” in the present embodiment means a part having translucency other than the conductive metal part in the first conductive sheet 10A and the second conductive sheet 10B.
  • the transmittance in the light transmissive portion is the transmission indicated by the minimum value of the transmittance in the wavelength region of 380 to 780 nm excluding the contribution of light absorption and reflection of the first transparent substrate 12A and the second transparent substrate 12B.
  • the rate is 90% or more, preferably 95% or more, more preferably 97% or more, even more preferably 98% or more, and most preferably 99% or more.
  • the exposure method a method through a glass mask or a pattern exposure method by laser drawing is preferable.
  • the thickness of the first transparent substrate 12A and the second transparent substrate 12B in the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) according to the present embodiment is preferably 5 to 350 ⁇ m, and 30 More preferably, it is ⁇ 150 ⁇ m. If it is in the range of 5 to 350 ⁇ m, a desired visible light transmittance can be obtained, and handling is easy.
  • the thickness of the metallic silver portion provided on the first transparent substrate 12A and the second transparent substrate 12B depends on the coating thickness of the silver salt-containing layer coating applied on the first transparent substrate 12A and the second transparent substrate 12B. Can be determined as appropriate.
  • the thickness of the metallic silver portion can be selected from 0.001 mm to 0.2 mm, but is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 0.01 to 9 ⁇ m. And most preferably 0.05 to 5 ⁇ m.
  • a metal silver part is pattern shape.
  • the metal silver portion may be a single layer or may be a multilayer structure of two or more layers. When the metallic silver part has a pattern and has a multilayer structure of two or more layers, different color sensitivities can be imparted so as to be sensitive to different wavelengths. Thereby, when the exposure wavelength is changed and exposed, different patterns can be formed in each layer.
  • the thickness of the conductive metal part As the thickness of the conductive metal part, the thinner the display panel, the wider the viewing angle of the display panel, and the thinner the display is required for improving the visibility. From such a viewpoint, the thickness of the layer made of the conductive metal carried on the conductive metal portion is preferably less than 9 ⁇ m, more preferably 0.1 ⁇ m or more and less than 5 ⁇ m, and more preferably 0.1 ⁇ m or more. More preferably, it is less than 3 ⁇ m. In the present embodiment, the thickness of the layer made of conductive metal particles is formed by controlling the coating thickness of the above-described silver salt-containing layer to form a metallic silver portion having a desired thickness, and further by physical development and / or plating treatment.
  • the desired surface resistance is adjusted by adjusting the coating silver amount of the silver salt emulsion layer and the silver / binder volume ratio. It is because it can obtain. In addition, you may perform a calendar process etc. as needed.
  • Hardening after development It is preferable to perform a film hardening process by immersing the film in a hardener after the silver salt emulsion layer is developed.
  • the hardener include dialdehydes such as glutaraldehyde, adipaldehyde, 2,3-dihydroxy-1,4-dioxane, and those described in JP-A-2-141279 such as boric acid. .
  • An antireflection film 126 may be applied to the laminated conductive sheet.
  • the antireflection film 126 is formed, for example, by forming a hard coat layer 122 and an antireflection layer 124 on the first laminated conductive sheet 50A (see the first configuration example and the second configuration example), or on the first laminated conductive sheet 50A.
  • the transparent film 130, the hard coat layer 122, and the antireflection layer 124 are formed (see the third configuration example).
  • a preferred aspect of the antireflection film 126 will be described mainly with reference to the third configuration example.
  • the transparent film 130 is required to be a colorless film having high light transmittance and excellent transparency.
  • a transparent film 130 it is preferable to use a plastic film.
  • the polymer forming the plastic film include cellulose acylate (eg, cellulose triacetate such as TAC-TD80U and TD80UF manufactured by Fuji Film Co., Ltd., cellulose diacetate, cellulose acetate propionate, cellulose acetate butyrate), polyamide, and polycarbonate.
  • Polyester eg, polyethylene terephthalate, polyethylene naphthalate
  • polystyrene polyolefin
  • norbornene resin Article: trade name, manufactured by JSR Corporation
  • amorphous polyolefin ZEONEX: trade name, manufactured by Nippon Zeon Co., Ltd.
  • (Meth) acrylic resin ACRYPET VRL20A: trade name, manufactured by Mitsubishi Rayon Co., Ltd., ring structure described in JP-A-2004-70296 and JP-A-2006-171464 Acrylic-based resin).
  • cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, polyethylene terephthalate, and polyethylene naphthalate are preferable, and cellulose triacetate is particularly preferable.
  • ⁇ Hard coat layer 122> In order to impart the physical strength of the antireflection film 126 to the antireflection film 126, it is preferable to provide a hard coat layer 122.
  • the hard coat layer 122 may be composed of two or more layers.
  • the refractive index of the hard coat layer 122 is preferably in the range of 1.48 to 1.90, more preferably 1.50 to 1.80, from the optical design for obtaining an antireflection film. More preferably, it is 1.52-1.65. In this embodiment, since there is at least one low refractive index layer on the hard coat layer 122, when the refractive index is too small, the antireflection property is lowered, and when it is too large, the color of reflected light is strong. Tend to be.
  • the hard coat layer 122 has a thickness of usually about 0.5 to 50 ⁇ m, preferably 1 to 20 ⁇ m, More preferably, it is 2 to 15 ⁇ m, and most preferably 3 to 10 ⁇ m. Further, the strength of the hard coat layer 122 is preferably 2H or more, more preferably 3H or more, and most preferably 4H or more in a pencil hardness test. Furthermore, in the Taber test according to JISK5400, the smaller the amount of wear of the test piece before and after the test, the better.
  • the hard coat layer 122 is preferably formed by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound.
  • it can be formed by applying a composition containing an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer on the transparent film 130 and causing the polyfunctional monomer or polyfunctional oligomer to undergo a crosslinking reaction or a polymerization reaction.
  • the functional group of the ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable.
  • Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable.
  • unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group.
  • a (meth) acryloyl group is preferable.
  • monomers described in paragraphs [0087] and [0088] of JP-A-2006-30740 can be used, and the curing method described in paragraph [0089] of the same publication is used. Can do.
  • the photopolymerization initiators described in paragraphs [0090] to [0093] of the same publication can be used.
  • the hard coat layer 122 contains matte particles having an average particle size of 1.0 to 10.0 ⁇ m, preferably 1.5 to 7.0 ⁇ m, such as inorganic compound particles or resin particles, for the purpose of imparting internal scattering properties. May be. As these particles, the particles described in paragraph [0114] of JP-A-2006-30740 can be used.
  • a high refractive index monomer or inorganic fine particles having a size that does not cause light scattering (the primary particle diameter is 10 to 200 nm), or both Can be added.
  • the inorganic fine particles In addition to the effect of controlling the refractive index, the inorganic fine particles also have an effect of suppressing curing shrinkage due to a crosslinking reaction.
  • the compounds described as the inorganic filler in paragraph [0120] of JP-A-2006-30740 can be used.
  • the antireflection film 126 is a film in which the antireflection layer 124 is formed on the hard coat layer 122 (which may include a transparent film 130 as a lower layer), and uses optical interference. Therefore, the antireflection layer 124 is used. Preferably has the refractive index and optical thickness described below.
  • the antireflection layer 124 may be a single layer, but when a lower reflectance is required, a plurality of antireflection layers 124 are stacked. In the lamination of the plurality of antireflection layers 124, optical interference layers having different refractive indexes may be alternately laminated, or two or more optical interference layers having different refractive indexes may be laminated.
  • an embodiment in which only a low refractive index layer is provided on the hard coat layer 122 an embodiment in which a high refractive index layer and a low refractive index layer are provided in this order on the hard coat layer 122, and an intermediate refractive index on the hard coat layer 122
  • a mode in which a layer, a high refractive index layer, and a low refractive index layer are provided in this order is commonly used.
  • low, medium, and high in the refractive index layer are expressions of the relative magnitude relationship of the refractive index.
  • the refractive index of the low refractive index layer is preferably set lower than the refractive index of the hard coat layer 122 described above.
  • the difference in refractive index between the low refractive index layer and the hard coat layer 122 is preferably 0.01 or more and 0.40 or less, and more preferably 0.05 or more and 0.30 or less.
  • the refractive index and thickness of each layer preferably satisfy the following.
  • the refractive index of the low refractive index layer is preferably 1.20 to 1.46, more preferably 1.25 to 1.42, and particularly preferably 1.30 to 1.38. preferable.
  • the thickness of the low refractive index layer is preferably 50 to 150 nm, and more preferably 70 to 120 nm.
  • the refractive index of the high refractive index layer is preferably 1.55 to 2.40, more preferably. Is 1.60 to 2.20, more preferably 1.65 to 2.10, and most preferably 1.80 to 2.00.
  • the refractive index of the high refractive index layer is 1.65. It is preferably ⁇ 2.40, more preferably 1.70 to 2.20.
  • the refractive index of the middle refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer.
  • the refractive index of the middle refractive index layer is preferably 1.55 to 1.80.
  • the thickness of the high refractive index layer and the middle refractive index layer can be set to an optical thickness corresponding to the range of the refractive index.
  • the above-described low refractive index layer is preferably cured after the formation of the layer.
  • the haze of the low refractive index layer is preferably 3% or less, more preferably 2% or less, and most preferably 1% or less.
  • a preferred composition for forming the low refractive index layer of the present invention is preferably a composition containing at least one of the following.
  • a composition containing a fluorine-containing polymer having a crosslinkable or polymerizable functional group (2) a composition comprising as a main component a hydrolysis-condensation product of a fluorine-containing organosilane material; (3) a composition containing a monomer having two or more ethylenically unsaturated groups and inorganic fine particles having a hollow structure; Is mentioned.
  • Fluorine-containing compound having a crosslinkable or polymerizable functional group As the fluorine-containing compound having a crosslinkable or polymerizable functional group, co-polymerization of a fluorine-containing monomer and a monomer having a crosslinkable or polymerizable functional group Coalescence can be mentioned.
  • a copolymer having a main chain composed only of carbon atoms and comprising a fluorine-containing vinyl monomer polymer unit and a polymer unit having a (meth) acryloyl group in the side chain is particularly characterized.
  • P-1 to P-40 described in paragraphs [0043] to [0047] of Kaikai 2004-45462 can be used.
  • a fluorine-containing polymer into which a silicone component is introduced for improving scratch resistance and slipperiness a graft polymer having a polymer unit containing a polysiloxane moiety in the side chain and a fluorine atom in the main chain is disclosed in JP
  • the compounds described in Tables 1 and 2 of paragraphs [0074] to [0076] of 2003-222702 can be used, and the main chain contains an ethylenically unsaturated group-containing fluorine containing a structural unit derived from a polysiloxane compound.
  • the polymer compounds described in JP-A No. 2003-183322 can be used.
  • a curing agent having a polymerizable unsaturated group may be used in combination with the above polymer. Further, as described in JP-A-2002-145952, combined use with a compound having a fluorine-containing polyfunctional polymerizable unsaturated group is also preferable. Examples of the compound having a polyfunctional polymerizable unsaturated group include the above-mentioned monomers having two or more ethylenically unsaturated groups. Further, hydrolyzed condensates of organosilanes described in JP-A No.
  • 2004-170901 are preferable, and hydrolyzed condensates of organosilanes containing (meth) acryloyl groups are particularly preferable. These compounds are particularly preferred because they have a large combined effect for improving scratch resistance, particularly when a compound having a polymerizable unsaturated group is used in the polymer body.
  • the necessary curability can be imparted by blending a crosslinkable compound.
  • the polymer body contains a hydroxyl group
  • various amino compounds are preferably used as the curing agent.
  • the amino compound used as the crosslinkable compound is, for example, a compound containing a total of two or more of any one or both of a hydroxyalkylamino group and an alkoxyalkylamino group.
  • a melamine compound examples include urea compounds, benzoguanamine compounds, glycoluril compounds, and the like.
  • an organic acid or a salt thereof is preferably used.
  • a composition containing a hydrolyzed condensate of a fluorine-containing organosilane compound as a main component is also preferable because of its low refractive index and high hardness on the coating film surface.
  • a condensate of a tetraalkoxysilane with a compound containing hydrolyzable silanol at one or both ends with respect to the fluorinated alkyl group is preferred. Specific compositions are described in JP-A Nos. 2002-265866 and 2002-317152.
  • a composition containing a monomer having two or more ethylenically unsaturated groups and inorganic fine particles having a hollow structure As yet another preferred embodiment, a low refractive index layer comprising a low refractive index particle and a binder can be mentioned.
  • the low refractive index particles may be organic or inorganic, but particles having pores inside are preferable.
  • Specific examples of the hollow particles include silica-based particles described in JP-A-2002-79616 (see, for example, paragraphs [0041] to [0049]).
  • the particle refractive index is preferably 1.15 to 1.40, more preferably 1.20 to 1.30.
  • the binder include monomers having two or more ethylenically unsaturated groups described in the section of the hard coat layer 122 described above.
  • the polymerization initiator described in the above-mentioned item of the hard coat layer 122 for example, see paragraphs [0090] to [0093] of JP-A-2006-30740
  • 1 to 10 parts by mass preferably 1 to 5 parts by mass of a polymerization initiator can be used with respect to 100 parts by mass of the compound.
  • inorganic particles can be used in combination.
  • fine particles having a particle size of 15% to 150%, preferably 30% to 100%, more preferably 45% to 60% of the thickness of the low refractive index layer can be used. .
  • the antireflection film 126 can be provided with a layer having a high refractive index between the low refractive index layer and the hard coat layer 122 to enhance the antireflection property.
  • the high refractive index layer and the medium refractive index layer are preferably formed from a curable composition containing high refractive inorganic fine particles and a binder.
  • high refractive index inorganic fine particles that can be used here, high refractive index inorganic fine particles that can be contained to increase the refractive index of the hard coat layer 122 can be used.
  • the high refractive index inorganic fine particles for example, particles of inorganic compounds such as silica particles and TiO 2 particles; resin particles such as acrylic particles, crosslinked acrylic particles, polystyrene particles, crosslinked styrene particles, melamine resin particles, and benzoguanamine resin particles are preferable. Can be mentioned.
  • the high refractive index layer and the medium refractive index layer are preferably formed in a dispersion liquid in which inorganic particles are dispersed in a dispersion medium, preferably a binder precursor necessary for matrix formation (for example, an ionizing radiation curable polyfunctional monomer or Polyfunctional oligomer, etc.), a photopolymerization initiator, etc. are added to form a coating composition for forming a high refractive index layer and a medium refractive index layer.
  • a binder precursor necessary for matrix formation for example, an ionizing radiation curable polyfunctional monomer or Polyfunctional oligomer, etc.
  • a photopolymerization initiator etc.
  • a coating composition for forming a high refractive index layer and a medium refractive index layer on a transparent film It is preferable to form the product by applying a product and curing it by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound (for example, a polyfunctional monomer or a polyfunctional oligomer).
  • an ionizing radiation curable compound for example, a polyfunctional monomer or a polyfunctional oligomer.
  • the binder of the high refractive index layer and the medium refractive index layer it is preferable to cause the binder of the high refractive index layer and the medium refractive index layer to undergo a crosslinking reaction or a polymerization reaction with the dispersant simultaneously with or after the coating of the layer.
  • the binder of the high refractive index layer and the medium refractive index layer produced in this way is, for example, a preferable dispersant described above and an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer cross-linked or polymerized to form a binder. It becomes a form in which the anionic group of the dispersant is incorporated.
  • the binder of the high refractive index layer and the medium refractive index layer has a function in which the anionic group maintains the dispersion state of the inorganic particles, and the crosslinked or polymerized structure imparts a film forming ability to the binder and contains inorganic particles.
  • the crosslinked or polymerized structure imparts a film forming ability to the binder and contains inorganic particles.
  • the binder of the high refractive index layer is added in an amount of 5 to 80% by mass with respect to the solid content of the coating composition of the high refractive index layer.
  • the content of the inorganic particles in the high refractive index layer is preferably 10 to 90% by mass, more preferably 15 to 80% by mass, and particularly preferably 15 to 75% by mass with respect to the mass of the high refractive index layer. .
  • Two or more kinds of inorganic particles may be used in combination in the high refractive index layer.
  • the refractive index of the high refractive index layer is preferably higher than the refractive index of the transparent film 130.
  • the film thickness when the high refractive index layer is used as the optical interference layer is preferably 30 to 200 nm, more preferably 50 to 170 nm, and particularly preferably 60 to 150 nm.
  • the haze of the high refractive index layer and the medium refractive index layer is preferably as low as possible. It is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.
  • the preferable integrated reflectance of the antireflection film 126 provided with the low refractive index layer is preferably 3.0% or less, more preferably 2.0% or less, and most preferably 1.5% or less 0.3% or more. It is. From the viewpoint of improving antifouling properties, it is preferable to reduce the surface free energy on the surface of the low refractive index layer. Specifically, it is preferable to use a fluorine-containing compound or a compound having a polysiloxane structure for the low refractive index layer. Further, an antifouling layer containing the following compound may be provided on the low refractive index layer separately from the low refractive index layer.
  • Examples of the additive having a polysiloxane structure include reactive group-containing polysiloxanes ⁇ for example, “KF-100T”, “X-22-169AS”, “KF-102”, “X-22-3701IE”, “X-22” -164B “,” X-22-5002 “,” X-22-173B “,” X-22-174D “,” X-22-167B “,” X-22-161AS "(product name), Shin-Etsu “AK-5”, “AK-30”, “AK-32” (trade name), manufactured by Toa Gosei Co., Ltd .; “Silaplane FM0725”, “Silaplane FM0721” (product) Name), manufactured by Chisso Co., Ltd. ⁇ .
  • silicone compounds described in Tables 2 and 3 of JP-A-2003-112383 can also be preferably used. These polysiloxanes are preferably added in the range of 0.1 to 10% by mass of the total solid content of the low refractive index layer, particularly preferably 1 to 5% by mass.
  • the antireflection film 126 can be formed by the following coating method, but is not limited thereto. (Preparation work for application) First, a coating solution containing components for forming each layer such as the hard coat layer 122 and the antireflection layer 124 is prepared. Usually, since the coating liquid is mainly an organic solvent system, it is necessary to suppress the water content to 2% or less, and to seal it to suppress the volatilization amount of the solvent. The organic solvent to be used is selected according to the material used for each layer. In order to obtain the uniformity of the coating solution, a stirrer or a disperser is appropriately used.
  • the prepared coating solution is preferably filtered before coating so as not to cause a coating failure. It is preferable to use a filter having a pore diameter as small as possible within a range in which the components in the coating solution are not removed, and the filtration pressure is appropriately selected at 1.5 MPa or less.
  • the filtered coating solution is preferably ultrasonically dispersed immediately before coating to defoam and retain the dispersion.
  • the transparent film 130 may be subjected to a heat treatment for correcting the base deformation or a surface treatment for improving the coating property and the adhesiveness with the coating layer before coating. Specific methods for the surface treatment include corona discharge treatment, glow discharge treatment, flame treatment, acid treatment, alkali treatment, and ultraviolet irradiation treatment.
  • JP-A-7-333433 It is also preferable to provide an undercoat layer as described in JP-A-7-333433. Further, it is preferable to provide a dust removing step as a pre-application step, and as the dust removing method used therefor, the method described in paragraph [0119] of JP 2010-32795 A can be used. In addition, it is particularly preferable to remove static electricity from the transparent film 130 before performing such a dust removal step in terms of increasing dust removal efficiency and suppressing dust adhesion. As such a static elimination method, the method described in paragraph [0120] of JP 2010-32795 A can be used. Furthermore, the flatness of the transparent film 130 may be secured and the adhesiveness may be improved by the method described in paragraphs [0121] and [0123] of the above publication.
  • Each layer of the antireflection film 126 can be formed by the following coating method, but is not limited to this method. Dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar coating method, gravure coating method and extrusion coating method (die coating method) (US Pat. No. 2,681,294, International Publication No. 05/123274)
  • a known method such as a microgravure coating method is used, and among these, a microgravure coating method and a die coating method are preferable.
  • the micro gravure coating method is described in paragraphs [0125] and [0126] of JP 2010-32795 A, and the die coating method is described in paragraphs [0127] and [0128] of the above publication. These methods can also be used in the form. It is preferable in terms of productivity to apply at a speed of 20 m / min or more by using a die coating method.
  • the antireflective film 126 is preferably applied on the transparent film 130 directly or through another layer and then conveyed by a web to a heated zone to dry the solvent.
  • Various knowledges can be used as a method for drying the solvent. Specific knowledge includes the description techniques described in JP-A Nos. 2001-286817, 2001-314798, 2003-126768, 2003-315505, and 2004-34002.
  • the conditions described in paragraph [0130] of JP 2010-32795 A can be used for the temperature condition of the drying zone, and the conditions described in paragraph [0131] of the same publication can be used for the condition of the drying air.
  • the antireflection film 126 can pass through a zone for curing each coating film by ionizing radiation and / or heat as a web after the solvent is dried or at a later stage of drying to cure the coating film.
  • the above-mentioned ionizing radiation is not particularly limited, and is appropriately selected from ultraviolet rays, electron beams, near-ultraviolet rays, visible light, near-infrared rays, infrared rays, X-rays and the like according to the type of curable composition forming the film.
  • ultraviolet rays and electron beams are preferred, and ultraviolet rays are particularly preferred because they are easy to handle and high energy can be easily obtained.
  • the ultraviolet light source for photopolymerizing the ultraviolet curable compound the light source described in paragraph [0133] of JP-A-2010-32795 can be used, and the electron beam described in paragraph [0134] of the same publication is used. Lines can be used.
  • the conditions described in paragraphs [0135] and [0138] of the same publication can be used for the irradiation conditions, irradiation light quantity, and irradiation time.
  • the film surface temperature, oxygen concentration, and oxygen concentration control method before and after irradiation use the conditions and methods described in paragraphs [0136], [0137], and [0139] to [0144] of the same publication. Can do.
  • a step of continuously feeding a roll-shaped transparent film 130, a step of applying and drying a coating liquid, a step of curing a coating film, and the transparent having a cured layer A step of winding the film 130 is performed.
  • the above-described steps may be performed for each layer formation, or a plurality of coating units-drying chambers-curing units may be provided (so-called tandem method) to form each layer continuously.
  • the coating process in the coating unit and the drying process performed in the drying chamber are performed in a high clean air atmosphere, and It is preferable that dust and dust on the transparent film 130 are sufficiently removed before the application.
  • Air cleanliness in the coating and drying steps based on the air cleanliness in US Federal Standard 209E standards, it is desirable class 10 is (0.5 [mu] m or more of the particles 353 / m 3 or less) or more, more preferably Is preferably class 1 (particles of 0.5 ⁇ m or more are 35.5 particles / m 3 or less) or more. Further, it is more preferable that the air cleanliness is high also in the feeding and winding parts other than the coating-drying process.
  • the antireflection film 126 preferably adjusts the transmitted image definition in addition to adjusting the surface shape as smoothly as possible.
  • the transmitted image definition of the antireflection film 126 is preferably 60% or more.
  • the transmitted image definition is generally an index indicating the degree of blurring of an image reflected through a film, and the larger this value, the clearer and better the image viewed through the film.
  • the transmitted image definition is preferably 70% or more, and more preferably 80% or more.
  • the antireflection film 126 can be used as a surface film on the viewing side of the display device 108.
  • the display device 108 can be applied to various display devices such as various liquid crystal display devices, plasma displays, organic EL, and touch panels.
  • an adhesive layer is provided on the surface of the antireflection film 126 that does not have the coating layer of the transparent film 130 (hereinafter sometimes referred to as the back surface).
  • the back surface of the transparent film 130 can be saponified and attached to the touch panel 100.
  • the techniques described in paragraphs [0149] to [0160] of JP 2010-32795 A can be used.
  • this invention can be used in combination with the technique of the publication gazette and international publication pamphlet which are described in following Table 1 and Table 2.
  • FIG. Notations such as “JP,” “Gazette” and “No. Pamphlet” are omitted.
  • the coating amount of silver was 10 g / m 2.
  • the coating was applied on the first transparent substrate 12A and the second transparent substrate 12B (both here are polyethylene terephthalate (PET)). At this time, the volume ratio of Ag / gelatin was 2/1. Coating was performed for 20 m with a width of 25 cm on a PET support having a width of 30 cm, and both ends were cut off by 3 cm so as to leave a central portion of the coating, thereby obtaining a roll-shaped silver halide photosensitive material.
  • the exposure pattern is the pattern shown in FIGS. 1 and 4 for the first conductive sheet 10A, and the pattern shown in FIGS. 4 and 6 for the second conductive sheet 10B, and is a first transparent A4 size (210 mm ⁇ 297 mm).
  • the test was performed on the substrate 12A and the second transparent substrate 12B.
  • the exposure was performed using parallel light using a high-pressure mercury lamp as a light source through the photomask having the above pattern.
  • Example 1 The line widths of the conductive portions (the first conductive pattern 22A and the second conductive pattern 22B) of the manufactured first conductive sheet 10A and second conductive sheet 10B are 1 ⁇ m, the length of one side of the small lattice 18 is 50 ⁇ m, and the large lattice (first The length of one side of the first large lattice 14A and the second large lattice 14B) was 3 mm.
  • Example 2 A first conductive sheet and a second conductive sheet according to Example 2 were produced in the same manner as in Example 1 except that the line width of the conductive part was 5 ⁇ m and the length of one side of the small lattice 18 was 50 ⁇ m. .
  • a third embodiment according to the third embodiment is the same as the first embodiment except that the line width of the conductive portion is 9 ⁇ m, the length of one side of the small lattice 18 is 150 ⁇ m, and the length of one side of the large lattice is 5 mm. 1 conductive sheet and 2nd conductive sheet were produced.
  • Example 4 The fourth embodiment according to the fourth embodiment is similar to the first embodiment except that the line width of the conductive portion is 10 ⁇ m, the length of one side of the small lattice 18 is 300 ⁇ m, and the length of one side of the large lattice is 6 mm. 1 conductive sheet and 2nd conductive sheet were produced.
  • a fifth embodiment according to the fifth embodiment is similar to the first embodiment except that the line width of the conductive portion is 15 ⁇ m, the length of one side of the small lattice 18 is 400 ⁇ m, and the length of one side of the large lattice is 10 mm. 1 conductive sheet and 2nd conductive sheet were produced. (Example 6) Except for the point that the line width of the conductive portion is 20 ⁇ m, the length of one side of the small lattice 18 is 500 ⁇ m, and the length of one side of the large lattice is 10 mm, 1 conductive sheet and 2nd conductive sheet were produced.
  • Comparative Example 1 Comparative Example 1 is similar to Example 1 except that the line width of the conductive portion is 0.5 ⁇ m, the length of one side of the small lattice 18 is 40 ⁇ m, and the length of one side of the large lattice is 3 mm. The first conductive sheet and the second conductive sheet were produced.
  • Comparative Example 2 In the same manner as in Comparative Example 1, except that the line width of the conductive portion is 25 ⁇ m, the length of one side of the small lattice 18 is 500 ⁇ m, and the length of one side of the large lattice is 10 mm. 1 conductive sheet and 2nd conductive sheet were produced.
  • Comparative Example 1 showed good evaluation of moire and visibility, but Comparative Example 1 had a surface resistance of 1 kilohm / sq. As described above, the conductivity is low, and the detection sensitivity may be insufficient. In Comparative Example 2, both conductivity and transmittance were good, but moire became obvious, the conductive part itself was easily recognized with the naked eye, and visibility was deteriorated. On the other hand, among Examples 1 to 6, Examples 1 to 5 had good conductivity, transmittance, moire, and visibility. In Example 6, the evaluation of moire and the evaluation of visibility are inferior to those of Examples 1 to 5, but the moire is only slightly seen at a problem-free level, and the display image of the display device is difficult to see. It never happened. Note that the conductive sheet, the method of using the conductive sheet, and the capacitive touch panel according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention. It is.

Abstract

A conductive sheet, method for using conductive sheet, and capacitance type touch panel, wherein a first conductive sheet (10A) is constituted by forming, on a first transparent base substance (12A), two or more conductive first large gratings (14A), and a first connecting part (16A) that electrically connects adjoining first large gratings (14A). Each first large grating (14A) is constituted by combining two or more small gratings (18), and with the width (Wc1) of the first connecting part (16A) satisfies the relation Wc1>Ps/√2, where the pitch of the small grating (18) is Ps.

Description

導電シート、導電シートの使用方法及び静電容量方式タッチパネルConductive sheet, method of using conductive sheet, and capacitive touch panel
 本発明は、導電シート、導電シートの使用方法及び静電容量方式タッチパネルに関し、例えば投影型静電容量方式のタッチパネルに用いて好適な導電シート、導電シートの使用方法及び静電容量方式タッチパネルに関する。 The present invention relates to a conductive sheet, a method for using the conductive sheet, and a capacitive touch panel, and more particularly to a conductive sheet suitable for use in a projected capacitive touch panel, a method for using the conductive sheet, and a capacitive touch panel.
 金属細線を用いた透明導電膜については、例えば、米国特許出願公開第2004/0229028号明細書及び国際公開第2006/001461号パンフレットで開示されているように、研究が継続されている。
 近時、タッチパネルが注目されている。タッチパネルは、PDA(携帯情報端末)や携帯電話等の小サイズへの適用が主となっているが、パソコン用ディスプレイ等への適用による大サイズ化が進むと考えられる。
 このような将来の動向において、従来の電極は、ITO(酸化インジウムスズ)を用いていることから、抵抗が大きく、適用サイズが大きくなるにつれて、電極間の電流の伝達速度が遅くなり、応答速度(指先を接触してからその位置を検出するまでの時間)が遅くなるという問題がある。
 そこで、金属製の細線(金属細線)にて構成した格子を多数並べて電極を構成することで表面抵抗を低下させることが考えられる。金属細線を電極に用いたタッチパネルとしては、例えば、特許文献特開平5-224818号公報、米国特許第5113041号明細書、国際公開第1995/27334号パンフレット、米国特許出願公開第2004/0239650号明細書、米国特許第7202859号明細書、国際公開第1997/18508号パンフレット、特開2003-099185号公報が知られている。
Research has been continued on transparent conductive films using fine metal wires, as disclosed, for example, in US 2004/0229028 and WO 2006/001461.
Recently, the touch panel has attracted attention. The touch panel is mainly applied to a small size such as a PDA (personal digital assistant) or a mobile phone, but it is considered that the touch panel will be increased in size by being applied to a personal computer display or the like.
In such future trends, since conventional electrodes use ITO (Indium Tin Oxide), as the resistance increases and the application size increases, the current transfer speed between the electrodes becomes slower, and the response speed There is a problem that the time from when the fingertip is touched until the position is detected is delayed.
Therefore, it is conceivable to reduce the surface resistance by forming an electrode by arranging a large number of grids made of metal fine wires (metal fine wires). Examples of the touch panel using a thin metal wire as an electrode include, for example, Japanese Patent Application Laid-Open No. 5-224818, US Pat. No. 5,130,041, International Publication No. 1995/27334, US Patent Application Publication No. 2004/0239650. US Pat. No. 7,202,859, pamphlet of International Publication No. 1997/18508, and Japanese Patent Application Laid-Open No. 2003-099185 are known.
 しかしながら、金属細線を電極に用いる場合、金属細線が不透明な材料で作製されることから透明性や視認性が問題となる。
 本発明はこのような課題を考慮してなされたものであり、タッチパネルにおいて、金属細線パターンで電極を構成した場合においても、高い透明性を確保することができる導電シート、導電シートの使用方法及び静電容量方式タッチパネルを提供することを目的とする。
However, when a thin metal wire is used for an electrode, transparency and visibility become a problem because the thin metal wire is made of an opaque material.
The present invention has been made in consideration of such problems, and in a touch panel, even when an electrode is configured with a thin metal wire pattern, a conductive sheet capable of ensuring high transparency, a method of using the conductive sheet, and An object is to provide a capacitive touch panel.
[規則91に基づく訂正 14.06.2011] 
[1] 第1の本発明に係る導電シートは、基体と、基体上に形成された導電部とを有し、前記導電部は、金属細線による2以上の導電性の大格子と、隣接する前記大格子間を電気的に接続する金属細線による接続部とが形成され、各前記大格子は、それぞれ2以上の小格子が組み合わされて構成され、前記大格子の組み合わせによって回路が構成され、前記接続部の幅Wcは、前記小格子のピッチをPsとしたとき、
   Wc>Ps/√2
を満足することを特徴とする。
[2] 第1の本発明において、2以上の前記大格子が前記接続部を介して第1方向に配列されて1つの導電パターンが構成され、2以上の前記導電パターンが前記第1方向と直交する第2方向に配列され、隣接する前記導電パターン間は、前記小格子が存在しない電気的に絶縁された絶縁部が配され、前記導電パターン、前記絶縁部の配列によって、前記回路が構成されていることを特徴とする。
[3] 第1の本発明において、前記大格子の一辺の長さが3~10mmであることを特徴とする。
[4] 第1の本発明において、前記小格子の一辺の長さが30~500μmであることを特徴とする。
[5] 第1の本発明において、前記小格子の互いに対向する辺の間隔が30~500μmであることを特徴とする。
[6] 第1の本発明において、前記金属細線の線幅が10μm以下であることを特徴とする。
[7] 第2の本発明に係る導電シートは、基体と、前記基体の一方の主面に形成された第1導電部と、前記基体の他方の主面に形成された第2導電部とを有し、前記第1導電部は、金属細線による2以上の導電性の第1大格子と、隣接する前記第1大格子間を電気的に接続する金属細線による第1接続部とを有し、前記第2導電部は、金属細線による2以上の導電性の第2大格子と、隣接する前記第2大格子間を電気的に接続する金属細線による第2接続部とを有し、各前記第1大格子及び各前記第2大格子は、それぞれ2以上の小格子が組み合わされて構成され、前記第1大格子が前記第1接続部を介して第1方向に配列されて1つの第1導電パターンが構成され、前記第1大格子と前記第2大格子の組み合わせによって回路が構成され、前記第1接続部の幅Wc1及び前記第2接続部の幅Wc2は、前記小格子のピッチをPsとしたとき、
   Wc1>Ps/√2
   Wc2>Ps/√2
を満足することを特徴とする。
[8] 第2の本発明において、前記第1大格子が前記第1接続部を介して第1方向に配列されて金属細線による1つの第1導電パターンが構成され、2以上の前記第2大格子が前記第2接続部を介して前記第1方向と直交する第2方向に配列されて金属細線による1つの第2導電パターンが構成され、隣接する前記第1導電パターン間は、前記小格子が存在しない電気的に絶縁された第1絶縁部が配され、隣接する前記第2導電パターン間は、前記小格子が存在しない電気的に絶縁された第2絶縁部が配され、前記第1導電パターン、前記第2導電パターン、前記第1絶縁部、前記第2絶縁部の配列によって、前記回路が構成されていることを特徴とする。
[9] 第2の本発明において、前記金属細線の線幅が10μm以下であることを特徴とする。
[10] 第2の本発明において、前記第1大格子の辺部における直線部と前記第2大格子の辺部における直線部間の投影距離が前記小格子のサイズに基づいて設定されていることを特徴とする。
[11] 第2の本発明において、前記投影距離は100~400μmであることを特徴とする。
[12] 第2の本発明において、前記第1導電部は、各前記第1導電パターンの端部に接続された第1端子配線パターンと、前記基体の一方の主面の1つの辺の長さ方向中央部分に形成され、対応する前記第1端子配線パターンが接続された複数の第1端子とを有し、前記第2導電部は、各前記第2導電パターンの端部に接続された第2端子配線パターンと、前記基体の他方の主面の1つの辺の長さ方向中央部分に形成され、対応する前記第2端子配線パターンが接続された複数の第2端子とを有することを特徴とする。
[13] 第2の本発明において、上面から見たとき、複数の前記第1端子が配列された部分と、複数の前記第2端子が配列された部分とが隣接していることを特徴とする。
[14] 第2の本発明において、各前記第1導電パターンの端部と対応する前記第1端子配線パターンとがそれぞれ第1結線部を介して接続され、各前記第2導電パターンの端部と対応する前記第2端子配線パターンとがそれぞれ第2結線部を介して接続され、複数の前記第1結線部が前記第2方向に沿って直線状に配列され、複数の前記第2結線部が前記第1方向に沿って直線状に配列されていることを特徴とする。
[15] 第2の本発明において、前記第1絶縁部と前記第2絶縁部とが前記基体を間に挟んで対向され、前記第1絶縁部と前記第2絶縁部との対向部分を上面から見た形状が多角形状であることを特徴とする。
[16] 第2の本発明において、前記多角形状が正方形状であることを特徴とする。
[17] 第2の本発明において、前記多角形状がくさび形状であることを特徴とする。
[18] 第1又は第2の本発明において、前記小格子は多角形状であることを特徴とする。
[19] 第2の本発明において、前記小格子は正方形状であることを特徴とする。
[20] 第3の本発明に係る導電シートの使用方法は、金属細線による2以上の導電性の第1大格子と、隣接する前記第1大格子間を電気的に接続する金属細線による第1接続部とが形成され、各前記第1大格子は、それぞれ2以上の小格子が組み合わされて構成され、前記第1接続部の幅Wc1が、前記小格子のピッチをPsとしたとき、Wc1>Ps/√2を満足する第1導電シートと、金属細線による2以上の導電性の第2大格子と、隣接する前記第2大格子間を電気的に接続する金属細線による第2接続部とが形成され、各前記第2大格子は、それぞれ2以上の小格子が組み合わされて構成され、前記第2接続部の幅Wc2が、前記小格子のピッチをPsとしたとき、Wc2>Ps/√2を満足する第2導電シートとを使用する導電シートの使用方法であって、前記第1導電シートは、2以上の前記第1大格子が前記第1接続部を介して第1方向に配列されて1つの第1導電パターンが構成され、前記第2導電シートは、2以上の前記第2大格子が前記第2接続部を介して前記第1方向と直交する第2方向に配列されて1つの第2導電パターンが構成され、前記第1導電シートと前記第2導電シートとを組み合わせることで、前記第1導電シートの前記第1接続部と前記第2導電シートの前記第2接続部とが組み合わさって前記小格子の配列を形成するように配置されることを特徴とする。
[21] 第4の本発明に係る静電容量方式タッチパネルは、上述した第1又は第2の本発明に係る導電シートを有することを特徴とする。
[Correction based on Rule 91 14.06.2011]
[1] The conductive sheet according to the first aspect of the present invention includes a base and a conductive portion formed on the base, and the conductive portion is adjacent to two or more conductive large lattices formed of thin metal wires. A connection portion is formed by a thin metal wire that electrically connects the large lattices, and each large lattice is configured by combining two or more small lattices, and a circuit is configured by a combination of the large lattices, The width Wc of the connecting portion is Ps when the pitch of the small lattice is Ps.
Wc> Ps / √2
It is characterized by satisfying.
[2] In the first aspect of the present invention, two or more large lattices are arranged in the first direction via the connecting portion to constitute one conductive pattern, and two or more conductive patterns are arranged in the first direction. An electrically insulated insulating portion in which the small lattice does not exist is arranged between the adjacent conductive patterns arranged in the second direction orthogonal to each other, and the circuit is configured by the arrangement of the conductive patterns and the insulating portions. It is characterized by being.
[3] In the first aspect of the present invention, the length of one side of the large lattice is 3 to 10 mm.
[4] In the first aspect of the present invention, the length of one side of the small lattice is 30 to 500 μm.
[5] In the first aspect of the present invention, the interval between the mutually opposing sides of the small lattice is 30 to 500 μm.
[6] In the first aspect of the present invention, the thin metal wire has a line width of 10 μm or less.
[7] A conductive sheet according to a second aspect of the present invention includes a base, a first conductive portion formed on one main surface of the base, and a second conductive portion formed on the other main surface of the base. The first conductive portion has two or more conductive first large lattices made of fine metal wires, and a first connection portion made of metal fine wires that electrically connects the adjacent first large lattices. The second conductive portion includes two or more conductive second large lattices formed of metal thin wires and a second connection portion formed of metal thin wires that electrically connect the adjacent second large lattices. Each of the first large lattices and each of the second large lattices is configured by combining two or more small lattices, and the first large lattices are arranged in the first direction via the first connection portions. Two first conductive patterns are configured, and a circuit is configured by a combination of the first large lattice and the second large lattice, The width Wc1 of the first connecting portion and the width Wc2 of the second connecting portion are set when the pitch of the small lattice is Ps.
Wc1> Ps / √2
Wc2> Ps / √2
It is characterized by satisfying.
[8] In the second aspect of the present invention, the first large lattice is arranged in the first direction via the first connection portion to constitute one first conductive pattern by a thin metal wire, and two or more second A large lattice is arranged in a second direction orthogonal to the first direction via the second connection portion to form one second conductive pattern by a fine metal wire, and the small first conductive pattern is adjacent to the small first conductive pattern. An electrically insulated first insulating part without a lattice is disposed, and between the adjacent second conductive patterns, an electrically insulated second insulating part without the small lattice is disposed, The circuit is configured by an arrangement of one conductive pattern, the second conductive pattern, the first insulating portion, and the second insulating portion.
[9] In the second aspect of the present invention, the thin metal wire has a line width of 10 μm or less.
[10] In the second aspect of the present invention, the projection distance between the straight line portion at the side portion of the first large lattice and the straight line portion at the side portion of the second large lattice is set based on the size of the small lattice. It is characterized by that.
[11] In the second aspect of the present invention, the projection distance is 100 to 400 μm.
[12] In the second aspect of the present invention, the first conductive portion includes a first terminal wiring pattern connected to an end of each of the first conductive patterns and a length of one side of one main surface of the base. A plurality of first terminals connected to the corresponding first terminal wiring patterns, and the second conductive portions are connected to ends of the second conductive patterns. A second terminal wiring pattern; and a plurality of second terminals formed at a central portion in the length direction of one side of the other main surface of the base and connected to the corresponding second terminal wiring pattern. Features.
[13] In the second aspect of the present invention, when viewed from above, a portion where the plurality of first terminals are arranged and a portion where the plurality of second terminals are arranged are adjacent to each other. To do.
[14] In the second aspect of the present invention, an end portion of each first conductive pattern is connected to the corresponding first terminal wiring pattern via a first connection portion, and an end portion of each second conductive pattern. And the corresponding second terminal wiring patterns are respectively connected via the second connection portions, and the plurality of first connection portions are arranged linearly along the second direction, and the plurality of second connection portions Are arranged in a straight line along the first direction.
[15] In the second aspect of the present invention, the first insulating portion and the second insulating portion are opposed to each other with the base interposed therebetween, and a facing portion between the first insulating portion and the second insulating portion is an upper surface. The shape seen from the above is a polygonal shape.
[16] In the second aspect of the present invention, the polygonal shape is a square shape.
[17] In the second aspect of the present invention, the polygonal shape is a wedge shape.
[18] In the first or second aspect of the present invention, the small lattice has a polygonal shape.
[19] In the second aspect of the present invention, the small lattice has a square shape.
[20] A method for using a conductive sheet according to a third aspect of the present invention is a method of using two or more conductive first large lattices made of metal fine wires and a metal fine wire electrically connecting the adjacent first large lattices. 1 connecting portion is formed, and each of the first large lattices is configured by combining two or more small lattices, and when the width Wc1 of the first connecting portion is Ps as the pitch of the small lattices, A first conductive sheet satisfying Wc1> Ps / √2, a second large lattice of two or more conductive wires formed by a thin metal wire, and a second connection formed by a thin metal wire that electrically connects the adjacent second large lattices. Each of the second large lattices is formed by combining two or more small lattices, and when the width Wc2 of the second connection portion is Ps, the pitch of the small lattices is Wc2> Conductivity using second conductive sheet satisfying Ps / √2. A method of using a sheet, wherein the first conductive sheet includes two or more first large lattices arranged in a first direction via the first connection portion to form one first conductive pattern, In the second conductive sheet, two or more second large lattices are arranged in a second direction orthogonal to the first direction via the second connection portion to form one second conductive pattern, By combining the conductive sheet and the second conductive sheet, the first connection portion of the first conductive sheet and the second connection portion of the second conductive sheet are combined to form the small lattice array. It is arranged so that it may be arranged.
[21] A capacitive touch panel according to a fourth aspect of the present invention includes the conductive sheet according to the first or second aspect of the present invention described above.
 以上説明したように、本発明に係る導電シート及び導電シートの使用方法によれば、基体上に形成される導電パターンの低抵抗化を図ることができると共に、タッチパネルにおいて、金属細線パターンで電極を構成した場合においても、高い透明性を確保することができ、例えば投影型静電容量方式のタッチパネルに用いて好適となる。
 また、本発明に係る静電容量方式タッチパネルは、基体上に形成される導電パターンの低抵抗化を図ることができると共に、金属細線パターンで電極を構成した場合においても、高い透明性を確保することができ、例えば投影型静電容量方式のタッチパネルの大サイズ化にも対応させることができる。
As described above, according to the conductive sheet and the method of using the conductive sheet according to the present invention, the resistance of the conductive pattern formed on the substrate can be reduced, and the electrode is formed with the metal fine line pattern on the touch panel. Even when configured, high transparency can be ensured, and it is suitable for use in, for example, a projected capacitive touch panel.
In addition, the capacitive touch panel according to the present invention can reduce the resistance of the conductive pattern formed on the substrate, and also ensures high transparency even when the electrode is configured with a fine metal wire pattern. For example, it is possible to cope with an increase in the size of a projected capacitive touch panel.
第1導電シートに形成される第1導電パターンのパターン例を示す平面図である。It is a top view which shows the example of a pattern of the 1st conductive pattern formed in a 1st conductive sheet. 第1導電シートを一部省略して示す断面図である。It is sectional drawing which abbreviate | omits and shows a 1st conductive sheet. タッチパネルの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of a touchscreen. 第1積層導電シートを一部省略して示す分解斜視図である。It is a disassembled perspective view which abbreviate | omits and shows a 1st lamination | stacking electrically conductive sheet. 図5Aは第1積層導電シートの一例を一部省略して示す断面図であり、図5Bは第1積層導電シートの他の例を一部省略して示す断面図である。FIG. 5A is a cross-sectional view showing an example of the first laminated conductive sheet with a part omitted, and FIG. 5B is a cross-sectional view showing another example of the first laminated conductive sheet, with a part omitted. 第2導電シートに形成される第2導電パターンのパターン例を示す平面図である。It is a top view which shows the example of a pattern of the 2nd conductive pattern formed in a 2nd conductive sheet. 第1導電シートと第2導電シートを組み合わせて第1積層導電シートとした例を一部省略して示す平面図である。It is a top view which abbreviate | omits and shows the example which made the 1st laminated conductive sheet combining the 1st conductive sheet and the 2nd conductive sheet. 図8Aは反射防止フイルムを付与した第1構成例を示す模式図であり、図8Bは同じく第2構成例を示す模式図であり、図8Cは同じく第2構成例を示す模式図である。FIG. 8A is a schematic diagram illustrating a first configuration example to which an antireflection film is applied, FIG. 8B is a schematic diagram illustrating the second configuration example, and FIG. 8C is a schematic diagram illustrating the second configuration example. 第2積層導電シートを一部省略して示す分解斜視図である。It is a disassembled perspective view which abbreviate | omits and shows a 2nd lamination | stacking electrically conductive sheet. 第2積層導電シートの第1導電シートに形成される第1導電パターンのパターン例を示す平面図である。It is a top view which shows the example of a pattern of the 1st conductive pattern formed in the 1st conductive sheet of a 2nd lamination | stacking conductive sheet. 第2積層導電シートの第2導電シートに形成される第2導電パターンのパターン例を示す平面図である。It is a top view which shows the example of a pattern of the 2nd conductive pattern formed in the 2nd conductive sheet of a 2nd lamination | stacking conductive sheet. 第1導電シートと第2導電シートを組み合わせて第2タッチパネル用導電シートとした例を一部省略して示す平面図である。It is a top view which abbreviate | omits and shows the example which made the 2nd conductive sheet the 2nd conductive sheet combining the 1st conductive sheet and the 2nd conductive sheet. 変形例に係る積層導電シートの第1導電シートに形成される第1導電パターンのパターン例を示す平面図である。It is a top view which shows the example of a pattern of the 1st conductive pattern formed in the 1st conductive sheet of the lamination | stacking conductive sheet which concerns on a modification. 変形例に係る積層導電シートの第2導電シートに形成される第2導電パターンのパターン例を示す平面図である。It is a top view which shows the example of a pattern of the 2nd conductive pattern formed in the 2nd conductive sheet of the laminated conductive sheet which concerns on a modification. 本実施の形態に係る透明導電性フイルムの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the transparent conductive film which concerns on this Embodiment. 図16Aは作製された感光材料を一部省略して示す断面図であり、図16Bは感光材料に対する両面同時露光を示す説明図である。FIG. 16A is a cross-sectional view in which a part of the produced photosensitive material is omitted, and FIG. 16B is an explanatory view showing double-sided simultaneous exposure on the photosensitive material. 第1感光層に照射された光が第2感光層に到達せず、第2感光層に照射された光が第1感光層に到達しないようにして第1露光処理及び第2露光処理を行っている状態を示す説明図である。The first exposure process and the second exposure process are performed so that the light irradiated to the first photosensitive layer does not reach the second photosensitive layer and the light irradiated to the second photosensitive layer does not reach the first photosensitive layer. FIG.
 以下、本発明に係る導電シート、導電シートの使用方法及び静電容量方式タッチパネルの実施の形態例を図1~図17を参照しながら説明する。なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。 Hereinafter, embodiments of the conductive sheet, the method for using the conductive sheet, and the capacitive touch panel according to the present invention will be described with reference to FIGS. In the present specification, “˜” indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
 第1の実施の形態に係る導電シート(以下、第1導電シート10Aと記す)は、図1に示すように、第1透明基体12A(図2参照)の一主面上に形成された第1導電部13Aを有する。この第1導電部13Aは、金属細線による2以上の導電性の第1大格子14Aと、隣接する第1大格子14A間を電気的に接続する金属細線による第1接続部16Aとが形成され、各第1大格子14Aは、それぞれ2以上の小格子18が組み合わされて構成され、第1大格子14Aの組み合わせによって回路(導電性の回路パターン)が構成されている。小格子18は、ここでは一番小さい正方形状とされている。金属細線は例えば金(Au)、銀(Ag)又は銅(Cu)で構成されている。 As shown in FIG. 1, the conductive sheet according to the first embodiment (hereinafter referred to as the first conductive sheet 10A) is formed on one main surface of the first transparent base 12A (see FIG. 2). One conductive portion 13A is provided. The first conductive portion 13A includes two or more conductive first large lattices 14A made of fine metal wires, and first connection portions 16A made of metal fine wires that electrically connect the adjacent first large lattices 14A. Each first large lattice 14A is configured by combining two or more small lattices 18, and a circuit (conductive circuit pattern) is configured by combining the first large lattice 14A. Here, the small lattice 18 has the smallest square shape. The fine metal wire is made of, for example, gold (Au), silver (Ag), or copper (Cu).
 第1大格子14Aの一辺の長さは、3~10mmであることが好ましく、4~6mmであることがより好ましい。一辺の長さが、上記下限値未満であると、第1導電シート10Aを例えばタッチパネルに利用した場合に、検出時の第1大格子14Aの静電容量が減るため、検出不良になる可能性が高くなる。他方、上記上限値を超えると、位置検出精度が低下する虞がある。同様の観点から、第1大格子14Aを構成する小格子18の一辺の長さは50~500μmであることが好ましく、150~300μmであることがさらに好ましい。小格子18が上記範囲である場合には、さらに透明性も良好に保つことが可能であり、表示装置の前面にとりつけた際に、違和感なく表示を視認することができる。 The length of one side of the first large lattice 14A is preferably 3 to 10 mm, and more preferably 4 to 6 mm. If the length of one side is less than the above lower limit value, when the first conductive sheet 10A is used for a touch panel, for example, the capacitance of the first large lattice 14A at the time of detection is reduced, and thus there is a possibility of detection failure. Becomes higher. On the other hand, if the upper limit is exceeded, the position detection accuracy may be reduced. From the same viewpoint, the length of one side of the small lattice 18 constituting the first large lattice 14A is preferably 50 to 500 μm, and more preferably 150 to 300 μm. When the small lattice 18 is in the above range, it is possible to keep the transparency better, and when it is attached to the front surface of the display device, the display can be visually recognized without a sense of incongruity.
 さらに、2以上の第1大格子14Aが第1接続部16Aを介してx方向(第1方向)に配列されて金属細線による1つの導電性の回路パターン(以下、第1導電パターン22Aと記す)が構成され、2以上の第1導電パターン22Aがx方向と直交するy方向(第2方向)に配列され、隣接する第1導電パターン22A間は、小格子18が存在しない電気的に絶縁された第1絶縁部24Aが配されている。
 x方向は、例えば後述する投影型静電容量方式のタッチパネル100(図3参照)の水平方向(又は垂直方向)あるいはタッチパネル100を設置した表示パネル110の水平方向(又は垂直方向)を示す。
Further, two or more first large lattices 14A are arranged in the x direction (first direction) via the first connection portion 16A, and one conductive circuit pattern (hereinafter referred to as a first conductive pattern 22A) is formed by a thin metal wire. And two or more first conductive patterns 22A are arranged in the y direction (second direction) orthogonal to the x direction, and the adjacent first conductive patterns 22A are electrically insulated without the small lattice 18 The first insulating portion 24A is disposed.
The x direction indicates, for example, the horizontal direction (or vertical direction) of a projection capacitive touch panel 100 (see FIG. 3) described later or the horizontal direction (or vertical direction) of the display panel 110 on which the touch panel 100 is installed.
 そして、図1に示すように、第1大格子14Aの4つの辺部のうち、隣接する第1大格子14Aと接続していない一方の頂点部分26aに隣接する第1辺部28a及び第2辺部28bについては、それぞれ第1辺部28a及び第2辺部28bに沿って連続する直線部30から多数の針状の線32(小格子18の辺)がくし歯状に張り出した形態とされている(以下、線32をくし歯32とも記す)。一方、隣接する第1大格子14Aと接続していない他方の頂点部分26bに隣接する第3辺部28c及び第4辺部28dについては、それぞれ第3辺部28c及び第4辺部28dに沿って連続する直線部30形成された形態とされ、さらに、他方の頂点部分26bに対応する1つの小格子18(正確には隣接する2つの辺)を取り外したような形態となっている。 As shown in FIG. 1, among the four sides of the first large lattice 14A, the first side portion 28a and the second side adjacent to one apex portion 26a not connected to the adjacent first large lattice 14A. The side portion 28b has a configuration in which a large number of needle-like lines 32 (sides of the small lattice 18) project in a comb-tooth shape from the linear portion 30 continuous along the first side portion 28a and the second side portion 28b. (Hereinafter, the line 32 is also referred to as a comb 32). On the other hand, the third side portion 28c and the fourth side portion 28d adjacent to the other vertex portion 26b not connected to the adjacent first large lattice 14A are along the third side portion 28c and the fourth side portion 28d, respectively. In this configuration, a straight line portion 30 is formed, and one small lattice 18 (exactly two adjacent sides) corresponding to the other apex portion 26b is removed.
 第1接続部16Aは、4つ分の小格子18を含む大きさを有する中格子20が4つ(第1中格子20a~第4中格子20d)、ジグザグ状に配列された形状を有する。すなわち、第1中格子20aは、第2辺部28bの直線部30と第4辺部28dの直線部30との境界部分に存在し、1つの小格子18とL字状の空間が形成された形状を有する。第2中格子20bは、第1中格子20aの1つ辺(第2辺部28bの直線部30)に隣接し、正方形状の空間が形成された形状、すなわち、4つ分の小格子18をマトリクス状に配列し、中央の十字を取り外したような形状を有する。第3中格子20cは、第1中格子20aに隣接すると共に、第2中格子20bに隣接して配され、第2中格子20bと同様の形状を有する。第4中格子20dは、第3辺部28cの第2番目の直線部30(一番外側から第1大格子14Aの内方に向かって2番目の直線部30)と第1辺部28aとの境界部分に存在し、第2中格子20bに隣接すると共に、第3中格子20cに隣接して配され、第1中格子20aと同様に、1つの小格子18とL字状の空間が形成された形状を有する。第4中格子20dの1つの辺は第1大格子14Aにおける第4辺部28dの直線部30の延長上に存在する。そして、小格子18の配列ピッチをPsとしたとき、中格子20の配列ピッチPmは2×Psの関係を有している。また、第1接続部16Aの幅Wc1(第2中格子20bの頂点から第3中格子20cの頂点との間であって、且つ、y方向に沿った距離)は、Wc1>Ps/√2を満足し、ここでは、6×(Ps/√2)である。
 各第1導電パターン22Aの一方の端部側に存在する第1大格子14Aの開放端は、第1接続部16Aが存在しない形状となっている。各第1導電パターン22Aの他方の端部側に存在する第1大格子14Aの端部は、第1結線部40a(図3参照)を介して金属細線による第1端子配線パターン41aに電気的に接続されている。
The first connecting portion 16A has a shape in which four medium lattices 20 having a size including four small lattices 18 (first medium lattice 20a to fourth medium lattice 20d) are arranged in a zigzag shape. That is, the first middle lattice 20a exists at the boundary portion between the straight portion 30 of the second side portion 28b and the straight portion 30 of the fourth side portion 28d, and one small lattice 18 and an L-shaped space are formed. Have a different shape. The second intermediate lattice 20b is adjacent to one side of the first intermediate lattice 20a (the straight portion 30 of the second side portion 28b) and has a shape in which a square space is formed, that is, four small lattices 18. Are arranged in a matrix and have a shape with the central cross removed. The third intermediate lattice 20c is adjacent to the first intermediate lattice 20a and adjacent to the second intermediate lattice 20b, and has the same shape as the second intermediate lattice 20b. The fourth middle lattice 20d includes a second straight portion 30 (second straight portion 30 from the outermost side toward the inside of the first large lattice 14A) of the third side portion 28c, and the first side portion 28a. And adjacent to the second intermediate lattice 20b and adjacent to the third intermediate lattice 20c, and similarly to the first intermediate lattice 20a, one small lattice 18 and an L-shaped space are provided. It has a formed shape. One side of the fourth middle lattice 20d exists on the extension of the straight portion 30 of the fourth side portion 28d in the first large lattice 14A. When the arrangement pitch of the small lattices 18 is Ps, the arrangement pitch Pm of the medium lattice 20 has a relationship of 2 × Ps. Further, the width Wc1 of the first connecting portion 16A (the distance between the apex of the second intermediate lattice 20b and the apex of the third intermediate lattice 20c and along the y direction) is Wc1> Ps / √2 Here, 6 × (Ps / √2).
The open end of the first large lattice 14A existing on one end side of each first conductive pattern 22A has a shape in which the first connection portion 16A does not exist. The end portion of the first large lattice 14A existing on the other end portion side of each first conductive pattern 22A is electrically connected to the first terminal wiring pattern 41a by a thin metal wire via the first connection portion 40a (see FIG. 3). It is connected to the.
 このように、第1導電シート10Aにおいては、1つの第1導電パターン22Aを、2以上の第1大格子14Aを第1接続部16Aを介してx方向に配列して構成し、各第1大格子14Aを、それぞれ2以上の小格子18を組み合わせて構成し、第1接続部16Aの幅Wc1を、小格子18のピッチをPsとしたとき、Wc1>Ps/√2を満足するようにしたので、1つの電極を1つのITO膜にて形成する構成よりも大幅に電気抵抗を低減することが可能となる。従って、この第1導電シート10Aを用いて例えば投影型静電容量方式のタッチパネルに適用した場合に、応答速度を速めることができ、タッチパネルの大サイズ化を促進させることができる。 As described above, in the first conductive sheet 10A, one first conductive pattern 22A is configured by arranging two or more first large lattices 14A in the x direction via the first connection portions 16A. When the large lattice 14A is configured by combining two or more small lattices 18 and the width Wc1 of the first connecting portion 16A is Ps and the pitch of the small lattice 18 is Ps, Wc1> Ps / √2 is satisfied. Therefore, the electrical resistance can be greatly reduced as compared with the configuration in which one electrode is formed by one ITO film. Accordingly, when the first conductive sheet 10A is used for a projection capacitive touch panel, for example, the response speed can be increased, and the touch panel can be increased in size.
 次に、上述の第1導電シート10Aを用いたタッチパネル100について図3~図7を参照しながら説明する。
 タッチパネル100は、センサ本体102と図示しない制御回路(IC回路等で構成)とを有する。センサ本体102は、図3、図4及び図5Aに示すように、上述した第1導電シート10Aと後述する第2導電シート10Bと積層されて構成された第1の実施の形態に係るタッチパネル用導電シート(以下、第1積層導電シート50Aと記す)と、その上に積層された保護層106(図5Aでは保護層106の記述を省略している)とを有する。第1積層導電シート50A及び保護層106は、例えば液晶ディスプレイ等の表示装置108における表示パネル110上に配置されるようになっている。センサ本体102は、上面から見たときに、表示パネル110の表示画面110aに対応した領域に配されたセンサ部112と、表示パネル110の外周部分に対応する領域に配された端子配線部114(いわゆる額縁)とを有する。
 タッチパネル100に適用した第1導電シート10Aは、図4に示すように、センサ部112に対応した部分に、上述した多数の第1導電パターン22Aが配列され、端子配線部114には各第1結線部40aから導出された金属細線による複数の第1端子配線パターン41aが配列されている。
Next, the touch panel 100 using the first conductive sheet 10A described above will be described with reference to FIGS.
The touch panel 100 includes a sensor body 102 and a control circuit (configured by an IC circuit or the like) not shown. As shown in FIGS. 3, 4 and 5A, the sensor main body 102 is for the touch panel according to the first embodiment configured by laminating the first conductive sheet 10A and the second conductive sheet 10B described later. It has a conductive sheet (hereinafter referred to as the first laminated conductive sheet 50A) and a protective layer 106 laminated thereon (the description of the protective layer 106 is omitted in FIG. 5A). The first laminated conductive sheet 50A and the protective layer 106 are arranged on the display panel 110 in the display device 108 such as a liquid crystal display. When viewed from above, the sensor main body 102 has a sensor unit 112 disposed in a region corresponding to the display screen 110 a of the display panel 110 and a terminal wiring unit 114 disposed in a region corresponding to the outer peripheral portion of the display panel 110. (So-called picture frame).
As shown in FIG. 4, the first conductive sheet 10 </ b> A applied to the touch panel 100 has a large number of the first conductive patterns 22 </ b> A arranged at portions corresponding to the sensor portions 112. A plurality of first terminal wiring patterns 41a made of fine metal wires led out from the connection portion 40a are arranged.
 図3の例では、第1導電シート10Aの外形は、上面から見て長方形状を有し、センサ部112の外形も長方形状を有する。端子配線部114のうち、第1導電シート10Aの一方の長辺側の周縁部には、その長さ方向中央部分に、複数の第1端子116aが前記一方の長辺の長さ方向に配列形成されている。また、センサ部112の一方の長辺(第1導電シート10Aの一方の長辺に最も近い長辺:y方向)に沿って複数の第1結線部40aが直線状に配列されている。各第1結線部40aから導出された第1端子配線パターン41aは、第1導電シート10Aの一方の長辺におけるほぼ中央部に向かって引き回され、それぞれ対応する第1端子116aに電気的に接続されている。従って、センサ部112における一方の長辺の両側に対応する各第1結線部40aに接続された第1端子配線パターン41aは、ほぼ同じ長さにて引き回されることになる。もちろん、第1端子116aを第1導電シート10Aのコーナー部やその近傍に形成してもよいが、複数の第1端子配線パターン41aのうち、最も長い第1端子配線パターン41aと最も短い第1端子配線パターン41aとの間に大きな長さ上の違いが生じ、最も長い第1端子配線パターン41aとその近傍の複数の第1端子配線パターン41aに対応する第1導電パターン22Aへの信号伝達が遅くなるという問題がある。そこで、本実施の形態のように、第1導電シート10Aの一方の長辺の長さ方向中央部分に、第1端子116aを形成することで、局所的な信号伝達の遅延を抑制することができる。これは、応答速度の高速化につながる。 In the example of FIG. 3, the outer shape of the first conductive sheet 10A has a rectangular shape when viewed from above, and the outer shape of the sensor unit 112 also has a rectangular shape. Among the terminal wiring portions 114, a plurality of first terminals 116a are arranged in the lengthwise central portion at the peripheral portion on the one long side of the first conductive sheet 10A in the length direction of the one long side. Is formed. A plurality of first connection portions 40a are linearly arranged along one long side of sensor portion 112 (long side closest to one long side of first conductive sheet 10A: y direction). The first terminal wiring patterns 41a derived from the first connection portions 40a are routed toward the substantially central portion of one long side of the first conductive sheet 10A, and are electrically connected to the corresponding first terminals 116a. It is connected. Accordingly, the first terminal wiring patterns 41a connected to the first connection portions 40a corresponding to both sides of one long side in the sensor unit 112 are routed with substantially the same length. Of course, the first terminal 116a may be formed at or near the corner of the first conductive sheet 10A, but the longest first terminal wiring pattern 41a and the shortest first among the plurality of first terminal wiring patterns 41a. A large difference in length occurs between the terminal wiring pattern 41a and signal transmission to the first conductive pattern 22A corresponding to the longest first terminal wiring pattern 41a and a plurality of first terminal wiring patterns 41a in the vicinity thereof. There is a problem of being slow. Therefore, as in the present embodiment, local signal transmission delay can be suppressed by forming the first terminal 116a at the central portion in the length direction of one long side of the first conductive sheet 10A. it can. This leads to an increase in response speed.
 一方、第2導電シート10Bは、図3、図4及び図5Aに示すように、第2透明基体12Bの一主面上に形成された第2導電部13Bを有する。この第2導電部13Bは、金属細線による2以上の導電性の第2大格子14Bと、隣接する第2大格子14B間を電気的に接続する金属細線による第2接続部16Bとが形成され、各第2大格子14Bは、図6に示すように、それぞれ2以上の小格子18が組み合わされて構成され、第2接続部16Bは、小格子18のn倍(nは1より大きい実数)のピッチを有する1以上の中格子20が配置されて構成されている。第2大格子14Bの一辺の長さについても、上述した第1大格子14Aと同様に、3~10mmであることが好ましく、4~6mmであることがより好ましい。
 さらに、2以上の第2大格子14Bが第2接続部16Bを介してy方向(第2方向)に配列されて金属細線による1つの導電性の回路パターン(以下、第2導電パターン22Bと記す)が構成され、2以上の第2導電パターン22Bがy方向と直交するx方向(第1方向)に配列され、隣接する第2導電パターン22B間は小格子18が存在しない電気的に絶縁された第2絶縁部24Bが配されている。
On the other hand, as shown in FIGS. 3, 4 and 5A, the second conductive sheet 10B has a second conductive portion 13B formed on one main surface of the second transparent base 12B. The second conductive portion 13B is formed with two or more conductive second large lattices 14B made of fine metal wires and second connection portions 16B made of metal fine wires that electrically connect the adjacent second large lattices 14B. As shown in FIG. 6, each of the second large lattices 14B is configured by combining two or more small lattices 18, and the second connection portion 16B has n times the small lattice 18 (n is a real number larger than 1). 1) one or more medium grids 20 having a pitch of (1) are arranged. The length of one side of the second large lattice 14B is also preferably 3 to 10 mm, and more preferably 4 to 6 mm, like the first large lattice 14A.
Further, two or more second large lattices 14B are arranged in the y direction (second direction) via the second connection portion 16B, and one conductive circuit pattern (hereinafter referred to as a second conductive pattern 22B) is formed by a thin metal wire. ), Two or more second conductive patterns 22B are arranged in the x direction (first direction) orthogonal to the y direction, and the adjacent second conductive patterns 22B are electrically insulated without the small lattice 18 A second insulating portion 24B is arranged.
 図4に示すように、1つ置き(例えば奇数番目)の第2導電パターン22Bの一方の端部側に存在する第2大格子14Bの開放端、並びに偶数番目の第2導電パターン22Bの他方の端部側に存在する第2大格子14Bの開放端には、それぞれ第2接続部16Bが存在しない形状となっている。一方、奇数番目の各第2導電パターン22Bの他方の端部側に存在する第2大格子14Bの端部、並びに偶数番目の各第2導電パターン22Bの一方の端部側に存在する第2大格子14Bの端部は、それぞれ第2結線部40bを介して金属細線による第2端子配線パターン41bに電気的に接続されている。
 そして、センサ部112に対応した部分に、多数の第2導電パターン22Bが配列され、端子配線部114には各第2結線部40bから導出された複数の第2端子配線パターン41bが配列されている。
 図3に示すように、端子配線部114のうち、第2導電シート10Bの一方の長辺側の周縁部には、その長さ方向中央部分に、複数の第2端子116bが前記一方の長辺の長さ方向に配列形成されている。また、センサ部112の一方の短辺(第2導電シート10Bの一方の短辺に最も近い短辺:x方向)に沿って複数の第2結線部40b(例えば奇数番目の第2結線部40b)が直線状に配列され、センサ部112の他方の短辺(第2導電シート10Bの他方の短辺に最も近い短辺:x方向)に沿って複数の第2結線部40b(例えば偶数番目の第2結線部40b)が直線状に配列されている。
As shown in FIG. 4, the open end of the second large lattice 14B existing on one end side of every other (for example, odd-numbered) second conductive pattern 22B, and the other of the even-numbered second conductive patterns 22B. The second connecting portion 16B does not exist at the open end of the second large lattice 14B existing on the end side. On the other hand, the second large lattice 14B existing on the other end side of each odd-numbered second conductive pattern 22B and the second end existing on one end side of each even-numbered second conductive pattern 22B. The ends of the large lattice 14B are electrically connected to the second terminal wiring patterns 41b made of fine metal wires through the second connection portions 40b.
A number of second conductive patterns 22B are arranged at portions corresponding to the sensor unit 112, and a plurality of second terminal wiring patterns 41b derived from the respective second connection portions 40b are arranged at the terminal wiring unit 114. Yes.
As shown in FIG. 3, among the terminal wiring portions 114, a plurality of second terminals 116 b are arranged on the one long side side of the second conductive sheet 10 </ b> B at the central portion in the length direction. An array is formed in the length direction of the side. Further, a plurality of second connection portions 40b (for example, odd-numbered second connection portions 40b) along one short side of the sensor unit 112 (short side closest to one short side of the second conductive sheet 10B: x direction). ) Are arranged in a straight line, and a plurality of second connection portions 40b (for example, even-numbered ones) along the other short side of sensor portion 112 (short side closest to the other short side of second conductive sheet 10B: x direction) Are connected in a straight line.
 複数の第2導電パターン22Bのうち、例えば奇数番目の第2導電パターン22Bが、それぞれ対応する奇数番目の第2結線部40bに接続され、偶数番目の第2導電パターン22Bが、それぞれ対応する偶数番目の第2結線部40bに接続されている。奇数番目の第2結線部40bから導出された第2端子配線パターン41b並びに偶数番目の第2結線部40bから導出された第2端子配線パターン41bは、第2導電シート10Bの一方の長辺におけるほぼ中央部に向かって引き回され、それぞれ対応する第2端子116bに電気的に接続されている。従って、例えば第1番目と第2番目の第2端子配線パターン41bは、ほぼ同じ長さにて引き回され、以下同様に、第2n-1番目と第2n番目の第2端子配線パターン41bは、それぞれほぼ同じ長さにて引き回されることになる(n=1、2、3・・・)。
 もちろん、第2端子116bを第2導電シート10Bのコーナー部やその近傍に形成してもよいが、上述したように、最も長い第2端子配線パターン41bとその近傍の複数の第2端子配線パターン41bに対応する第2導電パターン22Bへの信号伝達が遅くなるという問題がある。そこで、本実施の形態のように、第2導電シート10Bの一方の長辺の長さ方向中央部分に、第2端子116bを形成することで、局所的な信号伝達の遅延を抑制することができる。これは、応答速度の高速化につながる。
 なお、第1端子配線パターン41aの導出形態を上述した第2端子配線パターン41bと同様にし、第2端子配線パターン41bの導出形態を上述した第1端子配線パターン41aと同様にしてもよい。
Among the plurality of second conductive patterns 22B, for example, odd-numbered second conductive patterns 22B are respectively connected to the corresponding odd-numbered second connection portions 40b, and even-numbered second conductive patterns 22B are respectively corresponding even-numbered. It is connected to the second second connection part 40b. The second terminal wiring pattern 41b derived from the odd-numbered second connection portion 40b and the second terminal wiring pattern 41b derived from the even-numbered second connection portion 40b are arranged on one long side of the second conductive sheet 10B. The wires are routed substantially toward the center and are electrically connected to the corresponding second terminals 116b. Therefore, for example, the first and second second terminal wiring patterns 41b are routed with substantially the same length. Similarly, the 2n-1th and 2nth second terminal wiring patterns 41b are , Respectively, are drawn with substantially the same length (n = 1, 2, 3,...).
Of course, the second terminal 116b may be formed in the corner portion of the second conductive sheet 10B or in the vicinity thereof, but as described above, the longest second terminal wiring pattern 41b and a plurality of second terminal wiring patterns in the vicinity thereof. There is a problem that signal transmission to the second conductive pattern 22B corresponding to 41b becomes slow. Therefore, as in the present embodiment, local signal transmission delay can be suppressed by forming the second terminal 116b in the central portion in the length direction of one long side of the second conductive sheet 10B. it can. This leads to an increase in response speed.
The derivation form of the first terminal wiring pattern 41a may be the same as the second terminal wiring pattern 41b described above, and the derivation form of the second terminal wiring pattern 41b may be the same as the first terminal wiring pattern 41a described above.
 そして、この第1積層導電シート50Aをタッチパネルとして使用する場合は、第1導電シート10A上に保護層を形成し、第1導電シート10Aの多数の第1導電パターン22Aから導出された第1端子配線パターン41aと、第2導電シート10Bの多数の第2導電パターン22Bから導出された第2端子配線パターン41bとを、例えばスキャンをコントロールする制御回路に接続する。
 タッチ位置の検出方式としては、自己容量方式や相互容量方式を好ましく採用することができる。すなわち、自己容量方式であれば、第1導電パターン22Aに対して順番にタッチ位置検出のための電圧信号を供給し、第2導電パターン22Bに対して順番にタッチ位置検出のための電圧信号を供給する。指先が保護層106の上面に接触又は近接させることで、タッチ位置に対向する第1導電パターン22A及び第2導電パターン22BとGND(グランド)間の容量が増加することから、当該第1導電パターン22A及び第2導電パターン22Bからの伝達信号の波形が他の導電パターンからの伝達信号の波形と異なった波形となる。従って、制御回路では、第1導電パターン22A及び第2導電パターン22Bから供給された伝達信号に基づいてタッチ位置を演算する。一方、相互容量方式の場合は、例えば第1導電パターン22Aに対して順番にタッチ位置検出のための電圧信号を供給し、第2導電パターン22Bに対して順番にセンシング(伝達信号の検出)を行う。指先が保護層106の上面に接触又は近接させることで、タッチ位置に対向する第1導電パターン22Aと第2導電パターン22B間の寄生容量に対して並列に指の浮遊容量が加わることから、当該第2導電パターン22Bからの伝達信号の波形が他の第2導電パターン22Bからの伝達信号の波形と異なった波形となる。従って、制御回路では、電圧信号を供給している第1導電パターン22Aの順番と、供給された第2導電パターン22Bからの伝達信号に基づいてタッチ位置を演算する。このような自己容量方式又は相互容量方式のタッチ位置の検出方法を採用することで、保護層106の上面に同時に2つの指先を接触又は近接させても、各タッチ位置を検出することが可能となる。なお、投影型静電容量方式の検出回路に関する先行技術文献として、米国特許第4,582,955号明細書、米国特許第4,686,332号明細書、米国特許第4,733,222号明細書、米国特許第5,374,787号明細書、米国特許第5,543,588号明細書、米国特許第7,030,860号明細書、米国公開特許2004/0155871号明細書等がある。
When this first laminated conductive sheet 50A is used as a touch panel, a protective layer is formed on the first conductive sheet 10A, and the first terminals derived from the multiple first conductive patterns 22A of the first conductive sheet 10A. The wiring pattern 41a and the second terminal wiring pattern 41b derived from the multiple second conductive patterns 22B of the second conductive sheet 10B are connected to, for example, a control circuit that controls scanning.
As a touch position detection method, a self-capacitance method or a mutual capacitance method can be preferably employed. That is, in the case of the self-capacitance method, voltage signals for touch position detection are sequentially supplied to the first conductive pattern 22A, and voltage signals for touch position detection are sequentially supplied to the second conductive pattern 22B. Supply. Since the capacitance between the first conductive pattern 22A and the second conductive pattern 22B facing the touch position and GND (ground) is increased by bringing the fingertip into contact with or close to the upper surface of the protective layer 106, the first conductive pattern The waveforms of the transmission signals from 22A and the second conductive pattern 22B are different from the waveforms of the transmission signals from the other conductive patterns. Therefore, the control circuit calculates the touch position based on the transmission signal supplied from the first conductive pattern 22A and the second conductive pattern 22B. On the other hand, in the case of the mutual capacitance method, for example, a voltage signal for touch position detection is sequentially supplied to the first conductive pattern 22A, and sensing (detection of a transmission signal) is sequentially performed on the second conductive pattern 22B. Do. Since the fingertip is in contact with or close to the upper surface of the protective layer 106, the stray capacitance of the finger is added in parallel to the parasitic capacitance between the first conductive pattern 22A and the second conductive pattern 22B facing the touch position. The waveform of the transmission signal from the second conductive pattern 22B is different from the waveform of the transmission signal from the other second conductive pattern 22B. Therefore, in the control circuit, the touch position is calculated based on the order of the first conductive patterns 22A supplying the voltage signal and the transmission signal from the supplied second conductive pattern 22B. By adopting such a self-capacitance type or mutual capacitance type touch position detection method, it is possible to detect each touch position even when two fingertips are simultaneously in contact with or close to the upper surface of the protective layer 106. Become. As prior art documents related to a projection type capacitance detection circuit, US Pat. No. 4,582,955, US Pat. No. 4,686,332, US Pat. No. 4,733,222 Specification, US Pat. No. 5,374,787, US Pat. No. 5,543,588, US Pat. No. 7,030,860, US Published Patent No. 2004/0155871, etc. is there.
 そして、図6に示すように、第2導電パターン22Bにおける第2大格子14Bの4つの辺部のうち、隣接する第2大格子14Bと接続していない一方の頂点部分26aに隣接する第5辺部28e及び第6辺部28fについてみると、第5辺部28eについては、第1導電シート10Aにおける第1大格子14Aの第1辺部28aと同様に、第5辺部28eに沿って連続する直線部30から多数の針状の線32(小格子18の辺)がくし歯状に張り出した形態とされている。第6辺部28fについては、第1導電シート10Aにおける第1大格子14Aの第3辺部28cと同様に、第6辺部28fに沿って連続する直線部30が形成された形態とされている。隣接する第2大格子14Bと接続していない他方の頂点部分26bに隣接する第7辺部28g及び第8辺部28hについてみると、第7辺部26gについては、第5辺部28eと同様に、第7辺部28gに沿って連続する直線部30から多数の針状の線32(小格子18の辺)がくし歯状に張り出した形態とされ、第8辺部28hについては、第6辺部28fと同様に、第8辺部28hに沿って連続する直線部30が形成された形態とされている。 As shown in FIG. 6, among the four sides of the second large lattice 14B in the second conductive pattern 22B, the fifth adjacent to one apex portion 26a not connected to the adjacent second large lattice 14B. Looking at the side part 28e and the sixth side part 28f, the fifth side part 28e is along the fifth side part 28e in the same manner as the first side part 28a of the first large lattice 14A in the first conductive sheet 10A. A large number of needle-like lines 32 (sides of the small lattice 18) protrude from the continuous straight part 30 in a comb-tooth shape. About the 6th side part 28f, it is set as the form by which the linear part 30 continuous along the 6th side part 28f was formed similarly to the 3rd side part 28c of 14 A of 1st large lattices in the 1st conductive sheet 10A. Yes. Looking at the seventh side portion 28g and the eighth side portion 28h adjacent to the other vertex portion 26b not connected to the adjacent second large lattice 14B, the seventh side portion 26g is the same as the fifth side portion 28e. In addition, a large number of needle-like lines 32 (sides of the small lattice 18) project in a comb-tooth shape from the straight portion 30 continuous along the seventh side portion 28g. Similar to the side portion 28f, a linear portion 30 that is continuous along the eighth side portion 28h is formed.
 また、第2接続部16Bは、4つ分の小格子18を含む大きさを有する中格子20が4つ(第5中格子20e~第8中格子20h)、ジグザグ状に配列された形状を有する。すなわち、第5中格子20eは、第6辺部28fの第2番目の直線部30(一番外側から第2大格子14Bの内方に向かって2番目の直線部)と第8辺部28hの直線部30との境界部分に存在し、1つの小格子18とL字状の空間が形成された形状を有する。第6中格子20fは、第5中格子20eの1つの辺(第6辺部28fの第2番目の直線部30)に隣接し、正方形状の空間が形成された形状、すなわち、4つ分の小格子18をマトリクス状に配列し、中央の十字を取り外したような形状を有する。第7中格子20gは、第5中格子20eに隣接すると共に、第6中格子20fに隣接して配され、第6中格子20fと同様の形状を有する。第8中格子20hは、第7辺部28gの直線部30と第5辺部28eとの境界部分に存在し、第6中格子20fに隣接すると共に、第7中格子20gに隣接して配され、第5中格子20eと同様に、1つの小格子18とL字状の空間が形成された形状を有する。第8中格子20hの1つの辺は第5中格子20eにおける第8辺部28hの直線部30の延長上に存在する。この第2導電シート10Bにおいても、小格子18の配列ピッチをPsとしたとき、中格子20の配列ピッチPmは2×Psの関係を有している。また、第2接続部の幅Wc2(第6中格子20fの頂点から第7中格子20gの頂点との間であって、且つ、x方向に沿った距離)は、Wc2>Ps/√2を満足し、ここでは、6×(Ps/√2)である。 In addition, the second connection portion 16B has a shape in which four medium lattices 20 having a size including four small lattices 18 (fifth medium lattice 20e to eighth medium lattice 20h) are arranged in a zigzag shape. Have. That is, the fifth middle lattice 20e includes the second straight portion 30 (second straight portion from the outermost side toward the inside of the second large lattice 14B) and the eighth side portion 28h of the sixth side portion 28f. And has a shape in which one small lattice 18 and an L-shaped space are formed. The sixth intermediate lattice 20f is adjacent to one side of the fifth intermediate lattice 20e (the second straight portion 30 of the sixth side portion 28f), and has a shape in which a square space is formed, that is, four portions. The small lattices 18 are arranged in a matrix, and the cross is removed from the center. The seventh intermediate lattice 20g is adjacent to the fifth intermediate lattice 20e and is adjacent to the sixth intermediate lattice 20f, and has the same shape as the sixth intermediate lattice 20f. The eighth middle lattice 20h exists at the boundary between the straight portion 30 of the seventh side 28g and the fifth side 28e, is adjacent to the sixth middle lattice 20f, and is adjacent to the seventh middle lattice 20g. Similarly to the fifth middle lattice 20e, it has a shape in which one small lattice 18 and an L-shaped space are formed. One side of the eighth middle lattice 20h exists on the extension of the straight portion 30 of the eighth side 28h in the fifth middle lattice 20e. Also in the second conductive sheet 10B, when the arrangement pitch of the small lattices 18 is Ps, the arrangement pitch Pm of the medium lattice 20 has a relationship of 2 × Ps. The width Wc2 of the second connection portion (the distance between the vertex of the sixth middle lattice 20f and the vertex of the seventh middle lattice 20g and along the x direction) satisfies Wc2> Ps / √2. Satisfactory, here 6 × (Ps / √2).
 そして、例えば第2導電シート10B上に第1導電シート10Aを積層して第1積層導電シート50Aとしたとき、図7に示すように、第1導電パターン22Aの第1接続部16Aと第2導電パターン22Bの第2接続部16Bとが第1透明基体12A(図5A参照)を間に挟んで対向し、第1導電パターン22Aの第1絶縁部24Aと第2導電パターン22Bの第2絶縁部24Bとが同じく第1透明基体12Aを間に挟んで対向した形態となる。なお、第1導電パターン22Aと第2導電パターン22Bの各線幅は同じであるが、図7においては、第1導電パターン22Aと第2導電パターン22Bの位置がわかるように、第1導電パターン22Aの線幅を太く、第2導電パターン22Bの線幅を細くして誇張して図示してある。 For example, when the first conductive sheet 10A is laminated on the second conductive sheet 10B to form the first laminated conductive sheet 50A, as shown in FIG. 7, the first connection portion 16A and the second connection portion 16A of the first conductive pattern 22A The second connection portion 16B of the conductive pattern 22B is opposed to the first transparent base 12A (see FIG. 5A), and the first insulation portion 24A of the first conductive pattern 22A and the second insulation of the second conductive pattern 22B are opposed to each other. Similarly, the portion 24B is opposed to the first transparent base 12A. The line widths of the first conductive pattern 22A and the second conductive pattern 22B are the same, but in FIG. 7, the first conductive pattern 22A is shown so that the positions of the first conductive pattern 22A and the second conductive pattern 22B can be seen. The line width of the second conductive pattern 22B is exaggerated and narrowed.
 積層した第1導電シート10A及び第2導電シート10Bを上面から見たとき、第1導電シート10Aに形成された第1大格子14Aの隙間を埋めるように、第2導電シート10Bの第2大格子14Bが配列された形態となる。つまり、大格子が敷き詰められた形態となる。このとき、第1大格子14Aの第1辺部28a及び第2辺部28bにおけるくし歯32の各先端が第2大格子14Bの第6辺部28f及び第8辺部28hの各直線部30にて接続されたような形状となって、結果的に小格子18が配列された形態となり、同様に、第2大格子14Bの第5辺部28e及び第7辺部28gにおけるくし歯32の各先端が第1大格子14Aの第3辺部28c及び第4辺部28dの各直線部30にて接続されたような形状となって、結果的に小格子18が配列された形態となり、第1大格子14Aと第2大格子14Bとの境界をほとんど見分けることができない状態となる。 When the stacked first conductive sheet 10A and second conductive sheet 10B are viewed from above, the second large size of the second conductive sheet 10B is filled so as to fill the gaps of the first large lattice 14A formed in the first conductive sheet 10A. The lattice 14B is arranged. In other words, a large lattice is spread. At this time, the tips of the comb teeth 32 in the first side portion 28a and the second side portion 28b of the first large lattice 14A are the straight portions 30 of the sixth side portion 28f and the eighth side portion 28h of the second large lattice 14B. As a result, the small lattices 18 are arranged, and similarly, the comb teeth 32 on the fifth side portion 28e and the seventh side portion 28g of the second large lattice 14B are formed. Each tip has a shape connected to each of the straight portions 30 of the third side portion 28c and the fourth side portion 28d of the first large lattice 14A. As a result, the small lattices 18 are arranged, The boundary between the first large lattice 14A and the second large lattice 14B is almost indistinguishable.
 ここで、例えば第1大格子14A及び第2大格子14Bの辺部を全て直線部30として形成した場合、すなわち、第1大格子14Aの第1辺部28a及び第2辺部28bから張り出す多数の線32の開放端を接続して新たな直線部30とし、同様に、第2大格子14Bの第5辺部28e及び第7辺部28gから張り出す多数の線32の開放端を接続して新たな直線部30とした場合、重ね合わせの位置精度の僅かなズレにより、直線部30同士の重なり部分の幅が大きくなり(線太り)、これにより、第1大格子14Aと第2大格子14Bとの境界が目立ってしまい、視認性が劣化するという問題が生じるが、本実施の形態では、上述したように、くし歯32の先端と直線部30との重なりにより、第1大格子14Aと第2大格子14Bとの境界が目立たなくなり、視認性が向上する。なお、第1絶縁部24Aと第2絶縁部24Bとが対向する部分は、中格子1つ分の開口が形成されることになるが、上述した線太りと異なり、光を遮るということがないため、外部に目立つということがほとんどない。特に、中格子1つ分の開口であれば、周りの小格子18と比してサイズ的にもほとんど同じであるため、さらに目立たなくなる。 Here, for example, when all the side portions of the first large lattice 14A and the second large lattice 14B are formed as the straight portions 30, that is, project from the first side portion 28a and the second side portion 28b of the first large lattice 14A. Connect the open ends of a large number of lines 32 to form a new straight line portion 30, and similarly connect the open ends of a large number of lines 32 protruding from the fifth side portion 28e and the seventh side portion 28g of the second large lattice 14B. When the new straight line portion 30 is used, the width of the overlapping portion between the straight line portions 30 increases (thickening of the line) due to a slight shift in the overlay position accuracy. Although the boundary with the large lattice 14B becomes conspicuous and the visibility deteriorates, there arises a problem that in the present embodiment, as described above, the first large due to the overlap between the tip of the comb teeth 32 and the straight portion 30. A lattice 14A and a second large lattice 14B; Boundary becomes inconspicuous, visibility is improved. Note that an opening corresponding to one medium lattice is formed at a portion where the first insulating portion 24A and the second insulating portion 24B face each other. However, unlike the above-described line thickening, light is not blocked. Therefore, it is hardly noticeable outside. In particular, an opening corresponding to one medium lattice is almost the same in terms of size as compared with the surrounding small lattice 18, and therefore becomes less conspicuous.
 また、例えば第1大格子14A及び第2大格子14Bの第1辺部28a~第8辺部28hを全て直線部30として形成した場合、第1大格子14Aの第1辺部28a~第4辺部28dにおける直線部30の直下に第2大格子14Bの第5辺部28e~第8辺部28hにおける直線部30が位置することになる。このとき、各直線部30も導電部分として機能することから、第1大格子14Aの辺部と第2大格子14Bの辺部との間に寄生容量が形成され、この寄生容量の存在が電荷情報に対してノイズ成分として働き、S/N比の著しい低下を引き起こす。しかも、各第1大格子14Aと各第2大格子14B間に寄生容量が形成されることから、第1導電パターン22Aと第2導電パターン22Bに多数の寄生容量が並列に接続された形態となり、その結果、CR時定数が大きくなるという問題がある。CR時定数が大きくなると、第1導電パターン22A(及び第2導電パターン22B)に供給された電圧信号の波形の立ち上がり時間が遅くなり、所定のスキャン時間において位置検出のための電界の発生がほとんど行われなくなるおそれがある。また、第1導電パターン22A及び第2導電パターン22Bからの伝達信号の波形の立ち上がり時間又は立ち下がり時間も遅くなり、所定のスキャン時間において伝達信号の波形の変化を捉えることができなくなるおそれがある。これは、検出精度の低下、応答速度の低下につながる。つまり、検出精度の向上、応答速度の向上を図るためには、第1大格子14A及び第2大格子14Bの数を減らしたり(分解能の低減)、適応させる表示画面のサイズを小さくするしかなく、例えばB5版、A4版、それ以上の大画面に適用させることができないという問題が生ずる。 Further, for example, when the first side portion 28a to the eighth side portion 28h of the first large lattice 14A and the second large lattice 14B are all formed as the straight portion 30, the first side portion 28a to the fourth side portion of the first large lattice 14A. The straight line portions 30 in the fifth side portion 28e to the eighth side portion 28h of the second large lattice 14B are located immediately below the straight line portion 30 in the side portion 28d. At this time, since each straight line portion 30 also functions as a conductive portion, a parasitic capacitance is formed between the side portion of the first large lattice 14A and the side portion of the second large lattice 14B. It acts as a noise component for information and causes a significant decrease in the S / N ratio. In addition, since a parasitic capacitance is formed between each first large lattice 14A and each second large lattice 14B, a large number of parasitic capacitances are connected in parallel to the first conductive pattern 22A and the second conductive pattern 22B. As a result, there is a problem that the CR time constant becomes large. When the CR time constant is increased, the rise time of the waveform of the voltage signal supplied to the first conductive pattern 22A (and the second conductive pattern 22B) is delayed, and an electric field for position detection is hardly generated in a predetermined scan time. There is a risk that it will not be performed. In addition, the rising time or falling time of the waveform of the transmission signal from the first conductive pattern 22A and the second conductive pattern 22B is also delayed, and there is a possibility that the change in the waveform of the transmission signal cannot be captured during a predetermined scan time. . This leads to a decrease in detection accuracy and a decrease in response speed. That is, in order to improve the detection accuracy and the response speed, the number of the first large grid 14A and the second large grid 14B must be reduced (reduction in resolution) or the size of the display screen to be adapted can be reduced. For example, there arises a problem that it cannot be applied to B5 version, A4 version, and larger screens.
 これに対して、本実施の形態では、図5Aに示すように、第1大格子14Aの辺部における直線部30と、第2大格子14Bの辺部における直線部30との投影距離Lfを小格子18の1つの辺の長さ(50~500μm)とほぼ同じにしている。さらに、第1大格子14Aの第1辺部28a及び第2辺部28bから張り出している針状の線32は、それぞれ先端のみが第2大格子14Bの第6辺部28f及び第8辺部28hにおける直線部30と対向し、第2大格子14Bの第5辺部28e及び第7辺部28gから張り出している針状の線32は、それぞれ先端のみが第1大格子14Aの第3辺部28c及び第4辺部28dにおける直線部30と対向するだけであるため、第1大格子14Aと第2大格子14B間に形成される寄生容量は小さくなる。その結果、CR時定数も小さくなり、検出精度の向上、応答速度の向上を図ることができる。
 上述の投影距離Lfの最適距離は、第1大格子14A及び第2大格子14Bのサイズよりは、第1大格子14A及び第2大格子14Bを構成する小格子18のサイズ(線幅及び一辺の長さ)に応じて適宜設定することが好ましい。この場合、一定のサイズを有する第1大格子14A及び第2大格子14Bに対して、小格子18のサイズが大きすぎると、透光性は向上するが、伝達信号のダイナミックレンジが小さくなることから、検出感度の低下を引き起こすおそれがある。反対に、小格子18のサイズが小さすぎると、検出感度は向上するが、線幅の低減には限界があるため、透光性が劣化するおそれがある。
On the other hand, in the present embodiment, as shown in FIG. 5A, the projection distance Lf between the straight portion 30 at the side portion of the first large lattice 14A and the straight portion 30 at the side portion of the second large lattice 14B is set. The length of one side of the small lattice 18 is approximately the same (50 to 500 μm). Furthermore, the needle-like lines 32 projecting from the first side portion 28a and the second side portion 28b of the first large lattice 14A are only the tips of the sixth side portion 28f and the eighth side portion of the second large lattice 14B, respectively. The needle-like lines 32 facing the straight line portion 30 in 28h and projecting from the fifth side portion 28e and the seventh side portion 28g of the second large lattice 14B are only the tips of the third side of the first large lattice 14A. Since the portion 28c and the fourth side portion 28d only face the straight line portion 30, the parasitic capacitance formed between the first large lattice 14A and the second large lattice 14B is reduced. As a result, the CR time constant is also reduced, and the detection accuracy and response speed can be improved.
The optimum distance of the projection distance Lf described above is not the size of the first large lattice 14A and the second large lattice 14B, but the size (line width and one side) of the small lattice 18 constituting the first large lattice 14A and the second large lattice 14B. It is preferable to set appropriately according to the length). In this case, if the size of the small lattice 18 is too large with respect to the first large lattice 14A and the second large lattice 14B having a certain size, the translucency is improved, but the dynamic range of the transmission signal is decreased. Therefore, there is a risk of causing a decrease in detection sensitivity. On the other hand, if the size of the small lattice 18 is too small, the detection sensitivity is improved, but there is a limit to the reduction of the line width, so that the translucency may be deteriorated.
 そこで、上述の投影距離Lfの最適値(最適距離)は、小格子18の線幅を1~9μmとしたとき、100~400μmが好ましく、さらに好ましくは200~300μmである。小格子18の線幅を狭くすれば、上述の最適距離も短くできるが、電気抵抗が高くなってくるため、寄生容量が小さくても、CR時定数が高くなってしまい、結果的に検出感度の低下、応答速度の低下を引き起こすおそれがある。従って、小格子18の線幅は上述の範囲が好ましい。
 そして、例えば表示パネル110のサイズあるいはセンサ部112のサイズとタッチ位置検出の分解能(駆動パルスのパルス周期)とに基づいて、第1大格子14A及び第2大格子14Bのサイズ並びに小格子18のサイズが決定され、小格子18の線幅を基準に第1大格子14Aと第2大格子14B間の最適距離が割り出されることになる。
Therefore, the optimum value (optimum distance) of the projection distance Lf is preferably 100 to 400 μm, more preferably 200 to 300 μm, when the line width of the small lattice 18 is 1 to 9 μm. If the line width of the small lattice 18 is reduced, the above-mentioned optimum distance can be shortened. However, since the electrical resistance increases, the CR time constant increases even if the parasitic capacitance is small, resulting in detection sensitivity. May cause a decrease in response speed and response speed. Therefore, the line width of the small lattice 18 is preferably in the above range.
For example, based on the size of the display panel 110 or the size of the sensor unit 112 and the resolution of the touch position detection (pulse period of the driving pulse), the size of the first large lattice 14A and the second large lattice 14B and the small lattice 18 The size is determined, and the optimum distance between the first large lattice 14A and the second large lattice 14B is determined based on the line width of the small lattice 18.
 また、第1接続部16Aと第2接続部16Bとが対向した部分を上面から見たとき、第2接続部16Bの第5中格子20eと第7中格子20gとの交点が第1大格子14Aの第2中格子20bのほぼ中心に位置し、第2接続部16Bの第6中格子20fと第8中格子20hとの交点が第1大格子14Aの第3中格子20cのほぼ中心に位置することとなり、これら第1中格子20a~第8中格子20hの組み合わせによって、複数の小格子18が形成された形態となる。すなわち、第1接続部16Aと第2接続部16Bとが対向した部分に、第1接続部16Aと第2接続部16Bの組み合わせによって、複数の小格子18が配列された形態となり、周りの第1大格子14Aを構成する小格子18や第2大格子14Bを構成する小格子18と見分けがつかなくなり、視認性が向上する。 Further, when the portion where the first connection portion 16A and the second connection portion 16B are opposed to each other is viewed from above, the intersection of the fifth middle lattice 20e and the seventh middle lattice 20g of the second connection portion 16B is the first large lattice. 14A is located substantially at the center of the second middle grating 20b, and the intersection of the sixth middle grating 20f and the eighth middle grating 20h of the second connecting portion 16B is at the middle of the third middle grating 20c of the first large grating 14A. A plurality of small lattices 18 are formed by a combination of the first medium lattice 20a to the eighth medium lattice 20h. That is, a plurality of small lattices 18 are arranged in a portion where the first connection portion 16A and the second connection portion 16B face each other by a combination of the first connection portion 16A and the second connection portion 16B. It becomes indistinguishable from the small lattice 18 constituting the first large lattice 14A and the small lattice 18 constituting the second large lattice 14B, and visibility is improved.
[規則91に基づく訂正 14.06.2011] 
 本実施の形態では、端子配線部114のうち、第1導電シート10Aの一方の長辺側の周縁部における長さ方向中央部分に複数の第1端子116aを形成し、第2導電シート10Bの一方の長辺側の周縁部における長さ方向中央部分に複数の第2端子116bを形成するようにしている。特に、図3の例では、第1端子116aと第2端子116bとが重ならないように、且つ、互いに接近した状態で配列し、さらに、第1端子配線パターン41aと第2端子配線パターン41bとが上下で重ならないようにしている。なお、第1端子116aと例えば奇数番目の第2端子配線パターン41bとが一部上下で重なる形態にしてもよい。
 これにより、複数の第1端子116a及び複数の第2端子116bを、2つのコネクタ(第1端子用コネクタ及び第2端子用コネクタ)あるいは1つのコネクタ(第1端子116a及び第2端子116bに接続される複合コネクタ)及びケーブルを介して制御回路に電気的に接続することができる。
 また、第1端子配線パターン41aと第2端子配線パターン41bとが上下で重ならないようにしているため、第1端子配線パターン41aと第2端子配線パターン41b間での寄生容量の発生が抑制され、応答速度の低下を抑えることができる。
[Correction based on Rule 91 14.06.2011]
In the present embodiment, among the terminal wiring portions 114, a plurality of first terminals 116a are formed in the center portion in the length direction at the peripheral portion on one long side of the first conductive sheet 10A, and the second conductive sheet 10B A plurality of second terminals 116b are formed in the central portion in the length direction of the peripheral portion on one long side. In particular, in the example of FIG. 3, the first terminal 116 a and the second terminal 116 b are arranged so as not to overlap with each other, and further, the first terminal wiring pattern 41 a and the second terminal wiring pattern 41 b are arranged. To avoid overlapping. The first terminal 116a and, for example, the odd-numbered second terminal wiring pattern 41b may partially overlap each other.
Thereby, the plurality of first terminals 116a and the plurality of second terminals 116b are connected to two connectors (first terminal connector and second terminal connector) or one connector (first terminal 116a and second terminal 116b). And can be electrically connected to the control circuit via a cable.
In addition, since the first terminal wiring pattern 41a and the second terminal wiring pattern 41b do not overlap with each other, generation of parasitic capacitance between the first terminal wiring pattern 41a and the second terminal wiring pattern 41b is suppressed. , A decrease in response speed can be suppressed.
 第1結線部40aをセンサ部112の一方の長辺に沿って配列し、第2結線部40bをセンサ部112の両側の短辺に沿って配列するようにしたので、端子配線部114の面積を低減することができる。これは、タッチパネル100を含めた表示パネル110の小型化を促進させることができると共に、表示画面110aを印象的に大きく見せることができる。また、タッチパネル100としての操作性も向上させることができる。
 端子配線部114の面積をさらに小さくするには、隣接する第1端子配線パターン41a間の距離、隣接する第2端子配線パターン41b間の距離を狭くすることが考えられるが、この場合、マイグレーションの発生防止を考慮すると、10μm以上50μm以下が好ましい。
 その他、上面から見たときに、隣接する第1端子配線パターン41a間に第2端子配線パターン41bを配置することによって、端子配線部114の面積を小さくすることが考えられるが、パターンの形成ずれがあると、第1端子配線パターン41aと第2端子配線パターン41bとが上下で重なり、配線間の寄生容量が大きくなるおそれがある。これは応答速度の低下をもたらす。そこで、このような配置構成を採用する場合は、隣接する第1端子配線パターン41a間の距離を50μm以上100μm以下にすることが好ましい。
Since the first connection part 40a is arranged along one long side of the sensor part 112 and the second connection part 40b is arranged along the short sides on both sides of the sensor part 112, the area of the terminal wiring part 114 Can be reduced. This can promote downsizing of the display panel 110 including the touch panel 100 and can make the display screen 110a look impressively large. In addition, the operability as the touch panel 100 can be improved.
In order to further reduce the area of the terminal wiring portion 114, it is conceivable to reduce the distance between the adjacent first terminal wiring patterns 41a and the distance between the adjacent second terminal wiring patterns 41b. In consideration of prevention of occurrence, it is preferably 10 μm or more and 50 μm or less.
In addition, when viewed from above, it is conceivable to reduce the area of the terminal wiring portion 114 by arranging the second terminal wiring pattern 41b between the adjacent first terminal wiring patterns 41a. If there is, there is a possibility that the first terminal wiring pattern 41a and the second terminal wiring pattern 41b overlap each other and the parasitic capacitance between the wirings increases. This results in a decrease in response speed. Therefore, when such an arrangement configuration is adopted, it is preferable that the distance between the adjacent first terminal wiring patterns 41a be 50 μm or more and 100 μm or less.
 このように、第1積層導電シート50Aにおいては、該第1積層導電シート50Aを用いて例えば投影型静電容量方式のタッチパネル100に適用した場合に、応答速度を速めることができ、タッチパネル100の大サイズ化を促進させることができる。しかも、第1導電シート10Aの第1大格子14Aと第2導電シート10Bの第2大格子14Bとの境界が目立たなくなり、また、第1接続部16Aと第2接続部16Bとの組み合わせによって複数の小格子18が形づくられることから、局部的に線太りが生じる等の不都合がなくなり、全体として、視認性が良好となる。
 また、多数の第1導電パターン22A及び第2導電パターン22BのCR時定数を大幅に低減することができ、これにより、応答速度を速めることができ、駆動時間(スキャン時間)内での位置検出も容易になる。これは、タッチパネル100の画面サイズ(縦×横のサイズで、厚みを含まず)の大型化を促進できることにつながる。
Thus, in the first laminated conductive sheet 50A, when the first laminated conductive sheet 50A is applied to, for example, the projected capacitive touch panel 100, the response speed can be increased. Increase in size can be promoted. Moreover, the boundary between the first large lattice 14A of the first conductive sheet 10A and the second large lattice 14B of the second conductive sheet 10B becomes inconspicuous, and there are a plurality of combinations depending on the combination of the first connection portion 16A and the second connection portion 16B. Since the small lattice 18 is formed, there is no inconvenience such as local thickening of the line, and the visibility is improved as a whole.
In addition, the CR time constants of a large number of first conductive patterns 22A and second conductive patterns 22B can be greatly reduced, thereby increasing the response speed and detecting the position within the drive time (scan time). Will also be easier. This leads to an increase in the screen size of the touch panel 100 (vertical x horizontal size, not including thickness).
 上述の第1積層導電シート50Aでは、図4及び図5Aに示すように、第1透明基体12Aの一主面に第1導電パターン22Aを形成し、第2透明基体12Bの一主面に第2導電パターン22Bを形成するようにしたが、その他、図5Bに示すように、第1透明基体12Aの一主面に第1導電パターン22Aを形成し、第1透明基体12Aの他主面に第2導電パターン22Bを形成するようにしてもよい。この場合、第2透明基体12Bが存在せず、第2導電部13B上に、第1透明基体12Aが積層され、第1透明基体12A上に第1導電部13Aが積層された形態となる。また、第1導電シート10Aと第2導電シート10Bとはその間に他の層が存在してもよく、第1導電パターン22Aと第2導電パターン22Bとが絶縁状態であれば、それらが対向して配置されてもよい。 In the first laminated conductive sheet 50A described above, as shown in FIGS. 4 and 5A, the first conductive pattern 22A is formed on one main surface of the first transparent substrate 12A, and the first conductive surface 22B is formed on the main surface of the second transparent substrate 12B. The second conductive pattern 22B is formed, but as shown in FIG. 5B, the first conductive pattern 22A is formed on one main surface of the first transparent substrate 12A, and the other main surface of the first transparent substrate 12A is formed. The second conductive pattern 22B may be formed. In this case, the second transparent substrate 12B does not exist, the first transparent substrate 12A is laminated on the second conductive portion 13B, and the first conductive portion 13A is laminated on the first transparent substrate 12A. Further, there may be another layer between the first conductive sheet 10A and the second conductive sheet 10B. If the first conductive pattern 22A and the second conductive pattern 22B are in an insulating state, they face each other. May be arranged.
 この場合、図8A~図8Cに模式的に示すように、3つの構成態様を好ましく採用することができる。
 すなわち、図8Aに示す第1構成例は、表示装置108上に透明接着剤120を介して図5Bに示す第1積層導電シート50A(第1導電部13A、第1透明基体12A及び第2導電部13B)が積層され、さらに、この第1積層導電シート50A上にハードコート層122が積層され、該ハードコート層122上に反射防止層124が積層された構成を有する。ここで、表示装置108上の透明接着剤120、第2導電部13B、第1透明基体12A及び第1導電部13Aにてタッチパネル100が構成され、該タッチパネル100上のハードコート層122及び反射防止層124にて反射防止フイルム126が構成される。
 図8Bに示す第2構成例は、表示装置108上に透明接着剤120を介して図5Bに示す第1積層導電シート50Aと保護樹脂層128が積層され、さらに、この保護樹脂層128上にハードコート層122が積層され、該ハードコート層122上に反射防止層124が積層された構成を有する。ここで、表示装置108上の透明接着剤120、第2導電部13B、第1透明基体12A、第1導電部13A及び保護樹脂層128にてタッチパネル100が構成され、該タッチパネル100上のハードコート層122及び反射防止層124にて反射防止フイルム126が構成される。
 図8Cに示す第3構成例は、表示装置108上に第1透明接着剤120Aを介して図5Bに示す第1積層導電シート50Aと第2透明接着剤120Bが積層され、さらに、この第2透明接着剤120B上に透明フイルム130が積層され、該透明フイルム130上にハードコート層122が積層され、該ハードコート層122上に反射防止層124が積層された構成を有する。ここで、表示装置108上の第1透明接着剤120A、第2導電部13B、第1透明基体12A、第1導電部13A及び第2透明接着剤120Bにてタッチパネル100が構成され、該タッチパネル100上の透明フイルム130、ハードコート層122及び反射防止層124にて反射防止フイルム126が構成される。
In this case, as schematically shown in FIGS. 8A to 8C, three configuration modes can be preferably employed.
That is, in the first configuration example shown in FIG. 8A, the first laminated conductive sheet 50A (first conductive portion 13A, first transparent base 12A, and second conductive material shown in FIG. 13B), a hard coat layer 122 is laminated on the first laminated conductive sheet 50A, and an antireflection layer 124 is laminated on the hard coat layer 122. Here, the touch panel 100 is configured by the transparent adhesive 120, the second conductive portion 13 </ b> B, the first transparent base 12 </ b> A, and the first conductive portion 13 </ b> A on the display device 108, and the hard coat layer 122 and the antireflection on the touch panel 100. The layer 124 constitutes an antireflection film 126.
In the second configuration example shown in FIG. 8B, the first laminated conductive sheet 50A and the protective resin layer 128 shown in FIG. 5B are laminated on the display device 108 via the transparent adhesive 120, and further on the protective resin layer 128. A hard coat layer 122 is laminated, and an antireflection layer 124 is laminated on the hard coat layer 122. Here, the touch panel 100 is configured by the transparent adhesive 120, the second conductive portion 13B, the first transparent base 12A, the first conductive portion 13A, and the protective resin layer 128 on the display device 108, and the hard coat on the touch panel 100 is formed. The layer 122 and the antireflection layer 124 constitute an antireflection film 126.
In the third configuration example shown in FIG. 8C, the first laminated conductive sheet 50A and the second transparent adhesive 120B shown in FIG. 5B are laminated on the display device 108 via the first transparent adhesive 120A. A transparent film 130 is laminated on the transparent adhesive 120B, a hard coat layer 122 is laminated on the transparent film 130, and an antireflection layer 124 is laminated on the hard coat layer 122. Here, the touch panel 100 is configured by the first transparent adhesive 120A, the second conductive portion 13B, the first transparent base 12A, the first conductive portion 13A, and the second transparent adhesive 120B on the display device 108. The upper transparent film 130, the hard coat layer 122, and the antireflection layer 124 constitute an antireflection film 126.
 また、図3に示すように、第1導電シート10Aと第2導電シート10Bの例えば各コーナー部に、第1導電シート10Aと第2導電シート10Bの貼り合わせの際に使用する位置決め用の第1アライメントマーク118a及び第2アライメントマーク118bを形成することが好ましい。この第1アライメントマーク118a及び第2アライメントマーク118bは、第1導電シート10Aと第2導電シート10Bを貼り合わせて第1積層導電シート50Aとした場合に、新たな複合アライメントマークとなり、この複合アライメントマークは、該第1積層導電シート50Aを表示パネル110に設置する際に使用する位置決め用のアライメントマークとしても機能することになる。 In addition, as shown in FIG. 3, for example, the first conductive sheet 10A and the second conductive sheet 10B are positioned at the corner portions, for example, at the first conductive sheet 10A and the second conductive sheet 10B. It is preferable to form the first alignment mark 118a and the second alignment mark 118b. The first alignment mark 118a and the second alignment mark 118b become a new composite alignment mark when the first conductive sheet 10A and the second conductive sheet 10B are bonded to form the first laminated conductive sheet 50A. The mark also functions as an alignment mark for positioning used when the first laminated conductive sheet 50A is installed on the display panel 110.
 次に、第2の実施の形態に係るタッチパネル用導電シート(以下、第2積層導電シート50Bと記す)について図9~図12を参照しながら説明する。
 この第2積層導電シート50Bは、図9に示すように、上述した第1積層導電シート50Aとほぼ同様の構成を有するが、図10に示すように、第1大格子14Aの第1辺部28a~第4辺部28dがそれぞれ2以上の矩形形状が配列された矩形波形状を有し、図11に示すように、第2大格子14Bの第5辺部28e~第8辺部28hがそれぞれ2以上の矩形形状が配列された矩形波形状を有する点で異なる。
Next, a conductive sheet for a touch panel according to a second embodiment (hereinafter referred to as a second laminated conductive sheet 50B) will be described with reference to FIGS.
As shown in FIG. 9, the second laminated conductive sheet 50B has substantially the same configuration as the first laminated conductive sheet 50A described above, but as shown in FIG. 10, the first side portion of the first large lattice 14A. 28a to 4th side portion 28d each have a rectangular wave shape in which two or more rectangular shapes are arranged, and as shown in FIG. 11, the fifth side portion 28e to the eighth side portion 28h of the second large lattice 14B Each is different in that it has a rectangular wave shape in which two or more rectangular shapes are arranged.
 具体的には、第1大格子14Aについては、図1に示す第1導電シート10Aの第1大格子14Aの第1辺部28a及び第2辺部28bの各くし歯32をそれぞれ1つ置きに繋いで、小格子18を1つ置きに配列させた形態にし、第3辺部28c及び第4辺部28dの各直線部30をそれぞれ1つ置きに分離して、小格子18を1つ置きに配列させた形態にすることで、図10に示すように、第2積層導電シート50Bの第1大格子14Aの第1辺部28a~第4辺部28dを、それぞれ2以上の矩形形状が配列された矩形波形状を有するようにし、特に、第1大格子14Aの第1辺部28aと該第1辺部28aと対向する第4辺部28dの各矩形波形状が互い違いとなり、第1大格子14Aの第2辺部28bと該第2辺部28bと対向する第3辺部28cの各矩形波形状が互い違いとなるようにしている。 Specifically, for the first large lattice 14A, one comb tooth 32 on each of the first side portion 28a and the second side portion 28b of the first large lattice 14A of the first conductive sheet 10A shown in FIG. Are connected to each other, so that every other small lattice 18 is arranged, and each straight portion 30 of the third side portion 28c and the fourth side portion 28d is separated every other portion, so that one small lattice 18 is provided. By adopting a configuration in which they are arranged at intervals, as shown in FIG. 10, the first side portion 28a to the fourth side portion 28d of the first large lattice 14A of the second laminated conductive sheet 50B are each formed in two or more rectangular shapes. In particular, the rectangular wave shapes of the first side portion 28a of the first large lattice 14A and the fourth side portion 28d facing the first side portion 28a are staggered, and the first The second side 28b of the one large lattice 14A is opposed to the second side 28b. Each rectangular wave shape of the third side portion 28c is set to be staggered.
 同様に、第2大格子14Bについて、図6に示す第2導電シート10Bの第2大格子14Bの第5辺部28e及び第7辺部28gの各くし歯32をそれぞれ1つ置きに繋いで、小格子18を1つ置きに配列させた形態にし、第6辺部28f及び第8辺部28hの各直線部30をそれぞれ1つ置きに分離して、小格子18を1つ置きに配列させた形態にすることで、図11に示すように、第2導電シート10Bの第2大格子14Bの第5辺部28e~第8辺部28hを、それぞれ2以上の矩形形状が配列された矩形波形状を有するようにし、特に、第2大格子14Bの第5辺部28eと該第5辺部28eと対向する第8辺部28hの各矩形波形状が互い違いとなり、第2大格子14Bの第6辺部28fと該第6辺部28fと対向する第7辺部28gの各矩形波形状が互い違いとなるようにしている。 Similarly, with respect to the second large lattice 14B, the comb teeth 32 of the fifth side portion 28e and the seventh side portion 28g of the second large lattice 14B of the second conductive sheet 10B shown in FIG. The small lattices 18 are arranged every other one, the straight portions 30 of the sixth side portion 28f and the eighth side portion 28h are separated every other portion, and the small lattices 18 are arranged every other portion. By adopting such a configuration, as shown in FIG. 11, two or more rectangular shapes are arranged in each of the fifth side portion 28e to the eighth side portion 28h of the second large lattice 14B of the second conductive sheet 10B. In particular, the rectangular wave shapes of the fifth side portion 28e of the second large lattice 14B and the eighth side portion 28h facing the fifth side portion 28e are staggered so that the second large lattice 14B has a rectangular wave shape. The sixth side portion 28f of the present invention and the seventh side portion facing the sixth side portion 28f Each rectangular wave shape of 8g is made to be staggered.
 そして、例えば第2導電シート10B上に第1導電シート10Aを積層して第2積層導電シート50Bとしたとき、図12に示すように、第1積層導電シート50A(図7参照)の場合と同様に、第1導電パターン22Aの第1接続部16Aと第2導電パターン22Bの第2接続部16Bとが第1透明基体12A(図5A参照)を間に挟んで対向し、第1導電パターン22Aの第1絶縁部24Aと第2導電パターン22Bの第2絶縁部24Bとが第1透明基体12Aを間に挟んで対向した形態となる。なお、第1導電パターン22Aと第2導電パターン22Bの各線幅は同じであるが、図12においても図7と同様に、第1導電パターン22Aと第2導電パターン22Bの位置がわかるように、第1導電パターン22Aの線幅を太く、第2導電パターン22Bの線幅を細くして誇張して図示してある。 For example, when the first conductive sheet 10A is laminated on the second conductive sheet 10B to form the second laminated conductive sheet 50B, as shown in FIG. 12, the first laminated conductive sheet 50A (see FIG. 7) and Similarly, the first connection portion 16A of the first conductive pattern 22A and the second connection portion 16B of the second conductive pattern 22B are opposed to each other with the first transparent base 12A (see FIG. 5A) therebetween, and the first conductive pattern The first insulating portion 24A of 22A and the second insulating portion 24B of the second conductive pattern 22B are opposed to each other with the first transparent base 12A interposed therebetween. Although the line widths of the first conductive pattern 22A and the second conductive pattern 22B are the same, the positions of the first conductive pattern 22A and the second conductive pattern 22B in FIG. The line width of the first conductive pattern 22A is widened, and the line width of the second conductive pattern 22B is narrowed and exaggerated.
 積層した第1導電シート10A及び第2導電シート10Bを上面から見たとき、第1導電シート10Aに形成された第1大格子14Aの隙間を埋めるように、第2導電シート10Bの第2大格子14Bが配列された形態となる。このとき、第1大格子14Aの第1辺部28a及び第2辺部28bにおける各矩形波形状の凹部42aの開口部分が第2大格子14Bの第6辺部28f及び第8辺部28hの各矩形波形状の凸部42bの先端部分にて接続されたような形状となって、結果的に小格子18が連続して配列された形態となり、同様に、第1大格子14Aの第3辺部28c及び第4辺部28dにおける各矩形波形状の凹部42aの開口部分が第2大格子14Bの第5辺部28e及び第7辺部28gの各矩形波形状の凸部42bの先端部分にて接続されたような形状となって、結果的に小格子が連続して配列された形態となり、第1大格子14Aと第2大格子14Bとの境界をほとんど見分けることができない状態となる。つまり、矩形波形状の凹部42aの開口部分と凸部42bの先端部分との重なりにより、第1大格子14Aと第2大格子14Bとの境界が目立たなくなり、視認性が向上する。なお、第1絶縁部24Aと第2絶縁部24Bとが対向する部分は、十字形状の開口が形成されることになるが、上述した線太りと異なり、光を遮るということがないため、外部に目立つということがほとんどない。 When the stacked first conductive sheet 10A and second conductive sheet 10B are viewed from above, the second large size of the second conductive sheet 10B is filled so as to fill the gaps of the first large lattice 14A formed in the first conductive sheet 10A. The lattice 14B is arranged. At this time, the opening portions of the rectangular wave-shaped concave portions 42a in the first side portion 28a and the second side portion 28b of the first large lattice 14A correspond to the sixth side portion 28f and the eighth side portion 28h of the second large lattice 14B. It becomes a shape that is connected at the tip of each rectangular wave-shaped convex portion 42b, and as a result, the small lattices 18 are continuously arranged, and similarly, the third large lattice 14A has a third shape. The opening portions of the rectangular wave-shaped concave portions 42a in the side portion 28c and the fourth side portion 28d are the tip portions of the rectangular wave-shaped convex portions 42b of the fifth side portion 28e and the seventh side portion 28g of the second large lattice 14B. As a result, the small lattices are continuously arranged, and the boundary between the first large lattice 14A and the second large lattice 14B is almost indistinguishable. . That is, the overlap between the opening portion of the rectangular wave-shaped concave portion 42a and the tip portion of the convex portion 42b makes the boundary between the first large lattice 14A and the second large lattice 14B inconspicuous, and visibility is improved. Note that a cross-shaped opening is formed at the portion where the first insulating portion 24A and the second insulating portion 24B face each other. However, unlike the above-described line weighting, the portion does not block light. There is almost no noticeable.
 第1接続部16Aと第2接続部16Bとが対向した部分についても、第1積層導電シート50Aと同様に、第2接続部16Bの第5中格子20eと第7中格子20gとの交点が第1接続部16Aの第2中格子20bのほぼ中心に位置し、第2接続部16Bの第6中格子20fと第8中格子20hとの交点が第1接続部16Aの第3中格子20cのほぼ中心に位置することとなり、これら第1中格子20a~第8中格子20hの組み合わせによって、複数の小格子18が形成された形態となる。すなわち、第1接続部16Aと第2接続部16Bとが対向した部分に、第1接続部16Aと第2接続部16Bの組み合わせによって、複数の小格子18が配列された形態となり、周りの第1大格子14Aを構成する小格子18や第2大格子14Bを構成する小格子18と見分けがつかなくなり、視認性が向上する。
 この第2積層導電シート50Bにおいても、図示しないが、第1結線部40a及び第2結線部40bの配列状態、端子配線部114での第1端子配線パターン41a及び第2端子配線パターン41bの配列状態、第1端子116a及び第2端子116bの配列状態は、上述した第1積層導電シート50Aと同様である。
Also in the portion where the first connection portion 16A and the second connection portion 16B face each other, the intersection point of the fifth middle lattice 20e and the seventh middle lattice 20g of the second connection portion 16B is similar to the first laminated conductive sheet 50A. The intersection of the sixth intermediate lattice 20f of the second connection portion 16B and the eighth intermediate lattice 20h is located substantially at the center of the second intermediate lattice 20b of the first connection portion 16A, and the third intermediate lattice 20c of the first connection portion 16A. A plurality of small lattices 18 are formed by a combination of the first middle lattice 20a to the eighth middle lattice 20h. That is, a plurality of small lattices 18 are arranged in a portion where the first connection portion 16A and the second connection portion 16B face each other by a combination of the first connection portion 16A and the second connection portion 16B. It becomes indistinguishable from the small lattice 18 constituting the first large lattice 14A and the small lattice 18 constituting the second large lattice 14B, and visibility is improved.
Also in the second laminated conductive sheet 50B, although not shown, the arrangement state of the first connection part 40a and the second connection part 40b, the arrangement of the first terminal wiring pattern 41a and the second terminal wiring pattern 41b in the terminal wiring part 114 The state and the arrangement state of the first terminals 116a and the second terminals 116b are the same as those of the first laminated conductive sheet 50A described above.
 このように、第2積層導電シート50Bにおいても、該第2積層導電シート50Bを用いて例えば投影型静電容量方式のタッチパネル100に適用した場合に、応答速度を速めることができ、タッチパネル100の大サイズ化を促進させることができる。しかも、第1導電シート10Aの第1大格子14Aと第2導電シート10Bの第2大格子14Bとの境界が目立たなくなり、また、第1接続部16Aと第2接続部16Bとの組み合わせによって複数の小格子18が形づくられることから、局部的に線太りが生じる等の不都合がなくなり、全体として、視認性が良好となる。
 特に、この第2積層導電シート50Bにおいては、第1大格子14Aの4つの辺(第1辺部28a~第4辺部28d)並びに第2大格子14Bの4つの辺(第5辺部28e~第8辺部28h)の形状がいずれも矩形波形状であって、各辺の形状が等価的に同一となっていることから、第1大格子14Aや第2大格子14Bの端部での電荷の局在化が抑制され、指先位置の誤検出を防ぐことができる。
 また、この第2積層導電シート50Bにおいても、図5Aに示すように、第1大格子14Aの辺部における直線部30と、第2大格子14Bの辺部における直線部30との投影距離Lfを小格子18の1つの辺の長さ(50~500μm)とほぼ同じにしている。さらに、第1大格子14Aの各辺部から張り出す矩形波形状の頂点と、第2大格子14Bの各辺部から張り出す矩形波形状の頂点とがそれぞれ対向するだけであるため、第1大格子14Aと第2大格子14B間に形成される寄生容量は小さくなる。その結果、CR時定数も小さくなり、検出精度の向上、応答速度の向上を図ることができる。
As described above, also in the second laminated conductive sheet 50B, when the second laminated conductive sheet 50B is applied to, for example, the projected capacitive touch panel 100, the response speed can be increased. Increase in size can be promoted. Moreover, the boundary between the first large lattice 14A of the first conductive sheet 10A and the second large lattice 14B of the second conductive sheet 10B becomes inconspicuous, and there are a plurality of combinations depending on the combination of the first connection portion 16A and the second connection portion 16B. Since the small lattice 18 is formed, there is no inconvenience such as local thickening of the line, and the visibility is improved as a whole.
In particular, in the second laminated conductive sheet 50B, four sides (first side portion 28a to fourth side portion 28d) of the first large lattice 14A and four sides (fifth side portion 28e) of the second large lattice 14B. Since the shape of each of the eighth side portion 28h) is a rectangular wave shape and the shape of each side is equivalently the same, the end portions of the first large lattice 14A and the second large lattice 14B are the same. The charge localization is suppressed, and erroneous detection of the fingertip position can be prevented.
Also in the second laminated conductive sheet 50B, as shown in FIG. 5A, the projection distance Lf between the straight portion 30 at the side portion of the first large lattice 14A and the straight portion 30 at the side portion of the second large lattice 14B. Is substantially the same as the length of one side of the small lattice 18 (50 to 500 μm). Furthermore, since the vertices of the rectangular wave shape projecting from each side of the first large lattice 14A and the vertices of the rectangular waveform projecting from each side of the second large lattice 14B only face each other, the first The parasitic capacitance formed between the large lattice 14A and the second large lattice 14B is reduced. As a result, the CR time constant is also reduced, and the detection accuracy and response speed can be improved.
 次に、第2積層導電シート50Bの変形例について図13及び図14を参照しながら説明する。
 この変形例に係る積層導電シート50Baの第1導電シート10Aaは、上述した第2積層導電シート50Bの第1導電シート10A(図10参照)とほぼ同様の構成を有するが、図13に示すように、第1接続部16Aが、格子形状ではなく、略Z字状(ジグザグ状)の線状に形成されている点で異なる。この第1接続部16Aは、第1大格子14Aの第2辺部28bの直線部30と第4辺部28dの直線部30との境界部分と、第1大格子14Aの第1辺部28aの直線部30と第3辺部28cの直線部30との境界部分との間に形成されている。
 同様に、第2導電シート10Baは、上述した第2積層導電シート50Bの第2導電シート10B(図11参照)とほぼ同様の構成を有するが、図14に示すように、第2接続部16Bが、格子形状ではなく、略Z字状(ジグザグ状)の線状に形成されている点で異なる。この第2接続部16Bは、第2大格子14Bの第6辺部28fの直線部30と第8辺部28hの直線部30との境界部分と、第2大格子14Bの第5辺部28eの直線部30と第7辺部28gの直線部30との境界部分との間に形成されている。
Next, a modified example of the second laminated conductive sheet 50B will be described with reference to FIGS.
The first conductive sheet 10Aa of the laminated conductive sheet 50Ba according to this modification has substantially the same configuration as the first conductive sheet 10A (see FIG. 10) of the second laminated conductive sheet 50B described above, but as shown in FIG. The first connecting portion 16A is different in that the first connecting portion 16A is formed in a substantially Z-shaped (zigzag) line shape instead of a lattice shape. The first connecting portion 16A includes a boundary portion between the straight portion 30 of the second side portion 28b of the first large lattice 14A and the straight portion 30 of the fourth side portion 28d, and the first side portion 28a of the first large lattice 14A. Are formed between the straight line portion 30 and the boundary portion between the straight line portion 30 of the third side portion 28c.
Similarly, the second conductive sheet 10Ba has substantially the same configuration as the second conductive sheet 10B (see FIG. 11) of the second laminated conductive sheet 50B described above, but as shown in FIG. 14, the second connection portion 16B. However, it is different in that it is formed in a substantially Z-shaped (zigzag) line shape instead of a lattice shape. The second connection portion 16B includes a boundary portion between the straight portion 30 of the sixth side portion 28f of the second large lattice 14B and the straight portion 30 of the eighth side portion 28h, and the fifth side portion 28e of the second large lattice 14B. Are formed between the straight portion 30 and the boundary portion between the straight portion 30 of the seventh side portion 28g.
 そして、第1接続部16Aの幅Wc1(一方の屈曲点から他方の屈曲点との間であって、且つ、y方向に沿った距離)は、Wc1>Ps/√2を満足し、ここでは、2×(Ps/√2)である。同様に、第2接続部16Bの幅Wc2(一方の屈曲点から他方の屈曲点との間であって、且つ、x方向に沿った距離)は、Wc2>Ps/√2を満足し、ここでは、2×(Ps/√2)である。
 この変形例に係る積層導電シート50Baにおいても、該積層導電シート50Baを用いて例えば投影型静電容量方式のタッチパネルに適用した場合に、応答速度を速めることができ、タッチパネルの大サイズ化を促進させることができる。
The width Wc1 (the distance between one bending point and the other bending point and along the y direction) of the first connection portion 16A satisfies Wc1> Ps / √2, where 2 × (Ps / √2). Similarly, the width Wc2 (the distance between one bending point and the other bending point and along the x direction) of the second connecting portion 16B satisfies Wc2> Ps / √2, where Then, 2 × (Ps / √2).
Also in the laminated conductive sheet 50Ba according to this modification, when the laminated conductive sheet 50Ba is applied to, for example, a projected capacitive touch panel, the response speed can be increased and the touch panel can be increased in size. Can be made.
 上述した第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)において、第1接続部16Aの幅及び第2接続部16Bの幅は、あまり大きくし過ぎると、大格子14の配置が難しくなり、見栄えが悪くなることがあることから、その上限は、2×(Ps/√2)~20×(Ps/√2)が好ましく、8×(Ps/√2)~14×(Ps/√2)がより好ましい。
 また、上述した第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)において、小格子18のサイズ(1辺の長さや対角線の長さ等)や、第1大格子14Aを構成する小格子18の個数、第2大格子14Bを構成する小格子18の個数も、適用されるタッチパネルのサイズや分解能(配線数)に応じて適宜設定することができる。
 上述した第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)においては、第1接続部16A及び第2接続部16Bを構成する中格子20の配列ピッチPmを小格子18の配列ピッチPsの2倍に設定したが、その他、1.5倍、3倍等、中格子の数に応じて任意に設定することができる。中格子20の配列ピッチPmは、その間隔が狭すぎたり、大きすぎたりすると、第1大格子14Aや第2大格子14Bの配置が難しくなり、見栄えが悪くなることがあることから、小格子18の配列ピッチPsの1~10倍が好ましく、1~5倍がより好ましい。
In the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) described above, if the width of the first connection portion 16A and the width of the second connection portion 16B are too large, the arrangement of the large lattices 14 is reduced. The upper limit is preferably 2 × (Ps / √2) to 20 × (Ps / √2), and may be 8 × (Ps / √2) to 14 × (Ps). / √2) is more preferable.
In the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) described above, the size of the small lattice 18 (the length of one side, the length of the diagonal line, etc.) and the first large lattice 14A are configured. The number of small lattices 18 and the number of small lattices 18 constituting the second large lattice 14B can also be set as appropriate according to the size and resolution (number of wires) of the applied touch panel.
In the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) described above, the arrangement pitch Pm of the medium lattice 20 constituting the first connection portion 16A and the second connection portion 16B is set to the arrangement pitch of the small lattices 18. Although it is set to twice Ps, it can be arbitrarily set according to the number of medium lattices, such as 1.5 times and 3 times. Since the arrangement pitch Pm of the medium lattice 20 is too small or too large, the arrangement of the first large lattice 14A and the second large lattice 14B becomes difficult and may deteriorate in appearance. It is preferably 1 to 10 times the 18 arrangement pitch Ps, more preferably 1 to 5 times.
 また、小格子18のサイズ(1辺の長さや対角線の長さ等)や、第1大格子14Aを構成する小格子18の個数、第2大格子14Bを構成する小格子18の個数も、適用されるタッチパネルのサイズや分解能(配線数)に応じて適宜設定することができる。
 上述の例では、第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)を投影型静電容量方式のタッチパネル100に適用した例を示したが、その他、表面型静電容量方式のタッチパネルや、抵抗膜式のタッチパネルにも適用することができることはもちろんである。
The size of the small lattice 18 (the length of one side, the length of the diagonal line, etc.), the number of small lattices 18 constituting the first large lattice 14A, and the number of small lattices 18 constituting the second large lattice 14B are also as follows. It can be set as appropriate according to the size and resolution (number of wires) of the applied touch panel.
In the example described above, the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) are applied to the projected capacitive touch panel 100. Of course, it can be applied to a touch panel and a resistive touch panel.
 次に、第1導電シート10A(10Aa)や第2導電シート10B(10Ba)を製造する方法としては、例えば第1透明基体12A上及び第2透明基体12B上に感光性ハロゲン化銀塩を含有する乳剤層を有する感光材料を露光し、現像処理を施すことによって、露光部及び未露光部にそれぞれ金属銀部及び光透過性部を形成して第1導電パターン22A及び第2導電パターン22Bを形成するようにしてもよい。なお、さらに金属銀部に物理現像及び/又はめっき処理を施すことによって金属銀部に導電性金属を担持させるようにしてもよい。 Next, as a method for producing the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba), for example, a photosensitive silver halide salt is contained on the first transparent substrate 12A and the second transparent substrate 12B. The photosensitive material having the emulsion layer to be exposed is exposed and developed to form a metallic silver portion and a light transmissive portion in the exposed portion and the unexposed portion, respectively, thereby forming the first conductive pattern 22A and the second conductive pattern 22B. You may make it form. In addition, you may make it carry | support a conductive metal to a metallic silver part by giving a physical development and / or a plating process to a metallic silver part further.
 一方、図5Bに示すように、第1透明基体12Aの一主面に第1導電パターン22Aを形成し、第1透明基体12Aの他主面に第2導電パターン22Bを形成する場合、通常の製法に則って、最初に一主面を露光し、その後に、他主面を露光する方法を採用すると、所望の第1導電パターン22A及び第2導電パターン22Bを得ることができない場合がある。特に、第1大格子14A及び第2大格子14Bの辺部からくし歯32が張り出したパターンや、第1大格子14A及び第2大格子14Bの辺部から矩形波形状が張り出したパターンを均一に形成することは困難性が伴う。 On the other hand, as shown in FIG. 5B, when the first conductive pattern 22A is formed on one main surface of the first transparent substrate 12A and the second conductive pattern 22B is formed on the other main surface of the first transparent substrate 12A, If the method of exposing one principal surface first and then exposing the other principal surface in accordance with the manufacturing method is employed, the desired first conductive pattern 22A and second conductive pattern 22B may not be obtained. In particular, a pattern in which the comb teeth 32 protrude from the sides of the first large lattice 14A and the second large lattice 14B and a pattern in which a rectangular wave shape protrudes from the sides of the first large lattice 14A and the second large lattice 14B are uniform. It is difficult to form.
 そこで、以下に示す製造方法を好ましく採用することができる。
 すなわち、第1透明基体12Aの両面に形成された感光性ハロゲン化銀乳剤層に対して一括露光を行って、第1透明基体12Aの一主面に第1導電パターン22Aを形成し、第1透明基体12Aの他主面に第2導電パターン22Bを形成する。
Therefore, the following manufacturing method can be preferably employed.
That is, the photosensitive silver halide emulsion layer formed on both surfaces of the first transparent substrate 12A is collectively exposed to form the first conductive pattern 22A on one main surface of the first transparent substrate 12A. A second conductive pattern 22B is formed on the other main surface of the transparent substrate 12A.
 この製造方法の具体例を、図15~図17を参照しながら説明する。
 先ず、図15のステップS1において、長尺の感光材料140を作製する。感光材料140は、図16Aに示すように、第1透明基体12Aと、該第1透明基体12Aの一方の主面に形成された感光性ハロゲン化銀乳剤層(以下、第1感光層142aという)と、第1透明基体12Aの他方の主面に形成された感光性ハロゲン化銀乳剤層(以下、第2感光層142bという)とを有する。
 図15のステップS2において、感光材料140を露光する。この露光処理では、第1感光層142aに対し、第1透明基体12Aに向かって光を照射して第1感光層142aを第1露光パターンに沿って露光する第1露光処理と、第2感光層142bに対し、第1透明基体12Aに向かって光を照射して第2感光層142bを第2露光パターンに沿って露光する第2露光処理とが行われる(両面同時露光)。図16Bの例では、長尺の感光材料140を一方向に搬送しながら、第1感光層142aに第1光144a(平行光)を第1フォトマスク146aを介して照射すると共に、第2感光層142bに第2光144b(平行光)を第2フォトマスク146bを介して照射する。第1光144aは、第1光源148aから出射された光を途中の第1コリメータレンズ150aにて平行光に変換されることにより得られ、第2光144bは、第2光源148bから出射された光を途中の第2コリメータレンズ150bにて平行光に変換されることにより得られる。図16Bの例では、2つの光源(第1光源148a及び第2光源148b)を使用した場合を示しているが、1つの光源から出射した光を光学系を介して分割して、第1光144a及び第2光144bとして第1感光層142a及び第2感光層142bに照射してもよい。
A specific example of this manufacturing method will be described with reference to FIGS.
First, in step S1 of FIG. 15, a long photosensitive material 140 is produced. As shown in FIG. 16A, the photosensitive material 140 includes a first transparent substrate 12A and a photosensitive silver halide emulsion layer (hereinafter referred to as a first photosensitive layer 142a) formed on one main surface of the first transparent substrate 12A. And a photosensitive silver halide emulsion layer (hereinafter referred to as a second photosensitive layer 142b) formed on the other main surface of the first transparent substrate 12A.
In step S2 of FIG. 15, the photosensitive material 140 is exposed. In this exposure processing, the first photosensitive layer 142a is irradiated with light toward the first transparent substrate 12A to expose the first photosensitive layer 142a along the first exposure pattern, and the second photosensitive layer. The layer 142b is subjected to a second exposure process in which light is irradiated toward the first transparent substrate 12A to expose the second photosensitive layer 142b along the second exposure pattern (double-sided simultaneous exposure). In the example of FIG. 16B, while the long photosensitive material 140 is conveyed in one direction, the first photosensitive layer 142a is irradiated with the first light 144a (parallel light) through the first photomask 146a and the second photosensitive material 140a is irradiated. The layer 142b is irradiated with the second light 144b (parallel light) through the second photomask 146b. The first light 144a is obtained by converting the light emitted from the first light source 148a into parallel light by the first collimator lens 150a, and the second light 144b is emitted from the second light source 148b. It is obtained by converting the light into parallel light by the second collimator lens 150b in the middle. In the example of FIG. 16B, the case where two light sources (first light source 148a and second light source 148b) are used is shown, but the light emitted from one light source is divided through the optical system to generate the first light. The first photosensitive layer 142a and the second photosensitive layer 142b may be irradiated as the 144a and the second light 144b.
 そして、図15のステップS3において、露光後の感光材料140を現像処理することで、図5Bに示すように、第1積層導電シート50Aが作製される。第1積層導電シート50Aは、第1透明基体12Aと、該第1透明基体12Aの一方の主面に形成された第1露光パターンに沿った第1導電部13A(第1導電パターン22A等)と、第1透明基体12Aの他方の主面に形成された第2露光パターンに沿った第2導電部13B(第2導電パターン22B等)とを有する。なお、第1感光層142a及び第2感光層142bの露光時間及び現像時間は、第1光源148a及び第2光源148bの種類や現像液の種類等で様々に変化するため、好ましい数値範囲は一概に決定することができないが、現像率が100%となる露光時間及び現像時間に調整されている。 Then, in step S3 in FIG. 15, the exposed photosensitive material 140 is developed to produce the first laminated conductive sheet 50A as shown in FIG. 5B. The first laminated conductive sheet 50A includes a first transparent base 12A and a first conductive portion 13A (first conductive pattern 22A, etc.) along a first exposure pattern formed on one main surface of the first transparent base 12A. And a second conductive portion 13B (second conductive pattern 22B, etc.) along the second exposure pattern formed on the other main surface of the first transparent substrate 12A. Note that the exposure time and development time of the first photosensitive layer 142a and the second photosensitive layer 142b vary depending on the type of the first light source 148a and the second light source 148b, the type of the developer, and the like. However, the exposure time and the development time are adjusted so that the development rate becomes 100%.
 そして、本実施の形態に係る製造方法のうち、第1露光処理は、図17に示すように、第1感光層142a上に第1フォトマスク146aを例えば密着配置し、該第1フォトマスク146aに対向して配置された第1光源148aから第1フォトマスク146aに向かって第1光144aを照射することで、第1感光層142aを露光する。第1フォトマスク146aは、透明なソーダガラスで形成されたガラス基板と、該ガラス基板上に形成されたマスクパターン(第1露光パターン152a)とで構成されている。従って、この第1露光処理によって、第1感光層142aのうち、第1フォトマスク146aに形成された第1露光パターン152aに沿った部分が露光される。第1感光層142aと第1フォトマスク146aとの間に2~10μm程度の隙間を設けてもよい。
 同様に、第2露光処理は、第2感光層142b上に第2フォトマスク146bを例えば密着配置し、該第2フォトマスク146bに対向して配置された第2光源148bから第2フォトマスク146bに向かって第2光144bを照射することで、第2感光層142bを露光する。第2フォトマスク146bは、第1フォトマスク146aと同様に、透明なソーダガラスで形成されたガラス基板と、該ガラス基板上に形成されたマスクパターン(第2露光パターン152b)とで構成されている。従って、この第2露光処理によって、第2感光層142bのうち、第2フォトマスク146bに形成された第2露光パターン152bに沿った部分が露光される。この場合、第2感光層142bと第2フォトマスク146bとの間に2~10μm程度の隙間を設けてもよい。
In the manufacturing method according to the present embodiment, as shown in FIG. 17, in the first exposure process, a first photomask 146a is disposed in close contact with the first photosensitive layer 142a, for example, and the first photomask 146a. The first photosensitive layer 142a is exposed by irradiating the first light 144a from the first light source 148a disposed opposite to the first photomask 146a. The first photomask 146a is composed of a glass substrate made of transparent soda glass and a mask pattern (first exposure pattern 152a) formed on the glass substrate. Accordingly, the first exposure process exposes a portion of the first photosensitive layer 142a along the first exposure pattern 152a formed on the first photomask 146a. A gap of about 2 to 10 μm may be provided between the first photosensitive layer 142a and the first photomask 146a.
Similarly, in the second exposure process, for example, the second photomask 146b is disposed in close contact with the second photosensitive layer 142b, and the second photomask 146b is supplied from the second light source 148b disposed to face the second photomask 146b. The second photosensitive layer 142b is exposed by irradiating the second light 144b toward. Similar to the first photomask 146a, the second photomask 146b includes a glass substrate formed of transparent soda glass and a mask pattern (second exposure pattern 152b) formed on the glass substrate. Yes. Accordingly, the second exposure process exposes a portion of the second photosensitive layer 142b along the second exposure pattern 152b formed on the second photomask 146b. In this case, a gap of about 2 to 10 μm may be provided between the second photosensitive layer 142b and the second photomask 146b.
 第1露光処理及び第2露光処理は、第1光源148aからの第1光144aの出射タイミングと、第2光源148bからの第2光144bの出射タイミングを同時にしてもよいし、異ならせてもよい。同時であれば、1度の露光処理で、第1感光層142a及び第2感光層142bを同時に露光することができ、処理時間の短縮化を図ることができる。 In the first exposure process and the second exposure process, the emission timing of the first light 144a from the first light source 148a and the emission timing of the second light 144b from the second light source 148b may be made simultaneously or different. Also good. At the same time, the first photosensitive layer 142a and the second photosensitive layer 142b can be exposed simultaneously by one exposure process, and the processing time can be shortened.
 ところで、第1感光層142a及び第2感光層142bが共に分光増感されていない場合、感光材料140に対して両側から露光すると、片側からの露光がもう片側(裏側)の画像形成に影響を及ぼすこととなる。
 すなわち、第1感光層142aに到達した第1光源148aからの第1光144aは、第1感光層142a中のハロゲン化銀粒子にて散乱し、散乱光として第1透明基体12Aを透過し、その一部が第2感光層142bにまで達する。そうすると、第2感光層142bと第1透明基体12Aとの境界部分が広い範囲にわたって露光され、潜像が形成される。そのため、第2感光層142bでは、第2光源148bからの第2光144bによる露光と第1光源148aからの第1光144aによる露光が行われてしまい、その後の現像処理にて第1積層導電シート50Aとした場合に、第2露光パターン152bによる導電パターン(第2導電部13B)に加えて、該導電パターン間に第1光源148aからの第1光144aによる薄い導電層が形成されてしまい、所望のパターン(第2露光パターン152bに沿ったパターン)を得ることができない。これは、第1感光層142aにおいても同様である。
By the way, when both the first photosensitive layer 142a and the second photosensitive layer 142b are not spectrally sensitized, when the photosensitive material 140 is exposed from both sides, the exposure from one side affects the image formation on the other side (back side). Will be affected.
That is, the first light 144a from the first light source 148a that has reached the first photosensitive layer 142a is scattered by the silver halide grains in the first photosensitive layer 142a, passes through the first transparent substrate 12A as scattered light, Part of it reaches the second photosensitive layer 142b. Then, the boundary portion between the second photosensitive layer 142b and the first transparent substrate 12A is exposed over a wide range, and a latent image is formed. Therefore, in the second photosensitive layer 142b, the exposure with the second light 144b from the second light source 148b and the exposure with the first light 144a from the first light source 148a are performed, and the first stacked conductive layer is subjected to subsequent development processing. In the case of the sheet 50A, in addition to the conductive pattern (second conductive portion 13B) by the second exposure pattern 152b, a thin conductive layer by the first light 144a from the first light source 148a is formed between the conductive patterns. A desired pattern (pattern along the second exposure pattern 152b) cannot be obtained. The same applies to the first photosensitive layer 142a.
 これを回避するため、鋭意検討した結果、第1感光層142a及び第2感光層142bの厚みを特定の範囲に設定したり、第1感光層142a及び第2感光層142bの塗布銀量を規定することで、ハロゲン化銀自身が光を吸収し、裏面へ光透過を制限できることが判明した。本実施の形態では、第1感光層142a及び第2感光層142bの厚みを1μm以上、4μm以下に設定することができる。上限値は好ましくは2.5μmである。また、第1感光層142a及び第2感光層142bの塗布銀量を5~20g/mに規定した。 In order to avoid this, as a result of intensive studies, the thickness of the first photosensitive layer 142a and the second photosensitive layer 142b is set to a specific range, and the amount of silver applied to the first photosensitive layer 142a and the second photosensitive layer 142b is specified. By doing so, it was found that the silver halide itself absorbs light and can limit light transmission to the back surface. In the present embodiment, the thickness of the first photosensitive layer 142a and the second photosensitive layer 142b can be set to 1 μm or more and 4 μm or less. The upper limit is preferably 2.5 μm. Further, the coating silver amount of the first photosensitive layer 142a and the second photosensitive layer 142b was regulated to 5 to 20 g / m 2 .
 上述した両面密着の露光方式では、フイルム表面に付着した塵埃等で露光阻害による画像欠陥が問題となる。塵埃付着防止として、フイルムに導電性物質を塗布することが知られているが、金属酸化物等は処理後も残存し、最終製品の透明性を損ない、また、導電性高分子は保存性等に問題がある。そこで、鋭意検討した結果、バインダーを減量したハロゲン化銀により帯電防止に必要な導電性が得られることがわかり、第1感光層142a及び第2感光層142bの銀/バインダーの体積比を規定した。すなわち、第1感光層142a及び第2感光層142bの銀/バインダー体積比は1/1以上であり、好ましくは、2/1以上である。 In the above-described double-sided exposure method, there is a problem of image defects due to exposure inhibition due to dust adhering to the film surface. It is known to apply a conductive material to the film as a dust prevention, but metal oxides remain after processing, impairing the transparency of the final product, and conductive polymers are storable. There is a problem. Thus, as a result of intensive studies, it was found that the silver halide with a reduced amount of binder provided the necessary conductivity for antistatic, and the volume ratio of silver / binder in the first photosensitive layer 142a and the second photosensitive layer 142b was defined. . That is, the silver / binder volume ratio of the first photosensitive layer 142a and the second photosensitive layer 142b is 1/1 or more, and preferably 2/1 or more.
 上述のように、第1感光層142a及び第2感光層142bの厚み、塗布銀量、銀/バインダーの体積比を設定、規定することで、図17に示すように、第1感光層142aに到達した第1光源148aからの第1光144aは、第2感光層142bまで達しなくなり、同様に、第2感光層142bに到達した第2光源148bからの第2光144bは、第1感光層142aまで達しなくなり、その結果、その後の現像処理にて第1積層導電シート50Aとした場合に、図5Bに示すように、第1透明基体12Aの一方の主面には第1露光パターン152aによる導電パターン(第1導電部13Aを構成するパターン)のみが形成され、第1透明基体12Aの他方の主面には第2露光パターン152bによる導電パターン(第2導電部13Bを構成するパターン)のみが形成されることとなり、所望のパターンを得ることができる。 As described above, by setting and defining the thickness of the first photosensitive layer 142a and the second photosensitive layer 142b, the amount of coated silver, and the volume ratio of silver / binder, the first photosensitive layer 142a can be formed as shown in FIG. The reached first light 144a from the first light source 148a does not reach the second photosensitive layer 142b. Similarly, the second light 144b from the second light source 148b that reaches the second photosensitive layer 142b is changed to the first photosensitive layer. As a result, when the first laminated conductive sheet 50A is formed in the subsequent development processing, as shown in FIG. 5B, one main surface of the first transparent substrate 12A is formed by the first exposure pattern 152a. Only a conductive pattern (pattern constituting the first conductive portion 13A) is formed, and a conductive pattern (second conductive portion 13) by the second exposure pattern 152b is formed on the other main surface of the first transparent base 12A. Becomes the only patterns constituting) a is formed, it is possible to obtain a desired pattern.
 このように、上述の両面一括露光を用いた製造方法においては、導電性と両面露光の適性を両立させた第1感光層142a及び第2感光層142bを得ることができ、また、1つの第1透明基体12Aへの露光処理によって、第1透明基体12Aの両面に同一パターンや異なったパターンを任意に形成することができ、これにより、タッチパネル100の電極を容易に形成することができると共に、タッチパネル100の薄型化(低背化)を図ることができる。 Thus, in the manufacturing method using the above-described double-sided batch exposure, it is possible to obtain the first photosensitive layer 142a and the second photosensitive layer 142b that have both conductivity and suitability for double-sided exposure. By exposing the first transparent substrate 12A, the same pattern or different patterns can be arbitrarily formed on both surfaces of the first transparent substrate 12A, whereby the electrodes of the touch panel 100 can be easily formed, The touch panel 100 can be thinned (low profile).
 上述の例は、感光性ハロゲン化銀乳剤層を用いて第1導電パターン22A及び第2導電パターン22Bを形成する製造方法であるが、その他の製造方法としては、以下のような製造方法がある。
 すなわち、第1透明基体12A及び第2透明基体12B上に形成された銅箔上のフォトレジスト膜を露光、現像処理してレジストパターンを形成し、レジストパターンから露出する銅箔をエッチングすることによって、第1導電パターン22A及び第2導電パターン22Bを形成するようにしてもよい。
 あるいは、第1透明基体12A及び第2透明基体12B上に金属微粒子を含むペーストを印刷し、ペーストに金属めっきを行うことによって、第1導電パターン22A及び第2導電パターン22Bを形成するようにしてもよい。
 第1透明基体12A及び第2透明基体12B上に、第1導電パターン22A及び第2導電パターン22Bをスクリーン印刷版又はグラビア印刷版によって印刷形成するようにしてもよい。
 第1透明基体12A及び第2透明基体12B上に、第1導電パターン22A及び第2導電パターン22Bをインクジェットにより形成するようにしてもよい。
The above-described example is a manufacturing method in which the first conductive pattern 22A and the second conductive pattern 22B are formed using a photosensitive silver halide emulsion layer. Other manufacturing methods include the following manufacturing methods. .
That is, the photoresist film on the copper foil formed on the first transparent substrate 12A and the second transparent substrate 12B is exposed and developed to form a resist pattern, and the copper foil exposed from the resist pattern is etched. The first conductive pattern 22A and the second conductive pattern 22B may be formed.
Alternatively, the first conductive pattern 22A and the second conductive pattern 22B are formed by printing a paste containing metal fine particles on the first transparent substrate 12A and the second transparent substrate 12B and performing metal plating on the paste. Also good.
The first conductive pattern 22A and the second conductive pattern 22B may be printed and formed on the first transparent substrate 12A and the second transparent substrate 12B by a screen printing plate or a gravure printing plate.
The first conductive pattern 22A and the second conductive pattern 22B may be formed by inkjet on the first transparent substrate 12A and the second transparent substrate 12B.
 次に、本実施の形態に係る第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)において、特に好ましい態様であるハロゲン化銀写真感光材料を用いる方法を中心にして述べる。
 本実施の形態に係る第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)の製造方法は、感光材料と現像処理の形態によって、次の3通りの形態が含まれる。
Next, in the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) according to the present embodiment, a method using a silver halide photographic light-sensitive material which is a particularly preferable aspect will be mainly described.
The manufacturing method of the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) according to the present embodiment includes the following three modes depending on the photosensitive material and the mode of development processing.
(1) 物理現像核を含まない感光性ハロゲン化銀黒白感光材料を化学現像又は熱現像して金属銀部を該感光材料上に形成させる態様。
(2) 物理現像核をハロゲン化銀乳剤層中に含む感光性ハロゲン化銀黒白感光材料を溶解物理現像して金属銀部を該感光材料上に形成させる態様。
(3) 物理現像核を含まない感光性ハロゲン化銀黒白感光材料と、物理現像核を含む非感光性層を有する受像シートを重ね合わせて拡散転写現像して金属銀部を非感光性受像シート上に形成させる態様。
(1) An embodiment in which a photosensitive silver halide black-and-white photosensitive material not containing physical development nuclei is chemically developed or thermally developed to form a metallic silver portion on the photosensitive material.
(2) An embodiment in which a photosensitive silver halide black-and-white photosensitive material containing physical development nuclei in a silver halide emulsion layer is dissolved and physically developed to form a metallic silver portion on the photosensitive material.
(3) A photosensitive silver halide black-and-white photosensitive material that does not contain physical development nuclei and an image-receiving sheet having a non-photosensitive layer that contains physical development nuclei are overlaid and diffusion transferred to develop a non-photosensitive image-receiving sheet. Form formed on top.
 上記(1)の態様は、一体型黒白現像タイプであり、感光材料上に光透過性導電膜等の透光性導電性膜が形成される。得られる現像銀は化学現像銀又は熱現像銀であり、高比表面のフィラメントである点で後続するめっき又は物理現像過程で活性が高い。
 上記(2)の態様は、露光部では、物理現像核近縁のハロゲン化銀粒子が溶解されて現像核上に沈積することによって感光材料上に光透過性導電性膜等の透光性導電性膜が形成される。これも一体型黒白現像タイプである。現像作用が、物理現像核上への析出であるので高活性であるが、現像銀は比表面の小さい球形である。
 上記(3)の態様は、未露光部においてハロゲン化銀粒子が溶解されて拡散して受像シート上の現像核上に沈積することによって受像シート上に光透過性導電性膜等の透光性導電性膜が形成される。いわゆるセパレートタイプであって、受像シートを感光材料から剥離して用いる態様である。
The aspect (1) is an integrated black-and-white development type, and a light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material. The resulting developed silver is chemically developed silver or heat developed silver, and is highly active in the subsequent plating or physical development process in that it is a filament with a high specific surface.
In the above aspect (2), the light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material by dissolving silver halide grains close to the physical development nucleus and depositing on the development nucleus in the exposed portion. A characteristic film is formed. This is also an integrated black-and-white development type. Although the development action is precipitation on the physical development nuclei, it is highly active, but developed silver is a sphere with a small specific surface.
In the above aspect (3), the silver halide grains are dissolved and diffused in the unexposed area and deposited on the development nuclei on the image receiving sheet, thereby translucent light transmitting conductive film or the like on the image receiving sheet. A conductive film is formed. This is a so-called separate type in which the image receiving sheet is peeled off from the photosensitive material.
 いずれの態様もネガ型現像処理及び反転現像処理のいずれの現像を選択することもできる(拡散転写方式の場合は、感光材料としてオートポジ型感光材料を用いることによってネガ型現像処理が可能となる)。
 ここでいう化学現像、熱現像、溶解物理現像、拡散転写現像は、当業界で通常用いられている用語どおりの意味であり、写真化学の一般教科書、例えば菊地真一著「写真化学」(共立出版社、1955年刊行)、C.E.K.Mees編「The Theory of Photographic Processes, 4th ed.」(Mcmillan社、1977年刊行)に解説されている。本件は液処理に係る発明であるが、その他の現像方式として熱現像方式を適用する技術も参考にすることができる。例えば、特開2004-184693号、同2004-334077号、同2005-010752号の各公報、特願2004-244080号、同2004-085655号の各明細書に記載された技術を適用することができる。
In either embodiment, either negative development processing or reversal development processing can be selected (in the case of the diffusion transfer method, negative development processing is possible by using an auto-positive type photosensitive material as the photosensitive material). .
The chemical development, thermal development, dissolution physical development, and diffusion transfer development mentioned here have the same meanings as are commonly used in the industry, and are general textbooks of photographic chemistry such as Shinichi Kikuchi, “Photochemistry” (Kyoritsu Publishing) (Published in 1955), C.I. E. K. It is described in "The Theory of Photographic Processes, 4th ed." Edited by Mees (Mcmillan, 1977). Although this case is an invention related to liquid processing, a technique of applying a thermal development system as another development system can also be referred to. For example, the techniques described in Japanese Patent Application Laid-Open Nos. 2004-184893, 2004-334077, and 2005-010752, and Japanese Patent Application Nos. 2004-244080 and 2004-085655 can be applied. it can.
 ここで、本実施の形態に係る第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)の各層の構成について、以下に詳細に説明する。
[第1透明基体12A、第2透明基体12B]
 第1透明基体12A及び第2透明基体12Bとしては、プラスチックフイルム、プラスチック板、ガラス板等を挙げることができる。
 上記プラスチックフイルム及びプラスチック板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類;ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVA等のポリオレフィン類;ビニル系樹脂;その他、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)等を用いることができる。
 第1透明基体12A及び第2透明基体12Bとしては、PET(融点:258℃)、PEN(融点:269℃)、PE(融点:135℃)、PP(融点:163℃)、ポリスチレン(融点:230℃)、ポリ塩化ビニル(融点:180℃)、ポリ塩化ビニリデン(融点:212℃)やTAC(融点:290℃)等の融点が約290℃以下であるプラスチックフイルム、又はプラスチック板が好ましく、特に、光透過性や加工性等の観点から、PETが好ましい。第1積層導電シート50Aや第2積層導電シート50B(50Ba)に使用される第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)のような導電性フイルムは透明性が要求されるため、第1透明基体12A及び第2透明基体12Bの透明度は高いことが好ましい。
Here, the configuration of each layer of the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) according to the present embodiment will be described in detail below.
[First Transparent Base 12A, Second Transparent Base 12B]
Examples of the first transparent substrate 12A and the second transparent substrate 12B include a plastic film, a plastic plate, and a glass plate.
Examples of the raw material for the plastic film and the plastic plate include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, and EVA; Resin; In addition, polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC) and the like can be used.
As the first transparent substrate 12A and the second transparent substrate 12B, PET (melting point: 258 ° C.), PEN (melting point: 269 ° C.), PE (melting point: 135 ° C.), PP (melting point: 163 ° C.), polystyrene (melting point: 230 ° C.), polyvinyl chloride (melting point: 180 ° C.), polyvinylidene chloride (melting point: 212 ° C.), TAC (melting point: 290 ° C.) or the like, preferably a plastic film having a melting point of about 290 ° C. or less, or a plastic plate, In particular, PET is preferable from the viewpoints of light transmittance and processability. The conductive films such as the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) used for the first laminated conductive sheet 50A and the second laminated conductive sheet 50B (50Ba) are required to be transparent. Therefore, it is preferable that the transparency of the first transparent substrate 12A and the second transparent substrate 12B is high.
[銀塩乳剤層]
 第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)の導電層(第1大格子14A、第1接続部16A、第2大格子14B、第2接続部16B、小格子18等の導電部)となる銀塩乳剤層は、銀塩とバインダーの他、溶媒や染料等の添加剤を含有する。
 本実施の形態に用いられる銀塩としては、ハロゲン化銀等の無機銀塩及び酢酸銀等の有機銀塩が挙げられる。本実施の形態においては、光センサーとしての特性に優れるハロゲン化銀を用いることが好ましい。
 銀塩乳剤層の塗布銀量(銀塩の塗布量)は、銀に換算して1~30g/mが好ましく、1~25g/mがより好ましく、5~20g/mがさらに好ましい。この塗布銀量を上記範囲とすることで、第1積層導電シート50Aや第2積層導電シート50B(50Ba)とした場合に所望の表面抵抗を得ることができる。
 本実施の形態に用いられるバインダーとしては、例えば、ゼラチン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉等の多糖類、セルロース及びその誘導体、ポリエチレンオキサイド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース等が挙げられる。これらは、官能基のイオン性によって中性、陰イオン性、陽イオン性の性質を有する。
 本実施の形態の銀塩乳剤層16中に含有されるバインダーの含有量は、特に限定されず、分散性と密着性を発揮し得る範囲で適宜決定することができる。銀塩乳剤層16中のバインダーの含有量は、銀/バインダー体積比で1/4以上が好ましく、1/2以上がより好ましい。銀/バインダー体積比は、100/1以下が好ましく、50/1以下がより好ましい。また、銀/バインダー体積比は1/1~4/1であることがさらに好ましい。1/1~3/1であることが最も好ましい。銀塩乳剤層中の銀/バインダー体積比をこの範囲にすることで、塗布銀量を調整した場合でも抵抗値のばらつきを抑制し、均一な表面抵抗を有する第1積層導電シート50Aや第2積層導電シート50Bを得ることができる。なお、銀/バインダー体積比は、原料のハロゲン化銀量/バインダー量(重量比)を銀量/バインダー量(重量比)に変換し、さらに、銀量/バインダー量(重量比)を銀量/バインダー量(体積比)に変換することで求めることができる。
[Silver salt emulsion layer]
Conductive layers (first large lattice 14A, first connecting portion 16A, second large lattice 14B, second connecting portion 16B, small lattice 18 and the like of the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) The silver salt emulsion layer serving as the conductive portion contains additives such as a solvent and a dye in addition to the silver salt and the binder.
Examples of the silver salt used in the present embodiment include inorganic silver salts such as silver halide and organic silver salts such as silver acetate. In the present embodiment, it is preferable to use silver halide having excellent characteristics as an optical sensor.
Silver coating amount of silver salt emulsion layer (coating amount of silver salt) is preferably 1 ~ 30g / m 2 in terms of silver, more preferably 1 ~ 25g / m 2, more preferably 5 ~ 20g / m 2 . By setting the coated silver amount within the above range, a desired surface resistance can be obtained when the first laminated conductive sheet 50A and the second laminated conductive sheet 50B (50Ba) are used.
Examples of the binder used in this embodiment include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, and polyacryl. Examples include acid, polyalginic acid, polyhyaluronic acid, carboxycellulose and the like. These have neutral, anionic, and cationic properties depending on the ionicity of the functional group.
The content of the binder contained in the silver salt emulsion layer 16 of the present embodiment is not particularly limited, and can be appropriately determined as long as dispersibility and adhesion can be exhibited. The binder content in the silver salt emulsion layer 16 is preferably ¼ or more, and more preferably ½ or more in terms of a silver / binder volume ratio. The silver / binder volume ratio is preferably 100/1 or less, and more preferably 50/1 or less. The silver / binder volume ratio is more preferably 1/1 to 4/1. Most preferably, it is 1/1 to 3/1. By setting the silver / binder volume ratio in the silver salt emulsion layer within this range, even when the amount of coated silver is adjusted, variation in the resistance value is suppressed, and the first laminated conductive sheet 50A and second layer having uniform surface resistance are suppressed. A laminated conductive sheet 50B can be obtained. The silver / binder volume ratio is converted from the amount of silver halide in the raw material / the amount of binder (weight ratio) to the amount of silver / binder amount (weight ratio), and the amount of silver / binder amount (weight ratio) is further converted to the amount of silver. / It can obtain | require by converting into binder amount (volume ratio).
<溶媒>
 銀塩乳剤層の形成に用いられる溶媒は、特に限定されるものではないが、例えば、水、有機溶媒(例えば、メタノール等のアルコール類、アセトン等のケトン類、ホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、酢酸エチル等のエステル類、エーテル類等)、イオン性液体、及びこれらの混合溶媒を挙げることができる。
 本実施の形態の銀塩乳剤層に用いられる溶媒の含有量は、銀塩乳剤層に含まれる銀塩、バインダー等の合計の質量に対して30~90質量%の範囲であり、50~80質量%の範囲であることが好ましい。
<Solvent>
The solvent used for forming the silver salt emulsion layer is not particularly limited. For example, water, organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, dimethyl sulfoxide, etc. Sulphoxides such as, esters such as ethyl acetate, ethers, etc.), ionic liquids, and mixed solvents thereof.
The content of the solvent used in the silver salt emulsion layer of the present embodiment is in the range of 30 to 90% by mass with respect to the total mass of silver salt and binder contained in the silver salt emulsion layer, and 50 to 80%. It is preferably in the range of mass%.
<その他の添加剤>
 本実施の形態に用いられる各種添加剤に関しては、特に制限は無く、公知のものを好ましく用いることができる。
[その他の層構成]
 銀塩乳剤層の上に図示しない保護層を設けてもよい。本実施の形態において「保護層」とは、ゼラチンや高分子ポリマーといったバインダーからなる層を意味し、擦り傷防止や力学特性を改良する効果を発現するために感光性を有する銀塩乳剤層上に形成される。その厚みは0.5μm以下が好ましい。保護層の塗布方法及び形成方法は特に限定されず、公知の塗布方法及び形成方法を適宜選択することができる。また、銀塩乳剤層16よりも下に、例えば下塗り層を設けることもできる。
<Other additives>
There are no particular restrictions on the various additives used in the present embodiment, and known ones can be preferably used.
[Other layer structure]
A protective layer (not shown) may be provided on the silver salt emulsion layer. In the present embodiment, the “protective layer” means a layer made of a binder such as gelatin or a high molecular polymer, and is formed on a silver salt emulsion layer having photosensitivity in order to exhibit an effect of preventing scratches and improving mechanical properties. It is formed. The thickness is preferably 0.5 μm or less. The coating method and forming method of the protective layer are not particularly limited, and a known coating method and forming method can be appropriately selected. An undercoat layer, for example, can be provided below the silver salt emulsion layer 16.
 次に、第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)の作製方法の各工程について説明する。
[露光]
 本実施の形態では、第1導電パターン22A及び第2導電パターン22Bを印刷方式によって施す場合を含むが、印刷方式以外は、第1導電パターン22A及び第2導電パターン22Bを露光と現像等によって形成する。すなわち、第1透明基体12A及び第2透明基体12B上に設けられた銀塩含有層を有する感光材料又はフォトリソグラフィ用フォトポリマーを塗工した感光材料への露光を行う。露光は、電磁波を用いて行うことができる。電磁波としては、例えば、可視光線、紫外線等の光、X線等の放射線等が挙げられる。さらに露光には波長分布を有する光源を利用してもよく、特定の波長の光源を用いてもよい。
Next, each process of the production methods of the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) will be described.
[exposure]
In the present embodiment, the case where the first conductive pattern 22A and the second conductive pattern 22B are applied by a printing method is included, but the first conductive pattern 22A and the second conductive pattern 22B are formed by exposure and development, etc., except for the printing method. To do. That is, exposure is performed on a photosensitive material having a silver salt-containing layer provided on the first transparent substrate 12A and the second transparent substrate 12B or a photosensitive material coated with a photolithography photopolymer. The exposure can be performed using electromagnetic waves. Examples of the electromagnetic wave include light such as visible light and ultraviolet light, and radiation such as X-rays. Furthermore, a light source having a wavelength distribution may be used for exposure, or a light source having a specific wavelength may be used.
[現像処理]
 本実施の形態では、乳剤層を露光した後、さらに現像処理が行われる。現像処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる通常の現像処理の技術を用いることができる。現像液については特に限定はしないが、PQ現像液、MQ現像液、MAA現像液等を用いることもでき、市販品では、例えば、富士フイルム社処方のCN-16、CR-56、CP45X、FD-3、パピトール、KODAK社処方のC-41、E-6、RA-4、D-19、D-72等の現像液、又はそのキットに含まれる現像液を用いることができる。また、リス現像液を用いることもできる。
 本発明における現像処理は、未露光部分の銀塩を除去して安定化させる目的で行われる定着処理を含むことができる。本発明における定着処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる定着処理の技術を用いることができる。
 上記定着工程における定着温度は、約20℃~約50℃が好ましく、さらに好ましくは25~45℃である。また、定着時間は5秒~1分が好ましく、さらに好ましくは7秒~50秒である。定着液の補充量は、感光材料の処理量に対して600ml/m以下が好ましく、500ml/m以下がさらに好ましく、300ml/m以下が特に好ましい。
[Development processing]
In this embodiment, after the emulsion layer is exposed, development processing is further performed. The development processing can be performed by a normal development processing technique used for silver salt photographic film, photographic paper, printing plate-making film, photomask emulsion mask, and the like. The developer is not particularly limited, but PQ developer, MQ developer, MAA developer and the like can also be used. Commercially available products include, for example, CN-16, CR-56, CP45X, FD prescribed by FUJIFILM Corporation. -3, Papitol, developers such as C-41, E-6, RA-4, D-19, and D-72 prescribed by KODAK, or developers included in the kit can be used. A lith developer can also be used.
The development processing in the present invention can include a fixing processing performed for the purpose of removing and stabilizing the silver salt in the unexposed portion. For the fixing process in the present invention, a technique of a fixing process used for a silver salt photographic film, photographic paper, a printing plate making film, a photomask emulsion mask, or the like can be used.
The fixing temperature in the fixing step is preferably about 20 ° C. to about 50 ° C., more preferably 25 to 45 ° C. The fixing time is preferably 5 seconds to 1 minute, more preferably 7 seconds to 50 seconds. The replenishing amount of the fixing solution is preferably 600 ml / m 2 or less with respect to the processing of the photosensitive material, more preferably 500 ml / m 2 or less, 300 ml / m 2 or less is particularly preferred.
 現像、定着処理を施した感光材料は、水洗処理や安定化処理を施されるのが好ましい。上記水洗処理又は安定化処理においては、水洗水量は通常感光材料1m当り、20リットル以下で行われ、3リットル以下の補充量(0も含む、すなわちため水水洗)で行うこともできる。
 現像処理後の露光部に含まれる金属銀の質量は、露光前の露光部に含まれていた銀の質量に対して50質量%以上の含有率であることが好ましく、80質量%以上であることがさらに好ましい。露光部に含まれる銀の質量が露光前の露光部に含まれていた銀の質量に対して50質量%以上であれば、高い導電性を得ることができるため好ましい。
 本実施の形態における現像処理後の階調は、特に限定されるものではないが、4.0を超えることが好ましい。現像処理後の階調が4.0を超えると、光透過性部の透光性を高く保ったまま、導電性金属部の導電性を高めることができる。階調を4.0以上にする手段としては、例えば、前述のロジウムイオン、イリジウムイオンのドープが挙げられる。
 以上の工程を経て導電シートは得られるが、得られた導電シートの表面抵抗は0.1~100オーム/sq.の範囲にあることが好ましい。下限値は、1オーム/sq.以上、3オーム/sq.以上、5オーム/sq.以上、10オーム/sq.であることが好ましい。上限値は、70オーム/sq.以下、50オーム/sq.以下であることが好ましい。また、現像処理後の導電シートに対しては、さらにカレンダー処理を行ってもよく、カレンダー処理により所望の表面抵抗に調整することができる。
The light-sensitive material that has been subjected to development and fixing processing is preferably subjected to water washing treatment or stabilization treatment. In the water washing treatment or the stabilization treatment, the washing water amount is usually 20 liters or less per 1 m 2 of the light-sensitive material, and can be replenished in 3 liters or less (including 0, ie, rinsing with water).
The mass of the metallic silver contained in the exposed portion after the development treatment is preferably a content of 50% by mass or more, and 80% by mass or more with respect to the mass of silver contained in the exposed portion before exposure. More preferably. If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, it is preferable because high conductivity can be obtained.
The gradation after the development processing in the present embodiment is not particularly limited, but is preferably more than 4.0. When the gradation after the development processing exceeds 4.0, the conductivity of the conductive metal portion can be increased while keeping the light transmissive property of the light transmissive portion high. Examples of means for setting the gradation to 4.0 or higher include the aforementioned doping of rhodium ions and iridium ions.
Although the conductive sheet is obtained through the above steps, the surface resistance of the obtained conductive sheet is 0.1 to 100 ohm / sq. It is preferable that it exists in the range. The lower limit is 1 ohm / sq. 3 ohm / sq. 5 ohm / sq. 10 ohm / sq. It is preferable that The upper limit is 70 ohm / sq. Hereinafter, 50 ohm / sq. The following is preferable. Further, the conductive sheet after the development process may be further subjected to a calendar process, and can be adjusted to a desired surface resistance by the calendar process.
[物理現像及びめっき処理]
 本実施の形態では、前記露光及び現像処理により形成された金属銀部の導電性を向上させる目的で、前記金属銀部に導電性金属粒子を担持させるための物理現像及び/又はめっき処理を行ってもよい。本発明では物理現像又はめっき処理のいずれか一方のみで導電性金属粒子を金属性銀部に担持させてもよく、物理現像とめっき処理とを組み合わせて導電性金属粒子を金属銀部に担持させてもよい。なお、金属銀部に物理現像及び/又はめっき処理を施したものを含めて「導電性金属部」と称する。
 本実施の形態における「物理現像」とは、金属や金属化合物の核上に、銀イオン等の金属イオンを還元剤で還元して金属粒子を析出させることをいう。この物理現象は、インスタントB&Wフイルム、インスタントスライドフイルムや、印刷版製造等に利用されており、本発明ではその技術を用いることができる。
 また、物理現像は、露光後の現像処理と同時に行っても、現像処理後に別途行ってもよい。
 本実施の形態において、めっき処理は、無電解めっき(化学還元めっきや置換めっき)、電解めっき、又は無電解めっきと電解めっきの両方を用いることができる。本実施の形態における無電解めっきは、公知の無電解めっき技術を用いることができ、例えば、プリント配線板等で用いられている無電解めっき技術を用いることができ、無電解めっきは無電解銅めっきであることが好ましい。
[Physical development and plating]
In the present embodiment, for the purpose of improving the conductivity of the metallic silver portion formed by the exposure and development processing, physical development and / or plating treatment for supporting the conductive metal particles on the metallic silver portion is performed. May be. In the present invention, the conductive metal particles may be supported on the metallic silver portion by only one of physical development and plating treatment, or the conductive metal particles are supported on the metallic silver portion by combining physical development and plating treatment. May be. In addition, the thing which performed the physical development and / or the plating process to the metal silver part is called "conductive metal part".
“Physical development” in the present embodiment means that metal particles such as silver ions are reduced with a reducing agent on metal or metal compound nuclei to deposit metal particles. This physical phenomenon is used in instant B & W film, instant slide film, printing plate manufacturing, and the like, and the technology can be used in the present invention.
Further, the physical development may be performed simultaneously with the development processing after exposure or separately after the development processing.
In the present embodiment, the plating treatment can use electroless plating (chemical reduction plating or displacement plating), electrolytic plating, or both electroless plating and electrolytic plating. For the electroless plating in the present embodiment, a known electroless plating technique can be used, for example, an electroless plating technique used in a printed wiring board or the like can be used. Plating is preferred.
[酸化処理]
 本実施の形態では、現像処理後の金属銀部、並びに、物理現像及び/又はめっき処理によって形成された導電性金属部には、酸化処理を施すことが好ましい。酸化処理を行うことにより、例えば、光透過性部に金属が僅かに沈着していた場合に、該金属を除去し、光透過性部の透過性をほぼ100%にすることができる。
[Oxidation treatment]
In the present embodiment, it is preferable to subject the metallic silver portion after the development treatment and the conductive metal portion formed by physical development and / or plating treatment to oxidation treatment. By performing the oxidation treatment, for example, when a metal is slightly deposited on the light transmissive portion, the metal can be removed and the light transmissive portion can be made almost 100% transparent.
[導電性金属部]
 本実施の形態の導電性金属部の線幅(第1導電部13A及び第2導電部13Bの線幅)は、下限は1μm以上、3μm以上、4μm以上、もしくは5μm以上が好ましく、上限は10μm以下、9μm以下、8μm以下が好ましい。線幅が上記下限値未満の場合には、導電性が不十分となるためタッチパネル100に使用した場合に、検出感度が不十分となる。他方、上記上限値を越えると導電性金属部に起因するモアレが顕著になったり、タッチパネル100に使用した際に視認性が悪くなったりする。なお、上記範囲にあることで、導電性金属部のモアレが改善され、視認性が特によくなる。線間隔(ここでは小格子18の互いに対向する辺の間隔)は30μm以上500μm以下であることが好ましく、さらに好ましくは50μm以上400μm以下、最も好ましくは100μm以上350μm以下である。また、導電性金属部は、アース接続等の目的においては、線幅は200μmより広い部分を有していてもよい。
 本実施の形態における導電性金属部は、可視光透過率の点から開口率は85%以上であることが好ましく、90%以上であることがさらに好ましく、95%以上であることが最も好ましい。開口率とは、第1大格子14A、第1接続部16A、第2大格子14B、第2接続部16B、小格子18等の導電部を除いた透光性部分が全体に占める割合であり、例えば、線幅15μm、ピッチ300μmの正方形の格子状の開口率は、90%である。
[Conductive metal part]
The lower limit of the line width of the conductive metal part of the present embodiment (the line width of the first conductive part 13A and the second conductive part 13B) is preferably 1 μm or more, 3 μm or more, 4 μm or more, or 5 μm or more, and the upper limit is 10 μm. Hereinafter, it is preferably 9 μm or less and 8 μm or less. When the line width is less than the above lower limit, the conductivity becomes insufficient, so that when used for the touch panel 100, the detection sensitivity becomes insufficient. On the other hand, when the above upper limit is exceeded, moire due to the conductive metal portion becomes noticeable, or the visibility becomes worse when used for the touch panel 100. In addition, by being in the said range, the moire of an electroconductive metal part is improved and visibility becomes especially good. The line interval (here, the interval between the opposing sides of the small lattice 18) is preferably 30 μm or more and 500 μm or less, more preferably 50 μm or more and 400 μm or less, and most preferably 100 μm or more and 350 μm or less. The conductive metal portion may have a portion whose line width is wider than 200 μm for the purpose of ground connection or the like.
The conductive metal portion in the present embodiment preferably has an aperture ratio of 85% or more, more preferably 90% or more, and most preferably 95% or more from the viewpoint of visible light transmittance. The aperture ratio is the ratio of the light-transmitting portion excluding the conductive portion such as the first large lattice 14A, the first connection portion 16A, the second large lattice 14B, the second connection portion 16B, and the small lattice 18 to the whole. For example, the aperture ratio of a square lattice having a line width of 15 μm and a pitch of 300 μm is 90%.
[光透過性部]
 本実施の形態における「光透過性部」とは、第1導電シート10A及び第2導電シート10Bのうち導電性金属部以外の透光性を有する部分を意味する。光透過性部における透過率は、前述のとおり、第1透明基体12A及び第2透明基体12Bの光吸収及び反射の寄与を除いた380~780nmの波長領域における透過率の最小値で示される透過率が90%以上、好ましくは95%以上、さらに好ましくは97%以上であり、さらにより好ましくは98%以上であり、最も好ましくは99%以上である。
 露光方法に関しては、ガラスマスクを介した方法やレーザー描画によるパターン露光方式が好ましい。
[Light transmissive part]
The “light transmissive part” in the present embodiment means a part having translucency other than the conductive metal part in the first conductive sheet 10A and the second conductive sheet 10B. As described above, the transmittance in the light transmissive portion is the transmission indicated by the minimum value of the transmittance in the wavelength region of 380 to 780 nm excluding the contribution of light absorption and reflection of the first transparent substrate 12A and the second transparent substrate 12B. The rate is 90% or more, preferably 95% or more, more preferably 97% or more, even more preferably 98% or more, and most preferably 99% or more.
Regarding the exposure method, a method through a glass mask or a pattern exposure method by laser drawing is preferable.
[第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)]
 本実施の形態に係る第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)における第1透明基体12A及び第2透明基体12Bの厚さは、5~350μmであることが好ましく、30~150μmであることがさらに好ましい。5~350μmの範囲であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。
 第1透明基体12A及び第2透明基体12B上に設けられる金属銀部の厚さは、第1透明基体12A及び第2透明基体12B上に塗布される銀塩含有層用塗料の塗布厚みに応じて適宜決定することができる。金属銀部の厚さは、0.001mm~0.2mmから選択可能であるが、30μm以下であることが好ましく、20μm以下であることがより好ましく、0.01~9μmであることがさらに好ましく、0.05~5μmであることが最も好ましい。また、金属銀部はパターン状であることが好ましい。金属銀部は1層でもよく、2層以上の重層構成であってもよい。金属銀部がパターン状であり、且つ、2層以上の重層構成である場合、異なる波長に感光できるように、異なる感色性を付与することができる。これにより、露光波長を変えて露光すると、各層において異なるパターンを形成することができる。
[First conductive sheet 10A (10Aa) and second conductive sheet 10B (10Ba)]
The thickness of the first transparent substrate 12A and the second transparent substrate 12B in the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) according to the present embodiment is preferably 5 to 350 μm, and 30 More preferably, it is ˜150 μm. If it is in the range of 5 to 350 μm, a desired visible light transmittance can be obtained, and handling is easy.
The thickness of the metallic silver portion provided on the first transparent substrate 12A and the second transparent substrate 12B depends on the coating thickness of the silver salt-containing layer coating applied on the first transparent substrate 12A and the second transparent substrate 12B. Can be determined as appropriate. The thickness of the metallic silver portion can be selected from 0.001 mm to 0.2 mm, but is preferably 30 μm or less, more preferably 20 μm or less, and further preferably 0.01 to 9 μm. And most preferably 0.05 to 5 μm. Moreover, it is preferable that a metal silver part is pattern shape. The metal silver portion may be a single layer or may be a multilayer structure of two or more layers. When the metallic silver part has a pattern and has a multilayer structure of two or more layers, different color sensitivities can be imparted so as to be sensitive to different wavelengths. Thereby, when the exposure wavelength is changed and exposed, different patterns can be formed in each layer.
 導電性金属部の厚さは、タッチパネルの用途としては、薄いほど表示パネルの視野角が広がるため好ましく、視認性の向上の点でも薄膜化が要求される。このような観点から、導電性金属部に担持された導電性金属からなる層の厚さは、9μm未満であることが好ましく、0.1μm以上5μm未満であることがより好ましく、0.1μm以上3μm未満であることがさらに好ましい。
 本実施の形態では、上述した銀塩含有層の塗布厚みをコントロールすることにより所望の厚さの金属銀部を形成し、さらに物理現像及び/又はめっき処理により導電性金属粒子からなる層の厚みを自在にコントロールできるため、5μm未満、好ましくは3μm未満の厚みを有する第1導電シート10A(10Aa)及び第2導電シート10B(10Ba)であっても容易に形成することができる。
 なお、本実施の形態に係る第1導電シート10A(10Aa)や第2導電シート10B(10Ba)の製造方法では、めっき等の工程は必ずしも行う必要はない。本実施の形態に係る第1導電シート10A(10Aa)や第2導電シート10B(10Ba)の製造方法では銀塩乳剤層の塗布銀量、銀/バインダー体積比を調整することで所望の表面抵抗を得ることができるからである。なお、必要に応じてカレンダー処理等を行ってもよい。
(現像処理後の硬膜処理)
 銀塩乳剤層に対して現像処理を行った後に、硬膜剤に浸漬して硬膜処理を行うことが好ましい。硬膜剤としては、例えば、グルタルアルデヒド、アジポアルデヒド、2,3-ジヒドロキシ-1,4-ジオキサン等のジアルデヒド類及びほう酸等の特開平2-141279号に記載のものを挙げることができる。
As the thickness of the conductive metal part, the thinner the display panel, the wider the viewing angle of the display panel, and the thinner the display is required for improving the visibility. From such a viewpoint, the thickness of the layer made of the conductive metal carried on the conductive metal portion is preferably less than 9 μm, more preferably 0.1 μm or more and less than 5 μm, and more preferably 0.1 μm or more. More preferably, it is less than 3 μm.
In the present embodiment, the thickness of the layer made of conductive metal particles is formed by controlling the coating thickness of the above-described silver salt-containing layer to form a metallic silver portion having a desired thickness, and further by physical development and / or plating treatment. Therefore, even the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) having a thickness of less than 5 μm, preferably less than 3 μm, can be easily formed.
In the method of manufacturing the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) according to the present embodiment, it is not always necessary to perform a process such as plating. In the manufacturing method of the first conductive sheet 10A (10Aa) and the second conductive sheet 10B (10Ba) according to the present embodiment, the desired surface resistance is adjusted by adjusting the coating silver amount of the silver salt emulsion layer and the silver / binder volume ratio. It is because it can obtain. In addition, you may perform a calendar process etc. as needed.
(Hardening after development)
It is preferable to perform a film hardening process by immersing the film in a hardener after the silver salt emulsion layer is developed. Examples of the hardener include dialdehydes such as glutaraldehyde, adipaldehyde, 2,3-dihydroxy-1,4-dioxane, and those described in JP-A-2-141279 such as boric acid. .
[積層導電シート]
 積層導電シートには、反射防止フイルム126を付与してもよい。この場合、上述した図8A~図8Cに示す第1構成例~第3構成例を好ましく採用することができる。
 反射防止フイルム126は、例えば第1積層導電シート50A上にハードコート層122及び反射防止層124を形成して(第1構成例及び第2構成例参照)、あるいは第1積層導電シート50A上に透明フイルム130、ハードコート層122及び反射防止層124を形成して作製される(第3構成例参照)。
 以下、反射防止フイルム126の好ましい態様を、第3構成例を主体にして説明する。
<透明フイルム130>
 透明フイルム130は、表示装置108の視認者側表面に用いるため、光透過率が高く、且つ、透明性に優れた無色のフイルムであることが要求される。このような透明フイルム130としては、プラスチックフイルムを用いることが好ましい。プラスチックフイルムを形成するポリマーとしては、セルロースアシレート(例、富士フイルム(株)製TAC-TD80U,TD80UF等のセルローストリアセテート、セルロースジアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート)、ポリアミド、ポリカーボネート、ポリエステル(例、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリスチレン、ポリオレフィン、ノルボルネン系樹脂(アートン:商品名、JSR(株)製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン(株)製)、(メタ)アクリル系樹脂(アクリペットVRL20A:商品名、三菱レイヨン(株)製、特開2004-70296号公報や特開2006-171464号公報記載の環構造含有アクリル系樹脂)等が挙げられる。このうち、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、特にセルローストリアセテートが好ましい。
<ハードコート層122>
 反射防止フイルム126には、該反射防止フイルム126の物理的強度を付与するために、ハードコート層122を設けることが好ましい。ハードコート層122は、2層以上の積層から構成されてもよい。
[Laminated conductive sheet]
An antireflection film 126 may be applied to the laminated conductive sheet. In this case, the first to third configuration examples shown in FIGS. 8A to 8C described above can be preferably employed.
The antireflection film 126 is formed, for example, by forming a hard coat layer 122 and an antireflection layer 124 on the first laminated conductive sheet 50A (see the first configuration example and the second configuration example), or on the first laminated conductive sheet 50A. The transparent film 130, the hard coat layer 122, and the antireflection layer 124 are formed (see the third configuration example).
Hereinafter, a preferred aspect of the antireflection film 126 will be described mainly with reference to the third configuration example.
<Transparent film 130>
Since the transparent film 130 is used on the viewer side surface of the display device 108, the transparent film 130 is required to be a colorless film having high light transmittance and excellent transparency. As such a transparent film 130, it is preferable to use a plastic film. Examples of the polymer forming the plastic film include cellulose acylate (eg, cellulose triacetate such as TAC-TD80U and TD80UF manufactured by Fuji Film Co., Ltd., cellulose diacetate, cellulose acetate propionate, cellulose acetate butyrate), polyamide, and polycarbonate. , Polyester (eg, polyethylene terephthalate, polyethylene naphthalate), polystyrene, polyolefin, norbornene resin (Arton: trade name, manufactured by JSR Corporation), amorphous polyolefin (ZEONEX: trade name, manufactured by Nippon Zeon Co., Ltd.) (Meth) acrylic resin (ACRYPET VRL20A: trade name, manufactured by Mitsubishi Rayon Co., Ltd., ring structure described in JP-A-2004-70296 and JP-A-2006-171464 Acrylic-based resin). Among these, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, polyethylene terephthalate, and polyethylene naphthalate are preferable, and cellulose triacetate is particularly preferable.
<Hard coat layer 122>
In order to impart the physical strength of the antireflection film 126 to the antireflection film 126, it is preferable to provide a hard coat layer 122. The hard coat layer 122 may be composed of two or more layers.
 ハードコート層122の屈折率は、反射防止性のフイルムを得るための光学設計から、屈折率が1.48~1.90の範囲にあることが好ましく、より好ましくは1.50~1.80であり、さらに好ましくは1.52~1.65である。本実施の形態では、ハードコート層122の上に低屈折率層が少なくとも1層あるので、屈折率がこの範囲より小さ過ぎると反射防止性が低下し、大き過ぎると反射光の色味が強くなる傾向がある。
 ハードコート層122は、反射防止フイルム126に十分な耐久性、耐衝撃性を付与する観点から、ハードコート層122の厚さは、通常、0.5~50μm程度とし、好ましくは1~20μm、さらに好ましくは2~15μm、最も好ましくは3~10μmである。また、ハードコート層122の強度は、鉛筆硬度試験で、2H以上であることが好ましく、3H以上であることがさらに好ましく、4H以上であることが最も好ましい。さらに、JISK5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
The refractive index of the hard coat layer 122 is preferably in the range of 1.48 to 1.90, more preferably 1.50 to 1.80, from the optical design for obtaining an antireflection film. More preferably, it is 1.52-1.65. In this embodiment, since there is at least one low refractive index layer on the hard coat layer 122, when the refractive index is too small, the antireflection property is lowered, and when it is too large, the color of reflected light is strong. Tend to be.
From the viewpoint of imparting sufficient durability and impact resistance to the antireflection film 126, the hard coat layer 122 has a thickness of usually about 0.5 to 50 μm, preferably 1 to 20 μm, More preferably, it is 2 to 15 μm, and most preferably 3 to 10 μm. Further, the strength of the hard coat layer 122 is preferably 2H or more, more preferably 3H or more, and most preferably 4H or more in a pencil hardness test. Furthermore, in the Taber test according to JISK5400, the smaller the amount of wear of the test piece before and after the test, the better.
 ハードコート層122は、電離放射線硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。例えば、電離放射線硬化性の多官能モノマーや多官能オリゴマーを含む組成物を透明フイルム130上に塗布し、多官能モノマーや多官能オリゴマーを架橋反応、又は、重合反応させることにより形成することができる。電離放射線硬化性の多官能モノマーや多官能オリゴマーの官能基としては、光、電子線、放射線重合性のものが好ましく、中でも光重合性官能基が好ましい。光重合性官能基としては、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の不飽和の重合性官能基等が挙げられ、中でも、(メタ)アクリロイル基が好ましい。具体的な化合物としては、特開2006-30740号公報の段落[0087]及び[0088]に記載のモノマーを使用することができ、同号公報の段落[0089]に記載の硬化方法を用いることができる。光重合の場合には、同号公報の段落[0090]~[0093]に記載の光重合開始剤を用いることができる。
 ハードコート層122には、内部散乱性付与の目的で、平均粒径が1.0~10.0μm、好ましくは1.5~7.0μmのマット粒子、例えば無機化合物の粒子又は樹脂粒子を含有してもよい。これらの粒子としては特開2006-30740号公報の段落[0114]に記載の粒子を用いることができる。
 ハードコート層122のバインダーには、ハードコート層122の屈折率を制御する目的で、高屈折率モノマー又は光散乱を生じない大きさの無機微粒子(一次粒子の直径が10~200nm)、あるいは両者を加えることができる。無機微粒子には屈折率を制御する効果に加えて、架橋反応による硬化収縮を抑える効果もある。無機微粒子としては特開2006-30740号公報の段落[0120]に無機フィラーとして記載されている化合物を用いることができる。
The hard coat layer 122 is preferably formed by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound. For example, it can be formed by applying a composition containing an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer on the transparent film 130 and causing the polyfunctional monomer or polyfunctional oligomer to undergo a crosslinking reaction or a polymerization reaction. . The functional group of the ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer is preferably a light, electron beam, or radiation polymerizable group, and among them, a photopolymerizable functional group is preferable. Examples of the photopolymerizable functional group include unsaturated polymerizable functional groups such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group. Among them, a (meth) acryloyl group is preferable. As specific compounds, monomers described in paragraphs [0087] and [0088] of JP-A-2006-30740 can be used, and the curing method described in paragraph [0089] of the same publication is used. Can do. In the case of photopolymerization, the photopolymerization initiators described in paragraphs [0090] to [0093] of the same publication can be used.
The hard coat layer 122 contains matte particles having an average particle size of 1.0 to 10.0 μm, preferably 1.5 to 7.0 μm, such as inorganic compound particles or resin particles, for the purpose of imparting internal scattering properties. May be. As these particles, the particles described in paragraph [0114] of JP-A-2006-30740 can be used.
For the binder of the hard coat layer 122, for the purpose of controlling the refractive index of the hard coat layer 122, a high refractive index monomer or inorganic fine particles having a size that does not cause light scattering (the primary particle diameter is 10 to 200 nm), or both Can be added. In addition to the effect of controlling the refractive index, the inorganic fine particles also have an effect of suppressing curing shrinkage due to a crosslinking reaction. As the inorganic fine particles, the compounds described as the inorganic filler in paragraph [0120] of JP-A-2006-30740 can be used.
<反射防止層124>
 反射防止フイルム126は、上述したハードコート層122上に反射防止層124を形成したフイルム(下層の透明フイルム130を含む場合もある)であり、光学干渉を利用しているため、反射防止層124は以下に述べる屈折率と光学厚みを有することが好ましい。反射防止層124は1層のみでもよいが、より低い反射率が求められる場合には複数の反射防止層124を積層して形成する。複数の反射防止層124の積層には、異なる屈折率を有する光学干渉層を交互に積層してもよく、異なる屈折率を有する光学干渉層を2層以上積層してもよい。具体的には、ハードコート層122上に低屈折率層のみを設ける態様、ハードコート層122上に高屈折率層、低屈折率層をこの順に設ける態様、ハードコート層122上に中屈折率層、高屈折率層、低屈折率層をこの順に設ける態様が常用されている。なお、屈折率層の低、中、高は、屈折率の相対的な大小関係の表現である。また、低屈折率層の屈折率は、上述したハードコート層122の屈折率より低く設定することが好ましい。低屈折率層とハードコート層122との屈折率差が小さすぎる場合は反射防止性が低下し、大き過ぎると反射光の色味が強くなる傾向がある。低屈折率層とハードコート層122との屈折率差は0.01以上0.40以下が好ましく、0.05以上0.30以下がより好ましい。
 各層の屈折率と厚みは、以下を満たすことが好ましい。
<Antireflection layer 124>
The antireflection film 126 is a film in which the antireflection layer 124 is formed on the hard coat layer 122 (which may include a transparent film 130 as a lower layer), and uses optical interference. Therefore, the antireflection layer 124 is used. Preferably has the refractive index and optical thickness described below. The antireflection layer 124 may be a single layer, but when a lower reflectance is required, a plurality of antireflection layers 124 are stacked. In the lamination of the plurality of antireflection layers 124, optical interference layers having different refractive indexes may be alternately laminated, or two or more optical interference layers having different refractive indexes may be laminated. Specifically, an embodiment in which only a low refractive index layer is provided on the hard coat layer 122, an embodiment in which a high refractive index layer and a low refractive index layer are provided in this order on the hard coat layer 122, and an intermediate refractive index on the hard coat layer 122 A mode in which a layer, a high refractive index layer, and a low refractive index layer are provided in this order is commonly used. Note that low, medium, and high in the refractive index layer are expressions of the relative magnitude relationship of the refractive index. The refractive index of the low refractive index layer is preferably set lower than the refractive index of the hard coat layer 122 described above. When the refractive index difference between the low refractive index layer and the hard coat layer 122 is too small, the antireflection property is lowered, and when it is too large, the color of the reflected light tends to be strong. The difference in refractive index between the low refractive index layer and the hard coat layer 122 is preferably 0.01 or more and 0.40 or less, and more preferably 0.05 or more and 0.30 or less.
The refractive index and thickness of each layer preferably satisfy the following.
 すなわち、低屈折率層の屈折率は、1.20~1.46であることが好ましく、1.25~1.42であることがより好ましく、1.30~1.38であることが特に好ましい。また、低屈折率層の厚さは、50~150nmであることが好ましく、70~120nmであることがさらに好ましい。
 高屈折率層の上に低屈折率層を積層して、反射防止フイルム126を作製するためには、高屈折率層の屈折率は1.55~2.40であることが好ましく、より好ましくは1.60~2.20、さらに好ましくは、1.65~2.10、最も好ましくは1.80~2.00である。
 透明フイルム130(あるいはタッチパネル100)から近い順に中屈折率層、高屈折率層、低屈折率層を積層して反射防止フイルム126を作製する場合、高屈折率層の屈折率は、1.65~2.40であることが好ましく、1.70~2.20であることがさらに好ましい。中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.55~1.80であることが好ましい。なお、高屈折率層、中屈折率層の厚みは、屈折率の範囲に応じた光学厚みとすることができる。
That is, the refractive index of the low refractive index layer is preferably 1.20 to 1.46, more preferably 1.25 to 1.42, and particularly preferably 1.30 to 1.38. preferable. Further, the thickness of the low refractive index layer is preferably 50 to 150 nm, and more preferably 70 to 120 nm.
In order to produce the antireflection film 126 by laminating the low refractive index layer on the high refractive index layer, the refractive index of the high refractive index layer is preferably 1.55 to 2.40, more preferably. Is 1.60 to 2.20, more preferably 1.65 to 2.10, and most preferably 1.80 to 2.00.
When the antireflective film 126 is formed by laminating the medium refractive index layer, the high refractive index layer, and the low refractive index layer in the order from the transparent film 130 (or the touch panel 100), the refractive index of the high refractive index layer is 1.65. It is preferably ˜2.40, more preferably 1.70 to 2.20. The refractive index of the middle refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer. The refractive index of the middle refractive index layer is preferably 1.55 to 1.80. In addition, the thickness of the high refractive index layer and the middle refractive index layer can be set to an optical thickness corresponding to the range of the refractive index.
[低屈折率層]
 上述の低屈折率層は、層の形成後に硬化させることが好ましい。低屈折率層のヘイズは、3%以下であることが好ましく、2%以下であることがさらに好ましく、1%以下であることが最も好ましい。
 本発明の低屈折率層を形成するための好ましい組成物としては少なくとも以下の何れかを含む組成物であることが好ましい。
 (1)架橋性もしくは重合性の官能基を有する含フッ素ポリマーを含有する組成物、
 (2)含フッ素のオルガノシラン材料の加水分解縮合物を主成分とする組成物、
 (3)2個以上のエチレン性不飽和基を有するモノマーと中空構造を有する無機微粒子を含有する組成物、
が挙げられる。
[Low refractive index layer]
The above-described low refractive index layer is preferably cured after the formation of the layer. The haze of the low refractive index layer is preferably 3% or less, more preferably 2% or less, and most preferably 1% or less.
A preferred composition for forming the low refractive index layer of the present invention is preferably a composition containing at least one of the following.
(1) A composition containing a fluorine-containing polymer having a crosslinkable or polymerizable functional group,
(2) a composition comprising as a main component a hydrolysis-condensation product of a fluorine-containing organosilane material;
(3) a composition containing a monomer having two or more ethylenically unsaturated groups and inorganic fine particles having a hollow structure;
Is mentioned.
(1)架橋性もしくは重合性の官能基を有する含フッ素化合物
 架橋性もしくは重合性の官能基を有する含フッ素化合物としては、含フッ素モノマーと架橋性又は重合性の官能基を有するモノマーの共重合体を挙げることができる。
 上記共重合体のうちで、主鎖が炭素原子のみからなり、且つ、含フッ素ビニルモノマー重合単位と側鎖に(メタ)アクリロイル基を有する重合単位とを含んでなる共重合体としては、特開2004-45462号公報の段落[0043]~[0047]に記載のP-1~P-40を用いることができる。また、耐擦傷性、すべり性の改良のためにシリコーン成分を導入した含フッ素ポリマーとして、側鎖にポリシロキサン部位を含む重合単位を有し、主鎖にフッ素原子を有するグラフトポリマーとしては特開2003-222702号公報の段落[0074]~[0076]の表1及び表2に記載の化合物を用いることができ、主鎖にポリシロキサン化合物に由来する構造単位を含むエチレン性不飽和基含有フッ素重合体としては、特開2003-183322号公報に記載の化合物を用いることができる。
(1) Fluorine-containing compound having a crosslinkable or polymerizable functional group As the fluorine-containing compound having a crosslinkable or polymerizable functional group, co-polymerization of a fluorine-containing monomer and a monomer having a crosslinkable or polymerizable functional group Coalescence can be mentioned.
Among the above-mentioned copolymers, a copolymer having a main chain composed only of carbon atoms and comprising a fluorine-containing vinyl monomer polymer unit and a polymer unit having a (meth) acryloyl group in the side chain is particularly characterized. P-1 to P-40 described in paragraphs [0043] to [0047] of Kaikai 2004-45462 can be used. Further, as a fluorine-containing polymer into which a silicone component is introduced for improving scratch resistance and slipperiness, a graft polymer having a polymer unit containing a polysiloxane moiety in the side chain and a fluorine atom in the main chain is disclosed in JP The compounds described in Tables 1 and 2 of paragraphs [0074] to [0076] of 2003-222702 can be used, and the main chain contains an ethylenically unsaturated group-containing fluorine containing a structural unit derived from a polysiloxane compound. As the polymer, compounds described in JP-A No. 2003-183322 can be used.
[規則91に基づく訂正 14.06.2011] 
 上記のポリマーに対しては特開2000-17028号公報に記載のごとく適宜重合性不飽和基を有する硬化剤を併用してもよい。また、特開2002-145952号公報に記載のごとく含フッ素の多官能の重合性不飽和基を有する化合物との併用も好ましい。多官能の重合性不飽和基を有する化合物の例としては、上記の2個以上のエチレン性不飽和基を有するモノマーを挙げることができる。また、特開2004-170901号公報に記載のオルガノシランの加水分解縮合物も好ましく、特に(メタ)アクリロイル基を含有するオルガノシランの加水分解縮合物が好ましい。これら化合物は、特にポリマー本体に重合性不飽和基を有する化合物を用いた場合に耐擦傷性改良に対する併用効果が大きく好ましい。
 ポリマー自身が単独で十分な硬化性を有しない場合には、架橋性化合物を配合することにより、必要な硬化性を付与することができる。例えばポリマー本体に水酸基含有する場合には、各種アミノ化合物を硬化剤として用いることが好ましい。架橋性化合物として用いられるアミノ化合物は、例えば、ヒドロキシアルキルアミノ基及びアルコキシアルキルアミノ基のいずれか一方又は両方を合計で2個以上含有する化合物であり、具体的には、例えば、メラミン系化合物、尿素系化合物、ベンゾグアナミン系化合物、グリコールウリル系化合物等を挙げることができる。これら化合物の硬化には、有機酸又はその塩を用いるのが好ましい。
[Correction based on Rule 91 14.06.2011]
As described in JP-A-2000-17028, a curing agent having a polymerizable unsaturated group may be used in combination with the above polymer. Further, as described in JP-A-2002-145952, combined use with a compound having a fluorine-containing polyfunctional polymerizable unsaturated group is also preferable. Examples of the compound having a polyfunctional polymerizable unsaturated group include the above-mentioned monomers having two or more ethylenically unsaturated groups. Further, hydrolyzed condensates of organosilanes described in JP-A No. 2004-170901 are preferable, and hydrolyzed condensates of organosilanes containing (meth) acryloyl groups are particularly preferable. These compounds are particularly preferred because they have a large combined effect for improving scratch resistance, particularly when a compound having a polymerizable unsaturated group is used in the polymer body.
When the polymer itself does not have sufficient curability, the necessary curability can be imparted by blending a crosslinkable compound. For example, when the polymer body contains a hydroxyl group, various amino compounds are preferably used as the curing agent. The amino compound used as the crosslinkable compound is, for example, a compound containing a total of two or more of any one or both of a hydroxyalkylamino group and an alkoxyalkylamino group. Specifically, for example, a melamine compound, Examples include urea compounds, benzoguanamine compounds, glycoluril compounds, and the like. For curing these compounds, an organic acid or a salt thereof is preferably used.
(2)含フッ素のオルガノシラン材料の加水分解縮合物
 含フッ素のオルガノシラン化合物の加水分解縮合物を主成分とする組成物も屈折率が低く、塗膜表面の硬度が高く好ましい。フッ素化アルキル基に対して片末端又は両末端に加水分解性のシラノールを含有する化合物とテトラアルコキシシランの縮合物が好ましい。具体的組成物は、特開2002-265866号公報、特開2002-317152号公報に記載されている。
(2) Hydrolyzed condensate of fluorine-containing organosilane material A composition containing a hydrolyzed condensate of a fluorine-containing organosilane compound as a main component is also preferable because of its low refractive index and high hardness on the coating film surface. A condensate of a tetraalkoxysilane with a compound containing hydrolyzable silanol at one or both ends with respect to the fluorinated alkyl group is preferred. Specific compositions are described in JP-A Nos. 2002-265866 and 2002-317152.
(3)2個以上のエチレン性不飽和基を有するモノマーと中空構造を有する無機微粒子を含有する組成物
 さらに別の好ましい態様として、低屈折率の粒子とバインダーからなる低屈折率層が挙げられる。低屈折率粒子としては、有機でも無機でもよいが、内部に空孔を有する粒子が好ましい。中空粒子の具体例は、特開2002-79616号公報にシリカ系粒子が記載されている(例えば段落[0041]~[0049]参照)。粒子屈折率は1.15~1.40が好ましく、1.20~1.30がさらに好ましい。バインダーとしては、上述したハードコート層122の項で述べた2個以上のエチレン性不飽和基を有するモノマーを挙げることができる。
(3) A composition containing a monomer having two or more ethylenically unsaturated groups and inorganic fine particles having a hollow structure As yet another preferred embodiment, a low refractive index layer comprising a low refractive index particle and a binder can be mentioned. . The low refractive index particles may be organic or inorganic, but particles having pores inside are preferable. Specific examples of the hollow particles include silica-based particles described in JP-A-2002-79616 (see, for example, paragraphs [0041] to [0049]). The particle refractive index is preferably 1.15 to 1.40, more preferably 1.20 to 1.30. Examples of the binder include monomers having two or more ethylenically unsaturated groups described in the section of the hard coat layer 122 described above.
 低屈折率層には、上述したハードコート層122の項で述べた重合開始剤(例えば特開2006-30740号公報の段落[0090]~[0093]参照)を添加することが好ましい。ラジカル重合性化合物を含有する場合には、該化合物100質量部に対して1~10質量部、好ましくは1~5質量部の重合開始剤を使用できる。
 低屈折層には、無機粒子を併用することができる。耐擦傷性を付与するために、低屈折率層の厚みの15%~150%、好ましくは30%~100%、さらに好ましくは45%~60%の粒径を有する微粒子を使用することができる。
 低屈折率層には、防汚性、耐水性、耐薬品性、滑り性等の特性を付与する目的で、公知のポリシロキサン系あるいはフッ素系の防汚剤、滑り剤等を適宜添加することができる。
It is preferable to add the polymerization initiator described in the above-mentioned item of the hard coat layer 122 (for example, see paragraphs [0090] to [0093] of JP-A-2006-30740) to the low refractive index layer. When a radically polymerizable compound is contained, 1 to 10 parts by mass, preferably 1 to 5 parts by mass of a polymerization initiator can be used with respect to 100 parts by mass of the compound.
In the low refractive layer, inorganic particles can be used in combination. In order to impart scratch resistance, fine particles having a particle size of 15% to 150%, preferably 30% to 100%, more preferably 45% to 60% of the thickness of the low refractive index layer can be used. .
For the purpose of imparting antifouling properties, water resistance, chemical resistance, slipping properties, etc., known polysiloxane-based or fluorine-based antifouling agents, slipping agents, etc. are appropriately added to the low refractive index layer. Can do.
[高屈折率層/中屈折率層]
 反射防止フイルム126には、上述したように低屈折率層とハードコート層122の間に屈折率の高い層を設け、反射防止性を高めることができる。
 高屈折率層及び中屈折率層は、高屈折無機微粒子とバインダーを含有する硬化性組成物から形成されることが好ましい。ここで使用することのできる高屈折率無機微粒子は、ハードコート層122の屈折率を高めるために含有することのできる高屈折率の無機微粒子を用いることができる。高屈折率の無機微粒子としては、例えばシリカ粒子、TiO2粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。
[High refractive index layer / Medium refractive index layer]
As described above, the antireflection film 126 can be provided with a layer having a high refractive index between the low refractive index layer and the hard coat layer 122 to enhance the antireflection property.
The high refractive index layer and the medium refractive index layer are preferably formed from a curable composition containing high refractive inorganic fine particles and a binder. As the high refractive index inorganic fine particles that can be used here, high refractive index inorganic fine particles that can be contained to increase the refractive index of the hard coat layer 122 can be used. As the high refractive index inorganic fine particles, for example, particles of inorganic compounds such as silica particles and TiO 2 particles; resin particles such as acrylic particles, crosslinked acrylic particles, polystyrene particles, crosslinked styrene particles, melamine resin particles, and benzoguanamine resin particles are preferable. Can be mentioned.
 高屈折率層及び中屈折率層は、分散媒体中に無機粒子を分散した分散液に、好ましくは、さらにマトリックス形成に必要なバインダー前駆体(例えば、後述する電離放射線硬化性の多官能モノマーや多官能オリゴマー等)、光重合開始剤等を加えて高屈折率層及び中屈折率層形成用の塗布組成物とし、例えば透明フイルム上に高屈折率層及び中屈折率層形成用の塗布組成物を塗布して、電離放射線硬化性化合物(例えば、多官能モノマーや多官能オリゴマー等)の架橋反応又は重合反応により硬化させて形成することが好ましい。 The high refractive index layer and the medium refractive index layer are preferably formed in a dispersion liquid in which inorganic particles are dispersed in a dispersion medium, preferably a binder precursor necessary for matrix formation (for example, an ionizing radiation curable polyfunctional monomer or Polyfunctional oligomer, etc.), a photopolymerization initiator, etc. are added to form a coating composition for forming a high refractive index layer and a medium refractive index layer. For example, a coating composition for forming a high refractive index layer and a medium refractive index layer on a transparent film It is preferable to form the product by applying a product and curing it by a crosslinking reaction or a polymerization reaction of an ionizing radiation curable compound (for example, a polyfunctional monomer or a polyfunctional oligomer).
 さらに、高屈折率層及び中屈折率層のバインダーを層の塗布と同時又は塗布後に、分散剤と架橋反応又は重合反応させることが好ましい。
 このようにして作製した高屈折率層及び中屈折率層のバインダーは、例えば、上述した好ましい分散剤と電離放射線硬化性の多官能モノマーや多官能オリゴマーとが、架橋又は重合反応し、バインダーに分散剤のアニオン性基が取り込まれた形となる。さらに高屈折率層及び中屈折率層のバインダーは、アニオン性基が無機粒子の分散状態を維持する機能を有し、架橋又は重合構造がバインダーに皮膜形成能を付与して、無機粒子を含有する高屈折率層及び中屈折率層の物理強度、耐薬品性、耐候性を改良する。
Furthermore, it is preferable to cause the binder of the high refractive index layer and the medium refractive index layer to undergo a crosslinking reaction or a polymerization reaction with the dispersant simultaneously with or after the coating of the layer.
The binder of the high refractive index layer and the medium refractive index layer produced in this way is, for example, a preferable dispersant described above and an ionizing radiation-curable polyfunctional monomer or polyfunctional oligomer cross-linked or polymerized to form a binder. It becomes a form in which the anionic group of the dispersant is incorporated. Furthermore, the binder of the high refractive index layer and the medium refractive index layer has a function in which the anionic group maintains the dispersion state of the inorganic particles, and the crosslinked or polymerized structure imparts a film forming ability to the binder and contains inorganic particles. To improve the physical strength, chemical resistance and weather resistance of the high refractive index layer and medium refractive index layer.
 高屈折率層のバインダーは、該高屈折率層の塗布組成物の固形分量に対して、5~80質量%添加する。
 高屈折率層における無機粒子の含有量は、高屈折率層の質量に対し10~90質量%であることが好ましく、より好ましくは15~80質量%、特に好ましくは15~75質量%である。無機粒子は高屈折率層内で2種類以上を併用してもよい。
 高屈折率層の上に低屈折率層を有する場合、高屈折率層の屈折率は透明フイルム130の屈折率より高いことが好ましい。
 高屈折率層を光学干渉層として用いるときの膜厚は、30~200nmが好ましく、より好ましくは50~170nm、特に好ましくは60~150nmである。
 高屈折率層及び中屈折率層のヘイズは、低いほど好ましい。5%以下であることが好ましく、さらに好ましくは3%以下、特に好ましくは1%以下である。
The binder of the high refractive index layer is added in an amount of 5 to 80% by mass with respect to the solid content of the coating composition of the high refractive index layer.
The content of the inorganic particles in the high refractive index layer is preferably 10 to 90% by mass, more preferably 15 to 80% by mass, and particularly preferably 15 to 75% by mass with respect to the mass of the high refractive index layer. . Two or more kinds of inorganic particles may be used in combination in the high refractive index layer.
When the low refractive index layer is provided on the high refractive index layer, the refractive index of the high refractive index layer is preferably higher than the refractive index of the transparent film 130.
The film thickness when the high refractive index layer is used as the optical interference layer is preferably 30 to 200 nm, more preferably 50 to 170 nm, and particularly preferably 60 to 150 nm.
The haze of the high refractive index layer and the medium refractive index layer is preferably as low as possible. It is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.
 低屈折率層を設けた反射防止フイルム126の好ましい積分反射率は、3.0%以下が好ましく、さらに好ましくは2.0%以下であり、最も好ましくは1.5%以下0.3%以上である。
 また、防汚性向上の観点から、低屈折率層表面の表面自由エネルギーを下げることが好ましい。具体的には、含フッ素化合物やポリシロキサン構造を有する化合物を低屈折率層に使用することが好ましい。また、低屈折率層の上に下記の化合物を含む防汚層を低屈折率層とは別に設けてもよい。
 ポリシロキサン構造を有する添加剤としては、反応性基含有ポリシロキサン{例えば“KF-100T”、“X-22-169AS”、“KF-102”、“X-22-3701IE”、“X-22-164B”、“X-22-5002”、“X-22-173B”、“X-22-174D”、“X-22-167B”、“X-22-161AS”(商品名)、以上信越化学工業(株)製;“AK-5”、“AK-30”、“AK-32”(商品名)、以上東亜合成(株)製;「サイラプレーンFM0725」、「サイラプレーンFM0721」(商品名)、以上チッソ(株)製等}を添加するのも好ましい。また、特開2003-112383号公報の表2、表3に記載のシリコーン系化合物も好ましく使用できる。これらのポリシロキサンは低屈折率層全固形分の0.1~10質量%の範囲で添加されることが好ましく、特に好ましくは1~5質量%の場合である。
The preferable integrated reflectance of the antireflection film 126 provided with the low refractive index layer is preferably 3.0% or less, more preferably 2.0% or less, and most preferably 1.5% or less 0.3% or more. It is.
From the viewpoint of improving antifouling properties, it is preferable to reduce the surface free energy on the surface of the low refractive index layer. Specifically, it is preferable to use a fluorine-containing compound or a compound having a polysiloxane structure for the low refractive index layer. Further, an antifouling layer containing the following compound may be provided on the low refractive index layer separately from the low refractive index layer.
Examples of the additive having a polysiloxane structure include reactive group-containing polysiloxanes {for example, “KF-100T”, “X-22-169AS”, “KF-102”, “X-22-3701IE”, “X-22” -164B "," X-22-5002 "," X-22-173B "," X-22-174D "," X-22-167B "," X-22-161AS "(product name), Shin-Etsu “AK-5”, “AK-30”, “AK-32” (trade name), manufactured by Toa Gosei Co., Ltd .; “Silaplane FM0725”, “Silaplane FM0721” (product) Name), manufactured by Chisso Co., Ltd.}. In addition, silicone compounds described in Tables 2 and 3 of JP-A-2003-112383 can also be preferably used. These polysiloxanes are preferably added in the range of 0.1 to 10% by mass of the total solid content of the low refractive index layer, particularly preferably 1 to 5% by mass.
[規則91に基づく訂正 14.06.2011] 
[反射防止フイルム126の作製方法]
 反射防止フイルム126は、以下の塗布方式で形成することができるが、これらに制限されるものではない。
(塗布の準備作業)
 先ず、ハードコート層122や反射防止層124等の各層を形成するための成分を含有した塗布液が調製される。通常、塗布液は有機溶媒系が主であるので含水量を2%以下に抑制すると共に、密閉して溶媒の揮発量を抑制することが必要である。用いる有機溶媒は各層に用いられる材料により選択される。塗布液の均一性を得るために適宜、攪拌機や分散機が使用される。
 調製された塗布液は、塗布故障を発生させないために塗布前に濾過されることが望ましい。濾過のフィルタは、塗布液中の成分が除去されない範囲でできるだけ孔径の小さいものを使うことが好ましく、濾過圧力も1.5MPa以下で適宜選択される。濾過した塗布液は、塗布直前に超音波分散して、脱泡、分散物の分散保持することが好ましい。
 透明フイルム130は、塗布前に、ベース変形の矯正のための加熱処理、又は、塗工性改良や塗設層との接着性改良のための表面処理を施してもよい。表面処理の具体的方法としては、コロナ放電処理、グロー放電処理、火炎処理、酸処理、アルカリ処理又は紫外線照射処理が挙げられる。また、特開平7-333433号公報に記載のように、下塗り層を設けることも好ましく利用される。
 さらに塗布の前工程として、除塵工程を設けることが好ましく、それに用いられる除塵方法としては、特開2010-32795号公報の段落[0119]に記載の方法を用いることができる。また、このような除塵工程を行う前に、透明フイルム130上の静電気を除電しておくことは、除塵効率を上げ、ゴミの付着を抑える点で特に好ましい。このような除電方法としては、特開2010-32795号公報の段落[0120]に記載の方法を用いることができる。さらに上記公報の段落[0121]及び[0123]記載の方法により、透明フイルム130の平面性の確保、接着性の改良をしてもよい。
[Correction based on Rule 91 14.06.2011]
[Method for Producing Antireflection Film 126]
The antireflection film 126 can be formed by the following coating method, but is not limited thereto.
(Preparation work for application)
First, a coating solution containing components for forming each layer such as the hard coat layer 122 and the antireflection layer 124 is prepared. Usually, since the coating liquid is mainly an organic solvent system, it is necessary to suppress the water content to 2% or less, and to seal it to suppress the volatilization amount of the solvent. The organic solvent to be used is selected according to the material used for each layer. In order to obtain the uniformity of the coating solution, a stirrer or a disperser is appropriately used.
The prepared coating solution is preferably filtered before coating so as not to cause a coating failure. It is preferable to use a filter having a pore diameter as small as possible within a range in which the components in the coating solution are not removed, and the filtration pressure is appropriately selected at 1.5 MPa or less. The filtered coating solution is preferably ultrasonically dispersed immediately before coating to defoam and retain the dispersion.
The transparent film 130 may be subjected to a heat treatment for correcting the base deformation or a surface treatment for improving the coating property and the adhesiveness with the coating layer before coating. Specific methods for the surface treatment include corona discharge treatment, glow discharge treatment, flame treatment, acid treatment, alkali treatment, and ultraviolet irradiation treatment. It is also preferable to provide an undercoat layer as described in JP-A-7-333433.
Further, it is preferable to provide a dust removing step as a pre-application step, and as the dust removing method used therefor, the method described in paragraph [0119] of JP 2010-32795 A can be used. In addition, it is particularly preferable to remove static electricity from the transparent film 130 before performing such a dust removal step in terms of increasing dust removal efficiency and suppressing dust adhesion. As such a static elimination method, the method described in paragraph [0120] of JP 2010-32795 A can be used. Furthermore, the flatness of the transparent film 130 may be secured and the adhesiveness may be improved by the method described in paragraphs [0121] and [0123] of the above publication.
(塗布工程)
 反射防止フイルム126の各層は以下の塗布方法により形成することができるが、この方法に制限されない。ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(ダイコート法)(米国特許第2681294号明細書、国際公開第05/123274号パンフレット参照)、マイクログラビアコート法等の公知の方法が用いられ、その中でもマイクログラビアコート法、ダイコート法が好ましい。マイクログラビアコート法については、特開2010-32795号公報の段落[0125]及び[0126]に、ダイコート法については、上記公報の段落[0127]及び[0128]に記載されており、本実施の形態においてもこれらの方法を用いることができる。ダイコート法を用い、20m/分以上の速度で塗布することが生産性の点で好ましい。
(Coating process)
Each layer of the antireflection film 126 can be formed by the following coating method, but is not limited to this method. Dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar coating method, gravure coating method and extrusion coating method (die coating method) (US Pat. No. 2,681,294, International Publication No. 05/123274) A known method such as a microgravure coating method is used, and among these, a microgravure coating method and a die coating method are preferable. The micro gravure coating method is described in paragraphs [0125] and [0126] of JP 2010-32795 A, and the die coating method is described in paragraphs [0127] and [0128] of the above publication. These methods can also be used in the form. It is preferable in terms of productivity to apply at a speed of 20 m / min or more by using a die coating method.
(乾燥工程)
 反射防止フイルム126は、透明フイルム130上に直接又は他の層を介して塗布された後、溶媒を乾燥するために加熱されたゾーンにウェブで搬送されることが好ましい。
 溶媒を乾燥する方法としては、各種の知見を利用することができる。具体的な知見としては、特開2001-286817号公報、同2001-314798号公報、同2003-126768号公報、同2003-315505号公報、同2004-34002号公報等の記載技術が挙げられる。
 乾燥ゾーンの温度条件については特開2010-32795号公報の段落[0130]に、乾燥風の条件については同公報の段落[0131]に記載されているそれぞれの条件を用いることができる。
(Drying process)
The antireflective film 126 is preferably applied on the transparent film 130 directly or through another layer and then conveyed by a web to a heated zone to dry the solvent.
Various knowledges can be used as a method for drying the solvent. Specific knowledge includes the description techniques described in JP-A Nos. 2001-286817, 2001-314798, 2003-126768, 2003-315505, and 2004-34002.
The conditions described in paragraph [0130] of JP 2010-32795 A can be used for the temperature condition of the drying zone, and the conditions described in paragraph [0131] of the same publication can be used for the condition of the drying air.
(硬化工程)
 反射防止フイルム126は、溶媒の乾燥の後又は乾燥の後期に、ウェブとして電離放射線及び/又は熱により各塗膜を硬化させるゾーンを通過させ、塗膜を硬化することができる。上述の電離放射線は特に制限されるものではなく、皮膜を形成する硬化性組成物の種類に応じて、紫外線、電子線、近紫外線、可視光、近赤外線、赤外線、X線等から適宜選択することができるが、紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが容易に得られるという点で紫外線が好ましい。
 紫外線硬化性化合物を光重合させる紫外線の光源については特開2010-32795号公報の段落[0133]に記載の光源を用いることができ、電子線については同公報の段落[0134]に記載の電子線を用いることができる。また、照射条件、照射光量、照射時間については同公報の段落[0135]及び[0138]に記載の条件を用いることができる。さらに、照射前後のフイルムの膜面温度、酸素濃度、酸素濃度の制御方法については、同公報の段落[0136]、[0137]、[0139]~[0144]に記載の条件、方法を用いることができる。
(Curing process)
The antireflection film 126 can pass through a zone for curing each coating film by ionizing radiation and / or heat as a web after the solvent is dried or at a later stage of drying to cure the coating film. The above-mentioned ionizing radiation is not particularly limited, and is appropriately selected from ultraviolet rays, electron beams, near-ultraviolet rays, visible light, near-infrared rays, infrared rays, X-rays and the like according to the type of curable composition forming the film. However, ultraviolet rays and electron beams are preferred, and ultraviolet rays are particularly preferred because they are easy to handle and high energy can be easily obtained.
As the ultraviolet light source for photopolymerizing the ultraviolet curable compound, the light source described in paragraph [0133] of JP-A-2010-32795 can be used, and the electron beam described in paragraph [0134] of the same publication is used. Lines can be used. The conditions described in paragraphs [0135] and [0138] of the same publication can be used for the irradiation conditions, irradiation light quantity, and irradiation time. Further, for the film surface temperature, oxygen concentration, and oxygen concentration control method before and after irradiation, use the conditions and methods described in paragraphs [0136], [0137], and [0139] to [0144] of the same publication. Can do.
(連続製造のためのハンドリング)
 反射防止フイルム126を連続的に製造するためには、ロール状の透明フイルム130を連続的に送り出す工程、塗布液を塗布・乾燥する工程、塗膜を硬化する工程、硬化した層を有する該透明フイルム130を巻き取る工程が行われる。
 上記工程は、各層の形成毎に行ってもよいし、塗布部-乾燥室-硬化部を複数設けて(いわゆるタンデム方式)、各層の形成を連続的に行うことも可能である。
 反射防止フイルム126を作製するためには、上記したように塗布液の精密濾過操作と同時に、塗布部における塗布工程及び乾燥室で行われる乾燥工程が高い清浄度の空気雰囲気下で行われ、且つ、塗布が行われる前に、透明フイルム130上のゴミ、ほこりが十分に除かれていることが好ましい。塗布工程及び乾燥工程の空気清浄度は、米国連邦規格209Eにおける空気清浄度の規格に基づき、クラス10(0.5μm以上の粒子が353個/m以下)以上であることが望ましく、さらに好ましくはクラス1(0.5μm以上の粒子が35.5個/m以下)以上であることが望ましい。また、空気清浄度は、塗布-乾燥工程以外の送り出し、巻き取り部等においても高いことがより好ましい。
(Handling for continuous production)
In order to continuously manufacture the antireflection film 126, a step of continuously feeding a roll-shaped transparent film 130, a step of applying and drying a coating liquid, a step of curing a coating film, and the transparent having a cured layer A step of winding the film 130 is performed.
The above-described steps may be performed for each layer formation, or a plurality of coating units-drying chambers-curing units may be provided (so-called tandem method) to form each layer continuously.
In order to produce the antireflection film 126, as described above, simultaneously with the microfiltration operation of the coating liquid, the coating process in the coating unit and the drying process performed in the drying chamber are performed in a high clean air atmosphere, and It is preferable that dust and dust on the transparent film 130 are sufficiently removed before the application. Air cleanliness in the coating and drying steps, based on the air cleanliness in US Federal Standard 209E standards, it is desirable class 10 is (0.5 [mu] m or more of the particles 353 / m 3 or less) or more, more preferably Is preferably class 1 (particles of 0.5 μm or more are 35.5 particles / m 3 or less) or more. Further, it is more preferable that the air cleanliness is high also in the feeding and winding parts other than the coating-drying process.
 画像の鮮明性を維持する目的では、反射防止フイルム126はその表面形状をできるだけ平滑に調整することに加えて、透過画像鮮明度を調整することが好ましい。反射防止フイルム126の透過画像鮮明度は60%以上が好ましい。透過画像鮮明度は、一般にフイルムを透過して映す画像の呆け具合を示す指標であり、この値が大きい程、フイルムを通して見る画像が鮮明で良好であることを示す。透過画像鮮明度は好ましくは70%以上であり、さらに好ましくは80%以上である。
 反射防止フイルム126は、表示装置108の視認側の表面フイルムとして用いることができる。表示装置108としては、各種の液晶表示装置、プラズマディスプレイ、有機EL、タッチパネル等、各種の表示装置に適用できる。反射防止フイルム126を用いる表示装置108の最表面の性質によって、反射防止フイルム126における透明フイルム130の塗布層を有さない側の表面(以下、背面と記す場合がある)に接着剤層を設けたり、透明フイルム130の前記背面をケン化したりしてタッチパネル100に張り合わせることができる。
 透明フイルム130の前記背面をケン化する方法については、特開2010-32795号公報の段落[0149]~[0160]に記載の技術を用いることができる。
In order to maintain the sharpness of the image, the antireflection film 126 preferably adjusts the transmitted image definition in addition to adjusting the surface shape as smoothly as possible. The transmitted image definition of the antireflection film 126 is preferably 60% or more. The transmitted image definition is generally an index indicating the degree of blurring of an image reflected through a film, and the larger this value, the clearer and better the image viewed through the film. The transmitted image definition is preferably 70% or more, and more preferably 80% or more.
The antireflection film 126 can be used as a surface film on the viewing side of the display device 108. The display device 108 can be applied to various display devices such as various liquid crystal display devices, plasma displays, organic EL, and touch panels. Depending on the properties of the outermost surface of the display device 108 using the antireflection film 126, an adhesive layer is provided on the surface of the antireflection film 126 that does not have the coating layer of the transparent film 130 (hereinafter sometimes referred to as the back surface). Alternatively, the back surface of the transparent film 130 can be saponified and attached to the touch panel 100.
As a method for saponifying the back surface of the transparent film 130, the techniques described in paragraphs [0149] to [0160] of JP 2010-32795 A can be used.
 なお、本発明は、下記表1及び表2に記載の公開公報及び国際公開パンフレットの技術と適宜組合わせて使用することができる。「特開」、「号公報」、「号パンフレット」等の表記は省略する。 In addition, this invention can be used in combination with the technique of the publication gazette and international publication pamphlet which are described in following Table 1 and Table 2. FIG. Notations such as “JP,” “Gazette” and “No. Pamphlet” are omitted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以下に、本発明の実施例を挙げて本発明をさらに具体的に説明する。なお、以下の実施例に示される材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 比較例1及び2、実施例1~6に係る導電シートについて、表面抵抗及び透過率を測定し、モアレ及び視認性を評価した。比較例1及び2、実施例1~6の内訳並びに測定結果及び評価結果を表3に示す。
Hereinafter, the present invention will be described more specifically with reference to examples of the present invention. In addition, the material, usage-amount, ratio, processing content, processing procedure, etc. which are shown in the following Examples can be changed suitably unless it deviates from the meaning of this invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
For the conductive sheets according to Comparative Examples 1 and 2 and Examples 1 to 6, the surface resistance and transmittance were measured, and the moire and visibility were evaluated. Table 3 shows the breakdown of Comparative Examples 1 and 2 and Examples 1 to 6, the measurement results, and the evaluation results.
<実施例1~6、比較例1、2>
(ハロゲン化銀感光材料)
 水媒体中のAg150gに対してゼラチン10.0gを含む、球相当径平均0.1μmの沃臭塩化銀粒子(I=0.2モル%、Br=40モル%)を含有する乳剤を調製した。
 また、この乳剤中にはKRhBr及びKIrClを濃度が10-7(モル/モル銀)になるように添加し、臭化銀粒子にRhイオンとIrイオンをドープした。この乳剤にNaPdClを添加し、さらに塩化金酸とチオ硫酸ナトリウムを用いて金硫黄増感を行った後、ゼラチン硬膜剤と共に、銀の塗布量が10g/mとなるように第1透明基体12A及び第2透明基体12B(ここでは、共にポリエチレンテレフタレート(PET))上に塗布した。この際、Ag/ゼラチン体積比は2/1とした。
 幅30cmのPET支持体に25cmの幅で20m分塗布を行ない、塗布の中央部24cmを残すように両端を3cmずつ切り落としてロール状のハロゲン化銀感光材料を得た。
<Examples 1 to 6, Comparative Examples 1 and 2>
(Silver halide photosensitive material)
An emulsion containing 10.0 g of gelatin per 150 g of Ag in an aqueous medium and containing silver iodobromochloride grains having an average equivalent sphere diameter of 0.1 μm (I = 0.2 mol%, Br = 40 mol%) was prepared. .
In this emulsion, K 3 Rh 2 Br 9 and K 2 IrCl 6 were added so as to have a concentration of 10 −7 (mol / mol silver), and silver bromide grains were doped with Rh ions and Ir ions. . After adding Na 2 PdCl 4 to this emulsion and further performing gold-sulfur sensitization using chloroauric acid and sodium thiosulfate, together with the gelatin hardener, the coating amount of silver was 10 g / m 2. The coating was applied on the first transparent substrate 12A and the second transparent substrate 12B (both here are polyethylene terephthalate (PET)). At this time, the volume ratio of Ag / gelatin was 2/1.
Coating was performed for 20 m with a width of 25 cm on a PET support having a width of 30 cm, and both ends were cut off by 3 cm so as to leave a central portion of the coating, thereby obtaining a roll-shaped silver halide photosensitive material.
(露光)
 露光のパターンは、第1導電シート10Aについては図1及び図4に示すパターンで、第2導電シート10Bについては図4及び図6に示すパターンで、A4サイズ(210mm×297mm)の第1透明基体12A及び第2透明基体12Bに行った。露光は上記パターンのフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した。
(exposure)
The exposure pattern is the pattern shown in FIGS. 1 and 4 for the first conductive sheet 10A, and the pattern shown in FIGS. 4 and 6 for the second conductive sheet 10B, and is a first transparent A4 size (210 mm × 297 mm). The test was performed on the substrate 12A and the second transparent substrate 12B. The exposure was performed using parallel light using a high-pressure mercury lamp as a light source through the photomask having the above pattern.
(現像処理)
・現像液1L処方
   ハイドロキノン            20 g
   亜硫酸ナトリウム           50 g
   炭酸カリウム             40 g
   エチレンジアミン・四酢酸        2 g
   臭化カリウム              3 g
   ポリエチレングリコール2000     1 g
   水酸化カリウム             4 g
   pH              10.3に調整
・定着液1L処方
   チオ硫酸アンモニウム液(75%)  300 ml
   亜硫酸アンモニウム・1水塩      25 g
   1,3-ジアミノプロパン・四酢酸    8 g
   酢酸                  5 g
   アンモニア水(27%)         1 g
   pH               6.2に調整
 上記処理剤を用いて露光済み感材を、富士フイルム社製自動現像機 FG-710PTSを用いて処理条件:現像35℃ 30秒、定着34℃ 23秒、水洗 流水(5L/分)の20秒処理で行った。
(Development processing)
・ Developer 1L formulation Hydroquinone 20 g
Sodium sulfite 50 g
Potassium carbonate 40 g
Ethylenediamine tetraacetic acid 2 g
Potassium bromide 3 g
Polyethylene glycol 2000 1 g
Potassium hydroxide 4 g
Adjusted to pH 10.3 and formulated 1L fixer ammonium thiosulfate solution (75%) 300 ml
Ammonium sulfite monohydrate 25 g
1,3-diaminopropane tetraacetic acid 8 g
Acetic acid 5 g
Ammonia water (27%) 1 g
Adjustment to pH 6.2 Photosensitive material exposed using the above processing agent is processed using an automatic processor FG-710PTS manufactured by Fujifilm Corporation: Development 35 ° C. for 30 seconds, Fixing 34 ° C. for 23 seconds, Washing water (5 L / Min) for 20 seconds.
(実施例1)
 作製した第1導電シート10A及び第2導電シート10Bの導電部(第1導電パターン22A、第2導電パターン22B)の線幅は1μm、小格子18の一辺の長さは50μm、大格子(第1大格子14A及び第2大格子14B)の一辺の長さは3mmであった。
(実施例2)
 導電部の線幅を5μmとし、小格子18の一辺の長さを50μmとした点以外は、実施例1と同様にして、実施例2に係る第1導電シート及び第2導電シートを作製した。
(実施例3)
 導電部の線幅を9μmとし、小格子18の一辺の長さを150μmとし、大格子の一辺の長さを5mmとした点以外は、実施例1と同様にして、実施例3に係る第1導電シート及び第2導電シートを作製した。
(実施例4)
 導電部の線幅を10μmとし、小格子18の一辺の長さを300μmとし、大格子の一辺の長さを6mmとした点以外は、実施例1と同様にして、実施例4に係る第1導電シート及び第2導電シートを作製した。
(実施例5)
 導電部の線幅を15μmとし、小格子18の一辺の長さを400μmとし、大格子の一辺の長さを10mmとした点以外は、実施例1と同様にして、実施例5に係る第1導電シート及び第2導電シートを作製した。
(実施例6)
 導電部の線幅を20μmとし、小格子18の一辺の長さを500μmとし、大格子の一辺の長さを10mmとした点以外は、実施例1と同様にして、実施例6に係る第1導電シート及び第2導電シートを作製した。
(比較例1)
 導電部の線幅を0.5μmとし、小格子18の一辺の長さを40μmとし、大格子の一辺の長さを3mmとした点以外は、実施例1と同様にして、比較例1に係る第1導電シート及び第2導電シートを作製した。
(比較例2)
 導電部の線幅を25μmとし、小格子18の一辺の長さを500μmとし、大格子の一辺の長さを10mmとした点以外は、比較例1と同様にして、比較例3に係る第1導電シート及び第2導電シートを作製した。
Example 1
The line widths of the conductive portions (the first conductive pattern 22A and the second conductive pattern 22B) of the manufactured first conductive sheet 10A and second conductive sheet 10B are 1 μm, the length of one side of the small lattice 18 is 50 μm, and the large lattice (first The length of one side of the first large lattice 14A and the second large lattice 14B) was 3 mm.
(Example 2)
A first conductive sheet and a second conductive sheet according to Example 2 were produced in the same manner as in Example 1 except that the line width of the conductive part was 5 μm and the length of one side of the small lattice 18 was 50 μm. .
(Example 3)
A third embodiment according to the third embodiment is the same as the first embodiment except that the line width of the conductive portion is 9 μm, the length of one side of the small lattice 18 is 150 μm, and the length of one side of the large lattice is 5 mm. 1 conductive sheet and 2nd conductive sheet were produced.
Example 4
The fourth embodiment according to the fourth embodiment is similar to the first embodiment except that the line width of the conductive portion is 10 μm, the length of one side of the small lattice 18 is 300 μm, and the length of one side of the large lattice is 6 mm. 1 conductive sheet and 2nd conductive sheet were produced.
(Example 5)
A fifth embodiment according to the fifth embodiment is similar to the first embodiment except that the line width of the conductive portion is 15 μm, the length of one side of the small lattice 18 is 400 μm, and the length of one side of the large lattice is 10 mm. 1 conductive sheet and 2nd conductive sheet were produced.
(Example 6)
Except for the point that the line width of the conductive portion is 20 μm, the length of one side of the small lattice 18 is 500 μm, and the length of one side of the large lattice is 10 mm, 1 conductive sheet and 2nd conductive sheet were produced.
(Comparative Example 1)
Comparative Example 1 is similar to Example 1 except that the line width of the conductive portion is 0.5 μm, the length of one side of the small lattice 18 is 40 μm, and the length of one side of the large lattice is 3 mm. The first conductive sheet and the second conductive sheet were produced.
(Comparative Example 2)
In the same manner as in Comparative Example 1, except that the line width of the conductive portion is 25 μm, the length of one side of the small lattice 18 is 500 μm, and the length of one side of the large lattice is 10 mm. 1 conductive sheet and 2nd conductive sheet were produced.
(表面抵抗測定)
 検出精度の良否を確認するために、第1導電シート10A及び第2導電シート10Bの表面抵抗率をダイアインスツルメンツ社製ロレスターGP(型番MCP-T610)直列4探針プローブ(ASP)にて任意の10箇所測定した値の平均値である。
(透過率の測定)
 透明性の良否を確認するために、第1導電シート10A及び第2導電シート10Bを分光光度計を用いて透過率を測定した。
(モアレの評価)
 比較例1及び2、実施例1~6について、第2導電シート10B上に第1導電シート10Aを積層して積層導電シートを作製し、その後、液晶表示装置の表示画面に積層導電シートを貼り付けてタッチパネルを構成した。その後、タッチパネルを回転盤に設置し、液晶表示装置を駆動して白色を表示させる。その状態で、回転盤をバイアス角-45°~+45°の間で回転し、モアレの目視観察・評価を行った。
 モアレの評価は、液晶表示装置の表示画面から観察距離1.5mで行い、モアレが顕在化しなかった場合を○、モアレが問題のないレベルでほんの少し見られた場合を△、モアレが顕在化した場合を×とした。
(視認性の評価)
 上述のモアレの評価に先立って、タッチパネルを回転盤に設置し、液晶表示装置を駆動して白色を表示させた際に、線太りや黒い斑点がないかどうか、また、タッチパネルの第1大格子14A及び第2大格子14Bの境界が目立つかどうかを肉眼で確認した。
(Surface resistance measurement)
In order to check the quality of detection accuracy, the surface resistivity of the first conductive sheet 10A and the second conductive sheet 10B is arbitrarily determined by a Lillestar GP (model number MCP-T610) series four-probe probe (ASP) manufactured by Dia Instruments. It is the average value of the values measured at 10 locations.
(Measurement of transmittance)
In order to confirm transparency, the transmittance of the first conductive sheet 10A and the second conductive sheet 10B was measured using a spectrophotometer.
(Evaluation of moire)
For Comparative Examples 1 and 2, and Examples 1 to 6, the first conductive sheet 10A was laminated on the second conductive sheet 10B to produce a laminated conductive sheet, and then the laminated conductive sheet was attached to the display screen of the liquid crystal display device. A touch panel was constructed. Then, a touch panel is installed in a turntable and a liquid crystal display device is driven to display white. In this state, the rotating disk was rotated between a bias angle of −45 ° and + 45 °, and the moire was visually observed and evaluated.
Moire is evaluated at an observation distance of 1.5 m from the display screen of the liquid crystal display device. If moire does not appear, ○, if moire is seen only slightly at a level where there is no problem, moiré becomes apparent. The case where it did is made x.
(Visibility evaluation)
Prior to the above moire evaluation, when a touch panel is installed on a turntable and the liquid crystal display device is driven to display white, whether there is a line thickening or black spots, and the first large lattice of the touch panel It was confirmed with the naked eye whether or not the boundary between 14A and the second large lattice 14B was noticeable.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、比較例1はモアレ及び視認性の評価は共に良好であったが、比較例1は表面抵抗が1キロオーム/sq.以上であり、導電性が低く、検出感度が不十分になるおそれがある。比較例2は、導電性及び透過率共に良好であったが、モアレが顕在化し、導電部自体が肉眼で認識しやすくなり、視認性が劣化した。
 これに対して、実施例1~6のうち、実施例1~5は、導電性、透過率、モアレ、視認性共に良好であった。実施例6はモアレの評価及び視認性の評価が実施例1~5よりも劣っているが、モアレが問題のないレベルでほんの少し見られる程度であり、表示装置の表示画像が見え難くなるということはなかった。
 なお、本発明に係る導電シート、導電シートの使用方法及び静電容量方式タッチパネルは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
From Table 3, Comparative Example 1 showed good evaluation of moire and visibility, but Comparative Example 1 had a surface resistance of 1 kilohm / sq. As described above, the conductivity is low, and the detection sensitivity may be insufficient. In Comparative Example 2, both conductivity and transmittance were good, but moire became obvious, the conductive part itself was easily recognized with the naked eye, and visibility was deteriorated.
On the other hand, among Examples 1 to 6, Examples 1 to 5 had good conductivity, transmittance, moire, and visibility. In Example 6, the evaluation of moire and the evaluation of visibility are inferior to those of Examples 1 to 5, but the moire is only slightly seen at a problem-free level, and the display image of the display device is difficult to see. It never happened.
Note that the conductive sheet, the method of using the conductive sheet, and the capacitive touch panel according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention. It is.

Claims (21)

  1.  基体(12A)と、
     前記基体(12A)上に形成された導電部(13A)とを有し、
     前記導電部(13A)は、金属細線による2以上の導電性の大格子(14A)と、隣接する前記大格子(14A)間を電気的に接続する金属細線による接続部(16A)とを有し、
     各前記大格子(14A)は、それぞれ2以上の小格子(18)が組み合わされて構成され、
     前記大格子(14A)の組み合わせによって回路が構成され、
     前記接続部(16A)の幅Wcは、前記小格子(18)のピッチをPsとしたとき、
       Wc>Ps/√2
    を満足することを特徴とする導電シート。
    A substrate (12A);
    A conductive portion (13A) formed on the base (12A);
    The conductive portion (13A) has two or more conductive large lattices (14A) made of fine metal wires and a connection portion (16A) made of fine metal wires that electrically connects the adjacent large lattices (14A). And
    Each of the large lattices (14A) is configured by combining two or more small lattices (18),
    A circuit is constituted by a combination of the large lattice (14A),
    The width (Wc) of the connecting portion (16A) is set so that the pitch of the small lattice (18) is Ps.
    Wc> Ps / √2
    A conductive sheet characterized by satisfying
  2.  請求項1記載の導電シートにおいて、
     2以上の前記大格子(14A)が前記接続部(16A)を介して第1方向に配列されて1つの導電パターン(22A)が構成され、
     2以上の前記導電パターン(22A)が前記第1方向と直交する第2方向に配列され、
     隣接する前記導電パターン(22A)間は、前記小格子(18)が存在しない電気的に絶縁された絶縁部(24A)が配され、
     前記導電パターン(22A)、前記絶縁部(24A)の配列によって、前記回路が構成されていることを特徴とする導電シート。
    The conductive sheet according to claim 1,
    Two or more large lattices (14A) are arranged in the first direction via the connection portions (16A) to form one conductive pattern (22A),
    Two or more conductive patterns (22A) are arranged in a second direction orthogonal to the first direction,
    Between the adjacent conductive patterns (22A), an electrically insulated insulating part (24A) in which the small lattice (18) does not exist is disposed,
    The conductive sheet is characterized in that the circuit is constituted by the arrangement of the conductive pattern (22A) and the insulating portion (24A).
  3.  請求項1記載の導電シートにおいて、
     前記大格子(14A)の一辺の長さが3~10mmであることを特徴とする導電シート。
    The conductive sheet according to claim 1,
    A conductive sheet, wherein a length of one side of the large lattice (14A) is 3 to 10 mm.
  4.  請求項1記載の導電シートにおいて、
     前記小格子(18)の一辺の長さが30~500μmであることを特徴とする導電シート。
    The conductive sheet according to claim 1,
    A conductive sheet characterized in that the length of one side of the small lattice (18) is 30 to 500 μm.
  5.  請求項1記載の導電シートにおいて、
     前記小格子(18)の互いに対向する辺の間隔が30~500μmであることを特徴とする導電シート。
    The conductive sheet according to claim 1,
    A conductive sheet characterized in that the interval between the mutually opposing sides of the small lattice (18) is 30 to 500 μm.
  6.  請求項1記載の導電シートにおいて、
     前記金属細線の線幅が10μm以下であることを特徴とする導電シート。
    The conductive sheet according to claim 1,
    The conductive sheet according to claim 1, wherein the thin metal wire has a line width of 10 μm or less.
  7. [規則91に基づく訂正 14.06.2011] 
     基体(12A)と、
     前記基体(12A)の一方の主面に形成された第1導電部(13A)と、
     前記基体(12A)の他方の主面に形成された第2導電部(13B)とを有し、
     前記第1導電部(13A)は、金属細線による2以上の導電性の第1大格子(14A)と、隣接する前記第1大格子(14A)間を電気的に接続する金属細線による第1接続部(16A)とを有し、
     前記第2導電部(13B)は、金属細線による2以上の導電性の第2大格子(14B)と、隣接する前記第2大格子(14B)間を電気的に接続する金属細線による第2接続部(16B)とを有し、
     各前記第1大格子(14A)及び各前記第2大格子(14B)は、それぞれ2以上の小格子(18)が組み合わされて構成され、
     前記第1大格子(14A)が前記第1接続部(16A)を介して第1方向に配列されて1つの第1導電パターン(22A)が構成され、
     前記第1大格子(14A)と前記第2大格子(14B)の組み合わせによって回路が構成され、
     前記第1接続部(16A)の幅Wc1及び前記第2接続部(16B)の幅Wc2は、前記小格子(18)のピッチをPsとしたとき、
       Wc1>Ps/√2
       Wc2>Ps/√2
    を満足することを特徴とする導電シート。
    [Correction based on Rule 91 14.06.2011]
    A substrate (12A);
    A first conductive portion (13A) formed on one main surface of the base body (12A);
    A second conductive portion (13B) formed on the other main surface of the base (12A),
    The first conductive portion (13A) includes a first metal wire that electrically connects two or more conductive first large lattices (14A) made of fine metal wires and the adjacent first large lattice (14A). A connecting portion (16A),
    The second conductive portion (13B) includes a second metal fine wire that electrically connects two or more conductive second large lattices (14B) made of fine metal wires and the adjacent second large lattice (14B). A connecting portion (16B),
    Each of the first large lattice (14A) and each of the second large lattice (14B) is configured by combining two or more small lattices (18),
    The first large lattice (14A) is arranged in the first direction via the first connection part (16A) to constitute one first conductive pattern (22A),
    A circuit is constituted by a combination of the first large lattice (14A) and the second large lattice (14B),
    When the width Wc1 of the first connection part (16A) and the width Wc2 of the second connection part (16B) are Ps, the pitch of the small lattice (18) is
    Wc1> Ps / √2
    Wc2> Ps / √2
    A conductive sheet characterized by satisfying
  8.  請求項7記載の導電シートにおいて、
     前記第1大格子(14A)が前記第1接続部(16A)を介して第1方向に配列されて金属細線による1つの第1導電パターン(22A)が構成され、
     2以上の前記第2大格子(14B)が前記第2接続部(16B)を介して前記第1方向と直交する第2方向に配列されて金属細線による1つの第2導電パターン(22B)が構成され、
     隣接する前記第1導電パターン(22A)間は、前記小格子(18)が存在しない電気的に絶縁された第1絶縁部(24A)が配され、
     隣接する前記第2導電パターン(22B)間は、前記小格子(18)が存在しない電気的に絶縁された第2絶縁部(24B)が配され、
     前記第1導電パターン(22A)、前記第2導電パターン(22B)、前記第1絶縁部(24A)、前記第2絶縁部(24B)の配列によって、前記回路が構成されていることを特徴とする導電シート。
    The conductive sheet according to claim 7,
    The first large lattice (14A) is arranged in the first direction via the first connection part (16A) to form one first conductive pattern (22A) by a thin metal wire,
    Two or more second large lattices (14B) are arranged in a second direction orthogonal to the first direction via the second connection portion (16B), and one second conductive pattern (22B) is formed of a thin metal wire. Configured,
    Between the adjacent first conductive patterns (22A), an electrically insulated first insulating portion (24A) in which the small lattice (18) does not exist is disposed,
    Between the adjacent second conductive patterns (22B), an electrically insulated second insulating portion (24B) in which the small lattice (18) does not exist is disposed,
    The circuit is configured by the arrangement of the first conductive pattern (22A), the second conductive pattern (22B), the first insulating portion (24A), and the second insulating portion (24B). Conductive sheet.
  9.  請求項7記載の導電シートにおいて、
     前記金属細線の線幅が10μm以下であることを特徴とする導電シート。
    The conductive sheet according to claim 7,
    The conductive sheet according to claim 1, wherein the thin metal wire has a line width of 10 μm or less.
  10.  請求項7記載の導電シートにおいて、
     前記第1大格子(14A)の辺部における直線部と前記第2大格子(14B)の辺部における直線部間の投影距離(Lf)が前記小格子(18)のサイズに基づいて設定されていることを特徴とする導電シート。
    The conductive sheet according to claim 7,
    The projection distance (Lf) between the straight line portion at the side of the first large lattice (14A) and the straight line portion at the side of the second large lattice (14B) is set based on the size of the small lattice (18). A conductive sheet characterized by comprising:
  11.  請求項10記載の導電シートにおいて、
     前記投影距離(Lf)は100~400μmであることを特徴とする導電シート。
    The conductive sheet according to claim 10,
    The conductive sheet having a projection distance (Lf) of 100 to 400 μm.
  12.  請求項7記載の導電シートにおいて、
     前記第1導電部(13A)は、各前記第1導電パターン(22A)の端部に接続された第1端子配線パターン(41a)と、前記基体(12A)の一方の主面の1つの辺の長さ方向中央部分に形成され、対応する前記第1端子配線パターン(41a)が接続された複数の第1端子(116a)とを有し、
     前記第2導電部(13B)は、各前記第2導電パターン(22B)の端部に接続された第2端子配線パターン(41b)と、前記基体(12A)の他方の主面の1つの辺の長さ方向中央部分に形成され、対応する前記第2端子配線パターン(41b)が接続された複数の第2端子(116b)とを有することを特徴とする導電シート。
    The conductive sheet according to claim 7,
    The first conductive portion (13A) includes a first terminal wiring pattern (41a) connected to an end of each first conductive pattern (22A) and one side of one main surface of the base body (12A). A plurality of first terminals (116a) to which the corresponding first terminal wiring patterns (41a) are connected.
    The second conductive portion (13B) includes a second terminal wiring pattern (41b) connected to an end of each second conductive pattern (22B) and one side of the other main surface of the base body (12A). And a plurality of second terminals (116b) to which the corresponding second terminal wiring patterns (41b) are connected.
  13.  請求項12記載の導電シートにおいて、
     上面から見たとき、複数の前記第1端子(116a)が配列された部分と、複数の前記第2端子(116b)が配列された部分とが隣接していることを特徴とする導電シート。
    The conductive sheet according to claim 12,
    When viewed from above, the conductive sheet is characterized in that a portion where the plurality of first terminals (116a) are arranged and a portion where the plurality of second terminals (116b) are arranged are adjacent to each other.
  14.  請求項12記載の導電シートにおいて、
     各前記第1導電パターン(22A)の端部と対応する前記第1端子配線パターン(41a)とがそれぞれ第1結線部(40a)を介して接続され、
     各前記第2導電パターン(22B)の端部と対応する前記第2端子配線パターン(41b)とがそれぞれ第2結線部(40b)を介して接続され、
     複数の前記第1結線部(40a)が前記第2方向に沿って直線状に配列され、
     複数の前記第2結線部(40b)が前記第1方向に沿って直線状に配列されていることを特徴とする導電シート。
    The conductive sheet according to claim 12,
    The end portions of the first conductive patterns (22A) and the corresponding first terminal wiring patterns (41a) are connected via the first connection portions (40a), respectively.
    The end portions of the second conductive patterns (22B) and the corresponding second terminal wiring patterns (41b) are connected via the second connection portions (40b), respectively.
    A plurality of the first connection portions (40a) are arranged linearly along the second direction,
    The conductive sheet, wherein the plurality of second connection parts (40b) are arranged linearly along the first direction.
  15.  請求項8記載の導電シートにおいて、
     前記第1絶縁部(24A)と前記第2絶縁部(24B)とが前記基体(12A)を間に挟んで対向され、
     前記第1絶縁部(24A)と前記第2絶縁部(24B)との対向部分を上面から見た形状が多角形状であることを特徴とする導電シート。
    The conductive sheet according to claim 8,
    The first insulating portion (24A) and the second insulating portion (24B) are opposed to each other with the base body (12A) interposed therebetween,
    The conductive sheet is characterized in that a shape of a facing portion of the first insulating portion (24A) and the second insulating portion (24B) as viewed from above is a polygonal shape.
  16.  請求項15記載の導電シートにおいて、
     前記多角形状が正方形状であることを特徴とする導電シート。
    The conductive sheet according to claim 15, wherein
    The conductive sheet is characterized in that the polygonal shape is a square shape.
  17.  請求項15記載の導電シートにおいて、
     前記多角形状がくさび形状であることを特徴とする導電シート。
    The conductive sheet according to claim 15, wherein
    The conductive sheet, wherein the polygonal shape is a wedge shape.
  18.  請求項1記載の導電シートにおいて、
     前記小格子(18)は多角形状であることを特徴とする導電シート。
    The conductive sheet according to claim 1,
    The conductive sheet, wherein the small lattice (18) has a polygonal shape.
  19.  請求項18記載の導電シートにおいて、
     前記小格子(18)は正方形状であることを特徴とする導電シート。
    The conductive sheet according to claim 18, wherein
    The conductive sheet, wherein the small lattice (18) is square.
  20.  金属細線による2以上の導電性の第1大格子(14A)と、隣接する前記第1大格子(14A)間を電気的に接続する金属細線による第1接続部(16A)とが形成され、各前記第1大格子(14A)は、それぞれ2以上の小格子(18)が組み合わされて構成され、前記第1接続部(16A)の幅Wc1が、前記小格子(18)のピッチをPsとしたとき、Wc1>Ps/√2を満足する第1導電シート(10A)と、
     金属細線による2以上の導電性の第2大格子(14B)と、隣接する前記第2大格子(14B)間を電気的に接続する金属細線による第2接続部(16B)とが形成され、各前記第2大格子(14B)は、それぞれ2以上の小格子(18)が組み合わされて構成され、前記第2接続部(16B)の幅Wc2が、前記小格子(18)のピッチをPsとしたとき、Wc2>Ps/√2を満足する第2導電シート(10B)とを使用する導電シートの使用方法であって、
     前記第1導電シート(10A)は、2以上の前記第1大格子(14A)が前記第1接続部(16A)を介して第1方向に配列されて1つの第1導電パターン(22A)が構成され、
     前記第2導電シート(10B)は、2以上の前記第2大格子(14B)が前記第2接続部(16B)を介して前記第1方向と直交する第2方向に配列されて1つの第2導電パターン(22B)が構成され、
     前記第1導電シート(10A)と前記第2導電シート(10B)とを組み合わせることで、前記第1導電シート(10A)の前記第1接続部(16A)と前記第2導電シート(10B)の前記第2接続部(16B)とが組み合わさって前記小格子(18)の配列を形成するように配置されることを特徴とする導電シートの使用方法。
    Two or more conductive first large lattices (14A) made of fine metal wires and first connection portions (16A) made of fine metal wires that electrically connect adjacent first large lattices (14A) are formed, Each of the first large lattices (14A) is configured by combining two or more small lattices (18), and the width Wc1 of the first connection portion (16A) is set to Ps to the pitch of the small lattices (18). The first conductive sheet (10A) satisfying Wc1> Ps / √2,
    Two or more conductive second large lattices (14B) made of fine metal wires and second connection portions (16B) made of fine metal wires that electrically connect the adjacent second large lattices (14B) are formed, Each of the second large lattices (14B) is configured by combining two or more small lattices (18), and the width Wc2 of the second connection portion (16B) is set to Ps to the pitch of the small lattices (18). When using the conductive sheet using the second conductive sheet (10B) that satisfies Wc2> Ps / √2,
    In the first conductive sheet (10A), two or more first large lattices (14A) are arranged in the first direction via the first connection portions (16A), and one first conductive pattern (22A) is formed. Configured,
    In the second conductive sheet (10B), two or more second large lattices (14B) are arranged in a second direction orthogonal to the first direction via the second connection portion (16B). 2 conductive patterns (22B) are formed,
    By combining the first conductive sheet (10A) and the second conductive sheet (10B), the first connection portion (16A) of the first conductive sheet (10A) and the second conductive sheet (10B). The method for using a conductive sheet, wherein the second connecting portion (16B) is combined with the second connecting portion (16B) to form an array of the small lattices (18).
  21.  請求項1記載の導電シートを有することを特徴とする静電容量方式タッチパネル。 A capacitive touch panel comprising the conductive sheet according to claim 1.
PCT/JP2011/051694 2010-01-28 2011-01-28 Conductive sheet, method for using conductive sheet, and capacitance type touch panel WO2011093421A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112012017874A BR112012017874A2 (en) 2010-01-28 2011-01-28 conductive sheet, method for using the conductive sheet, and capacitance touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010017396 2010-01-28
JP2010-017396 2010-01-28

Publications (1)

Publication Number Publication Date
WO2011093421A1 true WO2011093421A1 (en) 2011-08-04

Family

ID=44319402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051694 WO2011093421A1 (en) 2010-01-28 2011-01-28 Conductive sheet, method for using conductive sheet, and capacitance type touch panel

Country Status (4)

Country Link
JP (1) JP5638399B2 (en)
BR (1) BR112012017874A2 (en)
TW (1) TWI430161B (en)
WO (1) WO2011093421A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149749A (en) * 2013-02-06 2013-06-12 敦泰科技有限公司 Electrode structure and LCD device
WO2013140859A1 (en) * 2012-03-22 2013-09-26 シャープ株式会社 Electrode sheet, touch panel, and display apparatus
WO2013175958A1 (en) * 2012-05-21 2013-11-28 東レ株式会社 Substrate and touch panel member using same
CN110416394A (en) * 2015-05-01 2019-11-05 东芝北斗电子株式会社 Light emitting module

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101665210B1 (en) * 2011-09-13 2016-10-11 군제 가부시키가이샤 Touch panel
TW201346671A (en) * 2011-10-25 2013-11-16 Unipixel Displays Inc Scratch resistant touch sensor
JP5509186B2 (en) * 2011-12-16 2014-06-04 富士フイルム株式会社 Touch panel and conductive sheet for touch panel
JP5777251B2 (en) * 2011-12-16 2015-09-09 富士フイルム株式会社 Conductive sheet for touch panel and touch panel
CN103984461B (en) 2011-12-16 2017-09-15 富士胶片株式会社 Conducting strip and touch panel
JP5748647B2 (en) * 2011-12-22 2015-07-15 富士フイルム株式会社 Conductive sheet and touch panel
US20140198270A1 (en) * 2011-12-23 2014-07-17 Lg Chem, Ltd. Touch panel and display device including same
JP2013186632A (en) * 2012-03-07 2013-09-19 Toppan Printing Co Ltd Film-like touch panel sensor and manufacturing method thereof
KR101598249B1 (en) 2013-01-29 2016-02-26 삼성전기주식회사 Touch Panel
JP6186805B2 (en) * 2013-03-28 2017-08-30 大日本印刷株式会社 Touch panel
US9632609B2 (en) 2013-04-18 2017-04-25 Sharp Kabushiki Kaisha Sensor sheet, sensor sheet module, touch sensor panel module, and electronic equipment
CN103226414B (en) * 2013-05-02 2015-04-08 深圳欧菲光科技股份有限公司 Touch screen and preparation method thereof
JP6013397B2 (en) 2013-05-10 2016-10-25 サムソン エレクトロ−メカニックス カンパニーリミテッド. Touch sensor
KR101580372B1 (en) 2013-05-10 2015-12-28 삼성전기주식회사 Touch Sensor
CN104345929B (en) * 2013-07-25 2018-01-12 南昌欧菲光科技有限公司 Touch-screen
CN111338515B (en) * 2013-10-22 2023-09-15 富士胶片株式会社 Electrode for touch panel, and display device
JP5850967B2 (en) * 2014-03-17 2016-02-03 富士フイルム株式会社 Conductive sheet for touch panel and touch panel
WO2015146347A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 Conductive film laminated body and touch panel using same
JP6009488B2 (en) 2014-03-28 2016-10-19 富士フイルム株式会社 Sheet-like conductor and touch panel using the same
KR102199344B1 (en) * 2014-05-30 2021-01-06 엘지이노텍 주식회사 Touch window
KR102255415B1 (en) 2015-03-30 2021-05-21 동우 화인켐 주식회사 Touch sensor
JP2017220033A (en) * 2016-06-07 2017-12-14 コニカミノルタ株式会社 Transparent planar device and method for producing transparent planar device
JP6646107B2 (en) * 2018-06-22 2020-02-14 富士フイルム株式会社 Transfer film and transparent laminate, method for producing them, capacitance input device, and image display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009574A (en) * 2007-06-28 2009-01-15 Sense Pad Tech Co Ltd Capacitive-type touch panel
JP2010039537A (en) * 2008-07-31 2010-02-18 Gunze Ltd Touch panel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003271311A (en) * 2002-03-18 2003-09-26 Alps Electric Co Ltd Coordinate input device and liquid crystal display device using the same
US7129935B2 (en) * 2003-06-02 2006-10-31 Synaptics Incorporated Sensor patterns for a capacitive sensing apparatus
US20050030048A1 (en) * 2003-08-05 2005-02-10 Bolender Robert J. Capacitive sensing device for use in a keypad assembly
TWM344544U (en) * 2007-12-25 2008-11-11 Cando Corp Sensory structure of touch panel
US8284332B2 (en) * 2008-08-01 2012-10-09 3M Innovative Properties Company Touch screen sensor with low visibility conductors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009574A (en) * 2007-06-28 2009-01-15 Sense Pad Tech Co Ltd Capacitive-type touch panel
JP2010039537A (en) * 2008-07-31 2010-02-18 Gunze Ltd Touch panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140859A1 (en) * 2012-03-22 2013-09-26 シャープ株式会社 Electrode sheet, touch panel, and display apparatus
WO2013175958A1 (en) * 2012-05-21 2013-11-28 東レ株式会社 Substrate and touch panel member using same
CN103149749A (en) * 2013-02-06 2013-06-12 敦泰科技有限公司 Electrode structure and LCD device
CN110416394A (en) * 2015-05-01 2019-11-05 东芝北斗电子株式会社 Light emitting module
CN110416394B (en) * 2015-05-01 2022-09-23 日亚化学工业株式会社 Light emitting module

Also Published As

Publication number Publication date
BR112012017874A2 (en) 2016-03-29
JP5638399B2 (en) 2014-12-10
TW201203062A (en) 2012-01-16
JP2011175967A (en) 2011-09-08
TWI430161B (en) 2014-03-11

Similar Documents

Publication Publication Date Title
JP5638399B2 (en) Conductive sheet, method of using conductive sheet, and capacitive touch panel
JP5629194B2 (en) Conductive sheet, method of using conductive sheet, and capacitive touch panel
US10430014B2 (en) Conductive component and conductive component for touch panel
JP5123370B2 (en) Conductive sheet, method of using conductive sheet, and capacitive touch panel
JP5748509B2 (en) Conductive sheet and touch panel
JP5808966B2 (en) Conductive laminate, touch panel and display device
US9271396B2 (en) Conductive sheet and touch panel
JP5676225B2 (en) Conductive sheet, method of using conductive sheet, and capacitive touch panel
WO2012111819A1 (en) Electroconductive sheet and touch panel
JP5698103B2 (en) Conductive film and touch panel
WO2012157555A1 (en) Conductive sheet and touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6606/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012017874

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 11737131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012017874

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120718