WO2011093193A1 - 超音波診断装置およびその計測点追跡方法 - Google Patents

超音波診断装置およびその計測点追跡方法 Download PDF

Info

Publication number
WO2011093193A1
WO2011093193A1 PCT/JP2011/050912 JP2011050912W WO2011093193A1 WO 2011093193 A1 WO2011093193 A1 WO 2011093193A1 JP 2011050912 W JP2011050912 W JP 2011050912W WO 2011093193 A1 WO2011093193 A1 WO 2011093193A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
myocardium
region
interest
diagnostic apparatus
Prior art date
Application number
PCT/JP2011/050912
Other languages
English (en)
French (fr)
Inventor
智章 長野
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to EP11736907.4A priority Critical patent/EP2529666B1/en
Priority to CN2011800074230A priority patent/CN102724918A/zh
Priority to US13/520,856 priority patent/US20120283567A1/en
Priority to JP2011551820A priority patent/JP5753798B2/ja
Publication of WO2011093193A1 publication Critical patent/WO2011093193A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5284Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving retrospective matching to a physiological signal
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/02Measuring pulse or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, and in particular, tracks the movement of a living tissue based on an ultrasonic image of the living tissue of a subject, and correlates with the movement of the living tissue or the nature of the living tissue based on the tracking result.
  • the present invention relates to an ultrasonic diagnostic apparatus that calculates and displays a specific physical quantity.
  • the ultrasonic diagnostic apparatus transmits ultrasonic waves to the inside of the subject using an ultrasonic probe, receives an ultrasonic reflected echo signal corresponding to the structure of the living tissue from the inside of the subject, and generates an ultrasonic image (e.g., B An ultrasonic tomographic image such as a mode image) is constructed and displayed for diagnosis.
  • an ultrasonic image e.g., B
  • An ultrasonic tomographic image such as a mode image
  • a movement of a living tissue is tracked based on an ultrasound image, and a specific physical quantity (hereinafter simply referred to as a specific physical quantity) correlated with the movement of the living tissue or the property of the living tissue is calculated based on the tracking result. It is used for diagnosis.
  • diagnosis target is a myocardium
  • a specific physical quantity such as strain (distortion) that is the property of the myocardial tissue based on the tracking result of the myocardium
  • Tissue Doppler and speckle tracking methods have been proposed as biological tissue tracking methods in ultrasonic diagnosis.
  • speckle tracking method it is possible to track the position where the living tissue moves without depending on the direction of the ultrasonic beam, and to quantify the deformation of the living body part related to the living tissue. It is applied to tracking the movement of the myocardium of the specimen.
  • a plurality of traceable points are extracted from an ultrasonic image, tracking processing is performed, and a specific physical quantity is determined based on movement information of the tracking points. It is known to calculate. Also, as described in Non-Patent Document 1, a method is known in which a left ventricular myocardium is divided into 17 regions and measured, and a lesion is diagnosed from each measured value.
  • Patent Document 1 Japanese Patent Document 1
  • Non-Patent Document 1 do not consider myocardial stretching measurement that accurately reflects the stretching and contracting of the myocardium and each measured value is a comparison target suitable for diagnosis. .
  • the prior art does not consider setting a plurality of measurement points along the stretching direction of the myocardium (for example, the direction along the endocardium and epicardium of the myocardium).
  • each measurement value does not accurately reflect the expansion and contraction of the myocardium.
  • each measured value is a comparison target suitable for diagnosis. There is a risk that it will not.
  • An object of the present invention is to provide an ultrasonic diagnostic apparatus and a measurement point tracking method thereof that accurately reflect the expansion and contraction of the myocardium and that can measure the expansion and contraction of the myocardium as a comparison target in which each measured value is suitable for diagnosis. is there.
  • a measurement position setting unit sets a region of interest in a myocardium on an ultrasound image displayed on a display unit, and a tracking calculation unit performs extracardiac myocardial imaging at a plurality of measurement points in the region of interest.
  • a plurality of measurement points are tracked by a plurality of first dividing lines along the membrane and endocardium and a plurality of second dividing lines orthogonal to the plurality of first dividing lines.
  • an ultrasonic diagnostic apparatus of the present invention includes an ultrasonic probe that transmits and receives ultrasonic waves to and from a subject, and a myocardium of a heart of the subject that is received by the ultrasonic probe.
  • An ultrasonic signal generation unit that generates an ultrasonic signal based on a reflected echo signal of a tomographic plane of the tissue, an ultrasonic image generation unit that generates an ultrasonic image based on the ultrasonic signal, and the ultrasonic image displayed
  • a display unit a measurement position setting unit that sets a region of interest in the myocardium on the ultrasonic image displayed on the display unit, a tracking calculation unit that tracks the movement of the myocardium at a plurality of measurement points of the region of interest,
  • a physical quantity calculation unit that calculates a specific physical quantity based on a tracking result, and displays the calculated specific physical quantity on the display unit, wherein the tracking calculation unit includes a heart of the myocardium Multiple first dividing lines along the epicardium and endo
  • the ultrasonic probe transmits / receives ultrasonic waves to / from the subject and is received by the ultrasonic probe by the ultrasonic signal generator.
  • An ultrasonic signal is generated based on a reflected echo signal of a tomographic plane of a tissue including the heart muscle of the subject's heart
  • an ultrasonic image is generated based on the ultrasonic signal by an ultrasonic image generating unit
  • a display unit The ultrasonic image is displayed, a region of interest is set in the myocardium on the ultrasonic image displayed on the display unit by the measurement position setting unit, and the movement of the myocardium at a plurality of measurement points in the region of interest is tracked by the tracking calculation unit.
  • a measurement point tracking method of an ultrasonic diagnostic apparatus that calculates a specific physical quantity based on the tracking result by a physical quantity calculation unit, and displays the calculated specific physical quantity on the display unit, the tracking calculation unit In Tracking a plurality of measurement points with a plurality of first dividing lines along the epicardium and endocardium of the myocardium and a plurality of second dividing lines orthogonal to the plurality of first dividing lines. .
  • the present invention it is possible to accurately measure the expansion and contraction of the myocardium, which accurately reflects the expansion and contraction of the myocardium, and each measured value is suitable for diagnosis.
  • Block diagram showing the overall configuration of the ultrasonic diagnostic apparatus of the present embodiment
  • the flowchart which shows the flow of a process of the ultrasound diagnosing device of this embodiment.
  • the figure which shows the other example of the display screen of an ultrasonic diagnosing device Enlarged area of interest Diagram showing an example of a measurement method for 3D ultrasound images
  • FIG. 1 is a block diagram showing the overall configuration of the ultrasonic diagnostic apparatus of the present embodiment.
  • the ultrasonic diagnostic apparatus 100 includes an ultrasonic probe 3 that transmits and receives ultrasonic waves to and from the subject 1, and a reflected echo measured by the ultrasonic probe 3.
  • An ultrasonic signal generation unit 5 that generates an ultrasonic signal based on the signal
  • an ultrasonic image generation unit 7 that generates an ultrasonic image based on the ultrasonic signal
  • the generated ultrasonic image and ultrasonic diagnostic device Storage unit 9 storing various programs to be controlled, input unit 11 serving as an input interface, display unit 13 serving as an output interface, control unit 15 controlling each unit of the ultrasonic diagnostic apparatus, and display on the display unit 13
  • a measurement position setting unit 17 that sets a region of interest in the biological tissue of the diagnostic target region on the ultrasonic image
  • a tracking calculation unit 19 that tracks the movement of the biological tissue of the diagnostic target region at a plurality of measurement points in the region of interest
  • Physics that calculates specific physical quantities based on tracking results
  • the system includes a quantity calculation unit 21 and a system bus 23 that connects the units.
  • the ultrasonic probe 3 is a device that transmits and receives ultrasonic waves toward the subject 1 and has a scanning method such as a linear type, a convex type, and a sector type. These can be obtained by arranging transducers in one dimension to obtain a two-dimensional signal, by arranging transducers in two dimensions to obtain a three-dimensional signal, or by arranging transducers in one dimension and performing spatial scanning By doing so, what obtains a three-dimensional signal can be used.
  • a scanning method such as a linear type, a convex type, and a sector type.
  • the ultrasonic signal generation unit 5 transmits / receives an ultrasonic signal converted into an electric signal to / from the ultrasonic probe 3. Transmission / reception is controlled so that a desired ultrasonic signal is obtained by receiving transmission / reception power and timing information from the control unit 15. Further, the signal received from the ultrasonic signal transmission / reception unit is subjected to signal processing according to the imaging setting of the apparatus through a phasing circuit and an amplification circuit to obtain a shaped ultrasonic signal. This signal is stored in the storage unit 9 for use in later measurement.
  • the ultrasonic image generation unit 7 generates an image of the living tissue of the subject 1. An ultrasonic signal that has passed through the ultrasonic signal generation unit is input, and an ultrasonic image based on the imaging setting of the apparatus is generated. This signal is stored in the storage unit 9 for use in later measurement.
  • the storage unit 9 stores programs for operating various systems constituting the ultrasonic diagnostic apparatus 100, and stores signal data, image data, measurement data, and the like, and can be read and written according to the processing. Done.
  • the input unit 11 is an interface for performing various operations of the diagnostic apparatus.
  • An input device such as a keyboard, a trackball, a switch, or a dial, is used to perform an operation for acquiring an image, specify a region of interest in a living tissue, or perform various measurement settings.
  • the display unit 13 displays a region of interest, a measurement value, and an ultrasonic image on the screen, and outputs the measurement value to a measurement report.
  • the control unit 15 controls the entire system. For example, a control device such as a CPU is used.
  • the measurement position setting unit 17 sets a region of interest on the ultrasonic screen. For example, the region of interest is divided into meshes, and the intersection of the dividing lines is set as a measurement point. Details of the measurement position setting unit 17 will be described later.
  • On the ultrasonic screen an ultrasonic image read from the storage unit 9 is displayed. Since the images are stored in time series, it is possible to select and display a frame of a desired time phase using the input device. If an image is acquired in synchronization with a biological signal (for example, an electrocardiogram), for example, an R wave time phase image of the electrocardiogram may be automatically selected.
  • a biological signal for example, an electrocardiogram
  • the tracking calculation unit 19 performs an operation for tracking the movement of the living tissue using the ultrasonic signal near the position of the measurement point or the amplitude information of the image, and calculates the displacement. Since the ultrasonic signal and image information are stored in the storage unit 9, they are read and used for calculation.
  • the start frame and end frame of the tracking calculation may be set by the user with the input device, or if an image is acquired in synchronization with a biological signal (for example, an electrocardiogram), for example, the next R from the R wave of the electrocardiogram It may be automatically limited to a frame group between waves.
  • a biological signal for example, an electrocardiogram
  • the physical quantity calculation unit 21 calculates physical quantities such as speed, strain, area, and volume as time series information based on the displacement according to the measurement item specified by the examiner using the input device.
  • the calculated physical quantity is displayed in pseudo color on the ultrasonic image, a numerical value is displayed on the ultrasonic image, or a file is output as a measurement report.
  • Example 1 is an example in which a short axis image of the heart is taken as an example, the inside of the myocardium is continuously measured spatially and temporally, and a measured value is calculated for each local area inside the myocardium.
  • the object will be described as a two-dimensional ultrasonic signal and a two-dimensional ultrasonic image.
  • FIG. 2 is a flowchart showing a processing flow of the ultrasonic diagnostic apparatus according to the present embodiment.
  • the examiner first captures and displays an ultrasound image of the living tissue (myocardium) (S101).
  • the ultrasonic transmission / reception surface of the ultrasonic probe 3 is brought into contact with the subject 1, and an area including the measurement target is imaged.
  • An image for a certain period is acquired for tracking.
  • a biological signal for example, an electrocardiogram
  • one heartbeat from the R wave of the electrocardiogram to the next R wave may be automatically acquired, or after acquiring an image, a start frame and an end frame are specified for a frame group in a certain section. You may do it.
  • the specified frame group is stored in the storage unit 9, but when performing a tracking calculation using an ultrasonic signal, the ultrasonic signal is also stored in the storage unit 9 and can be read out in the same manner as the ultrasonic image. Keep it in a proper state.
  • FIG. 3 is a diagram showing an example of a display screen of the ultrasonic diagnostic apparatus.
  • an ultrasonic image 203 is displayed on the left side of the screen, and here, an example in which a short axis image of the heart is displayed is shown. That is, the ultrasound image 203 includes a heart short-axis image including the heart cavity 205 of the subject's heart and the myocardium 207 surrounding the heart cavity 205 in a donut shape.
  • an endocardium 209 exists along the circumferential direction at the boundary between the myocardium 207 and the heart chamber 205, and extracardiac along the circumferential direction exists at the boundary between the myocardium 207 and other tissues on the outer peripheral side of the cardiac muscle 207.
  • a membrane 211 is present.
  • the examiner sets a region of interest by the measurement position setting unit 17 (S102).
  • the setting is made using the input device on the ultrasonic image displayed in S101.
  • FIG. 3 shows an example of a screen for setting a region of interest. A short-axis image is depicted on the screen, and strip-shaped regions of interest 213 and 215 are set on this image.
  • the setting method an automatic setting method based on an existing region division method may be used, or the myocardial contour may be manually traced and set.
  • the band shape surrounds the myocardium, but is not limited.
  • one or more regions of interest can be set.
  • the region of interest can be set separately in a partial region of a plurality of myocardiums among the donut-shaped myocardium of the short axis image of the heart. Thereby, specific physical quantities of the myocardium in a plurality of regions of interest can be compared and observed.
  • the first region of interest 213 on the side close to the transmission / reception surface of the ultrasound probe 3 and the second region of interest 215 on the far side are set separately with the heart chamber 205 interposed therebetween. .
  • FIG. 5 is a diagram showing another example of the display screen of the ultrasonic diagnostic apparatus.
  • a donut-shaped region of interest 217 surrounding the entire donut-shaped myocardium may be set, and this may be divided into 6 based on the 17-segment method recommended by ASE (American Society-of-Echocardiography).
  • the examiner sets a mesh division method by the measurement position setting unit 17 (S103). What is necessary is just to match the mesh division
  • the directions for dividing the mesh are the circumferential direction and the radial direction. That is, it aims at measuring the expansion and contraction of the myocardium in the circumferential direction and the expansion and contraction in the radial direction.
  • the region of interest is meshed with a plurality of first dividing lines 221 along the myocardial epicardium 211 and endocardium 209 and a plurality of second dividing lines 223 orthogonal to the plurality of first dividing lines 221.
  • a plurality of intersections of the first dividing line 221 and the second dividing line 223 are set as measurement points, respectively.
  • the density of the mesh that is, the number of the first dividing lines 221 and the second dividing lines 223 for a certain region can be arbitrarily adjusted.
  • measurement based on the distance between the inner membrane surface and the outer membrane surface may be performed without division at all as in the conventional method.
  • the number of divisions may be set freely by the examiner, and is set using an input device.
  • the set value is displayed in the mesh setting display 225.
  • FIG. 6 is an enlarged view of the region of interest.
  • the lower right of FIG. 6 shows one section of the region of interest extracted.
  • the region of interest separation line 231 is set when the inside of the region of interest is further divided into several groups for measurement (in this example, the region of interest is separated into two). As shown in Figs. 3-6, the myocardial endocardium side and epicardial side are expected to have different properties, so a region-of-interest separation line 231 is set approximately halfway between the endocardium and epicardium. However, it can be set freely according to the target measurement. For example, it may be set so as to surround the tumor.
  • any of the plurality of second dividing lines 223 can be set as the region-of-interest separation line 231.
  • the region-of-interest separation line 231 may be set separately from the first parting line 221 or the second parting line 223.
  • the tracking calculation unit 19 measures the movement of the measurement point group (S105).
  • the tracking calculation unit tracks a plurality of measurement points using the first dividing line 221 and the second dividing line. That is, a plurality of measurement points set based on the first dividing line 221 and the second dividing line are tracked. For example, as described above, the intersections of the first dividing line 221 and the second dividing line may be used as measurement points, respectively, or a predetermined position in the lattice formed by the first dividing line 221 and the second dividing line is measured. It can also be a point.
  • a general tracking method such as a correlation method or an optical flow method is applied.
  • the target signal is an ultrasonic signal or an ultrasonic image stored in the storage unit 9.
  • the tracking calculation is applied by artificially improving the resolution of the target image. Further, the tracking operation is recursively applied while changing the block size for matching.
  • a solution method such as applying a tracking calculation combining the cross-correlation method and the optical flow method.
  • the time phase to be measured is a frame group of the ultrasonic image acquired and set in S101. As the tracking result, data of position coordinates of each measurement point in each frame is obtained.
  • the physical quantity calculation unit 21 calculates a physical quantity (S106). As shown in the lower right of FIG. 6, for a group of measurement points 227, a physical quantity based on the distance between the two measurement points is calculated between adjacent measurement points. For example, the distance between two points and the rate of change (strain) from the initial distance are calculated. The radial direction is a radial strain, and the circumferential direction is a circular strain. The area strain may be calculated based on the change in the area surrounded by the four points. Thereby, the physical quantity of each small area of the mesh is calculated. Furthermore, the measured value of the region of interest is obtained by taking the average value of these physical quantities for the entire mesh. In addition, an average value is obtained by dividing the epicardial side and the endocardial side divided by the region-of-interest separation line 231 to obtain respective measured values.
  • the examiner or the device selects a result display area (S107).
  • the selection criterion is tracking accuracy.
  • an evaluation value for self-evaluating the tracking accuracy is calculated.
  • the higher the resolution the lower the tracking accuracy.
  • the presence of artifacts and low pulse resolution tend to be an adverse condition for the tracking calculation. Therefore, depending on the conditions, it is not always possible to track accurately.
  • a method based on erroneous vector detection is used as the evaluation value.
  • a method of determining that a displacement vector at a certain measurement point is different (incorrect) from surrounding displacement vectors is used to quantify the amount of the erroneous vector. Since an evaluation value is obtained at each measurement point, this may also be calculated separately for the entire region of interest or the endocardial side and the epicardial side across the region of interest separation line 231. The examiner selects the result display area so as to hide the region of interest with low measurement accuracy while looking at the magnitude of the evaluation value. Further, the apparatus may automatically select based on a preset threshold value.
  • FIG. 4 shows an example of a measurement result display screen.
  • the physical quantity is converted into a luminance value for pseudo color display. These luminance values are superimposed on the mesh of the region of interest, and the entire region of interest is colored by smoothly complementing the luminance change.
  • the entire regions of interest 213 and 215 are colored. Tracking self-assessment values are shown in the table of tracking self-assessment results 235.
  • a graph is displayed on the right side of FIG.
  • the graph is displayed for each local region of the region of interest.
  • the graph is displayed as a strain value 241 for the entire region of interest, a strain value 243 for the endocardial side region, and a strain value 245 for the epicardial side.
  • a biological signal 247 is also displayed.
  • a time phase bar 249 is provided at the time phase of the currently displayed image to display a moving image. As shown in FIG. 5, when six regions of interest are set, pseudo-color display is performed for each region of interest, and as many graphs 250 as the number of regions of interest are displayed.
  • the graph of the first region of interest 213 is indicated by a solid line
  • the graph of the second region of interest 215 is indicated by a dotted line.
  • the examiner finely adjusts the region of interest separation line 231 by the measurement position setting unit 17 (S109).
  • the position of the region of interest separation line is adjusted while viewing the graph of the result of tracking the movement.
  • the measurement result in the local region changes. This is reflected in the graph and adjusted so that the measurement result at the desired measurement position is obtained while viewing the reflected result.
  • the present embodiment it is possible to set a region of interest that matches the shape of the living tissue, and by setting the measurement points in a mesh shape, it is possible to track the movement inside the living tissue.
  • the region-of-interest separation line 231 By separating the region of interest by the region-of-interest separation line 231 to make it a local region, or by displaying the measured value in a pseudo color, it becomes possible to easily distinguish a difference in local properties inside the living tissue.
  • you can set the measurement location according to the lesion of the subject or set the image quality to a location that is sufficient for measurement. Measurement accuracy can be improved.
  • the amount of calculation can be reduced as compared with tracking the entire myocardium, so that the efficiency of the examination is improved.
  • a myocardial region other than the myocardium on the side closer to the transmitting / receiving surface of the ultrasound probe across the heart chamber for example, the myocardial region in FIG. 4
  • the image quality of the ultrasonic image is not sufficient due to the influence of noise or the like, and the accuracy of motion tracking may be lowered. Therefore, even if a physical quantity is calculated for this myocardial region, reliability may be lacking. Nevertheless, when the region of interest is set in a donut shape, measurement is performed even on a portion having low reliability, which is not preferable in terms of the efficiency of calculation processing. In this regard, as shown in Fig.
  • the region of interest is separated into the myocardium on the side close to the transmitting / receiving surface of the ultrasound probe and the myocardium on the far side of the doughnut-shaped myocardium in the short axis image of the heart
  • the calculation processing efficiency can be improved, and the myocardium on the side closer to the transmission / reception surface of the ultrasonic probe and the myocardium on the far side can be compared and observed with the myocardium in between.
  • the measurement points are appropriately set according to the shape of the myocardium, the direction of expansion and contraction, and the like. That is, a plurality of measurement points are set along the main expansion and contraction directions of the myocardium (circumferential direction and radial direction (radial direction) of the myocardium in the short axis image of the heart). According to the present embodiment, since the measurement points are set along the expansion and contraction direction of the myocardium in this way, for example, between the adjacent measurement points on the first dividing line 221 or between the adjacent measuring points on the second dividing line 223 When a change in distance or the like is measured, each measurement value is useful for diagnosis because it appropriately reflects the properties of each part of the myocardium.
  • the distances from the endocardium 209 and the epicardium 211 are all constant for a plurality of measurement points set on the plurality of first dividing lines 221 respectively. Therefore, for example, when measuring changes in the distance from each measurement point on a certain first dividing line 221 to the endocardium 209 and epicardium 211, the properties of each part of the myocardium can be determined by comparing each measurement value. Since it can be contrasted appropriately, it is useful for diagnosis. Therefore, according to the present embodiment, it is possible to accurately measure the expansion and contraction of the myocardium, which accurately reflects the expansion and contraction of the myocardium and each measured value is suitable for diagnosis.
  • Example 2 is a method of taking a short axis image of the heart as an example, continuously measuring the inside of the myocardium spatially and temporally, and calculating a measurement value for each local area inside the myocardium.
  • the present embodiment is different from the first embodiment in that the target is a three-dimensional signal and a three-dimensional image. Therefore, the description of the parts similar to the first embodiment such as the apparatus configuration and the processing procedure is omitted, and the parts different from the first embodiment will be mainly described.
  • FIG. 7 is a diagram showing an example of a measurement method in a three-dimensional ultrasound image.
  • the left side of FIG. 7 shows an extracted endocardial contour 301 and epicardial contour 303 of the entire left ventricle.
  • the right side of FIG. 7 shows an extracted 3D region of interest 305 set on the 3D ultrasound image.
  • the myocardium has a bell-like shape with a thickness of about 10 mm, for example.
  • the mesh setting (S103) it is divided into three directions: radial direction, short axis direction, and long axis direction. That is, the division method is intended to perform measurement in each direction of radial, circularferential, and longitudinal.
  • the region of interest in a cross section orthogonal to the major axis direction, includes a plurality of first dividing lines 221 along the myocardial epicardium 211 and endocardium 209, and a plurality of orthogonal to the plurality of first dividing lines 221.
  • the second division line 223 is divided into a mesh shape.
  • first dividing line 221 and the second dividing line 223 are extending along the epicardium and endocardium in the major axis direction, by cutting a cross section perpendicular to the major axis direction at a predetermined interval in the major axis direction It is divided into a three-dimensional mesh. Intersections of these dividing lines are set as measurement points 227.
  • the 3D region of interest is separated into local regions by setting the region of interest separation line 231 (S104).
  • S104 region of interest separation line 231 for dividing the endocardial side and the epicardial side is set.
  • the region of interest separation line 231 extends along the endocardium and epicardium in the long axis direction, so that the three-dimensional region of interest is on the endocardial side. It is separated into a 3D region and a 3D region on the epicardial side.
  • the apparatus performs motion measurement (S105) for each measurement point 227 in the 3D ultrasonic signal or 3D ultrasonic image, and calculates the physical quantity (S106).
  • the physical quantity includes a distance in each direction of radial, circularferential, and longitudinal, a strain based on a change in the distance, an area of a cross section having a three-dimensional region of interest, a volume of the three-dimensional region of interest, and the like.
  • the examiner or the device selects a result display area based on the self-evaluation of motion tracking (S107).
  • the measurement value is converted into a luminance value, and the surface of the region of interest is colored. Then, the position of the region of interest separation line is adjusted while looking at the graph of the motion tracking result (S109).
  • the measurement points are appropriately set according to the three-dimensional shape of the myocardium and the stretching direction. It is possible to measure the expansion and contraction of the myocardium whose value is suitable for diagnosis.
  • the three-dimensional space it is possible to set a region of interest that matches the shape of the living tissue, and to track the movement inside the living tissue. Compared with the analysis in two dimensions, the dimension in the depth direction is added, so that the measurement accuracy is improved and three directions can be measured simultaneously.
  • the region of interest separation line into a local region, or by displaying the measured value in pseudo color, it becomes possible to easily discriminate the difference in local properties inside the living tissue.
  • the ultrasonic diagnostic apparatus includes an ultrasonic probe that transmits and receives ultrasonic waves to and from a subject, and a tomographic plane of a tissue including a heart myocardium of the subject that is received by the ultrasonic probe.
  • An ultrasonic signal generation unit that generates an ultrasonic signal based on the reflected echo signal, an ultrasonic image generation unit that generates an ultrasonic image based on the ultrasonic signal, a display unit that displays the ultrasonic image, and a display unit
  • a measurement position setting unit that sets the region of interest in the myocardium on the ultrasound image displayed on the screen, a tracking calculation unit that tracks the movement of the myocardium at multiple measurement points in the region of interest, and a specific physical quantity based on the tracking result
  • a physical quantity calculation unit that performs the basic configuration, and displays the calculated specific physical quantity on the display unit.
  • Specific physical quantities include the myocardial velocity at multiple measurement points in the region of interest, the myocardial strain at multiple measurement points in the region of interest, the area of the myocardium surrounded by the region of interest, and a 3D ultrasound image. There may be at least one of the myocardial volumes surrounded by the three-dimensional region of interest.
  • the tracking calculation unit includes a plurality of first dividing lines along the epicardium and endocardium of the myocardium, and a plurality of second dividing lines orthogonal to the plurality of first dividing lines. It is characterized by tracking a plurality of measurement points. For example, a plurality of measurement points can be set based on a plurality of first division lines and a plurality of second division lines, and the plurality of measurement points can be tracked.
  • the region of interest is divided into a mesh shape by a plurality of first dividing lines and a plurality of second dividing lines, and an intersection of the first dividing line and the second dividing line is set as a plurality of measurement points. Can be configured.
  • the plurality of measurement points include the major stretching direction of the myocardium (for example, the short axis of the heart including the heart chamber of the subject's heart and the myocardium surrounding the heart chamber in a donut shape). In the case of an image, it is set along the circumferential direction and radial direction (radial direction) of the myocardium.
  • each measurement Since measurement points are set along the direction of expansion and contraction of the myocardium in this way, for example, when measuring a change in distance between adjacent measurement points on the first division line or between adjacent measurement points on the second division line, each measurement Since the value appropriately reflects the properties of each part of the myocardium, it is useful for diagnosis.
  • the distances from the endocardium and the epicardium are all constant for the plurality of measurement points set on the plurality of first dividing lines, respectively. Therefore, for example, when changes in the distance from each measurement point on the first dividing line to the endocardium or epicardium are measured, the properties of each part of the myocardium are appropriately compared by comparing the measured values. This is useful for diagnosis.
  • the measurement position setting unit is configured to set the region of interest in a donut shape in accordance with the shape of the donut-shaped myocardium in the short heart image. can do.
  • the measurement position setting unit can be configured to separate and set a region of interest in a plurality of myocardial partial regions of the doughnut-shaped myocardium of the short-axis image of the heart. By separating and setting a plurality of regions of interest in this way, a specific physical quantity in each region of interest can be compared and observed, which is preferable.
  • the measurement position setting unit separates the region of interest into the myocardium on the side closer to the transmission / reception surface of the ultrasonic probe and the myocardium on the far side of the doughnut-shaped myocardium in the short axis image of the heart with the heart chamber interposed therebetween. It can also be configured to set.
  • the myocardial region other than the myocardium on the side closer to the transmitting / receiving surface of the ultrasound probe across the heart chamber and the myocardial region on the far side are affected by noise, etc. Therefore, the image quality of the ultrasonic image is not sufficient and the accuracy of motion tracking may be lowered, so that even if the physical quantity is calculated, the reliability may be lacking. Nevertheless, when the region of interest is set in a donut shape, measurement is performed even on a portion having low reliability, which is not preferable in terms of the efficiency of calculation processing.
  • the donut-shaped myocardium of the short axis image of the heart by setting the region of interest separately in the myocardium on the side closer to the transmitting / receiving surface of the ultrasound probe and the myocardium on the far side across the heart chamber, The efficiency of the arithmetic processing can be increased, and the myocardium on the side closer to the transmission / reception surface of the ultrasonic probe and the myocardium on the far side can be compared and observed with the myocardium in between.
  • the measurement position setting unit sets either the plurality of first division lines or the plurality of second division lines set in the region of interest as a region of interest separation line that separates the region of interest into two, Alternatively, the region-of-interest separation line may be set on the ultrasonic image separately from the plurality of first division lines or the plurality of second division lines. According to this, since the region of interest once set can be separated by a simple operation, for example, the endocardial side and the epicardial side of the myocardium are evaluated separately, or the normal and abnormal regions of the myocardium are evaluated. Convenient when evaluating separately.

Abstract

 本発明の超音波診断装置は、被検体との間で超音波を送受信する超音波探触子と、前記超音波探触子で受信された前記被検体の心臓の心筋を含む組織の断層面の反射エコー信号に基づいて超音波信号を生成する超音波信号生成部と、前記超音波信号に基づいて超音波画像を生成する超音波画像生成部と、前記超音波画像を表示する表示部と、前記表示部に表示された超音波画像上の心筋に関心領域を設定する計測位置設定部と、前記関心領域の複数計測点における心筋の動きを追跡する追跡演算部と、前記追跡結果に基づいて特定の物理量を算出する物理量演算部とを備え、前記算出された特定の物理量を前記表示部に表示する超音波診断装置であって、前記追跡演算部は、前記心筋の心外膜及び心内膜に沿った複数の第1分割線と、該複数の第1分割線に直交する複数の第2分割線によって前記複数計測点を追跡する。

Description

超音波診断装置およびその計測点追跡方法
 本発明は、超音波診断装置に係り、特に、被検体の生体組織の超音波画像に基づいて生体組織の動きを追跡し、追跡結果に基づいて生体組織の動き又は生体組織の性質に相関する特定の物理量を算出して表示する超音波診断装置に関する。
 超音波診断装置は、超音波探触子により被検体内部に超音波を送信するとともに、被検体内部から生体組織の構造に応じた超音波の反射エコー信号を受信し、超音波画像(例えばBモード像等の超音波断層像)を構成して診断用に表示するものである。
 近年、超音波画像に基づいて生体組織の動きを追跡し、追跡結果に基づいて生体組織の動き又は生体組織の性質に相関する特定の物理量(以下、単に特定の物理量という。)を算出して診断に用いることが行われている。例えば診断対象が心筋の場合、心筋の追跡結果に基づいて心筋の移動速度や心筋組織の性質であるストレイン(歪み)などの特定の物理量を算出して表示することにより、虚血性心疾患などの心臓疾患の診断に用いることが知られている。
 超音波診断における生体組織の追跡方法としては、組織ドプラ法やスペックルトラッキング法が提案されている。特にスペックルトラッキング法では、超音波ビームの方向に依存することなく、生体組織が移動した位置を追跡して、その生体組織に係る生体部位の変形を定量化することが可能であり、例えば被検体の心筋の動き追跡に応用されている。
 心筋の動き追跡に関しては、例えば特許文献1に記載されているように、超音波画像中から複数の追跡可能点を抽出してトラッキング処理を行い、追跡点の移動情報に基づいて特定の物理量を算出することが知られている。また、非特許文献1に記載されているように、左室心筋を17個の領域に分割して計測し、それぞれの計測値から病変を診断する方法が知られている。
特許4060615号公報
Robert M.Lang,et al.,Recommendations for Chamber Quantification,Journal of the American Society of Echocardiography,Vol.18,No.12
 ところで、上記特許文献1及び非特許文献1等の従来技術は、心筋の伸縮を精度よく反映し各計測値が診断に適した比較対象となる心筋の伸縮計測については考慮されていないと考えられる。
 すなわち、心筋の動き追跡を行う場合、超音波画像上の心筋に関心領域を設定して、関心領域内の複数の計測点(追跡点)における心筋を追跡するのが一般的である。この点、従来技術は、複数の計測点を心筋の伸縮方向(例えば心筋の心内膜及び心外膜に沿った方向)に沿って設定することについて考慮されていない。
 したがって、例えば心筋の伸縮に伴う隣接計測点間の距離の変化を計測した場合に、各計測値が心筋の伸縮を精度よく反映したものにならないおそれがある。また、各計測点から心筋の心内膜や心外膜までの距離は一定ではなくなるので、例えば心筋の伸縮に伴うこの距離の変化を計測したとしても、各計測値が診断に適した比較対象とならないおそれがある。
 そこで本発明の目的は、心筋の伸縮を精度よく反映し各計測値が診断に適した比較対象となる心筋の伸縮計測を可能とする超音波診断装置及びその計測点追跡方法を提供することにある。
 上記目的を達成するため、本発明は、計測位置設定部が表示部に表示された超音波画像上の心筋に関心領域を設定し、追跡演算部が関心領域の複数計測点における心筋の心外膜及び心内膜に沿った複数の第1分割線と、この複数の第1分割線に直交する複数の第2分割線によって複数計測点を追跡する。
 具体的に、本発明の超音波診断装置は、被検体との間で超音波を送受信する超音波探触子と、前記超音波探触子で受信された前記被検体の心臓の心筋を含む組織の断層面の反射エコー信号に基づいて超音波信号を生成する超音波信号生成部と、前記超音波信号に基づいて超音波画像を生成する超音波画像生成部と、前記超音波画像を表示する表示部と、前記表示部に表示された超音波画像上の心筋に関心領域を設定する計測位置設定部と、前記関心領域の複数計測点における心筋の動きを追跡する追跡演算部と、前記追跡結果に基づいて特定の物理量を算出する物理量演算部とを備え、前記算出された特定の物理量を前記表示部に表示する超音波診断装置であって、前記追跡演算部は、前記心筋の心外膜及び心内膜に沿った複数の第1分割線と、該複数の第1分割線に直交する複数の第2分割線によって前記複数計測点を追跡する。
 また、本発明の超音波診断装置の計測点追跡方法は、超音波探触子によって被検体との間で超音波を送受信し、超音波信号生成部によって前記超音波探触子で受信された前記被検体の心臓の心筋を含む組織の断層面の反射エコー信号に基づいて超音波信号を生成し、超音波画像生成部によって前記超音波信号に基づいて超音波画像を生成し、表示部によって前記超音波画像を表示し、計測位置設定部によって前記表示部に表示された超音波画像上の心筋に関心領域を設定し、追跡演算部によって前記関心領域の複数計測点における心筋の動きを追跡し、物理量演算部によって前記追跡結果に基づいて特定の物理量を算出し、前記算出された特定の物理量を前記表示部に表示する超音波診断装置の計測点追跡方法であって、前記追跡演算部によって前記心筋の心外膜及び心内膜に沿った複数の第1分割線と、該複数の第1分割線に直交する複数の第2分割線によって前記複数計測点を追跡するステップを含む。
 本発明によれば、心筋の伸縮を精度よく反映し各計測値が診断に適した比較対象となる心筋の伸縮計測ができる。
本実施形態の超音波診断装置の全体構成を示すブロック図 本実施形態の超音波診断装置の処理の流れを示すフローチャート 超音波診断装置の表示画面の一例を示す図 計測結果の表示画面の一例を示す図 超音波診断装置の表示画面の他の例を示す図 関心領域を拡大して示した図 3次元超音波像における計測方法の例を示す図
 以下、本発明を適用してなる超音波診断装置の実施形態を説明する。なお、以下の説明では、同一機能部品については同一符号を付して重複説明を省略する。
(超音波診断装置の構成)
 図1は、本実施形態の超音波診断装置の全体構成を示すブロック図である。図1に示すように、本実施形態の超音波診断装置100は、被検体1との間で超音波を送受信する超音波探触子3と、超音波探触子3で計測された反射エコー信号に基づいて超音波信号を生成する超音波信号生成部5と、超音波信号に基づいて超音波画像を生成する超音波画像生成部7と、生成された超音波画像や超音波診断装置を制御する各種プログラムが格納された記憶部9と、入力インターフェースとなる入力部11と、出力インターフェースとなる表示部13と、超音波診断装置の各部を制御する制御部15と、表示部13に表示された超音波画像上の診断対象部位の生体組織に関心領域を設定する計測位置設定部17と、関心領域の複数計測点における診断対象部位の生体組織の動きを追跡する追跡演算部19と、追跡結果に基づいて特定の物理量を算出する物理量演算部21と、各部を接続するシステムバス23とを備えて構成される。
 超音波探触子3は、被検体1に向かって超音波を送受信する装置であり、リニア型、コンベックス型、セクタ型等の走査方法をもつものである。これらは、振動子を1次元に配列して2次元信号を得るもの、振動子を2次元に配置して3次元信号を得るもの、又は振動子を1次元に配列して機械的に空間走査することにより3次元信号を得るものを用いることができる。
 超音波信号生成部5は、超音波探触子3との間で電気信号に変換された超音波信号を送受信する。制御部15から送受信のパワーやタイミングの情報を受け取り、所望の超音波信号が得られるよう送受信が制御される。また、超音波信号送受信部から受け取った信号を、整相回路や増幅回路を通して、装置の撮像設定に従って信号処理し、整形された超音波信号を得る。この信号は、後の計測に用いるため、記憶部9に記憶される。
 超音波画像生成部7は、被検体1の生体組織の画像を生成する。超音波信号生成部を通した超音波信号が入力され、装置の撮像設定に基づいた超音波画像を生成する。この信号は、後の計測に用いるため、記憶部9に記憶される。
 記憶部9は、超音波診断装置100を構成する種々のシステムを動作させるためのプログラムが格納されているとともに、信号データ、画像データ、計測データなどが記憶されており、処理に応じて読み書きが行われる。
 入力部11は、診断装置の各種操作を行うインターフェースである。キーボード、トラックボール、スイッチ、ダイヤル等の入力機器であり、画像を取得する操作を行ったり、生体組織の関心領域を指定したり、種々の計測設定を行ったりするために用いられる。
 表示部13は、関心領域、計測値、超音波画像を画面に表示したり、計測値を計測レポートに出力したりする。制御部15は、システム全体を制御する。例えば、CPU等の制御装置を用いたものである。
 計測位置設定部17は、超音波画面上に関心領域を設定するものである。例えば、関心領域内をメッシュ状に分割し、分割線の交点を計測点として設定する処理を行う。計測位置設定部17の詳細は後述する。超音波画面上には、記憶部9から読み出された超音波画像が表示される。画像は時系列に記憶されているので、入力機器を用いて、所望の時相のフレームを選択して表示することができる。生体信号(例えば心電図)に同期して画像が取得されているならば、例えば、心電図のR波時相の画像が自動的に選択されるようにしてもよい。
 追跡演算部19は、計測点の位置近傍の超音波信号又は画像の振幅情報を用いて、生体組織の動きを追跡する演算を行い、その変位を算出する。超音波信号と画像の情報は、記憶部9に記憶されているので、これを読み込んで演算に利用する。追跡演算の開始フレームと終了フレームはユーザが入力機器で設定してもよいし、生体信号(例えば心電図)に同期して画像が取得されているならば、例えば、心電図のR波から次のR波の間のフレーム群に自動的に限定されるようにしてもよい。
 物理量演算部21は、検者が入力機器によって指定した計測項目にしたがって、変位に基づいて、速度、ストレイン、面積、容積などの物理量を時系列情報として算出する。算出された物理量は、表示部13によって、超音波画像上に疑似カラー表示したり、数値を表示したり、計測レポートとしてファイル出力したりする。以下、本実施形態の超音波診断装置の処理の流れ及び特徴構成について実施例ごとに詳細に説明する。
 実施例1は、心臓の短軸像を例に挙げ、心筋の内部を空間的及び時間的に連続的に計測し、さらに、心筋内部の局所毎に計測値を算出する例である。ここでは対象を2次元の超音波信号及び2次元の超音波画像として説明する。
 図2は本実施形態の超音波診断装置の処理の流れを示すフローチャートである。図2に示すように、検者は最初に、生体組織(心筋)の超音波画像を撮像して表示する(S101)。超音波探触子3の超音波送受信面を被検体1に接触させ、計測対象を含む領域を撮像する。追跡を行うため、ある程度の期間の画像を取得する。生体信号(例えば心電図)が入力されていれば、これに同期するようにしてもよい。例えば、心電図のR波から次のR波までの1心拍を自動的に取得するようにしてもよいし、画像を取得した後で、ある区間のフレーム群について、開始フレームと終了フレームを指定するようにしてもよい。なお、指定されたフレーム群が記憶部9に記憶されるが、超音波信号を利用した追跡演算を行う場合には、超音波画像と同じく超音波信号も記憶部9に記憶されて、読み出し可能な状態にしておく。
 図3は超音波診断装置の表示画面の一例を示す図である。超音波診断装置の表示画面201には、画面左側に超音波画像203が表示されており、ここでは、心臓の短軸像が表示されている例を示している。すなわち、超音波画像203には、被検体の心臓の心腔205と心腔205の周囲をドーナツ状に囲む心筋207とを含む心臓短軸像が含まれている。なお、心筋207と心腔205との境界には周方向に沿って心内膜209が存在し、心筋207と心筋207の外周側の他の組織との境界には周方向に沿って心外膜211が存在する。
 次に検者は、計測位置設定部17により関心領域の設定を行う(S102)。S101で表示した超音波画像上で、入力機器を用いて設定する。図3は関心領域を設定する画面の例を示している。画面上に短軸像が描出されており、この画像上に、帯状の関心領域213,215を設定している。設定方法は、既存の領域分割法に基づいた自動設定方法を用いてもよいし、手動的に心筋の輪郭をなぞって設定してもよい。ここでは、心筋を囲むような帯状としているが限定されない。心筋の境界で囲む必要はなく、検者が本来対象としたい場所、例えば、腫瘍や心筋内部の一部分のみなどに設定すればよい。また、関心領域の個数は、1乃至複数設定できる。例えば、心臓短軸像のドーナツ状の心筋のうち、複数の心筋の部分領域に関心領域を分離して設定することができる。これにより、複数の関心領域における心筋の特定の物理量を対比観察することができる。図3の例では、心腔205を挟んで超音波探触子3の送受信面に近い側の第1の関心領域213と、遠い側の第2の関心領域215が分離して設定されている。
 一方、図5は超音波診断装置の表示画面の他の例を示す図である。図5に示すように、ドーナツ状の心筋全体を囲うドーナツ状の関心領域217を設定し、これをASE(American Society of Echocardiography)が推奨する17分割法に基づき6分割するようにしてもよい。
 次に検者は、計測位置設定部17によりメッシュ分割の方法を設定する(S103)。
メッシュ分割方法は、対象とする組織の計測項目に合わせればよい。ここでは、心筋を対象としているため、図3に示すように、メッシュを区切る方向を円周方向と半径方向にしている。すなわち、心筋の円周方向の伸縮と半径方向への伸縮を計測することを目的としている。言い換えれば、関心領域は、心筋の心外膜211及び心内膜209に沿った複数の第1分割線221と、複数の第1分割線221に直交する複数の第2分割線223によりメッシュ状に分割され、第1分割線221と第2分割線223の複数の交点がそれぞれ計測点として設定されている。メッシュの密度つまりある領域に対する第1分割線221と第2分割線223の本数は任意に調整可能である。
 メッシュの分割数は多いほど詳細に計測でき、疑似カラー化したときに滑らかな輝度変化の表示が行える。また、全く分割せずに、従来法と同様に内膜面と外膜面の距離に基づく計測を行ってもよい。分割数の設定は、検者が自由に選択できるようにしてもよく、入力機器を用いて設定する。設定値は、メッシュ設定表示225に表示される。
 ここでは、心筋を半径方向に分割する第1分割線221に7本、心筋を円周方向に分割する第2分割線223に6本で分割していることを示している。これらの分割線は互いに交差し、この交差する点が計測点227となる。図6は関心領域を拡大して示した図である。図6右下は、関心領域の一つの区画を取り出したものである。区画の接点、すなわち、メッシュの交点上に計測点227が設定される。したがって、この例の場合は、7×6=42点の計測点が設定されることになる。
 次に検者は、計測位置設定部17により関心領域分離線231を設定する(S104)。関心領域分離線231は、関心領域の内部をさらに幾つかの群に分けて計測したい場合に設定する(この例では関心領域を2つに分離している)。図3~6のように、心筋の心内膜側と心外膜側で性状が異なることが予想されるので、心内膜と心外膜のほぼ中間に関心領域分離線231を設定しているが、対象とする計測によって自由に設定できるようにする。例えば、腫瘍を取り囲むように設定してもよい。
 なお、本実施例では、関心領域に設定された複数の第1分割線221のうちの1本を関心領域分離線231として設定する例を挙げたが、これには限られない。例えば複数の第2分割線223のいずれかを、関心領域分離線231として設定することができる。また、第1分割線221若しくは第2分割線223とは別に、関心領域分離線231を設定するようにしてもよい。
 次に超音波診断装置は、追跡演算部19により計測点群の動きを計測する(S105)。追跡演算部は、第1分割線221と第2分割線によって複数計測点を追跡する。つまり、第1分割線221と第2分割線に基づいて設定された複数計測点を追跡する。例えば上述のように第1分割線221と第2分割線との交点をそれぞれ計測点としてもよいし、第1分割線221と第2分割線により形成される格子の中の所定の位置を計測点とすることもできる。追跡方法には、相関法やオプティカルフロー法など一般的な追跡方法が適用される。対象とする信号は、記憶部9に記憶されている超音波信号又は超音波画像である。
 高密度に計測点を設定していることから、分解能向上のための手法を取り入れてもよい。
 例えば、対象画像の分解能を疑似的に向上させて追跡演算を適用する。また、マッチングをとるためのブロックサイズを変化させながら再帰的に追跡演算を適用する。また、相互相関法とオプティカルフロー法を組み合わせた追跡演算を適用するなどの解決方法がある。計測する時相は、S101で取得、設定された超音波画像のフレーム群である。追跡結果として、各フレームにおける各計測点の位置座標のデータが得られる。
 次に超音波診断装置は、物理量演算部21により、物理量の算出を行う(S106)。
 図6右下に示すように、計測点227の群に対して、隣接する計測点どうしで、その2点間距離に基づく物理量を算出する。例えば、2点間の距離や、初期距離からの変化率(strain)を算出する。半径方向には、radial strain、円周方向には、circumferential strainとなる。また4点で囲まれる面積の変化に基づいてarea strainを算出してもよい。これによりメッシュの各小領域の物理量が算出される。さらに、メッシュ全体についてこれらの物理量の平均値をとることで、関心領域の計測値とする。また、関心領域分離線231で分割した心外膜側と心内膜側で分けて平均値をとり、それぞれの計測値とする。
 次に検者又は装置は、結果表示領域を選択(S107)する。選択基準は、追跡の精度である。ここで、追跡の精度を自己評価するための評価値を算出しておく。一般に、分解能を高めるほど追跡の精度は低下しやすくなる。特に超音波画像の場合には、アーチファクトの存在やパルス分解能の低さのため、追跡演算に対して悪条件になりやすい。したがって、条件によっては必ずしも精度よく追跡できるとは限らない。評価値としては、誤ベクトル検出に基づく方法が用いられる。
 例えば、多数の計測点があるので、ある計測点の変位ベクトルが周囲の変位ベクトルと異なっている(誤っている)ことを判定する方法を用い、誤ベクトルの量を数値化する。
各計測点において評価値が得られるので、これもまた、関心領域全体や、関心領域分離線231を挟んで心内膜側、心外膜側に分けて算出してもよい。検者は、評価値の大小を見ながら、計測精度が低い関心領域については、非表示するように結果表示領域を選択する。また、装置が、予め設定されたしきい値に基づいて自動選択するようにしてもよい。
 次に装置は、表示部13により計測結果を表示する(S108)。図4は計測結果の表示画面の一例を示す図である。物理量は、疑似カラー表示するために、輝度値に変換される。これらの輝度値を、関心領域のメッシュ上に重畳し、輝度変化を滑らかに補完することにより、関心領域全体に色づけする。図4では、関心領域213,215の全体に色づけしている。追跡の自己評価値は追跡自己評価結果235の表で示される。
 検者は、この数値の大小を見て、計測結果を採用するか判断できるようにする。図4右側にはグラフを表示する。グラフは、関心領域のそれぞれの局所領域毎に表示し、例えば、関心領域全体のストレイン値241、心内膜側領域のストレイン値243、心外膜側のストレイン値245として表示する。また、生体信号247も表示する。さらに、現在表示している画像の時相に時相バー249を設けて動画表示する。図5のように、6つの関心領域を設定した場合には、関心領域毎に疑似カラー表示されるとともに、グラフ250も関心領域の数だけ表示される。ここでは、第1の関心領域213のグラフを実線で、第2の関心領域215のグラフを点線で示している。また、追跡自己評価結果235を見て、計測結果を採用しない場合には、その関心領域だけカラー表示をしないように操作してもよい。
 次に検者は、計測位置設定部17により関心領域分離線231を微調整する(S109)。動き追跡した結果のグラフを見ながら、関心領域分離線の位置を調整する。関心領域分離線を調整すると、局所領域における計測結果が変化するので、これをグラフに反映させて、反映された結果を見ながら所望の計測位置の計測結果が得られるように調整する。
 以上、本実施例によれば、生体組織の形状に合致した関心領域の設定が可能であり、メッシュ状に計測点を設定することにより、生体組織内部の動き追跡を行うことが可能になる。関心領域を関心領域分離線231で分離して局所領域としたり、計測値を疑似カラー表示したりすることによって、生体組織内部の局所的な性状の違いを簡便に判別できるようになる。また、関心領域を第1、第2のように分離して複数設定することによって、被検者の病変に応じた計測箇所に設定したり、画質が計測に十分な箇所に設定したりして計測精度を向上させることができる。また、関心領域を分離して必要な分だけ設定することにより、心筋全体を追跡するよりも計算量を低減できるため、検査の効率が向上することになる。
 すなわち、心臓短軸像においては、ドーナツ状の心筋のうち、心腔を挟んで超音波探触子の送受信面に近い側の心筋と遠い側の心筋以外の心筋部位(例えば図4における心筋部位251)はノイズの影響等により超音波画像の画質が十分ではなく、動き追跡の精度が低くなるおそれがある。したがって、この心筋部位については物理量を算出したとしても信頼性に欠ける場合がある。それにも関わらず、関心領域がドーナツ状に設定されている場合、信頼性に欠ける部位に対しても計測が行われることになるから、演算処理の効率上好ましくない。この点、図3に示すように、心臓短軸像のドーナツ状の心筋のうち、心腔を挟んで超音波探触子の送受信面に近い側の心筋と遠い側の心筋に関心領域を分離して設定することにより、演算処理の効率を高めることができ、かつ心筋を挟んで超音波探触子の送受信面に近い側の心筋と遠い側の心筋とを対比観察することができる。
 また、本実施例では、心筋の形状や伸縮方向などに応じて計測点を適切に設定している。すなわち、複数の計測点が、心筋の主な伸縮方向(心臓短軸像における心筋の円周方向及び放射方向(半径方向))に沿って設定される。本実施例によれば、このように心筋の伸縮方向に沿って計測点が設定されるので、例えば第1分割線221上の隣接計測点間若しくは第2分割線223上の隣接計測点間の距離の変化などを計測した場合、各計測値が心筋の各部位の性状を適切に反映しているので、診断に有用である。また、複数の第1分割線221上にそれぞれ設定された複数の計測点については、心内膜209及び心外膜211からの距離が全て一定となる。したがって、例えばある第1分割線221上の各計測点から心内膜209や心外膜211までの距離の変化を計測した場合、各計測値を対比することにより、心筋の各部位の性状を適切に対比することができるので、診断に有用である。したがって、本実施例によれば、心筋の伸縮を精度よく反映し各計測値が診断に適した比較対象となる心筋の伸縮計測ができる。
 実施例2は、心臓の短軸像を例に挙げ、心筋の内部を空間的及び時間的に連続的に計測し、さらに、心筋内部の局所毎に計測値を算出する方法である。本実施例は、対象を3次元信号及び3次元画像としている部分が第1実施例と異なる。したがって、装置構成、処理手順など実施例1と同様の部分の説明は省略し、実施例1と異なる部分を主として説明する。
 最初に、被検体の複数の断層面の生体組織の超音波信号に基づいて3次元の超音波画像を表示(S101)して、関心領域の設定を行う(S102)。ここでは、入力機器を用いて3次元超音波画像上で手動設定するか、既存の自動領域分割法を利用して自動的に設定されるようにしてもよい。これにより3次元関心領域が設定される。図7は3次元超音波像における計測方法の例を示す図であり、図7左は、左心室全体の心内膜輪郭301、心外膜輪郭303を抽出したところである。図7右は、3次元超音波画像上で設定されたある3次元関心領域305を抜き出したものである。このように心筋は、例えば厚さ10mm程度の釣鐘状の形状をしている。
 メッシュの設定(S103)では、半径方向と短軸方向と長軸方向の3方向で分割する。すなわち、radial、circumferential、longitudinalの各方向の計測を行うことを目的とした分割方法とする。言い換えれば、長軸方向に直交するある断面において、関心領域が心筋の心外膜211及び心内膜209に沿った複数の第1分割線221と、複数の第1分割線221に直交する複数の第2分割線223によりメッシュ状に分割される。さらに第1分割線221と第2分割線223を長軸方向の心外膜及び心内膜に沿って延在させ、長軸方向の所定の間隔で長軸方向に直交する断面を切ることにより、3次元のメッシュ状に分割される。これらの分割線の交点が計測点227として設定される。
 また、関心領域分離線231の設定(S104)により3次元関心領域を局所領域に分離する。例えば、図7右のように、心内膜側と心外膜側に分割する関心領域分離線231を設定する。ここでは、関心領域分離線231が設定された後、関心領域分離線231が長軸方向の心内膜及び心外膜に沿って延在した面により、3次元関心領域が心内膜側の3次元領域と心外膜側の3次元領域に分離される。
 次に装置は、3次元超音波信号又は3次元超音波像において、各計測点227に対する動き計測(S105)を行い、物理量を算出する(S106)。物理量は、radial、circumferential、longitudinalの各方向の距離、距離の変化に基づくストレイン、3次元関心領域のある断面の面積、3次元関心領域の容積などである。検者又は装置は、動き追跡の自己評価に基づいて、結果表示領域の選択を行う(S107)。計測結果の表示(S108)では、計測値を輝度値に変換し、関心領域の面に色づけする。そして、動き追跡した結果のグラフを見ながら、関心領域分離線の位置を調整する(S109)。
 以上、本実施例によれば、心筋の3次元形状や伸縮方向などに応じて計測点を適切に設定しているから、第1実施例と同様に、心筋の伸縮を精度よく反映し各計測値が診断に適した比較対象となる心筋の伸縮計測ができる。また、3次元空間において、生体組織の形状に合致した関心領域の設定が可能であり、生体組織内部の動き追跡を行うことが可能になる。また、2次元での解析に比べて、奥行き方向の次元が加わるので、計測精度が向上するとともに、3方向を同時に計測可能になる。
 また、関心領域を関心領域分離線で分離して局所領域としたり、計測値を疑似カラー表示したりすることによって、生体組織内部の局所的な性状の違いを簡便に判別できるようになる。
 本実施形態の超音波診断装置は、被検体との間で超音波を送受信する超音波探触子と、超音波探触子で受信された被検体の心臓の心筋を含む組織の断層面の反射エコー信号に基づいて超音波信号を生成する超音波信号生成部と、超音波信号に基づいて超音波画像を生成する超音波画像生成部と、超音波画像を表示する表示部と、表示部に表示された超音波画像上の心筋に関心領域を設定する計測位置設定部と、関心領域の複数計測点における心筋の動きを追跡する追跡演算部と、追跡結果に基づいて特定の物理量を算出する物理量演算部とを基本的な構成として備えており、算出された特定の物理量を表示部に表示するものである。なお、特定の物理量としては、関心領域の複数計測点の心筋の速度、関心領域の複数計測点の心筋のストレイン、関心領域により囲まれる心筋の面積、及び3次元超音波画像を生成した場合に3次元関心領域により囲まれる心筋の容積の少なくとも1つが挙げられる。
 そして、上記課題を解決するため、追跡演算部は、心筋の心外膜及び心内膜に沿った複数の第1分割線と、この複数の第1分割線に直交する複数の第2分割線によって複数計測点を追跡することを特徴としている。例えば複数の第1分割線と複数の第2分割線に基づいて複数計測点を設定して、この複数計測点を追跡するよう構成することができる。より具体的な例では、関心領域は、複数の第1分割線と複数の第2分割線によりメッシュ状に分割され、第1分割線と第2分割線の交点を複数計測点として設定するよう構成することができる。
 すなわち、心筋の特定の物理量の診断に対する精度を向上させるためには、心筋の形状や伸縮方向などに応じて計測点を適切に設定する必要がある。この点、本発明によれば、複数の計測点は心筋の主な伸縮方向(例えば超音波画像が被検体の心臓の心腔と心腔の周囲をドーナツ状に囲む心筋とを含む心臓短軸像であれば心筋の円周方向及び放射方向(半径方向))に沿って設定される。このように心筋の伸縮方向に沿って計測点が設定されるので、例えば第1分割線上の隣接計測点間若しくは第2分割線上の隣接計測点間の距離の変化などを計測した場合、各計測値が心筋の各部位の性状を適切に反映しているので、診断に有用である。また、複数の第1分割線上にそれぞれ設定された複数の計測点については、心内膜及び心外膜からの距離が全て一定となる。したがって、例えばある第1分割線上の各計測点から心内膜や心外膜までの距離の変化を計測した場合、各計測値を対比することにより、心筋の各部位の性状を適切に対比することができるので、診断に有用である。
 また、表示部に表示される超音波画像が心臓短軸像である場合、計測位置設定部は、心臓短軸像のドーナツ状の心筋の形状に合わせてドーナツ状に関心領域を設定するよう構成することができる。一方、計測位置設定部は、心臓短軸像のドーナツ状の心筋のうち、複数の心筋の部分領域に関心領域を分離して設定するよう構成することができる。このように複数の関心領域を分離して設定することにより、各関心領域における特定の物理量を対比観察することができるので好ましい。また、計測位置設定部は、心臓短軸像のドーナツ状の心筋のうち、心腔を挟んで超音波探触子の送受信面に近い側の心筋と遠い側の心筋に関心領域を分離して設定するよう構成することもできる。
 すなわち、心臓短軸像であっては、ドーナツ状の心筋のうち、心腔を挟んで超音波探触子の送受信面に近い側の心筋と遠い側の心筋以外の心筋部位はノイズの影響等により超音波画像の画質が十分ではなく動き追跡の精度が低くなるおそれがあるから、物理量を算出したとしても信頼性に欠ける場合がある。それにも関わらず、関心領域がドーナツ状に設定されている場合、信頼性に欠ける部位に対しても計測が行われることになるから、演算処理の効率上好ましくない。この点、心臓短軸像のドーナツ状の心筋のうち、心腔を挟んで超音波探触子の送受信面に近い側の心筋と遠い側の心筋に関心領域を分離して設定することにより、演算処理の効率を高めることができ、かつ心筋を挟んで超音波探触子の送受信面に近い側の心筋と遠い側の心筋とを対比観察することができる。
 また、計測位置設定部は、関心領域に設定された複数の第1分割線若しくは複数の第2分割線のいずれかを、この関心領域を2つに分離する関心領域分離線として設定するか、又は複数の第1分割線若しくは複数の第2分割線とは別に、超音波画像上に関心領域分離線を設定するよう構成することができる。これによれば、一旦設定された関心領域を簡便な操作で分離することができるので、例えば心筋の心内膜側と心外膜側を分けて評価したり、心筋の正常部位と異常部位を分けて評価したりする場合に使い勝手がよい。
 1 被検体、3 超音波探触子、5 超音波信号生成部、7 超音波画像生成部、11 入力部、13 表示部、15 制御部、17 計測位置設定部、19 追跡演算部、21 物理量演算部、100 超音波診断装置、203 超音波画像、205 心腔、207 心筋、209 心内膜、211 心外膜、213 第1の関心領域、215 第2の関心領域、221 第1分割線、223 第2分割線、227 計測点、231 関心領域分離線、305 3次元関心領域

Claims (15)

  1.  被検体との間で超音波を送受信する超音波探触子と、前記超音波探触子で受信された前記被検体の心臓の心筋を含む組織の断層面の反射エコー信号に基づいて超音波信号を生成する超音波信号生成部と、前記超音波信号に基づいて超音波画像を生成する超音波画像生成部と、前記超音波画像を表示する表示部と、前記表示部に表示された超音波画像上の心筋に関心領域を設定する計測位置設定部と、前記関心領域の複数計測点における心筋の動きを追跡する追跡演算部と、前記追跡結果に基づいて特定の物理量を算出する物理量演算部とを備え、前記算出された特定の物理量を前記表示部に表示する超音波診断装置であって、
     前記追跡演算部は、前記心筋の心外膜及び心内膜に沿った複数の第1分割線と、該複数の第1分割線に直交する複数の第2分割線によって前記複数計測点を追跡することを特徴とする超音波診断装置。
  2.  請求項1の超音波診断装置であって、
     前記関心領域は、前記心筋の心外膜及び心内膜に沿った複数の第1分割線と、該複数の第1分割線に直交する複数の第2分割線により分割され、前記第1分割線と第2分割線の交点が前記複数計測点として設定される超音波診断装置。
  3.  請求項1の超音波診断装置であって、
     前記表示部に表示される超音波画像が、前記被検体の心臓の心腔と該心腔の周囲を囲む心筋とを含む心臓短軸像である場合、
     前記計測位置設定部は、前記心臓短軸像の心筋の形状に合わせて前記関心領域を設定可能に構成される超音波診断装置。
  4.  請求項1の超音波診断装置であって、
     前記表示部に表示される超音波画像が、前記被検体の心臓の心腔と該心腔の周囲を囲む心筋とを含む心臓短軸像である場合、
     前記計測位置設定部は、前記心臓短軸像の心筋のうち、複数の心筋の部分領域に前記関心領域を分離して設定可能に構成される超音波診断装置。
  5.  請求項1の超音波診断装置であって、
     前記表示部に表示される超音波画像が、前記被検体の心臓の心腔と該心腔の周囲を囲む心筋とを含む心臓短軸像である場合、
     前記計測位置設定部は、前記心臓短軸像の心筋のうち、前記心腔を挟んで前記超音波探触子の送受信面に近い側の心筋と遠い側の心筋に前記関心領域を分離して設定可能に構成される超音波診断装置。
  6.  請求項1の超音波診断装置であって、
     前記計測位置設定部は、前記関心領域に設定された複数の第1分割線若しくは複数の第2分割線のいずれかを、該関心領域を2つに分離する関心領域分離線として設定するか、又は前記複数の第1分割線若しくは複数の第2分割線とは別に、超音波画像上に前記関心領域分離線を設定可能に構成される超音波診断装置。
  7.  請求項1の超音波診断装置であって、
     前記超音波探触子は、前記被検体との間で超音波を送受信する複数の振動子が2次元配置されるか、又は1次元配列された前記複数の振動子を機械的に空間走査可能に構成され、前記被検体の心臓の心筋を含む組織の複数断層面の反射エコー信号を計測する探触子であり、
     前記表示部は、前記複数断層面の超音波信号に基づいて生成された3次元超音波画像を表示し、
     前記計測位置設定部は、前記表示部に表示された3次元超音波画像上に3次元関心領域を設定する超音波診断装置。
  8.  請求項1の超音波診断装置であって、
     前記特定の物理量は、前記関心領域の複数計測点の心筋の速度、前記関心領域の複数計測点の心筋のストレイン、前記関心領域により囲まれる心筋の面積、及び前記3次元関心領域により囲まれる心筋の容積の少なくとも1つである超音波診断装置。
  9.  超音波探触子によって被検体との間で超音波を送受信し、超音波信号生成部によって前記超音波探触子で受信された前記被検体の心臓の心筋を含む組織の断層面の反射エコー信号に基づいて超音波信号を生成し、超音波画像生成部によって前記超音波信号に基づいて超音波画像を生成し、表示部によって前記超音波画像を表示し、計測位置設定部によって前記表示部に表示された超音波画像上の心筋に関心領域を設定し、追跡演算部によって前記関心領域の複数計測点における心筋の動きを追跡し、物理量演算部によって前記追跡結果に基づいて特定の物理量を算出し、前記算出された特定の物理量を前記表示部に表示する超音波診断装置の計測点追跡方法であって、
     前記追跡演算部によって前記心筋の心外膜及び心内膜に沿った複数の第1分割線と、該複数の第1分割線に直交する複数の第2分割線によって前記複数計測点を追跡するステップを含むことを特徴とする超音波診断装置の計測点追跡方法。
  10.  請求項9の超音波診断装置の計測点追跡方法であって、
     前記関心領域は、前記心筋の心外膜及び心内膜に沿った複数の第1分割線と、該複数の第1分割線に直交する複数の第2分割線により分割され、前記第1分割線と第2分割線の交点が前記複数計測点として設定される超音波診断装置の計測点追跡方法。
  11.  請求項9の超音波診断装置の計測点追跡方法であって、
     前記表示部に表示される超音波画像が、前記被検体の心臓の心腔と該心腔の周囲を囲む心筋とを含む心臓短軸像である場合、
     前記計測位置設定部は、前記心臓短軸像の心筋の形状に合わせて前記関心領域を設定可能に構成される超音波診断装置の計測点追跡方法。
  12.  請求項9の超音波診断装置の計測点追跡方法であって、
     前記表示部に表示される超音波画像が、前記被検体の心臓の心腔と該心腔の周囲を囲む心筋とを含む心臓短軸像である場合、
     前記計測位置設定部によって前記心臓短軸像の心筋のうち、複数の心筋の部分領域に前記関心領域を分離して設定可能に構成される超音波診断装置の計測点追跡方法。
  13.  請求項9の超音波診断装置の計測点追跡方法であって、
     前記表示部に表示される超音波画像が、前記被検体の心臓の心腔と該心腔の周囲を囲む心筋とを含む心臓短軸像である場合、
     前記計測位置設定部によって前記心臓短軸像の心筋のうち、前記心腔を挟んで前記超音波探触子の送受信面に近い側の心筋と遠い側の心筋に前記関心領域を分離して設定可能に構成される超音波診断装置の計測点追跡方法。
  14.  請求項9の超音波診断装置の計測点追跡方法であって、
     前記計測位置設定部によって、前記関心領域に設定された複数の第1分割線若しくは複数の第2分割線のいずれかを、該関心領域を2つに分離する関心領域分離線として設定するか、又は前記複数の第1分割線若しくは複数の第2分割線とは別に、超音波画像上に前記関心領域分離線を設定可能に構成される超音波診断装置の計測点追跡方法。
  15.  請求項9の超音波診断装置の計測点追跡方法であって、
     前記超音波探触子は、前記被検体との間で超音波を送受信する複数の振動子が2次元配置されるか、又は1次元配列された前記複数の振動子を機械的に空間走査可能に構成され、前記被検体の心臓の心筋を含む組織の複数断層面の反射エコー信号を計測する探触子であり、
     前記複数断層面の超音波信号に基づいて生成された3次元超音波画像を前記表示部に表示し、
     前記表示部に表示された3次元超音波画像上に3次元関心領域を前記計測位置設定部により設定する超音波診断装置の計測点追跡方法。
PCT/JP2011/050912 2010-01-29 2011-01-20 超音波診断装置およびその計測点追跡方法 WO2011093193A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11736907.4A EP2529666B1 (en) 2010-01-29 2011-01-20 Ultrasonic diagnosis device and method used therefor to track measurement point
CN2011800074230A CN102724918A (zh) 2010-01-29 2011-01-20 超声波诊断装置及其测量点追踪方法
US13/520,856 US20120283567A1 (en) 2010-01-29 2011-01-20 Ultrasonic diagnostic apparatus and measurement-point tracking method
JP2011551820A JP5753798B2 (ja) 2010-01-29 2011-01-20 超音波診断装置およびその作動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010019124 2010-01-29
JP2010-019124 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093193A1 true WO2011093193A1 (ja) 2011-08-04

Family

ID=44319183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050912 WO2011093193A1 (ja) 2010-01-29 2011-01-20 超音波診断装置およびその計測点追跡方法

Country Status (5)

Country Link
US (1) US20120283567A1 (ja)
EP (1) EP2529666B1 (ja)
JP (1) JP5753798B2 (ja)
CN (1) CN102724918A (ja)
WO (1) WO2011093193A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090821A (ja) * 2010-10-27 2012-05-17 Ge Medical Systems Global Technology Co Llc 超音波診断装置
JP2012090819A (ja) * 2010-10-27 2012-05-17 Ge Medical Systems Global Technology Co Llc 超音波診断装置
WO2017206023A1 (zh) * 2016-05-30 2017-12-07 深圳迈瑞生物医疗电子股份有限公司 一种心脏容积识别分析系统和方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080833A1 (ja) * 2012-11-21 2014-05-30 株式会社東芝 超音波診断装置、画像処理装置及び画像処理方法
CN103845076B (zh) * 2012-12-03 2019-07-23 深圳迈瑞生物医疗电子股份有限公司 超声系统及其检测信息的关联方法和装置
US9211110B2 (en) * 2013-03-15 2015-12-15 The Regents Of The University Of Michigan Lung ventillation measurements using ultrasound
JP6835587B2 (ja) * 2014-02-19 2021-02-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 医用4dイメージングにおける動き適応型可視化
JP5918325B2 (ja) * 2014-09-11 2016-05-18 日立アロカメディカル株式会社 超音波診断装置
CN107847218B (zh) * 2015-07-09 2020-11-06 奥林巴斯株式会社 超声波观测装置、超声波观测装置的工作方法及存储介质
EP3320849A1 (en) * 2016-11-15 2018-05-16 Samsung Medison Co., Ltd. Ultrasound imaging apparatus and method of controlling the same
US10403053B2 (en) * 2016-11-15 2019-09-03 Biosense Webster (Israel) Ltd. Marking sparse areas on maps
EP3404919A1 (en) * 2017-05-17 2018-11-21 Koninklijke Philips N.V. Vector-valued diagnostic image encoding
CN107527316B (zh) * 2017-08-14 2019-10-18 马鞍山雨甜医疗科技有限公司 二维超声影像序列上的任意点构建点云数据的方法及系统
JP7304230B2 (ja) 2019-07-26 2023-07-06 富士フイルムヘルスケア株式会社 超音波撮像装置
CN110694149B (zh) * 2019-10-16 2021-06-22 山东大学齐鲁医院 一种超声辅助肌肉识别方法、系统及辅助注射装置
CN112842384B (zh) * 2020-12-30 2023-05-30 无锡触典科技有限公司 超声心动图心肌包络量测方法、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460615B2 (ja) 1987-10-28 1992-09-28 Yamata Kk
JP2004208807A (ja) * 2002-12-27 2004-07-29 Yd:Kk マイオカーディアルブラッドボリュームマップによる血液量解析・表示方法
JP2008142568A (ja) * 2008-02-04 2008-06-26 Toshiba Corp 超音波診断装置
JP2008289873A (ja) * 2007-05-09 2008-12-04 General Electric Co <Ge> 心再同期療法のためのlv誘導配置を計画するシステム及び方法
JP2010000199A (ja) * 2008-06-19 2010-01-07 Toshiba Corp 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5615680A (en) * 1994-07-22 1997-04-01 Kabushiki Kaisha Toshiba Method of imaging in ultrasound diagnosis and diagnostic ultrasound system
US6537221B2 (en) * 2000-12-07 2003-03-25 Koninklijke Philips Electronics, N.V. Strain rate analysis in ultrasonic diagnostic images
ATE550680T1 (de) * 2003-09-30 2012-04-15 Esaote Spa Methode zur positions- und geschwindigkeitsverfolgung eines objektrandes in zwei- oder dreidimensionalen digitalen echographischen bildern
US8096947B2 (en) * 2006-05-25 2012-01-17 Koninklijke Philips Electronics N.V. Quantification and display of cardiac chamber wall thickening
JP4966108B2 (ja) * 2007-06-25 2012-07-04 株式会社東芝 超音波診断装置、超音波画像処理装置、及び超音波画像処理プログラム
EP2026280B1 (en) * 2007-07-23 2013-10-23 Esaote S.p.A. Method and corresponding apparatus for quantitative measurements on sequences of images, particularly ultrasonic images
US8197410B2 (en) * 2007-09-07 2012-06-12 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus and ultrasonic image processing method
JP5240994B2 (ja) * 2008-04-25 2013-07-17 東芝メディカルシステムズ株式会社 超音波診断装置、超音波画像処理装置、及び超音波画像処理プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460615B2 (ja) 1987-10-28 1992-09-28 Yamata Kk
JP2004208807A (ja) * 2002-12-27 2004-07-29 Yd:Kk マイオカーディアルブラッドボリュームマップによる血液量解析・表示方法
JP2008289873A (ja) * 2007-05-09 2008-12-04 General Electric Co <Ge> 心再同期療法のためのlv誘導配置を計画するシステム及び方法
JP2008142568A (ja) * 2008-02-04 2008-06-26 Toshiba Corp 超音波診断装置
JP2010000199A (ja) * 2008-06-19 2010-01-07 Toshiba Corp 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBERT M. LANG ET AL.: "Recommendations for Chamber Quantification", JOURNAL OF AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, vol. 18, no. 12

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012090821A (ja) * 2010-10-27 2012-05-17 Ge Medical Systems Global Technology Co Llc 超音波診断装置
JP2012090819A (ja) * 2010-10-27 2012-05-17 Ge Medical Systems Global Technology Co Llc 超音波診断装置
WO2017206023A1 (zh) * 2016-05-30 2017-12-07 深圳迈瑞生物医疗电子股份有限公司 一种心脏容积识别分析系统和方法

Also Published As

Publication number Publication date
CN102724918A (zh) 2012-10-10
EP2529666A1 (en) 2012-12-05
JPWO2011093193A1 (ja) 2013-06-06
JP5753798B2 (ja) 2015-07-22
EP2529666B1 (en) 2017-01-18
US20120283567A1 (en) 2012-11-08
EP2529666A4 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5753798B2 (ja) 超音波診断装置およびその作動方法
US11635514B2 (en) Imaging methods and apparatuses for performing shear wave elastography imaging
JP5469101B2 (ja) 医用画像処理装置、医用画像処理方法、医用画像診断装置、医用画像診断装置の作動方法及び医用画像表示方法
JP6041350B2 (ja) 超音波診断装置、画像処理装置及び画像処理方法
RU2667617C2 (ru) Система и способ эластографических измерений
JP5893723B2 (ja) 超音波撮像装置及び超音波撮像方法
US6884216B2 (en) Ultrasound diagnosis apparatus and ultrasound image display method and apparatus
JP5858783B2 (ja) 非集束送信ビームを用いる高フレームレートの量的ドップラーフローイメージング
US20110066031A1 (en) Ultrasound system and method of performing measurement on three-dimensional ultrasound image
WO2007138751A1 (ja) 超音波診断装置、医用画像処理装置及び医用画像処理プログラム
JP2008012047A (ja) 超音波診断装置
US9877698B2 (en) Ultrasonic diagnosis apparatus and ultrasonic image processing apparatus
KR20120044267A (ko) 초음파 진단 장치 및 조직 움직임 추적 방법
JP4870449B2 (ja) 超音波診断装置及び超音波画像処理方法
JP4659974B2 (ja) 超音波診断装置
JP2015136449A (ja) 超音波診断装置及びビームフォーミング方法
JP2022529603A (ja) 心臓エラストグラフィのための取得トリガのためのシステム及び方法
JP2008073423A (ja) 超音波診断装置、診断パラメータ計測装置及び診断パラメータ計測方法
JP6591454B2 (ja) 多重音響ウィンドウからの同期されたフェイズドアレイデータの取得
JP4709937B2 (ja) 超音波診断装置及び画像処理装置
JP2016083192A (ja) 超音波診断装置
JP5331313B2 (ja) 超音波診断装置
WO2016039100A1 (ja) 超音波診断装置
JP5462474B2 (ja) 超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007423.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736907

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551820

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13520856

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011736907

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011736907

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE